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ABSTRACT 

 

Transmission loss needs to be considered in the design of telecommunication systems.  If 

telecommunication systems have high transmission loss, the signals lose too much of their 

strength, which results in poor reception in television networks and lost calls in cellular 

networks.  Total transmission loss, in the MHz-GHz range, has several different loss 

components, some of which are poorly characterized.  Conductor loss is the largest loss 

component and the most difficult to predict.  It is known that the conductor geometry or 

features influences the conductor loss. However, current numerical, analytical and empirical 

tools do not accurately predict this loss component, and there is little experimental data 

available to explain and show the impact of these conductor geometries.  The conductor shape 

is heavily influenced by the ceramic substrate surface roughness, and this is especially true for 

printed circuit boards fabricated with thick-film technology.  The two conductor features of 

interest are the conductor-edge angle and conductor-ceramic interface.  For thick-film circuits, 

the edge of the conductor does not have a square cross section but has a tapered shape or 

angle.  The conductor-ceramic interface is also rough at the micron scale.  Since the current 

density is concentrated at the extremities of the conductor then these features, conductor-

ceramic interface and conductor edges, can potentially have a large impact on conductor loss.  

For this study, the surfaces of ceramic substrates were subjected to different surface finishes 

that resulted in distinctly different surface characteristics.  This in turn resulted in a range of 

conductor-ceramic interfaces and conductor-edge angle geometries.   
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The impact of the conductor-edge angle and conductor-ceramic interface features on 

conductor loss was measured over a range of frequencies and conductor conductivities to 

ascertain the level of their contribution. It was shown quantitatively that the conductor-edge 

angle was significantly altered by the surface roughness and heavily influenced the conductor 

loss result.  The consensus for decades has been that greater surface roughness causes the 

ceramic-conductor interface geometry to have a greater impact on conductor loss, increasing 

the conductor loss.  However, this study has shown that greater surface roughness also causes 

the conductor-edge angle feature to have a smaller or reduced impact on conductor loss, 

improving the conductor loss result - this has not been considered previously.  Focusing on 

only one of these features can give an anomalous loss prediction; both features need to be 

considered for the calculation of conductor loss for thick-film applications. The low frequency 

loss results are as expected but the high frequency (greater than 5GHz) results depend on edge 

angle and therefore thick-film paste viscosity, and substrate surface roughness.   
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1.0  INTRODUCTION 

1.1 MICROELECTRONICS AND MICROELECTRONIC PACKAGING 

Microelectronic circuits exist in numerous applications; some examples are telecommunications 

systems, automobiles and medical devices - hybrid microelectronics - also known as microelectronic 

packaging, are used in all facets of the electronics industry, and are especially common within 

telecommunications.  High-performance microelectronic packaging materials, and the processes 

required to make these materials into electronic circuits, were initially developed for applications in the 

computer and defense industries in the 1960s.  Since then, these materials have been used to meet 

stringent design criteria for many other applications.  Specific applications of this technology include: 

anti-collision radar for automotive, phased array radar for satellite systems, MRI scanners, Bluetooth, 

and even digital applications such as video cards that use high-speed interconnects.   

Microelectronic packaging circuits have to be small and have low transmission loss.  There are 

limited materials available that can be used in designs to meet both of these design drivers, and this is 

especially true for devices that have propagating microwave signals.  The material choice is narrowed 

down to ceramic or ceramic composite materials for the electronic substrate, and precious metals such as 

silver or gold for the conductor.  These materials are expensive when compared to organic Printed 

Circuit Boards (PCBs) but the improved performance outweighs the increase in cost.    

This thesis takes a look at a major loss component of transmission loss – conductor loss – for 

ceramic PCBs using precious metal conductors for frequencies up to 20GHz.  It is known that as the 
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conductor topography changes, the conductor loss changes, but there is little experimental data on this 

topic and little comparison of the different conductor topographies and their impact on conductor loss. 

Organic PCBs, such as Rogers or FR4, have larger dielectric losses than ceramic substrates but 

are relatively inexpensive.  Organic PCBs also have lower permittivities than ceramic PCBs, which 

forces the conductor to be wider for the same thickness substrate. Widening the conductor trace evens 

out the electric and magnetic fields, and reduces the conductor loss but the wider conductor takes up 

more space.  For microelectronics design, the area of the circuit is usually limited; the area available is 

often a significant design driver.   

The conductor loss of an organic PCB has a smaller percentage of the total loss, than ceramic 

PCBs, but it is still a significant loss component.  Conductor loss for both organic PCBs and ceramic 

PCBs are influenced by the conductor topography; therefore, any findings that relate conductor 

topography to conductor loss on one of these material systems could be applied to the other material 

system.  

Microelectronics packaging circuitry can be fabricated using several technologies; the fabrication 

method can influence the conductor topography.  One of the fabrication methods is thick film; so named 

because the conductor trace is between 5 – 50 µm thick, by comparison thin film is 5nm - 0.2µm.  For 

thick-film technology, the paste or ink is deposited through a screen onto an insulating substrate, usually 

a ceramic or ceramic composite material.  The ceramic substrate can be Alumina or AlN or more 

commonly Low Temperature Co-fired Ceramic (LTCC).  These ceramic substrates are attractive 

because they have lower tan δ, also known as dielectric loss, than organic substrates; however, they are 

much more expensive.  All of the ceramic substrate samples used in this study were fabricated using 

thick-film processing. 
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 LTCC involves screen printing green ceramic sections with conductive patterns; several of these 

sections or layers collated, laminated and fired to produce a sintered monolithic substrate [1].  LTCC 

technology is often used for wireless and high-frequency applications for making hybrid integrated 

circuits, known as system-in-package (SiP) [2].  These circuits integrate components, such as capacitors 

and inductors, into the printed circuitry and add ICs, such as flip chips to the same package. LTCC 

hybrids have a smaller initial cost as compared with System-on-chip (SoC) [3], making them an 

attractive alternative for small scale integration devices.   

The samples used in this study were fabricated using thick-film technology, therefore the 

conclusions made by this thesis directly relate to this type of PCB technology.  However, this work 

could potentially apply to other PCB technologies such as thin-film and copper foil laminate boards; all 

of these PCB structures are sensitive to changes in conductor topography. 

Further research is needed in the area of PCB characterization in relation to electronic 

parameterization and specification.  The International Electronics Manufacturing Initiative (iNEMI) 

Research Priorities Report, for 2007, included the need for standardized test methods and figures of 

merit for printed electronics. Another section of this report stated that research was also needed to find 

low-cost solutions for carrying signal rates greater than 10Gb/s between components on a PCB.   

1.2 BACKGROUND FOR PROBLEM STATEMENT I – ELECTRICAL LOSS DUE TO 

MATERIALS PROPERTIES   

Electrical loss, also known as signal attenuation, is to be avoided - when a signal looses power, it 

often needs expensive amplification to reach its intended destination.  There are four distinct high-

frequency (GHz) loss categories (or causes of signal attenuation): radiative, reflected, conductor and 
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dielectric.  Radiative and reflected losses are directly related to electrical design and can be accurately 

predicted by full-wave electromagnetic solvers.  Dielectric and conductor losses depend on material and 

process parameters.  Dielectric loss is the signal that is absorbed by the insulator material, the ceramic 

substrate.  The conductor loss is the signal that is absorbed by the conductor, the metal strip; conductor 

loss can also be known as ohmic or resistance loss. The main focus of materials engineers has been to 

create materials with low dielectric losses.  

Most high-frequency, high-performance electronic substrates have low dielectric loss to the point 

that conductor loss is the largest loss component [4].  For DC and low frequency signals the conductor 

loss is directly related to the conductivity (inverse of resistivity of the conductor).  PCBs are fabricated 

with silver, copper and sometimes gold because all of these metals have relatively high conductivity.  

The high conductivity of these materials does result in small conductor loss for the DC-kHz frequency 

region.  At frequencies above the kHz region electromagnetic phenomena induce a skin effect that 

exacerbates the conductor loss.  The impact of the skin effect on conductor loss is influenced by 

conductor features or substrate surface topography.  The specifics of these phenomena will be discussed 

in the next section, background for the problem statement.   

Microelectronics circuits are designed using electromagnetic (EM) simulation in order to 

decrease design costs and quicken the process.  Therefore, circuit design, for microwave frequencies, 

heavily depends on the accuracy of simulation tools that allow circuit prototypes to be created quickly 

and inexpensively. Although current EM simulation packages, such as SONNET®, CST® and HFSS®, 

can be good at predicting most electrical results such as matching of interfaces.  They consistently 

underestimate the transmission loss, and therefore conductor loss, in an unpredictable manner.   A 

summary of the commercial solvers currently available is given in Table I.  Each software package uses 

a numerical method to solve either the electromagnetic fields or distribution of current density.  
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Table 1, Summary of 

commercially available 

simulation tools and 

their prediction of 

conductor loss 

Description Numerical 

Technique 

Conductor loss Analysis 

SONNET 2D current 

density planar 

solver 

Moment 

Method 

(MoM) 

The n-, two-, and one layer model used to 

predict conductor loss over a range of 

frequencies and the different physical 

effects at those frequencies.  The model 

recognizes that edge current density can 

be a large contributing factor to conductor 

loss [Rautio].  This model was compared 

to experimental data.  Arbitrary conductor 

geometry not modeled. 

