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Abstract

Our increased reliance on localization devices such as GPS navigation has led to an increased de-

mand for localization solutions in all environments, including indoors. Indoor localization has received

considerable attention in the last several years for a number of application areas including first respon-

der localization to targeted advertising and social networking. The difficult multipath encountered

indoors degrades the performance of RF based localization solutions and so far no optimal solution has

been published.

This dissertation presents an algorithm called Coherent Array Reconciliation Tomography (CART),

which is a Direct Positioning Algorithm (DPA) that incorporates signal fusion to perform a simulta-

neous leading edge and position estimate for a superior localization solution in a high multipath en-

vironment. The CART algorithm produces position estimates that are near optimal in the sense that

they achieve nearly the best theoretical accuracy possible using an Impulse Radio (IR) Ultra-Wideband

(UWB) waveform. Several existing algorithms are compared to CART including a traditional two step

Leading Edge Detection (LED) algorithm, Singular value Array Reconciliation Tomography (SART),

and Transactional Array Reconciliation Tomography (TART) by simulation and experimentation. As

shown under heavy simulated multipath conditions, where traditional LED produces a limited solution

and the SART and TART algorithms fail, the CART algorithm produces a near statistically optimal

solution. Finally, the CART algorithm was also successfully demonstrated experimentally in a labora-

tory environment by application to the fire fighter homing device that has been a part of the ongoing

research at Worcester Polytechnic Institute (WPI).

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-
C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are
not necessarily endorsed by the United States Government.
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Chapter 1

Introduction

Indoor localization has received considerable attention in the last decade due to potential commercial

interests, personal safety benefits, and other application areas that directly benefit our lives. The

inoperability of Global Positioning Systems (GPS) inside most structures has lead researchers searching

for new solutions to address the demand for more precise and robust localization solutions. The

commercial sector is interested in improving the customer experiences in novel ways through localization

and the first responder community is interested in saving lives, e.g. in search and rescue operations.

Recently, new waveforms such as Ultra-Wideband (UWB) Impulse Radio (IR) using Time of Arrival

(TOA) have come under scrutiny as a potential contender for a viable solution to indoor localization.

The primary benefits of an UWB IR waveform for indoor localization is its ability to separate channel

reflectors more precisely than their narrowband counterparts due to their fine time resolution and

their resistance to multipath fading [1]. In fact, UWB is heavily used in ground penetrating radars

[2] due to these benefits. Similarly, UWB allows more precise and robust localization in difficult

indoor multipath environments, where physical structures prevent a direct Line of Sight (LOS) from

transmitter to receiver.

This dissertation considers the case of one coherent UWB transmitter and multiple coherent UWB

receivers in an unknown indoor multipath environment. By coherence we mean that the receivers know

the transmit time, which enables TOA localization as opposed to Time Difference of Arrival (TDOA)

localization. The method of achieving coherence is discussed later in this section. In addition, we

always assume the direct path signal from the transmitter to the receiver exists with a defined Signal

to Noise Ratio (SNR).

In most cases authors [3] [4] [5] describe TOA localization using the traditional two step approach
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in which ranging and positioning are performed as two independent steps. This involves estimating

the leading edge of the transmitted waveform at individual receiver locations to determine the range

from the transmitter to each receiver, followed by some algorithm to find the transmitter position using

the ranges. The Leading Edge Detection (LED) algorithms typically include some combination of a

Matched Filter (MF), an energy detector, and a threshold, followed by a search to determine the first

arriving peak as seen in [6] and many other publications. The positioning algorithm can be based on

a mechanism as simple as a minimization or Weighted Least Squares (WLS) solution for the location

satisfying the constraints imposed by the range estimates as seen in [7].

Consider, for example, the sensor setup shown in Figure 1.1a in an ideal environment free of

multipath, noise, and fading effects. For this example, there exists a single transmitter at (xm, ym)

and four receivers in a square. If the transmitter transmits a very narrow pulse seen as a band

limited impulse, the received waveforms would look similar to Figure 1.1b. The received waveforms are

dependent on the time it takes for the signal to propagate through the environment to the receiver.

The range from the transmitter to the receivers can be measured as the time of the peak of the band

limited impulse or when the signal leading edge arrived prior to the peak, depending on how the system

is calibrated. In the traditional two step approach, the estimate of ranges from the transmitter to each

receiver is done independently and is the first step in localization. The independently estimated ranges

suggest the transmitter can lie on a circle in two dimensions centered at the respective receiver as

seen by example in Figure 1.1c. The estimate in Cartesian coordinates is produced by computing the

intersection of these circles and is the second step of the two step approach.

The problem with the two step approaches is that they treat each receiver signal independently and

they treat the localization as two independent steps. The independent range estimates under multipath

conditions will likely not have a single point of intersection as shown in the ideal example in Figure

1.1c. The ranges will therefore present an inconsistent set of constraints to the positioning algorithm.

In addition, there is also some known dependence between the data at each receiver if their locations

are known and there exists a single transmitter, as is the case for the treatment in this dissertation.

Literature describes the method of using the raw received data to produce a direct estimate of position in

a single step as Direct Positioning Algorithms (DPA). Closas, et. al [8] conclude that improved accuracy

and robustness can be achieved by considering the fact that the signal originated from the same source.

The same conclusion is drawn by Navarro, et. al in [9] where UWB TOA data is used to compare

the two step procedure to a DPA by simulation. Other DPAs introduced in literature are the Singular

value Array Reconciliation Tomography (SART) [10] [11] and the Transactional Array Reconciliation
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Figure 1.1: (a) Example sensor setup, (b) example data at each receiver, (c) circles using estimated

ranges.

Tomography (TART) [12], which require the signal at each receiver along with knowledge of receiver

positions. In the case of the SART algorithm which computes a TDOA solution, synchronization of

the transmitter to the receiver is not required, whereas the TART algorithm which performs TOA

estimation requires synchronization.

Few papers exist on the direct positioning methods while many papers exist using the two step

approaches. This is likely due to the nature of problems and how their solutions have evolved over time.

For example, WiFi localization methods such as [13] [14] always rely on existing infrastructure that

measures Receive Signal Strength (RSS) to produce estimates of independent ranges or to characterize
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WiFi environments. The added complexity of DPAs also may prevent practical implementations since

they are often computed in a greedy manner.

Bialer, et. al. [15] express a Maximum Likelihood (ML) Direct Position Estimate (DPE) based

the collection of received data. The method expands upon their previous ML TOA estimation method

using a single transmitter and a single receiver [16]. As shown, the method partitions the received signal

into two segments: one that is expected to contain noise only and one that is expected to contain the

leading edge of the transmitted signal along with noise samples. The ML DPE algorithm, however,

requires the computation of a power delay profile, which is based upon a channel model or a measured

channel impulse response. In reality, specular reflectors exist that will distort the ML DPE metric in

an unknown environment when using a modeled channel and a measured channel impulse response is

only optimal for a specific location and sensor geometry. In addition, the ML DPE is based on a power

metric, when in reality there exists coherence among the received leading edges that can be included

in the localization metric.

We recognize that the SART and TART algorithms were designed to use a wideband multicarrier

non-impulsive signal [17] and was not designed to take advantage of UWB Impulse Radio (IR) wave-

form features. A new algorithm is needed to take advantage of the UWB IR features with the same

computational principles. In this dissertation, we present a new DPA called Coherent Array Reconcili-

ation Tomography (CART) based on the segmentation of the received signals into two segments as was

done in [15]: one that should contain the leading edge of the signal embedded in noise and one that

should contain noise only. The CART algorithm produces a simultaneous leading edge and position

estimate based upon a search of consistent ranges to produce the simultaneous best estimate. The

computation is performed in a greedy manner typically using a single independent data capture from

each receiver, regardless of channel delay profile or unknown channel characteristics.

So far, nothing has been mentioned about the practical implementation requirements of the example

system seen in Figure 1.1a. We simply show a transmitter and four receivers in an ideal environment. In

reality, the received signal will be corrupted by multipath, additional reflections that bounce off walls,

furniture, and other objects in the indoor environment. In addition, the signal experiences excess delay

and attenuation dependent on the building materials. We can model these effects as seen in Section

2.1. Even more fundamentally, how do we collect UWB data that preserves the TOA information?

We could have a tethered solution where the transmitter and receivers are all connected by wire to a

central data collection system. Others have also asked this question, which has led to advancements in

the area of wireless synchronization.
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The untethered requirement has led to the development of Two Way Ranging (TWR) systems for

localization [18]. The primary operating principle of TWR, as discussed in Section 5.1, is that one

requesting unit sends a pulse that is detected by a responding unit. The responding unit then sends

a pulse that is received by the requesting unit. The requesting unit then performs a computation to

determine the distance of the responding unit based on the duration of the TWR event. The primary

advantage of this TWR method is that clock synchronization is not required between the requester

and responder [19], enabling wireless range measurement. The drawback is that each TWR event is

considered an independent measurement with no obvious correlation over time as sensors move in a

dynamic fashion. It is also not immediately possible to combine the signals from multiple receivers

using signal fusion. This is particularly important in the highly specular UWB environments where

small movements can cause dramatic changes in the wireless channel response.

Research in this area, such as [20] [21], has focused on improving the localization accuracy or

estimation accuracy of the TWR event, but has not addressed the dynamic sensor movement problem.

The author of [17] uses the sampled channel data to synchronize two periodic transmitted waveforms

using a stationary reference transmitter, but make no mention of dynamic sensors. In this dissertation,

we also present a method that enables wireless data collection using the requester and responder raw

channel samples to estimate the transmit time, which in turn is used to preserve TOA information. In

this dissertation, this new method of data alignment is used to collect experimental data using Time

Domain’s PulseOn 410 (P410) UWB device. The experiments compare the localization performance of

the traditional two step approach using LED, to two existing DPAs, SART and TART, followed by a

comparison to the new CART algorithm using Mean Squared Error (MSE) analysis and by Cumulative

Density Function (CDF) of errors.

The primary contribution of this dissertation is the development of the CART algorithm that com-

bines LED, direct positioning, and coherent integration of the direct signal path information obtained

from the requester and responder devices. The CART algorithm is suitable for UWB TOA data and re-

quires no prior characterization or anchor nodes for successful operation. Another contribution includes

the comparison of the performance of several existing algorithms, SART, TART and the conventional

two step LED method to CART using the standard IEEE 802.15.4a multipath model for the indoor

office environment. Also, a new algorithm that preserves TOA information from a Two Way Ranging

(TWR) conversation is developed along with the application of the CART algorithm to the real prob-

lem of first responder localization using a wand homing device. The wand homing device application

also includes a theoretical wand length analysis based on the statistical Cramer Rao Lower Bound.
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Even though the requester and responder units used in the TWR event are transceivers, we refer to

the requester unit and associated hardware as the receiver and we refer to the responder and associated

hardware as the transmitter. For more information on the hardware details, see Chapter 5.

This paper is organized as follows: Chapter 2 provides the necessary background to the two step

Leading Edge Detector (LED), SART, and TART algorithms for localization. For further information

on any of these methods, we refer the reader to the cited sources in the respective subsections. Chapter

3 introduces the CART algorithm. Chapter 4 shows the simulation results using the IEEE 802.15.4a

CM4 model of an indoor office environment. Chapter 5 introduces the hardware used to perform

synchronized data collection. In Chapter 6, we demonstrate the CART algorithm using recent data

collected at Worcester Polytechnic Institute in two test environments. Chapter 7 presents the results

of the fire fighter homing device implementation, in which we fuse RF data and a gyroscopic based

motion solution using the CART algorithm.
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Chapter 2

Background

This chapter provides the necessary background on the traditional two-step localization algorithm

using an independent Leading Edge Detector (LED) for each receiver as is commonly used in literature.

Also provided is an explanation of two Direct Positioning algorithms, Singular value Array Reconcilia-

tion Tomography (SART) and Transactional Array Reconciliation Tomography (TART). In addition,

we briefly introduce the Inverse Synthetic Array Reconciliation Tomography (ISART) algorithm in the

final section. Although we show the full multipath signal model, we assume the most basic case of

a single transmitter and multiple receivers using an ideal channel with no multipath when presenting

examples in this chapter.

2.1 Signal Model

A signal that has propagated through a multipath environment can be modeled as a summation of

Li reflectors with different delay paths to i = 1..N receiving antennas. Mathematically, we can write

the signal at the ith receiver as

si(t) =

Li∑
l=1

cl,i p(t− τl,i) + ni(t) (2.1)

where, cl,i represents the magnitude of the lth reflector in the environment to the ith antenna, τl,i = rl,i/c

is the lth delay from the transmitter to the ith receiver, c is the speed of light, rl,i is the range from

the transmitter to the ith receiver following the lth propagation path, p(t) is the transmitted waveform,

and ni(t) is the additive white Gaussian noise with variance σ2
i . The indices l,i indicate the lth path to

the ith receiver, assigning 1,i as the direct path to the ith receiver.
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The frequency domain representation used by the Direct Positioning Algorithms (DPAs) can be

computed using the Fourier Transform (FT) of the model and can be written as

Si(w) =

Li∑
l=1

cl,iP (w)e−jwτl,i +Ni(w)

= P (w)

Li∑
l=1

cl,ie
−jwτl,i +Ni(w)

= P (w)Hi(w) +Ni(w) (2.2)

where P (w) represents the FT of the transmitted signal, Hi(w) represents the FT of the channel model

to the ith receiver, and Ni(w) the FT of the noise with power spectral density of N0,i/2.

Under Line of Sight (LOS) conditions to receiver i, the direct path c1,i has the largest magnitude

of all Li reflectors. Under Non-Line of Sight (NLOS) conditions, the direct path may or may not exist

in a practical data collection system and certainly does not posses the largest magnitude of the several

path components. For the purposes of this dissertation, we assume the direct path exists with a Signal

to Noise (SNR) that is defined in Section 4.2 as Ep,i/N0,i, where Ep,i is the average energy of the signal.

For more details refer to Section 4.2. Also, when the ideal conditions of no multipath are mentioned,

that refers to the case of Li = 1∀ i ∈ 1..N .

Digital analysis requires the discretized form of the model, which can be written as

Si[k] = P [k]

Li∑
l=1

cl,i e
−j2πfkτl,i +Ni[k] (2.3)

where

fk = fdec
k − 1

M
,k = 1..M (2.4)

with M frequency samples captured with known sample rate fdec. For the purposes of this paper, the

sample rate is always fixed to the sample rate of the P410 hardware and is fdec = 1
(32)(1.907e−12) . For

more details regarding this sample rate, see Section 5.1.

2.2 Leading Edge Detector (LED)

Figure 2.1 shows the standard two step method for localization based on LED. As seen, an indepen-

dent range estimate is produced at each receiver followed by a Cartesian estimate using the collection

of range estimates. For the simulations in Chapter 4, the range estimates are produced using a Leading

Edge Detector (LED) similar to the standard LED detector in [6]. For experimental evaluation in
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Figure 2.1: Overview of the two step method for localization based on Leading Edge Detection (LED)

Chapter 6, the LED is done by Time Domain’s algorithm in the P410 hardware. The simulated LED

contains a Matched Filter (MF), followed by a simple threshold and first peak estimation. If no peaks

exceed the calculated threshold, the largest peak of the waveform is chosen as the direct path.

Mathematically, the MF is applied to the input signal using

s̄i[k] = F−1 (Si[k]S∗tx[k]) (2.5)

where Stx[k] is the known transmitted waveform in the frequency domain, F−1 is the Inverse Discrete

Fourier Transform and ∗ is the conjugate operator. For the purposes of this dissertation, the known

transmit waveform is always the transmit waveform used by the P410 hardware. The magnitude of

the transmit waveform is generated using MATLAB code from Time Domain’s web site [22] and the

magnitude of which is shown in the top of Figure 2.2 labeled |p(t)|.

The first step in the LED algorithm is to define a threshold, above which we declare a detection.

In our simulations, the threshold is calculated as

t̄ = 2 max |s̄i[k]| , k ∈ 1..60 (2.6)

which represents a threshold that is approximately 3 dB above the peak absolute noise value in the

first 60 samples of the TOA preserved MF solution. These first 60 samples correspond to range zero

to range 60 c
fdec

in the signal of the ith receiver. The next step in the simulated LED algorithm is to

determine the first peak that is larger than t̄. Algorithmically we define this as

τ̌1,i fdec =

 min value of k if ∃ k, ši[k] > t̄,

value of k that corresponds to max |s̄i[k]| otherwise
(2.7)
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Figure 2.2: Example of Leading Edge Detection used for simulation

where ši[k] contains only the peaks of the match filtered waveform s̄i[k], τ̌1,i represents the TOA of the

first peak, and fdec is the sample rate of the data. This portion of the algorithm states that the first

peak determines the TOA if a peak exists greater than the threshold, else the maximum value of the

waveform determines the TOA. The factor fdec is used to convert the peak TOA time into samples.

Furthermore, the estimate of the TOA to the first path is defined as

τ̂i = τ̂1,i = τ̌1,i − δ (2.8)

where δ is a calibration factor determined by maximizing the cost function (under the no noise, no

multipath condition) seen in equation (2.10). Also, τ̂i = τ̂1,i is a notational change implying that if

l = 1 is not specified, the implied reference is to the direct path. This calibration factor is needed to

ensure we properly align the circles to the transmitter position using the known P410 waveform.

Figure 2.2 shows an example of the LED used for the simulation at work. The transmitter generates

the known waveform p(t) at time t = 0. Notice that the peak of the waveform is not aligned to t = 0,

but rather the leading edge of the transmit waveform, which necessitates the calibration factor δ. The

delayed transmitted signal, along with multipath components as modeled by equation (2.1), arrive at

the ith receiver some time later. We calculate the threshold from the first 60 samples taken at the

sample rate defined by fdec. The first peak is determined as shown in the figure since there exists a

threshold crossing. We then calculate the range from the transmitter to the ith receiver as

r̂i = τ̂i c (2.9)
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Figure 2.3: (a) Example sensor setup and (b) brute force plot of the minimization cost function, defined

as ζ(x,y)L .

where c is the speed of light.

Referring again to Figure 2.1, the second step of the two step localization based on LED requires

using the ensemble of range estimates to produce a Cartesian position estimate. The Cartesian position

estimate could be computed using the minimization x̂m

ŷm

 = min
x,y
‖(x− sx)2 + (y − sy)2 − r̂2‖ (2.10)

where ‖ · ‖ represents the two norm, sx = [sx,1 sx,2 · · · sx,N ]T and sy = [sy,1 sy,2 · · · sy,N ]T contains

the two dimensional position of all the receivers, r̂ = [r̂1 r̂2 · · · r̂N ]T is a vector with all the estimated

ranges, and [x̂m ŷm]T is the estimated Cartesian position.

Instead of solving the minimization, in this dissertation we plot the cost function defined by equation

(2.10). We define this metric as

ζ(x,y)L =
1

‖(x− sx)2 + (y − sy)2 − (r̂)2‖
(2.11)

where x and y are discrete scan grid points plugged into the cost function defined by the inverse of

(2.10). This metric’s value over the entire scan grid can be conveniently viewed as an image and will be

referred to as the metric image. The subscript L refers to the the two step LED based method and ζ

refers to the final metric. The result can be seen in Figure 2.3b using our previous example of a single

transmitter surrounded by four receivers. In this case, we can see clearly that the transmitter position
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is identified as the strongest peak in the metric image. The estimate of the transmitter position is then

defined as  x̂m

ŷm

 = max
x,y

ζ(x,y)L (2.12)

which defines the maximum cost function computed at points on a discrete scan grid defined by x =

xmin .. xmax and y = ymin .. ymax, with a step size of ∆x and ∆y respectively. The fixed scan grid is

used so that we have a similar computation and analysis as that employed by the soon to be discussed

DPAs: SART, TART, and CART.

2.3 Singular value Array Reconciliation Tomography (SART)

The Singular Value Array Reconciliation Tomography (SART) algorithm [11] is a DPA where

synchronization is not required between the transmitter and receivers, hence it is a TDOA algorithm.

It was originally designed for use with a Multi-Carrier Wideband (MCW) waveform as described in

[23]. To produce a SART position estimate, a search of the desired spatial region is required and is

typically computed in a greedy manner. The search is accomplished by defining a discretized scan grid

x = xmin · · · xmax and y = ymin · · · ymax with some defined resolution. At each scan grid location, a

metric is computed in order to produce a metric map based image. This is similar to the brute force

method described in the previous section, Section 2.2, describing the plot of the cost function. In the

case of the SART algorithm, however, we define a different metric instead of a computation of the least

squares fit based cost function. The metric at each scan grid location is based upon the signal data

directly and does not require a LED on signals from individual receivers.

The SART algorithm begins by defining a full M ×N data matrix of raw frequency domain data

as

A =


S1[1] S2[1] · · · SN [1]

S1[2] S2[2] SN [2]
...

...
...

S1[M ] S2[M ] · · · SN [M ]

 (2.13)

where Si[k] is the kth frequency sample of the ith receiver as defined by (2.3), M represents the total

number of frequency samples per receiver and N is the number of receivers. For example, as seen

in Figure 2.4a with our ongoing single transmitter and four receiver setup, if the P410 waveform is
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Figure 2.4: (a) Example sensor setup, (b) example signal at each receiver using the P410 waveform,

and (c) the Inverse Discrete Fourier Transform (IDFT) of the columns of the data matrix A.

transmitted in an ideal environment without fading, noise, or multipath, we would receive the data

in Figure 2.4b. Figure 2.4b shows the magnitude of the simulated received signal at each receiver,

delayed by the appropriate amount depending on distance. We see that since receiver 2 is closest in

this example, the transmitted waveform arrives at that location first, followed by receiver 4, 1, and

then 3. If we take take all four of these waveforms and stack the data into columns, we would get the

Inverse Discrete Fourier Transform (IDFT) of the columns of the defined matrix A as seen in Figure

2.4c.

Next, We allow the current scan grid to span x = xmin · · · xmax and y = ymin · · · ymax with some
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Figure 2.5: Example of discretized Cartesian space

defined granularity ∆x and ∆y as shown in Figure 2.5. With known receiver locations at (sx,i, sy,i), we

can define a M ×N re-phasing matrix

B(x, y) =


ej2πf1τ̄1 ej2πf1τ̄2 ej2πf1τ̄N

ej2πf2τ̄1 ej2πf2τ̄2 · · · ej2πf2τ̄N

...
...

...

ej2πfM τ̄1 ej2πfM τ̄2 ej2πfM τ̄N

 (2.14)

where

τ̄i =
1

c

√
(sx,x − x)2 + (sy,i − y)2

for i = 1..N represents the time delay from the current scan grid position to the ith receiver and fk for

k = 1..M are as defined in equation (2.4).

