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Abstract

The VIX was introduced in 1993 by the CBOE and has been commonly referred to as the fear gauge due
to decreases in market sentiment leading market participants to purchase protection from declining
asset prices. As market sentiment improves, declines in the VIX are generally observed. In reality the
VIX measures the market’s expectations about future volatility with asset prices either rising or falling in
value. With the VIX gaining popularity in the marketplace a proliferation of derivative products has
emerged allowing investors to trade volatility. In observance of the behavior of the VIX we attempt to
model the derivative VXX as a mean reverting process via the Ornstein-Uhlenbeck stochastic differential
equation. We extend this analysis by calibrating VIX options with observed market prices in order to
extract the market density function. Using these parameters as the diffusion process in our Ornstein-
Uhlenbeck model we derive futures prices on the VIX which serves to value our target derivative VXX.
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1. Introduction:

1.1 Background:

There are several measures of volatility. Simple historical measures of variance and ARCH models have
been around for some time. The VIX, which was developed by the Chicago Board Options Exchange in
1993, is yet another approach and is measured indirectly. In earlier versions the approach calculated
implied volatility via the Black-Scholes model for a range of at-the-money S&P 100 options. Over time a
more robust methodology change occurred replacing the S&P 100 index with the S&P 500 index and
Black-Scholes was replaced with a method employed in the variance swap market.

The volatility index is an annualized measure of the market’s risk-neutral expectation of the Standard
and Poor’s 500 index over a 30 day period. The calculation of the index is a weighted average of both
at-the-money and out-of-the money put options and call options on the S&P500 index which reflects
information about the volatility smile and expected variance over all possible volatility paths. This
contrasts the Black-Scholes approach which measures implied volatility over the most likely price path.
When the VIX is increasing investors’ expectations of a significant move to either the upside or downside
is increasing. One would interpret, for example, a VIX reading of 30 to mean that the market expects a 1

sigma event to equate to an 8.66% (30%/v12) move over the next 30 days in either direction.
1.2 Objective:

VXX is an efficient means of obtaining exposure to the CBOE volatility VIX index and it tracks the S&P
500 VIX Short-Term Futures Total Return Index. This index reflects a daily rolling long of futures
positions in the first and second month VIX futures contracts maintaining a constant 30 day weighted
average.! Itis our purpose to understand and model the dynamics of the volatility derivative VXX.

Investments in equity securities tend to exhibit an asymmetrical return profile with greater downside
risk than upside potential. As such, returns linked to the volatility of the underlying security spike
upwards as investors’ price in deteriorations in fundamentals with a more gradual return as investor
sentiment improves. This suggests a positively skewed return profile associated with volatility
derivatives. Nevertheless, since volatility is not a return generating asset we expect it to fluctuate
around a long-term average and be mean reverting. Typical equity derivatives are modeled as a
Geometric Brownian Motion whose dynamics are a function of a drift term and volatility. We seek a
process that is mean reverting and thus model VXX using the Ornstein-Uhlenbeck process. We begin by
confirming the mean reverting tendency of the VIX and extrapolate this out to value VIX options, which
are simply forward VIX values, and VIX futures which is the basis for valuing our objective process VXX.
Along the way we will implement a risk neutral density parameter estimate as the final approach to
taking the risk neutral expectation of our Ornstein-Uhlenbeck process for valuing futures prices and we
observe this process relative to market prices.

!iPath: The Basics of VIX Futures ENTs
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1.3 Calculation of volatility:

0t = 2o B QK| - £ - 1P 2
Where:

o (fair value of VIX) = 100v0?

T = time to expiration

F = Strike Price + eRT * min(Call Price(i) — Put Price(i))
K, = First strike below the forward index level F

K; = Strike price of i out-of-the-money option; a call if K; > K, and a put if K; < K,; both a put and call if
Ki= KO

AK; = the average of the difference in the strikes

R = Risk-free interest rate

Q(K;) = The midpoint of the bid-ask spread for each option with strike K;
Replicating Portfolio:

VIX is calculated as the square root of the forward price of a strip of SPX options. By formulating the
discrete replicating portfolio we attempt to gain a better understating of this formula. The discrete
replicating portfolio has the following expression:

2= 2 {0 YT+ T00(K — F) g + B (Fr — K0 g} — e = 11

This equation states that total variance is a function of three terms. The first two terms of the equation
reflects a return to a stock index futures contract held to maturity less a dynamic futures component

AK
rebalanced through time. The middle terms are the payoffs to holdlng > puts and calls. The use of

several options is needed to capture the volatility smile, rather than a constant volatility as implied by
the Black-Scholes formula, which emerged followed the stock market crash of 1987. The skew in the
implied volatilities follows from a strong demand for out-of-the money put options in order to protect
against a stock market crash. The last term of this equation is an adjustment for the difference between
the forward price and strike. This term is necessary to account for a strip of options that is not centered
on a strike that is at-the-money. If Fywere equal to K, then this term would drop out.

The value of an option is a function of several variables including interest rates, time to expiry, changes
in the underlying, and changes in volatility. The above equation states that variance is replicated with a
portfolio of options delta-hedged with stock index futures. By delta hedging the options, we are

> CBOE: Volatility Index - VIX
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immunizing the value of our portfolio to changes in the underlying index while leaving us un-hedged to
changes in volatility which is precisely what we want. Therefore, this equation attempts to isolate a
constant exposure to variance.

Taking matters one step further, because 30-day options are typically not available 30, day volatility is
interpolated vis-a-vis two options. The resulting VIX value is a constant 30-day weighted average of the
near-term and back month contract.

=100 ([riot [27a] « ook g} - o

1.4 VIX Futures:

The fair value of VIX futures is the square root of the forward price of expected 30 day variance at
futures expiration minus an adjustment factor which reflects the concavity of the square root function.
Thus, the estimate of the fair value of futures at T, reflects the markets expectation of future volatility
over a 30 day period at expiry. The process of extracting the fair value of the VIX futures via a synthetic
calendar spread is possible because of the linearity of variance.

P(0,60)

[ |

P(0,30) |

Implied Vol.
Fair value of VIX futures = 100 * \/(%) * (eRT2P(0,60) — eRT1P(0,30)) — var(Ft)) [3],[4]
Where:
Ak Ak 1 - F
P = Zert[ZiK—izPut(k) + ZLK—ECCL”(IC)] - ; [K_o - 1]2

This calculation is different than the typical cost of carry model used to price index futures. The reason
being volatility is not an asset, and therefore, you cannot purchase the underlying and hold it to the
maturity of the futures contract. A second distinction is that while the spot VIX represents 30 day
forward volatility, VIX futures represents 30 day volatility at expiry of the contracts which may be higher
or lower than the spot VIX depending on market expectations.