Computer Simulation 

Technology (CST) 

3D 

electromagnetic 

solver 

Finite 

Difference 

Time 

Domain 

(FDTD) 

and (FEM) 

Some comparison with empirical method 

[5] for calculating ceramic-interface 

roughness contribution [41]. 

Future research – probabilistic 

approaches. 

Ansoft, High frequency 

Structure Simulator 

3D 

electromagnetic 

Finite 

Element 

Empirical method Hammerstad [5] for 

calculating the surface roughness 
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(HFSS) solver Method 

(FEM) 

influence on conductor-ceramic interface 

is incorporated into Software. 

Vector Fields, 

CONCERTO 

3D and 2D 

solver 

FDTD and 

MoM 

No information on conductor loss analysis 

found. 

 

 It is not just analogue applications, in the GHz range, that are affected by conductor loss; fast- 

switching digital signals also degrade because these types of signals propagate as electromagnetic 

waves. Video cards have digital signals with rise times less than 50 pico seconds (ps); the Fourier series 

of this rise time ramp includes signal components greater than 8 GHz.  Thus, even digital signals, which 

have fast switching times, can suffer from high-frequency loss.  Digital engineers such as signal 

integrity engineers are increasingly using these EM simulation tools to predict loss characteristics in 

digital systems. Since digital switching times are decreasing, the loss caused by high frequency will also 

increase. A method or tool that can accurately predict the conductor loss for these systems will greatly 

improve the design process.  

1.3 BACKGROUND FOR PROBLEM STATEMENT II - CONDUCTOR LOSS AND SKIN 

EFFECT 

Even at DC, the geometry of a conductor determines the overall electrical resistance.  The 

equation for the resistance of a material formed in a particular shape is: 

 

𝑅𝐷𝐶 =
𝑙

𝜎∗𝑐𝑟𝑜𝑠𝑠 −𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝐴𝑟𝑒𝑎
   Ohms/per unit length  (1.1) 
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Applying this equation to a wire, where l is the total length of the wire, the area is π𝑟2 and, sigma, σ, is 

the material conductivity.  If the radius of the wire is reduced, the resistance increases. 

The geometry factor becomes more complicated as frequency increases.  At microwave 

frequencies, 0.3GHz – 300GHz, the skin effect causes the signal, within the conductor, to concentrate at 

the conductor extremities and therefore becomes sensitive to the conductor topography at these 

extremities.   

Skin effect is caused by alternating currents inducing magnetic fields internal to the conductor.  

The internal magnetic field is in addition to the magnetic fields between the signal and ground plane 

conductors; these fields will be discussed later in this thesis.  These internal magnetic fields, shown in 

Fig 1.1 as H, create induced current loops within the conductor, shown in Fig. 1.1 as 𝐼𝑤 .  The current 

loops  𝐼𝑤  produce their own magnetic fields, which oppose the initial magnetic fields; this effectively 

pushes the current carrying electrons toward the surface of the conductor.  The skin effect becomes more 

pronounced as the frequency increases. 
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Fig. 1.1 Metal wire with AC signal at GHz frequencies showing current I, induced internal 

magnetic fields, H and current loops, 𝐼𝑤 . 

The equation for skin depth, δ, is given below, eq. 1.2.  The skin effect depends on frequency, f, 

and material conductivity, σ. 

𝛿 =
1

 𝜋𝜇𝑜𝑓𝜎
 S/m (1.2) 

At frequencies greater than 10GHz, with materials of high conductivity such as silver or copper, 

the skin depth is in the order of a micron. At this scale, the shape of the conductor material at the 

conductor extremities influences the flow of the signal.   

There are many different structures that can be used to transmit microwave frequency signals.  

These include: coaxial cable, stripline, microstrip, twisted pair, finline, slotline, double-ridged 

waveguide and circular waveguide.  The cheapest and most common structure is microstrip, and it is the 

structure that has been used for this study.  Three common transmission structures, including microstrip 

are shown in Fig. 1.2.   

Three common transmission structures: Coaxial cable, Stripline and Microstrip are shown by 

Fig. 1.2.  These structure have different geometries and therefore, different loss results.  Coaxial cable is 

a wire, surrounded by a dielectric material, which can be air, surrounded by another conductor that is the 

groundplane.  The signal is the potential difference between the groundplane and the wire. The wire is 

also known as the centerconductor.  At frequencies in the GHz region the skin effect draws the current 

to the extremities of the centerconductor but since the centerconductor is a cylinder, the current density 

is evenly distributed around the circumference.  The stripline structure is a layered structure, with the 

groundplane on both sides of the centerconductor.  The dielectric layer, of ceramic material, separates 

each groundplance from the centerconductor.  The stripline centerconductor has a rectangular cross-

section that causes the field, and therefore current density, distribution to be higher at the edges and 
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sides.  The microstrip structure has a single groundplane and single layer of dielectric material that 

separates the groundplane from the centerconductor.  This geometry causes the fields and current 

densities to be concentrated on the underside and lower edges of the centerconductor. 
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Fig. 1.2, An illustration of three transmission structures common for signals in the GHz 

frequency range, the distribution of the electric and magnetic fields, and the corresponding current 

density.  The circuit structures are shown for comparison and are assumed to have similar 

conductivities, dielectric constants and operating at similar frequencies at similar scale. 

A microstrip is supported by a dielectric layer so that most of the field is confined between the 

groundplane and the centerconductor, as shown in Fig 1.3 on the right hand side.  This circuit structure 

is often called a printed circuit board (PCB) and can be made in several ways: thick-film, thin film or by 

laminated copper foils. 

The distributed magnetic and electric fields change as a function of frequency, which changes 

the current density distribution as a function of frequency.  At DC and low frequencies, the current 

density and resistance are evenly distributed across the conductor cross-section geometry, represented 

by eq. 1.1.  As the frequency increases the current distribution starts to change due to the changing 

electric and magnetic fields.  It is seen from Fig 1.2 that the current density concentrates at the edges and 

this effect is often assumed to happen at a medium frequency; in the order of 1-5 skin depths of the 

thickness of the conductor.  The medium frequencies are also known as the transition frequency range.  

At high frequencies, where the conductor thickness is greater than five skin depths, the current density is 

assumed to be concentrated at the conductor surface of a skin depth, represented by eq. 1.2. 

The resistance of the conductor, for a microstrip circuit, at frequencies in the high frequency or 

skin frequency region has been represented by: 

𝑅𝑠𝑘𝑖𝑛 = 0.3178  
1

ℎ𝑠
+

1

𝜔𝑒𝑞 0
∙  1 +

1.25

𝜋
∙ 𝑙𝑛  

2ℎ𝑠

𝑡
    

𝜋𝑓𝜇𝑜   

𝜅
 

32− 
𝜔𝑒𝑞 0

ℎ𝑠
 

2

32+ 
𝜔𝑒𝑞 0

ℎ𝑠
 

2    (1.3) 

Where t is the thickness of the conductor, ℎ𝑠  is the height of the substrate. 
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With  𝜔𝑒𝑞0 = 𝜔 +
𝑡

𝜋
∙ 𝑙𝑛  1 +

4∙exp (1)

𝑡

ℎ
∙𝑐𝑜𝑡 ℎ2  6.517∙

𝜔

ℎ𝑠
 
   (1.4) 

The resistance at GHz frequencies given by eq. 1.3 is far more complicated than the resistance at 

DC represented by eq. 1.1.  The 𝑅𝑠𝑘𝑖𝑛  depends on the size of conductor parameters such as t and ℎ𝑠 , 

however, these parameters give a simplified representation of the cross sectional geometry of the 

conductor.   

1.4 PROBLEM STATEMENT - CONDUCTOR TOPOGRAPHY INFLUENCE ON 

CONDUCTOR LOSS FOR A MICROSTRIP STRUCTURE 

Thin and thick film fabrication can produce various cross section shapes that will influence the 

conductor loss result.  For the screen printing process, the conductor paste shape is influenced by the 

ceramic substrate surface.  The conductor starts in a viscous form and is pushed through a mesh screen, 

onto the ceramic substrate.  The part is then fired, at approximately 850˚C, and nominally square silver 

alloy conductor line is formed.  There are several topographic components, of this silver alloy line, that 

contribute to conductor loss.  The topographic or geometric components examined in this study include 

conductor-ceramic interface and the conductor strip edge.  The focus of this work has been on isolating 

and measuring the impact of the conductor edge topography and conductor-ceramic interfaces as a 

function of frequencies for frequencies ranging from kHz to 20 GHz. 
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Fig. 1.3, an illustration noting the three conductor geometries that are thought to influence 

conductor loss. 