The purpose of the rephasing matrix is to remove time delays from the data matrix A that were

caused by the delay through the propagation channel. To do this we define a rephased data matrix at

the (x, y) scan grid location as

D(x,y) = A . ∗ B(x, y) (2.15)

where the .∗ operator is defined as the MATLAB element wise multiplication (Hadamard product [24])

of the data matrix A with the rephasing matrix B(x, y).
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Figure 2.6: Example SART metric image, defined as ζ(x,y)S

The elements of the rephased data matrix can be defined as

D(x,y)ki = Si[k]ej2πfk τ̄i

where k defines the row, i defines the column. If we make the assumption that the current scan grid

position is the transmitter position (τ1,i = τ̄i), then

D(x,y)ki =

Li∑
l=1

cl,i P [k] e−j2πfk(τl,i−τ̄i)

= c1,i P [k] + P [k]

Li∑
l=2

cl,i e
−j2πfk(τl,i−τ̄i)

where the phase factor of the l = 1 term was eliminated. This shows that the rephased signal takes

the form of a complex magnitude multiplied transmit waveform plus the sum of remaining rephased

multipath components under the condition when the current scan grid is equal to the transmitter

position. If we assume the ideal condition without multipath or noise, then the elements of the rephased

data matrix are

D(x,y)ki = c1,i P [k].

Under this no-multipath example, all the columns would therefore present the transmit waveform

P [k] multiplied by a complex scalar c1,i. We recognize this as strong linear dependence across the
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columns of the rephased data matrix. We can use the Singular Value Decomposition (SVD) to define

D(x,y) = UDSDVD

where UD and VD define a orthonormal basis for the row and column space respectively and SD is

a diagonal matrix with entries [σ2
S1 σ

2
S1 · · · σ2

SN ] under the assumption that N < M . The largest

singular value is used as the SART metric

ζ(x,y)S = σ2
S1 (2.16)

which produces a measure of the linear dependence across the columns of data. The estimate of the

transmitter position is then obtained in a fashion similar to (2.12) in that we take the Cartesian position

that produced the maximum metric as signifying the optimum estimate.

We again refer to our sensor setup in Figure 2.4a under ideal channel conditions with the P410

transmit waveform. The received data matrix was shown in Figure 2.4c. When this data is processed

according to the SART algorithm described above, the result is the metric image seen in Figure 2.6.

The metric image reveals that the intersection of hyperbolas define the maximum in the image. With

four receivers, we see that there are six unique hyperbolas, which are defined by the time differences

of arrival between all receiver pair combinations.

It is also instructive to examine portions of this metric by illustration. Figure 2.6 also shows several

incorrect scan grid positions, specifically at (5.9,0.8) and (-4.6,5). The rephased data matrix at these

two points and the rephased data matrix at the correct scan grid location can be seen in Figure 2.7.

When computing the SART metric at (5.9,0.8) we compute the rephased data matrix as seen in Figure

2.7a. At this scan grid location, there is no linear dependence across the column space of the data, so

the largest singular value of the data matrix’s decomposition is relatively small. When computing the

SART metric at (-4.6,5), there is linear dependence between receiver 2 and receiver 3, increasing the

metric from the nominal level of no linear dependence. At the correct scan grid location, meaning that

the transmitter position is the scan grid location at (xm,ym), there is strong linear dependence across

the columns. This is clearly evident from examination of the IDFT of the rephased matrix in Figure

2.7c.
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Figure 2.7: (a) The IDFT of the rephased data matrix at (5.9,0.8) illustrating no linear dependence,

(b) at (-4.6,5) with some linear dependence, and (c) at the true transmitter position with most linear

dependence.

2.4 Transactional Array Reconciliation Tomography (TART)

The Transactional Array Reconciliation Tomography (TART) algorithm [25] was developed as part

of the WPI’s Precision Personal Locator (PPL) program to enable TOA testing for multipath miti-

gation in indoor environments. In order to achieve synchronization of the transmitter to receivers, a

transaction of data between the transmitter and receivers is performed, hence the word transactional

in the title. Unlike the SART algorithm, which obtains a TDOA result by SVD based processing of

the data such a way as to ignore a common time shift across all received signals, TART is configured
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to obtain a TOA solution. Similar to the SART algorithm, it was also designed to be used with a

Multi-Carrier Wideband (MCW) waveform.

The TART algorithm is similar to the SART algorithm in that a desired spatial region is searched,

but now a different metric is used to produce the metric image. We again have the two matrices A

and B from equations (2.13) and (2.14), which are element wise multiplied together at each scan grid

location to produce matrix D(x,y) as in (2.15). We now define the rephased data matrix in the time

domain as

Z(x,y) = F−1
(
D(x,y)

)
(2.17)

where we take the Inverse Discrete Fourier Transform of the columns of the rephased data matrix

D(x,y). There exists an SVD based processing method with an augmented matrix using D(x,y) that

yields a metric which obtains its peak at a TOA solution. This SVD method is well approximated by

the reduced computation form

ζ(x,y)T =

β∑
k=1

N∑
i=1

|Z(x,y)k,i | (2.18)

where β is the number of time domain samples to include in the summation and k,i is the k, ith element

of the matrix Z. This summation includes terms indexed over two dimensions: first k, with values from

1 to β, that spans the sample space and second, i with values from 1 to N that spans the number of

receivers. It is important to note that the original author [25] simply used the case of β = 1 for reduced

computational complexity, but for the purposes of this paper, when we reference the TART algorithm,

we use a β = 5 due to the nature of our transmit waveform. The estimate of the transmitter position is

obtained in a fashion similar to (2.12) for the two step LED where we take the maximum of the metric

image.

The elements of the rephased data matrix in the time domain can be defined as

Z(x,y)ki =

Li∑
l=1

cl,i p[k − (τl,i − τ̄i) fdec] + ni[k] (2.19)

where k defines the row, i defines the column of the matrix Z. If we make the assumption that the

current scan grid position is the transmitter position (τ1,i = τ̄i), then

Z(x,y)ki = c1,i p[k] +

Li∑
l=2

cl,i p[k − (τl,i − τ̄i) fdec] + ni[k] (2.20)

where the time delay to the direct path was eliminated. If we assume the ideal condition without

multipath or noise, then the elements of the rephased data matrix are

Z(x,y)ki = c1,i p[k]. (2.21)



19

(a) Z(xm,ym)

Meters

M
et

er
s

s1

s2

s3

s4

 

 

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

Transmitter
Receiver

(b) ζ(x,y)T

Figure 2.8: (a) Z(xm,ym) showing β samples and (b) an example TART metric image

Under this assumption, it is clear that when the current scan grid location is equal to the transmitter

position, then all the receivers have the same waveform time aligned at the top of the matrix Z. Figure

2.8a shows the rephased data matrix under these conditions. The final TART metric in (2.18) shows

that the magnitude value is taken of the samples, which is to ensure that the phases of c1,i terms in

(2.21) do not constructively destroy the metric.

You may also notice that this metric is dependent on the shape of the transmitted waveform. In
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order to ensure maximum energy at p[0] for the metric, it is often wise to compute the MF solution

as is done in the LED prior to computing the TART metric image, or to include additional samples of

s̄i[m] to capture the energy of the signal efficiently in the metric. In this work, we also compute the

MF prior to applying this algorithm.

Figure 2.8a shows Z(xm,ym) along with the region that is defined by β samples when the current

scan grid position is equal to the transmitter position. When signal content is shifted into this top

region of matrix Z as we search the scan grid, the absolute sum of all data points increases, increasing

the TART metric. If we consider our ongoing example sensor setup seen in Figure 2.4a under ideal

channel conditions with the P410 transmit waveform, we get the received data matrix as was shown in

Figure 2.4c. When this data is processed according to the TART algorithm described above, the result

is the metric image seen in Figure 2.8b. The transmitter position is seen as the intersection of the four

circles in the metric image, indicating a TOA algorithm.

2.5 Inverse Synthetic Array Reconciliation Tomography (ISART)

Cavanaugh [26] introduced the ISART algorithm as a method to fuse a motion solution with the

SART algorithm. The motion solution was computed using a low cost Inertial Navigation System (INS)

into a Kalman Filter. As is conclusively shown, one can benefit from the fusion of superior short term

information from the INS with the stability of the RF for a better localization performance in a heavy

multipath environment [26]. Since the CART algorithm does not require a motion solution, we do not

compare the performance of the CART algorithm to the ISART algorithm in simulation. Rather, we

compare the CART algorithm to the ISART algorithm in Section 6.1 in the same test environment

where the ISART has a motion solution and the CART algorithm does not. In addition, we explore

using a gyroscope to determine some motion information that allows fusion of RF data by the CART

algorithm in Chapter 7 when we explore the fire fighter homing device application.
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Chapter 3

Coherent Array Reconciliation

Tomography (CART)

The Coherent Array Reconciliation Tomography (CART) algorithm is introduced in this chapter.

The CART algorithm takes advantage of the Signal to Noise Ratio (SNR) improvement that is achieved

by integrating multiple signals together. In this case, the leading edge of the transmitted waveform

is coherently integrated to improve the SNR of the direct path signal and therefore it improves our

localization performance. In this chapter, we provide an introduction to coherent integration, followed

by a motivation for the development of the CART metric. Then, we discuss the details of the CART

algorithm.

3.1 Coherent Integration

Coherent integration is the process of adding multiple waveforms in order to improve the SNR and

is central to the understanding of the CART algorithm. Suppose that we had n frames of the signal

from (2.3), which can be written as

Si,1[k] = P [k]Hi[k] +Ni,1[k]

Si,2[k] = P [k]Hi[k] +Ni,2[k]

...

Si,n[k] = P [k]Hi[k] +Ni,n[k] (3.1)
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where

Hi[k] =

Li∑
l=1

cl,i e
−j2πfkτl,i

represents the discretized channel model to the ith receiver. The only difference between Si,l[k]∀ l ∈ 1..n

is the instance of the white Gaussian noise process. The SNR of the lth frame at the ith sensor would

be

SNRi,l =
1
M

∑M−1
k=0 |P [k]Hi[k]|2

N0,i
(3.2)

=
PSi
N0,i

(3.3)

where N0,i is the noise power of each frame and PSi is the signal power. If we then sum n frames to

get

Si[k] =

n∑
l=1

Si,l[k]

=

n∑
l=1

P [k]Hi[k] +

n∑
l=1

Ni,l[k]

= nP [k]Hi[k] +
n∑
l=1

Ni,l[k] (3.4)

where the signal terms P [k]Hi[k] would add coherently and the noise terms Ni,l[k] would add non-

coherently. Presumably, this would result in an improvement in the SNR of Si[k] in (3.4). Mathemat-

ically, the SNR after the summation would be

SNRi =
1
M

∑M−1
k=0 |nP [k]Hi[k]|2∑n

l=1N0,i

=
n2PSi
nN0,i

= n
PSi
N0,i

(3.5)

which indicates an improvement of n is achieved by coherent integration.

In practice, it is not always the case that the signal term P [k]Hi[k] in (3.1) can be coherently

summed. Sometimes there exists a set of signals that must be modeled as

Si,1[k] = c1 P [k]Hi[k] +Ni,1[k]

Si,2[k] = c2 P [k]Hi[k] +Ni,2[k]

...

Si,n[k] = cn P [k]Hi[k] +Ni,n[k] (3.6)
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where cl ∀ l ∈ 1..n is a complex scalar with an amplitude and phase component. If we were to sum these

equations as in (3.4), the result could potentially be disastrous in that some terms could completely

cancel each other. The solution is to estimate the cl terms prior to the summation. One way to do

that is to use SVD averaging.

Suppose we generate a matrix of samples from the new model seen in (3.6), which we write as

Ai =


Si,1[1] Si,2[1] · · · Si,n[1]

Si,1[2] Si,2[2] Si,n[2]
...

...
...

Si,1[M ] Si,2[M ] Si,n[M ]



=


c1 P [1]Hi[1] · · · cn P [1]Hi[1]

...
...

c1 P [M ]Hi[M ] · · · cn P [M ]Hi[M ]

+Ni

= Ai,1 +Ni (3.7)

where Ni is a matrix with the noise and Ai,1 contains the signal component. If we decompose the

matrix Ai using the SVD as

Ai = UiΣiV
H
i (3.8)

where Ui = [ui,1 ui,2 · · · ui,M ], Vi = [vi,1 vi,2 · · · vi,n] are orthonormal bases for the row and column

spaces, and Σi is a diagonal matrix with elements [σ2
i,1 σ

2
i,2 · · · σ2

i,n]. The decomposition can also be

written as

Ai =
r∑
l=1

ui,l σ
2
i,l v

H
i,l (3.9)

where matrix Ai has a rank of r. The summation can be broken into the signal subspace and noise

subspace and re-written as

Ai =

rs∑
l=1

ui,l σ
2
i,l v

H
i,l +

r∑
l=rs+1

ui,l σ
2
i,l v

H
i,l (3.10)

where rs represents the rank of the signal subspace and r− rs is the rank of the noise subspace. From

our modeled equations seen in (3.6), we would have rs = 1 and r = n. We also assume that the noise

power N0,i in each frame is sufficiently small compared to PSi so that the SVD can properly resolve

ui,1 as the vector that spans the signal subspace in the sample dimension defined by the true signal
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P [k]Hi[k]. If that is the case, the vector vi,1 would span the signal subspace of the frame dimension

and would contain an estimate of the phase relationships of the terms cl.

Since rs = 1, we can write the MXn matrix that represents the signal subspace as

Ai,1 = ui,1 σ
2
i,1 v

H
i,1 (3.11)

which can be used to determine the average signal component in the signal subspace. To do this, we

first we recognize that the matrix notation for the sum of the signals in (3.6) can be written as

Si[k] =


P [1]Hi[1] · · · P [1]Hi[1]

...
...

P [M ]Hi[M ] · · · P [M ]Hi[M ]



c1

...

cn

 = Ai,s ci (3.12)

where Ai,s represents the signal only matrix without the unknown phase term and ci represents the

vector of complex scalars. Referring to (3.11), we can undo the unknown phase terms of the computed

signal subspace using the conjugate of the estimated unknown phases to get

Si[k] = Ai,s ci = Ai,1 vi,1
√
n (3.13)

where
√
n reverses the normalization performed by the SVD on vi,1 when making V H

i an orthonormal

basis. We can now solve (3.11) for Ai,1 vi,1
√
n to get

Si[k] = ui,1 σ
2
i,1/
√
n (3.14)

where we have allowed the SVD to solve for the unknown complex amplitude components cl. This

equation computes the SVD average of the columns of Ai in (3.7). This SVD averaging method is used

to increase the SNR of the leading edge of the ensemble of RF input data to the CART algorithm in

order to produce a more accurate position estimate.

3.2 Motivation

The Singular value Array Reconciliation Tomography (SART) and Transactional Array Reconcil-

iation Tomography (TART) algorithms discussed in Section 2.3 and Section 2.4 were designed for a

multi-carrier wideband non-impulsive signal and were not designed to take advantage of Ultra-wideband

(UWB) Impuse Radio (IR) waveform features. Literature presents the traditional two step Leading

Edge Detection (LED) method discussed in Section 2.2 as a common solution for indoor localization

using UWB IR where the transmitter is synchronized to the receivers (TOA localization). The problem
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(b) Inconsistent system of position constraints

Figure 3.1: (a) Shows a consistent system of position constraints due to exact ranges and (b) shows an

inconsistent system of position constraints due to errors in the range estimates from the transmitter to

each receiver

with the traditional two step LED method is that it presents an inconsistent set of position constraints

to the position solver due to range estimation errors. Figure 3.1a shows a consistent system of position

constraints if the correct ranges were known. We see that there is a single unique solution at the

true transmitter position that satisfies the range constraints imposed by (2.10). Figure 3.1b shows

the inconsistent system of position constraints that result from errors in the range estimates from the

transmitter to each receiver. We see that there is no single position that can satisfy the localization

constraints, but rather there are several intersections of pairs of circles. This inconsistency leads to

reduced performance for the traditional two step LED method.

Since the SART and TART algorithms were not designed for UWB IR waveforms and the traditional

two step LED method is subject to reduced performance due to the inconsistent constraints and the

lack of coherent integration of the direct path signal, we recognize a need for a new approach. The

new approach should have features similar to the SART and TART algorithms in principle, where we

search position solutions that are consistent and are of interest, hence a Direct Positioning Algorithm

(DPA).

The new approach introduced in this chapter is called Coherent Array Reconciliation Tomogra-

phy (CART). The CART algorithm is developed for the UWB IR waveform in which only consistent

solutions are searched and was designed based on the segmentation of the received signals into two
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segments: one that should contain the leading edge of the received signals embedded in noise and

one that should contain noise only. The CART algorithm produces a simultaneous leading edge and

position estimate based upon a search of consistent ranges to produce the simultaneous best estimate

using signal fusion.

3.3 CART Regions

Coherent Array Reconciliation Tomography (CART) has features similar to the first two DPAs,

SART and TART, in that we wish to define a discretized spatial region we wish to search. At each scan

grid position, we also produce a metric that represents a measure of the likelihood of the transmitter

origin. This metric’s value over the entire scan grid can be conveniently viewed as an image and will be

referred to here as the metric image. As mentioned before, the CART algorithm coherently integrates

the leading edge of all the receiver data available as part of the computation of this metric.

Assuming that we have the full data matrix of frequency data from (2.13) and the re-phasing

matrix from (2.14) at each scan grid location, we again produce the element wise multiplication of

A and B(x, y) as seen in (2.15). The scan grid position in the Cartesian domain is (x,y) and the

corresponding rephased data matrix in the frequency domain is defined as D(x,y). As was done in the

TART algorithm in equation (2.17), we also take the IDFT of the data matrix rephased to the current

scan grid location, which we again denote by Z(x,y) = F−1[D(x,y)].

The CART metric at each scan grid position is computed by first breaking Z(x,y) into two regions

of interest. The first region, which we denote by the matrix F(x,y), contains the first α elements of

each column of Z(x,y) and the second region, which we denote by G(x,y), contains the last γ elements

of Z(x,y). In MATALB notation we can write these regions as F(x,y) = Z(x,y)(1 : α, :) and G(x,y) =

Z(x,y)(end − γ + 1 : end, :). These regions are chosen to take advantage of the periodicity of the time

shift in the frequency domain, where indices not in the set (1..M) are evaluated with modulus of M so

that time shifts resulting in indices less than 1 become relative to M. If (xm, ym) is the true transmitter

position, F(xm,ym) will contain the leading edge of the transmitted signal and G(xm,ym) will contain noise

only. When the current scan grid designated position under test is not the true transmitter position,

F(x 6=xm,y 6=ym) will likely not contain the leading edge and G(x 6=xm,y 6=ym) will likely contain direct path

or multipath signal in noise. The CART metric utilizes this knowledge in the formation of a likelihood

that the transmitter originated from the current scan grid designated position under test.

Figure 3.2a shows an example scan along with a point (2.5,7) highlighted in red. When this scan
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Figure 3.2: (a) Shows a discretized scan grid and point (2.5,7) and (b) shows the resulting rephased

data matrix Z(2.5,7) along with the α samples that make up region F(x,y) and the γ samples that make

up region G(x,y)

grid location is chosen, the resulting shifted data matrix Z(2.5,7) is shown in Figure 3.2b. Further

examination of receiver 2 data shows that the current scan grid location of (2.5,7) is farther in range

than the true transmitter position. The result is that the signal of receiver 2 is wrapped around and

shifted into the G(x,y) region. The presence of anything other than noise content in the G(x,y) region

should therefore result in a reduced metric value.

3.4 CART Submetrics

The final CART metric is a combination of three submetrics: the similarity submetric, SVD sub-

metric, and the power submetric. It is important to note that the three submetrics were developed to

improve the robustness of experimental position results based upon our observations of outcomes on

introducing experimental data. The power submetric worked reasonably well in simulation using heavy

multipath, but performed poorly in the presence of interference in experiments using an off the shelf

ultra-wideband (UWB) data collection system. It was found by experimentation and simulation that

the combination of these three submetrics resulted in the most robust localization solution. For more

information on the hardware experimentation, see Chapter 6.
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At each scangrid position, we start with the following computations:

F(x,y) = UF ΣF V
H
F (3.15)

G(x,y) = UG ΣG V
H
G (3.16)

F̄(x,y) =
1

Nα

α−1∑
j=0

N∑
i=1

|fi,j(x,y)
|2 (3.17)

Ḡ(x,y) =
1

Nγ

γ−1∑
j=0

N∑
i=1

|gi,j(x,y)
|2 (3.18)

where H represents the conjugate transpose, fi,j(x,y)
is the i, jth element of the matrix F(x,y), gi,j(x,y)

is

the i, jth element of the matrix G(x,y), UF ΣF VF represents the SVD of the matrix F(x,y), and UG ΣG V
H
G

represents the SVD of the matrix G(x,y). F̄(x,y) and Ḡ(x,y) represent the power in the respective regions

of the Z matrix and the SVD’s reveal information that describes the degree of linear dependence of the

respective regions of the Z matrix along with generating a useful orthonormal basis.

3.4.1 Similarity Submetric

At the correct scan grid location under the no multipath condition, the region defined by F(x,y)

contains the same signal for each receiver; the leading edge of the transmitted waveform. The first

submetric is therefore derived from the coherent integration of the leading edge of the transmitted

waveform using the singular vector extracted from UF matrix that corresponds to the the first singular

value and spans the sample signal space of the matrix F(x,y). We first define the components of the

SVD as

UF = [uF,1 uF,2 · · · uF,M ] (3.19)

ΣF = diag
(
[σ2
F,1 σ

2
F,2 · · · σ2

F,N ]
)

(3.20)

VF = [vF,1 vF,2 · · · vF,N ], (3.21)

from which uF,1 is used to define

ŵ = uTF,1s
H
α,tx(sHα,txsα,tx)−1 (3.22)

where sα,tx is the known leading edge portion of the transmit waveform. The final similarity submetric

is then defined as

1

η(x,y)
=

1∑α−1
l=0 |uF,1 − ŵ sα,tx|

(3.23)
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Figure 3.3: Similarity Submetric

where at each scan grid designated position, we have a measure of how much signal content is remaining

after removing the known leading edge from the signal computed by the SVD of the matrix F(x,y).

Figure 3.3 shows the similarity submetric components for the ongoing four receiver configuration

seen in Figure 2.4. Figure 3.3a shows the magnitude of the computed weight ŵ. As expected, when

the region defined by the matrix F(x,y) contains the known leading edge waveform, ŵ has a larger

magnitude. At the known transmitter position, |ŵ| is the largest. Figure 3.3b shows the metric 1
η(x,y)

as defined by (3.23). This portion of the metric indicates how much signal content was removed by

the subtraction. Figure 3.3c shows the same 1
η(x,y)

metric, but zoomed centered on the transmitter

position. The transmitter position has the highest metric, which means that the most amount of signal
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content was removed at that scan grid location.