* CBOE: Additional Features of VIX Futures
* CBOE: All About VIX
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2. Performance

2.1 Performance of the VXX relative to VIX:
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The S&P500 VIX Short-Term Futures index (SPVXSTR) is designed to capture an investment in rolling long
a futures contract on the VIX index. The return to the index has two components, an implied return on a
notional amount of cash as measured by a 3-month T-bill and a daily rolling of a long position in a VIX
futures contract. We can see from the chart above that VXX tracks this index precisely concealing the
plot of VXX but it does not track the VIX. We also observe from this chart that the continuous CBOE VIX
futures track the spot VIX with a high degree of correlation.

Exhibit 1: VXX/VIX
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Reviewing the daily returns of VXX we can see that the tradable derivative offers exposure to this index
with a very different return profile to that of the spot VIX index. The ratio of the returns to VXX and a
hypothetical investment in the spot VIX index track each other with great dispersion as shown above. As
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a result of this, VXX captures a fraction of the spot index return. A perfectly correlated tradable
instrument with its index would have a ratio of 1. The scatter plot of the daily VXX returns relative to
the daily spot VIX index returns shows that this is rarely the case.

2.2 Contango/backwardation:
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Contango and backwardation refer to the term structure of the futures curve. In normal market
conditions futures are said to trade in contango which refers to a state in which the futures price
exceeds the spot price. In this scenario the futures prices will converge to the spot at expiry which
implies futures prices are falling. In backwardation the futures price is below the expected spot price. In
this situation it is suggested that the futures price will rise to the expected spot price. This is desirable
for speculators who are net long the contracts.

In the context of VIX futures this has important implications. We observe that the contracts are in
contango in low volatility environments and in backwardation in high volatility environments. In late
2008/2009 the VIX traded at extreme levels and well above the long-term average as the credit crisis
that stemmed from the housing bubble led to significant volatility and depressed asset prices. We
observed during this time that the futures contracts traded in backwardation as we would expect. Prior
to the credit crisis during 2006/2007 we see that the VIX traded at levels that were in-line with the long-
term average. During this volatility regime we can see that the futures contracts traded in contango.
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We also observe in less extreme scenarios that it is typically the case that the term structure of volatility
is steepest at the shortest maturities which the VXX is priced off of resulting in the largest differences.
This lends itself to the roll yield. When the VIX futures term structure is not flat, meaning that the price
difference between the front month and back month contract are different, then the daily rebalancing
can generate its own profit and loss. On each business day VXX rolls a long position in the front month
futures contract and purchases an equal notional amount in the back month contract maintaining a
constant weighted average maturity of 30 days. Prior to expiration of the front month contract VXX will
hold exclusively the back month contract. The following day 1/n (where n refers to the number of
trading days) will be sold and the new back month contract will be purchased. Depending on whether
the contracts are in backwardation or contango each and every day the contracts are rolled will thus
have an impact and pricing of VXX. From the first chart we observe that the cumulative roll yield is
declining thereby suggesting term structure decay and performance loss. This is one of the contributing
factors and difficulties in replicating the spot VIX index. Other factors include continuously changing
option chains and a difference in methodology. The cash index rolls forward 8 days prior to expiration
to avoid anomalies in pricing whereas VXX does not.
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3. Ornstein-Uhlenbeck process
3.1 Definition:

The Ornstein-Uhlenbeck process was developed in the 1930’s in the context of physics as an alternative
to Brownian Motion. As a continuous time stochastic process it satisfies the following properties:

A stochastic process {X;:t = 0} is
e Stationary: V t; <t, < <t,_1 <tpandk>0 (th,'--,th) = (Xt1+k""'th+k)

A stationary process is a stochastic process whose joint probability distribution is identically distributed
and does not change when shifted in time.

[ Gaussian : V tl < tz < < tn—l < tn th"'tk = (th,’”,th)
A finite linear combination of processes is multivariate normally distributed.
e Markovian: V t; <t, < <t,_1 <ty P(Xt1 < x|Xt1,-~,th) = P(th < x|th_1)

A conditional probability that states our function is less than some specified value and is determined by
recent events and not the past.

3.2 Derivation:
The Ornstein-Uhlenbeck process satisfies the following stochastic differential equation.
dx, = 0(u— x,)dt + adw;

An application of the Ito Lemma to f(X;,t) = Xteet yields a process X that satisfies the linear stochastic
differential equation. We have the following:

fe = 9Xt39t fx:eet fex =0

df (Xe t) = fedy + frdX, + frxdX,dX,

df (X, t) = 0X,e%d, + e%dX, +-0 x dX,dX,

df (X.t) = 0f (Xp,t)d, + e%tdX,

Jy df(Xs,8) = 6 [ f(X;,5)ds + [, % dX,

fot df(X,,s) = 6 fOthegsds + fotees[ O(u— Xy)ds + odws]

fot df(Xs,s) = 6 f(szeesds -0 fOtXSeBSds +0 f;ees pds + fotees odwy

>s. Finch, “Ornstein-Uhlenbeck Process”

11| Page



fot df(Xs,s) =6 f;ees pds + fotees odw, where f;ees ds = %(egt —e%0)
Xe% —Xo= pu(1—-e7%)+ fotegs odw

X: = Xoe % + pu(1—e7%) + geb fotegs dwg

3.3 Estimating the parameters of our process:

Mean:

Taking an expectation of this process yields the following.
E[X,] = E[Xoe %] + E[u(1 — e=%)] + E[oe ™% [ €% dw]

Pulling out the constants and expressing the Ito stochastic integral as a Riemann-Stieltjes sum and
recognizing the expectation of a Brownian Motion is zero gives us the following.

E[X,] = Xoe % + p(1—e~%) + 0 [ % « E[S, Bt;_Bt;_,]
E[X.] = Xoe % + u(1 —e%)

For simplicity we will assume that X,starts at zero.

Variance:

Var[X,] = E[X?] — [EX]?

- 2
Var(X,] = E[(Xoe %%)?] — E [(Xoe ™%t + g%t fot efs dw(s)] where p is assumed to be zero.

