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Abstract

Today humans out perform robots in problem solving, adaptability, and
creativity. The goal of this project was to bridge the gap between robotic
and human capabilities through the development of an autonomous painting
robot. The custom design of the mechanics, electronics, and software allowed
for a versatile solution. Image decomposition techniques were used to break
down input images into feature areas that were reconstructed by the robot.
Vision feedback was also performed during the painting process to apply cor-
rections to the artwork dynamically. Understanding the motions undertaken
by painters and replicating it in a robotic platform can revolutionize the art
form, contribute to the scientific advancement of robotic capabilities, and
reduce the workload needed to construct paintings.
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1 Introduction

In this chapter, the project’s need, problem statement, and target audience are
introduced.

1.1 Problem Statement

Advances in robotics and automation technology have reached a point where
robotic solutions are better than humans at performing certain tasks. The ad-
vantages in speed, precision, repeatability and endurance provided by electro-
mechanical systems make them well suited for simple, repetitive tasks. Humans
however, still have major advantages over robots in terms of problem solving,
adaptability and creativity. This means that humans can typically outperform
robots in tasks which: have many unknowns, do not have a known solution, have
many possible solutions, change over time, and/or require complex motions. Our
project aims to bridge this gap between robot and human capabilities by demon-
strating a robotic system capable of performing a task typically reserved for hu-
mans. The task chosen is painting. Painting is a difficult task for a robot for
several reasons:

• There are many unknowns, such as the amount of paint on the brush, de-
formation of the bristles, the effects of mixing paint on the canvas, and even
what the desired painting should look like.

• Painting is a form of artistic expression. It typically requires creativity,
imagination and talent to produce high quality painting. These are human
traits which cannot yet be duplicated by machines.

• Professional painters use various tools and techniques. To replicate such
painters, the robot must be able to physically change between various tools
and execute various actions, as well as be programmed with the ability to
choose when to employ each.

By creating a robotic automation system which can perform a task such as
painting, an advance in the capabilities of robots and automation is demonstrated,
and providing evidence that it is possible for robots to perform other human tasks.
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1.2 Project Justification

This robot can be used to create an artistic painting from a supplied photograph.
There are two major groups of potential consumers that have been identified. The
first group is people who want custom paintings. These paintings will be produced
more cheaply than by professional artists. They can also be created simply from
an input image, providing the consumer with a good understanding of what the
final result may look like. Photographs of lost loved ones or childhood houses can
thus be easily and cheaply turned into paintings.

The robot itself is not something that would be purchased by someone wanting
a painting, though. The robot would likely be purchased by an art facility that
would then charge consumers to contract the aforementioned paintings. These
art facilities may also use the robot for research interests that may require multi-
ple copies of the same painting. Selections of photographs paired with paintings
created from the robot may also become something used in photography art in-
stallations.

Researchers could also use this robot as an open research platform, developing
new modules or libraries for their own study. These may be as simple as libraries
of brush strokes, or as complex as new styles of painting. The gantry is com-
mercially available and the software is open source, which may draw researchers
towards the platform. Existing robotic painting platforms lack the modularity and
ease of transportation that this system has, making it ideal for multiple research
installations.
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2 Background Research

In this chapter, background research conducted on basic painting techniques are
presented along with a literature review of prior robot painters.

2.1 Painting Techniques

2.1.1 Paints

When painting, there are a number of different strokes, brushes, mediums, and
styles to take into consideration. The three most common paints are watercolors,
oils, and acrylics. Each medium was reviewed for use in this robotic platform.

Watercolors are pigments mixed with gum that have been diluted with water.
This creates a transparent medium that can be built up in multiple layers. They are
the the least expensive of the three mediums because little pigment is required to
cover a large area. However, watercolor is unforgiving to the canvas. First, spaces
intended to be white are simply left without paint instead of being painted over.
This is because the translucent nature of watercolors makes darker colors difficult
to mask or lighten once they have been applied. Second, watercolor paintings can
be easily ruined with a single drop of water due to the fact that watercolors do
not permanently dry.

Oil paints are pigments that have been combined with oils to create a thick
painting medium. Oil paintings are known for their ability to show light. They
have a luminescent quality because the oil allows light to be reflected back to the
viewer. The major drawbacks of oil paints are that they are more expensive than
other paints and they take a very long time to dry. Often thick applications of oil
paints can take over six months to dry completely.

Acrylics are water-based paints that combine pigments with synthetic resins
to create a very versatile medium. Concentrated acrylics paints can have similar
properties to oil paints because they are completely opaque and can be layered
to create depth. Acrylics can also be diluted with water in order to mimic the
transparencies of watercolor paints. The main benefit of acrylics is its fast drying
time. However, the largest drawback of this medium is that dried acrylic can be
difficult to remove from objects.

2.1.2 Painting Styles

During this project, two painting styles were focused on: realism and impression-
ism. These styles were chosen because realism depicts the subject accurately while
impressionism uses loose brush strokes. A combination of these two styles achieves
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the project goals of accurately depicting the subject while still creating a painting
made up of visible brush strokes.

Realism focuses on achieving a work of art that accurately depicts the subject
matter without any stylization. Often this style is used to depict mundane ac-
tivities or ugly subject matters in uncomfortably detailed works of art. Realism
artists typically use dark, earthy palettes that directly conflict with the Romanti-
cism movement’s ideals of beauty.

Impressionism focuses more on the overall feeling of a work of art rather than
its details. Loose brush strokes are used along with intense colors in order to convey
the passage of time and the effects of light. In impressionist artworks, the brush
strokes are more important than the lines and contours of the subject. The short
brush strokes used are intentionally not blended together. This gives impressionist
paintings an unfinished look. Similar to realism, impressionism typically captures
scenes from everyday life instead of grandiose, fictitious scenes.

2.1.3 Brushes and Strokes

The brush stroke that can be made is determined by the shape of the brush used.
Figure 1 shows a graphic of the most common brushes used and their resultant
strokes. For the painting styles being pursued in this project a small stroke is
necessary. This is best obtained by using a round brush. Additionally, a round
brush simplifies the painting experience by being able to make the same stroke
regardless of what direction it is oriented.