3.4.2 SVD Submetric

The SVD submetric uses components from the SVD of both the F(x,y) and G(x,y) matrices. Specif-

ically, we use the largest singular value of F(x,y), which was defined in (3.20) as σ2
F,1 and the largest

singular value from G(x,y) along with it’s corresponding singular vector that spans the receiver signal

space. If we define the decomposition components of G(x,y) defined in (3.16) as

UG = [uG,1 uG,2 · · · uG,M ] (3.24)

ΣG = diag
(
[σ2
G,1 σ

2
G,2 · · · σ2

G,N ]
)

(3.25)

VG = [vG,1 vG,2 · · · vG,N ] (3.26)

then mathematically we identify σ2
G,1 and vG,1 as the largest singular value and the corresponding right

singular vector as the elements of interest for the SVD submetric.

Recall, we earlier stated that when the current scan grid location under test coincides with the

true transmitter position, the matrix F(x,y) will have signal content and the matrix G(x,y) will only

have noise. To determine a measure of linear dependence in the signal in F(x,y), we identify the largest

singular value, σ2
F,1 to be of interest to the SVD submetric. To measure linear dependence in the matrix

G(x,y), we compute

ξ(x,y) = |σ2
G,1vG,1|, (3.27)

which is a NX1 vector that represents the contribution of each receiver to the largest singular value of

the matrix G(x,y) at each scan grid location. Under scan grid test conditions where signal content has

been shifted into G(x,y), there will be a larger measure of linear dependence than under the condition

of noise only. Once all scan grid points have been computed we will have a 3 dimensional matrix. The

first two dimensions are the x and y scan grid, and the third dimension contains N elements, one for

each receiver. The notation

ξi,(x,y) i = 1..N (3.28)

will be used to describe the individual elements of ξ(x,y) and ξi will be used describe the values of the 2

dimensional matrix of all scan grid locations to the ith receiver. If we define the distance from receiver

i to the current scan grid location as

Ri,(x,y) =
√

(x− sx,i)2 + (y − sy,i)2 (3.29)
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Figure 3.4: The SVD based contribution of the ith receiver submetric in (a) receiver 1, (b) receiver 2,

(c) receiver 3, and (d) receiver 4 to the G region singular value (ξi,(x,y))

then we can define the set of all scan grid locations relative to the ith receiver less than Ri,(x,y) as
⋃
i.

We then compute the maximum value

ξ̄i,(x,y) = max |ξi,∀ (x,y)∈
⋃
i
| (3.30)

that has been produced by the ith receiver data to the largest singular value of G(x,y). The term ξ̄i,(x,y)

represents the maximum contribution receiver i has made to the largest singular value of the matrix

G(x,y) as a function of range.

For example, Figure 3.4 shows the 4 metric images defined by ξi for i = 1..4 using the example

scenario shown in Figure 2.4. Each metric image represents the contribution of the receiver to the
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Figure 3.5: The SVD based contribution of the ith receiver submetric as a function of range in (a)

receiver 1, (b) receiver 2, (c) receiver 3, and (d) receiver 4 to the G region singular value (ξ̄i,(x,y))

singular value in the region defined by the G(x,y) matrix. As the waveform is shifted farther in range

than the true distance as seen in receiver 2 by the location (2.5,7) in Figure 3.2b, the G(x,y) matrix has

a large singular value due to signal content. As the range to a receiver increases even further, the signal

is shifted into and then out of the region defined by the matrix G(x,y). To capture this condition, we

compute the maximum contribution the individual receiver has made to the singular value as a function

of range. Figure 3.5 shows the maximum contribution as a function of range, ξ̄i. If we closely examine

and compare Figure 3.4b and Figure 3.5b, we see that just beyond the true transmitter position, the

submetric value increases. The maximum as a function of range holds the max value and a circle with
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Figure 3.6: The SVD submetric components (a) largest singular value in F(x,y), (b) contribution of ith

receiver, (c) final SVD submetric, and (d) final SVD submetric zoomed near true transmitter position

showing a single peak

sharp contrast is created just beyond the true transmitter position. This is due to the signal entering

(being shifted into) and exiting the G(x,y) region first contributing and then not contributing to the

largest singular value of the scan grid position under consideration.

We then combine all N of these metric maps together to form

ξ̄(x,y) =

N∑
i=1

ξ̄i,(x,y) (3.31)

which is the sum of the max metric maps along the receiver dimension. The term ξ̄(x,y) represents the
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contribution of the ith receiver, producing a small value when signal content has not yet been seen in

all receivers as a function of range. Finally, we define the SVD submetric as

σ2
F,1

ξ̄(x,y)

(3.32)

where σ2
F,1 acts as a normalization factor.

Figure 3.6 shows an example of the components that make up the SVD submetric using the ongoing

scenario shown in Figure 2.4. Figure 3.6a shows the largest singular value, σ2
F,1, of the signal region

defined by the matrix F(x,y) at each scan grid location. This looks similar to the TART metric, but it

is now a coherent summation of the data that has been shifted into the signal region at each scan grid

location. Figure 3.6b is the denominator of the SVD submetric, which provides an indication of the

contribution of the each receiver to the largest singular value of the noise region defined by G(x,y). If no

receiver contributes to the singular value, resulting in a small singular value, this metric is large. The

final SVD metric is shown in Figure 3.6c and shown zoomed in Figure 3.6d near the true transmitter

position.

3.4.3 Power Submetric

The third and final submetric is simply a ratio of the power in each region. Using (3.17) and (3.18),

we define the power submetric as

F̄(x,y)

Ḡ(x,y)

. (3.33)

At the correct scan grid location, we expect the signal content in F(x,y) and noise in G(x,y). As

signal content increases in F(x,y), the power submetric increases. If signal content protracts itself from

G(x,y), the power submetric decreases. The maximum of the power metric under ideal conditions (no

interference) will always be at the transmitter location where the power of the signal is large in the

F(x,y) region and the power of G(x,y) is small with only noise, both conditions which increase the power

submetric.

Figure 3.7 shows the components of the power submetric using our ongoing example of a known

waveform transmitted in a ideal channel with no multipath. Figure 3.7a shows the power in the signal

region defined by the matrix F(x,y) and Figure 3.7b shows the inverse of the power in the noise region

defined by the matrix G(x,y) at each scan grid location. If the noise region defined by the matrix

G(x,y) has noise only as is the case at the true transmitter position, Ḡ(x,y) is small, resulting in a larger

power submetric. Figure 3.7c shows the power submetric combining the powers in both signal and
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Ḡ(x,y)

X (meters)

Y
 (

m
et

er
s)

 

 

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20
Transmitter
Receiver

(c)
F̄(x,y)
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Figure 3.7: The power submetric components (a) power in F(x,y), (b) inverse of power in G(x,y), (c)

final power submetric, and (d) final power submetric zoomed near true transmitter position showing a

single peak

noise regions and Figure 3.7d shows the power submetric zoomed on the transmitter position showing

a single peak that well defines the true transmitter position in this example.
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3.5 Minimum Submetrics

We could define the final submetric from (3.23), (3.32), and (3.33) as

1

η(x,y)

σ2
F,1

ξ̄(x,y)

F̄(x,y)

Ḡ(x,y)

(3.34)

where each subcomponent is simply multiplied together to influence the final metric. The problem with

this formulation is that if any component of the denominator is small, the final metric could become

very large. In order to avoid this exaggeration, we develop a minimum submetric based on the first few

samples. This is similar in intent to what is done in the construction of the two step LED algorithm

described in Section 2.2, where we defined the threshold based on the first 60 samples in (2.8). The

CART metric similarly needs a computation based on the first α samples under the same assumption

to the LED algorithm that no signal exists in that region.

Similar to the definition of region F(x,y) in Section 3.3, we begin by taking the first α samples of

A (in MATLAB notation Ā = A(1 : α, :)). The only difference between F(x,y) and Ā is that Ā is not

subject to the rephasing performed by B(x,y). Next, as was done with the submetrics, we compute the

SVD

Ā = UĀΣĀV
H
Ā (3.35)

and define the decomposition components as

UĀ = [uĀ,1 uĀ,2 · · · uĀ,M ] (3.36)

ΣĀ = diag
(

[σ2
Ā,1 σ

2
Ā,2 · · · σ

2
Ā,N ]

)
(3.37)

VĀ = [vĀ,1 vĀ,2 · · · vĀ,N ]. (3.38)

Finally, we compute the three minimum submetrics as

ηΥ =

α−1∑
l=0

|uĀ,1 − (uTĀ,1s
∗
α,tx(sHα,txsα,tx)−1) sα,tx| (3.39)

σ2
Υ = σ2

Ā,1 (3.40)

PΥ =
1

Nα

α−1∑
j=0

N∑
i=1

|Āi,j |2 (3.41)

where uĀ,1 is the first singular vector that spans the row space (sample dimension) of Ā, sα,tx is the

leading edge of the known transmit waveform as defined in (3.22), σ2
Ā,1

is the first singular value of Ā,

and Āi,j is the i, jth element of the matrix Ā. These three minimum metrics serve as a measure of the

noise in the signal system and is used to limit unwanted peaks in the CART metric.
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3.6 Final CART Metric

The final metric is computed using the data matrix A from (2.13). The first optional step is to

compute a maximum power on the input signal that limits the signal power to the maximum threshold

level set by the LED algorithm computed in Section 2.2. We briefly mention this limiting operation

in the next chapter, but leave it to the reader for further experimentation. In general, it appears that

performing a power limiter operation prior to the CART algorithm improves the performance in a heavy

multipath environment, but perhaps reduces the performance under LOS high SNR conditions. The

next step is to normalize each column to their respective 1-norms in the time domain. This ensures that

large amounts of energy seen at a single receiver do not overshadow the final metric. Next, assuming

that we have the full data matrix of frequency data from (2.13) and the rephasing matrix from (2.14)

at each scan grid location, we again produce the element wise multiplication of A and B(x, y) as seen

in (2.15). The scan grid position in the Cartesian domain is (x,y) and the corresponding rephased data

matrix in the frequency domain is defined as D(x,y). As was done in the TART algorithm in equation

(2.17), we also take the IDFT of the data matrix rephased to the current scan grid location, which we

again denote by Z(x,y) = F−1[D(x,y)].

Next, the matrices F(x,y) and G(x,y) are defined as in Section 3.3, which define the signal portion

and noise portion respectively. Using these two matrices, we compute the similarity, SVD, and power

submetrics as discussed in Section 3.4. Using the original data matrix A, we also compute the minimum

metrics as in Section 3.5.

Combining all of these submetrics, we define the final CART metric as

ζ(x,y)C =
1

(η(x,y) + ηΥ)

σ2
F,1

(ξ̄(x,y) + σ2
Υ)

F̄(x,y)

(Ḡ(x,y) + PΥ)
(3.42)

which contains a power ratio, a coherent addition of the signal energy in the F(x,y) signal region, and

utilizes the known transmit waveform. The noise calibration values (ηΥ, σ
2
Υ, PΥ) are added to the metric

to reasonably limit the computed submetrics values (η(x,y), ξ̄(x,y), Ḡ(x,y)) at each scangrid location from

causing an unrealistically large value in the output metric. It is apparent that if there is a decrease in

the power in the noise G(x,y) region or if the known transmit signal is removed from the coherent SVD

solution more precisely, the CART metric is increased. If there is more power and a larger singular

value in the F(x,y) signal region, the CART metric is increased.

Figure 3.8 summarizes the three submetrics shown in Section 3.4. Combining these submetrics with

the minimum submetrics as in (3.42) results in the metric image seen in Figure 3.9, with Figure 3.9a

being the full metric image and Figure 3.9b shows the region around the true transmitter position.
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Figure 3.8: Summary of three CART submetrics

A single scan grid location is illuminated in the metric image using the P410 waveform with an ideal

channel model with no multipath and no noise.
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Figure 3.9: Final CART metric image using known transmit waveform in a simulated environment

with no multipath
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Chapter 4

Theoretical Analysis using Simulated

Multipath

Starting in Chapter 2, as seen in Figure 2.4, we introduced the ideal channel model with no fading,

multipath, or noise to illustrate how the two step LED, SART, TART, and CART algorithms behave

using the P410 transmit waveform. The ideal model was carried forward by example in this dissertation

until now. We now wish to examine the performance of each algorithm in the presence of multipath

by simulation.
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Figure 4.1: Simulation Setup

Simulation is a useful tool in understanding the performance of algorithms without the need for

expensive and time consuming data collections. With the understanding that the conclusions from
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Figure 4.2: (a) Contains an example of simulated data using the IEEE 802.15.4a CM4 indoor multipath

model, and (b) shows the resulting data matrix in the time domain

simulation are only as good as the models that drive them, we wish to use the most accurate indoor

multipath model possible. The industry standard in the area of indoor localization is the IEEE 802.15.4a

[27], which provides MATLAB code for uniformity in simulation.

For this section, we use the standard IEEE 802.15.4a CM4 indoor multipath model for the office

environment to generate simulated waveforms from one transmitter to four receivers as shown in Figure

4.1. The transmitter was placed with an (xm,ym) position of (2.11,8.21) and the receive antennas were

placed at (0,0), (0,10), (10,0), and (10,10), all in meters. Since the CART algorithm utilizes the

knowledge of the transmitted waveform, we also compute the Matched Filter (MF) solution prior to

computing the the LED, SART, and TART solutions.

The errors of the two step LED, and DPAs SART, TART, and CART algorithms are analyzed in

several ways, first as a comparison of the Mean Squared Error (MSE) to an estimated theoretical limit

set by the Cramer Rao Lower Bound, second as a plot of Cumulative Density Function (CDF) of the

errors, and last as a plot of Root Mean Squared (RMS) error. Before we present the performance

results of the simulation, we show by example the superior performance of the CART algorithm in

comparison to the other three methods considered.
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4.1 Simulation Example

The sensor configuration for the simulation chapter is seen in Figure 4.1. The IEEE 802.15.4a

CM4 [27] indoor multipath model was used to generate an appropriate impulse response between the

transmitter and all receivers without the propagation delay. The generated impulse response is then

used to produce a simulated received waveform at each receiver. This is done by convolving the impulse

response with the known P410 transmit waveform followed by a proper time shift representing the delay

due to the associated range for each receiver position relative to the transmitter position. An example

of the simulated data can be seen in Figure 4.2, which shows the magnitude of the signal at each

receiver as well as the IDFT of the resulting data matrix A as defined by equation (2.13) under high

signal to noise conditions. A detailed look at Figure 4.2a shows significant multipath structure along

with fading effects. The direct path signal at all four receivers is nowhere near the peak power of

the waveform and it is obvious when comparing to the ideal simulation in Figure 2.4b that there are

many closely spaced time delays in the indoor office environment multipath model that cause overlap

of the transmitted waveform. Both of these characteristics of the received waveform make it difficult

to localize the transmitter.

The three existing algorithms discussed in Chapter 2 are first applied to the same data. Figure 4.3a

to Figure 4.3c show the example data processed using the two step LED method, SART, and TART.

Under this simulated heavy multipath, the SART and TART algorithms fail to produce a good position

estimate, highlighting the problem with existing DPAs that were not designed for UWB IR waveforms

in heavy multipath. The two step LED method produces a reasonable estimate somewhat near the

true transmitter position. The problem is still that the overlap of received pulses produces constructive

addition and destructive cancelation of the received waveform, resulting in a larger variance in the

single independent range estimates.

Figure 4.3d shows the result when the same data is processed using the new CART algorithm

introduced in Chapter 3. A coherent combination of the direct path signals is used to perform a

leading edge detection on the ensemble of received data. The result is a single scan grid position that

has significantly more energy than its neighbors. Figure 4.4b shows the CART result zoomed near the

true transmitter position, from which the pixel closest to the true transmitter position is easily chosen

for this example data. As a comparison, we also show the two step LED zoomed with the same axes

in Figure 4.4a.

It is also instructive to examine the submetrics of CART and how they combine to generate this
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Figure 4.3: The example data was processed using (a) two step LED method, (b) SART, (c) TART,

(d) CART.

solution. Figure 4.5 shows the contribution of each receiver to the G region as defined in Section 3.3

and seen in Figure 3.2b. The structure of the multipath as it enters the G region is evident in these four

metric images. The maximum contribution as a function of range to each receiver is seen in Figure 4.6.

The complex structure of the multipath has been reduced to produce these more simple metric images.

Summing these metric images, and producing the final SVD submetric, results in the metric image

seen in Figure 4.7b. The other submetrics, similarity and power, are also seen in Figure 4.7. Each of



44

(a) LED (b) CART zoomed

Figure 4.4: The example data was processed using (a) the two step LED zoomed near the true trans-

mitter position and (b) CART zoomed near the true transmitter position.

these produce a high value near the true transmitter position, that when combined, produce the single

scan grid localization solution from the extremely difficult multipath data used in this example.

This simulation demonstrates that the CART algorithm can have some immunity to the large

multipath of indoor environments. Further statistical analysis of performance is required to properly

examine the benefits of the CART algorithm and how it compares to the other existing algorithms

under the heavy multipath conditions of indoor environments. In the example in this section, we

introduced multipath to the signal, but no noise. To fairly analyze the performance of each algorithm,

we wish to add multipath and noise and measure the performance of each algorithm as a function of

the SNR.
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Figure 4.5: The contribution of (a) receiver 1, (b) receiver 2, (c) receiver 3, and (d) receiver 4 to the

G region largest singular value (ξi). For each receiver, we see no signal structure is evident in the G

region until the scan grid under test passes the true transmitter position in range. Scan grid positions

farther in range than the true transmitter position begin to produce some interesting patterns due to

multipath based upon the amount of signal that is contributed to the largest singular value of the G

region by the respective receiver.
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Figure 4.6: The largest contribution as a function of range made by (a) receiver 1, (b) receiver 2, (c)

receiver 3, and (d) receiver 4 to the G region largest singular value (ξ̄i) at each scan grid location.

The submetric ξi seen in Figure 4.5 is now modified to have the largest value seen as a function of

range from the respective receiver. This captures the case of a large multipath signal entering and then

exiting the G region as we compute the metric image based on the desired scan grid.



47

X (meters)

Y
 (

m
et

er
s)

 

 

0 2 4 6 8 10

0

2

4

6

8

10

Transmitter
Receiver

(a) Similarity submetric, 1
(η(x,y)+ηΥ)

X (meters)

Y
 (

m
et

er
s)

 

 

0 2 4 6 8 10

0

2

4

6

8

10

Transmitter
Receiver

(b) SVD submetric,
σ2
F,1

(ξ̄(x,y)+σ2
Υ)

X (meters)

Y
 (

m
et

er
s)

 

 

0 2 4 6 8 10

0

2

4

6

8

10

Transmitter
Receiver

(c) Power submetric,
F̄(x,y)
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Figure 4.7: The three submetrics of the CART algorithm: (a) shows the similarity, (b) SVD, and (c)

power submetrics
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4.2 Cramer Rao Lower Bound (CRLB)

One way to compare the performance of each of the two step LED, SART, TART, and CART

algorithms is to compare the Mean Squared Error (MSE) of the Cartesian estimates to the theoretical

best performance any unbiased estimator of the Cartesian position can achieve when the signals at

each receiver are corrupted by multipath and noise. This theoretical bound is called the Cramer Rao

Lower Bound (CRLB). Realistically, it it impractical to determine an exact bound due to the nature

of the simulated multipath, so we approximate the CRLB based upon the work of Dardari [6], Kaune

[28], and Kay [29].

The approximated CRLB is computed based upon the two step procedure for position estimation

seen in Figure 2.1. The range estimates of the first step are bound based upon multipath conditions, and

the position estimates of the second step are bound based upon the known geometry of the transmitter

and receivers combined with the range estimate variances.

To begin the analysis, we need to re-define the model in equation (2.1) by explicitly representing

the average energy of the received signal as a factor in the expression for si(t),

si(t) =
√
Ep,i

Li∑
l=1

αl,i p(t− τl,i) + ni(t) (4.1)

where Ep,i is the average energy of the waveform at the ith receiver, ni(t) is the additive white Gaussian

noise with power spectral density of
N0,i

2 , and the multipath components are normalized such that

Li∑
l=1

E[α2
l,i] = 1. (4.2)

With this new formulation of the channel model, Dardari, et. al [6] point out that the variance of the

independent range estimates in the multipath environment are bounded by

V [r̂i] ≥
c2

8π2α2
1,iβ

2SNRi
(4.3)

where V [ · ] is the variance operator, r̂i is as defined by equation (2.9), the Signal to Noise Ratio (SNR)

at the ith receiver is defined as

SNRi =
Ep,i
N0,i

(4.4)

and the transmitted waveform bandwidth is defined by

β2 =

∫∞
−∞ f

2|P (f)|2df∫∞
−∞ |P (f)|2df

. (4.5)
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This formulation gives us a bound on the independent range estimates, r̂i, which is the first step of the

two step position estimate as discussed in Section 2.2. Next, we generalize the analysis shown in [28]

to accommodate arbitrary receiver geometries and carry the range variances forward.

To begin the second step in the analysis, we start by stating that we have noise corrupted measure-

ments of a set of ranges from the unknown transmitter position to a set of known receivers. This is

modeled as

yi = ri + vi, i = 1..N (4.6)

where ri is the range from the ith receiver to the transmitter, N is the number of receivers, and vi is

additive noise. Putting this measurement in terms of the Cartesian parameters we care about gives

yi =
√

(xm − sx,i)2 + (ym − sy,i)2 + vi (4.7)

where xm and ym describe the 2 dimensional Cartesian position of the unknown transmitter and sx,i,

sy,i contains the known receiver positions. The set of unknown parameters to estimate is then defined

as Θ = [xm ym]T .

If the measurement noise vi is assumed to be Gaussian noise and is defined by

vi ∼ N (h(Θ), R(Θ)) (4.8)

then we can write the likelihood function as

p(y|Θ) =
1√

|2πR(Θ)|
e−

1
2

(y−h(Θ))TR−1(Θ)(y−h(Θ)) (4.9)

where h(Θ) = [h1(Θ), . . . , hN (Θ)]T is a complete set of observation functions and y = (y1, . . . , yN )T

is a complete measurement set. This formulation states that given the unknown parameters Θ, the

probability density function is the standard Gaussian multivariate random distribution with mean h(Θ)

and covariance R(Θ).