Var(X.] = E[(Xoe %")?| - E :(Xge‘zet + 2X e 9t ge~0" fotegs dwg + g2e~20¢ fotezgs d(s)]

1 _ 1
1 _ 52 29t_]

Var[X,] = E[(Xoe ®)?] - E (X262t 4 2X e 0t ge 0t fotees dwg + g2e~20t+20¢ ” —~

2
Var[X,] = ;—9 (1—e20t)

3.4 Implementation:

We implement this process regressing spot VIX values on 1-day lagged values. This regression has the
linear relationship X;,1 = a + X;b + €. Associating our linear equation with our stochastic differential
equation from above along with our results of our first and second order moments provides us with the
third and final parameter of our process, theta. Theta represents the decay rate or mean reversion
parameter.

b =e 9

12| Page



Using the slope of our regression result and rearranging terms solves for the desired parameter.

Inb
f=——=
t

3.5 Results:

As one would expect, since volatility in and of itself is not return generating, it exhibits a mean reverting
behavior. Ornstein-Uhlenbeck is such a process and is similar in ways to a Weiner process that has a
central tendency. The more distant x; is from its mean u the larger the drift back towards its central
location. The speed at which this happens is determined by the parameter 8. The chart below shows a
Monte Carlo simulation of five paths forecasting out 30 days. The mean u from this regression was
23.5058 and we can see the attraction of the simulation to tend towards its mean.

Monte Carlo Simulation

50

15 T T T 1
123456

7 8 910111213141516171819202122232425262728293031

Reviewing the results of modeling the VIX in the following charts we can see that the volatility regime
played an important role in determining the window of data one should use in estimating the
parameters. Each simulation ran a rolling window of regressions through time using 30 days, 60 days,
125 days, and 252 days of historical data. The parameters of the regression from each rolling window of
historical data served as the variables into our SDE which recursively calculated subsequent values.
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We can see that the shorter window used in estimating the parameters was more responsive to
increases in volatility but these estimate were also more volatile. 2005 through 2007 was a period of
volatility that persisted below the long term average of 22.39, while 2008 onwards was a regime that
exceeded the long term average for an extended period of time. This suggests some room for
improvement and perhaps exponentially weighting the data instead of equally weighting the date points
may improve our forecast.
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This framework serves as the basis for valuing our options. We use the 30 day rolling window of data to
forecast our VIX values using the dynamics of the Ornstein-Uhlenbeck process which we derived. Using

these values we run a Monte Carlo simulation using 100,000 paths to calculate our theoretical option
prices.

1 — e—20(ti+1—t1)

20

S(tigr) = S(t)e ™ 4 (1 — e 0Cina=t) 4 0\] *Zip1

C(K,T) = e "tE[(S(T) — K)*]
P(K,T) =e"E [(K - S(T))+] (]

On August 21, 2011, for example, the September puts and calls expired in 21 days. Thus, our theoretical
option prices reflect a 21 day forecast of spot VIX. We achieved this by recursively calculating values for
each simulation and then finally by taking an expectation of our terminal values.

® p. Glasserman, “Monte Carlo Methods in Financial Engineering"
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3.6 Option Estimates:

September 11' Call Options
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In this particular instance, the results show that the call option prices are modestly lower than the
market prices while the put prices are seemingly better and slightly higher than market prices.
Reviewing the results of our estimates our mean term was 29.38 as compared to the spot VIX level of
31.62. With a theta of .27 and our forecast of 100,000 simulations we generated an estimate of 25.48.
Due to spot VIX starting above our mean we would expect the simulation to forecast a lower value while
exhibiting some noise around our target value due to the diffusion process.
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4. Estimating the Risk Neutral Density
4.1 Background:

Theoretical constructs of asset pricing provide a framework and starting point for valuing tradable
instruments. Another approach, and the inverse problem, suggests a need to assess market
expectations embedded in these tradable products. Extracting the implied risk-neutral density function
from market option prices provides us with the forward-looking probability distribution on the
underlying fundamental factors. In doing this we reconcile the differences between theoretical model
prices and market expectations.

We accomplish this by employing a methodology proposed by Bahra (1997) [5]. This approach is based
on a weighted average of log-normal densities.

X (Inx—a)?
L(x:a,B) = x;e( zﬁz(lTLx @) ) x>0

212

c,t) = e {w [e"‘l*%ﬁf N(d1) - KN(@2)| + (1 - ) [e“#%ﬁ'zz N(d3) — KN(a4)|}

—InK+a;+B?

Where dy,ds = 5

and dz, d4 = d] - ﬁi

Defining the parameters of our log-normal distribution, alpha and beta, in the following manner we
show that the desired mixture distribution is a weighted average of Black-Scholes formula. We show
this for the call option.

1
a; =lnSt+(ui—50i2)t ,Bl' =O'i\/z
pp— lnSt+(p.L-—lo'i2)t+lai\/?2 lnSt+(ui—iai2)t +ig; £
CK,t)=e w e 2 2""MN(d1) = KN@d2)|+ (1 —w) |e 2 2 """2N(d3) — KN(d4)

C(K,t) = e THaw[eMSFWON(d1) — KN(d2)] + (1 — w)[e™Se+iD) N(d3) — KN(d4)]}
CK,t) = e "Hw[S,eMtN(d1) — KN(d2)] + (1 — w)[S,e*2N(d3) — KN(d4)]}

C(K,t) = {w[SeMtTEN(d1) — Ke "N (d2)] + (1 — w)[S,e2 TN (d3) — Ke "t N(d4)]}
C(K,t) = w[S;N(d1) — Ke "N (d2)] + (1 — w)[S,N(d3) — Ke "t N(d4)]

It is the Black-Scholes formula that serves to identify the theoretical options prices. Having established
these parameters we run a non-linear least squares optimization minimizing the differences between
market prices and our model prices. The non-linear least squares regression has the following
formulation:

n n
, , 1 aptlp? 2
min {Z[Cl —c;(K;, t)]2 + Z[p‘ - p(Ki,t)]2 + [we“”iﬂf + (1 —w)e® 2raf _ e”St] } [7]
i=1 i=1

’ Fusai&Roncoroni: Implementing Models in Quantitative Finance
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Once again substituting alpha and beta into the third term we can see more clearly that this is the
weighted difference between the theoretical forward and forward spot price.

n n
min {Z[ci —¢;(K;, t)]2 + Z[pi - p(K;, 1:)]2 + [w(InS;ef1t + (1 — w)InS,e1t — e™tS,]?
i=1 i=1

We apply this approach to estimating our parameters and we recognize the differences in approach
which underlie a Geometric Brownian Motion and a mean reverting process. Implementing the later, d1
should be modified to the following. We leave pursuit of this for future work.

