
3D Mobile Game Engine

A Major Qualifying Project Report

Submitted to the University of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

__________________________ __________________________
Aaron Root Christopher Donnelly

Aleksander Yeganov

Date:April 21, 2008

Approved:

Professor Emmanuel O. Agu, Project Advisor

P a g e | 2

Contents
Contents..2

Abstract ... 5

1 Introduction .. 6

1.1 Mobile Devices...6

1.2 Tubetris..6

1.3 Goals..7

 2 Background ... 8

2.1 OpenGL E S ...8

2.1.1 Versions..8

2.1.2 OpenGL vs OpenGL E S ...9

2.1.3 OpenGL E S Implementations...9

2.2 GLUT...10

2.2.1 Features..10

2.2.2 GLUT E S ...10

2.3 Fixed Point Math...10

2.4 Windows CE..12

2.4.1 User Interface..13

2.4.2 Windows CE and OpenGL E S ..13

2.4.3 Improved Message Loop...14

2.4.4 Symbian OS vs WinCE...15

2.5 Development Environment..15

2.5.1 Eclipse..15

2.5.2 Embedded Visual C++ 4.0...16

2.5.3 Visual Studio...17

2.5.4 Choosing an IDE..17

2.5.5 Source Code management and SourceForge..18

2.5.5.1 CVS VS SVN..18

2.5.6 Active Sync...19

2.6 Tetris ...19

P a g e | 3

2.7 Tetris-Style Games...19

2.8 Games on PDA’s...20

3 Design ... 21

3.1 Graphics Design..21

3.1.1 Original Design..21

3.1.2 Optimized Design...22

3.2 Choosing a Genre..24

3.3 General Concept...25

3.4 Gameplay..25

3.5 Scoring...26

3.6 Theming...26

4 Implementation .. 27

4.1 Graphics...27

4.1.1 InitDraw...27

4.1.2 Render..27

4.1.3 DrawBoard...27

4.2 Game Elements..28

4.2.1 Custom Names..28

4.2.2 Spheres...28

4.2.3 Globals..28

4.2.4 Game Tube...28

4.2.5 Cobli...29

4.2.6 Interactions Between Game Tube and Cobli..29

4.3 Scoring...30

4.4 Ending ...30

5 Results .. 31

6 Future Work ... 32

6.1 Definition of Future Work ...32

6.2 Modifications to Basic Game Play ..32

6.3 Modifications to Structure ..32

6.4 Differing Systems ..33

6.5 Different Games ...33

6.6 Modifications to graphics ...33

P a g e | 4

7 Conclusions ... 34

8. References .. 35

Appendix A - Installation Guide .. 36

Appendix B - Code Documentation ... 37

Render.h File Reference...37

Render.cpp File Reference..43

main.h File Reference..53

main.cpp File Reference...56

board Class Reference...60

cobli Struct Reference..65

decodeCMD Struct Reference..69

decodeUINT Struct Reference..70

sphere Class Reference...71

P a g e | 5

Abstract
This project explores the feasibility of a mobile 3D game engine on a smart device. Using

OpenGL ES, a graphics library for embedded devices, we have developed Tubetris, a unique and

entertaining fully three dimensional puzzle game which runs on a HP iPaq PDA . The game

demonstrates the 3D capabilities of mobile devices and that fully 3D applications are indeed

possible on mobile devices.

P a g e | 6

1 Introduction

1.1 Mobile Devices

Recently mobile devices such as smart phones and personal digital assistants have

become increasingly popular. As their popularity increased, so has their functionality and power.

Today, mobile devices can run a variety of applications covering a wide range of functions. It is

even coming to the point where mobile devices can rival desktop computers in terms of

functionality and usefulness.

Even though mobile devices have become incredibly useful, currently one of their

primary functions is entertainment. People use their PDAs to listen to music or play video games

on their cell phones while waiting for busses or trains. The quality of these games, however, has

hardly changed even with all of these technological advancements. The resources and the tools to

change this exist, but there are few people doing so.

This project hopes to change that. By developing a 3D game engine for mobile devices,

this project should demonstrate that more advanced video games are indeed possible. The goal of

the project is to develop a fully 3D game engine and to create a game that is both unique and fun

to play.

1.2 Tubetris
The game that we chose to create to solve this problem is called Tubetris. It is a 3D

puzzle game similar to Tetris. The primary difference is that instead of a flat, two dimensional

playing board, the board is wrapped around a cylinder. Random pieces fall from the top of the

tube, and the player rotates the tube to place the pieces. The goal is to complete rows before the

tube fills up, which ends the game.

P a g e | 7

Tubetris demonstrates the 3D capabilities of mobile devices very well. It inherently uses

three dimensions as a game play element. It also has very simple controls which works well with

the limited inputs of most mobile devices. The game play is intuitive and fun, which makes for

an entertaining video game.

1.3 Goals
The goal of this project is to create a well designed 3D game engine for mobile devices.

This will require a knowledge of software architecture, software engineering, algorithms and

computer graphics. By doing this we hope to create a 3D game for mobile devices which is both

open to further extension and prove the feasibility of creating fully three dimensional video

games on mobile devices.

P a g e | 8

 2 Background

2.1 OpenGL ES
OpenGL ES is a graphics API based on OpenGL maintained by the Khronos Group. It is

specifically modified for embedded systems, and is used in a variety of applications, including

the iPhone, the Playstation 3 and on some avionics equipment.

2.1.1 Versions
There are several versions of the OpenGL ES specification, and each is defined in relation

to a different OpenGL specification. OpenGL ES 1.0 is defined relative to OpenGL 1.3 ES 1.1 is

defined by OpenGL 1.5 and ES 2.0 is defined relative to OpenGL 2.0. OpenGL 2.0 features a

programmable graphics pipeline and as such is not backwards compatible with previous

versions.

OpenGL ES 1.1 emphasizes hardware acceleration of the API, and is fully backward

compatible with 1.0. It provides enhanced functionality, improved image quality and

optimizations to increase performance while reducing memory bandwidth usage to save power.

The OpenGL ES 1.1 Extension Pack is a collection of optional extensions added to OpenGL ES

1.1 that reduced variability and bring significant improvements in image quality and

performance.[3]

OpenGL ES-SC 1.0 is defined relative to the OpenGL 1.3 specification and is designed to

meet the needs of the safety critical market in Avionics, Industrial, Military and Automotive

applications including D0178-B certification.[3]

The game we were going to develop needed to be as much performance friendly as

possible and consume as less battery power as possible. OpenGL ES 1.1 fit the category

perfectly.

P a g e | 9

2.1.2 OpenGL vs OpenGL ES
There are several differences between OpenGL and OpenGL ES, however there are also

many similarities. The main difference is that OpenGL ES has had several of OpenGL's less

efficient features removed. For instance, OpenGL ES does not support OpenGL's GLBegin and

GLEnd functions. Depending on the version, OpenGL ES may also lack support for floating

point data.

One of the most notable differences between OpenGL and OpenGL ES is the lack of the

GLBegin and GLEnd functions. In OpenGL, an object is normally drawn to the screen by calling

GLBegin and then specifying vertices and normals terminated by a call to GLEnd. However,

OpenGL ES does not support this. In order to draw an object to the screen in OpenGL ES, it is

necessary to first create an array of fixed point numbers which represent vertices. A pointer to

this array is then passed to OpenGL and it is drawn when a certain draw function is called.

