
1/109

Sequencing Content in Intelligent Tutoring Systems

A Major Qualifying Project Report
Submitted to the faculty

of the
Worcester Polytechnic Institute

in partial fulfillment of the requirements of the
Degree of the Bachelor of Science

By

Derek B. Radtke

Date: March 31, 2007

Professor Neil Heffernan, Advisor

2/109

Abstract

 An improved problem scheduling system for the Assistments Intelligent Tutoring System is

described and examples of its applications given.

3/109

Acknowledgments

 Jimmy Schementi for implementing the design for the sequence builder.

 Darren Torpey for his introduction to the system and leading me around in my first days there.

 Michael Purcaro for his managing of the lab during the important parts of this project.

 My advisor Neil Heffernan.

4/109

Table of Contents
Abstract ..2
Acknowledgments..3
Introduction..5
Design ..7

Section Types ..10
ProblemSection...10
LinearSection..11
RandomOrderSection ...12
ChooseConditionSection ..13
Limit Sections...14
RandomIteratorSection...16
NoRepeatesSection...17

Computer Adaptive Testing...18
Current Implementation of the IRT 3 Parameter Sections..19
Improvements ...21

Future Work ...22
Conclusion ...23
Bibliography...24
Appendix A – Converter to New Java Implimentation..25
Appendix B – New Java Implimentation...37
Appendix C – Ruby Implimentation..69
Appendix D – Converter from New Java to Ruby...106

5/109

Introduction

 The Assistments system is a web based intelligent tutoring system with a special purpose. Not

only is it designed to assist students in learning but it also assesses them while they learn, allowing

their time to be used more efficiently with teachers not being forced to choose how to allocate their

time to between teaching and testing.

 Its primary target is the MCAS (Massachusetts Comprehensive Assessment System) tests for

middle and high school students. To this end it is broken up into two parts on the tutoring side. The first

part performs tutoring on the individual “Assistments”, which generally start with problems taken from

the MCAS tests themselves augmented with some teaching components. Here the use of problems

directly from the MCAS tests helps in two ways, it directly prepares students for their MCAS test and it

allows more accurate and direct assessment. The first teaching component is “buggy messages” these

messages hint at the problem with an incorrect answer or suggest a correction to the student. A

sequence of hints helps to lead students to figuring out the problem on their own and a sequence of sub

problems break down the work into a sequence of simpler steps for the student. What type of tutoring

to provide has been studied extensively in Razzaq, L., Heffernan 2006 and 2007.

 Assistments are grouped for assignment to students by teachers in “sequences”. Formerly there

were three operations one could use arrange to compose Assistments in sequences: Linearly (one after

another in a deterministic order), Randomly (one after another in a randomized order) or by Condition

(one set or the other). This was enough to allow some basic experiments to be performed such as the

Hints vs. Scaffolding study of Razzaq, L., Heffernan 2006, but limited the types of experiments that

could be formed readily and only provided the most basic assessment and assistance. Other systems

such as Mastering Physics and Study Island have even simpler linear or random only assignments

without the nested “sections” (for example, a pair of linear groupings inside of a random ordering)

6/109

present in Assistments. Others, such as MAPS use Computer Adaptive Testing directly and exclusively.

 As such problem scheduling is much less developed and much less studied in Assistments and

similar systems. The goal of these additions to the assistments system was to increase the types of

experiments that can be described and run along with increasing the quality of tutoring and assessing

that can be performed. A new arrangement of sections allows resuming where students left off, more

section types provide a more general descriptive language and the addition of Computer Adaptive

Testing components allows more personalized assessment and assistance.

7/109

Design

 In the past, a simple hierarchal tree of 4 functional groups was used, these where the internal

node types Linear, Random and ChooseCondition (Then called Experimental) along with the leaf node

type Problem Section. The internal nodes directed the arrangement of the problem sections when

queried for the next problem.

 The redesign kept a similar structure, loosening several constraints to allow more complex

designs and improving the methods of communication to improve the descriptive power.

 The first major change was converting to a Directed Acyclic Graph (called a DAG for short)

with a single root node. This rooted directed acyclic graph's primary function is that is provides a

simple way to describe the resumption of progress at a section without the need for a concept like

pointers or references in the language while, along with other elements of the design, still guaranty

termination at each step if none of the sections have a programming bug that cause them to not

terminate. This design consideration is most important given the range of people who may be designing

sequences. While some will be designed by WPI researchers, others are intended to be designed by

middle school and high school teachers with no background in computer programming.

 Useful operations like the logical operations ‘and’ and ‘or’ follow naturally by arranging

operations (“sections”) in series or parallel and should be intuitively understood without training in

math, logic or computer programming. Though some complexity may be found in the multiple parents

which while well formed and rigorously defined may lead to some confusion on operation. It is

believed that its other qualities, discussed above, outweigh a simpler but more limited design or the

switch to a more traditional language. Proper graphical treatment may alleviate this and some work has

been put forth in this effort. Several programming languages/environments such as LabVIEW have

successfully used visual programming means to present such networks such as to limit the needed

8/109

training. Over the web, such an environment is harder to achieve due to implement difficulties but a

modified approach was designed by me and later implemented by another party at the lab (Jimmy

Schementi).

 The second is instead of returning a single problem; the communication between sections is

now done by returning “Assistment Sequences”, which are mixed list of problems and assistment

sequences. This allows problems to be associated with each other and allows the system to be presented

in a uniform manner even when problem groupings are being worked with. In addition to and ID each

entry in an assistment sequence can hold arbitrary Meta data on that ID or grouping of IDs. In addition

to problem specific Meta data retrieved from the database, it can store runtime options such as “No

Scaffolding”. Hopefully this can greatly reduce the amount of wrote entry by future experimenters and

teachers.

 In addition more descriptive elements where added so that not only could parameters be

described for each section instance, but parameters could also describe the relationship between

sections. This allows many additions, such as weighting the random sections or conditions and

handling more than two conditions well.

 A large amount of Meta data was added to allow introspection by utilities like the builder to

ease maintenance. Node and edge variables are described in each section type with their internal name,

a descriptive, human readable name, a description to inform people how to use it, a programmatic

description of how to present the variable and a place for a verification function to check that enter

values are valid and consistent. In addition the position that a section can take is also programmatically

documented. While not part of the functional redesign, this infrastructure allows the addition of new

section types without the need for changes in other parts of the system and allows the immediate use of

new sections in the builder and possibly other tools without the need for changing that code. Along

with this change came the naming of sections so as to remove some of the memorization magic. Now

9/109

sequence builders can name sections, for example one might name the linear section at the top of an

experiment “My Scaffolding vs. Hints Experiment, 2007”, the first child “Pretest”, the last child “Post

test” with other logical names in between.

 Finally, a large group of addition section types where added allowing a greater range of

concepts to be encoded. These additional sections include the RandomInterator section, the NoRepeates

section, the GroupAssistments section, the temporal and numeric limit sections along with the three

parameter computer adaptive testing section and its partner the computer adaptive testing termination

section. As computer adaptive testing is of a significantly different nature, it is treated separately in

later sections.

10/109

Section Types

 The most basic section types are the linear section, the Random section and the Problem

section. These are use to form the primary functionality and are used somewhere in almost all

sequences.

ProblemSection

 Problem sections are the main leaf node type in the system. They

contain a reference to a single Assistment and when queried for an

assistment sequence the first time, return an assistment sequence

containing just that one problem and after that signal finished if queried. A

single problem section forms the simplest useful sequence.

 As the system matures, this section type can add Meta data

that they system stores on each problem such as knowledge components

and IRT parameters for other sections to use to the assistment sequence it returns. Logically, the Meta

data it would add would be pulled directly from the database, though sequence designers could be

given a section variable for Meta data to attach if the need arises, in the expected minor cases, the

AttachMetadata section, though intended to attach Meta data to a stream of sequences coming up from

a larger section, will work presently. Having programmatic assistment information could greatly

simplify the sequence designer's work by saving them data entry in many cases, especially with

computer adaptive testing sections.

Illustration 1: This trivial
section assigns assistment 1
to a student and is
completed after that
assistment is answered.

11/109

LinearSection

 Linear sections allow a progression of problems to be

described. It is an interior node which n children. Building

logically from the problem section, a linear section could

group a set of problem sections in order. Such a sequence

would present the first problem followed by the second

problem, proceeding until it had presented the last problem

and then would signal finished. Linear sections need not

contain only problem sections though; its children can be any

other section type.

 In this way, it can for an “or” clause in addition to holding predetermined orderings of problems

and as such forms the backbone of most sequences created and is likely to continue to be the most

common section after ProblemSections and the most common at the user level (Users are often, and

need not be, aware of ProblemSections as they can consider these references to be the assistments

themselves). As people will be most familiar with these sections, unspecified behavior in sections or

secondary handling of data unassociated directly with a sections designed purpose defaults to acting as

linear section even if they could be modeled, for example, as only taking one child. This simplifies

handling of special cases in code using the sequences and sections such as the builder by eliminating a

large class of them and provides less “surprise” to users when using an unfamiliar section type.

Illustration 2: This sequence contains
two problems with a linear section
ordering them. Assistment 1 will be
pressented first followed by assistment
2 after which the sequence will be
finished.

12/109

RandomOrderSection

 Random Order sections are like linear sections in that

they have a set of n child sections of any type. They do not

however preserve the ordering and will assign all sequences

from a child before

moving on but will

select which child to

assign assistment

sequences from

randomly after each

child from the set of children that have not yet signaled finished.

When there are no children left to assign assistment sequences

from, the random section will signal finished. By default, all

children are weighted equally, but optionally, children can be given specific weights. This would mean

that if a group of 3 children where weighted with weights 4, 2 and 2 the one weighted 4 would come

first half of the time with the ones weighted 2 each coming first one fourth of the time. In the case the

weight 4 comes first, each of the weight 2s would come second half of the time and in the case one of

the weight 2s came first, the weight 4 would come second two thirds of the time with the weight 2

coming second one third of the time.

Illustration 3: This sequence is similar
to the sequence in figure 2, only the
linear section is replaced by a random
order section. Whether assistment 1 or
assistment 2 is assigned first is
random and equally probable.

Illustration 4: As in figure 3, wit the
addition of weightings. If this where
assigned to 3 students it would be
expected that 2 students would first
be presented with assistment 1 then
assistment 2 and ending with the
other student being presented
assistment 2 first and proceeding to 1
before completing the sequence.

13/109

ChooseConditionSection

 Choose Condition sections pass on the sequences returned by a

single child unlike the above which return them from all children.

Which child is selected randomly with the same edge weighting

system as Random Order sections uses. This has the minor issue that it

is unlikely to split the students in a class exactly into groups of the

weighting's relative sizes, in fact, with the small groups that this

system is usually used with a splitting close to these ratios is

statistically unlikely.

 Due to this inequality, an additional section, perhaps called an EqualConditions section, has

been conceptualized. It would look at how the other students have already been assigned by examining

the working memory of the other student's progress files,

and seeing the constraints needed to keep the ratios

correct, would assign it's self to the correct condition.

Such a section is currently in planning for being added to

the system. This is a simple addition which will be made

quickly after some possible different cases about

reassigning a sequence are handled. The performance

impact is limited to pulling all the relevant progress files

from the database once upon entry into that section

(proper balance can only be assured by waiting until a decision must be made about which condition to

enter). While potentially intensive in larger classes, the memory use should be limited by only holding

a small number in memory at a time and overall the impact should be acceptable even at larger scales.

Illustration 5: A simple
experimental setup with 2/7th in
condition A and 5/7th in
condition B.

Illustration 6: A Pretest-Experiment-
Posttest design as often implimented in the
Assistments system.

14/109

Limit Sections

 There are currently two types of basic limit sections,

the temporal and the numeric limits. Temporal limits start

counting time at the first instance that they are asked for an

assistment sequence. While still active, the TemporalLimit

section acts the same as a Linear section but after ether the

defined number of seconds (the section parameter is called

“SecondsToAllow”) or when none of its children have

assistment sequences

left to offer, the

temporal limit

signals finished. This can allow timed tests, or using the DAG

properties of the language, can allow the interjection of other

activities into the problem flow.

 NumericLimit sections are like TemporalLimits but

have two parameters: NumToDisplay, the count of how many

assistments or assistment sequences to let through before

terminating; and CountAssistments, which determines whether

to count the assistments inside each sequences or just the

number of sequences total (By default it counts the number of

assistment sequences).

Illustration 7: This sequence describes a
randomly ordered timed test of two
problems for which 15 seconds total is
alloted.

Illustration 8: This demonstrates how a
limit sections can be combined with the
DAG properties of the language to
interject content. The Linear section
first gets an assistment sequence from
the NumericLimit section which gets
ether assistment 1 or assistment 2 from
the Random section, since the
NumericLimit section is set to only
return a single problem, the linear
section get the next problem from the
problem section returnign a survey
question and then proceds to finish the
sequence with whichever assistment
has not yet been used in the Random
section.

15/109

Illustration 9: This sequence demonstrates making a test containing
several but not all of a set of problems. A student attempting this
sequence would be presented two of the three problems at random
and the extra problem would never be shown.

Illustration 10: This demonstrates how components can be built up.
Such a structure as this might be used for when one wishes to give a
test on multiple topics, including several random questions from each.

16/109

RandomIteratorSection

 The RandomIterator section acts like a RandomOrderSection with one major difference. Instead

of choosing a child and excusing that child's supply of assistment sequences before continuing on, it

randomly selects a single child each time it is queried and selects a single assistment sequence from it.

Using edge parameters, certain children can be marked as critical with the “TermOnEmpty” parameter.

In this case, if the RandomIterator looks at that child for

an assistment sequence and finds it empty, the

RandomIterator declares its self empty also. This makes

sense in the cases such that there is some “primary”

functionality of the section with extras thrown in. Take

for example the 90/10 sequences currently in use for

longitudinal assessment. These are composed of a

RandomIterator containing two children, one being the

primary goal, say algebra and the other containing all

problems that might be useful for that student to study.

The algebra problems are assigned 90% of the time and

the others assigned 10% of the time using the same edge

weightings as the RandomOrder and ChooseCondition, clearly the algebra problems will run out first.

It does not make sense for the student to continue through all the extra problems though but instead it is

more efficient for the student to move on to the next targeted sequence, hence the algebra child would

be marked TermOnEmpty. If via a chance of extremely low probability they completed the 10% first,

they would just be assigned only algebra problems until they completed all the problems in that branch.

In addition, if all children are empty the section also terminates.