-1 sy 1 =11 _ p—a(s-T 9% (1 _ o—2a(T—t)
dl—dplog{k}+zap Whereap—a{l e }*JZa{l e }
d2 =d1-g,

4.2 Implementation:

The calculation for VIX options and the VIX are the same; however, the S&P options used to calculate
VIX options correspond to the maturity of the options and they are not the same options used to
calculate the spot VIX. At the maturity of the options, VIX and VIX options should converge since the
options used in both calculations are the same. Since VIX options reflect the market’s expectations
about the VIX level at expiry and volatility is a mean reverting process as we have established we should
expect futures to be lower in elevated periods of volatility and higher in lower periods of volatility. We
observe this in the market prices. On September 30, 2011 VIX futures are 38.6 while the VIX is 42.96.
This suggests that the 30 day volatility of the futures at expiry in 19 days will be lower than the spot VIX
30 day forward volatility forecast. On April 29, 2011, a period of low volatility, VIX futures are 16.7 as
compared to the spot VIX at 14.75. With a long-term mean near 20, this is intuitive.

Date Fut. Mkt. Price Vix

Nov 11' 28.3 27.8
Oct 11' 29.95 29.96
Sept 11' 38.6 42.96
Aug 11' 31.65 31.62
July 11' 21.1 22.25
Jun 11' 17.7 16.52
May 11' 16.55 15.45
Apr11' 16.7 14.75
Mar 11' 19.3 17.74
Feb 11' 19.2 18.35
Jan 11' 19.1 19.53
Dec 10' 19.7 17.75

Option prices were determined from closing month-end values for calendar year 2011. For each month
we calculated theoretical option prices C(i) and P(i) by minimizing the sum of squared differences
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between our market prices and model prices. This optimization was constrained to ensure that our
weights were no greater than 1 and our variances were positive. In addition to calculating our model
prices we also calculated Black-Scholes prices for a base-line comparison. We observe from this
scenario that using a constant volatility across all of the strikes as the Black-Scholes formula implies
shows that the computed value undervalues the out-of-the money call options. Looking at the August
35 strike in section 4.3, for example, shows a computed price of $.45 versus $2.35 market price. If the
underlying for these options were equities we would see that out-of-the money put options would be
undervalued. As discussed earlier, this reflects market participants desire to protect their portfolios
from a market crash. We observe this phenomenon here as well but the relationship is reversed since
the VIX tends to be negatively correlated with equity prices. As such, while it is typical to treat market
returns as log-normally distributed, this is shown to not be the case. Furthermore, while we would
expect our calibrated lognormal mixture density to undervalue out-of-the money call options as well,
the optimization results are an improvement.
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4.3 Results: August 11’

Black-Scholes RN approach Market Price Theoretical Price

Ss r to k dl  d2 dl  d3 Call Put call Put C(i) P(i) al a2 P1 P2 1w Min Diff
31.62 0.02 21 0.50 10.00 9.69 9.57 8.44 3.84 22.1 0 21.63 0.00 21.85 0.00 3.44 3.42 0.14 0.32 0.60 0.06
31.62 0.02 21 0.50 15.00 6.30 6.18 549 2.56 17.1 0 16.64 0.00 16.86 0.01 3.44 3.42 0.14 0.32 0.60 0.06
31.62 0.02 21 0.50 16.00 5.76 5.64 5.02 235 16.1 0 15.64 0.00 15.88 0.02 3.44 3.42 0.14 0.32 0.60 0.05
31.62 0.02 21 0.50 18.00 478 4.66 416 1.98 14.1 0.05 13.64 0.00 13.92 0.06 3.44 3.42 0.14 0.32 0.60 0.03
31.62 0.02 21 0.50 20.00 3.90 3.78 3.40 1.65 11.6 0.03 11.64 0.00 12.00 0.14 3.44 3.42 0.14 0.32 0.60 0.17
31.62 0.02 21 0.50 21.00 349 337 3.04 1.49 11.05 0.05 10.64 0.00 11.07 0.19 3.44 3.42 0.14 0.32 0.60 0.02
31.62 0.02 21 0.50 22.50 291 279 254 1.28 9.4 0.1 9.15 0.00 9.70 0.29 3.44 3.42 0.14 0.32 0.60 0.13
31.62 0.02 21 0.50 24.00 237 225 2.07 1.07 81 0.2 7.66 0.01 839 0.39 3.44 3.42 0.14 0.32 0.60 0.12
31.62 0.02 21 0.50 25.00 203 191 1.78 0.94 6.9 0.28 6.68 0.03 7.55 0.47 3.44 3.42 0.14 0.32 0.60 0.46
31.62 0.02 21 0.50 27.50 124 112 1.08 0.64 54 0.8 436 0.21 564 0.87 3.44 3.42 0.14 0.32 0.60 0.06
31.62 0.02 21 0.50 30.00 0.51 0.39 0.45 0.37 4.3 1.85 244 0.79 4.05 1.92 3.44 3.42 0.14 0.32 0.60 0.07
31.62 0.02 21 0.50 32.50 -0.16 -0.28 -0.13 0.11 3.1 3.2 114 199 284 361 3.44 3.42 0.14 0.32 0.60 0.24
31.62 0.02 21 0.50 35.00 -0.78 -0.90 -0.67 -0.12 2.35 5.16 0.45 3.79 198 5.53 3.44 3.42 0.14 0.32 0.60 0.27
31.62 0.02 21 0.50 37.50 -1.36 -1.48 -1.17 -0.34 1.8 7.7 0.15 598 140 743 3.44 3.42 0.14 0.32 0.60 0.24
31.62 0.02 21 0.50 40.00 -1.90 -2.02 -1.64 -0.54 14 9.2 0.04 837 100 09.38 3.44 3.42 0.14 0.32 0.60 0.20
31.62 0.02 21 0.50 42.50 -2.40 -2.52 -2.08 -0.73 1.05 11.7 0.01 10.84 0.72 11.46 3.44 3.42 0.14 0.32 0.60 0.17
31.62 0.02 21 0.50 45.00 -2.88 -3.00 -2.50 -0.92 0.8 13.6 0.00 13.33 0.52 13.69 3.44 3.42 0.14 0.32 0.60 0.09

sum 2.42

The mean and variances of our lognormal mixture density through time are shown below. These data

points show an increase in our means and variances from December 2010 through November 2011.

During this time the market was flat for the period but quite volatile. On August 2011, when volatility
was the highest, we saw a modest increase in our estimate of volatility.