 

Different mathematical models have been developed to predict the influence of certain 

geometries on conductor loss.  An empirical model was developed by Hammerstad [5] to predict the 

increase in conductor loss,𝛼𝑐  due to surface roughness.   The average surface roughness parameter,𝑅𝑎  

was used to curve fit the increase in loss, eq. 1.5.   

𝛼𝑐 = 𝛼𝑠𝑚𝑜𝑜𝑡 ℎ  1 +
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛  1.4  

𝑅𝑎

𝛿𝑠
 

2
   (1.5) 

The empirical model uses familiar and conventional surface roughness parameterization that is 

often readily available but perhaps not the most suitable fit for this physical phenomenon.  Ra is 

insensitive to the spatial distribution of the surface heights; two very high peaks will contribute the same 
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value whether the peaks are close to each other or separated over the measurement field, it also averages 

the absolute value without representing any anisotropic characteristic of the surface. Ra does not directly 

relate the surface roughness profile to the electrical path length at a particular frequency or scale.  

Additionally, the empirical method only considers the conductor-dielectric interface geometry influence.  

Comparisons between this model and actual data are presented later in this thesis.  

Several analytical methods have been developed to predict the conductor-ceramic interface 

topography on conductor loss.  Most of these methods represent the surface as either a periodic or 

Euclidean structure, such as a flat plane with hemispherical bosses.  However, surfaces do not follow 

periodic or geometric rules.  Most of these studies attempt to prove a mathematical model by comparing 

it to other mathematical models.   

There has been one primary analytical method used to predict the conductor edge angle feature 

that has been developed and compared to experimental data.  It is not known if this method reliably 

predicts conductor loss for angles less than 20˚.  In general there has been little research in this area, 

especially when compared to the amount of research on the conductor-ceramic feature. 

Numerical methods require the problem region to be discretized, by meshing, and approximate 

solutions found at mesh nodes.  However, it is difficult to mesh geometries with small scale detail and 

arbitrary shapes.   The commercial solvers, which use numerical techniques, either do not address small 

scale geometry, such as surface roughness, or account for the additional conductor loss by including the 

Hammerstad empirical method within the software, Table 1. 



 14 

1.5 RESEARCH OBJECTIVE 

It is well known that conductor loss is the largest loss factor for microelectronic circuits 

operating in the GHz frequency range, but it is poorly understood and is not reliably predicted with 

current empirical, analytic, and numerical tools.  There is little published measured data for conductor 

loss and the features that influence this loss.  It is well known that surface roughness can have an 

adverse influence on conductor loss, and similarly, other geometric factors, such as conductor edge, also 

influence loss.   However, these loss components have never been calculated or measured at the same 

time.  There is little published data for surface roughness influence on conductor loss. 

The objective of this research is to investigate the impact, by experimentation, of the conductor 

feature effects on conductor loss, specifically with respect to thick-film fabrication.  The impact is 

observed and measured over a range of frequencies and skin depths.  The surfaces of the ceramic 

substrates are altered by using different surface finishing techniques and the substrate surface roughness 

is characterized using conventional and length-scale fractal analysis. The differentiation of ceramic 

surfaces due to the different processing techniques is determined. The influence of the conductor 

features: conductor-ceramic interface and conductor-edge angle are quantified and tested against the 

conductor loss results.  The conductor loss is tested over a frequency range from kHz frequencies, which 

will be similar to conductor loss at DC, to the skin frequencies, where there are at least five skin depths 

per conductor thickness. 
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1.6 PUBLICATIONS AND PRESENTATIONS 

This work has been presented at various seminars and conferences, published in conference 

proceeding and submitted to journals.  A summary of the significant publications and presentations is 

given below.  The Journal publications can be found in Chapter III and IV, and some of the proceedings 

in Appendices A and B. 

 

Journals 

 T. Vincent, I. Bar-On, and B. Powers "The Influence of Electronic Substrate Surface Roughness on 

Radio-frequency Transmission Loss Utilizing Conventional and Length-scale Fractal Analysis" Wear 

(submitted  April 2009) 

 T. Vincent, I. Bar-On and Y. Itovich ―Quantitative Conductor Edge Angle Influence on GHz Frequency 

Electrical Loss‖ Transactions on Components and Packaging (submitted February 2008) 

Proceedings/Presentations 

 T. Vincent and I. Bar-On, ―Conductor Edge Definition Influence on High Frequency Electrical Loss,‖ 

Proceedings and Presentation, MS&T 2008, Pittsburg, Pennsylvania, October 5-9th, 2008. 

 T. Vincent and I. Bar-On, ―Topography Influence of Ceramic Substrates on High Frequency Electrical 

Loss for Microelectronics Applications,‖ Conference Proceedings and Poster presentation hot topics, 

ICC, 2
nd

 International Congress on Ceramics, Verona, Italy, 29
th

 June – 4
th
 July 2008. 

 T. Vincent, C.A. Brown, and I. Bar-On, ―PCB Topographic Influence on GHz Frequency Loss,‖ 

Conference Presentation iMAPS New England Conference, MA. USA, May 6
th

 2008. 
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 T. Vincent, I. Bar-On, C. A. Brown, Worcester Polytechnic, USA.  Presented ―Surface Roughness 

Influence on Insertion Loss with use of Length-scale Fractal Analysis at Radio-frequencies within Low 

Temperature Co-fired Ceramics (LTCC)‖ MS & T 2007, Detroit, Michigan, Sept. 16-20, 2007. 

 T. Vincent, I. Bar-On, C. A. Brown "Examination of Surface Roughness Effect on Insertion loss at 

Microwave Frequencies within LTCC Structures" Conference Proceedings and Presentation 

iMAPS/ACerS 3rd International Conference and Exhibition on Ceramic Interconnect and Ceramic 

Microsystems Technologies (CICMT), April 23-26, 2007, Denver, Colorado USA, pp 138-144. 

1.7 THESIS ORGANIZATION 

The core of this thesis is divided into six chapters.  This chapter, Chapter I, is an introduction 

that gives an overview of microelectronics and conductor loss.  Chapter I also describes the problem 

statement, the research objectives and the thesis organization.  Chapter II is a thorough review of the 

relevant literature from several subject areas necessary to cover this PhD study.  Chapter III contains a 

paper that has been submitted to the journal Wear titled "The Influence of Substrate Surface Roughness 

on Electronic Telecommunication Transmission Loss Using Conventional Analyses and Length-scale 

Fractal Analysis" by T. Vincent, I. Bar-On, and B. Powers.  Chapter IV contains a paper that has been 

submitted to the journal IEEE Transactions on Components and Microwave Packaging titled 

"Quantitative Cross-sectional Angle Impact on Conductor Loss‖. Chapter V offers suggestions for 

further work within this expansive area.  Chapter VI provides the conclusions based on this research.  
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2.0  CHAPTER II   

This dissertation includes two papers each with a referenced literature review section in chapters III 

and IV.  The literature review for this study includes several areas of research and is brought together in 

this Chapter, Chapter 2, for clarity and thoroughness.  

2.1 LITERATURE REVIEW  

2.1.1  Conductor loss and Skin effect 

The skin effect is the description given to the phenomenon where electromagnetic fields, and 

therefore the current density, decay rapidly with depth inside a good conductor.  That is, the electric current 

tends to flow at the ―skin‖ of the conductor.   The skin effect causes the effective resistance to increase with 

the frequency of the alternating current as described in the introduction. 

   Maxwell [6] noticed that the resistance in a wire increased with frequency in 1873; he postulated 

that this could be caused by a departure from uniform current density.  The concentration of current density 

at the surface of a conductor was first described in a paper by Lamb in 1883 [7], for the case of spherical 

conductors, and was generalized to conductors of any shape by Heaviside in 1885 [8].  Lord Rayleigh [9] 

gave the formula for skin effect in 1886 for the case of an infinitely wide strip.  Hertz (1889) [10] and 

Thompson (1893) [11] discussed the subject from the experimental and mathematical viewpoint.  

Swinburne used the term ―skin effect‖ in 1891.  An extensive experimental study using a range of metals, 

sizes and cross-sectional forms was made by Kennelly (1915) [12], this is a common reference for skin 

effect in the literature.  Kennelly measured the skin effect in materials to 5GHz. 