The variance of the unknown parameters are then bounded by

V [Θ̂] ≥ J−1(Θ) (4.10)

where J(Θ) is the Fisher Information Matrix with lk elements defined as [29]

[J(Θ)]lk = −E
[∂2 ln p(y|Θ)

∂Θl∂Θk

]
, (4.11)
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where l = 1..2 and k = 1..2 are the row and column indices of the matrix J (spanning the 2 unknown

parameters in our case), E[ · ] is the expectation operation and ln is the natural log operation. The

expression ln p(y|Θ) is referred to as the log-likelihood function.

Knowing the likelihood function allows us to proceed and compute the elements of the Fisher

Information Matrix defined in (4.11). The complete derivation is published by Kay [29], p. 73 and

states that the Fisher Information Matrix can be expressed as [29], p. 47

[J(Θ)]lk =
(∂h(Θ)

∂Θl

)T
R−1(Θ)

(∂h(Θ)

∂Θk

)
+

1

2
tr
(
R−1(Θ)

∂R(Θ)

∂Θl
R−1(Θ)

∂R(Θ)

∂Θk

)
(4.12)

where l = 1..2 and k = 1..2 are the row and column indices of the matrix J (spanning the 2 unknown

parameters), tr is the trace operator, and

∂h(Θ)

∂Θl
=



∂
[
h(Θ)

]
1

∂Θl

∂
[
h(Θ)

]
2

∂Θl
...

∂
[
h(Θ)

]
N

∂Θl


. (4.13)

This is a general solution for the Fisher Information Matrix that, in this case, is useful in the compu-

tation of the CRLB.

If we examine equation (4.7) and point out that h(Θ) in equation (4.9) can be written as

h(Θ) =



√
(xm − sx,1)2 + (ym − sy,1)2√
(xm − sx,2)2 + (ym − sy,2)2

...√
(xm − sx,N )2 + (ym − sy,N )2

 (4.14)

which is a N×1 vector of observation functions. This vector of functions describe how the measurement

set y is related to the unknown parameters. As required by equation (4.12), the partial derivative would

then be

∂h(Θ)

∂Θl
=



∂
∂Θl

√
(xm − sx,1)2 + (ym − sy,1)2

∂
∂Θl

√
(xm − sx,2)2 + (ym − sy,2)2

...

∂
∂Θl

√
(xm − sx,N )2 + (ym − sy,N )2

 . (4.15)

To move this analysis forward, we make the assumption that the noise variance of the range estimate

is not effected by the unknown transmitter position. This allows us to simplify this analysis by stating
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that the average energy in each receiver is the same at all receivers. Mathematically, we state this as

Ep,i = Ep ∀ i (4.16)

where Ep now defines the average energy at all the receivers. If we further make the assumption that

all the noise power is the same in all the receivers, then it is also true that

SNRi = SNR ∀ i. (4.17)

As long as we assign the SNR in this manner when performing the Monte Carlo simulation, the

comparison of MSE from the two step LED, SART, TART, and CART algorithms to this estimated

CRLB is valid.

Since the noise variance of the range estimate is not affected by the transmitter position, we can

also define the covariance matrix as R(Θ) = R = σ2INxN , where INxN is a N × N identity matrix.

Under this assumption, (4.12) simplifies to

[J(Θ)]lk =
(∂h(Θ)

∂Θl

)T
R−1

(∂h(Θ)

∂Θk

)
(4.18)

where the tr operator is no longer a factor since ∂R(Θ)
∂Θl

= 0 ∀ l. Furthermore, this is equivalent to

J(Θ) =
∂hT

∂Θ
R−1 ∂h

∂Θ
(4.19)

where ∂h
∂Θ is the Jacobian of the measurement set h with respect to the unknown parameter set Θ.

Computing the Jacobian using (4.14) and the parameters Θ = [xm ym]T gives us

∂h

∂Θ
=



xm−sx,1√
(xm−sx,1)2+(ym−sy,1)2

ym−sy,1√
(xm−sx,1)2+(ym−sy,1)2

xm−sx,2√
(xm−sx,2)2+(ym−sy,2)2

ym−sy,2√
(xm−sx,2)2+(ym−sy,2)2

...
...

xm−sx,N√
(xm−sx,N )2+(ym−sy,N )2

ym−sy,N√
(xm−sx,N )2+(ym−sy,N )2


=



xm−sx,1
r1

ym−sy,1
r1

xm−sx,2
r2

ym−sy,2
r2

...
...

xm−sx,N
rN

ym−sy,N
rN

(4.20)

and

J(Θ) =

 xm−sx,1
r1

xm−sx,2
r2

· · · xm−sx,N
rN

ym−sy,1
r1

ym−sy,2
r2

· · · ym−sy,N
rN




1
σ2 0 · · · 0

0 1
σ2

. . .
...

...
. . .

. . . 0

0 · · · 0 1
σ2





xm−sx,1
r1

ym−sy,1
r1

xm−sx,2
r2

ym−sy,2
r2

...
...

xm−sx,N
rN

ym−sy,N
rN

(4.21)
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which is the generalization of the case in [28] without the unknown time delay constant and using equal

variance for all receivers. The Fisher Information Matrix then equals

J(Θ) =
1

σ2

 ∑N
i=1

(sx,i−xm)2

r2
i

∑N
i=1

(sx,i−xm)(sy,i−ym)

r2
i∑N

i=1
(sx,i−xm)(sy,i−ym)

r2
i

∑N
i=1

(sy,i−ym)2

r2
i

 (4.22)

and applying the matrix inversion lemma gives us the inverse of J(Θ) as required by (4.10) as

J−1(Θ) = σ2

 1
Υ

∑N
i=1

(sy,i−ym)2

r2
i

− 1
Υ

∑N
i=1

(sx,i−xm)(sy,i−ym)

r2
i

− 1
Υ

∑N
i=1

(sx,i−xm)(sy,i−ym)

r2
i

1
Υ

∑N
i=1

(sx,i−xm)2

r2
i

 (4.23)

where

Υ =

(
N∑
i=1

(sx,i − xm)2

r2
i

)(
N∑
i=1

(sy,i − ym)2

r2
i

)
−

(
N∑
i=1

(sx,i − xm)(sy,i − ym)

r2
i

)2

.

The variance of the unknown parameters are therefore bounded by

V [x̂m] ≥ σ2

Υ

N∑
i=1

(sy,i − ym)2

r2
i

(4.24)

V [ŷm] ≥ σ2

Υ

N∑
i=1

(sx,i − xm)2

r2
i

(4.25)

using N receive antennas at known locations.

If the independent range estimates were efficient estimates, meaning they achieved the CRLB for

the first step, we can substitute

σ2 =
c2

8π2α2
1,iβ

2SNR
(4.26)

into (4.24) and (4.25) to get the CRLB of the unknown transmitter position as

V [x̂m] ≥ c2

8π2α2
1β

2SNR

1

Υ

N∑
i=1

(sy,i − ym)2

r2
i

(4.27)

V [ŷm] ≥ c2

8π2α2
1β

2SNR

1

Υ

N∑
i=1

(sx,i − xm)2

r2
i

(4.28)

for the multipath condition, where

α1 =
1

NM̄c

N∑
i=1

M̄c∑
j=1

|α1,ij | (4.29)

where M̄c is a large number much greater than the number of total Monte Carlo simulations included

in the MSE estimates and α1,ij is the simulated direct path normalized magnitude to the ith receiver for

the jth modeled multipath scenario. This averages over many cases of direct path magnitude relative

to the respective multipath components in order to produce a measure of α1.
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4.3 Mean Squared Error (MSE) and CRLB vs. Signal to Noise Ratio

(SNR)

Having derived the appropriate CRLB for the multiple receiver location problem in multipath, we

can now compare the simulated Mean Squared Error (MSE) for each of the two step LED, SART,

TART, and CART algorithms to the theoretical lower bound on the estimates x̂m and ŷm. For the

simulation to be presented here, we ran 300 Monte Carlo trials at each SNR setting from -34 to 10 dB

in 2 dB steps. When setting the SNR value, we chose the same SNR for all 4 receivers as is required

for the assumptions that produced (4.18). The true transmitter position was chosen as (xm, xy) =

(2.11,8.21), with a scan grid defined by xmin = −1, xmax = 11, ymin = −1, ymax = 11 with a ∆x = 0.2

and ∆y = 0.2, all in meters and a α = 20 and γ = 60 for the CART algorithm. With these parameters,

the smallest possible errors due to grid quantization are

εs,x = xm − 2.2 = 0.09 = −20.9 dB (4.30)

εs,y = ym − 2.2 = 0.01 = −40 dB (4.31)

which determine the minimum X and Y errors possible in the simulation. We call these limits the scan

grid performance limit.

Figure 4.8 shows the CRLB compared to the MSE of each algorithm, the two step LED, SART,

TART, and CART. In addition, we show the scan grid limit on each error plot. It is clear that the

SART and TART algorithms completely fail under the presence of the level of heavy multipath used in

this simulation as they were not designed to take advantage of the UWB IR waveform features. This

failure was seen in the example in Section 4.1, where the SART and TART metric images demonstrated

poor results. The two step LED algorithm does quite well in the low SNR regions, but then reaches a

performance limit at around -8 dB of MSE in both the X and Y error plots. This equates to a respectable

mean absolute location error of about 0.4 meters. The CART algorithm, however, performs remarkably

well in slightly higher signal to noise ratios. At about -10 dB SNR, it reaches near the CRLB limit in

both X and Y error plots. Once the X error reaches the scan grid limit, it levels off close to the -20.9

dB level defined by εs,x. The Y error continues to show a more and more accurate estimate as the

SNR level increases, following the CRLB closely. The final X error is about -20 dB, which equates to

about 0.1 meter mean absolute error, a factor of 4 times better than the two step LED, only limited by

the scan grid imposed limit. The Y error reaches a remarkable -34 dB of MSE at 10 dB SNR, which

equates to about a 0.02 meter mean absolute error, a 20 times improvement over the two step LED
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Figure 4.8: SART, TART, CART, and LED performance compared to the Cramer Rao Lower Bound

(CRLB) using 300 trials at each SNR setting

method. This demonstrates the near efficiency of the CART algorithm, that is, it produces an estimate

that is near the best theoretically possible estimate of the parameters xm and ym as described by the

CRLB.
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4.4 Cumulative Density Function (CDF) of Position Errors

Another way to examine the errors is to plot the Cumulative Density Function (CDF) of the error.

We again use the same simulation scenario as described in Section 4.3, where the true transmitter

position is (xm, ym) = (2.11,8.21), with a scan grid defined by xmin = −1, xmax = 11, ymin = −1,

ymax = 11 with a ∆x = 0.2, ∆y = 0.2, and a α = 20 and γ = 60 for the CART algorithm. The errors

were saved for 300 Monte Carlo trials and for SNRs from -34 to 10 in 2 dB steps.

Figure 4.9: Cumulative Density Function (CDF) of the position error at 0 dB Signal to Noise Ratio

(SNR)

To produce the CDF of position error plot, we calculate the magnitude of the error vector at each

Monte Carlo trial using

ε̂r =
√

(xm − x̂m)2 + (ym − ŷm)2 (4.32)

where we refer to ε̂r as the position error. The errors from each Monte Carlo trial is then sorted from

the smallest to the largest. We then plot the the absolute errors as a function of the normalized number

of Monte Carlo trials. Figure 4.9 shows the resulting CDF based on our measurements at a setting
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of 0 dB SNR. The plots also show a span of 2 meters error, highlighting the 1 meter error and the

minimum error imposed by the scan grid limit as defined in (4.30) and (4.31). For this simulation,

the performance of the CART algorithm is clearly the best. The TART and SART algorithms hardly

produce an error less than 1 meter. The two step LED algorithm performs reasonably well, producing

an error of about 0.4 meters 50% of the time. The CART algorithm produces estimates that are less

than 1 meter all the time with errors less than about 0.1 meters 92% of the time in this example using

0 dB SNR.

We can also represent each of these curves using a colorbar seen in the right of Figure 4.9. The

position on the colorbar represents the current CDF from 0 to 1 and the color indicates the resulting

position error that has been limited to a maximum of 2 meters. For example, the LED algorithm results

can be represented by a colorbar that is mostly dark blue due to the smaller position errors until it

turns to red near the top, where the position errors are maximized to 2 meters. The performance of

the SART algorithm can be represented by the colorbar that is dark red from approximately the 50%

CDF location to a CDF value of 1, indicating that approximately 50% of the time, the SART algorithm

produces an error greater than 2 meters.

We also plot all the position error CDFs as a function of all simulated SNR in Figure 4.10. The

errors have been limited to 2 meters on the color scale. The colorbars from Figure 4.9 have been

rotated clockwise and inserted into the images in 4.10a and Figure 4.10b at the 0 dB SNR setting.

These images reveal the robustness of the CART algorithm. If sufficient signal power is present, the

CART algorithm always produces an estimate of position with error of less than a meter. The common

two step LED method still produces errors larger than 2 meters, even though the SNR is relatively

good between 0 and 10 dB. The SART and TART algorithms usually produce poor estimates.
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(c) TART Position Errors
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(d) CART Position Errors

Figure 4.10: Cumulative Density Function (CDF) of the position error at each Signal to Noise Ratio

(SNR) limited to 2 meters error for the (a) LED, (b) SART, (c) TART, and (d) CART algorithms

4.5 Root Mean Squared (RMS) Error vs. SNR

In Section 4.3 we compared the MSE to the CRLB as a function of SNR. It is also instructive to

examine the Root Mean Squared (RMS) error, where we calculate the square root of the mean of all

the ε̂r from (4.32) that resulted from the 300 Monte Carlo trials.

Figure 4.11 shows the RMS error for each SART, TART, CART, and LED algorithms as a function

of SNR. The SART and TART algorithms perform poorly as all the previous analysis has shown. The

LED algorithm performs the best in the very low SNR region between about -35 to -15 dB SNR. The

CART algorithm performs the best in the SNR region between -15 dB and higher. As we saw in Figure
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Figure 4.11: RMS Error position estimates for 300 Monte Carlo trials using the SART, TART, CART,

and LED algorithms

4.8, the CART error in this SNR region is primarily limited by the chosen scan grid resolution in this

simulation example. We are able to easily obtain sub meter accuracy in this simulation using both the

LED and CART algorithms. The CART algorithm, however, is able to achieve a much smaller error

in -15 dB and higher values of SNR.
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Chapter 5

Data Collection Hardware

To further validate the CART algorithm, we need to collect and analyze data in a controlled

experiment. Simulation is unable to capture the real world effects on receivers such as unknown

interference and non Gaussian noise conditions. We, therefore, must devise a collection strategy that

enables this evaluation. This means the collection must preserve the TOA information of the UWB

waveform as it propagates through the channel.

This chapter presents a new Two Way Ranging (TWR) alignment algorithm that preserves the TOA

information that enables experimentation. The new collection method uses measurements provided by

the off the shelf Ultra-Wideband (UWB) Impulse Radio (IR) device to estimate the transmit time of

a TWR conversation. This alignment allows us to use a single radio receiver and move it from survey

point to survey point while preserving TOA information. This new method also allows for dynamic

movement of both transmitter and receiver for the wand application in Chapter 7 when we explore

data fusion using a simple motion model and RF data captures.

The data collection hardware uses Time Domain’s PulseOn 410 (P410) UWB ranging radios. The

P410 is capable of operating as a ranging device, a radar, or a communication device using a series of

narrow pulses repeated at approximately 10.1 MHz. The pulse widths are on the order of 500 ps, giving

a rough 2 GHz of bandwidth centered around 4.1 GHz. The commercial version transmits a total of

-15 dBm of power, which is the maximum allowed by FCC Part 15 UWB devices. As stated in P410

documentation [30], the pulses are “coherently integrated” to produce a measurement of the channel

or receive data. Also, channel independence and data communication is achieved using modifications

to position, pulse rate, and/or phase changes in the pulse train.

Two P410 units are used to form the collection system, a requester and a responder. The requester,
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Figure 5.1: Overview of hardware used for data collection

which is part of the receiver, is connected to a laptop through a standard Universal Serial Bus (USB)

adapter. The responder, which is part of the transmitter, is connected by USB to a custom Field

Programmable Gate Array (FPGA) soft core embedded processor through a MAX3421 USB to 4-

wire SPI Bus. Figure 5.1 shows an overview of the hardware configuration used for this experimental

implementation along with the various hardware components that make up the transmitter and receiver.

We refer to the laptop connected to the requester as the requester host and the embedded device

connected to the responder as the responder host. The requester host laptop and the P410 requester

unit make up the receiver hardware. The responder host embedded device, the MAX3421 USB to SPI

chip, and the P410 responder make up the transmitter hardware.

In this chapter, we first introduce the two way time of flight measurement followed by an example

data collection using the P410 to highlight the difficulty with ranging in a multipath environment. Next,

we present the modifications necessary to estimate the transmit time, which enables the preservation

of the TOA information of the received waveform. Then, we discusses the synchronization performance

of the proposed method. For more information on the details of the embedded device that is part of

the transmitter unit, we refer the reader to Appendix A

5.1 Two Way Time of Flight

The range measurement provided by the Time Domain P410 evaluation kit is based upon a two

way transaction between a requester and a responder unit [31]. Figure 5.2 shows the relevant timing

signals related to the transaction. First, at time t = 0, the requester sends a series of short pulses in the

form of a packet at approximately a 10 MHz rate (single pulse shown in figure). After some unknown

time of flight, tf , and after a lock is acquired on the incoming pulse (trlock), the responder samples
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and records the data near the critical point of arrival. The lock spot detection system can be thought

of as an oscilloscope trigger system, capable of storing and retrieving data that both immediately

precedes and succeeds the trigger position in the input waveform. After a fixed amount of turn around

time, tT , relative to the responder lock spot, the responder sends a pulse packet back to the requester.

The requester then locks onto the responders transmission at time ttlock, around which it samples and

records the arriving pulse that has been corrupted by noise and channel multipath. The recorded raw

data samples for the two way time of flight measurement is called scan data.

Figure 5.2: Two Way Ranging (TWR) transaction example

The time of the entire transaction can be written as

tCT = 2tf + trε + tT + ttε (5.1)
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where trε and ttε are the difference between the true time of arrival of the pulse and the lock spot of the

responder and requester unit. The desire is to extract the range between the requester and responder

antenna from the time of flight using

r = tfc (5.2)

where c is the speed of light and r is the range between the requester and responder antennas.

The P410 units send several messages to their respective hosts when connected during this two

way range transaction. One message it sends is the RCM RANGE INFO (0x0201) message [32], which

contains a field named Precision Range Measurement (PRM). The PRM provides an estimate of the

range between the requester and responder antennas by estimating trε and ttε using a leading edge

detection algorithm on the recorded scan data in the responder and requester. There also exists a

coarse range measurement (Coarse TOF) in the RCM RANGE INFO (0x0201) message sent by the

P410 to the host controller. This coarse range measurement contains the number of samples in the

TWR transaction time, minus the number of samples in the turn around time (tT ). Mathematically,

this value can be defined as

CTOF = (tCT − tT )fs

where fs = 1
tbin

is the sample rate used by the P410, tbin = 1.907ps is the sample period, and CTOF is

the measurement from the RCM RANGE INFO message. We can use this coarse TOF as follows

tCT = CTOF /fs = tCT − tT = 2tf + trε + ttε

to obtain an equation that describes the range measurement using CTOF .

Additional messages can be sent by the P410 to its connected host upon request. One such message

of interest is the RCM FULL SCAN INFO (0xF201) message. This message is sent when requested

to its connected host whenever a two way transaction takes place. The requester sends this packet to

its host and the responder sends this packet to its host. This packet is of interest since it contains the

raw recorded samples of the received waveform, or scan data, of each P410 unit. Solving for the range

between the requester and responder, we get

r̂ =
c

2
(CTOF /fs − t̂rε − t̂tε) (5.3)

where t̂rε, t̂tε, and r̂ are all estimates. Also supplied in the RCM FULL SCAN INFO message are the

lock spot and leading edge detection sample positions provided by the P410 hardware, which can be
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used to compute the estimates of these variables as follows

t̂rε = (nrlock − n̂rlead)/fdec (5.4)

t̂tε = (ntlock − n̂tlead)/fdec (5.5)

where ntlock and n̂tlead are the requester lock spot and leading edge reported in samples, nrlock and n̂rlead

are the responder lock spot and leading edge reported in samples, and fdec is the sample rate of the

scan data. It is important to note that the scan data sent in the RCM FULL SCAN INFO message is

a decimated representation of the scan data. The field named Scan Step reports the decimation factor,

which we name nstep. By default the decimation factor is 32, which makes the scan data sample rate

fdec = fs
nstep

= fs
32 . The RCM API [32] document states that Scan Step is simply “the amount of time

between each sample in bins”, which mentions no filtering prior to decimating. It is probable that the

samples are accumulated, resulting in a low pass filtered signal representation.

To evaluate the performance of the P410 out of the box and to provide context for our new alignment

algorithm, we next conduct an experiment in a Line of Sight (LOS) and a blocked direct path condition.

These two conditions demonstrate the difficulty of ranging in a high multipath environment, especially

with a blocked direct path.

5.2 P410 Experimentation

For our experiment, we set up two P410 units separated by a range of 2868mm measured by a laser

range finder from antenna to antenna. Figure 5.3 shows the two scenarios considered, one with line of

sight and one with a blocked direct path, both in a high multipath indoor lab environment. In Figure

5.3a, the requester and responder are both clearly seen and highlighted by a red circle. In Figure 5.3b,

the requester is only seen and the direct path is blocked by a large metal sheet and a computer monitor.

Both units were connected to the same host laptop so all relevant data can be captured.

We first examine the contents of the RCM FULL SCAN INFO (0xF201) message, which contains

the raw samples of the received waveform. Each P410 unit sends this message to the attached host

when enabled by configuration. This allows us to plot the waveform as seen by the requester when

transmitted by the responder and we can plot the waveform as seen by the responder when transmitted

by the requester.

Figure 5.4 shows the scan data sent by the requester and responder units to the host under the LOS

test conditions. The requester message is obtained from the case when the responder transmits the
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(a) Line of Sight (b) Blocked Direct Path

Figure 5.3: P410 devices setup with (a) line of sight and (b) blocked direct path

waveform and it is received by the requester. The responder message is obtained from the case when

the requester transmits the waveform and it is received by the responder. As an example, Figure 5.4a

and Figure 5.4b show the raw sampled data of the first TWR transaction at the respective units. The

blue x is the lock spot and the green x is the leading edge position. Figure 5.4c and Figure 5.4d show

the absolute value of all scan data recorded for this test, with each column representing a different

TWR transaction at the respective units. The green dots show the leading edge positions as reported

by the unit and the blue dots are the lock spots.