Another important difference is that OpenGL ES supports less primitives than OpenGL.

While OpenGL supports drawing vertices as polygons or quads, OpenGL ES only supports

drawing triangles. This means that special care must be taken to draw vertices in the proper order

. Failing to do so can cause unexpected results.

2.1.3 OpenGL ES Implementations
There are several different implementations of the OpenGL ES standard. The one that we

chose to use was the Vincent Mobile 3D Rendering Library [8]. We chose this implementations

specifically because it works well with both PocketPC and Microsoft Smartphone. It is free for

both commercial and non-commercial projects and comes standard with window management

functions, which increases the ease of use.

Another implementation that we considered using was the Hybrid "Rasteroid"

P a g e | 10

implementation[10]. Some benefits of Hybrid over Vincent is that it has faster frame rates and a

more precise depth buffer. However, we were unable to find a current version of this

implementation as it is apparently no longer supported. Another reason we decided not to use it

was that it is mainly for developing with BREW, which we were not using.

2.2 GLUT
GLUT stands for GL utility toolkit. It provides many useful tools for working with

OpenGL.

2.2.1 Features
GLUT provides a simple way to handle both keyboard and mouse input. It also provides

functions to easily define and control the viewing window. Finally, it provides functions for

drawing several primitives, including cylinders, cubes and spheres, in both solid and wireframe

modes. Our cylinder drawing algorithm is a highly simplified version of the GLUT

implementation.

2.2.2 GLUT ES
GLUT ES is a version of GLUT designed specifically for OpenGL ES. It is essentially the

same except that it does not include support for some GLUT functions. For instance, it does not

support the drawing of several primitives. It also lacks support for some input devices which

cannot be used on mobile devices, such as joysticks.

2.3 Fixed Point Math
PDA and most other embedded devices have low memory, slower CPU speeds and very

low power consumption requirements. It is then no wonder that FPP, or a floating point

processors have not become a part of the standard mobile platforms. As such, on many mobile

P a g e | 11

devices, fixed-point math is preferred especially when FPP hardware is not available.In this

section we are going to explain what is a fixed point variable and how it is different from floating

point, along with the trade-offs that are incurred for the performance gain.

Fixed point math in a nutshell is a technique that uses integers to perform floating point

calculations. Fixed point value is represented by an integer. The integer is then divided into two

parts, one of them is going to represent the integer part and the other would represent the decimal

part. Depending on the kind of a project the programmer is working on he/she can choose one

format for the fixed type. For example in an 8-bit integer in a 2's complement format 1 would

appear like this

1 = 0001.0000

First bit indicates the sign of the number, the following 3 bits are used for the integer part and the

last 4 bits are used for the fractional part. OpenGL ES uses the format where the first bit

indicates the sign of the number, next 15 bits show the integer part and the last 16 bits are the

decimal part.

To convert a normal integer to a fixed point, one simply needs to shift forward 16 bits, in

c it looks like this:

1 << 16;

Special care has to be taken when converting floats or doubles into fixed point. Because floats

are stored in a IEEE format, simply shifting them would destroy the value. To resolve that

problem a little bit of math is required. If the chosen format in example was 20 bits for integer

and sign and 12 bits for decimal precision, which in a short form can be expressed as 20.12. Then

to represent 1 float as fixed one would need to calculate the offset value first:

offset = 212 = 4096.

P a g e | 12

The general formula for the offset number:

2^decimal bits

Then a simple multiplication by the offset number would convert the float into a fixed number.

Fixed = float * offset.

Converting back to the integer is simple:

integer = fixed >> 12.

The addition and subtraction for fixed point work the same as for regular integers, but some care

needs to be taken not to overflow the integer holding the fixed value.

Another aspect of fixed point numbers that should be considered is multiplication.

Whenever multiplication occurs computers sees each number with an additional offset. Here is a

detailed explanation:

if the number one were to be multiplied by itself in fixed format of 4.4 then internally it would be

stored as 10000. Therefore multiplying 10000 * 10000 = 100000000. The answer appears to be

obvious at this point. By removing the extra 4 zeros everything would get back to normal. In C

shifting backward by the offset would solve the problem.

A similar problem arises in division. except that in the case of division the number to be

divided needs to be shifted forward the offset number of bits, because after the division the final

number must retain one offset.

2.4 Windows CE
Windows CE is a very light weight operating system targeted at mobile devices. It is the

smallest from the Microsoft Windows OS family. It was initially designed to be power-efficient

and to support Win32 subset API. The main goal was to extend the Windows API into

machines that cannot support the relatively power hungry Windows Vista or XP. Windows CE is

P a g e | 13

not backwards compatible with MS-DOS or even other Windows'.

2.4.1 User Interface
As mentioned previously, we decided not to use the OpenGL ES glut ES toolkit because

we wanted to provide a more native-looking interface. Using the native Windows API gives

better flexibility and control. It also made the design of menus and other input controls easier.

2.4.2 Windows CE and OpenGL ES
Windows CE is an event-driven operating system. Before setting up OpenGL ES or

being able to capture any input from the user we needed to set up an initial window.

Writing Win32 applications the program starts in the WinMain function. That function

has four parameters: a handle to the instance, a handle to the previous instance, a command line

and the last parameter specifies how the window is to be shown. One of the most important parts

of a windows program is the message loop.

Because Windows CE is event-driven the application window gets all of its input through

the operating system. Whenever the user hits a key the operating system receives an event and a

message is generated, which is placed in the message queue. The message loop constantly polls

the message queue for new messages and when it receives a message that it recognizes, or in

other words a message for which the code has been written that code gets executed. When the

window is being created a handler function must be specified. That function handles the

messages which the loop constantly dispatches to it. When no messages are generated the

OpenGL ES code would be executed.

OpenGL ES requires a special setup. To be able to draw with OpenGL in Windows three

variables are required – EGLDisplay, EGLSurface and EGLContext. EGLDisplays provides a

bridge between the applications window and OpenGL. EGLSurface is the buffer that is going to

P a g e | 14

be shown on screen and finally EGLContext allows to draw into the EGLSurface. We have a

render() function that after all the setups get completed is executed.

2.4.3 Improved Message Loop
As it was explained above, the handler function specified during the creation of the

application window handles the messages generated by the events. The usual set up is that this

function contains a switch statement, where each message code is captured and the appropriate

code is executed. After some research a better approach was found. That approach allowed one to

remove the clogging switch statement and move the message handling routines into separate

functions. In order to accomplish that, we created a structure of the following format:

struct decodeMSG

{

UINT code;

LRESULT (*Fnctn)(HWND, UINT, WPARA M, LPARAM);

};

The first member variable is the message code and the second member is a pointer to the handler

function for the given message code. In the source file that contains the WinMain function we

created a global array of docodeMSG structures, where each structure contained the message

code it was responsible for and the handler function for that message code. Now whenever an

event is generated and gets sent to the main handler function a for loop runs through the the array

of messages codes and if one of them matches the events code a function associated with that

code gets executed.

P a g e | 15

2.4.4 Symbian OS vs WinCE
Early in development we had to choose which operating system we were going to design

our game for. The two leading mobile operating systems were Symbian OS and WinCE.