Illustration 11: The outline of a Longitudinal
Assessment sequence as described in the
surrounding text. This can be used similarly
to intersperse survey questions into a
problem set. In such a case, the lower
weighted child(ren) would most likely be
significantly smaller then the heavier
weighted “primary” section and the more
complete termination rules would come into

17/109

NoRepeatesSection

 In the Latitudinal Assessment sequence a

problem came up, since the primary assistments where

duplicated in the secondary branch, the same

assistment could be assigned twice. This actually

happened quite often due to a combination of the

birthday paradox and the pigeon hole principal. Even

without this concern though, sequences can contain

problems from other sequences

and sometime you wish only

original problems to be assigned, thus the inclusion of the NoRepeats section.

This section can operate in two modes, the first is it takes a look at the

assistment sequences passing through it and only allows each to pass once, with

the option “AllowRedo” to present problems that where gotten wrong again.

The effects in this mode are localized to the paths of the sequences that pass

through the specific NoRepeats instance. The other mode looks at all the

problems the student has ever done and only allows truly new problems though

(again though with the AllowRedo option). A third mode looking at the

problems done globally in a sequence may be found to be of use and will be

trivially implemented at that time by an extension of the student model.

Illustration 12: This sequence trivially patches
the duplicate problems the sequence design of
figure 9 promotes.

Illustration 13: This
may be the design of a
sequence meant to
catch student up on
any tutoring they
missed during the
year as cleanup before
the MCAS tests.

18/109

Computer Adaptive Testing

 Useful for quickly judging a student's ability is computer adaptive testing. Computer adaptive

tests differ greatly from classical tests. While a full discussion is out of the scope of this paper a brief

introduction seems necessary for the casual reader's understanding; for more detailed information and

to develop a proper understanding, please see the literature.

 Of the standard models there are three types the one, two and three parameter models. The one

parameter model takes into account only the difficult of the problem. That is, it keeps track of the

inflection point of the difficulty curve. The two parameter model accounts for both the difficulty and

the discrimination of the problem. Not only does it track the inflection point, it also tracks the slope at

the inflection point. Items with a steeper slope provide a greater different in the probability of the

correctness of response for abilities slightly to either side of the inflection point and are hence better at

determining which side a test taker lies.

The most general, and mathematicly complicated, of the standard models is the three parameter

model which includes guessing on top of the two parameter models model. This is done with a third

parameter that encodes the lower asymptote of the log likelihood function. Estimating Theta (the test

take’s ability) becomes complicated. Modifications of the standard iterative maximum likelyhood

estimation exist using Newton’s method exist but others are usually found to be more usefull for a

specific application.

 Computer adaptive tests, which base their estimates on a statistical model of response

correctness across ability levels, select problems at each iteration such as to maximize the information

gained from an answer to that problem. In the standard one and two parameter models that means that

problems are picked which students have approximately an even chance of answering correctly or

19/109

incorrectly. The three parameter model used selects problems with a bit over 50% generally since it

includes a model of guessing which pushes up the point of maximum information. At each step, the test

taker's ability (called theta) is estimated (this estimate is theta hat) so that the most correct problem can

be assigned given the current knowledge of the test taker's ability. In practice the best is not always

selects, for example, one of the best 5 can be selected to cause divergence. For one this prevents

cheating in that two students answering together will not get the same test.

 The other half of computer adaptive tests is deciding when to terminate. Some common

termination points are a number of problems, a score confidence or a time limit. Any of these can be

easily implemented with the already built sections. In previous sections both the numeric and temporal

limit sections where described.

Current Implementation of the IRT 3 Parameter Sections
 As it currently stands, the

computer adaptive test section it's

self currently is implemented as a

section with 3 link parameters a,

b, and c (a being discrimination,

b being difficulty and c being

guessing; as the literature uses).

This is not the optimal solution as

it encourages only having

problem sections below a CAT

section and requires manual entry

Illustration 14: This CAT section is of "Max Information" type
meaning it tries to select be best item as far as estiamting theta goes
as the next problem. The parameters for each problem are not
defined here and just their possition denoted. One will note that this
sequence contains no type of limit section and this sequence will
continute perfoming a CAT test untill the CAT section runs out of
children to assign. Since in practice all data is best collected in a
single session, one might usually add a temporal limit to such a
design, not to explicitely limit the student's work but to implicitely
constrain it to a single period even when the goal was to make the
best possible assesment.

20/109

of each parameter. In the future once the system is ready for peripheral work (The Ruby system is just

being finalized now, it is a from-scratch rewrite of the generation 2 Java system) the ability to retrieve

item parameters from the database directly would be convenient and encourage the much greater use of

computer adaptive sections. Normal computer adaptive sections try to select the most informative

problem; this exact selection technique has been factored out in the Assistments' implementation in

favor of interchangeable selection methods. The most informative technique is referred to as “max

information” and the CAT section using it is referred to as a CatThreePMaxInformationSection.

 Other types of computer adaptive sections of interest are ones that select on different

algorithms. For one, to encourage more attention, lower gaming and increase happiness with learning

with the intent of increasing learning selects problems that a student has a certain percentage change of

getting right, say 20%. This of course will not work well with assessment as all the problems will be

“below” their ability level and hence the theta estimate from that set would have a high error. As such,

it would be best to use such a design with a pre-estimated theta.

 Termination was split out into a

separate section for three main reasons. First it

fits the style of the frame work paralleling the

existing Numeric and Temporal limits.

Furthermore it provides more flexibility. The

Theta limit section need not occur at the

computer adaptive section it's self. It can

control other problems related such as

assigning further problems if students test too

low for example. This flexibility also allows

Illustration 15: This design shows a sequence that first
assigns a 15 problem long computer adaptive test and
then if the student does not have a high enoguh skill
assigns additional tutoring in that area.

21/109

you to perform logical operations with Theta limits and Standard Error limits. This last example is the

third reason, it allows the type of termination to be exchange without having to present overly

numerous options to the users, they can design their sequence as they see fit without every type of

combination having to have been already defined. Along with this, standardized names mean that each

limit section type could work with one and two parameter computer adaptive sections also if they were

released or even other types of adaptive sections.

Improvements

 The current system finds the theta that best predicts the data, while this is a decent theta

estimate and the standard generally used, there are other options. For use of predicting MCAS scores, a

primary goal of the assistments system, this maximum likelihood estimation is a strong predictor.

Others are better at handling some random answers such as formed by guessing without thinking,

gamming the system or some else wise defined criteria. Examples are biweight, expected a posteriori

(EAP), Maximum a posteriori (MAP or Bayes model estimate).

22/109

Future Work
 The amount of difficult associated with optimal learning would form an interesting study and

may be conducted given the computer adaptive sections implemented in this project.

 The utility of assigning only problem sets students have a low estimated theta on may also wish

to be studied. This can be accomplished with the current separated limit design and the sequence design

is detailed above. The converse, assigning only re-enforcement problem sets on areas students scored

reasonable will require duplication of the theta limit section and the obvious minor modification to

invert the selection though the same sequence design is used. Of course, with these two sections, the

middle ground of problem sets a student is estimated to not be too skilled at but not entirely unskilled at

is also possible. This may be an area assistments excels at as it is not prepared to provide the initial

teaching and little is to be learned on problems students already are experts at. Especially what range

was the best for which type of reinforcement is ripe for study extending upon the former hints vs.

scaffolding work to bringing more detail to the proper applications of each.

 Less enlightening but important is the continued addition of section types to enable new

experiments hither to consider. While this project extended the scope of possible experiments greatly

it's lack of Turing completeness assures that some cannot be run without additions, furthermore, in the

more immediate and foreseeable future, near the end of this project, many convenience sections where

considered that were not strictly needed to achieve the necessary utility but may be wanted. Similarly,

as the system is used more strengths and weaknesses will be found, the framework was designed to be

flexible enough to encompass the necessary additions for usability but these additions may need to be

performed to extend even further or allow use by less trained sequence builders.

23/109

Conclusion
 This project has successfully completed its goal of writing an assistment scheduling system

flexible enough to handle many new experiment types. It has allowed the writing of several new

experiment types. The paired analysis that initially motivated it; ten or more 90/10 sections for a 2

Million dollar grant for Making Longitudinal Assessment from the US Department of Education. In

addition to including computer adaptive sections to aid in progressive sequence designs. Furthermore;

the design showed its self readily able to include the new ideas that arrived near the end of the project.

 Less sure is how the user sequence builder design will fair as it is just been mostly completed

by Jimmy Schementi. The light use it has gotten so far has been successful, but that is merely anecdotal

and not in the problematic groups. This side of the project can only be truly tested when the Ruby

version of the Assistments system goes live.

24/109

Bibliography
Razzaq, L., Heffernan, N.T. (2006). Scaffolding vs. hints in the Assistment System. In Ikeda, Ashley &
Chan (Eds.). Proceedings of the 8th International Conference on Intelligent Tutoring Systems.
Springer-Verlag: Berlin. pp. 635-644. 2006.

Razzaq, L., Heffernan, N.T. (2007). What level of tutor interaction is best?. In Luckin & Koedinger
(Eds) Proceedings of the 13th Conference on Artificial Intelligence in Education. IOS Press.

Lord, Frederick M. (1980). Applications of Item Response Theory to Practical Testing Problems.
Hillsdale, NJ: Erlbaum.

De Ayala, R. J., Plake, Barbara S., Impara, James C., Kozmicky, Michelle (2001). The Effect of
Omitted Responses on Ability Estimation in IRT. Annual Meeting of the American Educational
Research Association

Embretson, Susan E., Reise, Steven P. (2000). Item response Theory for PsychologistsLawrence
Erlbaum Associates, Publishers

Baker, Frank (2001). The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and
Evaluation, University of Maryland, College Park, MD.

25/109

Appendix A – Converter to New Java Implimentation

Based on the old Java system, needs XMLNode for proper function.

Converts the old system's curriculums into the intermediate java system's and applies some
compression shorthands allowed in that system's storage model.

Available at
svn+ssh://nth2.wpi.edu/home/svn/assistments/branches/OneOffScripts/CurriculumConverter/

cvert.java
package CurriculumConverter;

import java.sql.*;

import java.util.*;

class SecStruct {

 String type;

 List<Long> children;

// XMLNode node;

}

public class cvert {

 private static final String oracleServer="";

 private static final String oracleDatabaseName="";

// private static final String oracleServer="assistment5.cs.wpi.edu";

// private static final String oracleDatabaseName="silver";

 private static final String ORACLE_DB_STRING =
"jdbc:oracle:thin:@"+oracleServer+":1521:"+oracleDatabaseName;

 static List<SecStruct> sections;

26/109

 static public long inflateXML(XMLNode node) throws Exception

 {

 SecStruct s = new SecStruct();

 long id = sections.size();

 s.children = new ArrayList<Long>();

 if(!node.getName().equals("isection"))

 throw new Error("Not where we aut.");

 String type = node.getNodeText("type");

 if(type.equals("ExperimentSection")) {

 s.type = "ChooseOne";

 } else if(type.equals("LinearSection") || type.equals("Linear")) {

 s.type = "Linear";

 } else if(type.equals("ProblemSection")) {

 s.type = "Problem";

 } else if(type.equals("RandomSection")) {

 s.type = "RandomOrder";

 } else {

 System.out.println(type);

 throw new Exception("Bad section type!!!");

 }

 XMLNode p = node.getNode("properties").getNode("property");

 if(null!=p && p.getNodeText("key").equals("mProblemID")) {

 return -1*new Long(p.getNodeText("value").trim());

 }

 sections.add(s);

 Iterator children = node.getNode("children").namedChildren("isection");

 while(children.hasNext())

 {

27/109

 XMLNode k = (XMLNode) children.next();

 s.children.add(inflateXML(k));

 }

 return id;

 }

 public static String deflateXML(int id) {

 XMLNode n = new XMLNode("<isection type=\""+sections.get(id).type+"\"/>");

 n.insertChildNode(new XMLNode("<children />"));

 for (Long c : sections.get(id).children) {

 if(0>c) {

 n.getNode("children").insertChildNode(new XMLNode("<child
type=\"problem\" id=\""+(-1*c)+"\""));

 } else {

 n.getNode("children").insertChildNode(new XMLNode("<child
type=\"section\" id=\""+c+"\""));

 }

 }

 return n.toString();

 }

 public static XMLNode clobToXML(Clob clob)

 {

 String nodeString = "";

 try {

 nodeString = clob.getSubString(1, (int)clob.length());

 } catch(SQLException sqle){

 System.out.println("XMLSaver (clobToXML): " + sqle.getMessage());

28/109

 }

 // return null if the clob is null

 if(nodeString.equals(""))

 return null;

 return new XMLNode(nodeString);

 }

 public static void convert() {

 XMLNode fake = new XMLNode("<test />"); //Just here to get the japisoft notice at the
ttop and not in our output.

 long startT, stopT, elapsedT, sizeT=0, numConverted=0, numFailed=0;

 startT = System.currentTimeMillis();

 try {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 Connection dbS = DriverManager.getConnection (ORACLE_DB_STRING,
"assistment", "assistment");

 //Setup our tables

 PreparedStatement psTBLS;

 try {

 psTBLS = dbS.prepareStatement("DROP TABLE
assistment_model.curriculums");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 1);

 }

29/109

 psTBLS = dbS.prepareStatement("CREATE TABLE
assistment_model.curriculums (id INTEGER NOT NULL, status CHAR(4) DEFAULT 1, authorid
INTEGER NOT NULL, creationdate DATE NOT NULL, name VARCHAR2 (64) NOT NULL,
description VARCHAR2 (255), obj_xml CLOB)");

 psTBLS.execute();

 psTBLS = dbS.prepareStatement("CREATE UNIQUE INDEX
assistment_model.sys_c005657 ON assistment_model.curriculums (id)");

 psTBLS.execute();

 try {

 psTBLS = dbS.prepareStatement("DROP TABLE
assistment_model.progresses");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 2);

 }

 try {

 psTBLS = dbS.prepareStatement("CREATE TABLE
assistment_model.progresses (sid INTEGER NOT NULL, cid INTEGER NOT NULL, total_done
INTEGER NOT NULL, complete INTEGER NOT NULL, last_touched TIMESTAMP(6) NOT NULL,
static_data CLOB, dynamic_data CLOB)");

 psTBLS.execute();

 psTBLS = dbS.prepareStatement("CREATE UNIQUE INDEX
assistment_model.usercurriculum ON assistment_model.progresses (sid, cid)");

 psTBLS.execute();

 psTBLS = dbS.prepareStatement("ALTER TABLE
assistment_model.progresses ADD CONSTRAINT usercurriculum PRIMARY KEY (sid, cid)");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 3);

 }

30/109

 try {

 psTBLS = dbS.prepareStatement("DROP SEQUENCE
assistment_model.curriculum_seq");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 4);

 }

 psTBLS = dbS.prepareStatement("CREATE SEQUENCE
assistment_model.curriculum_seq START WITH 1 INCREMENT BY 1");

 psTBLS.execute();

 PreparedStatement psDC = dbS.prepareStatement("DELETE FROM
assistment_model.curriculums");

 psDC.executeQuery();