While other brushes such as a flat brush would be able to apply two distinctly
different strokes depending on the orientation of the bristles, the round brush is
able to provide the necessary variety in brush stroke for these painting styles. The
variety can be found in control of the vertical distance the brush is applied to the
paper. If the brush is held above the paper with only a few bristles on the canvas,
a thin stroke is created. This is distinctly different from brush strokes made by
decreasing the distance between the brush and the paper, thereby causing a thicker
mark.
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Figure 1: Brush stroke styles [3]

Figure 2: Round brush stroke styles [2]

In order to vary the thickness of each brush stroke, the z-distance of the paint-
brush from the canvas needs to be carefully considered. When painting, this
distance is measured using the built in potentiometer in the z-axis actuator.
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2.2 Literature Review

Some important artistic robots and their contributions are highlighted below.
Careful considerations to the problems each robot encountered were made while
designing CARP.

2.2.1 eDavid

The eDavid project began in 2009 with the goal of creating artworks that mimic
the human painting process. The robot uses a serial manipulator, and various sen-
sors to accurately reproduce input images as paintings. The eDavid incorporates
several techniques to achieve this functionality: iterative painting through camera-
based vision feedback, predefined strokes, and dynamically generated strokes. By
utilizing these techniques, the eDavid can produce detailed ink sketches and both
binary and color paintings.

2.2.2 VangoBot

VangoBot was created by Doug Marx and Luke Kelly in 2008. This robot uses a
gantry system that is capable of switching between 16 brushes and mixing its own
paint from 8 canisters. The robot takes in a desired image that can be edited by the
artist and replicates the product onto a canvas. Additionally, VangoBot is capable
of taking suggestions and painting an image based on its own interpretation. One
of the limitations with this design, however, is that the robot does not use any
kind of vision feedback.

2.2.3 Painter Robot: Painting by Force and Vision Feedback

This robot was built in order to emulate human painting behavior as accurately
as possible. The end effector is a multi-finger hand built up of the four fingers
that humans use to paint. Three of the fingers have three degrees of freedom while
the fourth has four degrees of freedom. Each finger has a force sensor at its tip
in order to determine the force it is applying to the paintbrush handle and the
paper. The system uses stereo vision with nine cameras in order to determine the
position of the paintbrush and the strokes being made on the paper. The position
of the tip of the brush is determined by detecting the position of the handle and
extrapolating. Contact with the paper is sensed as a sudden increase in the force
sensor outputs. The robot controls the brush strokes made by manipulating the
angle of the brush, the amount of pressure being applied to the page, and the path
of the brush. After creating a painting, the robot uses vision to determine what
corrections need to be made in order to more accurately depict its subject.
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2.3 Evaluating the Design

The design proposed in this project can be evaluated based on flexibility, exten-
sibility, dexterity, complexity, and intellectual challenge. This section will go over
each of these in detail and how they compare with previous solutions.

Flexibility

The overall modular construction of the custom robotic platform designed in this
project allows for a lot of flexibility in the software, mechanical, and electrical
systems. For instance the gantry used in this project can have its height adjusted,
the camera used can be substituted for another model, and end effectors can be
exchanged with ease. Finally, the software and control algorithms used in this
robot are also easily interchangeable.

Extensibility

In addition to the platform being flexible in its hardware, electronics, and software,
it is also easily extensible. Its compact form factor and modular design allow for
new systems to be easily integrated or developed on top of the existing robotic
platform. With the inclusion of force and distance sensors into the design, the
platform can also be easily modified to handle different mediums such as crayons
or color pencils. Other designs for painting robots have not shown high extensibil-
ity. For example, VangoBot would need a substantial amount of modifications to
accommodate other mediums while eDavid simply needs to change end effectors.

Dexterity

The design of this robot platform lacks the dexterity of some of the existing paint-
ing machines. For example, the eDavid, being a six degree of freedom robotic arm,
is quite good at maneuvering and carrying out strokes similar to a human. On the
other hand, in this project the robot will have a dexterity similar to VangoBot,
with a gantry system capable of moving in the x-y-z axes. Future work on the
project could involve the introduction of an additional degree of freedom on the
end-effector to control angling of the paint brush.

Complexity

The hardware used on the robotic platform is simple and orients the paintbrush in
the x-y-z axes. The electronics used are also fairly straight-forward making use of
a few stepper motors, a performance motion drive controller, and terminal blocks.
The simplistic nature of the hardware and electrical systems on this platform give

7



way to the more complex programming component. The software is capable of
obtaining images from a camera, extracting features from an image, determining
the appropriate stroke to use, relaying stroke information to the low level code,
and finally having the low level code move the motors appropriately to execute
the action.

Intellectual Challenge

Since tactile painting is not a solved problem in the robotics community, there
are a number of intellectual challenges to address in this project. The central
one being the development of a vision feedback system for robotic painting. The
eDavid makes use of vision to correct its paintings, but its artworks are mostly
comprised of small short strokes. In this project, the team tackled the complexities
behind performing large sweeping strokes during the painting process while also
being able to perform precise corrections.

2.3.1 Pairwise Comparison Chart

To analyze the different criteria of importance in the project a pair wise compar-
ison chart was created. The higher the score for a given metric the more it was
valued in our decision making during the design process. From the table depicted
below reliability and artistic quality were the two highest scoring criteria while
affordability and speed were the two lowest metrics.

Figure 3: Decision matrix
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3 Project Overview

In this chapter, the project requirements are presented.

3.1 Project Goals and Objectives

The goals for this project can be divided into three categories: goals which must
be achieved in order for the project to be considered successful, goals to strive for,
which will be attempted if required goals have been completed, and reach goals,
which will be attempted if all other goals have been met.

Goals that must be achieved

• Development of a custom research platform for robotic art

– Ability to move a paintbrush in the x, y, and z directions

– Ability to sense the location of the end effector

– Ability to access vision feedback

– Ability to change end effectors

– Ability to experiment with different control algorithms

• Achieve moderate artistic performance

– Ability to deconstruct a given picture into brush strokes

– Final painting resembles the original reference picture

– Has clearly defined brush strokes (not just dots)

– Uses a monochrome color scheme

Goals to strive for

• Ability to correct paintings according to the reference picture

• Picture paints in gray-scale and/or multiple colors

Reach goals

• Ability to learn from previous experience

• Ability to mix new colors on the palette
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4 Mechanical Design

In this chapter, the mechanical design of the robotic painting platform is described.
This includes a review of the platform itself and design iterations.