Date

Nov 11'
Oct 11'
Sept 11"
Aug 11'
July 11'
Jun 11'
May 11'
Apr 11
Mar 11'
Feb 11'
Jan 11'
Dec 10'

4.04
3.37
3.76
3.44
2.87
2.80
2.74
2.71
291
2.92
2.97
2.89

3.42
3.37
3.72
3.42
3.07
2.98
2.79
2.79
2.93
2.93
2.95
2.97

B
0.95
0.26
0.00
0.14
0.69
0.08
0.00
0.00
0.07
0.07
0.04
0.00

B,
0.20
0.24
0.27
0.32
0.26
0.29
0.17
0.20
0.20
0.19
0.21
0.21

1-w
0.99
0.94
0.88
0.60
0.93
0.28
0.99
1.00
1.00
1.00
1.00
1.00
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Having established the parameters of our lognormal distribution we are now able to replace the
Brownian Motion that was driving our OU process with samples from our lognormal distribution. These
samples will have the desired mean and variances we calculated above. We do this by taking our
standard random normal with a mean of 0 and variance of 1 which has the form z = % and we

express it in the form of an exponent x = e#*9%, Solving for our sample variable from the lognormal
distribution we have the following:

2 2 2
a = ekye° B =ee? (7 —1)
Mean:
2 In(a?)-o?
aZ — eZueo , — ( )
2
Variance:
2 2 2 2 2
B = e2u+at+a® _ p2uta® B =a%’ —a? , ﬁze" 1, 0= ln(£+1)

a?

Having achieved this we are once again able to run simulations using the Ornstein-Uhlenbeck process
with the desired lognormal distribution and calculate VIX futures. This serves as our estimate of VXX.

VIX Futures
50.00
45.00
40.00
35.00 \
o 30.00 = e Theo. Fut. Price
2 25.00 )
a 50.00 = Fyt. Mkt. Price
15.00 = \/iX
10.00 =—Fwd - OU Price
5.00
0.00
o H =H =H = =H +=H =H +=H = «=H O
i i — i i e} L — L — i —
263232233 =4

As we can see from above, our forecasting error when implementing our process while sampling from a
lognormal distribution is lower in elevated periods of volatility with a consistently higher spread in lower
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periods of volatility. Overall, modeling VXX as a mean reverting process using the Ornstein-Uhlenbeck
model demonstrated better results when the diffusion term is normally distributed with a mean of zero
and a variance of 1 rather than a mean of ~3 as we experienced using the lognormal distribution.

22| Page



5. Conclusion:

The empirical investigation demonstrates the mean reverting process of volatility as measured by VIX.
By extending this to model volatility derivatives we explored the use of simulating estimates of our
process and calibrating these estimates using market expectations to calculate VXX. In the more general
case VIX futures are calculated as we had highlighted earlier. Using S&P500 options volatility is
extracted via a synthetic calendar spread by delta hedging with stock index futures thereby isolating
variance. Because we were modeling VIX and its derivatives we were dealing with volatility directly.
Thus, we are able to simply forecast volatility without interpolating.

Our results demonstrate the Ornstein-Uhlenbeck process to be an effective means of forecasting
volatility derivatives. Despite the reasonableness of this approach, we observed an estimation error
that varied over time. The reasons for the error in the model prices of VXX stems primarily from the
mean parameter estimate that we obtained from the lognormal distribution. This resulted in a fairly
consistent overvaluation and this was particularly noticeable during periods of lower volatility. Other
contributing factors, albeit less so, included determining the proper mean for the volatility regime we
were in and the decay rate, theta. We viewed these results over several different scenarios, including
modeling a rolling window of data to capture parameter estimates that were reflective of that time
period while also observing results over a steady state with consistent parameters that reflected a long
term average.

Further study and next steps in our process would involve adapting the density function to the OU
process away from a Geometric Brownian Motion to see if including market expectations in our
simulations are an improvement over using a standard random normal variable in the process.
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6. Appendix A
%% Calculate the Roll Yield

% Import the file

[data3, date3]=xIsread("C:\Temp\MasterDoc Futures Prices.xlsx",

%Extract the data
X = datenum(date3(2:end,1));
y = data3(:,1);

%Calculate the difference in rolling the contract fwd 1 month
[M,N] = size(data3l);

N

for i = -1
,1) = data3(:,i)-data3(:,i+l);

1:
Roll(:
end

%Map in the locations of the roll yields
map=zeros(M,1);

for 11 = 1:M
b = find(~isnan(Roll(ii,:)));
it b>0
map(ii,1) = b(1,1);
else
map(ii,1l) = 1;
end
end

%Calcuate the Roll Yield
RollYield = [];
for iii = 1:length(map)

"Summary*);

RollYield(iii,1) = Roll(iii,map(iii,1))*(1/(250/12)); %assuming there are

250 trading days in a year
end

24| Page



7. Appendix B

%% Parameter estimation

function [theta, mu, sigma] = ParameterEstimation(Vix, deltaT)

% Create a vector of Stock price differences
Y = Vix(l:end-1);

X = ones((length(Vix)-1),2);
X(:,2)= Vix(2:end);

%Run a regression
[Coef, CoefInt, residual] = regress(Y,X);

%Extract the coefficients
Intercept=Coef(1);
Slope=Coef(2);

%Calculate the Parameters for the 0-U process
theta = -log(Slope)/deltaT;

mu = (Intercept/(1-Slope));

sigma = std(residual) * sqrt(2*theta/(1-Slope”2));

end
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8. Appendix C

%% Inputs

% W = Window of Vix historical data to use in the regression
% number of time steps

% # days forecasted fwd

% Strike price

% discount rate (Libor or the 90 day rate)

% # of Monte Carlo simulations

== XzZ24d=

%% Ornstein Uhlenbeck
function [S, C, P] = OrnsteinUhlenbeckOption(VixPrices, T, N, W, K, r, M)

%Calculate deltaT
deltaT=(T/365);

%Create a Rolling window of prices to calculate the parameter estimates n day
forward estimate
if length(VixPrices)< W

error disp(“Not enough data");

else
for i = 1:(length(VixPrices)-W+1)
Vix = VixPrices(length(VixPrices)-W+(2-i1):length(VixPrices)-i+l);

%% Estimate the parameters of our process
[theta, mu, sigma] = ParameterEstimation(Vix, deltaT);

%Pre-allocate
s=zeros(N,M);

%Form a vector of standard normal variables
z=randn(N,M);

%Generate the intial value
s(1,:) = Vix(1,1);

%Generate subsequent value of your OU process
for i11=1:M %path number
for j=1:N %draw number
s(+1,ii) = s, ii)*exp(-theta*deltaT)+mu*(1-exp(-
theta*deltaT))+sigma*sqrt((1l-exp(-2*theta*deltaT))/2*theta)*z(j,ii);
end
end