Recall that we stated that the lock spot can be thought of as an oscilloscope trigger point, where

the scan data is stored representing the input waveform in a window that includes the lock spot. The

plots in Figure 5.4 are all aligned to the lock spot which is always located at sample 1475 of the

scan data and are therefore dependent on the received waveform, regardless of the range between the

requester and responder. In the standard TWR transaction, the received waveform at the requester
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Figure 5.4: Line of Sight scan data from (a)(c) requester and (b)(d) responder aligned to lock spot

and responder units is used to determine the respective leading edges, from which a range is derived

based on equation (5.3), (5.4), and (5.5).

Figure 5.5 shows the scan data sent by the requester and responder units to the host under the

blocked direct path test conditions. The scan data are displayed in the same manner as for the LOS

data. It is informative to notice that the leading edge position in the amplitude in Figure 5.5a appears

quite inaccurate. The green x, which is the P410’s estimated leading edge position, can be seen after

signal data is observed in the plot. Clearly, this leads to an inaccurate range computation using

equation (5.3).
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Figure 5.5: Blocked direct path scan data from (a)(c) requester and (b)(d) responder aligned to lock

spot

We again point out that the scan data plotted in Figure 5.5c and Figure 5.5d are aligned to the lock

spot at sample 1475. The result in this blocked direct path example is that the leading edge appears

at different positions in the waveform relative to the lock spot due to the heavy multipath and small

direct path signal. This leads to the raw sampled scan data having wild variations from one TWR

transaction to the next as seen in Figure 5.5c and Figure 5.5d.

Last, as seen in Figure 5.6, we plot the Precision Range Measurement (PRM) reported in the

RCM RANGE INFO message for both the LOS and blocked direct path tests with the same range



67

20 40 60 80 100 120
2.5

3

3.5

4

4.5

5

Scan Number

R
an

ge
 (

m
)

 

 

Blocked DP
LOS
Truth

Figure 5.6: Precision Range Measurement (PRM) reported by the requesting P410 unit

between the requester and responder P410 units. The LOS PRM is shown in green, the blocked direct

path PRM is shown in red and the true range is shown in black. The LOS PRM, while offset by the

bias is otherwise very stable in value consistent with the fact that the range was not varied during this

test. If desired, the LOS PRM bias can be calibrated away using Time Domain’s calibration method.

Also, as expected based on the scan data, the accuracy of the blocked direct path test is poor having

grossly overestimated the range with wild variation due to the inaccurate leading edge computation

performed in the P410 hardware.

This simple test demonstrates the difficulty of indoor positioning under heavy multipath conditions.

In the case of the blocked direct path test, the direct path signal is so weak the leading edge detection

performed by the P410 hardware is unable to correctly determine the range using a single TWR

transaction. Taking multiple PRM measurements where the leading edge is determined independently

from each TWR transaction will result in a poor range measurement. This is due to the fact that

we are unable to perform a leading edge detection on the direct path signal since it will always be

overshadowed by a large amount of noise. In fact, the average of all the PRM measurements is 4.42

meters under the blocked direct path conditions in this example, which still produces an error of 1.55

meters. The condition of low Signal to Noise (SNR) of the direct path must be overcome so we can
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properly perform a leading edge detection on a higher SNR received direct path signal.

5.3 Data Alignment

In order to produce a more accurate range estimate under blocked direct path conditions, we need

to produce a more accurate estimate of trε and ttε from (5.3). One way to achieve more accurate

estimates is to align and in some way fuse the information from the signals received from multiple two

way time of flight transactions to increase the Signal to Noise Ratio (SNR) of the direct path signal.

If we can achieve data alignment, we can experiment with the benefits of coherent processing by using

the CART algorithm for positioning. First, we begin by substituting (5.4) and (5.5) into (5.3), so that

r =
c

2
(CTOF /fs − (nrlock − nrlead)/fdec − (ntlock − ntlead)/fdec)

=
c

2fs
(CTOF − nstep(nrlock − nrlead)− nstep(ntlock − ntlead)) (5.6)

where ntlock and ntlead are the requester lock spot and leading edge reported in samples, nrlock and

nrlead are the responder lock spot and leading edge reported in samples. Using this notation, ntlead

and nrlead are the true leading edge positions and not estimates. The range in (5.6) can be converted

to units of samples by multiplying both sides by the sample rate and dividing by the speed of light to

get

r
fs
c

=
1

2
(CTOF − nstep(nrlock − nrlead)− nstep(ntlock − ntlead))

rn =
1

2
(CTOF − nstepnrlock + nstepnrlead − nstepntlock + nstepntlead)

where rn is the range in sample units. We can then add and subtract nstepntlead to the equation to get

rn =
1

2
(CTOF − nstepnrlock + nstepnrlead − nstepntlock + nstepntlead + nstepntlead − nstepntlead)

=
1

2
(CTOF − nstepnrlock − nstepntlock + 2nstepntlead + nstepn∆) (5.7)

where n∆ = nrlead−ntlead is the difference between the requester scan data and responder scan data in

number of samples using the sample rate fdec as sent in the RCM FULL SCAN INFO scan data field.

We can estimate the time difference and therefore the range difference in samples between the two

scan data by observing the maximum of the cross correlation, given by

n̂∆ = max
m

∣∣∣E[sr[n+m]s∗t [n]]
∣∣∣ (5.8)

where E[·] is the statistical expectation operator, sr[n] is the nth sample of the complex form of the

responder scan data waveform, and st[n] is the nth sample of the complex form of the requester scan
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Figure 5.7: Time aligned scan data (a) Line of Sight and (b) Blocked Direct Path. These data are

aligned to range 0.

data waveform. The complex form of the scan data can be computed using a technique described by

Marple [33]. The estimate n̂∆ is the value of m where the cross correlation achieves a maximum. Using

this estimate, we can solve (5.7) for the sample, n̂tlead, that corresponds to the leading edge in the

requester scan data and is relative to the transmit time of the responder. We write

n̂tlead = − 1

2nstep
(CTOF − nstepnrlock − nstepntlock + nstepn̂∆ − 2rn) (5.9)

which for rn = 0 is

n̂tlead = − 1

2nstep
(CTOF − nstepnrlock − nstepntlock + nstepn̂∆). (5.10)

This equation describes the sample that corresponds to the transmit time of the responder unit and

equivalently, range 0 in the requester scan data. The estimate n̂tlead is of course corrupted by the

inaccuracy of the estimate n̂∆. Once we estimate the sample in the scan data that corresponds to

range 0, we can align all two way time of flight measurements from one interrogation to the next.

This method also assumes sufficient reciprocity of the channel in that the TWR measurement is nearly

identical for the case of when the requester transmits and when the responder transmits.

If we perform the time alignment on the data shown in Figure 5.4 and Figure 5.5 as described

above, we get what is seen in Figure 5.7. This figure shows the absolute value of all the scan data,

where the requester and responder scan data are interlaced (i.e. requester scan data is odd value scan
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Figure 5.8: Demonstrating improved SNR by coherent integration, showing (a) a single scan and fusion

of all TWR measurements, and (b) same data zoomed near the true range

numbers and the responder scan data is even value scan numbers). The data is no longer aligned to

a lock spot, but is aligned to a range of zero meters in both the LOS and blocked direct path images.

Small errors can still be seen in these images due to the errors in the estimate n̂∆, but a clear alignment

is seen. Since we have stationary requester and responder positions, the true range can be plotted in

red as a constant in both figures. The P410 PRM estimates are also plotted for each the LOS and

blocked direct path tests. Under the LOS conditions, the PRM is consistently close to the true range.

Under the blocked direct path conditions, we see the PRM varies wildly for each scan number due to

the inability of the P410 to determine the true range under poor direct path signal SNR conditions.

Once time alignment is achieved, we can perform coherent integration to fuse all the scans from

the blocked direct path test condition in order to improve the SNR of the direct path signal. Figure

5.8a demonstrates an improvement in the direct path signal SNR by applying the coherent integration

technique described in Section 3.1 to the scan data in Figure 5.7b. The same data is also plotted

in Figure 5.8b, where we zoom near the true range. Without quantifying the improvement in SNR

of the direct path signal theoretically, the point here is to demonstrate that there is an advantage to

performing synchronization of the scan data of the two way transaction. If we were to perform a leading

edge detection on the fused solution, we would achieve better range estimates than in the single scan

case.
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5.4 Synchronization Performance

The theoretical performance of the time alignment can be computed using the method described in

[34]. Given two signals, in this case the scan data sr[m] and st[n], we can compute the time difference

as described by the cross correlation in 5.8. The theoretical standard deviation of this time difference

is

σTD =
1

β

1√
BTγ

where B is the noise bandwidth at the receiver, T is the integration time, γ is the Signal to Noise Ratio

(SNR), and

β =

√∫∞
−∞ f

2|P (f)|2df∫∞
−∞ |P (f)|2df

. (5.11)

is the effective bandwidth with known transmit spectrum P (f). Therefore, we we can define the

standard deviation of n̂tlead as

σ(n̂tlead) =
fdec

2

1

3.72e9

1√
26γ

(5.12)

where β = 3.72e9 Hz and BT = 26 samples, calculated from the known transmit waveform published

in [35] under the name “Sample MATLAB CLEAN Algorithm code”.

In this experiment, we do not have the ability to capture the true transmit time of the responder

unit from inside the P410 hardware. We, therefore, cannot use (5.12) to validate the performance.

Instead, we use the collected stationary recordings discussed above and analyze the relative alignment

errors between scan data frames using either the P410 estimates to align the data or equation (5.10)

to align the data. Under line of sight conditions, the P410 is able to produce accurate estimates of

position, which result in accurate alignment. Under blocked direct path conditions, the estimates of

the leading edge are inaccurate, leading to poor alignment.

Test Alignment Method Max Standard Deviation

Line P410 t̂rε, t̂tε 0.1933 ns 0.0627 ns
of Sight Equation (5.10) 0.1433 ns 0.0279 ns

Blocked P410 t̂rε, t̂tε 18.23 ns 4.12 ns
Direct Path Equation (5.10) 0.0834 ns 0.0196 ns

Table 5.1: Relative errors of stationary recordings

Table 5.1 summarizes the relative errors for both LOS and blocked direct path experiments. The

standard deviation under line of sight conditions are similar, with the P410 leading edge based alignment
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achieving around 0.06 ns and the method presented here using (5.10) achieves 0.03 ns. The standard

deviation of the errors under blocked direct path is 4.12 ns when using the P410 estimates to align the

data while a standard deviation of 0.0196 ns can be achieved using the method presented here using

(5.10).

5.5 Dynamic Motion
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Figure 5.9: Example of data alignment according to equation (5.10) with arbitrary responder motion.

So far, in this ongoing blocked direct path test example, we have demonstrated an improvement

in SNR of the direct path once synchronization is achieved in the two way transaction by using signal

fusion and a motion solution. In the previous example, we have a known motion solution: two stationary

P410 units. It is also possible to achieve synchronization of the TWR transaction under some requester

and/or responder motion.

An example of data alignment during a test in which there is arbitrary motion of the responder
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can also be seen in Figure 5.9, where the range between the requester and responder change over

time. The scan data were collected at approximately a 4 Hz rate (with a TWR conversation time

of approximately 3 milliseconds) in an indoor environment with an obstruction placed between the

two P410 units, creating a different blocked direct path scenario than was presented previously in the

stationary test case. The x-axis is the scan number, the y-axis is the range of the transmitter relative

to the receiver, and the gray scale intensity shows magnitude of each TWR measurement. We notice

that the leading edge position in the TWR measurement is seen starting at around a range of 7 meters

on scan number 1 and then moves closer in range to the requester to about 6 meters by scan number

20 as the responder is moved. If one had a motion solution, we could fuse all of these frames together

for an improved range estimate as was demonstrated and seen in Figure 5.8.

In this example of arbitrary motion, we do not know the true range for each measurement. Therefore,

we cannot plot a red truth line as was done for the stationary example seen in Figure 5.7. In addition,

we point out that there is interference in the TWR measurements that cause the P410 to estimate the

range incorrectly. An example of interference can be seen in scan number 2, 9, 23, and several others.

Signal fusion using a motion solution would also reduce the impact of the interference. The fusion

process would consider the interference as additional additive noise.

If the responder scan data is not available, one could correlate two adjacently captured requester

scan data in order to estimate the change in the waveform similar to the suggestion in [36]. In order

to align the two waveforms properly, one would need to attempt to compensate for different lock spot

positions. The result would not reveal true motion, but only relative motion with potential errors due

to lock spot differences. It also would occur at a slower update rate, which would reduce the maximum

allowed velocity of the requester/responder pair in order to preserve channel reciprocity. The method

of synchronization presented in this dissertation for the TWR transaction has an advantage in that the

estimated alignment is independent of true motion under the assumption of a small interval between

requester/responder measurement exchanges relative to the distance traveled during the time. For

example in the experiment conducted and depicted in Figure 5.9, the TWR transaction time interval

was about 3 milliseconds while the greatest velocity of the radio was approximately 0.4 meters per

second, hence the change of distance during the measurement interval was limited to 0.1 centimeters.

Ideally, one would want to perform the transaction at the same time, perhaps over different channels,

but this is not possible with P410 hardware and will not be explored further.
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Chapter 6

Experimental Results

The experimental results presented in this chapter use the new data collection method described in

Chapter 5 to evaluate the two step LED, SART, TART, and CART algorithms in two test environments.

First, we collect and analyze data in the AK315 research laboratory on the third floor of Atwater Kent

building on the Worcester Polytechnic Institute (WPI) campus. Second, we collect and analyze data

in AK317A, the same computer laboratory used in [26] to evaluate the performance of the ISART

algorithm. A brief comparison is made between the performance of the ISART algorithm and the

CART algorithm at the end of this chapter.

6.1 AK315 Research Laboratory

Multiple measurements can be combined as shown in Chapter 2 and 3 to produce a more accurate

estimate of the transmitter position. In this section, we compare the LED, SART, TART, and CART

algorithms by fusing the data captures from a receiver placed at multiple survey locations in hopes of

producing a more accurate estimate of a stationary transmitter position in AK315 Research Laboratory.

6.1.1 Data Collection

A data collection effort was carried out to explore the indoor localization capabilities of the LED,

SART and TART algorithms, and to validate the CART algorithm using the TWR alignment procedure.

The transmitter was placed behind a large metal cabinet in a large open lab environment cluttered

with equipment and desks. Twenty three points were surveyed around the indoor environment, in the

same large lab and behind large metal studded walls in the hallways. Figure 6.1 shows the floor plan

view of the test setup in AK315 on the 3rd floor of the Atwater Kent building of Worcester Polytechnic
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Institute. Figure 6.2 shows pictures of the transmitter mounted on a tripod behind the large metal

cabinet.
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Figure 6.1: Atwater Kent 3rd floor room AK315 test setup

As the floor plan shows, survey points 1-5 and 23 are outside the large laboratory. The doors on

survey points 6 and 22 were open when all measurements were taken by the receiver. The transmitter

was placed 1.49 meters above the floor and the receiver was placed 1.54 meters above the floor on each

survey point, one at a time. Approximately 500 measurements were made at each survey point, all of

which were then time aligned and used in the following analysis.

Figure 6.3 shows the absolute value of a single measurement from a receiver placed at each survey

point, aligned using the method described in Chapter 5. Also shown are the mean (and three standard

deviation bar) of the P410 PRM at each survey point in white and surveyed truth ranges using green

x’s. The P410 operates remarkably well under LOS conditions with a tight variance as seen in the data

collected when the receiver was placed on survey points 13-19. Under blocked direct path conditions

of receiver locations 1-8, however, a large variance in the PRM is evident. We see that the white circle

(indicating the native P410 range estimate) and three standard deviation bar at receiver location 1 does

not overlap the green x. The P410 never produces a correct range estimate due to the large multipath

component in the data capture at receiver location 1.
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(a) View of transmitter

(b) View towards hallway

Figure 6.2: Transmitter pictures for the Atwater Kent 315 Laboratory test
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Figure 6.3: AK315 raw data showing the P410 measurements in white and the truth using green x’s

6.1.2 Metric Image Examples

Figures 6.4 and 6.5 show several example location metric images using the LED, SART, TART,

and CART algorithms using a single measurement at each survey point and various subsets of the full

group of 23 measurements from all 23 receiver locations. The peaks of these metric images, shown

by a black x, would be selected as the location estimates. Additional metric images from this test

can be found in Appendix C. The LED metric images are produced by a brute force plot of the cost

function described in section 2.2 using the P410 PRM result as the range estimate. For the direct

positioning algorithms SART, TART, and CART, the respective metric maps are shown using a single

measurement, which is represented by a single frame of time aligned scan data. For these example

metric images for the AK315 test, the true transmitter position is (xm, ym) = (9.32,2.93), with a scan

grid defined by xmin = −1, xmax = 11, ymin = −1, ymax = 15 with a ∆x = 0.2 and ∆y = 0.2, and

α = 20 and γ = 60 for the CART algorithm.
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Figure 6.4: Atwater Kent 3rd floor data collection metric image examples using data from receiver

locations 1-23
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Figure 6.5: Atwater Kent 3rd floor data collection metric image examples using data from 3 receiver

locations that produce the poorest geometry: 1, 2, 3
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Figure 6.6: Atwater Kent 3rd floor data collection metric image examples using data from 7 blocked

LOS receiver locations: 1-7
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If a single measurement from a receiver placed at all the survey points is included in the computation

of the metric image as shown in Figure 6.4, all the algorithms produce a submeter estimate. In this

case, there is sufficient LOS data to overcome the detrimental effects of the multipath in the SART and

TART algorithms. The CART algorithm produces a good estimate and the LED algorithm performs

the worst. If we decrease the number of receivers to three, the minimum required for a unique 2

dimensional solution, the CART algorithm outperforms the two step LED algorithm as seen in Figure

6.5. In fact, despite this being such a restrictive geometry, the CART algorithm is able to determine

the transmitter position quite accurately, with well below a meter of error.

Figure 6.7: Measurements at receiver locations 1-7 for the AK315 test

To highlight the benefit of the CART algorithm, we focus our attention on the most difficult

blocked direct path locations using only data from receiver locations 1 through 7. If we combine a

single measurement from each location, we get the metric images seen in Figure 6.6. We can see that

SART and TART fail to produce a good estimate as expected based on simulation results. The two

step LED algorithm has an error around 4 meters while the CART algorithm again produces a sub
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(b) Receiver location 3 measurement

Figure 6.8: Atwater Kent 3rd floor data collection measurement details using data from 7 receiver

locations

meter accurate estimate.

It is instructive to examine the cause of the poor LED estimate when combining 7 blocked direct

path PRMs. Figure 6.7 shows the magnitude of the seven measurements from receiver locations 1-7

that is used by the P410 to produced the 7 independent PRMs. Also shown as white circles are the

P410 calculated ranges and the true range using a green x. In addition, the estimated ranges to each

survey location using the CART algorithm is shown with an orange circle. It is obvious that there are

several large range errors in the P410 PRMs. For example, measurements from receiver locations 1 and

3 produce errors in the PRM from the P410. The magnitude of the measurement data are shown in

Figure 6.8a and 6.8b respectively from receiver locations 1 and 3. The P410 incorrectly estimates the

leading edge positions resulting in a poor range estimate as shown by a red x instead of being near the

true range shown by a green x. The cause of these poor estimates is the large spike in magnitude of the

measurement due to a strong multipath component. These poor range estimates contribute to the large

error when using the LED algorithm. This example shows the sensitivity of the two step minimization

LED algorithm to inconsistent constraints and how it produces inaccurate range estimates whereas the

CART algorithm suffers from no such problem.
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Number Receivers Used Number Receivers Used Number Receivers Used

35 7, 6, 5, 4 70 7, 6, 5, 4, 3
1 7, 6, 4 36 7, 6, 5, 3 71 7, 6, 5, 4, 2
2 7, 6, 3 37 7, 6, 5, 2 72 7, 6, 5, 4, 1
3 7, 6, 2 38 7, 6, 5, 1 73 7, 6, 5, 3, 2
4 7, 6, 1 39 7, 6, 4, 3 74 7, 6, 5, 3, 1
5 7, 5, 4 40 7, 6, 4, 2 75 7, 6, 5, 2, 1
6 7, 5, 3 41 7, 6, 4, 1 76 7, 6, 4, 3, 2
7 7, 5, 2 42 7, 6, 3, 2 77 7, 6, 4, 3, 1
8 7, 5, 1 43 7, 6, 3, 1 78 7, 6, 4, 2, 1
9 7, 4, 3 44 7, 6, 2, 1 79 7, 6, 3, 2, 1
10 7, 4, 2 45 7, 5, 4, 3 80 7, 5, 4, 3, 2
11 7, 4, 1 46 7, 5, 4, 2 81 7, 5, 4, 3, 1
12 7, 3, 2 47 7, 5, 4, 1 82 7, 5, 4, 2, 1
13 7, 3, 1 48 7, 5, 3, 2 83 7, 5, 3, 2, 1
14 7, 2, 1 49 7, 5, 3, 1 84 7, 4, 3, 2, 1
15 6, 5, 4 50 7, 5, 2, 1 85 6, 5, 4, 3, 2
16 6, 5, 3 51 7, 4, 3, 2 86 6, 5, 4, 3, 1
17 6, 5, 2 52 7, 4, 3, 1 87 6, 5, 4, 2, 1
18 6, 5, 1 53 7, 4, 2, 1 88 6, 5, 3, 2, 1
19 6, 4, 3 54 7, 3, 2, 1 89 6, 4, 3, 2, 1
20 6, 4, 2 55 6, 5, 4, 3 90 5, 4, 3, 2, 1
21 6, 4, 1 56 6, 5, 4, 2
22 6, 3, 2 57 6, 5, 4, 1
23 6, 3, 1 58 6, 5, 3, 2
24 6, 2, 1 59 6, 5, 3, 1
25 5, 4, 3 60 6, 5, 2, 1
26 5, 4, 2 61 6, 4, 3, 2
27 5, 4, 1 62 6, 4, 3, 1
28 5, 3, 2 63 6, 4, 2, 1
29 5, 3, 1 64 6, 3, 2, 1
30 5, 2, 1 65 5, 4, 3, 2
31 4, 3, 2 66 5, 4, 3, 1
32 4, 3, 1 67 5, 4, 2, 1
33 4, 2, 1 68 5, 3, 2, 1
34 3, 2, 1 69 4, 3, 2, 1

Table 6.1: Sensor configuration number vs. receivers used
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(b) Position Errors Zoomed

Figure 6.9: Cumulative Density Functions (CDF) of all LED, SART, TART, and CART using sensor

configuration 8 (receivers 7,5,1) showing (a) position errors, and (b) position errors zoomed around 1

meter error

6.1.3 CDF of Position Errors

Similar to what we did in the simulation chapter, we can quantify the performance of these al-

gorithms by computing the CDF and RMS position errors under various sensor configurations using

(4.32). Table 6.1 describes 90 different sensor configurations and the survey points used for each con-

figuration. Only the first 7 survey points are used in this analysis in order to pick the most difficult

blocked direct path sensor positions, which represent the most difficult multipath encountered for this

experiment. The 7 survey points used are divided into 3, 4, and 5 pair sensor combinations. The table

shows the 3 pairs in the first two columns, 4 pairs in the next two, and 5 pairs in the last two columns.