4.1 Robot Platform

The mechanical requirements for this system are relatively simple: linear actuation
in three axes, and the ability to store and retrieve paint. The first design consid-
eration was the method of actuation to employ on the robot. Previous painting
machines have almost exclusively implemented one of two designs: a gantry system
or a robotic arm. The advantages and disadvantages of each system with respect
to this project are listed below:

Gantry System Advantages

• Modular and Compact

• Simple system dynamics

• Inexpensive

Gantry System Disadvantages

• Needs additional degrees of free-
dom added in Z direction

Robotic Arm Advantages

• Emulates human movement
better

• Additional degrees of freedom
do not need to be added

Robotic Arm Disadvantages

• Expensive

• Hard to modify

One of the main goals of this project was to make the robot a research platform
for future use. With this in mind, the gantry system was chosen because it is a
modular and compact system.

An H-style gantry was donated from Festo for use in this project, and it pro-
vides two of the three required degrees of freedom on the robot. In order to support
the gantry above the work area, a frame was designed and built out of 80/20, a
sturdy and modular material. The CAD model of the gantry and frame system
is shown in Figure 4. The 80/20 frame allows for the height of the gantry to be
adjusted easily. This creates a more useful research platform where different end
effectors can be easily tested by adjusting the distance of the gantry from the work
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space. The entire frame was attached to a wooden base to secure it and provide a
platform to move the robot.

Figure 4: CAD model for the frame and gantry system

Figure 5: H-style gantry operation

The gantry operates through the use of two stepper motors attached to a
single belt. Figure 5 illustrates the operation of an H-style gantry. Because of
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this system, when only one motor is powered, the gantry moves at a 45◦ angle
with respect to either the X or Y axis. The inverse kinematics for this system is
explained in Section 6.1.

An additional degree of freedom was needed to actuate the paintbrush in the
Z direction. Several options were considered for this mechanism: a ball screw, a
lead screw, and a linear actuator. A ball screw would provide smooth and accurate
movement but would be expensive and bulky. A lead screw would be less expensive
but also has the problem of being too bulky for this system. Instead a micro linear
actuator was chosen because it is lightweight, compact, easy to control, has built-
in feedback, and is relatively inexpensive. The specific linear actuator chosen is
shown in Figure 6.

Figure 6: Firgelli linear actuator

4.2 End Effector Design

4.2.1 End Effector Design 1: Prototyping

For the first iteration of the end effector design, the following three parts were
created to attach the paintbrush to the linear actuator. They were designed to be
3D printed in order to be manufactured quickly and inexpensively.

Figure 7: First iteration of paintbrush holder
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Figure 7 shows the part created to hold the paintbrush. In this design, two
screws applied pressure to the brush in order to hold it in place. This method
allowed for the use of different sized paintbrushes. The problem with this approach
was that the screws were not able to hold the brush in place when extreme force
was applied to the paintbrush.

Figure 8: First iteration of
Firgelli attachment to end
effector

Figure 9: First iteration of Firgelli
mounting

Figure 8 shows the method of attaching the Firgelli to the paintbrush holder.
Because the Firgelli did not have any robust methods of attachment, it was pressure
fitted into the bottom hole of this component and kept in place with a single screw.

Figure 9 shows the method of attaching the Firgelli to the gantry. Two screws
were used to attach the component to the gantry and the top of the Firgelli was
pressure fitted into this attachment.

There were several problems with the first iteration of end effector design.
First, the paintbrush holder did not have the ability to change paintbrushes au-
tonomously during operation. Second, throughout the painting process, it was
found that the size of the brush holder was too large for the typical brush handle
being used. Third, the end effector was not exact in its movement because the at-
tachment to the Firgelli was held through a single bolt that was prone to rotating
about its axis causing a significant amount of inconsistency to the system.
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4.2.2 End Effector Design 2: Towards Improved Robustness

Figure 10 shows the second design of the end effector in action. The brush holder
was redesigned to be smaller in order to hold the smaller brushes with ease.

Figure 10: Second itera-
tion of design in action

Figure 11: Second iteration of paint-
brush attachment to Firgelli

The bottom of the end effector was redesigned to be two parts that were bolted
together to reduce the slack in the system (Figure 11). This iteration of design
fixed most of the problems of the first iteration but did not incorporate the IR
sensor or autonomous brush changing.

4.2.3 Final End Effector Design: Tool Changing

During the design phase, the main goals for a tool changing system was to have
a passive, reliable system. The passive nature of the system is beneficial because
no additional motors or actuators need to be added to the system. The reliable
nature of the system is important so that the robot can operate autonomously
without failure.

Figure 12: Tool changing dock

14



Figure 12 shows the final design of the tool changing docks and exchangeable
end effectors. Six changing docks were fitted onto the robot to allow for a painting
of six different colors.

Exchangeable Brush Holders
Each exchangeable brush holder had three embedded magnets that facilitated the
exchanging of brushes. Additionally, their truncated pyramid shape ensured that
the process of picking up or putting down a brush did not have to be exact. The
magnets and pyramid shape corrected for any slack in the system by directing the
brush holder into the end effector according to Figure 13. Additionally, the brush
holders returned the tool to a set position in the dock through the use of magnets,
as shown in Figure 14.

Figure 13: Paintbrush holder
being picked up

Figure 14: Paintbrush holder
being put down

Paint Wells
Wells were created to provide a permanent location for the robot to receive paint.
While the location of each paint wells was permanent, the wells themselves were
purposely designed to be disposable. This enables the user to mix colors outside
of the frame of the robot and insert them in the wells before painting. This also
means that the wells can be disposed of after each use instead of requiring washing.
Figure 15 shows the paint wells with four paints in disposable cups ready to be
used by the robot.