Symbian OS is a proprietary operating system owned primarily by Nokia but also used by

several other companies. Symbian OS is actually the leading OS for mobile smart devices.

However, programming for it would have required a lot of extra learning on our part. In the end

we chose WinCE mainly because we were already somewhat familiar with coding on Windows.

2.5 Development Environment
The development tools available on Microsoft Windows operating system platform are

numerous. Choosing the right one for our project that allowed our team to utilize all of the

resources and efforts most efficiently was not an easy task. The sections below describe the

programming environments we had gone through and how we eventually decided to use them.

2.5.1 Eclipse
Eclipse is an open source community. Its projects are focused on building an open

development platform with extensible frameworks and tools for building, deploying and

managing software. The Eclipse Foundation is a not-for-profit corporation with supporting

members that hosts the Eclipse projects and helps to cultivate open source community.

The original creator of the Eclipse project was IBM. Eclipse was created in November

2001 and supported by some software vendors. Later in January 2004 the Eclipse Foundation

was created as an independent not-for-profit corporation to act as the steward of the Eclipse

community. This independent not-for-profit corporation was created to allow a vendor neutral

and open, transparent community to be established around Eclipse. Today, the Eclipse

community consists of individuals and organizations from a cross section of the software

P a g e | 16

industry [2].

Even though Eclipse is known for its Java IDE, it also allows one to code in almost any

main-stream language available on the market today. In addition it has many features that make

coding a lot easier. Code can be formatted, auto-indented and for each language Eclipse supports

an individual “perspective”. What makes Eclipse even more alluring is that it supports many

plug-ins that extend its functionality even further. Perspectives are specific settings that utilize

most common options pertaining to a certain language more easily available. Another interesting

idea that is supported by Eclipse are workspaces. Workspaces are basically containers for

projects, they can be used to separate production environment from a testing environment, which

is very useful. One can simply copy the latest projects from the development area into testing

area and experiment on them without a need to create a separate project, or even worse changing

the actual development code.

2.5.2 Embedded Visual C++ 4.0
A product of Microsoft, eVC is a stand-alone development environment that supports

languages C and C++. It allows to build “native” executables. One of the important features that

eVC supports is the MFC library. MFC stands for Microsoft Foundation Classes it is a library

that wraps portions of Windows API in C++ classes. These classes are defined to give control

over many of the handle-managed Windows objects and also for predefined windows and

common controls. Another feature that is of interest to programmers is support for WTL and ATL

in eVC. WTL, or Windows Template Library provides support for easy implementation of user

interface elements, such as frames and popup windows, standard and common controls, property

sheets and common dialogs etc. The main objective of WTL is small and efficient code. That was

important for our project, because for our user interface we decided not to use libraries that are

P a g e | 17

available with OpenGL ES. ATL, or Active Template Library is a set of classes that simplify

programming of Component Object Model(COM). Since, neither ATL nor COM had any

significant importance to our project I am not going to elaborate more on them other than to say

that they are related to Interprocess Communication and dynamic object creation.

2.5.3 Visual Studio
First released in 1997, Microsoft Visual Studio is a bundle of programming tools

available from Microsoft tied together by one common Integrated Development Environment.

Using visual studio programmers can create standalone applications, web services, web

applications and web sites, which could be run on Windows, PocketPC and smart devices.

Currently visual studio includes: Visual Basic, C#, C++, J#. Separate editions also include

Microsoft SQL server for developers. It should be mentioned that Visual Studio targets .NET

framework. Microsoft .NET framework consists of a Base Class Library and Common Language

Runtime. Base class library contains many precoded solutions to common problems that

programmers face. CLR manages the execution of the programs. One of the main advantages

of .NET framework is that CLR provides a virtual machine abstraction, which means the

programmers do not need to be concerned with the CPU that will execute their program.

2.5.4 Choosing an IDE
Because programs developed for embedded systems can not be run on desktop PC the

deciding factor in choosing the right IDE depended on the emulator support. The Eclipse had all

the features that we needed except the native emulator support. Embedded visual c++ had

support for emulators, but the emulator that came with it was outdated – therefore was not the

best choice for development. Visual Studio supported the latest emulators available, it also had

most of the features available in Eclipse and was chosen based on that criteria. Yet not all of the

P a g e | 18

problems had been solved – to keep our source code clean and not to interfere with each other

during development we needed a source code management system.

2.5.5 Source Code management and SourceForge
For our source code management we decided to use more than just a repository. WPI

offers its students access to SourceForge, which gives one not only a repository but much more.

It allows one to create tasks and documents, which could be tracked by other team members.

The only available source code management repositories available in WPI SourceForge

were CVS and SVN.

2.5.5.1 CVS VS SVN
CVS – Concurrent Versions System is an open source version control system. SVN –

subversion is a version control system created initially by CollabNet inc. Its main purpose at its

inception was to create a free version control system that would operate a lot like CVS, but

without the CVS's “bugs” and flaws. After some research we found certain advantages and

disadvantages to both systems. Fortunately our project was not going to be extremely large so

that we could be affected by the differences between the two. Initial decision was to use the

Subversion because it appeared easier to install and maintain.

First client we tried to use was the TortoiseSVN, which provided seamless Windows

Explorer Integration. Unfortunately after installing it we could not get it to work because of an

internal “bug”. Another Windows SVN client was Subversion Packages, but it also did not work.

After successful installation it refused to connect to the repository in SourceForge. Since SVN

proved to be too time consuming we turned to CVS. The research showed that there were not

many CVS solutions offered on the Windows platform for the environment we chose. One of the

most prominent was “Jalindi Igloo”, surprisingly old, yet still recommended client – last release

P a g e | 19

was in April of 2002. After installation it was available in the VS environment. Upon an attempt

to connect to the repository it failed.

To avoid spending too much time on repository setup one of the professors at WPI

suggested using Eclipses built-in CVS and use it only to check-in and check-out source code

while still developing in Visual Studio. That approach was tested and it worked therefore was left

as the final setup.

2.5.6 Active Sync
At early stages of development we discovered that the emulator was extremely slow and

slowed down the development process. Professor Agu supplied us with a pocket PC, which was

used for testing most of the time from then on. ActiveSync is a software provided by Microsoft

that allows to synchronize the data between the pocket PC and desktop PC. For developers it

mainly serves as the gateway between the development environment and pocket PC.

2.6 Tetris
 The game which we designed is similar in style to a currently existing game called Tetris.

Tetris was designed in 1985 by Russian programmer Alex Pajitnov and was eventually released

in the United States through Nintendo packaged with Game Boy. The game is played with a

4 unit piece called a tetra is dropped from the top of the screen in one of five unique shapes.

Pieces are scored when a row is completed, and if any of the tetra is off the screen when the

piece comes in contact with another piece, the game ends[1]. It takes place on a flat game board

as pieces fall from the top towards the bottom.

2.7 Tetris-Style Games
Since the advent of Tetris and its popularity, there have since been many variations of

Tetris which have been made. There have been variants with the same rules, but the piece

P a g e | 20

generator gives the least useful piece [5]. In addition there have been three-dimensional versions

[7] and other simple variations. Usually these have been on dedicated devices for playing

games, but have been ported to various systems.