These sensor combinations produce different geometries that provide another dimension of analysis for

the CDF and RMS error calculations. In addition, we use 25 measurements to produce 25 independent

estimates of transmitter position for each sensor configuration using each the LED, SART, TART, and

CART algorithms.

Figure 6.9 shows the CDF of the LED, SART, TART, and CART algorithms using sensor config-

uration number 8 from Table 6.1, which uses data from receivers at survey points 7, 5, and 1. This

sensor configuration was selected arbitrarily for this example. Figure 6.9a shows the full position error

CDF and Figure 6.9b shows the position errors zoomed on the 1 meter of position error mark. The
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Figure 6.10: Cumulative Density Function (CDF) of position error at each 90 sensor configurations for

the AK315 data set limited to 2 meters error for (a) LED, (b) SART, (c) TART, and (d) CART

CART algorithm consistently produces remarkably accurate position estimates, well below a meter of

error. In this case, the error seems to be limited primarily by the scan grid imposed limit.

Figure 6.10 shows the position error CDFs for all 90 sensor configurations with the error magnitude

limited to 2 meters error on the color bar. As expected, the SART and TART algorithms perform

poorly, hardly ever or never producing a position estimate within 2 meters of the true transmitter

position. The two step LED algorithm sometimes produces position estimates that are less than a

meter as is evident in Figure 6.10a, but at a low probability of around 30% or less, depending on the

sensor configuration. The CART algorithm far outperforms the LED, SART, and TART algorithms
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Figure 6.11: RMS position error using 25 measurements for each sensor configuration 1 through 90.

(a) Shows full position errors and (b) shows position errors zoomed on CART position errors

in this experiment using the most difficult geometry and blocked direct path data. Examining Figure

6.10d, we see that regardless of the sensor configuration (geometry) chosen, the CART algorithm always

produces an error less than a meter well over 90% of the time.

6.1.4 RMS Errors

We can compute the root of the mean of the squared error as another performance metric of the

position error. Figure 6.11 shows the RMS position errors using 25 measurements at each of the 90

sensor configurations defined by Table 6.1. In Figure 6.11 we show the RMS position errors of the

LED, SART, TART, and CART algorithms for each 90 sensor configurations. The LED algorithm

produces a minimum RMS error of about 0.50 meters using sensor configuration 20 and a maximum

RMS error of 7.7 using sensor configuration 31. Figure 6.11b shows just the CART RMS position

error in more detail. The minimum RMS error is 0.08 meters using sensor configuration 29 and the

maximum is around 0.22 meters using sensor configuration 35. This again demonstrates the robustness

of the CART algorithm in which it is able to consistently produce accurate estimates less than a meter

of RMS error even under poor sensor geometry.

Table 6.2 shows the RMS position error for all 3, 4, and 5 pair sensor combinations shown in Table

6.1 as well as the RMS error of all 90 sensor combinations. The LED algorithm performs with an RMS

error on the order of about 3 meters and the CART algorithm performs with an RMS error of about
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Algorithm 3 Pairs 4 Pairs 5 Pairs All Data

LED 3.1734 2.8824 2.9087 3.0016
SART 7.7385 7.3719 6.6542 7.3545
TART 9.3948 8.7093 8.3469 8.8937
CART 0.1049 0.1021 0.0996 0.1026

Table 6.2: RMS position errors in meters for different sensor configurations as defined by Table 6.1

0.10 meters. This shows that the CART algorithm presents approximately a 30 times improvement over

the LED algorithm in this experiment and both are much better than the SART and TART algorithms

in this high multipath environment.

6.1.5 Raw Errors

The average of 25 position estimates for all 90 sensor configurations defined in Table 6.1 are plotted

in Figure 6.12. Figure 6.12a shows the two step LED algorithm producing a strong cluster of position

estimates in the lower right corner. This is likely due to the scan grid limit of -1 meters placed on the x

axis in the brute force computation of the LED cost function. It is possible the errors for the LED could

be larger, but were limited to this region due to this method of computation. The SART and TART

algorithms produce the position estimates seen in Figure 6.12b and Figure 6.12c respectively. Both of

these algorithms clearly produce large errors with a large uncertainty in this indoor experiment using

the first 7 survey points. The CART algorithm position estimates are seen in Figure 6.12d, which

show a tight cluster right around the true transmitter position. This visualization of the errors for

each sensor configuration highlight the capability of the CART algorithm compared to current existing

algorithms.
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(a) LED
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(b) SART
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(c) TART
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(d) CART

Figure 6.12: Average position estimates for all 90 sensor configurations for algorithms (a) LED, (b)

SART, (c) TART, and (d) CART, along with mean error vectors for all sensor configurations

6.2 AK317A Computer Laboratory

In the previous section, we examined the errors of a single transmitter position using a variety

of different receiver geometries in an indoor multipath environment. In this section, we present data
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collected in WPI’s Atwater Kent Building room AK317A. This was the most difficult multipath location

used by [26] to explore the fusion of inertial navigation data with RF data using the ISART algorithm.

As [26] points out, the AK building is a brick and steel building with all the walls being steel studded.

This computer lab also has metal backed white boards, electrical panels, large metal cabinets, hardware

equipment, and metal framed furniture. Analysis in this section compares the LED, SART, TART,

and CART algorithms using the transmitter and receiver hardware described in Chapter 5. The last

subsection, Section 6.2.6, compares the results of the CART algorithm to the results obtained by [26]

using the ISART algorithm.

6.2.1 Data Collection

Nineteen points were surveyed around the exterior hallway outside the laboratory behind the white

board and/or large metal studded walls, marked by a blue x in Figure 6.13a. Fourteen transmitter

positions were surveyed inside the computer laboratory, marked by cyan squares. During the measure-

ment campaign, it quickly became apparent that the metal indoor environment is severely attenuating

the UWB signal. At most of the receiver locations the receiver cannot even detect the UWB waveform

at all the transmitter locations using the maximum power of -15 dBm allowed under FCC regulations.

Therefore, we only use data from receiver locations 8 through 13, as seen in Figure 6.13b. These 6 re-

ceiver locations are the only locations at which the device is able to detect and measure the transmitted

waveform for all 14 mobile transmitter locations.

Figure 6.14 shows pictures of the transmitter used in this experiment mounted 0.56 meters off the

floor inside the AK317A computer laboratory at survey point 22. Figure 6.14a shows the view from

the transmitter position. Figure 6.14b shows the view to the transmitter from standing height. These

pictures show the metal furniture, equipment, and building materials that make this a very difficult

multipath environment. In addition, the transmitter height is now below the desk level close to the

height of the surrounding chairs, further exasperating the multipath.

The receiver was mounted on a tripod 1.615 meters above the floor outside in the hallway, as seen in

Figure 6.15. The data collection consisted of placing the transmitter 0.56 meters off the floor on a single

transmitter survey point, then moving the receiver to each receiver survey point 8 through 13 one at a

time while performing measurements. The transmitter was then placed on the next transmitter survey

point and each receiver survey point was used to attempt a measurement. The process was repeated

until all 14 transmitter survey points were used for the data collection. At each transmitter/receiver

survey position pair roughly 500 frames were attempted. Limited by the ability of the P410 to detect
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(a) All surveyed receiver locations
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(b) Receiver locations used in analysis

Figure 6.13: Atwater Kent room AK317A test setup showing (a) all surveyed positions and (b) receiver

locations that result in a measurement of the transmitted waveform from all transmitter locations

the RF waveform in this environment, we only were able to produce between 29 and 464 TOA preserved

measurements for each attempted transmitter/receiver pair.

Figure 6.16 shows the absolute value of aligned scan data, using the method described in Chapter

5, from a receiver placed at all 6 survey points with the transmitter placed on survey point 33. Also

shown are the mean (and three standard deviation bar) of the P410 PRM from the receiver placed
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(a) View from transmitter

(b) View of transmitter

Figure 6.14: Shows the transmitter in the AK317A computer lab at survey point 22 (a) from behind

the transmitter antenna and (b) from standing height

at each survey point in white and measured truth positions using green x’s. The P410 operates with

a larger variance under these blocked direct path conditions. The PRM produced by the P410 with

the receiver placed on survey point 12 is rarely even close to the correct solution and the PRM from

survey point 13 has a very large variance. These errors contribute to errors in the LED algorithm as
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Figure 6.15: Shows the receiver on a tripod located at survey point 6

explained in the previous section when the analysis for the AK315 test was presented.
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Figure 6.16: Shows the P410 measurements and 3 σ bound in white and the truth using green x’s for

all receiver locations 8 - 13 while the transmitter was placed on survey point 33 for the AK317 test

6.2.2 Metric Image Examples

Figures 6.17, 6.18, and 6.19 show several example metric images obtained using the LED, SART,

TART, and CART algorithms and using a single measurement from each receiver location. Additional

metric images from this test can be found in Appendix D. The LED metric images are produced by a

brute force plot of the cost function described in section 2.2 using the P410 PRM as the range estimate.

The direct positioning algorithms SART, TART, and CART are the metrics described in section 2.3,

section 2.4, and Chapter 3 respectively. A black x marks the detected position in each metric image,

which represents the maximum metric value in the metric image. For the data analysis presented for

the AK317A test, the scan grid is defined by xmin = −1, xmax = 19, ymin = 12, ymax = 24 with a

∆x = 0.1, ∆y = 0.1, and a α = 20 and γ = 60 for the CART algorithm.

Figure 6.17 shows the worst geometry from the AK317A test. If only one measurement is used
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Figure 6.17: Example metric images for a transmitter at survey position 33 using algorithms (a) LED,

(b) SART, (c) TART, and (d) CART

at each receiver location, the CART algorithm is the only algorithm to produce a submeter accurate

estimate with an error of 0.1 meters. The LED algorithm produces an estimate with an error of 4.17

meters and the SART and TART algorithms again have poor performance. If we choose the best

geometry using the measurements with the mobile transmitter on survey point 25 as seen in Figure

6.18, the CART and LED algorithms are able to produce a submeter accurate estimate of position. In

this case the error in the LED algorithm produces an estimate of position with an error of 0.4 meters

and the CART algorithm position error 0.224 meters. The SART and TART algorithms fail again.

Another example metric image can be seen in Figure 6.19, where the mobile transmitter is placed on
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Figure 6.18: Example metric images for a transmitter at survey point 25 using algorithms (a) LED,

(b) SART, (c) TART, and (d) CART

survey point 20. Here the LED produces an estimate with an error of approximately 1.4 meters and

the CART algorithm produces a position estimate with an error of 0.224 meters. All of these metric

image examples show the SART and TART algorithms failing to produce a good estimate in this high

multipath environment while the LED produces reasonable results in some cases, all while the CART

algorithm produces the good results.
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Figure 6.19: Example metric images for a transmitter at survey point 20 using algorithms (a) LED,

(b) SART, (c) TART, and (d) CART

6.2.3 CDF of Position Errors

We can quantify the performance of these algorithms by computing the CDF and RMS errors

using (4.32), which combines the X and Y errors into a single position error. For the CDF and RMS

analysis, we use 15 independent measurements for each transmitter/receiver pair. This produces 15

independent estimates of transmitter position for each transmitter position using each algorithm, LED,

SART, TART, and CART.

Figure 6.20a shows the CDF of estimated transmitter position errors for the case when the trans-
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(b) Position Errors Zoomed

Figure 6.20: CDF of position errors for transmitter at survey point 32 showing (a) all position errors,

and (b) position errors zoomed around 1 meter error.

mitter is placed on survey point 32. Figure 6.20b shows the same figure zoomed around 1 meter of

position error. We see the SART and TART algorithms produce errors that are consistently well above

1 meter all of the time. The LED algorithm produces a 1 meter accurate position estimate slightly less

than 40% of the time. The CART algorithm always produces a submeter accurate position estimate

and always produces an estimate with less than about 0.2 meters.

Figure 6.21 shows the position error CDFs for all 14 transmitter locations from 20 to 33 where the

error magnitude has been limited to 2 meters error on the color bar. The SART and TART algorithms

typically perform poorly, but on occasion are able to produce a good estimate if sufficient LOS data

is present. This is the case for the TART algorithm at transmitter location 24, 27, or 29 as seen from

Figure 6.21c where much blue is seen indicating a good estimate. The metric images for the LED,

SART, TART, and CART algorithms under the condition of transmitter location 29 can be seen in

Appendix B, Figure D.5. The SART algorithm is able to produce a good set of estimates when the

transmitter is on position 23, but mostly fails to produce good position estimates. The metric images

for the LED, SART, TART, and CART algorithms when the transmitter is on position 23 can be see

in Appendix B, Figure D.3.

The LED algorithm outperforms the SART and TART algorithms in this heavy multipath environ-

ment. Examining Figure 6.21a, we see that there is indeed a lot of blue, indicating a good estimate

much of the time. The CART algorithm, however, far outperforms the LED, SART, and TART algo-
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(d) CART

Figure 6.21: CDF of position errors at each transmitter location from 20 to 33 using algorithms (a)

LED, (b) SART, (c) TART, and (d) CART

rithms in this experiment. Figure 6.21d shows that regardless of the transmitter location, the CART

algorithm always produces an error less than a meter 100% of the time. Again, we see the robustness

of the CART algorithm in the presence of heavy multipath, even in this difficult indoor environment

where the transmitted signal is difficult to detect in the two way transaction.

6.2.4 RMS Errors

We can compute the root of the mean of the squared error as another performance metric of the

position error. Figure 6.22 shows the RMS position errors using 15 measurements to produce 15
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Figure 6.22: RMS position error for all transmitter locations (a) showing full position errors and (b)

zoomed on CART position errors

independent position estimates at each of the 14 transmitter positions using the LED, SART, TART,

and CART algorithms. Figure 6.22b shows the same image zoomed on the CART RMS position error.

The LED algorithm produces a minimum RMS error of about 0.19 meters when the mobile transmitter

is at survey point 27 and a maximum RMS error of 6.5 when the mobile transmitter is at survey point

31. The minimum RMS error using the CART algorithm is around 0.1 meters when the transmitter

is at survey point 22 and the maximum is around 0.42 when the mobile transmitter is on survey point

21.

Algorithm RMS Error

LED 2.1621
SART 3.7931
TART 2.8141
CART 0.2447

Table 6.3: RMS position errors

Table 6.4 shows the total RMS position errors for each algorithm. The SART, TART, and LED

algorithms fail to collectively produce a position estimate with less than a meter RMS error. The

CART algorithm produces position estimates with an RMS error of 0.2447 meters, almost 9 times

better than the existing LED method in this highly multipath environment.
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6.2.5 Raw Errors

All 15 position estimates for all 14 transmitter locations using the SART and TART algorithms are

plotted in Figure 6.23 along with an error vector that is defined by the mean of the position estimates.

Figure 6.24 shows all 15 position estimates for all 14 transmitter locations using the LED and CART

algorithms. Figure 6.23a shows the SART algorithm position estimates and Figure 6.23b shows the

TART algorithm position estimates. Both algorithms produce estimates and error vectors that vary

wildly from the true transmitter position. Figure 6.24a shows the two step LED algorithm estimates.

Careful examination of the figure shows that the position estimates have a large variance even though

the mean error vector indicates a good estimate. Look at survey point 22 or 30, for example, where

the individual estimates are widely distributed over the image while the mean error vector is very

close to the true transmitter location. The CART algorithm estimates, shown in Figure 6.24b, show

tightly clustered position estimates around each survey point and corresponding small position error

vectors. This visualization of the errors for each sensor configuration highlight the capability of the

CART algorithm compared to current existing algorithms.
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Figure 6.23: Shows all measurements for each transmitter location along with mean error vectors using

algorithms (a) SART, and (b) TART
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(b) CART

Figure 6.24: Shows all measurements for each transmitter location along with mean error vectors using

algorithms (a) LED, and (b) CART
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6.2.6 Comparison to ISART

We can compare our results using the CART algorithm to the performance of the ISART algorithm

published in [26] and obtained in the AK317A computer laboratory. There are several differences be-

tween the two experiments, but we can still get a sense of their performance with the known differences.

The ISART test was conducted using 12 or 16 antennas placed around the hallway similar to the 19

receiver locations seen in Figure 6.13a. For the ISART test, the INS unit was mounted onto a boot

that was approximately 0.2 to 0.4 meters off the ground as the user walked a path in the computer lab.

The waveform used by the ISART algorithm is the Multi-carrier wide band (MCWB) signal structure,

which transmits about 100 tones from 550 to 700 MHz using about 10 dBm of power. In addition, the

ISART algorithm uses 32 measurements, where a new measurement is captured each time the boot

hits the ground as the user walks. For more information on the ISART algorithm or the associated

AK317A testing, see [26].

Algorithm Antennas Measurements Bandwidth Power RMS Error

this SART 6 1 2 GHz -15 dBm 3.79
test CART 6 1 2 GHz -15 dBm 0.25

SART 12 1 150 MHz 10 dBm 4.00
Ref. [26] SART 16 1 150 MHz 10 dBm 2.52

ISART 12 32 150 MHz 10 dBm 1.02
ISART 16 32 150 MHz 10 dBm 0.61

Table 6.4: Total RMS position errors

As stated earlier in this chapter, the CART algorithm test in AK317A was conducted using a 2

GHz wide waveform using -15 dBm of power with the device placed 0.56 meters off the floor. Our

bandwidth is about 13 times bigger, but we have 25 dB less transmit power. This degrades detection

for the UWB system, but improves range resolution due to the larger bandwidth. We also do not have

an INS system to enable integration over time to increase our synthetic aperture size.

Table 6.4 summaries the performance difference between the CART and ISART algorithms in the

same test environment. First, we note that the SART algorithm with a single frame using the UWB

system and 6 antennas performs similarly to the single frame 12 antenna 150 MHz setup shown by

Cavanaugh [26]. The SART UWB RMS error is 3.79 meters and the 12 antenna 150 MHz single frame

RMS error is 4.00 meters. By integrating 32 frames of RF data based on the motion solution generated

by the INS unit, the ISART algorithm is able to improve the localization performance to 1.02 meter

RMS error. This represents an aperture size of 348 antennas. Without the benefit of the INS and
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derived motion solution, we are able to improve the performance using the CART algorithm alone to

0.25 meters RMS error, a factor of 4 times better than the ISART algorithm with 12 antennas and 32

RF frames based on INS motion. The CART algorithm with an aperture size of 6 antennas is seen to

outperform the ISART algorithm with an aperture size of 512 antennas by a factor of greater than 2.
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Chapter 7

Fire Fighter Homing Device

Application

The development of a fire fighter homing device has been an area of interest for the Precision

Personal Locator (PPL) project at Worcester Polytechnic Institute (WPI) for many years. The concept

is that if a first responder is incapacitated inside a burning or dangerous structure, a rescue can be

executed by a single homing device operator. The fire fighter homing device would be a simple wand

or stick, which provides feedback to the operator on the direction of the incapacitated individual in

order to facilitate the rescue.

A previous system developed to provide this homing capability by the WPI PPL project uses the

Very Low Frequency (VLF) band in the near field. The concept of the device was described by [37],

which resulted in some good initial results in some structures. Ultimately, the system did not perform

up to desired standards due to waveguide modes in metal pipes, giving inaccurate directional results,

leading to unacceptable performance. The desire is now to develop a new fire fighter homing device

based on the promises of UWB and the new CART algorithm. Similar to the ISART algorithm, we wish

to develop a motion solution that can be used to estimate the position of the receive antennas when

a TOA preserved RF measurement is taken. In our case, we simplify the motion solution to a simple

single axis gyroscope, which enables a 2 dimensional solution that is consistent with our previously

presented experimental data. Using the estimated receive antenna positions and the captured RF data,

we should be able to estimate the position of the transmitter.

This chapter first describes the mathematical model associated with the fire fighter homing device.

Then, we present the wand prototype hardware, data collection effort in the AK315 research laboratory,
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the Kalman Filter tracker that estimates transmitter position, and finally the transmitter position

estimation results. Some thoughts on wand length are provided in Appendix B. As shown, the CART

algorithm is certainly a capable algorithm in this indoor localization application in it’s ability to

determine the transmitter position using highly multipath corrupted inputs.

7.1 Overview

Figure 7.1: Fire fighter homing device modeled scenario

The fire fighter homing device scenario considered in this dissertation is shown in Figure 7.1. A

point on the wand is labeled as the origin for this scenario. There are two antennas, an A antenna

and a B antenna. The location of the transmitter is at some range, r, from the origin at some angle φ

relative to the axis defined by a line the goes through antenna A and antenna B. The angle θ describes

the angle that the wand has rotated relative to the starting orientation of the wand. The length of

the wand is d. The operator would hold the wand device at the defined origin, where a single axis

gyroscope measures the angular velocity in the direction of θ, which is accumulated for an estimate of

θ.

Using this definition, we can examine the localization performance of an unbiased estimator of the

transmitter position. If a single measurement of range was made from antenna A and antenna B, we

would get the intersection of two circles as seen in Figure 7.2a. If the wand was rotated 90 degrees

(θ = 90 deg), and we take another measurement with antenna A, we would get three independent
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Figure 7.2: Intersection of circles for wand scenario using (a) 2 receivers or (b) 3 receivers

measurements of range. These three measurements would result in a unique range position as shown in

Figure 7.2b. This example shows that some wand rotation is necessary in order to determine a unique

transmitter position in 2 dimensions. In this case, we show a transmitter about 10 meters from the

wand center position. Even in these figures, the geometry is such that a unique position as defined

by the intersection of the three circles is difficult to see by examination. How well can we locate the

transmitter with this difficult geometry? If we reduce the wand length, the intersection of the three

circles becomes even more difficult to determine. Another question then arises: what effect does the

wand length have on our ability to determine the transmitter position?