15



Figure 15: Paint wells with four paint colors

4.2.4 Rail System

One problem encountered with the addition of the Firgelli linear actuator was the
accuracy of the end effector. Because of the long extension of Firgelli, a significant
amount of slack was introduced into the system. A rail was integrated into the end
effector in order to make the Firgelli more robust. There were two configurations
that the rail could have been attached in shown in Figures 16 and 17. The first
configuration was chosen because it did not leave the rail in the downwards position
when the Firgelli was moved into the upper position. This allowed the gantry to
be lower over the canvas area and reduced the space taken up by the robot.

Figure 16: Configuration
where the Firgelli controls
the rail.

Figure 17: Configuration
where the Firgelli controls
the carriage.
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4.3 Electronics Enclosure Heating Calculations

In order to make the electrical components more compact and professional, an
enclosure was designed. Before construction, careful calculations were performed
in order to ensure that the electronics would not overheat within the housing.
The maximum heat loss for each component was measured and the change in
temperature within the electronics box was calculated. For more information about
the electrical enclosure see Section 5.2.

4.3.1 Power and Heat Loss Measurements

Table 1: Heat lost by electrical components

Electrical Input Output Heat
Component Power (W) Power (W) Lost (W)
Power Supply 231 192 39
48V to 12V Converter 33.6 21.6 12
PMD Control Board 67.2 0 67.2
Arduino Uno 0.2 0 0.2

Total heat released from electronics: 118.4W

4.3.2 Calculations

A simplified diagram of the heating elements within the electronics box is shown
in Figure 18. The red area represents the electrical components, the blue area
represents the air inside the box, and the black area represents the acrylic casing
of the enclosure. Each variable is defined within the equation it is used.

Figure 18: Electronics box with variable labels
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Q−Q1 = Qe (1)

Q = total heat released from the electronics
Qe = amount of heat used to increase the air temperature inside the box
Q1 = heat lost from the electronics box

Qe = mc(4T ) (2)

c = specific heat of air
m = mass of air in box
4T= change in temperature of the air due to the heat released

Q1 = hcA1(4T ) (3)

hc = heat transfer coefficient of acrylic
A1 = internal surface area of the box
4T= difference in temperature between the air in the box and the acrylic

Q− h1A1(4T ) = mc(4T ) (4)

4T =
Q

hcA1 +mc
(5)

Knowns:
Q = 118.4 W
m = 0.0245 kg
c = 1.005 kj/kgK = 1005 J/kgK
hc = 10.45 W/m2K
A1 = 0.543m2

Calculations:

4T = 118.4
(10.45)(0.543)+(0.0245)(1005)

4T = 3.91K

A change in temperature of 4 ◦C is well within the operating and storage ranges
of all of the electrical components. Additionally vents were added to the sides and
top of the electrical enclosure to provide additional airflow.
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5 Electrical Design

In this chapter, the design of the electronics and the enclosure created are described
.

5.1 Sensing on the Robot Platform

5.1.1 Camera and LEDs

A camera was mounted to the top of the frame in order to give visual feedback on
the workspace. The image outputted by the camera was manipulated in order to
detect the region of interest and ignore the rest of the workspace.

The lighting of the workspace provided some problems when it came to edge
detection. Poorly lit areas of the workspace led to the robot not detecting the edge
of the paper properly. The shadow of the gantry also interfered with the painting
being recorded. In order to resolve these problems, LEDs were attached to the
underside of the gantry to brighten the workspace.

The original camera did not capture the entire work space in its limited 60
degree field of view. To resolve this, a new camera with a 90 degree field of view
was purchased. Because of the wider fish-eye lens, the dewarping transform was
more dramatic for the new camera.

5.1.2 Infrared Distance Sensor

Figure 19: Sharp IR sensor calibrations
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In order to use the Sharp IR sensor readings were taken at incremental distances
and then curve fitted with an exponentially decaying equation (Figure 19). The
R2 value was very close to 1 which indicates that the equation fit has little error.
Equation 6 was used to map the sensor readings to the distance the sensor was
from the paper.

Distance = 3022(SensorReading)−1.042 (6)

5.1.3 Force Sensor

In order to determine the force range required for the system, the paintbrushes
were tested to determine how much force could be applied when their bristles were
pushed down to a quarter, half, and three-quarters of their initial length.

The following paintbrushes were tested and the forces that were applied to
them were recorded based on their brush number (Figure 20).

Figure 20: Test brushes

The range of forces recorded were from 0.392 N to 10.78 N (Figure 21). The
useful range for the paintbrushes being used (numbers 1 through 4) was only 0.392
N to 2.94 N.

From this experimentation, it was determined that a force sensor for this sys-
tem would only need to be able to sense up to 3 N of force. However, in the event
of a failure, where the robot pushes the paintbrush into the paper past its expected
position, it would be useful for the force sensor to detect this excess and indicate
the failure to the system.
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Figure 21: The force being applied by each brush

From this information, the TAL220 load sensor was chosen for the force plate
on the robot, see (Figure 22). It can sense the required range of forces (up to 98N)
and has a combined error range of ±0.5 N.

The load sensor was then connected to the HX711 load cell amplifier in order to
be able to translate the output strain of the load cell into readable values (Figure
23).

Figure 22: TAL220
load sensors Figure 23: HX711

load cell amplifier

Figure 24: Test Force
plate

Three of these load cells were wired in order to hold up a plate of acrylic
(Figure 24). After being mounted on the edges of the acrylic, the load cells were
summed to find the total force being applied to the plate.

21



5.2 Electrical Enclosure

Figure 25: Original electronics setup

The original electronics setup shown in Figure 25 was reorganized to fit within a
compact box. The goal of this box was to make the robot more professional and
portable. Figure 26 shows the inside of the final box where the electronics were
made to fit compactly together. Figure 27 shows the front side of the electronics
box. An emergency stop button was mounted to the outside of the box to ensure
safe operation for the user. Additionally, pause and resume buttons were mounted
and implemented in software. Ports for the camera and Ethernet connection to
the robot were mounted to the outside of the box. These additions ensured that
the user did not need to open the electronics box except in the event of a failure.