The skin effect describes how the current density is concentrated at the conductor extremities. The 

depth of the current density from the surface of the conductor, where the current density magnitude is one; 
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to the internal of the conductor, where the current density magnitude has fallen to 1/e; is described as the 

―depth of penetration‖ or ―skin depth‖.  The skin depth is used to gauge the geometrical influences on the 

conductor loss. 

If the thickness of a conductor is much greater than the skin depth, its behavior toward high-

frequency alternating currents becomes a surface phenomenon rather than a volume phenomenon, Wheeler 

[13].  The transition between the volume and surface phenomena is complex; an analytical method of this 

transition was put forward by Djordević [14]. 

The analytical methods of Purcel [15], derived from Wheeler‘s incremental inductance method are 

used to calculate conductor loss for microstrip applications.  The attenuation for any lumped or distributed 

circuit is known if its inductance as a function of the geometrical conductor parameters can be calculated.  

However, the geometric parameters used for these calculations are simply the width, height and thickness 

of the conductor strip.  Additionally, since the Purcel method uses an equivalent circuit representation – an 

inductor – the model is limited by the ability of an inductor to represent the loss phenomenon. 

2.2.1 Conductor topography influence on conductor loss for a microstrip structure: Conductor -

ceramic Interface topography 

The interaction between electromagnetic waves and a rough surface was first analyzed by Rayleigh 

[17].  Rayleigh scattering is the scattering of an electromagnetic wave by particles much smaller than the 

electrical signal wavelength.  In terms of plane wave travelling parallel to a surface; Rayleigh looked at the 

reflection and refraction of the wave, where the surface is periodic/corrugated (1945).  He found that a deep 

corrugation, with high incidence angle, had the same effect as a shallow corrugation with a small incidence 

angle.  Rayleigh‘s approach has been developed and extended by other researchers. 

It was recognized in 1948 that electrical loss of a copper wire at GHz frequencies had a relationship 

with the surface finish of the copper wire. Morgan [18] integrated Maxwell‘s equations over periodic 
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surface shapes, such as rectangular and triangular grooves, transverse to the direction of induced current 

flow.  The calculated loss increased by 60% when the dimensions of the surface scratches were comparable 

to the average skin depth.  These classic papers looked at the problem from a theoretical standpoint only, 

with the surface set as a periodic structure.  From this work a technique called the Rayleigh-Rice 

perturbation method was developed, again only valid for surfaces with small to moderate slopes.  

Sanderson [19] used the Rayleigh-Rice technique to compare calculated loss with experimental data; the 

results from this study had mixed correlation.  The experiments were carried out on surfaces of high and 

relatively low conductivity materials: turned brass and steel and the surfaces of these samples were made 

periodic.     

Another approach, not limited to surfaces with small slopes, is based on calculating the multiple 

scattered fields from a large number of small protuberances.  Biot [20] and Wait [21] investigated how an 

electromagnetic wave would be scattered by a surface represented by hemispheric bosses.   

Holloway and Kuester [22] looked at the specific problem of a planar conductor layer with a 

dielectric layer interface, essentially the Microstrip structure.   They theoretically applied a thin cover layer 

to the rough surface in order to develop an equivalent boundary condition that can interpret electric and 

magnetic field densities.  The result is an equivalent boundary condition that calculates the average electric 

and magnetic fields at an average smooth surface. The Holloway and Kuester model uses a periodic 

dielectric-conductor interface.   

The microstructure of copperfoils has been examined and a model formulated by Huray [23]; these 

foils are used for laminate PCB boards such as FR4. Huray examined the power lost due to a distribution of 

copper spheres or ―snowballs‖ mimicking the material structure of electrodeposition on copper foils.  The 

electrodeposition process purposely roughens the conductor surface to increase the adhesion between the 

conductor and insulator materials.  The printed and fired thick film traces used for microelectronics have 

different microstructure compared to laminate copper foils.  The fired thick-film pastes do not form 

spherical or ball like structures.  The Huray/Hall analytical model for copper foils describes the surface as 
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flat with a distribution of hemispheres; the model is valid for scales where the skin depth is less than the 

peak surface height.  Ceramic substrate surfaces used for microelectronics applications have a different 

surface structure. 

For the last decade a group at the University of Washington [24, 25] has been simulating the surface 

roughness effect with various methods where the surface roughness is represented by probability 

distribution functions.  The surface distribution function is inserted into analytical and numerical methods 

and the calculations compared.   

The empirical equation generated by Hammerstad [5], derived from Morgan‘s work [18], is still in 

wide use.  It calculates surface roughness effect on transmission loss as a function of average roughness 

and skin depth.  It has not been found to determine this loss over a wide frequency range [4].  The 

transmission loss does not appear to follow a square root of frequency relationship [27, 28].  These studies 

altered the Hammerstad equation to curve fit the data.  These papers, which include experiments, have 

focused on laminate printed circuit board (PCB) topography.  

2.2.2  Conductor Topography: Conductor Edge Angle 

By contrast to the ceramic-conductor interface roughness, the conductor edge inclination 

topography influence on conductor loss has had little research focus, especially in the last decade.  Most 

conductor loss research has focused on the mathematical modeling of the conductor-ceramic interface 

roughness.  Since the thick-film process can produce a wide variation of edge topographies it is of 

particular interest to study this topography effect within this material process system.  

Most mathematical methods of calculating conductor loss ignore edge effects since they work on 

the premise that the conductor is infinitely thin [29].  The strip thickness of a microstrip circuit is much 

smaller than the width and this does not change the field except at the edges.  The edge research to date has 

focused on analytical calculation techniques [30].   
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The increase in conductor loss due to the edge is caused by an increase in current density.  It is 

thought that this occurs at frequencies between kHz and the skin frequencies [31] (when thickness is 

greater than five skin depth). It has been shown theoretically that the edge loss is increased further if the 

edge corner gets sharper [32]. Meixnier‘s paper focused on edge effects in waveguide structure.  

Waveguides are hollow metal pipes, either cylindrical or rectangular, and are much more expensive 

structures to make than microstrip, structures.  Waveguides tend to be used for applications with high 

power or frequencies above 15GHz.  Chryssomallis [33] used an analytical method to look at the difference 

of current density in rectangular and circular cross-section edges in a microstrip circuit. 

A comprehensive mathematical study of conductor edge losses is given in an MS Thesis by Barsotti 

[34] to derive a conductor loss calculation process for CAD.  As an extension to this thesis, a method used 

to mathematically model the edge inclination is given by Barsotti [35] using conductor loss calculations 

from the Lewin/Vainshein method [36, 37], who found the method independently, to equate the edge shape 

to a trapezoid.  Barsotti uses trapezoids of 30°, 40° and 60° degree inclinations and it is seen that as the 

angle decreases the loss increases.   

It has been noted that thick-film fabrication creates sharp edges and hypothesized that changing the 

shape would improve conductor loss [38].  The cross-sectional shapes of LTCC substrates are qualitatively 

observed and the electric fields simulated using Ansoft. 
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3.0  CHAPTER III 
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PAPER #1 

 

The Influence of Substrate Surface Roughness on 

Electronic Telecommunication Transmission Loss Using 

Conventional Analyses and Length-scale Fractal Analysis 

 

Synopsis 

The objective of this paper is to investigate the influence, by experimentation, of the conductor 

topography effects on conductor loss, for circuits made by thick-film fabrication.  The impact is gauged 

over a range of conductor conductivities, frequencies and skin depths.  The ceramic substrate has a range of 

surface roughnesses made by using different surface finishing techniques.  The substrate surface roughness 

is characterized using conventional and length-scale fractal analysis. The distinct differentiation of ceramic 

surfaces due to the different processing techniques is determined. The influence of the conductor 

geometries, conductor-ceramic interface and conductor-edge angle, are tested against the conductor loss 

results.  The conductor loss is tested over a frequency range from kHz frequencies, which will be similar to 

conductor loss at DC, to the skin frequencies, where there are at least five skin depths per conductor 

thickness. 

 

 

 



 24 

 

Abstract— Two components of conductor topography can impact conductor loss for signals in the GHz frequency range: conductor-

ceramic interface roughness and conductor edge angle.  This study is an experimental investigation of the influence of these conductor 

topographies on conductor loss in microstrip circuits produced by thick-film technology.  The aluminum nitride ceramic substrates 

have different surface roughnesses due to different surface finish processes.  The substrate surfaces were characterized using 

conventional and length-scale fractal analysis.  The conductor-ceramic interface was measured with a contact profilometer.  The 

conductor edge angle and conductor edge profile were measured optically.  It was found that there is a direct correlation between 

conductor loss and conductor edge angle, while there is an inverse correlation between loss and substrate roughness or relative length 

of the conductor-ceramic interface.  There is also a negative correlation between conductor edge angle and surface roughness or 

relative length. The loss behavior can be explained by the interaction of the conductor paste with the surfaces during processing.  The 

paste tends to spread more on the smoother surfaces and, thus creates an elongated edge of diminishing cross section and a small edge 

angle.  This leads to greater conductor loss. 