%Average the stock price over all paths
x(:,1) = mean(s,2);
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%Calculate the value of the option

for k=1:length(K)

end

Call = exp(-r*deltaT)*max(s(end, :)-K(k),0);

CHat(k,1)=(1/(length(Call)))*sum(Call);

Put = exp(-r*deltaT)*max(K(k)-s(end,:),0);
PHat(k,1)=(1/(Iength(Put)))*sum(Put);
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9. Appendix D

%% Inputs

% W = Window of Vix historical data to use in the regression
% number of days

% # time steps

% Strike price

% discount rate (Libor or the 90 day rate)

% # of Monte Carlo simulations

= XZ24d=

%% Ornstein Uhlenbeck
function [S] = OrnsteinUhlenbeckFutures(VixPrices, T, N, W, r, M, avg, sigma)

%Calculate deltaT
deltaT=(T/365);

%Create a Rolling window of prices to calculate the parameter estimates n day
forward estimate
if length(VixPrices)< W

error disp(“Not enough data®);

else
for 1 = 1:(length(VixPrices)-W+1)
Vix = VixPrices(length(VixPrices)-W+(2-i1):length(VixPrices)-i+l);

%% Estimate the parameters of our process
[theta, mu, sigma] = ParameterEstimation(Vix, deltaT);

%% Simulate the OU process

%Pre-allocate
s=zeros(N,M);

%Form a vector of standard normal variables
[Z] = RandLogNormal(avg, sigma, N, M);
z=Z;

%Generate the intial value
s(1,:) = Vix(1,1);

%Generate subsequent value of your OU process
for i11=1:M %path number
for j=1:N %draw number
s(+1,ii) = s§,ii)*exp(-theta*deltaT)+mu*(1-exp(-
theta*deltaT))+sigma*sqrt((1l-exp(-2*theta*deltaT))/2*theta)*z(j,ii);
end
end

%Average the stock price over all paths
x(:,1) = mean(s,2);

end
end
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10. Appendix E

%% Generate random lognormals
function [x] = RandLogNormal(mean, sigma, N, M)

s= sqrt(log(sigma”2/mean”™2+1));
mu = log(mean)-s”"2/2;

x = exp(mu+s*randn(N,M));

end
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11. Appendix F

%% Run a quadratic least squares optimization

[x] = Isgnonlin(@QuadLstSqOpt, x0,[le-10 1e-10 le-10 le-10 1e-101,.[[1 [1 [1
[1 1].options, Spot, Strike, Call, Put, deltaT, r);

%% Create a function to call the Risk Neutral Density parameters

function [X ,Y, Z] = QuadLstSqOpt(x0, Spot, Strike, Call, Put, deltaT, r)
%All parameters are scalars except xo which Is a matrix with parameters
(meanl, mean2, sigmal, sigma2, wgt)

[X] = CallDensity(x0, Spot, Strike, Call, deltaT, r);
[Y] = PutDensity(x0, Spot, Strike, Put, deltaT, r);
[Z] = SpotDensity(x0, Spot, Strike, deltaT, r);

%% Calculate the Spot density

function [x] = SpotDensity(x0, Spot, Strike, deltaT, r)
%AIl parameters are scalars except xo which is a matrix with parameters
(meanl, mean2, sigmal, sigma2, wgt)

%Move the variables into model parameter names
mul = x0(1,1);

mu2 = x0(1,2);

sigmal = x0(1,3);

sigma2 = x0(1,4);

wgt = x0(1,5);

%Calculate Alpha(i) and Beta(i)
alpha(:,1) = log(Spot)+ (mul-.5*(sigmal.”~2))*deltaT;
alpha(:,2) = log(Spot)+ (mu2-.5*(sigma2.”72))*deltaT;

Beta(:,1) = sigmal*sqrt(deltaT);
Beta(:,2) = sigma2*sqrt(deltaTl);

%Calculate d1, d2, d3, d4

dl = (-log(Strike)+alpha(:,1) + Beta(:,1).72)./Beta(:,1);
d2 = d1 - Beta(:,1);

d3 = (-log(Strike) + alpha(:,2) + Beta(:,2).-~2)./Beta(:,2);
d4 = d3 - Beta(:,2);

%Calculate the theoretical Put price
S = wgt.*exp(alpha(:,1)+Beta(:,1)."2./2)+(1-
wgt) - *exp(alpha(:,2)+Beta(:,2).M2./2)-exp(-r*deltaT) .*Spot;

%Calculate the difference between the observed market price and the
theoretical price

x=zeros(length(S),1);

x(1,1) = S(1,1);
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%% Calculate the Put density

function [X]
%AIl parameters are scalars except xo which is a matrix with parameters
(meanl, mean2, sigmal, sigma2, wgt)

%Put is a vector of observed market prices on put options

= PutDensity(x0, Spot, Strike, Put, deltaT, r)

%Move the variables into model parameter names
mul = x0(1,1);

mu2 = x0(1,2);

sigmal = x0(1,3);

sigma2 = x0(1,4);

wgt = x0(1,5);

%Calculate
alpha(:,1)
alpha(:,2)

Beta(:,1) =
Beta(:,2) =

A

Ipha(i) and Beta(i)
log(Spot)+ (mul-.5*(sigmal."2))*deltaT;
log(Spot)+ (mu2-.5*(sigma2.”2))*deltaT;

sigmal*sqrt(deltaT);
sigma2*sqrt(deltaT);

%Calculate d1, d2, d3, d4

di
d2
d3
d4

(-log(Strike)+alpha(:,1) + Beta(:,1).-72)./Beta(:,1);
dl - Beta(:,1);

(-log(Strike) + alpha(:,2) + Beta(:,2).72)./Beta(:,2);
d3 - Beta(:,2);

%Calculate the theoretical Put price

P = exp(-r*deltaTl).*(wgt.*(Strike.*cdf("norm*,-d2,0,1)-
exp(alpha(:,1)+Beta(:,1).22./2)_*cdf("norm”,-d1,0,1))+(1-
wgt) - *(Strike.*cdf("norm*,-d4,0,1)-
exp(alpha(:,2)+Beta(:,2).72./2) .*cdf("norm*,-d3,0,1)));

%Calculate the difference between the observed market price and the

theoretical price

X =Put - P

%% Calculate the Call density

function [x] = CallDensity(x0, Spot, Strike, Call, deltaT, r)

%AIl parameters are scalars except xo which is a matrix with parameters
(meanl, mean2, sigmal, sigma2, wgt)
%Call is a vector of observed market prices on call options