 //PreparedStatement psDP = dbS.prepareStatement("DELETE FROM
assistment_model.progresses");

 //psDP.executeQuery();

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/jpeg' where mime_type='jpg'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 5);

 }

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/jpeg' where mime_type='JPG'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 6);

 }

31/109

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/jpeg' where mime_type='jpeg'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 7);

 }

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/gif' where mime_type='gif'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 8);

 }

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/gif' where mime_type='GIF'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 9);

 }

 try {

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/bmp' where mime_type='bmp'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 10);

 }

 try {

32/109

 psTBLS = dbS.prepareStatement("update assistment_model.IMedia set
mime_type='image/png' where mime_type='png'");

 psTBLS.execute();

 } catch (Exception e1) {

 System.out.println("Fail #" + 11);

 }

 PreparedStatement psS = dbS.prepareStatement("SELECT * FROM
assistment_model.icurriculum WHERE XML_CLOB like '<ic%' ORDER BY obj_id"); // AND
OBJ_ID=1466");

 ResultSet rsS = psS.executeQuery();

 while(rsS.next()) {

 Connection dbI = DriverManager.getConnection (ORACLE_DB_STRING,
"assistment", "assistment");

 System.out.print("Trying: "+rsS.getLong(9)+" ... ");

 try {

 PreparedStatement psI = dbI.prepareStatement("INSERT INTO
assistment_model.curriculums (id,status,authorid,creationdate,name,description,obj_xml) VALUES
(?,?,?,?,?,?,?)");

 psI.setLong(1, rsS.getLong(9));

 String ssss = rsS.getString(11);

 if(null==ssss) { ssss="1"; }

 psI.setString(2, ssss);

 psI.setLong(3, rsS.getLong(5));

 if(null==rsS.getTimestamp(6)) {

 psI.setTimestamp(4, new
Timestamp(System.currentTimeMillis()));

33/109

 } else {

 psI.setTimestamp(4, rsS.getTimestamp(6));

 }

 if(null==rsS.getString(3)) {

 psI.setString(5, "Unknown");

 } else {

 psI.setString(5, rsS.getString(3));

 }

 if(null==rsS.getString(4)) {

 psI.setString(6, "Unknown");

 } else {

 psI.setString(6, rsS.getString(4));

 }

 long start, stop, elapsed;

 start = System.currentTimeMillis();

 sections = new ArrayList<SecStruct>();

 XMLNode n = clobToXML(rsS.getClob(10));

 long numRoots=0;

 boolean needFake=false;

 Iterator children =
n.getNode("sections").namedChildren("isection");

 if(children.hasNext() && children.hasNext()) {

 //Need fake top linear section

 needFake=true;

 sections.add(new SecStruct());

 sections.get(0).type = "Linear";

34/109

 sections.get(0).children = new ArrayList<Long>();

 }

 children = n.getNode("sections").namedChildren("isection");

 while(children.hasNext())

 {

 System.out.print("@ ");

 numRoots++;

 XMLNode k = (XMLNode) children.next();

 Long tid = inflateXML(k);

 if(needFake) {

 sections.get(0).children.add(tid);

 }

 }

 String b = "<sections>";

 for(int i=0; i<sections.size(); i++){

 b += deflateXML(i);

 }

 b += "</sections>";

 stop = System.currentTimeMillis();

 elapsed = stop - start;

 System.out.print((new Long(elapsed)).toString()+"ms, "+b.length()+" bytes ... ");

 //psI.setString(7, b);

 oracle.sql.CLOB newClob = oracle.sql.CLOB.createTemporary(dbI, false,
oracle.sql.CLOB.DURATION_SESSION);

 newClob.putString(1,b);

35/109

 psI.setClob(7, newClob);

 psI.executeQuery();

 sizeT += b.length();

 numConverted++;

 System.out.println("Success! ("+new
Long(numRoots).toString()+"):-)");

 } catch(Exception e) {

 numFailed++;

 System.out.println("Failure! :-(");

 e.printStackTrace();

 }

 }

 dbS.close();

 } catch(Exception e) {

 e.printStackTrace();

 System.out.println("Upper");

 }

 stopT = System.currentTimeMillis();

 elapsedT = stopT - startT;

 System.out.println("Total time taken: "+(new Long(elapsedT)).toString()+"ms ("+(new
Long(elapsedT/1000)).toString()+"s).");

 System.out.println("Total size writen: "+(new Long(sizeT)).toString()+" bytes.");

 System.out.println("Total number converted: "+(new Long(numConverted)).toString());

 System.out.println("Total number failed to convert: "+(new Long(numFailed)).toString());

 }

36/109

 /**

 * @param args

 */

 public static void main(String[] args) {

 /*

 sections = new ArrayList<SecStruct>();

 try {

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 String str = "";

 System.out.print("> ");

 str = in.readLine();

 XMLNode is = (new XMLNode(str)).getNode("isection");

 inflateXML(is);

 } catch (IOException e) {

 System.out.println("Bad read");

 return;

 }

 System.out.print("<sections>");

 for(int i=0; i<sections.size(); i++){

 System.out.print(deflateXML(0));

 }

 System.out.print("</sections>");

 */

 convert();

 }

}

37/109

Appendix B – New Java Implimentation

ICurriculum
package org.assistment.core.curriculum;

import org.assistment.core.section.ISection;

public interface ICurriculum

{

 // Component

 public ISection getHead();

 // Hibernate

 public Long getId();

}

Curriclum
package org.assistment.core.curriculum;

import org.assistment.core.section.ISection;

/**

 *

 * There is an implied linear root section, thanks to the list of sections

 * @author Derek Radtke

 * @author Tom Livak

 */

public class Curriculum implements ICurriculum {

 ISection mSection;

 Long mID;

 public Curriculum(Long id, ISection section) {

 mID = id;

 mSection = section;

 }

 public ISection getHead() {

 return mSection;

 }

 public Long getId() {

38/109

 return mID;

 }

}

IProgress

package org.assistment.core.progress;

import java.util.Date;

import java.util.Map;

import org.assistment.core.problem.IProblem;

import org.assistment.core.section.IProblemSequence;

import org.assistment.core.section.SectionDynamicData;

import org.assistment.core.section.SectionStaticData;

import org.assistment.database.harness.SQLHarness;

import org.assistment.datalayer.DataLayerException;

import org.assistment.runtime.logging.RuntimeLogger;

public interface IProgress {

 // Component

 public void saveState(SQLHarness harness) throws DataLayerException;

 public void updatedTimeStamp(SQLHarness harness);

 public IProblem nextAssistment(RuntimeLogger logger, SQLHarness harness);

 public boolean isComplete();

 //Fuggly compatability datalayer stuff.

 public Long getUserId();

 public String getType();

 public int getTotalNumberDone();

 public boolean getComplete();

 public void setComplete(boolean complete, SQLHarness harness);

 public Date getTimeOfLastProgressSave();

 public Long getCurriculumID();

 public Map<Long, SectionStaticData> getSectionStaticProgress();

 public Map<Long, SectionDynamicData> getSectionDynamicProgress();

 public IProblemSequence getProblemSequence();

}

39/109

Progress

package org.assistment.core.progress;

import static org.assistment.apps.utils.FLog.exception;

import static org.assistment.apps.utils.FLog.log;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import org.assistment.core.curriculum.ICurriculum;

import org.assistment.core.problem.IProblem;

import org.assistment.core.section.IProblemSequence;

import org.assistment.core.section.SectionDynamicData;

import org.assistment.core.section.SectionStaticData;

import org.assistment.core.utils.ProblemUtils;

import org.assistment.database.harness.SQLHarness;

import org.assistment.datalayer.DataLayerConnection;

import org.assistment.datalayer.DataLayerException;

import org.assistment.framework.XMLNode;

import org.assistment.runtime.RuntimeSQLUtils;

import org.assistment.runtime.logging.RuntimeLogger;

public class Progress implements IProgress {

 private ICurriculum mGraph;

 private IProblemSequence mSequence;

 // Contains properties needed to properly restore sections

 private Map<Long, SectionStaticData> mSSD;

 Map<Long, SectionDynamicData> mSDD;

 // Persisted Properties

 private long mUID;

 private Long mCurriculumID;

 private int mTotalNumberDone;

 private boolean mComplete;

 private Date mTimeStamp;

 /**

 *

 *

 * @param curriculumID

40/109

 * the unique id of the curriculum

 */

 public Progress(final long user, final long curriculumID,

 final Date timeStamp) {

 mUID = user;

 mComplete = false;

 mTimeStamp = timeStamp;

 mSequence = null;

 mCurriculumID = curriculumID;

 mTotalNumberDone = 0;

 }

 /**

 * This will instantiate a progress that was stored into the DB.

 */

 public Progress(final long uid, final long cid, final int tnd,

 final boolean cmplt, final Date dt, final IProblemSequence ps,

 final Map<Long, SectionStaticData> ssd,

 final Map<Long, SectionDynamicData> sdd) {

 mUID = uid;

 mCurriculumID = cid;

 mComplete = cmplt;

 mTotalNumberDone = tnd;

 mTimeStamp = dt;

 mSequence = ps;

 mSSD = ssd;

 mSDD = sdd;

 }

 public Long getUserId() {

 return mUID;

 }

 /**

 * Save the current progress through the curriculum

 *

 * @param harness

 * @throws DataLayerException

 * @throws DataLayerException

 *

 * @pre mCurrentSection is not null

 */

 public void saveState(SQLHarness harness) throws DataLayerException {

 if (null == mGraph) {

 try {

 loadCurriculum(harness);

 } catch (DataLayerException e) {

41/109

 mComplete = true; // No curriculum, so we can't do anything.

 DataLayerConnection.getInstance().saveProgress(this, harness);

 return;

 }

 }

 // Aquire static data once and only once, don't reaqure if we already

 // have it.

 if (null == mSSD) {

 mSSD = new HashMap<Long, SectionStaticData>();

 mGraph.getHead().saveStaticData(mSSD);

 }

 // Get dynamic state that represent the current

 // progress through the current curriculum

 mSDD = new HashMap<Long, SectionDynamicData>();

 mGraph.getHead().saveDynamicData(mSDD);

 DataLayerConnection.getInstance().saveProgress(this, harness);

 }

 private void loadCurriculum(SQLHarness harness) throws DataLayerException {

 try {

 mGraph = DataLayerConnection.getInstance().getCurriculum(

 mCurriculumID, harness);

 // If we are loading so we can save we will just fill it in with

 // blank.

 loadState();

 } catch (DataLayerException e) {

 exception(this.getClass().getName(), e, e.getMessage());

 throw e;

 }

 }

 private void loadState() {

 // call the load recursive function, we have an issue if we don't have

 // the data to load

 if (null != mSSD && null != mSDD) {

 mGraph.getHead().loadData(mSSD, mSDD);

 } else {

 mGraph.getHead().loadData(new HashMap<Long, SectionStaticData>(),

 new HashMap<Long, SectionDynamicData>());

 }

 }

 public IProblem nextAssistment(RuntimeLogger logger, SQLHarness harness) {

 if (null == mGraph) {

42/109

 try {

 loadCurriculum(harness);

 } catch (DataLayerException e1) {

 mComplete = true;

 return null;

 }

 }

 try {

 saveState(harness);

 } catch (DataLayerException e) {

 exception(this.getClass().getName(), e, "Could not save - "

 + e.getMessage());

 }

 IProblem problem = null;

 while (!mComplete) {

 // An empty sequence is fine, but then we need to go back.

 if (null == mSequence || mSequence.isEmpty()) {

 logger.logSectionQueryStart();

 mSequence = mGraph.getHead().getNextSequence(logger,

 new ArrayList<Long>());

 // This just does logging so we know what happened. (for

 // Debugging)

 logSequenceGotten(logger);

 }

 // We are sure it is ether null or !empty given the above line

 if (null == mSequence) {

 mComplete = true;

 try {

 saveState(harness);

 } catch (DataLayerException e) {

 exception(this.getClass().getName(), e, "Could not save - "

 + e.getMessage());

 }

 return null;

 }

 Long pid = mSequence.getFirstProblem();

 if (null != pid) {

 problem = ProblemUtils.getProblem(pid, harness);

 }

 if (problem != null) {

 mTotalNumberDone++;

 return problem;

43/109

 } else { // We couldn't load the problem, it must be bad problem?

 log(this.getClass().getName(), "We failed to load problem id #"

 + pid.toString());

 }

 }

 return null;

 }

 private void logSequenceGotten(RuntimeLogger logger) {

 if (null != mSequence) {

 String Seq = "";

 for (XMLNode nd : mSequence.getSubs()) {

 if (Seq.length() > 0) {

 Seq += " ";

 }

 Seq += nd.getAttribute("problem");

 }

 logger.logSectionQueryResult(Seq);

 } else {

 logger.logSectionQueryResult("Completed");

 }

 }

 public boolean isComplete() {

 return mComplete;

 }

 public String getType() {

 return "Progress";

 }

 public Long getCurriculumID() {

 return mCurriculumID;

 }

 public int getTotalNumberDone() {

 return mTotalNumberDone;

 }

 public boolean getComplete() {

 return mComplete;

 }

 public void setComplete(final boolean complete, SQLHarness harness) {

 mComplete = complete;

 try {

 saveState(harness);

 } catch (DataLayerException e) {

 exception(this.getClass().getName(), e, "Could not save - "

44/109

 + e.getMessage());

 }

 }

 public Date getTimeOfLastProgressSave() {

 return mTimeStamp;

 }

 public Map<Long, SectionStaticData> getSectionStaticProgress() {

 return mSSD;

 }

 public Map<Long, SectionDynamicData> getSectionDynamicProgress() {

 return mSDD;

 }

 public IProblemSequence getProblemSequence() {

 return mSequence;

 }

 public void updatedTimeStamp(SQLHarness harness) {

 RuntimeSQLUtils

 .updatedTimeStamp(this.mUID, this.mCurriculumID, harness);

 }

}

Isection

package org.assistment.core.section;

import java.util.List;

import java.util.Map;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.runtime.logging.RuntimeLogger;

/**

 * To add a new section, Create said section. Update SectionUtils.

 *

 * You are now done.

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public interface ISection {

 /**

 * Save's a section's unchanging static data into a hash map at its section

45/109

 * ID, recursively saving all of its children's data also.

 *

 * This is called before any requests are made of the section.

 *

 * @param SDM

 * The Static Data Map, mapping a section's ID number to the

 * static data a section cares to save.

 */

 public void saveStaticData(Map<Long, SectionStaticData> SDM);

 /**

 * Save's a section's changing dynamic data into a hash map at its section

 * ID, recursively saving all of its children's data also.

 *

 * @param DDM

 * The Dynamic Data Map, mapping a section's ID number to the

 * dynamic data a section cares to save.

 */

 public void saveDynamicData(Map<Long, SectionDynamicData> DDM);

 /**

 * Recursively called into the section graph to populate sections with their

 * saved data.