 

INTRODUCTION 

Avoiding transmission loss is a significant design driver within the telecommunications field.  It is 

undesirable for a signal to have high conductor loss, and therefore suffer from signal attenuation, since the 

signal then requires expensive amplification.   For digital systems, with increasing bit/sec and pulse rise 

times in the pico second range, frequency dependant loss results in signal distortion and delay in 

interconnect applications; this leads to increased error rates [1, 2].  It is difficult to mitigate electromagnetic 

losses unless the mechanisms and impact of the loss components are fully understood.  

The majority of prior work has focused on building mathematical models; there is a lack of 

published measured data, especially for microstrip topology and none has been found for microstrip made 

by thick-film fabrication.  It was observed in 1948 that electrical loss of a copper wire at GHz frequencies 

would depend on the surface treatments to which the copper had been subjected [3].  Loss increased when 

the dimensions of the surface scratches were comparable to the average skin depth.  Most classic papers 

looked at the problem from a theoretical standpoint with the surface set as a periodic structure [4, 5].  
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Experiments with mixed results were carried out on surfaces of high and relatively low conductivity 

materials: turned brass and steel, where the surfaces were made to be periodic.     In all prior studies the 

multi-scale surface is represented by a geometric or periodic structure; however real surfaces do not follow 

periodic, geometric or stochastic rules.  Real surfaces do have fractal properties [6], in that the length of the 

profiles and the steepness of the slopes on the surface increase, as the scale of observation decrease.   

An empirical equation to estimate transmission loss was generated by Hammerstad [7], and is still 

in wide use.  It calculates surface roughness effect on transmission loss as a function of average roughness 

and skin depth.  It has not been found to determine this loss over a wide surface topography or frequency 

range [8] ,  and transmission loss does not appear to follow a square root of frequency relationship [9, 10].  

These respective studies altered the Hammerstad equation to curve fit the data.  These papers, which 

include experiments, have focused on laminate printed circuit board (PCB) topography.   

Fractal analysis has a broad range of application that gives a good fit for structures in nature [11].  

Fractal electrodynamics is an emerging research area [12].  Scale-sensitive fractal analysis has the benefit 

of characterizing the surface over a range of scales [13] that could apply to different scales of interaction 

[14].  Length-scale fractal analysis is based on the principle from fractal geometry that the length of a rough 

profile depends on the scale of observation. 

This study looks at the measurements of radio-frequency transmission loss of microstrip conductive 

lines with three different lengths, on substrates with four different surface finishes.  Three of the substrate 

surfaces have statistically different surfaces over certain scale ranges using average roughness (Ra) and 

length-scale fractal analysis [13].  The conductor loss analyzed as a function of average roughness, 

apparent lengths of the profiles measured on the substrates over a range of scales and as a function of 

conductor edge angle. 

The objective of this study is to develop, and test, an experimental method that considers all of the 

conductor topographies that influence conductor loss - rather than focusing on a single conductor 

topography component, that is assumed to be the influencing component.   
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THEORY 

The surface roughness influence on conductor topography, and therefore conductor loss, can be 

separated into two features of interest: conductor-ceramic interface and conductor edge inclination.  The 

conductor-ceramic interface will cause the electrical signal to travel a longer path following the contour of 

the ceramic at GHz frequencies; this has been pointed out in previous studies by [5, 15, and 16].  The 

printed conductor is thinner at the edges of the print; this topography is noted as the conductor edge angle. 

A large amount of conductor loss occurs at the edges [17] because current density increases at a conductor 

edge becoming larger as the corner gets sharper [18].  The degree of conductor edge angle can potentially 

be influenced by several factors; one possible influence is the surface roughness. 

The conductor line has two distinct topographies that impact conductor loss: conductor-ceramic 

interface and conductor edge angle - both of these topographies can be influenced by the substrate surface 

roughness.  The skin effect [19] forces the signal to follow the surface profile more faithfully, as frequency 

increases.  Therefore, for the conductor-ceramic topography, positive correlations should be found between 

loss and increased surface roughness characterized by the path length.  The skin effect also causes the 

signal to concentrate at the conductor edges.  The edge shape is influenced by the substrate surface 

topography [20], as frequency increases, positive correlations should be found between loss and conductor 

edge angle and a negative correlation between loss and surface roughness.  In this study the surface of the 

substrates are measured and parameterized using conventional methods and length-scale fractal analysis.  

Length-scale fractal analysis [13] calculates the path length as a function of scale of calculation.  This 

shows that path, or profile, length tends to increase as the scale of calculation, or observation, decreases, 

and that the lengths can increase differently with decreasing scale for different surface preparations.   

This paper describes an experimental study of transmission loss, specifically conductor loss, using 

microstrip ceramic substrates with different surface roughnesses.  Conductor topography components, 

conductor edge angle or conductor-ceramic interface, are investigated to see which has a larger impact on 
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the conductor loss as frequency increases. The electrical samples were made using thick-film technology; a 

common fabrication method for microelectronics.   This allowed the circuits to be fabricated on a substrate 

with negligible dielectric losses; therefore, the major transmission loss is the conductor loss.   

Conductor Loss and the Skin Effect 

Conductor loss is caused by power dissipation due to imperfect conductivity of the conductor line, 

the length of the propagation path, and the area available for current density.  A microstrip topology is a 

thin, flat electrical conductor separated from the electrical ground plane by an insulating layer.  Microstrip 

is a common configuration within the microelectronics industry.  At GHz frequencies, this type of circuit 

has several loss components: reflected loss, dielectric loss and conductor loss.  The total loss, in a two port 

system depicted in Fig. 3.1, is represented as the resultant signal divided by the incident signal, expressed 

in dB. The transmission loss is the total loss minus the reflected loss; this transmission loss is made up of 

the conductor loss and the dielectric loss components.  For substrates with low dielectric loss at microwave 

frequencies, the transmission loss is dominated by the conductor loss [21].  The loss results given in this 

study are transmission losses; since the dielectric loss is so small, the changes in transmission loss are due 

to changes in conductor loss. 

 

 

Fig. 3.1: Illustration of losses for microstrip topology at GHz frequencies 

 

Skin effect is essentially, where the current in the propagating signal decays exponentially with the 

distance from the ceramic-conductor interface into the conductor.   The skin effect is a function of 

operating frequency, f, and conductivity, σ, of the path trace as expressed by eq. 3.1. This is a well-known 

http://en.wikipedia.org/wiki/Ground_plane


 28 

phenomenon in microwave engineering and is central to our understanding of why surface roughness 

influences conductor loss.   The material permeability is given by  .  The skin effect equation can be found 

in many radio-frequency design books [22]  

 𝛿𝑠 =  
1

πfσμ
  (3.1) 

A single skin depth, )( s , is defined as the depth at which the current density has decreased to 37% 

of its surface value or the equivalent thickness of a conductor at frequency having the same resistance as 

the DC resistance (that uses the whole area of the conductor).   

Conventional Surface roughness characterization 

Ra and Rt have been frequently used as parameters to characterize the roughness of surface for 

electrical applications [2].   

 𝑅𝑎 =
1

𝑁
  𝑧   (3.2) 

The conventional parameters Ra and Rt do not relate the surface roughness profile to the electrical 

path length at a particular frequency or scale.  They are also insensitive to the spatial distribution of the 

surface heights. One significant peak could have the same influence on the Ra as two lesser peaks, which 

will contribute the same value whether the two peaks are close to each other or separated over the 

measurement field.  A valley or a peak of same magnitude will have similar influence on the Ra values.   

Skin Effect 

A side view of a cross section of a simulated microstrip circuit, including roughness at the 

conductor-ceramic substrate interface is given in Fig. 3.2.  This illustrates the skin effect phenomenon for 

several discrete frequencies: 100MHz, 1GHz, 10GHz and 30GHz.  Note that in this configuration the skin 

effect forces the current density towards the conductor-ceramic interface rather than an actual free surface.   

For a frequency of 100MHz the electrical current density is evenly distributed across the full thickness of 

the conductor: 8µm in this example.  As the frequency increases the current density concentrates towards 

the ceramic material; the concentration of this signal is shown by the skin depth.  Since the skin effect 
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forces the current density to the periphery of the conductor, the cross sectional area decreases and the 

overall current density increases.  The current density increase creates more heat and loss per unit length. 