2.8 Games on PDA’s
There have also been a variety of games on PDA’s which have been made over time.

This has been due to PDA game’s rising popularity. While many games attempt to have 3-

dimensional, such as a top-down version of tetris[4], and a version of the popular game

“Doom” [6], to the current date, there have not been many attempts at real 3-dimensional games

for embedded systems.

P a g e | 21

3 Design

3.1 Graphics Design
During the development of our game, the design for the graphics elements changed

considerably. These changes were made to improve execution time, reduce development time

and to generally simplify the code.

3.1.1 Original Design
Originally, the graphics were going to be handled by several different classes(Fig 3.1.1).

There was going to be a drawing class, which utilized both a camera class and a model class. The

camera was to be responsible for setting the window and rotating around the game board. It was

partially impemented, but then was removed. The reason it was removed was because it turned

out to be faster to simply draw the pieces with an offset each time they were redrawn. Since the

entire board had to be redrawn every time a piece moved anyway, this could be done with

minimal overhead.

The model class was initially supposed to keep track of each model so that they could be

drawn more quickly. The idea was, instead of generating many meshes and placing them together

to form a piece, one mesh would be generated for each piece. This would trade off memory for

speed, however it was decided that memory was more important than speed. Also, it was found

that the model class had many of the same responsibilities of the cobli class. In the end, neither

of these were needed by the main graphics class since it just directly reads the game board. This

is efficient for both memory and execution speed.

P a g e | 22

Figure 3.1.1 Class Diagram of Proposed Graphics Engine

3.1.2 Optimized Design
Instead of using a more complex graphics engine which would use multiple classes, we

condensed all of the functionality into a single source file. The graphics element of the engine

controls all of the visual elements of the game. This includes drawing the board to the proper

parameters, drawing the pieces, and drawing the background. The graphics portion of the engine

was designed to accept any size board and procedurally generate all of the required meshes based

on that configuration. Another consideration was to allow the graphics portion to be able to

easily handle multiple themes. The board was designed to be a cylindrical grid, split both

P a g e | 23

horizontally and vertically. One block in the cylinder occupies one of these cylindrical grid

squares. This creates an easy to view interface that is simple to understand. It also makes it easier

to position pieces over gaps because of this grid nature.

Another important design consideration was to make the graphics easy to understand. The

board was designed in such a way that a player would have a good understanding of where all

the pieces were and where to put new pieces. It was decided that the board should consist of two

transparent cylinders, viewed at a slightly downward angle. This made the front as well as the

back of the board easily visible in most situations. It was also decided to use a background image

Figure 3.1.2: An example screenshot

P a g e | 24

that made the pieces stand out well against so that they are easily visible. An example of the

game display can be seen in figure 3.1.2.

It was also important that the graphics use as little memory as possible and run as quickly

as possible. If the graphics refreshed too slowly, then the game will be too difficult to play. To

solve this the engine was designed to only have to generate most meshes once to increase

performance and decrease resource usage. Also, meshes were kept at an optimal size to save

memory and decrease redraw times.

Finally the graphics were designed to be able to support a variety of themes. Both the

background image as well as the color and texture of the pieces can change whenever necessary.

This design allows for the game to be easily modified in the future to allow any sort of graphical

configuration one would wish.

3.2 Choosing a Genre
According to Mark J. P. Wolf in The Medium of the Video Game, a way to define a genre

of a video game can be either from theme, iconography, or structure. Using these, a list of many

of the genre's of videogames are "Abstract, Adaptation, Adventure, Artificial Life, Board Games,

Capturing, Card Games, Catching, Chase, Collecting, Combat, Demo, Diagnostic, Dodging,

Driving, Educational, Escape, Fighting, Flying, Gambling, Interactive Movie, Management

Simulation, Maze, Obstacle Course, Pencil ‐and ‐Paper Games, Pinball, Platform, Programming

Games, Puzzle, Quiz, Racing, Role ‐Playing, Rhythm and Dance, Shoot ’Em Up, Simulation,

Sports, Strategy, Table ‐Top Games, Target, Text Adventure, Training Simulation, and

Utility."[9] Seeing as the PDA had restricted memory and had a goal of a 3-dimensional game

engine, it was decided from this list to make a game which is an abstract puzzle game. Abstract

games are "Games which have nonrepresentational graphics and often involve an objective

P a g e | 25

which is not oriented or organized as a narrative." [9] This would be useful; for the lack of a

theme would help keep the graphic's simpler by not modeling things such as humans or other

complicated shapes. Puzzle games are "Games in which the primary conflict is not so much

between the player-character and other characters, but rather the figuring out of a solution, which

often involves solving enigmas, navigation, learning how to use different tools, and the

manipulating or reconfiguring of objects."[9] This would allow for no actual physics, and simple

rules to follow.

3.3 General Concept

 Tubetris is an abstract puzzle game in which pieces called cobli's, composed of between

2 and 5 colored spheres, fall from the top of the screen to the bottom. The board being played

upon is an eight by eight grid, wrapped into a tube. Whenever either an entire row is filled in

those pieces are removed and are scored. The game keeps advancing until the pieces pile up

beyond the top of the grid, at which point the player loses the game.

3.4 Gameplay

Each cobli dropped is between 2 and 5 connected spheres (no sphere in a cobli will not be

touching another sphere). As each cobli falls, the player is able to rotate the piece and move it

around the tube so that it may land in accordance with where and how the player would like it to

land. If a piece moves to a location on the tube that is not easily visible, the tube rotates so that

the piece is easily visible. When the entire circumference (in one row) is filled with spheres, the

pieces are removed and scored. After spheres are cleared, any piece not touching any other

sphere will fall until it lands on top of either the bottom of the board or another sphere. After a

P a g e | 26

piece lands, it becomes a part of the board and another piece is released from the top.

3.5 Scoring

A player starts the game with zero points. When a cobli causes it’s spheres to be arranged

on the board so that the circumference of the tube is filled in a single horizontal line, scoring

takes place. Each sphere in the line is worth 10 points, and is added together to the score. It is

easy to change the score of a sphere, only needing to change the points value in “constants.h”

3.6 Theming

The game does not have any direct theming but the background and textures can change.

It can go from a "tetris" feel and look, to a futuristic one, to ancient Greek all in the same game.

P a g e | 27

4 Implementation

4.1 Graphics

4.1.1 InitDraw
The InitDraw function initializes OpenGL ES so that drawing can begin. It is based a

pointer to the game board, so that the graphics can check the board at any time and draw it

accordingly. It also calls the functions which load all of the necessary textures from files. The

InitDraw function also sets the proper states to allow transparency and shading.

4.1.2 Render
The Render function is called every time a change to the board is made. It is a

relatively simple function that clears the screen, loads the identity matrix and then draws

the background if necessary. It then calls drawBoard, which does the majority of the

graphical work. Finally, it swaps the buffers so that the changes made are visible.