 *

 * @param SDM

 * @param DDM

 */

 public void loadData(Map<Long, SectionStaticData> SDM,

 Map<Long, SectionDynamicData> DDM);

 /**

 * Asks a section for the next sequence of problems is has to return. It may

 * ask its children for sequences and use them to create it's sequence, and

 * so on recursively.

 *

 * @param logger

 * @param path

 * Path from root to current section; this is only used for

 * logging.

 * @return The IProblemSequence to use or null if that section is out of

 * IProblemSequences.

 */

 public IProblemSequence getNextSequence(RuntimeLogger logger,

 List<Long> path);

 /**

 * TODO: Refactor to "getTypeName"

 *

 * @return A string representing the type of the section.

 */

46/109

 public SectionType getType();

}

IProblemSequence

package org.assistment.core.section;

import java.util.List;

import org.assistment.framework.XMLNode;

public interface IProblemSequence {

 public List<IProblemSequence> getSubSequences();

 public boolean isEmpty();

 public Long getFirstProblem();

 public void appendSequence(IProblemSequence sq);

 public void insertSequence(IProblemSequence sq);

 public XMLNode getXMLrep();

 List<XMLNode> getSubs();

}

ProblemSequence

package org.assistment.core.section;

import java.util.ArrayList;

import java.util.List;

import org.assistment.framework.XMLNode;

/**

 * I'm sorry, I know I screwed this one up. Please fix it?

 *

 * @author Derek Radtke (davean@wpi.edu)

 *

 */

public class ProblemSequence implements IProblemSequence {

 // Ether we store data or we store children.

 Long mIDNum;

 List<IProblemSequence> mSequences;

 public ProblemSequence() {

 mIDNum = null;

47/109

 mSequences = null;

 }

 public ProblemSequence(long id) {

 mIDNum = id;

 mSequences = null;

 }

 // Acts as merge.

 public ProblemSequence(IProblemSequence sqA, IProblemSequence sqB) {

 mIDNum = null;

 mSequences = new ArrayList<IProblemSequence>();

 mSequences.addAll(sqA.getSubSequences());

 mSequences.addAll(sqB.getSubSequences());

 }

 public ProblemSequence(@SuppressWarnings("unused")

 String attribute) {

 // TODO Auto-generated constructor stub

 }

 public String toString() {

 // TODO actually serialize

 return "";

 }

 public List<IProblemSequence> getSubSequences() {

 if (null == mIDNum && null != mSequences) // We aren't a leaf and we

 // have

data

 {

 return mSequences;

 } else if (null != mIDNum) {

 List<IProblemSequence> sq = new ArrayList<IProblemSequence>();

 sq.add(this);

 return sq;

 } else {

 List<IProblemSequence> sq = new ArrayList<IProblemSequence>();

 return sq;

 }

 }

 public boolean isEmpty() {

 return (null == mIDNum && (null == mSequences || mSequences.size() == 0));

 }

 public Long getFirstProblem() {

 if (null != mIDNum) // leaf

 {

 Long id = mIDNum;

48/109

 mIDNum = null;

 return id;

 } else if (null != mSequences) {

 Long id = null;

 while (null == id && !mSequences.isEmpty()) {

 id = mSequences.get(0).getFirstProblem();

 if (mSequences.get(0).isEmpty()) {

 mSequences.remove(0);

 }

 }

 if (mSequences.size() <= 0) // Clean up if we are out.

 {

 mSequences = null;

 }

 return id;

 } else {

 return null;

 }

 }

 public void appendSequence(IProblemSequence sq) {

 if (null == mSequences) {

 mSequences = new ArrayList<IProblemSequence>();

 }

 if (null != mIDNum) { // we were leaf, fix that

 mSequences.add(new ProblemSequence(mIDNum));

 mIDNum = null;

 }

 // We are now an internal node no matter how we started.

 mSequences.add(sq);

 }

 public void insertSequence(IProblemSequence sq) {

 if (null == mSequences) // We already have children

 {

 mSequences = new ArrayList<IProblemSequence>();

 } else if (null != mIDNum) // we are a leaf

 {

 mSequences = new ArrayList<IProblemSequence>();

 mSequences.add(new ProblemSequence(mIDNum));

 mIDNum = null;

 }

 // else we already have subSequences.

 mSequences.add(sq);

 }

49/109

 // Good enough for progress' purposes ...

 public List<XMLNode> getSubs() {

 List<XMLNode> nodes = new ArrayList<XMLNode>();

 if (null != mIDNum) // leaf

 {

 Long id = mIDNum;

 XMLNode probNode = new XMLNode("<subSeq />");

 probNode.setAttribute("problem", id.toString());

 nodes.add(probNode);

 } else if (null != mSequences) { // No, this is not an else Darren,

 // don't refactor it

 for (IProblemSequence ps : mSequences) {

 nodes.addAll(ps.getSubs());

 }

 }

 return nodes;

 }

 public XMLNode getXMLrep() {

 XMLNode seq = new XMLNode("<ProblemSequence />");

 for (XMLNode nd : getSubs()) {

 seq.insertChildNode(nd);

 }

 return seq;

 }

}

AnnotatedChildSection

package org.assistment.core.section;

import java.util.Map;

import org.assistment.framework.TypedValue.ITypedValue;

public class AnnotatedChildSection {

 ISection mSection;

 Map<String, ITypedValue> mProperties;

 public AnnotatedChildSection(ISection s, Map<String, ITypedValue> p) {

 mSection = s;

 mProperties = p;

 }

50/109

 public ISection getSection() {

 return mSection;

 }

 public void setProperties(Map<String, ITypedValue> props) {

 mProperties = props;

 }

 public Map<String, ITypedValue> getProperties() {

 return mProperties;

 }

 public void setProperty(String name, ITypedValue data) {

 mProperties.put(name, data);

 }

 public ITypedValue getProperty(String name) {

 return mProperties.get(name);

 }

 public boolean hasProperty(String name) {

 return mProperties.containsKey(name);

 }

}

SectionDynamicData

package org.assistment.core.section;

import java.util.HashMap;

import java.util.Map;

import org.assistment.framework.TypedValue.ITypedValue;

/**

 * A class to hold together any dynamic data that a section needs to store while

 * it is out of core memory. When paired with SectionStaticData, a section's

 * complete state should be able to be repoduced.

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public class SectionDynamicData {

 int mIndex;

 IProblemSequence mSequence;

 Map<String, ITypedValue> mProperties;

51/109

 public SectionDynamicData() {

 mProperties = new HashMap<String, ITypedValue>();

 mIndex = 0;

 mSequence = null;

 }

 public void setIndex(int idx) {

 mIndex = idx;

 }

 public int getIndex() {

 return mIndex;

 }

 public void setSequence(IProblemSequence ps) {

 mSequence = ps;

 }

 public IProblemSequence getSequence() {

 return mSequence;

 }

 public void setProperties(Map<String, ITypedValue> props) {

 mProperties = props;

 }

 public Map<String, ITypedValue> getProperties() {

 if (null == mProperties) {

 mProperties = new HashMap<String, ITypedValue>();

 }

 return mProperties;

 }

 public void setProperty(String name, ITypedValue data) {

 if (null == mProperties) {

 mProperties = new HashMap<String, ITypedValue>();

 }

 mProperties.put(name, data);

 }

 public ITypedValue getProperty(String name) {

 if (null == mProperties) {

 mProperties = new HashMap<String, ITypedValue>();

 }

 return mProperties.get(name);

 }

 public boolean hasProperty(String name) {

 if (null == mProperties) {

52/109

 mProperties = new HashMap<String, ITypedValue>();

 }

 return mProperties.containsKey(name);

 }

}

SectionStaticData

package org.assistment.core.section;

import java.util.HashMap;

import java.util.Map;

import org.assistment.framework.TypedValue.ITypedValue;

/**

 * A class to hold together any static data that a section needs to store while

 * it is out of core memory. When paired with SectionDynamicData, a section's

 * complete state should be able to be repoduced.

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public class SectionStaticData {

 Map<String, ITypedValue> mProperties;

 public SectionStaticData() {

 mProperties = new HashMap<String, ITypedValue>();

 }

 public void setProperties(Map<String, ITypedValue> props) {

 mProperties = props;

 }

 public Map<String, ITypedValue> getProperties() {

 return mProperties;

 }

 public void setProperty(String name, ITypedValue data) {

 mProperties.put(name, data);

 }

 public ITypedValue getProperty(String name) {

 return mProperties.get(name);

 }

 public boolean hasProperty(String name) {

53/109

 return mProperties.containsKey(name);

 }

}

BasicSection

package org.assistment.core.section;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.runtime.logging.RuntimeLogger;

/**

 * This provides some base common functions many sections use and hooks to

 * override how it works. Its only purpose is to consolidate code.

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public abstract class BasicSection implements ISection {

 long mID; // Who we are.

 Map<String, ITypedValue> mProperties;

 List<AnnotatedChildSection> mChildren;

 int mIndex;

 BasicSection() {

 mIndex = 0;

 }

 /**

 * If a section has static data to save, it should override this function.

 *

 * @return The data to save.

 */

 protected SectionStaticData getStaticData() {

 return null;

 }

 public void saveStaticData(Map<Long, SectionStaticData> SDM) {

 SectionStaticData toSave = getStaticData();

 if (null != toSave) {

54/109

 SDM.put(mID, toSave);

 }

 for (AnnotatedChildSection achild : mChildren) {

 achild.getSection().saveStaticData(SDM);

 }

 }

 /**

 * If a section has dynamic data to save, it should override this function.

 *

 * @return The data to save.

 */

 protected SectionDynamicData getDynamicData() {

 return null;

 }

 public void saveDynamicData(Map<Long, SectionDynamicData> DDM) {

 SectionDynamicData toSave = getDynamicData();

 if (null != toSave) {

 DDM.put(mID, toSave);

 }

 for (AnnotatedChildSection achild : mChildren) {

 achild.getSection().saveDynamicData(DDM);

 }

 }

 public void loadData(Map<Long,SectionStaticData> SDM, Map<Long, SectionDynamicData> DDM)

 {

 if(null!=SDM.get(mID))

 {

 loadStaticData(SDM.get(mID));

 }

 if(null!=DDM.get(mID))

 {

 loadDynamicData(DDM.get(mID));

 }

 for(AnnotatedChildSection achild : mChildren)

 {

 achild.getSection().loadData(SDM, DDM);

 }

 }

 //clearly, if this are ever called, it should have an implimentation ...

 protected void loadDynamicData(@SuppressWarnings("unused")

 SectionDynamicData data)

55/109

 {

 }

 //clearly, if this are ever called, it should have an implimentation ...

 protected void loadStaticData(@SuppressWarnings("unused")

 SectionStaticData data)

 {

 }

 /**

 * By default this acts as the identity, pulling a single sequence and returning it.

 * @param achild The child (with metadata) to get the sequence from.

 * @param runtime The runtime you are running under.

 * @return A sequence to return.

 */

 protected IProblemSequence getSequenceFromChild(RuntimeLogger logger, List<Long> path,

AnnotatedChildSection achild) {

 return achild.getSection().getNextSequence(logger, path);

 }

 /**

 * A function so that sections can mark themselves as explicitely done.

 * By default always not finished to utilitise normal implicite finished only.

 *

 * @return Truth of our not-yet-finished-ness.

 */

 protected boolean notFinished() {

 return true;

 }

 public IProblemSequence getNextSequence(RuntimeLogger logger, List<Long> path) {

 while(notFinished()) {

 if(mChildren.size()<=mIndex)

 return null;

 List<Long> subPath = new ArrayList<Long>(path);

 subPath.add(mID);

 IProblemSequence seq = getSequenceFromChild(logger, subPath,

mChildren.get(mIndex));

 if(null!=seq)

 return seq;

 else

 mIndex++; //Try the next child -- just loop around.

 }

 return null;

 }

}

56/109

ProblemSection

package org.assistment.core.section;

import static org.assistment.apps.utils.FLog.log;

import java.util.List;

import java.util.Map;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.framework.TypedValue.LongValue;

import org.assistment.runtime.logging.RuntimeLogger;

/**

 * This section holds a single problem ID and returns it when requested. it is

 * responcible for this sole ID and nothing more.

 *

 * State 0 (not yet used) | v State 1 (Problem returned) |

 * +-----------------------+ | | V V State 2 (Problem right) State 3 (Problem

 * Wrong)

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public class ProblemSection implements ISection {

 long mID; // This is who we are.

 int mState; // This is deterministic state machine, this says where we are.

 long mProblemID; // Who we represent.

 public ProblemSection(long id, long pid) {

 mID = id;

 mState = 0;

 mProblemID = pid;

 }

 public ProblemSection(long id, Map<String, ITypedValue> props,

 @SuppressWarnings("unused")

 List<AnnotatedChildSection> k) {

 mID = id;

 mState = 0; // start out nowhere.

 if (null != props.get("ProblemID"))

 mProblemID = ((LongValue) props.get("ProblemID")).getLong();

 else {

 log(ProblemSection.class.getName(),

 "A ProblemSection did not have a problem id!!!");

57/109

 mState = 1; // Unknown result state.

 }

 }

 public void saveStaticData(Map<Long, SectionStaticData> SDM) {

 // empty methiod, never has children and never has static data.

 }

 public void saveDynamicData(Map<Long, SectionDynamicData> DDM) {

 SectionDynamicData SDD = new SectionDynamicData();

 SDD.setIndex(mState);

 DDM.put(mID, SDD);

 }

 public void loadData(Map<Long, SectionStaticData> SDM,

 Map<Long, SectionDynamicData> DDM) {

 if (null != DDM.get(mID))

 mState = DDM.get(mID).getIndex();

 else

 mState = 0;

 }

 public IProblemSequence getNextSequence(RuntimeLogger logger,

 List<Long> path) {

 path.add(mID);

 if (0 == mState) {

 mState = 1;

 IProblemSequence ps = new ProblemSequence(mProblemID);

 logger.logSequenceCreation(path, ps);

 return ps;

 } else

 return null;

 }

 public SectionType getType() {

 return SectionType.PROBLEM;

 }

}

LinearSection

package org.assistment.core.section;

import java.util.List;

import java.util.Map;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.ITypedValue;

58/109

/**

 * A LinearSection returns sequences as they are gotten from the children,

 * iterating in order over the children.

 *

 * Jun 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public class LinearSection extends BasicSection {

 public LinearSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 mIndex = 0;

 mID = id;

 mProperties = p;

 mChildren = k;

 }

 @Override

 protected SectionDynamicData getDynamicData() {

 SectionDynamicData data = new SectionDynamicData();

 data.setIndex(mIndex);

 return data;

 }

 @Override

 protected void loadDynamicData(SectionDynamicData data) {

 mIndex = data.getIndex();

 }

 public SectionType getType() {

 return SectionType.LINEAR;

 }

}

RandomOrderSection

package org.assistment.core.section;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import java.util.Random;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.framework.TypedValue.IntValue;

59/109

/**

 * A RandomOrderSection returns sequences as they are gotten from the children,

 * iterating in over the children in a random order.