Figure 26: Inside of electronics box Figure 27: Side of electronics box con-
taining buttons and ports
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Figure 28 shows all of the electronic connections within the electronics box and
their interactions with the robot.

Figure 28: Basic schematic of the electrical enclosure
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6 Low Level Software Design

In this chapter, the design of the low level software as well as the performance
motion devices controller that runs it are described .

6.1 Low Level Software Functions

The software design of this project can be separated into two major components:
High Level and Low Level (as seen in Figure 29). High Level code is written in
python and can run on any standard computer. This code performs high level
functions such as user interface, image processing and workspace path planning.
Low Level code is written in functional C and is executed on the Machine Control
Board donated by Performance Motion Devices (PMD). This code performs low
level functions such as inverse kinematics, joint space trajectory planning, reading
sensors, and closed loop motor control. Information is transferred between the
two levels via Ethernet connection (TCP/IP protocol). The exact format of these
packets is described in Table 2.

Figure 29: Software Design Overview
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Table 2: Packet Description

Byte Description
0 X position (high byte) (0.1 mm)
1 X position (low byte) (0.1 mm)
2 Y position (high byte) (0.1 mm)
3 Y position (low byte) (0.1 mm)
4 Z position (high byte) (0.1 mm)
5 Z position (low byte) (0.1 mm)
6 Minimum Step Time (high byte) (us)
7 Minimum Step Time (low byte) (us)
8 Bitmask of Flags:

1. Go flag: Indicates that the robot should execute all saved
commands

2. XY abs flag: indicates that the xy motion in this command
should be absolute, rather than relative

3. Z abs flag: indicates that the z motion in this command
should be absolute, rather than relative

4. *Not Used*

5. *Not Used*

6. *Not Used*

7. *Not Used*

8. *Not Used*

The low level controller performs the following functions:

1. Inverse Kinematics: When packets are received, the low level controller per-
forms inverse kinematics to convert points from workspace coordinates to
joint space coordinates. See Figure 5 for a physical description of the gantry.

M1 = (y − x) ∗ k
M2 = (y + x) ∗ k

M3 = z ∗ j
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where x,y and z are workspace coordinates of the end effector in units of 0.1
mm, k is a constant scale factor to convert from units of 0.1 mm to steps,
and j is a constant scale factor to convert from 0.1 mm to Analog-Digital
Converter (ADC) counts.

2. Relative Motion: The low level controller can accept point information in
terms of either relative or absolute coordinates. If relative coordinates are
used, the motion will be performed relative to the robot’s previous position.

3. Trajectory Planning: The low level controller receives path information in
the form of points. In order to execute a motion, it must convert these
paths into a trajectory by adding velocities and accelerations for each point.
These values are determined by assigning a time stamp to each point based
on the euclidean distance between them. A trajectory is then calculated
automatically by the PMD Machine Controller to ensure the robot reaches
each point in the specified time.

4. Sensor Reading: All sensors (except the vision camera) are connected to the
low level controller, which is responsible for reading their values and acting
on them as necessary. The list of sensors includes:

• Encoders (2): These encoders are built into the FESTO stepper motors
used to control motion in the X and Y axes. They feed directly into
the feedback port for the corresponding motor on the Machine Control
Board. Their values are available through PMD function calls in low
level code.

• Potentiometer: This potentiometer is built into the Firgelli linear ac-
tuator used to control motion in the Z axis. It is wired to Analog Input
Pin 1 on the PMD Machine Control Board.

• Sharp IR distance sensor: This sensor is attached to the end effector
and can be used to measure the height of the paintbrush from the
canvas. It is wired to Analog Input Pin 2 on the PMD Machine Control
Board

• Force Plate: The force plate consists of three load cells which can be
used to measure the force being applied to the canvas. Raw data from
the load cells is read and interpreted by an Arduino Uno, force values
are sent to the low level controller in a parallel interface which uses
digital I/O pins 1-4 on the PMD Machine Control Board.

• Push Buttons: Two push buttons used for Pause/Resume functionality
are wired to Digital Input Pins 1 and 2 on the PMD Machine Control
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Board. When pressed, the appropriate action is automatically taken
by the low level controller.

6.2 Performance Motion Devices Controller

All low level control and computation is performed by the Prodigy/CME Machine
Control Board which was donated to the project by Performance Motion Devices.
More information about the board as well as documentation can be found at on
the PMD website [8].

Figure 30: PMD Machine Control Board
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7 High Level Software Design

In this chapter, the high level software developed for the painting procedure is out-
lined and each module in the process explained.

7.1 General Overview of Vision Feedback

In order to correct errors within the painting, a camera mounted with full view
of the gantry workspace was used. The camera first isolates the canvas. The
canvas is then classified into the colors that are used on this painting as well as the
canvas color. The correction algorithm next examines differences between what
has been found on the canvas and what areas belong to which color features in the
decomposed image.

Areas found to be of an inappropriate coloring are then corrected in the next
round of painting. Errors found may be where the brush has begun to run out of
paint or where paint has been dripped or painted incorrectly. These areas found
as error may come from a recomposition planner that is not intended to fill the
image fully with color.

For example, the medial axis recomposer seeks only the midpoint to paint be-
fore it looks for error to correct. Here, the error correction allows for multiple
passes of recomposition and painting to run iteratively. This allows recomposers
such as the medial axis recomposer to make simple changes and have faster feed-
back and shorter painting steps.

7.2 Camera Transforms

In order to isolate the canvas, there are two major steps. The camera used on this
robot utilizes a fish-eye lens, which allows a greater field of view but also warps
the image. This warped image is corrected using OpenCV’s perspective warping
functionality. Once the image has been rectified, the canvas must be isolated.

Figure 31: Camera Dewarping
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In order to find the canvas, the dewarped image is first converted to a gray-
scale, blurred, and then canny edge detection is used to isolate the canvas. Using
the locations of the four corner points of the canvas, a transform is generated from
the original camera image directly to the canvas-space. This allows the canvas to
be easily extracted from new camera frames without having to rerun the canvas
searching operation.