Feedback from the fire fighter community also makes it clear that a long wand is not acceptable

in a practical search and rescue mission. The desire is to reduce the length of the wand as much as

possible to allow rescue in confined spaces and to reduce the size and weight of equipment worn. As

presented in Appendix B and with the assumption that a reasonable rotation of an operator’s wrist

would be about 90 degrees, we recommend a 0.5 meter wand length as the optimal length. This ensures

a sufficiently small wand for the fire fighter as well as a wand that can produce a submeter accurate

estimate at 20 meters regardless of the angle to the transmitter. We also observe a good rule of thumb

that there is a 6 dB loss in MSE performance for every time we halve the wand length.
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Figure 7.3: Wand to be used by rescuer

7.2 Wand Prototype Hardware

The prototype wand device is constructed using a Pulse On 410 (P410) from TimeDomain and a

single Navchip gyroscope. The P410 device that is attached to the wand was previously described as

the receiver in Chapter 5. The gyroscope is positioned 0.71 meters from antenna A and 0.29 meters

from antenna B, making the total wand length 1 meter. Figure 7.3 shows a picture of the wand

prototype, calling out the gyroscope and P410 device. For data collection, a host laptop is connected

to the wand through two USB ports, one for the P410 device and one for the Navchip gyroscope.

The final wand would consist of an embedded device to perform the communications and processing

required for transmitter localization and operator feedback. The transmitter hardware used by the

wand experimentation is the same as the transmitter hardware described in Chapter 5 and was used

for experimentation and validation in Section A with fixed transmitter and receiver positions.

A custom MATLAB program is used to send range request messages to the transmitter unit, which

then responds as described in Section A. The range request message is first sent from antenna A

then antenna B in an alternating manner. The RCM RANGE INFO, RCM FULL SCAN INFO, and

RCM DATA INFO packets are stored into allocated memory on the host computer until the end of

the data collection. Once data collection ends, the allocated memory is saved into a file on the hard
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drive to be processed at a later time. This method of data collection allows us to collect the data as

fast as possible without risk of buffer overflows.

7.3 Data Collection

Figure 7.4: Floor plan of AK315 used for data collection with a red arrow indicating the start position

and orientation of the wand

Data collection was carried out in the same AK315 research laboratory used in Section 6.1 during

fixed transmitter and receiver position testing. Figure 7.4 shows the floorplan view along with a red

arrow indicating the starting position and orientation of the prototype wand device. The transmitter

was placed behind the large metal cabinet at a height of 1.77 meters. As indicated by the red arrow, the

wand antenna A was pointing down the y axis at the beginning of each run. A gyroscope calibration
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was performed at the start of each run for 10 seconds, which allows us to estimate a gyroscope bias

that is then subtracted from the raw data.

After calibration, the wand was held by hand where the gyroscope is attached and rotated while

held at each survey point from 1 to 15. The rotation went left and then right and back to the left to

position antenna A towards the next survey point. At each survey point, a rotation of 90 degrees in

each direction was attempted. At some survey points, the rotation was limited to about 35 degrees

in one direction due to physical obstructions. After the rotation was complete at the current survey

point, the wand was moved in a swift motion to the next survey point and the process was repeated

until survey point 15 was reached. The wand height was about 0.95 meters above the floor for the

entire run and care was taken to limit the tilt of the wand into the z dimension.

In the next section, we introduce the data processing performed on the collected data. It is note-

worthy to point out that the data processing and analysis is performed in two dimensions, consistent

with the previous stationary experiments in Chapter 6. These results could be extended into a three

dimensional solution using an INS system similar to Cavanaugh [26], but we chose to minimize the

mathematical overhead for this demonstration. The limitation this simplified implementation imposes

on the real application is that we now only localize the transmitter on a 2 dimensional plane, which

would practically limit our localization to the operator’s floor of a multilevel building.

7.4 Data Processing

After data collection, the recorded data is post processed as shown in the processing block diagram

of Figure 7.5. The P410 data is time aligned according to the alignment algorithm described in Section

5.3 and stored in allocated memory along with a timestamp. The gyroscope angle and computed mean

of the 10 second calibration data are passed to an accumulator block. Mathematically, the accumulator

performs

θk =

k∑
i=1

(θ̇z − βz) (7.1)

where βz is the computed mean of the 10 second calibration, θ̇z is the raw gyroscope data, and θk is

the current estimated gyroscope angle at time step k relative to the starting orientation. The current

estimated gyroscope angle is then stored in allocated memory along with a time stamp. The sample

rate of the P410 data is around 10 Hz and that of the gyroscope is around 100 Hz. A time alignment

is performed on the stored data based on the RF data and gyroscope timestamps.
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Figure 7.5: Block diagram of data processing

After data alignment, we now have a gyroscope angle and an associated RF data measurement at

a 10 Hz rate. If we define the starting position of the wand antennas as Ax

Ay

 =

 0.71

0.00

 (7.2)

 Bx

By

 =

 −0.29

0.00

 (7.3)

where Ax and Ay describe the starting Cartesian position of antenna A and Bx and By describe the

starting Cartesian position of antenna B, we can compute the receive antenna positions at time step k

using a rotation. This is done using

Ak =

 cos(θk) −sin(θk)

sin(θk) cos(θk)

 Ax

Ay

 (7.4)

Bk =

 cos(θk) −sin(θk)

sin(θk) cos(θk)

 Bx

By

 (7.5)

where θk is the stored and time aligned angle that corresponds to the current RF measurement.

An example of the gyroscope estimated angle can be seen in Figure 7.6a where the wand first moves

left, then right, and then left again. We are showing 33 frames of gyroscope data, which is the number

of RF frames that are fused together based on the receiver position estimates. It is also noteworthy to
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Figure 7.6: Shows stored (a) gyroscope derived angle data and (b) computed receiver positions relative

to wand center

examine the intermittent nature of the angular data. This is primarily the result of three factors: first,

if the RF frame measurement fails, the frame is dropped from the allocated storage buffer, second, the

wand rate of movement was determined by the rate at which the operator manually manipulated the

wand so it is not moving at a constant rate, and last, the amount of time between RF measurements is

not constant. Figure 7.6b shows the corresponding calculated receiver positions based on the rotation

of the wand and the antenna used for the measurement. We notice in this example that there is a good

angular rotation on the order of 135 degrees. Since the receiver positions are calculated only based on

the rotation for a given 33 frame window, there are gross errors in the receiver positions during the

swift movement from one survey point to the next. The result of this error is seen in the final section

of this chapter when we examine the results of this wand processing algorithm.

Figure 7.7a shows the magnitude of the TOA preserved raw RF scan data for each of the 33 receiver

positions seen in Figure 7.6. Careful examination of the image shows that the direct path is blocked

since the multipath components have a greater intensity. Some structure is also visible in the leading

edge, but by and large, it is difficult to determine what is happening by looking at the raw scan data

alone. If we use the estimated receiver positions and the RF data as inputs to a polar version of CART

algorithm, we can produce an estimate of the range and angle to the transmitter relative to the center

of the wand. The computed polar CART metric image is seen in Figure 7.7b for this example. The

CART algorithm was able to produce an incredibly accurate estimate of transmitter position under
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this poor geometry with highly multipath corrupted RF data and estimated receiver positions based on

the gyroscope. The detected position is taken as the peak of the computed CART metric image. The

estimated transmitter positions are given to a Kalman Filter, which is described in the next section.



114

Frame Number

S
am

pl
e 

N
um

be
r

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

1000

(a) Scan Data

Range (m)

A
ng

le
 (

ra
d)

 

 

3 4 5 6 7 8 9 10 11 12

−3

−2

−1

0

1

2

3 Detected Position

(b) Polar CART metric image
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7.5 Kalman Filter Tracker

The Kalman Filter tracker we use to estimate the position of the transmitter as we walk the path

defined in Section 7.3 is a linear Kalman Filter with data editing. Data editing is added to restrict

faulty range measurements from affecting the Kalman Filter states. Following Dan Simon’s book [38],

the discrete linear dynamic system at the current time step k is defined by

xk = Fk−1xk−1 + wk−1 (7.6)

yk = Hkxk + vk (7.7)

where Fk−1 is the state transition matrix, xk is the current state with state covariance Pk, wk−1 is the

process noise, assumed to be white Gaussian with covariance Qk−1, yk is the measurement, Hk is the

observation matrix, and vk is the observation noise assumed to be white Gaussian with covariance Rk.

For our Kalman Filter we have 4 states defined by

xk =


r

ṙ

φ

φ̇

 (7.8)

where r is the current range from the center of the wand to the transmitter and φ is the angle from

antenna A to the transmitter as seen in Figure 7.1. The state transition matrix is defined by

Fk =


1 Tk 0 0

0 1 0 0

0 0 1 Tk

0 0 0 1

 (7.9)

where Tk defines the amount of time that has elapsed from the previous state to the current state. The

observation of these states occurs directly in the polar domain and is written as

Hk =

 1 0 0 0

0 0 1 0

 (7.10)

where we observe the range and angle from the center of the wand directly using the polar CART

algorithm. To execute the Kalman Filter, we first assign the initial conditions as

x+
0 = [10 0 0 0]T (7.11)

P+
0 = diag([10 10 10 10]) (7.12)
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where the initial state is set to a transmitter position 10 meters straight ahead with very little certainty

about the position as indicated by a large variance in range and angle. We also assign the process noise

as

Qk = diag([1e− 2 1e− 2 1e− 5 1e− 5]) (7.13)

which restricts the way the model is allowed to be influenced by the measurements when we run the

Kalman Filter. The first 5 frames of the Kalman Filter use a scan grid that is defined by a 40x50 point

scan grid of size ±5 meters and ±120 degrees. All scan grids afterwards are defined by a sequence

of 9 frames that are determined by the state covariance Pk and the 10th frame that is a 40x50 point

scan grid of size ±5 meters and ±120 degrees. This sequence ensures the current point being tracked

is indeed the correct global maximum in the metric image. The 9 frames that are defined by Pk are

limited to a 26x26 point scan grid centered on the current estimated transmitter position covering a

range of parameter values defined by ±3σr̂ and ±3σφ̂. If the state variances are smaller than 0.25

meters or 0.25 radians, the size is limited to a ±0.25 meter and ±0.25 radian scan grid size.

Once the first estimate is made based on the initial conditions for the first frame, we run the Kalman

Filter forward using the time update

x−k = Fk−1xk−1 (7.14)

P−k = Fk−1Pk−1F
T
k−1 +Qk−1 (7.15)

followed by a computation of the Kalman gain and the innovation bounds

K−k = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (7.16)

Sk = HkP
−
k H

T
k +Rk (7.17)

which enables data editing on the measurement update. We then compute the innovation as

rk = yk −Hkxk (7.18)

where the innovation rk is not to be confused with the the state variable r. The innovation measures

the level of surprise in the measurements of the states as compared to the predicted states based on

the model. For our implementation, if the innovation is outside the ±2σx̂ bounds as defined by the

innovation bound Sk, then we discard the measurement. This is important for the large scan grid

window where we introduce the possibility of a measurement that is far from the current tracked

position.
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The final step is to compute the measurement update based on the time update state and state

covariance, Kalman gain, and innovation. Without data editing, the measurement update equations

are

x+
k = x−k +Kkrk (7.19)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k (7.20)

and with data editing, we update each individual measurement using a loop through all the observations.

If the measurement falls in the ±2σx̂ bound, we use

Kk(l) = PkH
T
k (l)(Hk(l)PkH

T
k (l) +R(l))−1 (7.21)

x+
k (l) = x+

k (l) +Kk(l)rk(l) (7.22)

P+
k (l) = (I −Kk(l)Hk(l))P

+
k (l)(I −Kk(l)Hk(l))

T +Kk(l)Rk(l)Kk(l)
T (7.23)

where l = 1..2 observations for this problem, Hk(l) selects the lth row that defines the observation from

Hk, R(l) selects the l,lth element of the measurement covariance Rk, x
+
k (l) is initialized to x−k , P+

k (l)

is initialized to P−k , and x+
k = x+

k (l) and P+
k = P+

k (l) once the loop as completed. The result is a

measurement update if the measurement made is close to where the model predicted the measurement

should fall.

As stated before, the gyroscope data is handled separately in this implementation and is not part of

the Kalman Filter other than being used to produce the receiver position estimates, about the center

of rotation, when a RF position measurement is taken. We hold the wand steady for 10 seconds at the

beginning of the data collection to estimate a bias for the entire run. This bias is then subtracted from

the raw gyroscope data and then the result is integrated between each Kalman Filter step and added

to the current prediction of the wand angle relative to the starting orientation.

7.6 Results

We can quantify the performance of our transmitter tracking algorithm using the same CDF of

errors and RMS analysis used in the previous chapter. Since we rotated the wand over a survey point,

we have truth data for each rotation. Comparing the truth to the estimate, we are able to determine

the error. Before we show those results, we show the range and angle track results in Figure 7.8 and

Figure 7.9 along with the true range and angle determine by examining the gyroscope angle rotation

data. The figures also shows the survey point number for each truth position. The range track in Figure
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Figure 7.8: Shows range estimates, Kalman Filter range track result, and true range for the wand

homing device test. The numbers are the surveyed truth position number at that time.

7.8 shows the remarkable precision of the CART algorithm. The green tracked position is shown going

through each truth position marked in black with an imperceivable difference. The individual range

measurements are also so incredibly closely clustered that they cannot be seen in the image. The angle

track seen in Figure 7.9 does not perform as well, but is still remarkably accurate. The track appears

to drift farther from the true angle in between the truth locations where the wand is moved swiftly as

we do not model movement in the receiver position calculations.

We plot the CDFs of the errors at each survey point in Figure 7.10 with one side showing all the

CDFs on a single plot and the other side showing the image of the CDFs, limiting the errors in both

cases to 2 meters. These errors show that submeter accurate estimates are possible even with the poor

geometry and heavy multipath of this application. Measurements from all 15 survey points were able
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Figure 7.9: Shows angle estimates, Kalman Filter angle track result, and true angle for the wand

homing device test. The numbers are the surveyed truth position number at that time.

to produce estimates with less than 0.5 meters error all of the time in this experiment.

Figure 7.11 shows the RMS error at each survey point along with a 1 meter targeted error limit

indicator. Consistent with previous experimentation, we are able to produce incredibly accurate esti-

mates of the transmitter position, even from the hallway outside the laboratory where we encounter

blocked direct path conditions. The maximum RMS error is at survey point 10, which is about 0.4

meters. The minimum error is on the order of 0.05 meters at survey point 13, near to the transmitter

position. The RMS errors in the hallway are on the order of 0.2 meters, similar to what we had with

stationary experimentation using 3 pairs presented in Section 6.1.

If we have an estimate of the range and angle to the transmitter, we can calculate the wand center

position using simple geometry. We plot the raw estimates of the wand position based on the transmitter
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Figure 7.10: Shows the CDF of the error at each survey point from 1 to 15 (a) using single plot and

(b) using an image
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Figure 7.11: Shows the transmitter position estimate RMS errors for all survey points 1 to 15

position estimate in Figure 7.12 for all 15 survey points where the wand was rotated. In addition, we

also plot the error vectors associated with the wand position estimates at each survey location. These

raw errors again show a robust set of position estimates in this highly multipath indoor environment.
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Figure 7.12: Shows the raw estimates of the wand center position along with an error vector at each

survey point from 1 to 15

The fire fighter homing device application suffers from a difficult geometry, which usually would

result in poorer estimates of transmitter position. By fusing multiple RF measurements as the wand

is rotated, we are able to increase the performance to an acceptable level of less than 1 meter error.

As long as a direct path exists with sufficient SNR in the captured RF scan data and a reasonable

estimate of receiver positions exist, we can produce an accurate estimate that is largely immune to

the multipath. In this chapter, we have shown by application the ability of the CART algorithm to

produce robust and accurate estimates in a high multipath indoor environment.
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Chapter 8

Summary and Conclusions

This dissertation introduces a new algorithm for indoor localization using an Ultra-Wideband

(UWB) Impulse Radio (IR) waveform. The existing Singular value Array Reconciliation Tomogra-

phy (SART) and Transactional Array Reconciliation Tomography (TART) algorithms developed at

Worcester Polytechnic Institute (WPI) were designed for a multi-carrier wideband non-impulsive sig-

nal and were not designed to take advantage of UWB IR waveform features. In fact, the UWB IR

waveform is detrimental to the SART and TART algorithm performance in the presence of heavy multi-

path when compared to the traditional two step Leading Edge Detection (LED) method that literature

describes for UWB IR. The problem with the traditional two step LED method is that it presents

an inconsistent set of constraints to the position solver due to range estimation errors, resulting in

decreased performance. In addition, the traditional two step LED method does not take advantage

of a coherent integration gain of the direct path signal that is possible when properly combining the

ensemble of data from all receivers. We recognized the need for a new approach that takes advantage

of the UWB IR features in heavy multipath that overcome the limitations of the traditional two step

LED method.

A new approach introduced in this dissertation called Coherent Array Reconciliation Tomography

(CART) is developed for the UWB IR waveform in which only consistent solutions are searched. The

CART algorithm was designed based on the segmentation of the received signals into two segments:

one that should contain the leading edge of the received signals embedded in noise and one that should

contain noise only. The CART algorithm produces a simultaneous leading edge and position estimate

based upon a search of consistent ranges to produce the simultaneous best estimate using signal fusion.

The computation is performed in a greedy manner typically using a single independent data capture
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from each receiver using a combination of three submetrics based upon the two segments: the similarity

submetric, the SVD based submetric, and the power based submetric. Each submetric was incorporated

to improve the performance and robustness of the algorithm in both a simulated environment and under

experimental conditions.

Simulation using the IEEE 802.15.4a CM4 indoor multipath model suggests that the CART algo-

rithm is nearly statistically efficient in that it closely follows the Cramer Rao Lower Bound (CRLB)

and outperforms the traditional two step LED method commonly used in literature. In addition, it

was demonstrated that under conditions of heavy multipath in which the existing SART and TART

algorithms both fail, the CART algorithm continues to provide robust solutions. In fact, the CART

algorithm continues to follow the CRLB until the Signal to Noise Ratio (SNR) degrades to about -12

dB, at which point it has comparable performance to the two step LED method, and 15 dB better

performance than the SART algorithm and 20 dB better performance than the TART algorithm as

measured by the Mean Squared Error (MSE). In the simulated case of 10 dB SNR, the CART algorithm

produces errors with a MSE of 20 dB smaller than the two step LED.

Experimental data was collected using an off the shelf PulseOn 410 (P410) device developed by

TimeDomain in order to validate the CART algorithm and compare it’s performance to the SART,

TART, and two step LED by experimentation in two indoor environments. The P410 devices have

a RF waveform that is approximately 2 GHz wide centered at 4 GHz and transmits -15 dBm of

power. Several operating modes including ranging and communications are achieved by transmitting

a series of narrow pulses at a repetition rate of approximately 10.1 MHz using time and phase coded

pulses. This dissertation introduced a way to synchronize the two P410 devices in order to preserve

TOA information, resulting in a synchronized transmitter/receiver pair. The synchronization method

introduced preserves the TOA information by estimating the sample that corresponds to the responder

transmit time in the requester raw data. The estimate of the transmit time is only dependent on

a single robust correlation estimate between the requester and responder raw channel data from a

single two way transaction. The results show remarkable precision is possible with Root Mean Squared

(RMS) errors on the order of 0.10 meters for the CART algorithm despite poor receiver placement

geometry compared to more than a 3 meter error for two step LED, SART and TART algorithms. In

the first test (Section 6.1), the localization performance of the CART algorithm is about 30 times better

than existing methods. Specifically, the two step LED algorithm produced a position estimate with

a RMS error of 3.00 meters, the SART algorithm produced a 7.35 meter error, the TART algorithm

produced a 8.89 meter error, and the CART algorithm produced a 0.10 meter error. In the second
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test (Section 6.2), the localization performance of the CART algorithm is about 9 times better than

existing methods. In the second test, the two step LED algorithm produced a position estimate with

a RMS error of 2.16 meters, the SART algorithm produced a 3.79 meter error, the TART algorithm

produced a 2.81 meter error, and the CART algorithm produced a 0.24 meter error.

We also compared the performance of the CART algorithm to the performance of the Inverse Syn-

thetic Array Reconciliation Tomography (ISART) algorithm in the same harsh multipath environment

of the AK317A computer laboratory. It was shown that using just a single independent data capture

at each of the 6 receivers with the CART algorithm outperforms the ISART algorithm by a factor

of greater than 4 times. The ISART algorithm used 32 independent data captures at each of the 12

receivers that have been compensated for motion using an Inertial Measurement Unit (IMU) based

solution, which produced a position estimate with RMS error of 1.02 meters. The CART algorithm

produced a position estimate with RMS error of 0.25 meters. The 32 independent data captures at each

of the 12 receivers represent an aperture size of 384 antennas for the ISART algorithm as compared

to the aperture size of 6 antennas for the CART algorithm. This again shows the superiority of the

CART algorithm compared to existing methods.

After successful experimentation using stationary transmitter and receiver positions, the CART

algorithm was applied to the problem of the fire fighter homing device. The fire fighter homing device

is an indoor localization device that contains a single transmitter affixed to a first responder and two

receivers attached to a small wand. We use a single P410 device to capture the RF waveform at the

two receiver locations attached to the ends of the wand device and a single axis gyroscope to measure

the rotation of the wand. The gyroscope data is used to estimate the antenna positions at the same

time the P410 measured the received waveform. A polar form of the CART algorithm was then used

to determine the estimates of the range and angle from the gyroscope (origin) to the transmitter. It

was demonstrated that submeter accuracy on the order of 0.2 meters can be achieved under an indoor

test scenario, which is consistent with the previous simulations and stationary experimentation carried

out earlier.

Historically, fire fighters have expressed concern about the size of the wand due to the confined

spaces frequently encountered in search and rescue operations. Thus, we have also shown by Cramer

Rao Lower Bound (CRLB) analysis, that for every time we half the length of the wand, we lose 6 dB of

performance from the MSE of the Cartesian position estimate. Assuming a 10 dB SNR for the received

signal and if we are able to rotate the wand 90 degrees in a stationary position, we can use a wand

length of approximately 0.5 meters to achieve a submeter position estimate at a 20 meter range.
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The wand homing device innovation also overcame several technical issues associated with the com-

mercialization of a wand homing device. We demonstrated dynamic synchronization of data from a

moving wand using gyroscopic measurements. We also demonstrate high precision location solutions

with extraordinarily limited sensor geometry. In addition, we apply Kalman Filtering to tie outcomes

together over full duration to achieve robust estimation in a highly dynamic multipath environment.

Even though we only demonstrate an implementation that finds 2 dimensional results using a single

axis gyroscope, a final commercial product could be realized using our methods to obtain a full three

dimensional motion solution derived from 3 accelerometer measurements as well as 3 gyroscopic mea-

surements. Examples of such three dimensional motion models using Kalman Filters can be found in

[26], [39], [40].