4.1.3 DrawBoard
The drawBoard function is the core of the Render functions. It references the current

game board and draws two cylinders according to the size of the board. The cylinders are

approximated by using the parametric formula for a cylinder. Points are generated based on the

parameters given and the cylinders are drawn. One cylinder is smaller than the other which

creates a tube. Next the function reads the game board and generates pieces as they appear. The

function automatically calculates the offsets for each piece so that they appear in the proper

position. This effectively wraps a two dimensional board onto a three dimensional cylinder. The

function that generates the pieces only creates the mesh for them once, and then sets a boolean to

true. Every successive call to the function simply displays the already generated mesh. This

P a g e | 28

speeds execution time and makes the graphics smoother. After all of the pieces on the board have

been drawn the function exits.

4.2 Game Elements

4.2.1 Custom Names
The first thing created was a global file which defined names such as RED_ and 'r' and

BLUE_ and 'b'. This would allow easy changes further down the line by changing only one

character rather than changing everything. This was stored in constants.h and every file was

allowed to have access to this.

4.2.2 Spheres
The game spheres were created as a custom data type called sphere and stored in the files

sphere.cpp and sphere.h. Sphere's had three distinct attributes, being the color of the sphere, the

type of the sphere (multiplier or normal), and the value of the sphere.

4.2.3 Globals
For the game, a set number of sphere's were created which would exist throughout the

entire game, and only these sphere's would be used. These were colored in one of 5 colors:

RED_, GREEN_, BLUE_, YELLOW_, and ORANGE_. The score for each sphere was set to 10

and the type of sphere was always regular. These were the sphere's pointed to in all subsequent

operations. In addition to the 5 colors, there was a NONE_ sphere which would be used when no

sphere was actually present.

4.2.4 Game Tube
The game tube was designed as a two dimensional array of pointers to spheres in order to

save on memory. The default size used was eight by eight, but it could be easily changed by

P a g e | 29

entering different numbers into the constructor. This two dimensional array was drawn as a tube

and any cobli movement was simulated in order to wrap around the board properly. The playing

field itself was stored in board.cpp and board.h, and had methods to return the array as was able

to be seen.

4.2.5 Cobli
A cobli was represented by a 5x5 array of pointers to spheres, and was stored within

cobli.cpp and cobli.h. It also had it's internal representation of the x and y location relative to the

board such that the the lower lefthand corner of the array would be the indicator. The generation

of a cobli consists of initializing all of the pointers to NONE_, and then started at the location of

2,2, otherwise known as the center of the grid. A randomly colored sphere was placed there, and

then a random direction was chosen and placed there. This was done 3 more times such that a

maximum of 5 pieces could have been placed. If a piece is overwritten, it would just mean the

number of pieces were smaller. A cobli could also be rotated, which would rotate around the

center of the 5x5 array, based on a simple formula on which direction it was moving. To rotate

clockwise, it would would turn [x,y] into [y, x-4] and to rotate counterclockwise it would turn

[x,y] into [y-4, x].

4.2.6 Interactions Between Game Tube and Cobli
In order to keep graphics and game play separated as much as possible, it would be

optimal that there was a function that graphic's could call that would return the current game

state as visible by the player. This would be a graphical representation of the game board with

the cobli on it rather than having the graphical package take both pieces of information and

putting them together itself. To have this done easily, the cobli is treated as part of the game

board and when the game board state is returned, the cobli is returned as part off that array. As

P a g e | 30

an easier method of doing this, it was determined that every time the cobli moved, it would be

placed on the board, to be removed whenever the cobli started to move. Whenever a cobli hit's

the bottom of the board or another sphere in the downward direction, it would be placed down

permanently such that it would not overlap with any previously existing colored sphere, and then

reset to the same column it was in, but at the top of the playing field, recreated as a new cobli.

The board is also the location which actually calls for the cobli to rotate, drop, and move left or

right.

4.3 Scoring
After each cobli hits the location for it to stay still, a simple for-loop is run to determine if

any of the spheres completed an entire row and should be cleared. Should a row be cleared, that

part of the for-loop is run again with a boolean now turned on which replaces each colored

sphere with one labled NONE_. As it does that it has a function which adds the sphere's score to

the temporary score value, and after the loop is done it adds the temporary score to the

permanent score. In addition, every row above the row which just got cleared is lowered by a

row so the game play can continue easily.

4.4 Ending
The game ends when a cobli cannot move downwards due to a sphere or ground being in the way

and a sphere is above the edge of a board. This is checked by seeing how far down the cobli has

fallen and if the cobli has any sphere's other than one labled NONE_ above the board edge. The

game then calls a message which tells the player the game has ended.

P a g e | 31

5 Results
We were able to produce a playable 3D video game. The game supports different board

sizes, although that option is not available in the game it is implemented. The pieces in the game

have different colors. The game score is being calculated as the player progresses in the game,

but it is not displayed. The main controls are the arrow keys and the enter button. The left and

right keys rotate the tube left and right, the up key rotates the piece and the down key makes the

piece fall down faster. The enter key pauses the game. Partial support for a stylus is

implemented. At the current state the player can turn off textures if he/she wishes to do so by

touching the screen with the stylus, a future extension of using stylus to rotate the tube while

holding the stylus is left for future work. The games menu allows one start a new game and exit

the game completely. Also the menu bar has an alternative exit button in the form of a cross in

the upper right side of the game window.

P a g e | 32

6 Future Work

6.1 Definition of Future Work
The future work which is about to be described is possible work which could be done to expand

upon this project.

6.2 Modifications to Basic Game Play
There are many simple modifications which could be applied to Tubetris which have not been

applied as of the current date. It could be designed such that the sphere's color has a certain

value, and those values are the score that is added as opposed to the basic score of 10 points.

While support for this has already been added, an implemented version of having a multiplier

sphere would be a nice addition so that when the sphere is picked up, the points are doubled

rather than adding the 10 points for the sphere. The scoring could also be modified so that

columns would have spheres deleted if 4 of the same color (or a different number) were in the

same column, all touching each other or if multiple lines were cleared at once, more points

would be gained than just the sum of the two lines.

6.3 Modifications to Structure
There are many ways to modify the structure of the game for future projects

also. A configuration file with the types of spheres created on start up and their values

would be a decent addition to the game. In addition, the configuration file could define

the size of the board, and which rules for play are used. To take this further, a scripting

language could be created so that the game can be modified into several different

games, and can generate many different puzzle games with a variety of rules. There

could be modifications to cobli's such that the size is not limited to 5 pieces, and

P a g e | 33

possibly create all possible 5 combinations instead of the few the algorithm which was

written creates.

6.4 Differing Systems
Other possible expansions would be to port the current game into either newer or older palm

pilots than currently are in use, or to try to port the game to a cellphone. Newer palm pilots

would allow for a more complex game while an older palm pilot would have to be more

restricted in what it had to do. Cell phones would also be more restricted, but would also have to

have different button mappings based on the phone being used.

6.5 Different Games
 A final idea for possible directions for the project to evolve would be to create a different kind

of game than abstract puzzle to show other capabilities that a 3d engine could perform on

embedded systems. The current engine which was designed only runs a specific type of puzzle

game, and an expansion on that could prove palm pilots a strong contender as a current game

system.

6.6 Modifications to graphics
While the graphics work for the game, there are many graphical improvements which

could also be done for future work. Better texturing can be added, so the spheres could look like

various objects (planks of wood, bricks, etc.). The shapes can be made different so spheres could

actually be a sphere shape. Graphics could be redone using GLUT (if one was daring enough) or

other versions of OpenGL ES.