 *

 * Jan 2006 rewrite.

 *

 * @author Derek Radtke davean@wpi.edu, if I've left WPI try

 * davean@isomerica.net or davean@sciesnet.net

 */

public class RandomOrderSection extends BasicSection {

 private int mSeed;

 public RandomOrderSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 mIndex = 0;

 mID = id;

 mProperties = p;

 mChildren = k;

 }

 @Override

 protected SectionStaticData getStaticData() {

 // Generate our static data.

 mSeed = new Random().nextInt();

 reorder();

 // Save it.

 SectionStaticData sd = new SectionStaticData();

 IntValue p = new IntValue();

 p.setInt(mSeed);

 sd.setProperty("Seed", p);

 return sd;

 }

 @Override

 protected void loadStaticData(SectionStaticData data) {

 // Get our seed back.

 mSeed = ((IntValue) data.mProperties.get("Seed")).getInt();

 // Repermute our order.

 reorder();

 }

 @Override

 protected SectionDynamicData getDynamicData() {

 SectionDynamicData dd = new SectionDynamicData();

60/109

 dd.setIndex(mIndex);

 return dd;

 }

 @Override

 protected void loadDynamicData(SectionDynamicData data) {

 mIndex = data.getIndex();

 }

 /**

 * Reorders the section by the class seed.

 */

 private void reorder() {

 Random random;

 List<AnnotatedChildSection> tmp;

 int index;

 random = new Random(mSeed);

 tmp = mChildren;

 mChildren = new ArrayList<AnnotatedChildSection>();

 while (tmp.size() > 0) {

 index = random.nextInt(tmp.size());

 mChildren.add(tmp.remove(index));

 }

 }

 public SectionType getType() {

 return SectionType.RANDOMORDER;

 }

}

RandomIteratorSection

package org.assistment.core.section;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import java.util.Random;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.BoolValue;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.framework.TypedValue.IntValue;

import org.assistment.framework.TypedValue.RandomValue;

61/109

import org.assistment.runtime.logging.RuntimeLogger;

public class RandomIteratorSection extends BasicSection {

 private boolean mCompleted;

 private Random mRand;

 private int mMaxNumber;

 public RandomIteratorSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 mRand = new Random();

 mCompleted = false;

 mID = id;

 mProperties = p;

 mChildren = k;

 // Find the largest value in the children

 mMaxNumber = -1;

 for (AnnotatedChildSection section : mChildren) {

 IntValue v = (IntValue) section.getProperty("FromWhenBelow");

 if (null == v || null == v.getInt()) {

 continue;

 }

 int number = v.getInt();

 if (mMaxNumber < number) {

 mMaxNumber = number;

 }

 }

 if (mMaxNumber <= 0) {

 // No numbers assigned, assume all the same

 mMaxNumber = mChildren.size();

 // Assign temp values in memory so that there is no special case

 // behavior

 int count = 1;

 for (AnnotatedChildSection section : mChildren) {

 section.setProperty("FromWhenBelow", new IntValue(count));

 count++;

 }

 mMaxNumber = count - 1; // Fill in what our highest number is now

 }

 }

 /*

62/109

 * Choose a random number, go through sections untill you are less then the

 * number it mentions. If we try to pull from an EndIfEmpty section, and it

 * returns null, we are finished.

 */

 @Override

 public IProblemSequence getNextSequence(RuntimeLogger logger,

 List<Long> path) {

 while (notFinished()) {

 int trialNumber = mRand.nextInt(mMaxNumber);

 // We are looking for the first section with a number higher then

 // the one we choose

 for (Iterator<AnnotatedChildSection> iter = mChildren.iterator(); iter

 .hasNext();) {

 AnnotatedChildSection section = iter.next();

 IntValue whenBelow = (IntValue) section

 .getProperty("FromWhenBelow");

 if (null == whenBelow || null == whenBelow.getInt()) {

 iter.remove();

 continue;

 } // bad curriculum builder!

 if (trialNumber < whenBelow.getInt()) {

 List<Long> subPath = new ArrayList<Long>(path);

 subPath.add(mID);

 IProblemSequence seq = getSequenceFromChild(logger,

 subPath, section);

 if (null != seq) {

 return seq;

 } else {

 // Does this mean we are done?

 BoolValue val = (BoolValue) section

 .getProperty("TerminateOnEmpty");

 if (null != val && null != val.getBool()

 && true == val.getbool()) {

 mCompleted = true;

 }

 // One way or another remove it, we don't want to see it

 // again.

 iter.remove();

 break;

 }

 }

 }

 }

63/109

 return null;

 }

 @Override

 protected boolean notFinished() {

 return !(mCompleted || mChildren.isEmpty());

 }

 @Override

 protected SectionDynamicData getDynamicData() {

 SectionDynamicData data = new SectionDynamicData();

 data.setProperty("RandomObject", new RandomValue(mRand));

 data.setProperty("Completed", new BoolValue(mCompleted));

 return data;

 }

 @Override

 protected void loadDynamicData(SectionDynamicData data) {

 BoolValue compVal = (BoolValue) data.mProperties.get("Completed");

 if (null == compVal) {

 mCompleted = false;

 } else {

 mCompleted = compVal.getbool();

 }

 RandomValue randVal = (RandomValue) data.mProperties

 .get("RandomObject");

 if (null != randVal && randVal.getRandom() != null) {

 mRand = randVal.getRandom();

 }

 }

 public SectionType getType() {

 return SectionType.RANDOMITERATOR;

 }

}

GroupNItemsSection

package org.assistment.core.section;

import java.util.List;

import java.util.Map;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.BoolValue;

import org.assistment.framework.TypedValue.ITypedValue;

64/109

import org.assistment.framework.TypedValue.IntValue;

import org.assistment.runtime.logging.RuntimeLogger;

/**

 * GroupNItems takes

 */

public class GroupNItemsSection extends BasicSection {

 private int mNumToCombine;

 private boolean mDiscardRunts;

 public GroupNItemsSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 mIndex = 0;

 mID = id;

 mProperties = p;

 mChildren = k;

 BoolValue runts = (BoolValue) mProperties.get("DiscardRunts");

 if (null != runts && null != runts.getBool()) {

 mDiscardRunts = runts.getBool();

 } else {

 mDiscardRunts = true;

 }

 IntValue nc = (IntValue) mProperties.get("NumToCombine");

 if (null != nc && null != nc.getInt()) {

 mNumToCombine = nc.getInt();

 } else {

 mNumToCombine = 1;

 }

 }

 @Override

 protected IProblemSequence getSequenceFromChild(RuntimeLogger logger,

 List<Long> path, AnnotatedChildSection achild) {

 IProblemSequence ps = new ProblemSequence();

 for (int bundled = 0; bundled < mNumToCombine; bundled++) {

 IProblemSequence newPS = achild.getSection().getNextSequence(

 logger, path);

 if (null == newPS) {

 if (mDiscardRunts || ps.isEmpty()) { // We don't care or it

 // doesn't really have

 // anything

 return null;

 } else {

 logger.logSequenceCreation(path, ps);

 return ps;

65/109

 }

 }

 ps.appendSequence(newPS);

 }

 logger.logSequenceCreation(path, ps);

 return ps;

 }

 protected SectionDynamicData getDynamicData() {

 SectionDynamicData data = new SectionDynamicData();

 data.setIndex(mIndex);

 return data;

 }

 @Override

 protected void loadDynamicData(SectionDynamicData data) {

 mIndex = data.getIndex();

 }

 public SectionType getType() {

 return SectionType.GROUP_N_ITEMS;

 }

}

ChooseOneSection

package org.assistment.core.section;

import java.util.List;

import java.util.Map;

import java.util.Random;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.framework.TypedValue.IntValue;

import org.assistment.runtime.logging.RuntimeLogger;

public class ChooseOneSection extends BasicSection {

 @Override

 protected SectionStaticData getStaticData() {

 mIndex = new Random().nextInt(mChildren.size());

 SectionStaticData sd = new SectionStaticData();

 IntValue p = new IntValue();

 p.setInt(mIndex);

 sd.setProperty("WhichChild", p);

66/109

 return sd;

 }

 @Override

 protected void loadStaticData(SectionStaticData data) {

 mIndex = ((IntValue) data.getProperty("WhichChild")).getInt();

 }

 public ChooseOneSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 mIndex = -1;

 mID = id;

 mProperties = p;

 mChildren = k;

 }

 @Override

 public IProblemSequence getNextSequence(RuntimeLogger logger,

 List<Long> path) {

 path.add(mID);

 return getSequenceFromChild(logger, path, mChildren.get(mIndex));

 }

 public SectionType getType() {

 return SectionType.CHOOSEONE;

 }

}

ConstraintNumeric

package org.assistment.core.section;

import java.util.List;

import java.util.Map;

import org.assistment.core.utils.SectionUtils.SectionType;

import org.assistment.framework.TypedValue.ITypedValue;

import org.assistment.framework.TypedValue.IntValue;

import org.assistment.runtime.logging.RuntimeLogger;

public class ConstraintNumericSection extends BasicSection {

 private int mNumSentOn;

 private int mNumToSendOn;

 public ConstraintNumericSection(long id, Map<String, ITypedValue> p,

 List<AnnotatedChildSection> k) {

 IntValue ntso = (IntValue) p.get("NumberToSendOn");

67/109

 if (null != ntso) {

 mNumToSendOn = ntso.getInt();

 } else {

 mNumToSendOn = 0;

 // TODO: LOG THIS.

 }

 mNumSentOn = 0;

 mIndex = 0;

 mID = id;

 mProperties = p;

 mChildren = k;

 }

 public SectionType getType() {

 return SectionType.CONSTRANT_NUMERIC;

 }

 @Override

 protected SectionDynamicData getDynamicData() {

 SectionDynamicData data = new SectionDynamicData();

 data.setIndex(mIndex);

 data.setProperty("NumSentOn", new IntValue(mNumSentOn));

 return data;

 }

 @Override

 protected void loadDynamicData(SectionDynamicData data) {

 mIndex = data.getIndex();

 IntValue nso = (IntValue) data.getProperty("NumSentOn");

 if (null == nso) {

 mNumSentOn = 0;

 // TODO: Log this!

 } else {

 mNumSentOn = nso.getInt();

 }

 }

 @Override

 protected IProblemSequence getSequenceFromChild(RuntimeLogger logger,

 List<Long> path, AnnotatedChildSection achild) {

 IProblemSequence ps = achild.getSection().getNextSequence(logger, path);

 if (null != ps) {

 mNumSentOn++;

 }

 return ps;

 }

68/109

 @Override

 protected boolean notFinished() {

 return (mNumToSendOn > mNumSentOn);

 }

}

69/109

Appendix C – Ruby Implimentation

assistment_sequence

A class to store a heiercal sequence of Assistments and

optional metadata associated with each assistment.

This only gets saved into serialized data.

class AssistmentSequence

 attr_reader :sequence

 attr_writer :sequence

 def initialize(id=nil, meta={})

 @sequence = []

 if(id.class == Fixnum)

 @sequence.push({ "id"=>id, "meta"=>meta })

 elsif(id.class == AssistmentSequence)

 @sequence.push(id)

 elsif(id.nil?)

 #done

 else

 raise "Unhandled type in initialize (" << id.class.to_s << ")."

 end

 end

 # ---

 # Concatiante vs. Append gets horribly pedantic with definitions.

 # Tries to follow Ruby "Array" usage of the words.

 # ---

 # Takes the other sequence and attaches it sequenctialy making one

 # longer sequence both at the same level.

 # [a, b] concat [c, d] -> [a, b, c, d]

 def concatinate(addition)

 if(addition.class == Numeric or addition.class == Fixnum)

 addition = AssistmentSequence.new(addition)

 elsif(addition.class == AssistmentSequence)

 # already in correct form

 else

 raise "Problem appending unknown type to AssistmentSequence (" << addition.class.to_s << ")."

 end

 addition.sequence.each { |s| @sequence << s }

 return self

 end

 #Takes the sequence and adds it inside

 #[a, b] append [c, d] -> [a, b, [c, d]]

70/109

 def append(addition)

 if(addition.class == Numeric or addition.class == Fixnum)

 addition = AssistmentSequence.new(addition)

 elsif(addition.class == AssistmentSequence)

 # already in correct form

 else

 raise "Problem appending unknown type to AssistmentSequence (" << addition.class.to_s << ")."

 end

 @sequence << addition

 return self

 end

 # Takes this sequence and the other and makes them both sequenctial sequences in another

sequence.