Figure 32: Canvas Isolation

7.3 Decomposition

The decomposition step in the painting process is characterized by extracting a
number of distinct color layers from an input image. There are three ways this
can be performed:

1. Input ’n’ colors to decompose the image into. The robot performs k-means
clustering and outputs the best ’n’ colors to use. These colors are used to
segment the image and the user can prepare these colors in the paint palette.
This method will usually produce paintings which most closely match the
original image, but requires users to mix paint colors themselves to match
the ones generated.

2. Input the color values of the paint already in the palette. The robot de-
composes the input image by mapping each pixel in the image to a paint
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color based on similarity. The assigned pixels are then used as the color
layers. This method requires the user to decide which colors best represent
the image. The results can vary widely based on the user’s choices and the
composition of the input image. For example, it is possible that although
the user provides six colors, only one or two are actually used.

3. Input both the number of colors to decompose the input image into and the
color values of the paint already in the palette. The robot performs k-means
clustering and outputs the ’n’ best colors to use. Color matching is then
used to map these best colors to those readily available in the paint palette.
Unlike the previous method, this method will attempt to use as many unique
palette colors as possible. This can be useful if the user already has a large
selection of pre-mixed palette colors and wants to automatically select the
best ones to use for a certain image.

Figure 33: Decomposition performed through k-means

7.3.1 K-means Classification

One of the ways to perform color based segmentation is to use k-means. Given that
a desired number of colors is provided, k-means starts with an initial guess, and
iteratively updates the centroid of each color cluster until the algorithm converges.
This generally happens when the sum of squared distances between clusters has
been minimized to below a certain threshold value. The centroid of each cluster
then represents the color to use for that image layer. Figure 33 shows decomposi-
tion of a beach ball performed through k-means. The three decomposed segments
are clearly shown for the red, blue, and yellow color layers in the picture.
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7.3.2 Color Matching

One of the problems encountered during the painting process was being able to
relate colors in the input image to paint colors available in the palette.
This was needed for the following reasons:

• To allow the user to decompose an image with both k-means and pre-made
palette colors

• To ensure color layers where appropriately matched to their respective k-
means layer, since the decomposed cluster colors where not always returned
in the same order

• To allow vision feedback to correctly identify the decomposed colors from
the canvas

To resolve this problem, the colors from the image and the palette needed
to be converted to the L*A*B* color space. This is due to the fact that the
traditional RGB color space is linear and not perceptually uniform. Colors in
L*A*B* space more closely mimic human perception and the distance here more
accurately relates to the similarity between two shades. Converting a color from
RGB to L*A*B* color space and vice versa can be performed using the equations
shown in Appendix C.

The L*A*B* color space was first specified by the International Commission
on Illumination (Commission internationale de l’éclairage or CIE) for the purpose
of creating a 3D color representation that matches human perception. The CIE
refers to the metric of similarity between two colors as ∆E. The first ∆E equation
came in 1976 and simply calculated the Euclidean distance between two colors.
However, L*A*B* space does not accurately consider differences in regions of high
saturation. To compensate for this, ∆E76 was replaced by a new equation in
1994 and then again in 2000. ∆E00 is a much better metric for assessing the
similarity between two colors. These ∆E equations where used to perform accurate
color mappings from image colors to paint colors where the smaller the ∆E the
more similar two colors appear visually. For more information of the different ∆E
equations see [5].

7.4 Recomposition

The term Image Recomposition is used to refer to the process of generating strokes
required to paint a given image. This can also be thought of as a motion planning
process. Motion planning for a painting robot falls under the category of Coverage
Path Planning algorithms. The goal of such algorithms is to find a path that fully
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explores a search space, while optimizing variables such as time spent and distance
traveled. In the case of a painting robot, the search space includes areas on the
canvas where paint should be placed, while “obstacles” can be defined as areas
where paint should not be placed. A description of some of these algorithms and
how they work is provided in the following sections.

Each recomposition algorithm takes as input a binary image. ’0’ in the image
represents areas which should be painted, and ’1’ or ’255’ represents areas which
should not. These binary images can be generated by the Decomposition process
(one for each color). Some recomposition methods also require other parameters
such as brush size. Based on these inputs, the algorithm outputs a series of paths
which if followed should result in the image being painted as desired. Specifically,
this output is represented as a List of Lists of Tuples (LLT).

[[(x, y, w), ...], ...]

Each point in the LLT is represented as a Tuple containing 3 elements: x, y
and w. x and y represent the 2-dimensional location in terms of image coordinates.
w is used to quantify the ”width” of the brush at a given point. It can also be
thought of as the distance from the given point to the nearest edge. The w value
is not currently utilized in the painting process, but in the future it could be used
to modify the height or angle of the brush to change the apparent width while
painting.

Each point is contained within a list which represents a stroke. The brush will
be put down at the first point in a stroke and lifted up at the last point. Strokes
may consist of any number of points, from ”dots” which contain only one point,
to complex paths containing hundreds. Since an image can contain any number of
strokes, each stroke is also stored in a list. Thus the output of the recomposition
process is an LLT containing all stroke/point information required to paint a single
binary image.

7.4.1 Iterative Erosion

The iterative erosion algorithm works by generating a path from the edges of the
desired painted shape. Next, the image is eroded by a fixed amount and the new
edges are used to form a new path. The process repeats until the image has been
fully eroded and there is no more area to paint. The result is a series of concentric
paths which follow the outer/inner edges of the search space, as seen in Figure 34.
While this algorithm works well for large filled regions, the nature of the erosion
function causes it to miss smaller details which are still desired for painting.
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Figure 34: Iterative Erosion Recomposition

7.4.2 Medial Axis

The medial axis is defined as the set of all points having more than one closest
point on an object’s boundary. It can also be thought of as the ”skeleton” of the
object, or the points furthest from the edges. For the purpose of this project,
it is effectively equivalent to the Voronoi diagram of the regions that should be
painted. In narrow regions, the medial axis can be used to determine the path
along which the brush should travel in order to paint the desired image. The
result of this transformation on a simple circle is shown in Figure 35. While this
method alone does not generate paths which completely fill the desired regions,
it performs very well at efficiently painting thin, narrow segments, which would
otherwise be ignored by other recomposition algorithms.