%Move the variables into model parameter names
mul = x0(1,1);

mu2 = x0(1,2);

sigmal = x0(1,3);

sigma2 = x0(1,4);

wgt = x0(1,5);

%Calculate Alpha(i) and Beta(i)
alpha(:,1) = log(Spot)+ (mul-.5*(sigmal.”~2))*deltaT;
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alpha(:,2) = log(Spot)+ (mu2-.5*(sigma2.”72))*deltaT;

Beta(:,1) = sigmal*sqrt(deltaT);
Beta(:,2) = sigma2*sqrt(deltaTl);

%Calculate d1, d2, d3, d4

dl = (-log(Strike)+alpha(:,1) + Beta(:,1).72)./Beta(:,1);
d2 = dl1 - Beta(:,1);

d3 = (-log(Strike) + alpha(:,2) + Beta(:,2).-~2)./Beta(:,2);
d4 = d3 - Beta(:,2);

%Calculate the theoretical Call price

C = exp(~-

r*deltaT) .*(wgt.*(exp(alpha(:,1)+Beta(:,1).”22./2).*cdf("norm”,d1,0,1)-
Strike.*cdf("norm",d2,0,1))+(1-wgt) .*(
exp(alpha(:,2)+Beta(:,2).722./2).*cdf("norm”,d3,0,1)-
Strike.*cdf("norm®,d4,0,1)));

%Calculate the difference between the observed market price and the
theoretical price
x = Call - C;
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12. Table 1 (Market option prices)

Strike  Novll Octll Septll Augll Julyll Junll Mayll Aprll Marll Febll Janll Decl0

Market Prices
Gll
10 0
15 0
16 0
17 0
18 143
19 131
20 121
21 106
25 98
24 793
25 7
26 6
275 493
29 408
30 361
325 265
35 205
375 154
40 12
25 08
45 07
475 05
50 04
55 022
60 015
65 007
70 0
75 0
80 0
85 0
0 0
95 0
100 0

183
131
0
115
0
891
8
7.9
548
55
534
493

33
295
215
165

12

0.65
05
05

035

0.25

013
0.1

005

o O o o

3125
0

0
0
0
0
19.77
0
195
16.88
166
144
145
128
121
10
8
6.29
51
41
33
26
21
135
0.85
06
035
0.18
0.15
01
0.05

0.05
0

21
171
16.1
0
141
127
116
11.05
94
81
69
0
54
0
43
31
235
18
14
105
08
06
045
0.25
0.15
01
005
005
0

o ©o ©o o

1
64
52

458
377
313
275
23
198
16
135
0
105
0
0.85
0.65
05
04
03
0.25
0.2
015
0.1
005
005
005
005

o O O o o o

0
285
21
15
11
09
0.75
063
049
035
035

025
0.15
0.15

0.1
008
005
0.05

o
O oo ooooooooood®

64
178
125

1

07
052
038
037

03
025

0.2

0
015
0.15

0.1

0.1
0.05
0.05
0.05

o

O O O O 0o o oo o o o o o

0
205
15
115
09
0.7
055
045
035
03
0.25
0
02
0.15
0.1
0.1
0.1
005

o
K

O O O O 0O o o o o o o o o o

0
43
34
26

205
16
125
103
0.75
053
045
0
0.25
0.2
0.2
0.1
0.1
01
0.05

o

O O O O O O o oo o o o o

93
43
334
25
192
15
12
095
0.7
05
045

03

0.2
0.1
0.1
0.05
0.05
0.05

o
©O oo ooooooooof

9

4

3
245
19
15
12
1
08
06
05
04
035
0
025
018
015
005
0.05
005

o

O O O O O oo o o o o o

0
53
41
34
27
22
17

133
095
073
06
053
04
0
0.26
0.2
0.15
009
0
005
005
0

0

o
R

O O O O o o o o o

Put

Novll Octll Septll Augll Julyll Junll Meyll Aprll Marll Febll Janll DeclO

o O o ©o o o

004
005
007
0.18
03
05
098
165
22
36
55
74
96

& &

O O O O oo o o o o o

0

0

0

0

0
0.05
0.05
0.1
02
04
0.65
093
16
236
3

5
763
0
1132

O O O O O 0O o oo oo o o o

©O O ©o o o o

003

003
0.05
005
0.1
0.15
04
095
185
29
47
65

105
164

21
256

346

44.7
4.7

0
0
0
0
0.05
0
0.03
0.05
01
0.2
0.28
0
08
0
185
32
5.16
77
9.2
117
136

o

O O O O oo o o o o o

0
01
0.15
035
0.7
114
165
23
34
45
55
0
74

99
119
139
168

O O OO0 oo o o o o o o

0
0.05
0.28
0.75

14
215
295

39

53

66

75

0

S
o P

O O O OO OO O O o o o o oo o o o o

0
0.2
0.65
135
21
285
39
45
593
74
0

O O O O OO o oo oo o o o o o o

0
035
038
145
215
295
38
464
6

0
83
0

0

0
1341

O O O O OO0 O o oo oo o o o o o o

0 0 0 0
003 002 005 002
01 01 017 01
03 03 04 03
072 07 19 06
13 13 145 105
2 2 225 16
28 27 3 235
4 39 42 34
53 51 563 47
6.07 6 63 549
0 0 0 0
855 86 88 0
99 0 0 0
108 1083 112 0
132 1337 1365 0
157 0 0 0
182 0 0 0
207 0 0 0
0 0 0 0

0 0 0 0

0 0 285 0

0 0 31 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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13. Table 2 (Forecasted option prices)

Stiike Noval Octll Sept1l Augll Julyll Jun1l Mayll Aprll Marll Febll Jan1l DeclD

Forecasted Prices
al
10 2174 527
15 1683 2027
16 1587 1927
17 1491 1877
18 1397 17.27
19 BM 1627
20 1213 1527
21 11.24 1427
25 9% 1277
24 871 11.28
5 798 102
% 718 98
275 612 78
Y 515 63
X0 45 539
325 35 3213
H 22 18
375 145 059
0 0® 016
NP5 052 0B
45 029 0
475 015 00
50 007 0@
5 001 o000
&€ 000 o000
& 000 000
70 000 0@
7 000 o000
& 000 0a
& 000 0a
0V 00 0@
% 000 Qa0
100 00 000

2635
2135
2035
1935
1835
17.35
1635
1535
1B3&
1236
nsy
1039
83
751
659
448
274
147
063
026
(010
(0107
(0100)
(0100
(0100
(0100
(0100)
(0100
(0100
(0100
(0100)
(0100
(0100