 # [a, b] join [c, d] -> [[a, b], [c, d]]

 def join(second)

 if(second.class == Numeric)

 second = AssistmentSequence.new(second)

 elsif(second.class == AssistmentSequence)

 #already in correct form

 else

 raise "Problem appending unknown type to AssistmentSequence."

 end

 first = AssistmentSequence.new

 first.sequence = @sequence

 @sequence = []

 @sequence.push(first)

 @sequence.push(second)

 return self

 end

 def peak()

 if(0==@sequence.length)

 return nil

 elsif(@sequence[0].class == Hash)

 data = @sequence[0]

 id = data['id']

 return [id, data]

 elsif(@sequence[0].class == AssistmentSequence)

 id_t = @sequence[0].peak

 return id_t

 end

 end

 def pop()

 if(0 == @sequence.length)

 return nil

 elsif(@sequence.first.class == Hash)

 data = @sequence.shift

 id = data['id']

71/109

 return [id, data]

 elsif(@sequence.first.class == AssistmentSequence)

 id_t = @sequence.first.pop

 if(0 == @sequence.first.size)

 @sequence.shift

 end

 return id_t

 end

 end

 def to_s

 str = "("

 first_pass = true

 @sequence.each do |s|

 if(not first_pass)

 str << ", "

 else

 first_pass = false

 end

 if(s.class == Hash)

 str << '{' << s['id'].to_s << '}'

 elsif(s.class == AssistmentSequence)

 str << s.to_s

 else

 raise "Error!"

 end

 end

 str << ")"

 end

 # Returns how many subsequences there are.

 def size()

 return @sequence.length

 end

 # Counts the number of assistments in the sequence, the 'run length' of it.

 def length()

 count = 0

 @sequence.each do |s|

 if(s.class == Hash)

 # hashs contain only one Assistment

 count += 1

 elsif(s.class == AssistmentSequence)

 count += s.length

 else

 raise "Problem with an AssistmentSequence, bad type in array (" << s.class.to_s << ")."

 end

72/109

 end

 return count

 end

end

sequence
class Sequence < ActiveRecord::Base

 has_many :sections, :dependent => :destroy, :foreign_key => 'sequence_id'

 has_many :progresses, :dependent => :destroy

 belongs_to :base_section, :class_name => "Section", :foreign_key => 'head_section_id'

 attr_reader :created_at

 attr_reader :updated_at

 # Creates a progress for this student associated with the sequence

 # and returns is

 def initProgress(student)

 # TODO: Start create, crash, restart invalid. should have a "finished init" flag? Better yet, a

proper transaction

 progress = Progress.new(:student_id => student.id, :sequence_id => self.id).set_defaults

 begin

 self.base_section.initProgress(progress)

 rescue SystemStackError # no sensical result, we are DONE here.

 problem_id = nil

 end

 # Not saving here since it will be saved as soon as it is something more then just a blank

progress.

 return progress

 end

 def progress(student)

 return student.progresses.find(:first, :conditions => ["sequence_id=?", self.id])

 end

 def nextProblem(student)

 progress = self.progress student

 if progress.nil? # no progress yet; initialize it.

 progress = self.initProgress(student)

 end

 # We have a progress here! And it is ready to use.

 # Get our sequence, ether from progress or get a new one

 if progress.state[:sequence]['sequence'].nil?

 begin

 sequence = self.base_section.nextSequence(progress)

73/109

 rescue SystemStackError

 # no sensical result, we are DONE here.

 problem_id = nil

 progress.is_done = true

 end

 else

 sequence = progress.state[:sequence]['sequence']

 end

 # Figure out what our next problem is

 unless sequence.nil?

 problem_id = sequence.pop

 else

 problem_id = nil

 progress.is_done = true

 end

 # Store our sequence if it has anything left in it so we can reuse it.

 if(sequence.nil? or 0 == sequence.length)

 progress.state[:sequence]['sequence'] = nil

 else

 progress.state[:sequence]['sequence'] = sequence

 end

 # We have now changed state, save this to the database.

 # Throw an exception on save failure as we want to state in the same state if we can't record

the change

 progress.save!

 return problem_id

 end

end

class Sequence < ActiveRecord::Base

 include SequenceBuilderUtils

end

section
class Progress < ActiveRecord::Base

 belongs_to :sequence

 belongs_to :student

 # A hash of SectionIDs to a hash of strings to types

 serialize :state

 validates_presence_of :sequence_id, :student_id

74/109

 def set_defaults

 self.is_done = false

 self.state = Hash.new

 self.state[:section] = Hash.new

 self.state[:sequence] = Hash.new

 self.state[:answer_history] = Hash.new # ProblemID => bool(correct)

 self

 end

end

section_link
class SectionLink < ActiveRecord::Base

 # this is here so that children have a predictable ordering

 acts_as_list :scope => :parent

 belongs_to :parent_section, :class_name => "Section", :foreign_key => 'parent_id'

 belongs_to :child_section, :class_name => "Section", :foreign_key => 'child_id'

 serialize :parameters

 before_create :set_defaults

 def after_find

 if self.parameters.nil?

 self.parameters = Hash.new

 end

 end

 private

 def set_defaults

 if self.parameters.nil?

 self.parameters = Hash.new

 end

 return true

 end

end

progress
class Progress < ActiveRecord::Base

 belongs_to :sequence

 belongs_to :student

75/109

 # A hash of SectionIDs to a hash of strings to types

 serialize :state

 validates_presence_of :sequence_id, :student_id

 def set_defaults

 self.is_done = false

 self.state = Hash.new

 self.state[:section] = Hash.new

 self.state[:sequence] = Hash.new

 self.state[:answer_history] = Hash.new # ProblemID => bool(correct)

 self

 end

end

problem_section
This section type stores the actual referance to an assistment.

It returns the assistment only once, and on subsiquent requests,

returns that it is empty.

Use this section type to include each assistment into a sequence.

class ProblemSection < Section

 SECTION_VARIABLES = {

 "AssistmentID" => {

 :display_name=>"Assistment",

 :widget=>"numeric",

 :default=>nil,

 :description=>"The ID number of the assistment that this section represents."

 },

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = true

 def name()

 return assistment.name

 end

 def assistment

 Assistment.find(self.getParam('AssistmentID'))

 end

 def initProgress(progress)

 super progress

 progress.state[:section][self.id]['Used']=false

76/109

 end

 def nextSequence(progress)

 if(!progress.state[:section][self.id]['Used'])

 progress.state[:section][self.id]['Used']=true

 return AssistmentSequence.new(self.getParam('AssistmentID'))

 else

 return nil

 end

 end

end

linear_section
Returns problems from each child in order, only moving on

when the current child reports it is finished.

class LinearSection < Section

 SECTION_VARIABLES = {

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::GetDirectFromChild

 include SectionMixin::IterateLinear

end

random_iterate_section
Randomly reselects which unfinished child section to pull the next sequence from each time.

class RandomIterateSection < Section

 SECTION_VARIABLES = {

 }

 LINK_VARIABLES = {

 "Weight" => {

 :display_name=>"Weight",

 :widget=>"numeric",

 :default=>1,

 :description=>"The weight to give this child section when selecting which section to use.

Each child has a probability of (its weight/total weights)."

 },

 # Todo: Write test.

 "TermOnEmpty" => {

 :display_name=>"Finish when Finished",

 :widget=>"checkbox",

77/109

 :default=>false,

 :description=>"If when this child section is empty the parent section should finish or, if

false, continue with other sections that have problems remaining."

 },

 }

 IS_LEAF = false

 include SectionMixin::GetDirectFromChild

 include SectionMixin::IterateRandomIter

end

random_child_order_section

Pulls a complete set of problems from each child,

but when a child reports empty (and when selecting the first child)

make a random choice of which previously unused child to pull from.

class RandomChildOrderSection < Section

 SECTION_VARIABLES = {

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::GetDirectFromChild

 include SectionMixin::IterateRandomNoRepeat

end

choose_one_condition_section

Randomly selects one child from to pull Assistments from and only pulls from that one.

class ChooseConditionSection < Section

 SECTION_VARIABLES = {

 }

 LINK_VARIABLES = {

 "Weight" => {

 :display_name=>"Weight",

 :widget=>"numeric",

 :default=>1,

 :description=>"The weight to give this child section when selecting which section to choose.

Each child has a probability of (its weight/total weights)."

 },

 }

 IS_LEAF = false

78/109

 include SectionMixin::GetDirectFromChild

 include SectionMixin::IterateChooseCondition

end

no_repeats_section

Section generaly acts like linear except dups are squashed and forgotten about.

class NoRepeatsSection < Section

 SECTION_VARIABLES = {

 #TODO: Impliment AllowRedo

 "AllowRedo" => {

 :display_name=>"Redo Wrong Assistments",

 :widget=>"checkbox",

 :default=>true,

 :description=>"Only suppress duplicate assistments that the student answered correctly."

 },

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::IterateLinear

 def getSequenceFromChild(progress, child)

 begin

 sequence = child.nextSequence(progress)

 if(sequence and !progress.state[:section][self.id]['returned'][sequence.to_s])

 progress.state[:section][self.id]['returned'][sequence.to_s]=true;

 return sequence

 end

 end until sequence.nil?

 return nil

 end

 def initProgress(progress)

 super progress

 # want the hash to default to returnign false because if then the trueth of

 # and element is if we sent it before.

 progress.state[:section][self.id]['returned']= Hash.new(anObject=false)

 end

end

numeric_limit_section

Acts linear, but only returns a specified number of problems from

all it's children combined.

79/109

class NumericLimitSection < Section

 SECTION_VARIABLES = {

 "NumToDisplay" =>{

 :display_name=>"Number of Assistments",

 :widget=>"numeric",

 :default=>0,

 :description=>"The number of sequences or assistments to send up through this section."

 },

 #TODO: Write a test for this

 "CountAssistments" => {

 :display_name=>"Count Assistments",

 :widget=>"checkbox",

 :default=>false,

 :description=>"Wether this section looks inside sequences and coutns the assistments

themselves or just counts the sequences."

 },

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::IterateLinear

 def getSequenceFromChild(progress, child)

 sequence = child.nextSequence(progress)

 if(nil!=sequence and

 progress.state[:section][self.id]['returned'] < self.getParam("NumToDisplay"))

 if(self.getParam("CountAssistments"))

 progress.state[:section][self.id]['returned'] += sequence.length;

 else

 progress.state[:section][self.id]['returned'] += 1;

 end

 return sequence

 else

 return nil

 end

 end

 def initProgress(progress)

 super progress

 progress.state[:section][self.id]['returned']=0

 end

end

80/109

temporal_limit_section

class TemporalLimitSection < Section

 SECTION_VARIABLES = {

 "SecondsToAllow" => {

 :display_name=>"Seconds to allow",

 :widget=>"numeric",

 :default=>0,

 :description=>"The number of Seconds to allow assistments to be pulled from this sectionb

once testing starts."

 },

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::IterateLinear

 def getSequenceFromChild(progress, child)

 if(!progress.state[:section][self.id]['start_seconds'])

 progress.state[:section][self.id]['start_seconds'] = Time.new.to_i

 end

 if((progress.state[:section][self.id]['start_seconds']+self.getParam("SecondsToAllow")) >

Time.new.to_i)

 return child.nextSequence(progress)

 else

 return nil

 end

 end

end

cat_three_p_term_confidence

class CatThreePTermConfidenceSection < Section

 SECTION_VARIABLES = {

 "TargetCAT3P" => {

 :display_name=>"CAT3P Section",

 :widget=>"numeric",

 :default=>0,

 :description=>"The section ID of the CAT test to work of of."

 },

 "DesiredSE" => {

 :display_name=>"Terminal Standard Error",

 :widget=>"numeric",

 :default=>0,

 :description=>"The standard error we need to get under to terminate."

81/109

 }

 }

 LINK_VARIABLES = {

 }

 IS_LEAF = false

 include SectionMixin::GetDirectFromChild

 include SectionMixin::IterateLinear

 def terminate(progress)

 return (self.SE(progress) <= self.getParam("DesiredSE"))

 end

end

cat_three_p_max_information

#Only works on single problem sets

class CatThreePMaxInformationSection < CatSections::CATBaseSection

 SECTION_VARIABLES = {

 }

 LINK_VARIABLES = {

 "a" => {

 :display_name=>"discrimination",

 :widget=>"numeric",

 :default=>0.0,

 :description=>""

 },

 "b" => {

 :display_name=>"difficulty",

 :widget=>"numeric",

 :default=>0.5,

 :description=>""

 },

 "c" => {

 :display_name=>"guessing",

 :widget=>"numeric",

 :default=>0.0,

 :description=>""

 },

 }

 IS_LEAF = false

 include SectionMixin::GetDirectFromChild

 include CatSections::CATPrioritise_IRT3parm

82/109

 include CatSections::CATSelect_best

 def nextSequence(progress)

 #keep trying until we run out

 while(!self.terminate(progress))

 next_index = self.select_next(progress)

 #there was nothing else to offer

 if(nil==next_index)

 return nil

 end

 child = self.child_sections[next_index]

 n = getSequenceFromChild(progress, child)

 if n.nil?

 progress.state[:section][self.id]['done_children'].add(next_index)

 else

 progress.state[:section][self.id]['assigned_problems'][n.peak[0]] = next_index

 return n

 end

 end

 return nil

 end

end

iterate_choose_condition

This mixin selects a single child and only ever pulls from THE CHOOSEN ONE.

module SectionMixin::IterateChooseCondition

 def init_progress_iterate(progress)

 available = []

 # populate with all

 (0..(self.child_sections.size-1)).each { |id|

 # push weight copies in

 (1..self.getLinkParam(id,'Weight')).each{ available.push(id) }

 }

 choosen = available[rand(available.length)]

 progress.state[:section][self.id]['iterater_index']=choosen

 end

 def nextSequence(progress)

 return getSequenceFromChild(progress,

self.child_sections[progress.state[:section][self.id]['iterater_index']])

 end

end

83/109

iterate_random_no_repeate

Makes a random choice of which previously unused child to pull from.

Should the mapping be created each time or stored?

module SectionMixin::IterateRandomNoRepeat

 # the mapping is generated here and stored into the progress

 # only for coding expediance. It would be more efficient to have it generated

 # from a seed each time in the nextSequence probable (untested)

 def init_progress_iterate(progress)

 progress.state[:section][self.id]['iterater_index']=0

 index_list = Array.new

 (1..(self.child_sections.size)).each {|i| index_list << (i-1) }

 mapping = Array.new

 until index_list.empty?

 mapping << index_list[rand(index_list.length)]

 index_list.delete mapping.last

 end

 progress.state[:section][self.id]['iterater_mapping']=mapping

 end

 def nextSequence(progress)

 mapping = progress.state[:section][self.id]['iterater_mapping']

 while(self.child_sections[progress.state[:section][self.id]['iterater_index']])

 # looks up which child to use through the mapping.

 result = getSequenceFromChild(progress,

self.child_sections[mapping[progress.state[:section][self.id]['iterater_index']]])

 if(nil==result)

 # move on if this child is out; ++ doesn't work?

 progress.state[:section][self.id]['iterater_index'] += 1

 else

 return result

 end

 end

 # fall back if we run out of children, then we are out.

 return nil

 end

end

iterate_random_iter

This module chooses each subsiquent sequence from a randomly choosen child.

Some children can be marked such that gets are stopped if that one comes up empty.

(Link variable Weight, TermOnEmpty)

module SectionMixin::IterateRandomIter

 def init_progress_iterate(progress)

 progress.state[:section][self.id]['iterater_done']=false

 progress.state[:section][self.id]['iterater_children_finished']={}

 end

84/109

 def nextSequence(progress)

 # get an array of valid keys (remove the invalidated ones)

 # These are the ones eligable to pull sequences from

 available = []

 # populate with all

 (0..(self.child_sections.size-1)).each { |id|

 # push weight copies in

 (1..self.getLinkParam(id,'Weight')).each{ available.push(id) }

 }

 # remove invalid

 progress.state[:section][self.id]['iterater_children_finished'].keys.each { |k|

 available.delete(k)

 }

 begin

 # die if we are done

 if(progress.state[:section][self.id]['iterater_done'])

 return nil

 else

 # nothing to pull from, finish

 if(0==available.size)

 progress.state[:section][self.id]['iterater_done'] = true

 return nil

 end

 # pull

 idx = available[rand(available.length)]

 s = getSequenceFromChild(progress, self.child_sections[idx])

 # did we get one? if not remove this one as a possability

 if(nil==s)

 progress.state[:section][self.id]['iterater_children_finished'][idx] = true

 # remove it from our current consideration

 available.delete(idx)

 if(self.getLinkParam(idx,'TermOnEmpty'))

 progress.state[:section][self.id]['iterater_done'] = true

 return nil

 end

 else

 return s

 end

 end

 # keep trying till we get a conclusive result (a sequence or we are done)

 end while true

 end

end

85/109

iterate_linear

This mixin provides a simple iterator that returns all problems

in the section's children in order from each section sequentialy,

in the order that the child links occure.

module SectionMixin::IterateLinear

 def init_progress_iterate(progress)

 progress.state[:section][self.id]['iterater_index']=0

 end

 def nextSequence(progress)

 while(self.child_sections[progress.state[:section][self.id]['iterater_index']])

 result = getSequenceFromChild(progress,

self.child_sections[progress.state[:section][self.id]['iterater_index']])

 if(nil==result)

 # move on if this child is out; ++ doesn't work?

 progress.state[:section][self.id]['iterater_index'] += 1

 else

 return result

 end

 end

 # fall back if we run out of children, then we are out.

 return nil

 end

end

get_dirrect_from_child

This mixin impliments the simplist method of getting a problem from a child.