In addition to a full 3 dimensional solution, another potential future improvement to the wand

homing device application is the addition of other transmitters into the operational scenario. We recall

that the performance of the range track seen in Figure 7.8 is superior to the angle track due to the limited

sensor geometry. Even a single transmitter positioned outside of the building in addition to the one the

fire fighter wears while entering a burning building can be used to improve the localization performance

of both transmitters. The placement of the additional transmitter outside will also provide the wand

operator additional directional awareness when they wish to exit the building. In this operational

scenario, the wand operator would first use the wand to find the fire fighter’s transmitter inside the

burning building and then find the transmitter outside to exit the building with the recovered fire

fighter.

The currently implemented wand homing device operates at approximately a 10 Hz RF data capture

rate, which limits the speed at which the operator can move as well as the accuracy of the localization

solution. This limitation is due to the current P410 firmware, which limits the baud rate to 115200.

A new firmware is available from TimeDomain that allows selectable baud rates up to 921600, which

would enable increased performance. The new datasheet, however, suggests instability may result from

increased baud rates and that 230400 has been the only stable baud rate as reported by one customer.

Another limitation of UWB technology in practice is the limited power available due to Federal

Communication Commission (FCC) limitations. In the 3 - 5 GHz range in which these experiments

were performed, we can only transmit a maximum of -15 dBm spread over our entire 2 GHz in order to

prevent interference to primary users in that band. This power places a limit on the operating range

of the wand homing device on the order of tens of meters in an indoor environment. In the future, we

can explore using a multi-band approach whereby a narrow band signal in the Industrial, Scientific,
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and Medical (ISM) radio frequency band is synchronized to the UWB waveform in order to ensure a

detection, coarse synchronization, and perhaps a coarse range and angle estimate. Once the operator

gets close enough to the transmitter, UWB can be used for precision localization. It may also be

worth exploring the integration of the UWB received signal over a long period of time using the coarse

synchronization provided by the narrow band solution to achieve a useful position solution. The other

alternative to increase the operating range is to pursue permission from FCC to operate with higher

power in case of an emergency.

In addition to these future enhancements to the wand homing device, the CART algorithm could

be improved by introducing excess delay into the model in order to account for the various building

materials and environments. This is likely to be unnecessary due to the limited geometry of the wand

application, but is worthy of consideration if additional precision is desired under difficult long distance

scenarios where the RF waveform propagates through many walls.

This dissertation contributes to the field of indoor localization using an UWB IR waveform by

presenting a robust and near optimal localization algorithm. The wand homing device is just one

example application where we can apply precision localization using the CART algorithm. We invite

the reader to explore other applications and improvements in order to positively influence our lives.
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Appendix A

Embedded Device Hardware Details

As seen in Figure A.1, the transmitter hardware consists of a single battery operated P410 unit

and a FPGA based soft core host embedded processor attached by USB. A single antenna port is used

with the standard antenna supplied with the evaluation kit. An Arduino USB Shield kit hosts the USB

interface chip and enables connection between the DE0-Nano board and the P410 through the USB

2.0 interface. Initially, the connection was implemented through the P410 3.3V serial interface, but in

order to test higher serial baud rates the connection was moved to the USB interface. Unfortunately,

115200 baud is the only baud rate that works on this P410 unit through either the 3.3V serial or USB

interface.

Figure A.1: Transmitter Hardware
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Figure A.2 shows a simplified block diagram. A single 8.4V Lithium Ion battery is used to power the

P410 unit and the Linear Technology regulators are used to produce the required 5V for the DE0-Nano

FPGA evaluation kit and the Arduino USB Shield. The DE0-Nano FPGA evaluation kit and P410

boards both contain internal regulators for proper operation. The USB Shield also requires 3.3V, which

is taken from the DE0-Nano board. There is a standard 4-wire SPI interface that operates at 10 MHz

that acts as the interface between the DE0-Nano board and the USB Shield. The DE0-Nano board

contains an Altera Cyclone IV EP4CE22F17C6N FPGA with a NIOS soft core processor that has at

100 MHz clock. The USB Shield contains a MAX3421 USB interface chip that maintains the USB bus

protocol requirements, making the driver development for the NIOS processor more manageable.

Figure A.3 shows the wiring table for the USB Shield. The 4 wires of the SPI interface are connected

through the DE0-Nano 40 pin header J2 to the Cyclone IV FPGA. The SPI RST reset pin is always tied

to 3.3V to disable any hard resetting since a similar reset can be achieved through the SPI interface.

The 3.3V for the USB Shield board also comes from the DE0-Nano 40 pin header J2 as shown. The

5V supply and ground come from the regulator as shown in the previous block diagram in Figure A.2.

The Arduino USB Shield kit comes with a C++ driver for the Arduino board that was used as the

basis for the NIOS driver. It was heavily modified to be C compatible with the NIOS Eclipse compiler.

The result was that only a single USB device address is allowed on the bus at one time, but the basic

USB commands from the driver work.

The boot process for the NIOS processor starts by setting the DE0-Nano evaluation kit LEDs to an

alternating pattern followed by a delay of 5 seconds. This allows the P410 unit to fully initialize prior

to the NIOS processor attempting to access the P410. The next step is to initialize the MAX3421 by

writing 0x10 (FDUPSPI) to address 17 (PINCTL) to ensure 4-wire SPI communication is being used.

By default, the MAX3421 operates in 3-wire SPI, which uses a single wire for data in and data out

instead of separate wires. The register information for the MAX3421 can be found in the programming

guide [41]. Then, we need to reset the MAX3421 chip to ensure we always start in a known state. This

is done by writing 0x00 to address 15 (USBCTL), waiting a bit, re-enabling 4-wire SPI as before, and

waiting until the MAX3421 indicates the PLL is stable by asserting bit 1 (OSCOKIRQ) of address

13 (USBIRQ). We then clear the PLL stable interrupt and the frame interrupt by writing a 0x41

(VBUSIRQ and OSCOKIRQ) to address 13 (USBIRQ). Out of extra caution, we also add a delay of

1 second to ensure the MAX3421 is ready. Now that the reset is complete, we can set the USB shield

into USB HOST mode to allow the NIOS processor to control the P410 device. This is done by writing

a 0x01 (HOST) to address 27 (MODE) in the MAX3421.
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Figure A.2: Mobile P410 Block Diagram

Figure A.3: Pin Locations

Once the reset is complete a USB bus reset is initiated. This is done by writing a 0x01 (BUSRST)

to address 29 (HCTL) and waiting until bit 1 (BUSEVENTIRQ) of address 25 (HIRQ) asserted. Once

bit 1 (BUSEVENTIRQ) of address 25 (HIRQ) is asserted, we can reset the interrupt by writing a 0x01

(BUSEVENTIRQ) to address 25 (HIRQ). We also need to enable the automatic generation of Start

of Frame (SOF) packets in Full Speed USB by writing a 0x09 (SOFKAENAB and HOST) to address

27 (MODE) and waiting for bit 7 (FRAMEIRQ) of address 25 (HIRQ) to be asserted. Once the bit is

asserted, we write 0x40 (FRAMEIRQ) to address 25 (HIRQ) to clear the interrupt.
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After the USB bus has been reset, we are able to begin communication with the P410 USB device.

The first order of business on any USB host to device communication is to get the USB device descriptor.

This is done by instructing the MAX3421 to send a USB control request on address 0 endpoint 0 (all

USB devices must respond to these commands) requesting 18 bytes of the P410 USB device descriptor.

Since we requested data from the USB device, we must initiate 8 byte bulk-in transfers through the

MAX3421. This is done by writing 0x00 address 30 (HXFER), waiting for the transfer interrupt

to complete, and read the data out of the receive fifo. Only 8 bits at a time can be transferred so

this process needs to be repeated until all 18 bytes are received. For more information on the USB

protocol, see [42] and [43]. The device descriptor tells us information about the USB device including

the vendor, device class, and number of configurations. Table A.1 shows the Device Descriptor for

the P410 Unit. Typically, a USB device will only have a single configuration since Windows drivers

only support one configuration. The manufacture string is set to “Time Domain”, the product string

is set to “P400 Radio”, and the serial number string of this device is set to “102”. The next step

is to set the device address for communication. This is done by sending another control request to

address 0 endpoint 0 requesting the address to be set to 1. Once the communication address is set, we

can get the configuration descriptor by sending a control request requesting 9 configuration descriptor

bytes to address 1 endpoint 0. Again, we need to read the 9 bytes repeating the bulk-in transfer

request done before. The configuration descriptor tells us the configuration value, max packet size,

and configuration type that we need for proper communication to the P410 device. Table A.2 shows

us the configuration descriptor of the P410 device. Once we have the configuration value, we can set

it by sending a set configuration control request to address 1 endpoint 0. The P410 USB device is now

ready for communication.

To increase the bandwidth over the USB interface, it is desirable to increase the baud rate between

the NIOS processor and the P410 device. The P410 device is configured as a Communications Device

class and claims to have a baud rate control through communication device class commands. After

sending control requests to address 1 endpoint 0 to set the baud to 921600 and reading back the

configured baud, it appears that the commands have no effect. The P410 device always reports a baud

rate of 115200 baud.

Now that the USB interface is configured, we are ready to control the P410 device. Control of the

P410 is achieved through a set of messages defined in the P410 API documentation [32]. The first mes-

sage sent to the P410 is the RCM SET SLEEPMODE REQUEST intended to ensure the device is in

the active state. The next message sent is the RCM SET OPMODE REQUEST to enable RCM mode,
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bLength 18

bDescriptorType 0x01

bcdUSB 0x200

bDeviceClass 0x02

bDeviceSubClass 0x00

bDeviceProtocol 0x00

bMaxPacketSize0 0x08

idVendor 0x3700

idProduct 0x300

bcdDevice 0x00

iManufacturer 0x01

iProduct 0x02

iSerialNumber 0x03

bNumConfigurations 0x01

Table A.1: P410 Device Descriptor

bLength 9

bDescriptorType 0x02

wTotalLength 0x43

bNumInterfaces 0x02

bConfigurationValue 0x01

iConfiguration 0x00

bmAttributes 0xC0

bMaxPower 0x32

Table A.2: P410 Configuration Descriptor
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which puts the P410 into two way time of flight ranging mode. Once the P410 is configured in RCM

mode, we can get the current configuration using RCM GET CONFIG REQUEST. The configuration

tells us how the ranging mode is currently configured, including the transmit gain of the transmit RF

channel, which messages will be passed to the host processor if available (what type of scan info, etc..),

which antenna is being used, the integration index which defines how many samples will be averaged

in the scan data, and things of that nature. For our purposes, we want to ensure the transmit gain

is set to the maximum (a value of 44), the flags are set to (0x13) to get RCM FULL SCAN INFO

packets and not get Coarse Range Estimate (CRE) packets, channel code set to 0, antenna mode set

to antenna A (0), integration index of 5, and the electrical delays set to 0. Once we read the contents

of the configuration, we can modify these parameters and use RCM SET CONFIG REQUEST to set

the P410 in the proper configuration.

Once the P410 is fully configured, the NIOS processor waits in an infinite loop waiting for packets.

Packets are produced when the receiver device (requester) connected to a laptop initiates a range request

to the mobile P410 device. When a range request is initiated, a RCM FULL SCAN INFO packet is

generated and captured by the NIOS processor. When the NIOS processor receives this message, it

prepares the scan data and submits the modified scan data as the next response data packet using the

RCM SET RESPONSE DATA REQUEST (0x0005) message. Due to P410 hardware limitations, the

data package can only be 1024 bytes long whereas the full scan data is 1623 32-bit words long. In

addition, we need to send the mobile unit’s leading edge, lockspot, time stamp, and vPeak (max value)

to the wand device. The embedded host performs a simple Automatic Gain Control (AGC) function to

reduce the number of bits per scan data sample from 32 to 8. Each sample in the scan data is shifted

right by the minimum amount required to achieve 8 bits of data resolution. This compression method

is sufficient since we are guaranteed to have sufficient Signal to Noise Ratio (SNR) if a meaningful

lockspot was achieved by the mobile P410 unit. This compression maintains the maximum signal

power and reduces the dynamic range from the bottom.

Since the responder scan data is used only for the purpose of estimating n̂∆, the sample difference

between the requester unit and the responder unit, we must verify the compression method chosen

will not have a detrimental impact on the estimate. The Figure A.4a shows the full scale requester

and responder scan data from a single range request measurement. After compression, each sample is

forced into an 8 bit value as seen in Figure A.4b.

If we compute the cross correlation as described by equation (5.8) for both the original waveform and

the compressed waveform, we see in Figure A.5 there is virtually no distinguishable difference. Many
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(a) Scan data (b) Compressed responder scan data

Figure A.4: Shows (a) requester and responder scan data and (b) compressed responder scan data

such cases were tested to validate this compression method and further error analysis was deemed

unnecessary.

Figure A.5: Cross correlation of requester data with original responder data and compressed responder

data

The full data packet sent from the responder to the requester for the purpose of alignment is as
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follows: lockspot (32-bits), ledIndex (32-bits), time stamp (32-bits), antenna ID (8-bits), operational

mode (8-bits), vPeak (16-bits), compressed scan data (1008 bytes) starting from sample 624 to the end

sample at 1632. The ledIndex, antenna ID, operation mode, and vPeak are currently not used. The

lockspot and compressed scan data are used for the data alignment of the requester scan data. Other

compression methods are possible to reduce the amount of data sent over the data channel, but have

not been explored at this time.

This embedded device was used as part of the transmitter unit for both the experimental collection

described in Chapter 6 and the wand application discussed in Chapter 7. On the receiver side, a laptop

is connected by USB to the requester unit. A custom MATLAB program is used to send range request

messages to the transmitter unit, which then responds as described above. The RCM RANGE INFO,

RCM FULL SCAN INFO, and RCM DATA INFO packets are stored into allocated memory on the

host computer until the end of the data collection. Once data collection ends, the allocated memory

is saved into a file on the hard drive to be processed at a later time. This method of data collection

allows us to collect the data as fast as possible without risk of buffer overflows.
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Figure B.1: Shows (a) the worst case geometry and the (b) resulting difference in SNR in Antenna A

compared to Antenna B with a transmitter that ranges from 10 to 40 meters

Appendix B

Wand Length Analysis

In this Appendix, we present the results of the theoretical wand length analysis based on the CRLB

that was derived in Section 4.2.

During the derivation of the CRLB of the parameters [xm ym]T , we made an assumption that

allowed a simplification which resulted in equation (4.18). The simplification required the SNR in all

antennas to be the same. In this section we also keep the same assumption. Prior to proceeding with

the wand length analysis, we quickly examine the differences in SNR that may be present in the two

antennas with a 1 meter wand length and a 0.5 meter wand length. Figure B.1a shows the geometry
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(a) Model Parameters
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Figure B.2: Fixed (a) model parameters and resulting (b) performance using CRLB calculation

that results in the worst case difference in SNR between antenna A and antenna B with a 10 meter or

greater transmitter range. This is the worst case geometry since the transmitter is the closest possible

to one antenna and farthest from the other while still being at least 10 meters from the center of

the wand. Figure B.1b shows the resulting SNR difference. The calculation assumes the following

parameters: mobile transmit power = -15 dBm, transmit gain = 2 dB, receive gain = 2 dB, frequency

= 4 GHz, bandwidth = 2 GHz, noise figure = 0 dB, and range = 10 to 40 meters. In both of these

examples, the difference in the SNR is less than 1 dB, with a smaller and smaller difference as the range

to the transmitter increases. Our analysis assumes that the transmitter is at a range of 20 meters,

which results in a SNR difference of only 0.43 dB for a 1 meter wand. Our assumption of equal SNR

for this scenario is therefore considered reasonable for this wand length analysis.

If we assume that the wand angle θ is 0 degrees, the wand length d is 1 meter, the transmitter range

r is 20 meters, the SNR is 10 dB, and the transmitter angle relative to antenna A φ is -30 degrees as

shown in Figure B.2a, we can compute a single CLRB point. In order to conform with the computed

CRLB parameters of [xm ym]T , we convert the polar position of the transmitter to the equivalent

Cartesian position. The metric used in this analysis is the RMS position error described by (4.32).

The position of antenna A is (0.5, 0) and the position of antenna B is (-0.5, 0), which suggests that

the exact center of the wand is the origin. As discussed in the next section, the actual wand prototype

has a different distance to antenna A than to antenna B. The resulting CRLB for the simulation point
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(a) Model Parameters
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Figure B.3: Variable mobile angle φ CRLB calculation showing (a) all model parameters and resulting

(b) performance

is shown in Figure B.2b, which also shows the desirable 1 meter performance bound. This one point is

about 0.25 meters greater than the 1 meter bound desired.

Now, we allow the mobile angle to vary from -180 to 180 degrees. As we move the true position

of the transmitter, there are some geometries that result in poor performance with a stationary wand.

Figure B.3a shows the model parameters under this variable condition and Figure B.3b shows the

resulting CRLB calculated performance as a function of true transmitter angle φ relative to the axis

defined by antenna A and antenna B. The intersection of two circles at the 0 degree geometry is very

difficult and results in a very large RMS error, greater than the 10 meter limit shown. This is precisely

the reason that a gyroscope is necessary; in order to improve the geometry and allow a unique position

result in 2 dimensions.

We now allow the wand length d to vary from 0.1 to 2 meters, the edges of which are verge of being

reasonable. The new parameters are shown in Figure B.4a and the resulting performance is seen in

Figure B.4b. The wand length roughly raises or lowers the entire curve depending on the length. A

very short wand length of 0.1 meters results in RMS position errors greater than about 8 meters. A

very long wand length of 2 meters can have good geometry resulting in less than 1 meter RMS error

for many angles. It still, however, suffers from the same poor geometry at 0 degrees for φ.

If we change θ, the wand angle, from 0 to 45 degrees, we are finally able to positively influence the
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(a) Model Parameters
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Figure B.4: Variable mobile angle φ and wand length d CRLB showing (a) all model parameters and

resulting (b) performance
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Figure B.5: Variable mobile angle φ, wand length d, and fusing 45 degrees of wand rotation CRLB

calculation showing (a) all model parameters and (b) resulting performance

performance at the 0 degree transmitter angle. The parameters in Figure B.5a and performance in

Figure B.5b show the result after fusing measurements from antenna A and antenna B as the wand

rotates from 0 to 45 degrees about the center of the wand. A measurement is made every 2 degrees in
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Figure B.6: Shows performance for variable mobile angle φ, wand length d, and fusing (a) 90 degrees

of wand rotation or (b) 180 degrees of wand rotation

this simulation in both antennas. We immediately see in Figure B.5b that all angles of φ result in an

improvement due to the additional information available. The 0.5 meter wand length shown in black

results in a 1 meter or better performance for most angles of φ, whereas before (without wand rotation)

the 0.5 meter wand length never produced an estimate less than 1 meter. The shape of the curve as a

function of φ is also flatter, with two lower peaks of poor geometry around 35 and -155 degrees.

Additional rotation of the wand and continuing to fuse the measurements taken every 2 degrees

results in improved performance. Figure B.6a shows the performance of fusing 90 degrees of wand

rotation and Figure B.6b shows when we fuse 180 degrees of wand rotation. The results indicate that

better than 1 meter error can be achieved for all angles of φ with 90 degrees of wand rotation and a

0.5 meter wand length.

A reasonable rotation of an operator’s wrist would be about 90 degrees. Based on this characteri-

zation, we recommend a 0.5 meter wand length as the optimal length. This ensures a sufficiently small

wand for the fire fighter as well as a wand that can produce a 1 meter accurate estimate regardless of

the angle to the transmitter. We also observe a good rule of thumb that there is a 6 dB loss in MSE

performance for every time we halve the wand length.
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Appendix C

Additional Location Metric Images for

the AK315 Test
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Figure C.1: Atwater Kent 3rd floor metric image examples using data from 5 survey points
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Figure C.2: Atwater Kent 3rd floor metric image examples using data from 5 survey points



143

Meters

M
et

er
s

 

 

Error: 0.153 m

0 2 4 6 8 10

0

5

10

15

Transmitter
Receiver
Detected Position

(a) LED

Meters

M
et

er
s

 

 

Error: 1.191 m

0 2 4 6 8 10

0

5

10

15

Transmitter
Receiver
Detected Position

(b) SART

Meters

M
et

er
s

 

 

Error: 7.570 m

0 2 4 6 8 10

0

5

10

15

Transmitter
Receiver
Detected Position

(c) TART

Meters

M
et

er
s

 

 

Error: 0.153 m

0 2 4 6 8 10

0

5

10

15

Transmitter
Receiver
Detected Position

(d) CART

Figure C.3: Atwater Kent 3rd floor metric image examples using data from 3 survey points: 2, 8, 12
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Figure C.4: Atwater Kent 3rd floor metric image examples using data from 3 survey points: 1, 3, 6
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Figure C.5: Atwater Kent 3rd floor metric image examples using data from 3 survey points that produce

the poor geometry: 2, 3, 4
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Appendix D

Additional Location Metric Images for

the AK317A Test
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Figure D.1: Example metric images for a transmitter at survey point 21 using algorithms (a) LED, (b)

SART, (c) TART, and (d) CART
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Figure D.2: Example metric images for a transmitter at survey point 22 using algorithms (a) LED, (b)

SART, (c) TART, and (d) CART
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Figure D.3: Example metric images for a transmitter at survey point 23 using algorithms (a) LED, (b)

SART, (c) TART, and (d) CART
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Figure D.4: Example metric images for a transmitter at survey point 28 using algorithms (a) LED, (b)

SART, (c) TART, and (d) CART



151

Meters

M
et

er
s

 

 

Error: 0.632 m

0 2 4 6 8 10 12 14 16 18
12

14

16

18

20

22

24 Transmitter
Receiver
Detected Position

(a) LED

Meters

M
et

er
s

 

 

Error: 2.886 m

0 2 4 6 8 10 12 14 16 18
12

14

16

18

20

22

24 Transmitter
Receiver
Detected Position

(b) SART

Meters

M
et

er
s

 

 

Error: 0.200 m

0 2 4 6 8 10 12 14 16 18
12

14

16

18

20

22

24 Transmitter
Receiver
Detected Position

(c) TART

Meters

M
et

er
s

 

 

Error: 0.224 m

0 2 4 6 8 10 12 14 16 18
12

14

16

18

20

22

24 Transmitter
Receiver
Detected Position

(d) CART

Figure D.5: Example metric images for a transmitter at survey point 29 using algorithms (a) LED, (b)

SART, (c) TART, and (d) CART
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