The skin depth of the current density is illustrated by a virtual band across the conductor.  The band 

is represented as a darker shade, at each discrete frequency, as the frequency increases; hence it is darkest 

at 30GHz, shown in Fig. 3.2 and Fig. 3.3.  One skin depth is the upper edge of the designated band to the 

ceramic substrate surface.   
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The surface roughness causes the current to flow along a longer path increasing the conductor loss 

per unit length. The conductor loss increases at a rate of the square root of frequency due to the conductor 

area restriction.  As the skin depth and surface roughness scales become similar this causes the loss to 

increases at a higher rate than the square root of frequency.  Fig. 3.2 is approximately to scale for a 

chemically etched surface, this figure shows that, in this case, at frequencies above 10GHz the skin depth is 

comparable to the conventional parameters: average Ra and peak to peak Rt roughness, so that propagation 

path should lengthen as the current path begins to follow the rough interface of the ceramic.  The 

conventional equation [7] used to estimate the additional loss caused by surface roughness; the resultant 

conductor loss,∝𝑐  is represented by: 

𝛼𝑐 = 𝛼𝑠𝑚𝑜𝑜𝑡 ℎ  1 +
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛  1.4  

𝑅𝑎

𝛿𝑠
 

2
    (3.3) 

Hammerstad formulated this equation, eq.3, to calculate the surface roughness contribution of 

conductor-ceramic interface loss.  It was formulated to curve fit empirical data for conductor traces that 

have a thickness that is at a minimum five skin depths [7].  For a conductor line with a thickness less than 

one skin depth, the conductor loss depends entirely on the conductivity.  When the conductor thickness is 

five skin depths, or greater, the overriding conductor topography loss component is caused by the skin 

effect [23].  When the conductor line thickness is between one and five skin depths, there is a transition 

stage. For the silver alloy, ALN33, specimen used in this study, five skin depths would be at a frequency of 

7GHz.  At this frequency, the measured transmission loss, versus Hammerstad calculation, are beginning to 

diverge, as shown in Fig. 3.3.    Thus, the very frequency where eq.3.3 is supposed to start being able to 

calculate the surface roughness effect on conductor loss, it does the opposite. 
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Fig. 3.3:   Comparing measured conductor loss from a lapped surface with the theoretical loss 

derived from eq.3.3. 

The skin effect phenomenon has a greater influence at higher frequencies and with conductor lines 

with higher conductivities.  The set of experiments in this study uses a range of surface roughness, 

conductivities and frequencies. 

The current density increases at the conductor edge, shown in Fig. 4 due to fringing fields.  The 

mathematical solution states that current density increases at the conductor edge, becoming larger as the 

corner gets sharper [18].   Since the samples for this study are made by thick-film printing, the surface 

roughness influences the conductor edge topography [20] as well as the conductor-ceramic topography.  

The higher peaks or steeper slopes of the substrate surface impede the lateral movement of the conductor 

paste creating edges with larger cross-sectional edge angles. 
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Fig. 3.4:  Diagram of skin depth phenomena in microstrip topology, front cross-section view: a, is a 

given skin depth for a GHz frequency signal with square cross section edges, b, is a given skin depth for a 

GHz frequency signal with cross section edges at an angle, common for circuits made by thick-film 

processing. 

  An illustration of the skin depth current density, influenced by conductor edge topography, is 

shown in Fig. 3.4a and Fig. 3.4b.  Fig. 3.4 is essentially the front view of Fig. 3.2. This figure demonstrates 

the increase in current density when the conductor edge is at an angle rather than perpendicular, as it is for 

thick-film circuits. 

Characterization of surface roughness by length-scale analysis 

Scale-sensitive fractal analysis [13] has been used to statistically discriminate rough surfaces and to 

find correlations with surface behavior for various applications [24, 14] including optical scattering [25].  

Length-scale fractal analysis can be used to statistically discriminate surfaces where Ra measurement 

cannot [26]. Length-scale fractal analysis calculates the lengths of a profile as a function of scale by 

virtually stepping along the surface.  The smaller the steps the closer the stepping pattern follows the actual 

surface profile and the longer the calculated profile length, giving a physical interpretation for conductor 

loss. The relative slope increases as the scale decreases.   
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The tiling or stepping sequence in length-scale analysis is demonstrated in Fig. 3.5.  A series of 

progressively shorter step sizes is used to calculate the measured length of the profile as a function of scale.  

The step size is the scale of observation, or calculation.  The relative length at a particular scale is the 

measured length at that scale divided by the nominal, or straight-line, length.   

  

Fig. 3.5: An example length-scale analysis on a cartoon profile, showing the increase in measured 

length as the scale, or step length decreases.  All the nominal lengths are 110µm.  

EXPERIMENTAL PROCEDURES 

Substrate Production and Profile Measurement 

Aluminum nitride (AlN) is commonly used as an electronic substrate for the fabrication of thick 

film radio-frequency electronic components for high power applications.  (Note that ‗AlN‘ with a lower 

case ―l‖ is used to denote aluminum nitride, the ceramic substrate material).  Four substrate surface 

roughnesses were created on AlN substrates using four different surface finish processes as described in 

Table 3.1.  All the surfaces had previously been vapor honed. 
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Six profiles (height z as a function of position x) were measured on each surface finish with a 

Perthen (Mahr Federal) profiler using an unskidded stylus with a tip radius of 2μm.  The sampling interval 

was 69nm and the trace length 560μm.  The profiles were Gaussian filtered with wavelength cut off 

0.08mm and characterized using arithmetic average roughness (Ra), and length-scale fractal analysis 

(ASME B46 2002).  The measured profiles were analyzed using Map Premium software® (Digital Surf) 

and Sfrax (www.surfract.com). The mean and standard deviation of Ra values for each surface finish are 

given in Table 3.1.  A total of twenty-four AlN substrates were to make the samples; six substrates were put 

through each surface finish process, as described in Table 3.1.  Two specimens of each substrate finish 

were printed with each paste.  

Table 3.1: Surface finish processes description with average roughness result. 

Surface Finish 

Process 

Process Descriptions 
Ra 

(μm) 

Lapped 
Lapped using an oil-based abrasive; cleaned in ultrasonic 

bath and rinsed with alcohol (ACUMET). 

0.184 

Vapor Honed 

Blasted with 220 grit aluminum oxide and water, then 

vapor honed for 2.5 minutes with 0.5mil of material 

removed. 

0.559 

Sintered After vapor hone, placed in a furnace for a sintering cycle. 0.546 

Chemically 

Etched 

Held in an Anodex solution for 1 hour at 150 °C, then in 

an HCl solution for 1hour at 150 °C, followed by cold 

water rinse.  This process is repeated twice. 

1.091 

http://www.surfract.com/
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F-tests using the mean, standard deviation, and degrees of freedom [27] were performed on the 

roughness characterization parameters to determine the level of confidence in discriminating the substrates 

from each other based on their measured profiles. 

 

The Conductor Edge Measurements 

The conductor edge was measured for the ALN11 and ALN33 samples using an interferometric 

microscope.  Details of the measurement method are given elsewhere [28].  The Interferometer measured 

an area large enough to include - a section of the ceramic surface to the conductor edge; the surface of the 

conductor from the conductor edge across the conductor, at an angle to the ceramic, until the surface of the 

conductor was parallel to the ceramic surface.  The ceramic substrate was taken as a reference and an 

averaged line through the conductor edge, to at least 30% of the maximum conductor thickness was made.  

The angle between the referenced ceramic substrate and the conductor edge was noted for each surface 

roughness.  For rougher surfaces, the edges are seen to have a larger cross section angle, where the 

conductor meets the ceramic substrate, shown in Fig. 3.4b.   When this conductor edge angle is small, the 

current density is concentrated in a smaller area increasing the conductor loss.  Therefore, as the angle 

increases, the current density reduces and the conductor loss is also reduced. 

 

The Conductor Line Measurements 

Thick-film screen-printing technology was used to make the microstrip circuits for this study.  Six 

substrate plates were printed with microstrip circuits; two were printed with ALN 11 paste, two with ALN 

33 and two with ALN 23 (Note that upper case ―L‖s in ―ALN‖ are used to denote the conductor pastes on 

the AlN substrates.):  

[29] ALN 11© [DuPont 2001] a silver conductor, 

[30] ALN 33© [DuPont] a silver/palladium conductor (10:1) 

[31] ALN 23© [DuPont] silver/platinum conductor (3:1) 
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             There were two sets of microstrip circuits on each plate.  Each microstrip circuit set consisted of 

three conductor lines of different lengths, the longest being 40 mm; the longest conductor line was used for 

the loss measurements.  Every plate also had a serpentine line, as shown in Fig. 6 middle right.  The 

serpentine line was used to measure bulk conductivity, represented as sigma .  