P a g e | 34

7 Conclusions
Working on this project taught us many things. One of the things that we learned was the

importance of communication when working on a project of this magnitude. Through the use of

sourceforge, instant messaging, and regularly scheduled meetings we were able to make sure that

all team members were well coordinated. This project gave us all valuable experience in working

with a team.

We also learned the importance of optimized code. When programming for modern

computers memory usage and processing time is not usually a huge concern. However, when

programming for mobile devices it becomes necessary to write code that both uses limited

memory and executes quickly. The tricks and practice we gained by doing this will easily

translate over into any programming project.

Another conclusion can be drawn regarding the future of 3D games on mobile devices.

While the game we made was limited by the hardware available to us, the PDA that we ran our

game on was several years old. Modern mobile devices have much more power and memory.

Some even have dedicated graphics chips, which would have accelerated our game substantially.

It is likely that in the near future, much more advanced 3D games will be made available on

mobile devices. All of the elements necessary to their development exist, it is simply a matter of

actually creating them.

It is also interesting to note that several of the delays we had were simply because the

IDE was not cooperating. In particular, Microsoft Visual Studio was exceedingly difficult to

work with. It crashed frequently and would not work with SVN. The errors encountered ranged

from actual, known bugs in the compiler to random corruption of necessary files. It is astounding

how poorly such a widely used piece of software performed.

P a g e | 35

8. References
[1] Bellis, Mary. “History of Tetris” About.com. 2008. Internet.

<http://inventors.about.com/od/tstartinventions/a/Tetris.htm> 17 April, 2008

[2]Eclipse. Eclipse.org home. 2008. Internet.

<http://www.eclipse.org> Janary 27, 2008.

[3] Khronos Group. The Khronos Group. 2008. Internet

 <http://www.Khronos.org> 19 April, 2008

[4] Komilev, Stefan. PDA 3Dware. 2001. Internet.

 <http://www.pda3dware.com> 26 March, 2008.

[5]Poloni, Federico. “bastet” happypenguin.com. 2005. Internet.

<http://www.happypenguin.org/show?bastet> 17 April, 2008

[6] PalmInfocenter. “Palm OS Software” 2008. Internet.

 <http://palminfocenter.com> 26 March, 2008.

[7] Tetris Holding. Tetris.com. 2008. Internet

<http://tetris.com> 18 April, 2008.

[8] Vincent Mobile 3D Rendering Library. 2008. Internet

<http://sourceforge.net/projects/ogl-es/> 18 April, 2008.

[9] Wolf, Mark J.P. The Medium of the Video Game. Texas. University of Texas Press., 2000.

[10] Zeus Communications Zeus CMD. 2008. Internet.
<http://www.zeuscmd.com/tutorials/opengles/02-SettingUpYourEnvironment.php>
18 April, 2008.

P a g e | 36

Appendix A - Installation Guide
To install the game to a PDA or Smartphone, it must have WinCE installed. Simply copy

the game executable, as well as the bg.bmp file to any folder on the device. It does not matter

what folder they are placed in as long as they are both in the same folder. Then copy the

libGLES_CM.dll file to the windows folder of the device. Opening the executable should then

run the game.

P a g e | 37

Appendix B - Code Documentation

Render.h File Reference
#include <windows.h>
#include <GLES/gl.h>
#include <GLES/egl.h>
#include "resource.h"
#include "board.h"

Defines
#define PI 3.14159265358979323846f

Functions
GLfixed FixedFromInt (int value)

GLfixed FixedFromFloat (float value)

GLfixed MultiplyFixed (GLfixed op1, GLfixed op2)

bool InitOGLES ()

bool InitDraw (board *a)

void Render ()

void SetOrtho ()

void SetPerspective ()

void Perspective (GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar)

void initBlock (GLfloat inner, GLfloat outer, GLfloat height, GLint slices)

void drawCylinders (GLint slices, GLint stacks)

void cap (GLfloat innerRadius, GLfloat outerRadius, GLint slices)

void Cylinder (GLfloat baseRadius, GLfloat topRadius, GLfloat height, GLint
slices, GLint stacks)

Variables

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a16
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a15
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a14
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a13
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a12
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a11
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a10
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a9
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/board_8h-source.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/resource_8h-source.html

P a g e | 38

const unsigned
int PRECISION = 16

const GLfixed ONE = 1 << PRECISION

const GLfixed ZERO = 0

Define Documentation

#define
PI 3.14159265358979323846f

Function Documentation

void cap (GLfloat innerRadius,
GLfloat outerRadius,
GLint slices

)

Draws the disk at the top of the game cylinder

Parameters:
innerRadius The radius of the inner cylinder
outerRadius The radius of the outer cylinder
slices The number of slices in the cylinders

void Cylinder (GLfloat baseRadius,
GLfloat topRadius,
GLfloat height,
GLint slices,
GLint stacks

)

Draws a cylinder with the given dimensions. A difference between the top and bottom
radius creates a cone

Parameters:

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a1

P a g e | 39

baseRadius The radius at the bottom of the cylinder
topRadius The radius at the top of the cylinder
height The height of the cylinder
slices The number of slices in the cylinder, the more slices, the

more cylindrical the approximation
stacks The number of stacks in the cylinder

void
drawCylinders

(GLint slices,
GLint stacks

)

Draws the inner and outer cylinders of the game board with the desired number
of slices and stacks

Parameters:
slices The number of slices in the cylinder, usually the x dimension of

the game board
stacks The numbes of stacks in the cylinder, usually the y dimension of

the game board

GLfixed FixedFromFloat (float valu
e

) [inline]

Converts a float value to a fixed value

Parameters:
value The value to convert

GLfixed FixedFromInt (int valu
e

) [inline]

Converts an int value to a fixed value

Parameters:
value The value to convert

P a g e | 40

void initBlock (GLfloat inner,
GLfloat outer,
GLfloat height,
GLint slices

)

Initializes the block mesh and then draws a single block. If the mesh is already
initialized then it simply draws a block

Parameters:
inner The radius of the inner cylinder
outer The radius of the outer cylinder
height The desired height of the block
slices The number of slices in the cylinder

bool
InitDraw

(board * a

)

Initializes the graphics with a pointer to a game board

Parameters:
a A pointer to a game board

bool InitOGLES ()

 Initializes the graphics with a default board, used for testing

GLfixed
MultiplyFixed

(GLfixed op1,
GLfixed op2

) [inline]

Multiplies two fixed values

Parameters:

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html

P a g e | 41

op1 The first value to multiply
op2 The second value to multiply

void Perspective (GLfloat fovy,
GLfloat aspect,
GLfloat zNear,
GLfloat zFar

)

 A gluPerspective-like function but modified to work with Glfixed

void
Render

()

 Renders the current game board

void
SetOrtho

()

 Changes the view to orthographic

void SetPerspective ()

 Changes the view to perspective

Variable Documentation

const GLfixed ONE = 1 << PRECISION

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a2

P a g e | 42

const unsigned int PRECISION =
16

const GLfixed ZERO =
0

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8h.html#a1

P a g e | 43

Render.cpp File Reference
#include "render.h"