Figure 35: Medial Axis Recomposition
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The medial axis transformation can be performed in numerous ways. Our final
implementation consists of the following steps, which are visualized in Figure 36:

1. Create an image by assigning values to each pixel based on the distance to
the nearest edge.

2. Compute the Scharr derivative of this image along x and y axes

3. Find the magnitude of these derivatives

4. Define Medial Axis as points where this magnitude is near zero.

Figure 36: Medial Axis Transformation Process

Once the points which lie along the medial axis are found, the next step is
to generate a path which traverses these points. This is done via the following
method:

1. Convert the medial axis into a graph by treating each point as a node and
connecting nearby points with edges

2. Choose an arbitrary starting point, which has not yet been visited

3. Run Breadth-First search from current node, but only to a certain depth (2-
4 children). Record minimum known distance from each node to the start
node. Add each newly discovered node to the frontier

4. Choose the frontier node that is furthest from the start node (Depth-First
search). Check if it is an endpoint. The current node is an endpoint if:

• All adjacent nodes have been visited or are in the frontier

• Of all neighboring nodes, this one has the greatest distance from the
start
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5. If the point is not an endpoint run BFS again starting from this node (repeat
step 3)

6. If the point is an endpoint, create a path by tracing parent nodes as far
as possible. While tracing this path, flag all nodes adjacent to the path
as ”dead.” Since they are close to an existing path they do not need to be
considered further, and the algorithm will ignore them.

7. Repeat steps 3-6 while there are nodes remaining in the frontier

8. Repeat steps 2-7 while there are any points that have not been visited (there
may be several unconnected graphs in a single image)

The result of this process is a series of paths which overall traverse the me-
dial axis without necessarily visiting each node. Figure 37 shows the paths and
endpoints produced for a portion of an image containing complex geometry with
multiple cycles.

Figure 37: Graph Search Process

7.4.3 Blended

The final recomposition method incorporates both iterative erosion and medial
axis transformation to create an algorithm which robustly generates paths along
both large filled regions as well as thin narrow segments. The first step is to erode
the image by given amount, usually the diameter of the brush. This eroded image
is then subtracted from the original image, which produces an ”outlined” image
as shown in Figure 38. Paths are generated to paint this outer image using the
medial axis recomposition method. The process repeats using the eroded image
as the original, until there are no additional regions left to paint.
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Figure 38: Blended Recomposition Process

Figure 39 shows the results of the iterative erosion method (left) compared to
those of the blended method (right). It is clear that the blended recomposition
method fills large regions more completely than iterative erosion. Furthermore,
it is able to plan paths for small narrow regions just as well as the medial axis
method alone, making it the most robust recomposition method for most images.

Figure 39: Iterative Erosion vs Blended Recomposition
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7.5 Error Checking

The error checking process operates on a color-by-color basis, isolating error to
specific color features. If the robot is provided with a paint color matching the
canvas, it may use that paint color for correction as well. This would be used if
paint splattered or dripped into areas of the canvas that should be untouched. If
no canvas colored paint is provided, the robot simply ignores the canvas.

In order to examine error on the canvas, the canvas is first segmented into
colors, using the same code that decomposes source images into specifically col-
ored sections. These colored sections on the canvas are then each binarized and
compared to the color sections of the decomposed source image.

Figure 40: Error Calculation

The classified canvas and the desired image are compared using simple XOR
logic. Areas of a color feature that are white in both binary images are left as
white. Similarly, areas that are black both on the canvas and in the desired image
are left white. However, any black areas of the desired image that are white on
the canvas are considered error, and painted black. These are the areas that were
missed in the most recent painting step. The above figure depicts this process
occurring for a painting of a black circle utilizing the medial axis recomposer.
Once these error regions have been identified, new paths are generated to paint
over erroneous regions using the same image recomposition process as before.
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7.6 User Interface

To facilitate the painting process and relieve the user from the code, a graph-
ical user interface(GUI) was created. This GUI was made using wxPython, a
cross-platform python library. The resulting program is depicted in Figure 41 and
consists of one panel built from four main components described in the next few
paragraphs.

Figure 41: Graphical user interface for the painting robot platform.

Selection Component
This is the entry point for a user to interact with the GUI. Here the user can click
the “Choose Image. . . ” button and a dialog box will appear allowing the user to
select an image file. Once a picture has been selected the name of the file is shown
directly above the button, the file contents are shown in the “Image Display”
component, and the Decomposition/Recomposition components become enabled.
Additionally, there is also a paint button that becomes enabled once the Decom-
position/Recomposition components have been completed. This button initializes
the painting routine for the robot.
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Image Display Component
This is where the input image is shown. This component provides feedback for the
user to track how the software is interpreting and preparing the input image for
painting.

Decomposition Component
In this component decomposition of the input image is performed. A text field
is available for the user to input the number of colors to use for k-means. The
user can also click on the ‘Auto’ button which will allow the software to select
the ’n’, up to six, best colors to use for the image. Additionally, the user can also
directly input the colors they want to use in the palette. The color picker tool
facilitates this process and allows for paint colors to be easily re-ordered to match
the palette. Optionally a canvas color can be given to tell the robot not to paint
the background. Hitting the ‘Apply’ button performs the decomposition with the
selected settings and the results are shown in the Image Display component.

Recomposition Component
This component performs image recomposition. There are currently three dif-
ferent options for how an image can be recomposed: Iterative erosion, skeleton,
and blended recomposition. For more details on these recomposes see section 7.3.
Clicking on the radio button next to the option selects the method of recomposi-
tion. Then a brush radius can be specified to indicate stroke width. Hitting the
‘Apply’ button performs the recomposition and the results are shown in the Image
Display component.
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8 Robot Artwork

In this chapter, original artworks created from the “mind” of the robot are explored.

8.1 Abstract Art

While painting images from reference pictures was a major component of the
project, abstract art was also investigated as a method for creating “original”
robot art. One approach taken was to input music or other audio files for the
robot to “interpret” and determine the layout of a painting based on the pitch and
frequency of the sounds. Another technique was to input a Gaussian point cloud
and allow the robot to randomly select points within the distribution to create
abstract art. Both methods are detailed in the following subsections.