The total loss was measured using an Anritsu Vector Network Analyzer with (GGB industries) 

picoprobes®, to obtain S-parameters (signal parameters). S-parameters are used to describe the electrical 

behavior of an electrical device when undergoing steady state stimuli by small signals.  The losses were 

measured on both circuits after calibrating with the picoprobe® substrate standard.  The first circuit was 

used for analysis. The measurement of the second circuit was taken as validation of the first measurement. 

The loss measurements were viewed using SONNET software® and analyzed using Microsoft Excel.  The 

frequency range extended from DC to 20GHz.   

Transmission line equations [32] were used to calculate the reflected loss from the mismatch 

measurement. Reflected loss is caused by a mismatch between the input and output transition and the 

conductor line.  This mismatch was measured for each of the circuits.  Reflected losses are design 

dependant, and, therefore, the reflected loss is subtracted from the total loss to calculate the transmission 

loss.  Three different conductor line lengths, shown in Fig. 3.6, were used to measure and corroborate the 

transmission losses for each of the lines.   

The loss measurement and profile characterizations were compared using regression analyzes at 

each length-scale at selected frequencies, regressing the loss versus the relative length.  The results of this 

analysis are plotted as the regression coefficient versus scale determined by the length-scale analysis. 



 37 

 

Fig. 3.6: Photograph of an AlN substrate with conductor with two sets of three conductor lines with 

nominal lengths: 10, 20, and 40mm.  The serpentine line is used to measure bulk conductivity. 

 

The conductivities of the three ALN microstrip conductor lines and pure silver are shown in Table 

3.2.  By using eq. 3.1 the skin depth is calculated for the bulk conductivity and frequency. 

 

Table 3.2: skin depth for conductor lines with different conductivities 

Conductor 

line 

Measured 

DC Bulk 

Conductivity 

S/m 

Skin Depth μm 

100MHz 1 GHz 10 GHz 15 GHz 20 GHz 

Silver* 6.2x10
7
 6.35 2 0.64 0.52 0.45 

ALN11 2.2 x10
7
 10.75 3.4 1.08 0.89 0.76 

ALN33 6 x10
6
 19.56 6.18 1.96 1.6 1.38 

ALN23 8 x10
5
 56.27 17.79 5.63 4.59 3.98 

*Pure silver was not tested here, and appears in this table to provide a reference for comparison 
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RESULTS 

Surface Roughness Characterization 

Measurements were taken of the chemically etched; vapor honed and lapped substrate surfaces, 

shown in Fig. 3.7a, 3.7b, 3.7c, with an Olympus, LEXT OLS3100, scanning laser confocal microscope.  

The substrate surfaces are clearly seen to be different to one another. 

 

Fig. 3.7a: Height map measurement of chemically etched surface. 
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Fig. 3.7b: Height map measurement of honed surface 

 

 

Fig. 3.7c: Height map measurement of lapped surface 

The length-scale fractal analysis gives the relative lengths over a range of scales for the profiles 

measured from each of the substrate surface finishing processes, see Fig. 8.  The x-axis represents the scale 

of calculation of the length, or step size in a virtual tiling exercise.  The y-axis represents the relative length 

(calculated length divided by the nominal length). 



 40 

 

Conventional average roughness and peak-to-peak results of surface profiles, from the four different 

substrate surface finishes, are shown in Table 3.3; with the mean average of six measurements, standard 

deviation, 95% confidence, and range. Student t-tests were made on all six data set combinations of pairs 

for Ra.  All of the surface comparisons were discernable with zero probability of the null hypothesis except 

the vapor honed and sintered surface comparison.   

 

Table 3.3: Roughness parameters, Ra and Rt for AlN surfaces with four finishing processes 

Surface Finish 

Process 

Average 

Ra 

(μm) 

Standard 

deviation of 

Ra (μm) 

95% confidence 

interval (μm) of 

Ra 

Rt(μm) 

range for six measurements 

Lapped 0.184 0.027 0.0676 - 0.3020 0.94 – 1.73 

Vapor Honed 0.559 0.059 0.4365 - 0.6805 2.85 – 5.23 

Sintered 0.546 0.054 0.4249 - 0.6667 3.22 – 4.26 

Chemically 

Etched 

1.091 0.180 0.9690- 1.213 6.39 – 8.45 
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Fig. 3.8:  Length-scale plots [ASME B46 2000] for the four surface treatments on the AlN substrates.  The 

error bars represent +/- one standard deviation on the six profile measurement of each surface.  

 

The relative lengths of the profiles measured from all four surface treatments are similar at scales 

above 100µm.  The relative lengths increase rapidly with the decrease in scale between scales about 2µm 

and 20µm.  The chemically etched surface clearly has a longer path length than all the other surfaces at 

scales below 50µm.  The lapped surface clearly has a shorter path length than all the other surfaces at scales 

below 30µm. 

The relative lengths, at all scales below 40µm, rank the roughness of the AlN substrate finishes in 

the same order as the Ra and the Rt roughness values. 

The length-scale roughness characterizations of profiles from the four different substrate surface 

treatments are shown in Fig. 3.8 with the mean and variation of 6 measurements taken from 6 different 

areas of the substrate.  F-tests [27] were performed on all six measurements.  All of the surface 

comparisons were discernable, i.e., statistically different, for scales less than 60µm except the vapor honed 
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and sintered surface comparison.  F-tests performed on the relative areas at each scale showed that, except 

for the vapor honed and the lapped surfaces, all the other binary combinations of the four surfaces were 

statistically different at scales below about 60µm with a level of confidence greater than 95%. 

Transmission Loss versus Frequency for Four Surfaces  

The conductor losses of the four AlN substrate surface finishes made with the highest conductivity 

line, ALN 11 (2.19x10
7
S/m), are shown in Fig. 3.9.  Note that the rank of the losses does not correspond to 

the average roughnesses (Ra) or to the relative lengths at any scale shown in Fig. 3.8. 

 

Fig. 3.9: ALN11 conductor losses versus frequency for all four substrates 

 

The conductor losses for the four surfaces made with the intermediate conductivity line, ALN 33 

(6x10
6
S/m), are compared in Fig. 3.10.  Note that the losses have an inverse rank compared to that by the 

average roughnesses or to the relative lengths, i.e., the roughest surface has the smallest loss. 
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Fig. 3.10: ALN33 conductor losses versus frequency on all four substrates  

For both the ALN 11 and ALN 33 lines all the conductor loss results are similar for all four AlN 

substrate surface finishes over the low frequency range but start to disperse around 9-11 GHz, where the 

average roughness (Ra) of the AlN substrates and skin depths (Table 3.1) are the same order of magnitude.  

The conductor lines on the chemically etched AlN substrate (Ra 1.091µm) have the smallest losses and the 

conductor lines on the lapped AlN substrates (Ra 0.184µm) have the greatest transmission loss.    

The conductor losses for the ALN 23 line (8x10
5
S/m), which has the lowest conductivity, on all 

four substrate finishes, is shown in Fig. 3.11.  The loss results for the ALN23 are more similar than the loss 

results for the ALN33 and ALN11.  The chemically etched AlN substrate, which has the greatest 

roughness, provides the greatest losses up to frequencies of approximately 18GHz.   Above 20GHz this 

same surface has the smallest losses.  The greatest loss occurs on the lapped AlN substrate, which is the 

smoothest. 
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Fig. 3.11: ALN 23 conductor losses versus frequency on all four substrates 

Correlation of Loss with Ra 

 Conductor loss in –dB, at four discrete frequencies, as a function of average roughness, Ra, 

is summarized in Fig. 3.12, for all four surface finishes and for all three conductor conductivities.   At the 

lower frequencies (5GHz and 10 GHz) the loss does not depend on the frequency.  At the highest frequency 

(20 GHz) the correlation between the loss and the roughness is negative: the smoothest surface has the 

greatest loss, while the roughest surface has the smallest loss.  Identical behavior was observed for 

conductor loss as a function of Rt.  For the intermediate frequencies this negative correlation can also be 

observed for the ALN11 and ALN33 conductor lines.  The ALN23 behaves somewhat differently.  This is 

due to the lower conductivity and thus, the larger skin depth for this conductor line.  
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Fig. 3.12: Loss vs. Average roughness 

Correlation of Loss with Path Length (i.e., Relative Length) at three Scales and Four Discrete Frequencies 

 

Conductor loss vs. relative length plots for discrete frequencies show trends that are similar to those 

observed for roughness, Ra.  Figs. 3.13, 3.14, and 3.15 show conductor loss vs. relative length for ALN11, 

ALN33, and ALN 23, respectively.   These figures show loss vs. relative length at four discrete frequencies 
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for three different scales of observation.  The different symbols indicate the different surface finishes.   For 

the two better conductors, ALN11 and ALN33, and the lower frequencies, 5 and 10 GHz, the loss values 

are very similar - for all surface finishes.  For 15 and 20 GHz the loss results differ for the different surface 

finishes; the lapped surfaces exhibit the largest losses followed by the sintered, honed, and the chemically 

etched surfaces.  This is the case for all scales of observation:  as the scale of observation decreases the 

differentiation by length-scale between the different surfaces increases.   