Functions
unsigned char * loadBMP (char *filename, BITMAPINFOHEADER *bmpInfo)

bool loadTextures ()

bool InitDraw (board *a)

void initBlock (GLfloat inner, GLfloat outer, GLfloat height, GLint slices)

void drawBoard ()

void cap (GLfloat innerRadius, GLfloat outerRadius, GLint slices)

void Cylinder (GLfloat baseRadius, GLfloat topRadius, GLfloat height, GLint
slices, GLint stacks)

void Render ()

void Perspective (GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar)

void SetOrtho ()

void SetPerspective ()

Variables
EGLDisplay glesDisplay

EGLSurface glesSurface

EGLContext glesContext

HWND hWnd

HDC hDC

bool drawInOrtho

bool drawTriangle

board * GameBoard

GLfloat capVert [80]

GLfloat outerVert [120]

GLfloat innerVert [120]

GLfloat blockVertb [18]

GLfloat blockVertl [12]

GLfloat blockVertf [21]

GLfloat blockVertr [12]

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a14
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a13
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a12
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a11
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a10
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a9
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a37
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a36
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a35
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a34
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a33
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a32
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a31
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a30
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a29
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a28
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a27

P a g e | 44

GLfloat blockVertt [18]

GLfloat blockVertba [21]

bool texLoaded = false

bool capInit

bool blockInit

bool outInit

bool inInit = false

GLfloat rtri

GLuint texture [1]

GLfloat rtfi = 0.0f

float bgVertices []

float bgTexCoords []

Function Documentation

void cap (GLfloat innerRadius,
GLfloat outerRadius,
GLint slices

)

Draws the disk at the top of the game cylinder

Parameters:
innerRadius The radius of the inner cylinder
outerRadius The radius of the outer cylinder
slices The number of slices in the cylinders

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a26
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a25
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a24
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a23
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a22
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a21
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a20
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a19
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a18
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a17
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a16
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a15

P a g e | 45

void Cylinder (GLfloat baseRadius,
GLfloat topRadius,
GLfloat height,
GLint slices,
GLint stacks

)

Draws a cylinder with the given dimensions. A difference between the top and
bottom radius creates a cone

Parameters:
baseRadius The radius at the bottom of the cylinder
topRadius The radius at the top of the cylinder
height The height of the cylinder
slices The number of slices in the cylinder, the more slices, the

more cylindrical the approximation
stacks The number of stacks in the cylinder

void drawBoard ()

P a g e | 46

void initBlock (GLfloat inner,
GLfloat outer,
GLfloat height,
GLint slices

)

Initializes the block mesh and then draws a single block. If the mesh is already
initialized then it simply draws a block

Parameters:
inner The radius of the inner cylinder
outer The radius of the outer cylinder
height The desired height of the block
slices The number of slices in the cylinder

bool
InitDraw

(board * a

)

Initializes the graphics with a pointer to a game board

Parameters:
a A pointer to a game board

unsigned char* loadBMP (char * filename,
BITMAPINFOHEADER * bmpInfo

)

bool loadTextures ()

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html

P a g e | 47

void Perspective (GLfloat fovy,
GLfloat aspect,
GLfloat zNear,
GLfloat zFar

)

 A gluPerspective-like function but modified to work with Glfixed

void
Render

()

 Renders the current game board

void
SetOrtho

()

 Changes the view to orthographic

void SetPerspective ()

 Changes the view to perspective

Variable Documentation

float bgTexCoords[]

Initial value:

{
 3.0f, 0.0f,
 3.0f, 3.0f,
 0.0f, 0.0f,

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a26

P a g e | 48

 0.0f, 3.0f
}

float bgVertices[]

Initial value:

 {
 100.0f, -100.0f,
 100.0f, 100.0f,
 -100.0f, -100.0f,
 -100.0f, 100.0f
}

bool blockInit [static]

GLfloat blockVertb[18] [static]

GLfloat blockVertba[21] [static]

GLfloat blockVertf[21] [static]

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a13
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a16
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a11
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a19
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a25

P a g e | 49

GLfloat blockVertl[12] [static]

GLfloat blockVertr[12] [static]

GLfloat blockVertt[18] [static]

bool capInit [static]

GLfloat capVert[80] [static]

bool drawInOrtho

bool drawTriangle

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a18
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a15
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a14
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a12

P a g e | 50

board* GameBoard [static]

EGLContext
glesContext

EGLDisplay
glesDisplay

EGLSurface glesSurface

HDC hDC

HWND hWnd

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html

P a g e | 51

bool inInit = false [static]

GLfloat innerVert[120] [static]

GLfloat outerVert[120] [static]

bool outInit [static]

GLfloat rtfi = 0.0f [static]

GLfloat rtri [static]

bool texLoaded = false [static]

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a17
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a22
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a24
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a20
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a9
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a10
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a21

P a g e | 52

GLuint texture[1]
[static]

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a23

P a g e | 53

main.h File Reference
#include <windows.h>

Go to the source code of this file.

Classes
struct decodeUINT

struct decodeCMD

Defines
#define dim(x) (sizeof(x) / sizeof(x[0]))

#define IDC_CMDBAR 1

#define IDM_NEWGAME 1000

Functions
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM)

LRESULT DoLeftButton (HWND, UINT, WPARAM, LPARAM)

LRESULT DoKeyDown (HWND, UINT, WPARAM, LPARAM)

LRESULT DoMenuCommand (HWND, UINT, WPARAM, LPARAM)

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam)

Define Documentation

#define dim (x) (sizeof(x) /
sizeof(x[0]))

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h-source.html

P a g e | 54

#define
IDC_CMDBAR 1

#define
IDM_NEWGAME 1000

Function Documentation

LRESULT DoCreateMain (HWND ,
UINT ,
WPARAM ,
LPARAM

)

LRESULT DoKeyDown (HWND ,
UINT ,
WPARAM ,
LPARAM

)

LRESULT DoLeftButton (HWND ,
UINT ,
WPARAM ,
LPARAM

)

P a g e | 55

LRESULT DoMenuCommand (HWND ,
UINT ,
WPARAM ,
LPARAM

)

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow

)

LRESULT CALLBACK WndProc (HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)

P a g e | 56

main.cpp File Reference
#include "main.h"
#include "render.h"
#include <commctrl.h>
#include <time.h>

Functions
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPTSTR lpCmdLine, int nCmdShow)

LRESULT CALLBACK WndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam)

LRESULT DoCreateMain (HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam)

LRESULT DoLeftButton (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam)

LRESULT DoKeyDown (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam)

LRESULT DoMenuCommand (HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam)

Variables
HINSTANCE hInst

HWND hWnd

HDC hDC

board * GameBoard

const struct
decodeUINT MainMessages []

TCHAR szAppName [] = TEXT("Tubetris")

bool drawTriangle = false

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a12
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a11
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a10
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a9
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h-source.html

P a g e | 57

Function Documentation

LRESULT DoCreateMain (HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)

LRESULT DoKeyDown (HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)

LRESULT DoLeftButton (HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)

LRESULT DoMenuCommand (HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)

P a g e | 58

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow

)

LRESULT CALLBACK WndProc (HWND hWnd,
UINT wMsg,
WPARAM wParam,
LPARAM lParam

)

Variable Documentation

bool drawTriangle = false

board* GameBoard

HDC hDC

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a6

P a g e | 59

HINSTANCE hInst

HWND hWnd

const struct decodeUINT
MainMessages[]

Initial value:

{
 WM_CREATE, DoCreateMain,

 WM_LBUTTONDOWN, DoLeftButton,
 WM_KEYDOWN, DoKeyDown,
 WM_COMMAND, DoMenuCommand
}

TCHAR szAppName[] = TEXT("Tubetris")

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a12
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/Render_8cpp.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8cpp.html#a0

P a g e | 60

board Class Reference
#include <board.h>

List of all members.