104
1445
BL
1249
1152
1057
963
872
740
616
53
465
366
281
231
134
070
03
Q14
(005
(0107
o001
(0100)
(0100
(0100
(0100
(0100)
(0100
(0100
(0100
(000)
(0100
(0100

872
374
2P
12
118
(015%]
0o
on
(0107
(0100
(000)
(0100
(0100
00
(000)
(0100
(0100
(0100
(000)
(0100
(0100
(0100
(000)
(0100
(0100
(0100
(000)
(0100
(0100
(0100
(0100)
(0100
(0100

846
349
256
172
104
Q055
025
(0]02)
001
(0100
(0100)
(000
000
(0100
(0100)
(000
000
(0100
(0100)
(000
000
(0100
(0100)
000
000
(0100
(0100)
(000
000
(0100
(0100)
(000
(0100

660 100 1036
176 631 543
18 56/ 449
050 507 361
020 451 28
006 3% 207
o 3% 14
000 308 0S8
000 249 048
000 1¥ 02
00 1 on
000 14 O
000 111 ool
000 o0& 0
00 0 0
000 041 0@
000 028 0
000 013 0
00 007 0@
000 0B 0
000 0a@ o0
000 001 0
00 00 0
000 000 0a0
000 000 0@
000 000 0
00 00 0
000 000 0a
000 000 0@
000 000 0
00 0 0
000 000 0
000 000 0@

718
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14. Table3 (Forecasted VIX)

11/4/2011
11/3/2011
11/2/2011
11/1/2011
10/31/2011
10/28/2011
10/27/2011
10/26/2011
10/25/2011
10/24/2011
10/21/2011
10/20/2011

8/2/2005

8/1/2005
7/29/2005
7/28/2005
7/27/2005
7/26/2005
7/25/2005
7/22/2005
7/21/2005
7/20/2005
7/19/2005
7/18/2005
7/15/2005
7/14/2005
7/13/2005
7/12/2005
7/11/2005

7/8/2005

7/7/2005

7/6/2005

7/5/2005

Spot 1day Fwd 2 day fwd 3 dayfwd 4 day Fwd 5 day Fwd 6 day Fwd 7 day Fwd 8 day Fwd 9 day Fwd

30.16
30.50
32.74
34.77
29.96
24.53
25.46
29.86
32.22
29.26
31.32
34.78
11.75
12.08
11.57
10.52
10.36
10.99
11.10
10.52
10.97
10.23
10.45
10.77
10.33
10.81
10.84
10.95
11.28
11.45
12.49
12.27
11.68

30.26
28.07
33.73
34.89
27.88
28.66
26.03
31.82
34.74
28.91
34.85
29.65

10.25

10.90
10.95
10.81
10.62
11.17
11.48
10.58
11.20
11.28
10.34
11.14
10.34
11.29

9.54
11.13
12.76
11.95
12.41
11.92
11.68

32.92
27.11
34.43
35.23
31.18
32.78
29.20
32.25
39.84
26.88
35.04
32.32

11.04

12.03

9.79
10.97
10.08
11.10
11.26
10.38
11.41
10.34
10.52
10.71
11.12
11.99
10.20
11.75
12.64
13.57
12.12
11.84
12.57

31.92
26.98
35.86
36.39
36.66
28.78
27.78
33.93
36.33
32.56
37.82
35.68

10.49

12.17
10.65
11.42
10.72
11.36
11.84
10.68
11.00

9.64
10.83
10.89
12.59
10.64
11.55
11.04
11.98
12.24
12.33
12.03
14.41

29.61
24.20
35.21
36.31
37.62
32.76
28.65
35.27
33.37
34.32
35.81
36.64

11.47

12.91
10.56
11.48
11.12
11.57
11.04
11.00
11.69
10.54
10.64

9.98
11.14
10.52
10.95
11.07
11.38
10.95
11.09
11.66
13.79

27.28
23.43
36.73
33.19
36.31
33.27
28.52
35.58
30.19
35.44
37.08
37.10

11.47

12.63
10.13
11.88
11.68
10.75
11.56
11.11
10.89
11.08
10.40
10.51
11.55
10.69
11.16
12.03
10.71
13.37
10.93
11.28
11.65

29.34
25.26
34.66
35.88
36.22
30.35
24.25
38.25
32.46
39.85
36.36
38.03

11.70

12.30
11.12
10.84
11.20
11.10
11.22
11.28
10.78
11.51
10.51
11.42
10.54
10.36
11.48
11.13
11.26
12.59
12.86
11.56
11.48

30.34
26.89
33.68
33.74
32.71
28.58
28.25
40.69
32.94
39.47
35.32
36.92

11.62

11.58
11.24
10.54
10.98
11.16
11.49
11.49
10.48
11.88

9.80
11.67
11.03

9.78
12.93
11.92
12.49
10.42
11.80
11.37
11.46

27.09
30.06
34.60
31.90
32.62
33.00
30.33
38.88
34.40
39.61
34.79
37.08

10.97

10.38
11.46
10.33
10.80
11.25
11.44
10.76
12.01
12.33
10.84
11.16
10.93

9.56
11.43
12.29
11.70
11.88
10.68
10.77
11.91

25.12
30.24
35.95
31.85
32.88
35.72
35.30
38.75
33.85
40.01
34.81
35.64

11.81

10.72
12.45
11.35
11.77
11.61
11.06
11.90
11.84
11.77
11.32
10.85
10.97
10.67
12.17
11.72
11.88
10.37
10.65
11.17
12.41

48 day Fwd 49 day Fwd 50 day Fwd

32.48
38.93
40.81
40.41
34.69
30.59
39.21
35.09
38.74
39.37
33.68
39.20

12.20
12.06
10.89
11.56
11.73
10.71
11.38
11.41
10.79
12.40
11.19
12.06
12.02
12.74
10.59
10.54
10.00
14.00
10.34
11.29
11.14

31.18
38.41
39.37
36.83
31.26
31.20
37.49
36.79
41.06
38.58
33.31
39.93

12.55

11.44
10.25
12.40
11.01
12.06
11.73
11.90
11.32
12.44
10.95
11.72
11.12
12.64
10.18
11.05
13.88
11.93
12.98
11.77
12.07

30.30
37.55
38.36
33.06
34.52
34.14
34.89
36.11
37.99
35.30
33.03
38.48

11.52

12.11
10.31
12.55
10.62
11.43
11.69
12.23
10.95
12.61
10.71
10.70
11.55
12.11
12.51
10.62
12.85

9.60
12.31
12.28
11.87
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