8.1.1 Art created with music

Abstract art was created with music as an input through the following method:

1. Finding the BPM of the song (Figure 42)

2. Dividing the song up based on its BPM

3. Determining the pitch, confidence level, and dB level at each point (Figure
43)

4. Graphing the pitch vs. the confidence level

5. Creating a number of rings corresponding to the dB level at each point

An example of artwork generated in this manner is shown in Figure 44.

Figure 42: BPM calculations for a song

40



Figure 43: Pitch values of a song

Figure 44: Art from Death of a Bachelor by Panic! at the Disco
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8.1.2 Art created from a Gaussian

To create abstract art from a point cloud, two distributions were given to the robot
a Gaussian along the x-axis and a Gaussian along the y-axis with respect to the
canvas. Each of these were given a mu located at the center of the canvas and
a sigma of half the canvas width/height respectively. The robot then selected a
defined number of x,y pairs from the horizontal and vertical distributions to create
a path to be painted. This was combined with the color palette code to allow for
multiple distributions of different hues to be layered on top of one another. The
results can be seen in Figure 45.

Figure 45: Abstract art created from a Gaussian distribution
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9 Conclusions and Future Directions

A robotic painting platform was developed that successfully met both the required
and strive goals for the project. The modular design allows the robot to be ex-
tended for research. Sensors allow the platform to locate the end-effector in the
workspace and a camera allowed vision feedback to be accessed.

Paintings produced by the robot had distinct brush strokes greatly avoiding
pointillist stylizations and mimicking a more human procedure. The final product
resembled the input image and multiple colors could be used for more sophisticated
paintings. Vision feedback was successfully incorporated into the high level code
and the robot was able to perform multiple iterations of correction on its art. A
user interface was developed to allow users to use the robot and generate their
own artwork without any technical experience.

The project can be easily extended to a variety of engineering disciplines. Fu-
ture recommendations were broken down into the following categories:

Mechanical Direction
The overall mechanical design in this project was simple, allowing for multiple
areas of improvement. Additional degrees of freedom can be added to the end-
effector to allow for angling of the paintbrush on the canvas. This would give a
more ”human” feeling to the produced paintings.

The platform is limited to six colors exclusively so improving upon the tool
changing to incorporate more colors could be an interesting direction. Another
possible area of exploration could be to create a paint mixing module that would
allow the robot to be more independent from human actors who currently provide
pre-mixed paints. Additionally an automated system of cleaning brushes or pre-
venting them from drying out would decrease the need for human intervention in
the painting process.

Software Direction
There are a number of different directions that can be pursued to improve the
software on the robot. More sophisticated decomposition and recomposition tech-
niques could be explored to allow the robot to layer paints or depict gradients,
two limitations with current system. Machine learning could also be integrated
to allow the platform to learn from past experiences or from human painters. Fi-
nally, in this project a single medium was considered. However, the platform can
be easily extended to other art forms such as crayons, pencils, pens and others.
Other forms may utilize different sensors such as force or IR distance which are
already available on the robot.
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Appendices

A Project Balance Sheet

Figure 46: Balance Sheet for robot painting platform
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B Color Matching Equations

B.1 RGB to XYZ

Given the chromaticity coordinates of
an RGB system (xr, yr),(xg, yg), and
(xb, yb) reference white (Xw, Yw, Zw):RG
B

 = [M ]

XY
Z


[M ] =

Sr ∗Xr Sg ∗Xg Sb ∗Xb

Sr ∗ Yr Sg ∗ Yg Sb ∗ Yb
Sr ∗ Zr Sg ∗ Zg Sb ∗ Zb


Xr = xr/yr

Yr = 1

Zr = (1− xr − yr)/yr

Xg = xg/yg

Yg = 1

Zg = (1− xg − yg)/yg

Xb = xb/yb

Yb = 1

Zb = (1− xb − yb)/ybSrSg
Sb

 =

Xr Xg Xb

Yr Yg Yb
Zr Zg Zb

−1 XW

YW
ZW



B.2 XYZ to L*A*B*

L = 116fy − 16

a = 500(fx − fy)

b = 200(fy − fz)

where

fx =

{
3
√
xr if xr > ε

κxr+16
116 otherwise

fy =

{
3
√
yr if yr > ε

κyr+16
116 otherwise

fz =

{
3
√
zr if zr > ε

κzr+16
116 otherwise

xr = X
Xr

yr = Y
Yr

zr = Z
Zr

ε =

{
0.008856 Actual CIE standard

216/24389 Intent of the CIE standard

κ =

{
903.3 Actual CIE standard

24389/27 Intent of the CIE standard

For more information on this process see [5]
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C Code

For more information on the code used in this project please see the files attached to
this submission or visit our repository at: https://github.com/Kygandomi/CARP

46



D Gallery

A few samples of paintings produce by the robot. For a complete collection see
attached document.

Figure 47: Dog Painting
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Figure 48: Bluejay Painting
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Figure 49: Apple Painting
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E Technical Drawings

Figure 50: Camera Mount Drawing

Figure 51: Brush Holder Drawing
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Figure 52: End Effector Attachment Drawing

Figure 53: Mount Attachment Drawing
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Figure 54: Paint Well Drawing

Figure 55: Pyramid Brush Changer Drawing
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Figure 56: Stationary Brush Stand Drawing
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F Authorship

Table 3: Authorship

1.1 Problem Statement Team
1.2 Project Justification Team
2.1 Painting Techniques Hillman
2.2 Literature Review Team
3.1 Project Goals and Objectives Hillman
4.1 Robot Platform Hillman
4.2 End Effector Design Hillman
4.3 Electronic Enclosure Heating Calculations Hillman
5.1 Sensing on the Robot Platform Hillman
5.2 Electric Enclosure Hillman
6.1 Low Level Software Functions Panzarino
6.2 Performance Motion Devices Controller Panzarino
7.1 General Overview of Vision Feedback Dotson
7.2 Camera Transforms Dotson
7.3 Decomposition Gandomi
7.4 Recomposition Panzarino
7.5 Error Checking Dotson
7.6 User Interface Gandomi
8.1 Abstract Art Gandomi, Hillman
9.0 Conclusions and Future Directions Gandomi
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