It mearly grabs a single problem and returns it dirrectly.

module SectionMixin::GetDirectFromChild

 def getSequenceFromChild(progress, child)

 if self.terminate(progress)

 return nil

 else

 return child.nextSequence(progress)

 end

 end

end

cat_sections

module CatSections

 #Provides hooks for te more complicated CAT sections to ease developement.

 class CATBaseSection < Section

86/109

 def initProgress(progress)

 super progress

 init_progress_prioritise(progress)

 init_progress_select(progress)

 end

 end

 #Developed from http://edres.org/scripts/cat/

 module CATPrioritise_IRT3parm

 def init_progress_prioritise(progress)

 progress.state[:section][self.id]['assigned_problems']= Hash.new

 progress.state[:section][self.id]['done_children']= Set.new

 end

 def sorted(progress)

 #get an array of valid keys (remove the invalidated ones)

 #These are the ones eligable to pull sequences from

 available = []

 #populate with all

 (0..(self.child_sections.size-1)).each { |id|

 available.push(id)

 }

 #remove invalid

 progress.state[:section][self.id]['done_children'].each { |k|

 available.delete(k)

 }

 theta_hat = self.theta_hat(progress)

 available.sort! {|b,a| self.I(a,theta_hat) <=> self.I(b,theta_hat) }

 #print "\nsorted:\n"

 #available.each { |cid|

 # print cid.to_s+": "+self.I(cid,theta_hat).to_s+"\n"

 #}

 #print "\n"

 return available

 end

 def P(i,progress)

 theta = self.theta_hat(progress)

 return self.Pof(i,theta)

 end

 def Pof(i, theta)

 a = self.getLinkParam(i,'a')

 b = self.getLinkParam(i,'b')

 c = self.getLinkParam(i,'c')

 return c + (1-c)/(1+Math.exp(-1.7*a*(theta-b)))

 end

87/109

 def I(i, theta_hat)

 a = self.getLinkParam(i,'a')

 b = self.getLinkParam(i,'b')

 c = self.getLinkParam(i,'c')

 p = self.Pof(i,theta_hat)

 return ((a*a)*((1-p)/p)) * (((p-c)**2)/((1-c)**2))

 end

 #TODO: Replace with analytical solution

 #Uses numerical methods solution ATM due to the desire to avoid errors when writing first

version

 def dPof(i,theta)

 e = 0.0000001

 return (self.Pof(i,theta+e)-self.Pof(i,theta-e))/(2*e)

 end

 def fitness(hat, progress)

 sum = 0

 progress.state[:section][self.id]['assigned_problems'].keys.each { |iOrig|

 i = progress.state[:section][self.id]['assigned_problems'][iOrig]

 #make sure that it was answered

 if(progress.state[:answer_history].has_key?(iOrig))

 if(progress.state[:answer_history][iOrig])

 correctness = 1

 else

 correctness = 0

 end

 sum = sum + ((correctness - self.Pof(i, hat))*(self.dPof(i, hat)/(self.Pof(i,hat)*(1-

self.Pof(i,hat)))))

 end

 }

 return sum

 end

 #Brute force estiamtion is bad. Don't do it.

 def theta_hat(progress)

 #print "Calculating theta_hat\n"

 best_hat = 0

 fit = 99999

 if 0 < progress.state[:section][self.id]['assigned_problems'].length

 hat = -3

 while hat <= 3 do

 val = self.fitness(hat,progress)

 #print hat.to_s+","+val.to_s+"\n"

 if(val.abs < fit)

 best_hat = hat

88/109

 fit = val.abs

 end

 #print "Hat: "+hat.to_s+" sum: "+sum.to_s+"\n"

 hat = hat + 0.01

 end

 end

 #clamp hat to the range (-3, 3)

 return best_hat

 end

 #Standard Error

 def SE(progress)

 irr = 0

 hat = self.theta_hat(progress)

 #Use a set to avoid dups

 Set.new(progress.state[:section][self.id]['assigned_problems'].keys).each { |iOrig|

 #find out what it is in our selves

 i = progress.state[:section][self.id]['assigned_problems'][iOrig]

 #make sure that it was answered

 if(progress.state[:answer_history].has_key?(i))

 #They did part of this test! Let us learn something about them.

 irr = irr + self.I(i,hat)

 end

 }

 #Give a failback that will probably be an unsatisfactory SE if things are undefined.

 if(0==irr)

 irr = 0.001

 end

 se = 1/Math.sqrt(irr)

 return se

 end

 end

 module CATSelect_best

 def init_progress_select(progress)

 end

 #Just return the best one

 def select_next(progress)

 sorted = self.sorted(progress)

 if(0<sorted.length)

 return sorted[0]

89/109

 else

 return nil

 end

 end

 end

end

section_tests

require File.dirname(__FILE__) + '/../test_helper'

def withing_small_margin(a,b)

 e = 0.08

 return ((a+e)>b) && ((a-e)<b)

end

class SectionTest < Test::Unit::TestCase

 fixtures :sections

 fixtures :section_links

 # Replace this with your real tests.

 def test_CheckCRUD

 s = LinearSection.create! :sequence_id => 1

 end

def test_CAT3_proper_estimator

s = sections(:CAT_CV)

print "Start CAT proper\n"

(-3..3).each{ |i|

print "For i="+i.to_s

p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

s.initProgress(p)

while (r = s.nextSequence(p))

assert(1==r.size)

prob = r.pop[0]

if s.Pof(p.state[:section][s.id]['assigned_problems'][prob],1)> 0.50

p.state[:answer_history][prob] = true

else

p.state[:answer_history][prob] = false

end

#print "Theta hat = " + s.theta_hat(p).to_s+"\n"

#print "standard error = " + s.SE(p).to_s+"\n"

end

print " we got "+s.theta_hat(p).to_s+".\n"

assert(withing_small_margin(i,s.theta_hat(p)))

90/109

}

end

 #Sample run: (Target z=0.5)

 # #: responce, estimate, standard error

 # _: _______, 0.5

 # 1: correct, 3.0, 6.0

 # 2: incorrect, -3.0, 1.65

 # 3: correct, 1.06, 1.34

 # 4: incorrect, 0.67, 0.74

 # 5: incorrect, 0.31, 0.48

 # 6: correct, 0.42, 0.37

 # 7: correct, 0.56, 0.30

 #

 def test_CAT3_perfect

 s = sections(:CAT3)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 print "Start CAT perfect\n"

 assert(withing_small_margin(0,s.theta_hat(p)))

 #print s.I(0,0).to_s+"\n"

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 p.state[:answer_history][1] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(3,s.theta_hat(p)))

 #print "standard error = " + s.SE(p).to_s+"\n"

 #assert(withing_small_margin(6,s.SE(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 p.state[:answer_history][2] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(-3,s.theta_hat(p)))

 #print "standard error = " + s.SE(p).to_s+"\n"

 #assert(withing_small_margin(1.65,s.SE(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 p.state[:answer_history][3] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(1.06,s.theta_hat(p)))

 r = s.nextSequence(p)

91/109

 assert(1==r.size)

 assert(4==r.pop[0])

 p.state[:answer_history][4] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.67,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(5==r.pop[0])

 p.state[:answer_history][5] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.31,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(6==r.pop[0])

 p.state[:answer_history][6] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.42,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(7==r.pop[0])

 p.state[:answer_history][7] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.56,s.theta_hat(p)))

 end

 # #: responce, estimate, standard error

 # _: _______, 0.5,

 # 1: correct, 3.0, 6.0

 # 2: incorrect, -3.0, 1.65

 # 3: correct, 1.06, 1.34

 # 4: incorrect, 0.67, 0.74

 # 5: incorrect, 0.31, 0.48

 # 6: incorrect, 0.01, 0.46

 # (8): correct, 0.10, 0.37

 def test_CAT3_deviation

 s = sections(:CAT3)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 print "Start CAT deviation\n"

 assert(withing_small_margin(0,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

92/109

 p.state[:answer_history][1] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(3,s.theta_hat(p)))

 #print "standard error = " + s.SE(p).to_s+"\n"

 #assert(withing_small_margin(6,s.SE(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 p.state[:answer_history][2] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(-3,s.theta_hat(p)))

 #print "standard error = " + s.SE(p).to_s+"\n"

 #assert(withing_small_margin(1.65,s.SE(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 p.state[:answer_history][3] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(1.06,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(4==r.pop[0])

 p.state[:answer_history][4] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.67,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(5==r.pop[0])

 p.state[:answer_history][5] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.31,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(6==r.pop[0])

 p.state[:answer_history][6] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.01,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(8==r.pop[0])

 p.state[:answer_history][8] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(0.10,s.theta_hat(p)))

93/109

 end

 # #: responce, estimate, standard error

 # _: _______, 0.5,

 # 1: incorrect, -3.0, 6.0

 # 3: correct, -1.32, 4.09

 def test_CAT3_early_deviation

 s = sections(:CAT3)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 print "Start CAT early deviation\n"

 assert(withing_small_margin(0,s.theta_hat(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 p.state[:answer_history][1] = false

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(-3,s.theta_hat(p)))

 #print "standard error = " + s.SE(p).to_s+"\n"

 #assert(withing_small_margin(6,s.SE(p)))

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 p.state[:answer_history][3] = true

 print "Theta hat = " + s.theta_hat(p).to_s+"\n"

 assert(withing_small_margin(-1.32,s.theta_hat(p)))

 end

 def test_ProblemSectionDoesNotReturnID

 s = sections(:zero)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(747==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

 def test_ProblemSection

 s = sections(:one)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

94/109

 assert(nil==s.nextSequence(p))

 end

 def test_LinearSection

 s = sections(:Linear1_2_3)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

 #this test runs a random curriculum twice,

 #each time it runs it, it checks that each number

 #came up that was in it

 #and that the curriculum was out after that

 #and that the curriculum returned the right number of assistments.

 #It then, having stored which request each assistment id came up on

 #makes sure that the runs where not identical.

 #

 #Admittedly, there exists no good way to test for randomness.

 #This doesn't even make a good attempt at checkign that something

 #wasn't a fluke, it DOES check that it doesn't repeat.

 #If by chance it does, it doesn't handle that.

 def test_RandomOrderSection

 s = sections(:Random1_to_9)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 run1 = Hash.new

 (1..9).each do |i|

 r = s.nextSequence(p)

 assert(1==r.size)

 run1[r.pop[0]]=i

 end

 assert(nil==run1[0])

 assert(nil!=run1[1])

 assert(nil!=run1[2])

 assert(nil!=run1[3])

 assert(nil!=run1[4])

 assert(nil!=run1[5])

 assert(nil!=run1[6])

 assert(nil!=run1[7])

95/109

 assert(nil!=run1[8])

 assert(nil!=run1[9])

 assert(nil==s.nextSequence(p))

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 run2 = Hash.new

 (1..9).each do |i|

 r = s.nextSequence(p)

 assert(1==r.size)

 run2[r.pop[0]]=i

 end

 assert(nil==run2[0])

 assert(nil!=run2[1])

 assert(nil!=run2[2])

 assert(nil!=run2[3])

 assert(nil!=run2[4])

 assert(nil!=run2[5])

 assert(nil!=run2[6])

 assert(nil!=run2[7])

 assert(nil!=run2[8])

 assert(nil!=run2[9])

 assert(nil==s.nextSequence(p))

 #make sure they differed

 times_not_equal = 0

 (1..9).each do |i|

 if(run1[i]!=run2[i])

 times_not_equal += 1

 end

 end

 assert(0<times_not_equal)

 end

 def test_NoRepeatsSection

 s = sections(:NoRepeat0)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

96/109

 def test_NumericLimitSection

 s = sections(:NumericLimit0)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

 def test_ChooseConditionSection

 s = sections(:ChooseCondition0)

 values = {}

 #make sure it occasionaly chooses all of them

 (0..15).each { |i|

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 values[r.pop[0]] = 1

 assert(nil==s.nextSequence(p))

 }

 (1..3).each { |i|

 assert(1==values[i])

 }

 end

 def test_ChooseConditionSectionWeighted

 s = sections(:ChooseConditionW)

 values = []

 values[1] = 0

 values[2] = 0

 #make sure it occasionaly chooses all of them

 (1..1000).each { |i|

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 values[r.pop[0]] += 1

 assert(nil==s.nextSequence(p))

97/109

 }

 assert((values[1]>50) && (values[1]<150))

 assert((values[2]>850) && (values[2]<950))

 assert(1000==(values[1]+values[2]))

 end

 def test_GroupSequencesSectionPartials

 s = sections(:GroupSequencesFromChildPartials)

 #First make sure it returns everything

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(2==r.length)

 assert(2==r.size)

 assert(1==r.pop[0])

 assert(2==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

 def test_GroupSequencesSectionNoPartials

 s = sections(:GroupSequencesFromChildNoPartials)

 #First make sure it returns everything

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(2==r.length)

 assert(2==r.size)

 assert(1==r.pop[0])

 assert(2==r.pop[0])

 assert(nil==s.nextSequence(p))

 end

 def test_TemporalLimitSection

 s = sections(:TemporalLimit0)

 #First make sure it returns everything

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

98/109

 assert(1==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(3==r.pop[0])

 assert(nil==s.nextSequence(p))

 #Then that it stops after time correctly

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 sleep(1)

 assert(nil==s.nextSequence(p))

 #Then that it always starts

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 sleep(1)

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(1==r.pop[0])

 r = s.nextSequence(p)

 assert(1==r.size)

 assert(2==r.pop[0])

 sleep(1)

 assert(nil==s.nextSequence(p))

 end

 def test_TestGettingOfDefaultParameter

 s = sections(:NumericLimit1)

 p = Progress.new(:student_id => 0, :sequence_id => 0).set_defaults

 s.initProgress(p)

 assert(nil==s.nextSequence(p))

 end

 def test_SectionCreation_ChildForLeaf

 s = ProblemSection.new

 s.extend SectionBuilderUtils

 c = LinearSection.new

 errored = false

 begin

99/109

 s.addChild(c)

 rescue

 errored = true

 end

 assert(errored)

 end

 def test_SectionCreation_ChildForNonLeaf

 s = LinearSection.new

 s.extend SectionBuilderUtils

 c = LinearSection.new

 worked = true

 s.addChild(c)

 assert(worked)

 end

 def test_SectionCreation_SectionParameters

 s = GroupSequencesSection.new

 s.extend SectionBuilderUtils

 failed = false

 begin

 s.parameter("NumberToGroup", 2)

 rescue

 failed = true

 end

 assert(failed)

 worked = true

 begin

 s.parameter("NumToGroup", 2)

 rescue

 print $!,"\n"

 worked = false

 end

 assert(worked)

 end

 #need test for Termiante On Empty

 #Ech! horrible test case!