Public Member Functions
 board ()

 board (int x, int y)

 ~board ()

sphere *** getboard ()

void scoreBoard ()

void newPiece ()

int getScore ()

int get_x ()

int get_y ()

bool drop ()

void rotateLeft ()

void rotateRight ()

void shiftLeft ()

void shiftRight ()

int getCobliPosition ()

Private Member Functions
bool overlap ()

void removeCobli ()

void setCobli ()

void printboard ()

Private Attributes
sphere *** game

int score

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#d3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#d2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#d1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#d0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a14
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a13
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a12
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a11
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a10
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a9
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a8
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a7
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard-members.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/board_8h-source.html

P a g e | 61

cobli activePiece

int x_axis

int y_axis

Detailed Description
Module : board.h Author : Christopher M. Donnelly Email : cmdonn@wpi.edu Course :
Embedded Game Design MQP

Description : acts as a board for gameplay

Date : 3/14/2008

History: Revision Date Changed By -------- ----------- ---------- 00.01 3/14/2008 cmdonn
00.02 3/21/2008 cmdonn

Constructor & Destructor Documentation

board::board ()

board::board (int x,
int y

)

a board keeps track of the location of all of the spheres in board::board() {

board(SIZE_X,SIZE_Y); //replace later with config file code }

/** constructor creates a board of size x by y all declared to a value of NOTHING.

Parameters:
x The number of columns the board will have
y The number of rows the board will have

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#a0
mailto:cmdonn@wpi.edu
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/board_8h.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html

P a g e | 62

board::~board ()

 destructor. Hopefully will keep memory leaks down.

Member Function Documentation

bool
board::drop

()

Drops the cobli down one slot and returns whether the drop was successful or if
it hit the bottom of the board or a playing piece

Returns:
false when a drop hits a piece and another piece is off the board.
Otherwise, it returns true

int
board::get_x

()

int
board::get_y

()

sphere ***
board::getboard

()

 returns the array which shows the state of the board, including the cobli.

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html

P a g e | 63

Returns:
the board state

int
board::getCobliPosition

()

int
board::getScore

()

void
board::newPiece

()

bool
board::overlap

() [private]

Returns whether or not a sphere is overlapping with the cobli. Note: make sure
that the cobli has not been set with set cobli before running this or else it will
return true

Returns:
true a sphere in the cobli overlaps with a sphere on the board false:
otherwise

void
board::printboard

() [private]

P a g e | 64

void board::removeCobli () [private]

void
board::rotateLeft

()

void
board::rotateRight

()

void
board::scoreBoard

()

void
board::setCobli

() [private]

void
board::shiftLeft

()

P a g e | 65

void
board::shiftRight

()

Member Data Documentation

cobli board::activePiece [private]

sphere*** board::game [private]

int board::score [private]

int board::x_axis [private]

int board::y_axis [private]

cobli Struct Reference
#include <cobli.h>

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/cobli_8h-source.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classboard.html#r2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html

P a g e | 66

List of all members.

Public Member Functions
 cobli ()

void addSphere (sphere *a, int x, int y)

void generateNewCobli ()

void rotateRight ()

void rotateLeft ()

void rotate180 ()

char get_location ()

Public Attributes
sphere * piece [5][5]

char location_x

char location_y

Constructor & Destructor Documentation

cobli::cobl
i

()

 Creates a cobli for use with the board object. Instanciates a cobli filled with
NOTHING

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a6
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a5
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a4
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a3
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli-members.html

P a g e | 67

Member Function Documentation

void cobli::addSphere (sphere * a,
int x,
int y

)

adds the pointer to sphere a to location x,y of the cobli

Parameters:
a a pointer to a sphere which must exist. Will be stored in cobli
x the column a is going. May throw an error if not between 0 and 4
y the row a is going. May throw an error if not between 0 and 4

void
cobli::generateNewCobli

()

 generates a new cobli with between 2 and 5 colored spheres of random colors
and shape in it

char cobli::get_location ()

Returns the location of the center of the cobli such that if this is the center,

Returns:
a char showing the location of the center of the cobli

void cobli::rotate180 ()

 rotates the spheres in the cobli 180 degrees

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html

P a g e | 68

void
cobli::rotateLeft

()

 Rotates the spheres in the cobli 90 degrees counter-clockwise

void
cobli::rotateRight

()

 Rotates the spheres in the cobli 90 degrees clockwise.

Member Data Documentation

char
cobli::location_x

char
cobli::location_y

sphere* cobli::piece[5]
[5]

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structcobli.html#o1

P a g e | 69

decodeCMD Struct Reference
#include <main.h>

List of all members.

Public Attributes
UINT Code

LRESULT(* Fxn)(HWND, WORD, HWND,
WORD)

Member Data Documentation

UINT decodeCMD::Code

LRESULT(* decodeCMD::Fxn)(HWND, WORD, HWND, WORD)

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeCMD-members.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h-source.html

P a g e | 70

decodeUINT Struct Reference
#include <main.h>

List of all members.

Public Attributes
UINT Code

LRESULT(* Fxn)(HWND, UINT, WPARAM, LPARAM)

Member Data Documentation

UINT decodeUINT::Code

LRESULT(* decodeUINT::Fxn)(HWND, UINT, WPARAM, LPARAM)

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/structdecodeUINT-members.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/main_8h-source.html

P a g e | 71

sphere Class Reference
#include <sphere.h>

List of all members.

Public Member Functions
 sphere ()

 sphere (char a, char b, int c)

 ~sphere ()

Public Attributes
char color

char type

int score

Detailed Description
Module : sphere.h Author : Christopher M. Donnelly Email : cmdonn@wpi.edu Course :
Embedded Game Design MQP

Description : The structure for a sphere in the tube drop game

Date : 3/12/2008

History: Revision Date Changed By -------- ----------- ---------- 00.01 3/12/2008 cmdonn

Constructor & Destructor Documentation

sphere::spher
e

()

 generates a sphere to be used later

mailto:cmdonn@wpi.edu
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/sphere_8h.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#a2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#a1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#a0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere-members.html
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/sphere_8h-source.html

P a g e | 72

sphere::spher
e

(char a,
char b,
int c

)

 creates a non-default sphere to be used later

sphere::~sphere ()

Member Data Documentation

char sphere::color

int sphere::score

char
sphere::type

file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o1
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o2
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html#o0
file:///X:/My_Documents/MQP///toaster/nindza/courses/MQP/finalwdoc/InputTest/html/classsphere.html

	Abstract
	1 Introduction
	 2 Background
	3 Design
	4 Implementation
	5 Results
	6 Future Work
	7 Conclusions	
	8. References
	Appendix A - Installation Guide
	Appendix B - Code Documentation