 #Uses build for performance reasons

 def test_RandomIterSection

 s = sections(:RandomIterNoWeights)

100/109

 counts = Hash.new(0)

 #make sure it has the right items and number of them in a valid sequence

 #500 times means it should hit all the paths

 (1..12000).each { |u|

 p = Progress.new(:state=>{:section => {}})

 s.initProgress(p)

 entries = Hash.new(false)

 entries[1] = true

 entries[2] = true

 entries[3] = true

 entries[4] = true

 entries[5] = true

 seq_rec = ""

 (1..5).each { |i|

 r = s.nextSequence(p)

 assert(nil!=r)

 val = r.pop[0]

 assert(entries[val])

 entries[val]=false

 #There was only one there

 assert(nil==r.pop)

 seq_rec << val.to_s

 }

 assert(nil==s.nextSequence(p))

 counts[seq_rec] += 1

 }

 #make sure they are all within a close range of each other

 counts.each{ |seq,count|

 #so large because the ruby random nubmer generator sucks.

 assert((count>=60) && (count<=140), seq+"("+count.to_s+")")

 }

 end

 #need test for Termiante On Empty

 #Ech! horrible test case!

 #Uses build for performance reasons

 def test_RandomIterSectionWeighted

 s = sections(:RandomIterWeights)

 counts = Hash.new(0)

 #make sure it has the right items and number of them in a valid sequence

101/109

 #500 times means it should hit all the paths

 (1..10000).each { |u|

 p = Progress.new(:state=>{:section => {}})

 s.initProgress(p)

 entries = Hash.new(false)

 entries[1] = true

 entries[2] = true

 entries[3] = true

 entries[4] = true

 entries[5] = true

 seq_rec = ""

 (1..2).each { |i|

 r = s.nextSequence(p)

 assert(nil!=r)

 val = r.pop[0]

 assert(entries[val])

 entries[val]=false

 #There was only one there

 assert(nil==r.pop)

 seq_rec << val.to_s

 }

 assert(nil==s.nextSequence(p))

 counts[seq_rec] += 1

 }

 assert((counts["12"]<1250) && (counts["12"]>750))

 assert((counts["21"]<9250) && (counts["21"]>8750))

 end

end

assistment_sequence_test

require File.dirname(__FILE__) + '/../test_helper'

class AssistmentSequenceTest < Test::Unit::TestCase

 def test_SingleProblemOperation

 s = AssistmentSequence.new(3)

 assert(1==s.size)

 assert(1==s.length)

 assert(3==s.pop[0])

 assert(nil==s.pop)

 end

 def test_concatination

 s0 = AssistmentSequence.new(1)

102/109

 s0.concatinate(AssistmentSequence.new(2))

 s0.concatinate(3)

 assert(3==s0.size)

 assert(3==s0.length)

 s1 = AssistmentSequence.new(4)

 s1.concatinate(AssistmentSequence.new(5))

 s1.concatinate(s0)

 assert(5==s1.size)

 assert(5==s1.length)

 assert(4==s1.pop[0])

 assert(5==s1.pop[0])

 assert(1==s1.pop[0])

 assert(2==s1.pop[0])

 assert(3==s1.pop[0])

 assert(nil==s1.pop)

 end

 def test_append

 s0 = AssistmentSequence.new(1)

 s0.append(AssistmentSequence.new(2))

 s0.append(3)

 assert(3==s0.size)

 assert(3==s0.length)

 s1 = AssistmentSequence.new(4)

 s1.concatinate(AssistmentSequence.new(5))

 s1.append(s0)

 assert(3==s1.size)

 assert(5==s1.length)

 assert(4==s1.pop[0])

 assert(5==s1.pop[0])

 assert(1==s1.pop[0])

 assert(2==s1.pop[0])

 assert(3==s1.pop[0])

 assert(nil==s1.pop)

 end

 def test_join

 s0 = AssistmentSequence.new(1)

 s0.append(AssistmentSequence.new(2))

 s0.append(3)

 s1 = AssistmentSequence.new(4)

103/109

 s1.concatinate(AssistmentSequence.new(5))

 s0.join(s1)

 assert(2==s0.size)

 assert(5==s0.length)

 assert(1==s0.pop[0])

 assert(2==s0.pop[0])

 assert(3==s0.pop[0])

 assert(4==s0.pop[0])

 assert(5==s0.pop[0])

 assert(nil==s0.pop)

 end

 def test_pop

 s = AssistmentSequence.new(AssistmentSequence.new(1))

 assert(1==s.pop[0])

 assert(nil==s.pop)

 end

 def test_length_size

 s =

AssistmentSequence.new(AssistmentSequence.new(AssistmentSequence.new(AssistmentSequence.new(1).conc

atinate(2))))

 assert(2==s.length)

 assert(1==s.size)

 end

end

progress_test

require File.dirname(__FILE__) + '/../test_helper'

class ProgressTest < Test::Unit::TestCase

 fixtures :progresses

 #How sad that this test is the most important one for any of the models?

 def test_CheckCRUD

 p = Progress.create!

 assert(!p.is_done)

 p.is_done = true

 assert(p.is_done)

 p.save!

 id = p.id

 p = Progress.find(id)

 assert(p.is_done)

104/109

 p.destroy

 begin

 p = Progress.find(id)

 assert(false)

 rescue

 assert(true)

 end

 p = Progress.create! :is_done=>true

 p.state[:section][0] = 1

 p.save!

 assert(1 == p.state[:section][0])

 id = p.id

 p = Progress.find(id)

 #print p.to_yaml

 assert(1 == p.state[:section][0])

 end

end

sequence_test

require File.dirname(__FILE__) + '/../test_helper'

class SequenceTest < Test::Unit::TestCase

 fixtures :sequences

 fixtures :sections

 fixtures :progresses

 # Replace this with your real tests.

 #def test_CheckCRUD

 # s = Sequence.new(:name => "Blank Test Sequence")

 #end

 #make sure a curriculum can find it's head problem,

 #generate a progress and get a problem.

 #This is the very basic functionality.

 def test_SimpleSingleSection

 c = sequences(:problem_section_1)

 s = Student.create!

 assert(1==c.nextProblem(s)[0])

 assert(nil==c.nextProblem(s))

 end

 #This tests what happens when a section contains it's self as a child.

 #This is to make sure that if an error DOES occure, the code handles it

 #and doesn't halt the system

def test_SectionLoop

105/109

c = curriculums(:Loop)

assert(nil==c.nextProblem(nil))

end

 def test_SequenceSequenceUsage

 c = sequences(:SequencedCurriculum)

 print c.nextProblem(nil)

 print c.nextProblem(nil)

 print c.nextProblem(nil)

 assert(1==c.nextProblem(nil))

 assert(2==c.nextProblem(nil))

 assert(nil==c.nextProblem(nil))

 end

 def test_SequenceSequenceUsage

 c = sequences(:PrettyCuric0)

 c.extend SequenceBuilderUtils

 #print c.DOTfile

 assert(c.DOTfile ==

 "digraph g {\n"+

 " graph [rankdir = \"LR\"];\n"+

 " node [fontsize = \"16\" shape = \"ellipse\"];\n"+

 " edge [];\n"+

 " section_id_93 [label = \"<fName>Section #93 |<fType>ProblemSection\" shape = \"record\"

];\n"+

 " section_id_94 [label = \"<fName>Section #94 |<fType>NumericLimitSection |<f1>\" shape =

\"record\"];\n"+

 " section_id_90 [label = \"<fName>Section #90 |<fType>LinearSection |<f1> |<f2> |<f3> |<f4>\"

shape = \"record\"];\n"+

 " section_id_91 [label = \"<fName>Section #91 |<fType>ProblemSection\" shape = \"record\"

];\n"+

 " section_id_92 [label = \"<fName>Section #92 |<fType>ProblemSection\" shape = \"record\"

];\n"+

 " section_id_94:f1 -> section_id_92:fName [id = 1];\n"+

 " section_id_90:f1 -> section_id_91:fName [id = 2];\n"+

 " section_id_90:f2 -> section_id_92:fName [id = 3];\n"+

 " section_id_90:f3 -> section_id_94:fName [id = 4];\n"+

 " section_id_90:f4 -> section_id_93:fName [id = 5];\n"+

 "};");

 end

end

106/109

Appendix D – Converter from New Java to Ruby

$LOAD_PATH << File.expand_path(File.dirname(__FILE__) + "/..")

require 'yaml'
require "rexml/document"

project_config = YAML.load_file('../config/project.yml')
require project_config['rails_project']['path'] + '/config/environment'

require 'models/java/curriculum'

def convert_sequence(old_sequence)
 #keep a mapping for conversion the new global ID space
 #Old ones where implicitely indexed, so guarrentied 0->whatever without holes
 old_ids_new_ids = Array.new

 sections = REXML::Document.new old_sequence.obj_xml

 seq = Sequence.new :create_at => old_sequence.creationdate,
 :updated_at => DateTime::now(),
 :name => old_sequence.name,
 :description => old_sequence.description
 seq.id = old_sequence.id

 seq.save!

 sections.elements.each("sections/isection") { |section|
 #print section.to_s + "\n"

 type = section.attributes['type']

 if "Problem" == type
 throw "Unexpected existence of ProblemSection!"
 #nsection = ProblemSection.new :sequence_id=> seq.id,
 # :parameters => {'AssistmentID' => }
 elsif "ChooseOne" == type
 nsection = ChooseConditionSection.create! :sequence_id => seq.id,
 :create_at =>
old_sequence.creationdate
 section.elements.each("TypedProperties/tproperty") { |property|
 print "Section Property: " + property.to_s + "\n"
 }
 elsif "Linear" == type
 nsection = LinearSection.create! :sequence_id => seq.id,
 :create_at => old_sequence.creationdate
 #mind you, "Random" as a type wouldn't have actually compiled right in the old
system
 #so it wasn't usable then ... see id 2567.
 elsif "RandomOrder" == type or "Random" == type
 nsection = RandomChildOrderSection.create! :sequence_id => seq.id,
 :create_at =>
old_sequence.creationdate
 section.elements.each("TypedProperties/tproperty") { |property|
 print "Section Property: " + property.to_s + "\n"

107/109

 }
 elsif "RandomIterator" == type
 nsection = RandomIterateSection.create! :sequence_id => seq.id,
 :create_at => old_sequence.creationdate
 section.elements.each("TypedProperties/tproperty") { |property|
 print "Section Property: " + property.to_s + "\n"
 }
 elsif "ConstraintNumeric" == type
 nsection = NumericLimitSection.create! :sequence_id => seq.id,
 :create_at => old_sequence.creationdate,
 :parameters => {
 "NumToDisplay" =>
section.elements["TypedProperties/tproperty[@name='NumberToSendOn']"].attributes["v
al"].to_i
 }
 section.elements.each("TypedProperties/tproperty") { |property|
 print "Section Property: " + property.to_s + "\n" unless "NumberToSendOn" ==
property.attributes['name']
 }
 elsif "GroupNItems" == type
 nsection = GroupSequencesSection.create! :sequence_id => seq.id,
 :create_at =>
old_sequence.creationdate,
 :parameters => {
 "NumToGroup" =>
section.elements["TypedProperties/tproperty[@name='NumToCombine']"].attributes["val
"].to_i
 #"ThrowAwayPartials"
=>
section.elements["TypedProperties/tproperty[@name='NumToCombine']"].attributes["val
"]
 }
 section.elements.each("TypedProperties/tproperty") { |property|
 print "Section Property: " + property.to_s + "\n" unless "NumToCombine" ==
property.attributes['name']
 }
 else
 throw "Unknown section type!"
 end

 #nsection.save!
 old_ids_new_ids << nsection.id
 }

 index = 0
 sections.elements.each("sections/isection") { |section|
 position = 0
 weight = 0
 section.elements.each("children/child") { |child|
 #print "\n\n\n++++++\n"+child.to_s+"\n++++++\n\n\n"

 #section IDs over 1k are cleary a mistake, they have to be supposed to be
problem IDs, correct
 if "problem" == child.attributes['type'] or child.attributes['id'].to_i > 1000
 #create a new ProblemSection and link to that
 nsection = ProblemSection.create! :sequence_id => seq.id,
 :create_at => old_sequence.creationdate,

108/109

 :parameters => {'AssistmentID' =>
child.attributes['id'].to_i}
 SectionLink.create! :parent_id => old_ids_new_ids[index],
 :child_id => nsection.id,
 :position => position
 elsif "section" == child.attributes['type']
 properties = Hash.new

 child.elements.each("TypedProperties/tproperty") { |property|
 if "TerminateOnEmpty" == property.attributes['name']
 properties['TermOnEmpty'] = unless "False" == property.attributes['val']
then true else false end
 elsif "FromWhenBelow" == property.attributes['name']
 w = property.attributes['val'].to_i
 properties['Weight'] = w - weight
 weight = w
 else
 print "Property: " + property.to_s + "\n"
 end
 }

 SectionLink.create! :parent_id => old_ids_new_ids[index],
 :child_id => old_ids_new_ids[child.attributes['id'].to_i],
 :position => position,
 :parameters => properties
 else
 throw "Unkown child type!"
 end

 position = position + 1
 }
 index = index + 1
 }

 #some old curriculums where flawed in that they contained nothing,
 #this handles that cleanly; they continue to be empty.
 #Since a sequence needs a base section though, jsut hrowing in a borring, empty
one.
 if 0==old_ids_new_ids.length
 nsection = LinearSection.create! :sequence_id => seq.id
 old_ids_new_ids << nsection.id
 end

 seq.base_section = Section.find(old_ids_new_ids[0])
 seq.save!

 #print "Maps: " + old_ids_new_ids.join(",") + "\n"
end

def convert_all_sequences
 old_sequences = JavaProject::Curriculum.find :all#, :conditions=>{ :id => 1 }

 print "There are "+old_sequences.length.to_s+" curriculums to convert.\n"

 old_sequences.each do |old_sequence|
 convert_sequence(old_sequence)
 end

109/109

end

begin
 convert_all_sequences
rescue Exception => e
 puts "Exception: #{e.class}: #{e.message}\n\t#{e.backtrace.join("\n\t")}"
 exit 1
end