For the ALN23 line the behavior is similar with the exception that at 10 and 15 GHz the chemically 

etched surface, the surface with the greatest relative length, has the greatest loss amongst the four different 

surfaces, shown in , Fig. 3.15.   

 

Fig. 3.13: Loss vs. relative length at four different frequencies and at three scales of observation for 

the four different surfaces finishes using conductor line ALN11.   
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Fig. 3.14:  Loss vs. relative length at four different frequencies and at three scales of observation 

for the four different surfaces finishes using conductor line ALN33. 
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Fig. 3.15: Loss vs. relative length at four different frequencies and at three scales of observation for 

the four different surfaces finishes using conductor line ALN23. 

 

 

Correlation of Loss with Conductor Edge Angle 

Conductor edge angle in degrees, measured at different Length-scale, is summarized in Fig. 3.16 for 

two of the conductor lines, ALN11 and ALN33.  For both conductors there is a positive correlation 

between conductor edge angle, and length scale, becoming more pronounced as the scale decreases.  The 

same relationship is seen between conductor edge angle and average surface roughness.  This suggests that 

the angle is influenced by the substrate surface roughness, the rougher surface measured by relative length 

at the appropriate scale, causing a greater contact angle [34].  In turn, the conductor angle in degrees, as a 

function of conductor loss for the different discrete frequencies, is summarized in Fig. 3.17 for two of the 



 49 

conductor lines, ALN11 and ALN33.  As the frequency increases a correlation between the conductor edge 

angle and loss appears and is distinct at 20GHz. 

 

Fig. 3.16: Conductor edge angle vs. relative length at three scales of observation for the three 

differentiable surfaces finishes using conductor lines ALN11 and ALN33. 
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Fig. 3.17: Transmission Loss vs. edge angle at four different frequencies and for the three 

differentiable surfaces finishes using conductor lines ALN11 and ALN33. 

 

DISCUSSION 

The correlation between relative lengths and conductor edge angle becomes stronger as the scale of 

observation decreases, as shown in Fig. 3.18.  The correlation coefficient R is plotted vs. scale of 

observation for a number of scales and for two conductors, for conductor edge angle measured.  The 

correlation coefficients are determined from the graph in Fig. 3.16.   
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Fig. 3.18:  Correlation coefficients, R, versus scales of observation for two different conductor 

lines.  Correlation coefficients were determined from measured edge angle vs. relative length graphs at 

different scales of observation  

 The conductor edge angle, influenced by the surface roughness, has the dominant conductor 

topography impact on conductor loss, Fig. 3.18.  The rougher surface, with larger slopes and peaks, created 

a larger conductor edge angle, Fig. 3.16; the contact angle was formed when the conductive paste settled 

during thick-film fabrication [20]. The larger angle evens the current density at the edges and lowers the 

loss [18].  Therefore, a larger edge angle lowers the loss, Fig. 3.18, and the larger edge angle is caused by 

greater surface roughness, Fig. 3.16. 

From the literature [34] the dominant conductor topography component, influenced by the surface 

roughness, has been assumed to be the conductor-ceramic interface roughness but this paper shows that this 

assumption is not always true.   

For all of the conductivities, Figs. 3.13-3.16, there is a strong correlation between conductor loss 

and surface roughness, Ra, or relative length for the 20 GHz case, however, the correlation is negative.  

That is, the smoother surfaces exhibit greater loss. This result shows that the loss rank is not due to 
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conductor-ceramic interface roughness - which would mean a longer path for the signal to travel, and thus 

greater loss.  For the relative lengths the inverse correlation becomes more consistent and stronger as the 

scale of observation decreases as shown in Fig. 3.19. Here the correlation coefficient R is plotted vs. scale 

of observation for a number of scales and for the three conductors, all for 20GHz, where the skin effect is 

strongest.  The correlation coefficients are determined from graphs like those shown in Figs. 3.13 – 3.15.  

Fig. 3.19 leads to two conclusions:  as the scale of observation decreases, relative length increasingly 

becomes a better parameter for characterizing the surface, and, as the scale of observation decreases, the 

negative correlation between loss and relative length is stronger and more consistent.  This shows that loss 

is related to surface characteristics, but it is not the increased path length that leads directly to increased 

loss at higher frequencies.  

 

 

Fig. 3.19:  Correlation coefficient, R, versus scale of observation for the three different conductor 

lines.  Correlation coefficients were determined from loss vs. relative length graphs at different scales of 

observation 
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Another conductor topography that could potentially influence the loss is the conductor edge profile 

- in the direction of signal propagation (or the x-axis edge characteristic of the conductor).  The conductor 

topographies correlated with loss in this study were the conductor-ceramic interface and the conductor edge 

angle (or the z-axis angle of the conductor at the edges of the silver conductor line).   

 

Fig. 3.20:  Cartoon of microstrip circuit with the different topographies shown: conductor edge 

angle, conductor-ceramic interface and conductor edge profile. 

 

From the micrograph in Fig. 3.21 (a) this edge profile is seen to be ragged.  The conductor edge 

profiles were analyzed using a Kevex Energy Dispersive X-ray.  The mapping of the Ag creates an image 

where the silver conductor edge profile is seen distinctly, Fig. 3.21 (b).  Five of these edge profiles for each 

of the surface roughnesses for the ALN 11 and ALN 33 conductors were mapped and image manipulation 

used to isolate the edge profile as seen by Fig. 3.21 (c).  A software program was written to measure the 

lengths of the edge profile image, for each of the surface roughness samples, but no discernable difference 

was seen between the lengths of the profile for different surfaces.  This suggests that the x-axis edge profile 

characteristic is not responsible for the changes in loss seen between the different surface roughness 

samples.   
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(a)                               (b)    (c) 

Fig. 3.21: a, is a micrograph of the ALN33 silver conductor on Honed AlN substrate after firing, b, 

is the Ag mapped image of the same area, c, is the edge of the silver isolated by image manipulation. 

The three surface characterization methods used here, peak-to-valley roughness, Rt, arithmetic 

average roughness, Ra and the relative lengths as a function of scale, provide the same ranking of the 

surfaces with respect to the different treatments, and show similar abilities to discriminate.  Apparently, for 

these surfaces, Ra and the relative length at the finer scales are highly correlated.  Therefore, it should be 

expected that the two kinds of characterization parameters would provide similar correlations with the loss.   

The ability of different roughness characterization parameters to correlate with each other is dependent on 

the particular set of surfaces that are considered [35].  It cannot be expected that Ra and relative-length 

would both find similar correlations with loss on a different set of surfaces.  In this application relative-

length would appear to be a functional parameter as it seems to provide clear physical interpretations for 

conductor loss based on its assessment of path length and for inclinations on the surface. 

Both conventional and length-scale methods of characterization clearly discriminate three of the 

four prepared surfaces as shown in Fig. 3.8 and Table 3.3.  For the length-scale measurements the 

discrimination depends on the scale of observation, and is more distinct as the scale of observation is finer.   

The conductor loss relationship to surface roughness depends on the conductor conductivity and the 

operating frequency.  For frequencies below 10 GHz, conductor loss is not influenced by surface 

roughness, as characterized by Ra, Rt, or by relative-length. For frequencies of 20 GHz, conductor loss is 

distinctly dependent on surface roughness, as characterized by Ra, Rt, or relative-length for all three 

conductor lines.  At 15 GHz the conductor loss is influenced by surface roughness for the higher 
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conductivity metal trace and does not depend on it for the lower conductivity conductor line. Conductor 

loss is greater for lower conductivity materials and at higher frequencies, albeit not following the prediction 

based on the Hammersted equation, eq. 3.3, Fig. 3.3.  The ALN 23 conductor does not have the same loss 

rank as ALN 11 and ALN 33 until frequencies greater than 15 GHz; at frequency less than 15 GHz the skin 

effect is not present. 

CONCLUSIONS: 

 Microstrip configurations were produced on three clearly discernible surfaces of AlN substrates with 

conductors of low, medium and high conductivity. 

 The substrate surfaces were characterized and ranked using conventional arithmetic average roughness, Ra, 

peak to valley roughness, Rt, and relative lengths as calculated from scale sensitive length-scale fractal 

analysis, giving the same ranking of surface treatments. 

 Conductor loss was measured for frequencies ranging from DC to 20 GHz. 

 At 20 GHz the loss shows an inverse correlation with roughness, Ra, and with relative lengths as calculated 

by length-scale fractal analysis, for low, medium and high conductivity conductor lines.  

 These observations do not support the claim that greater conductor loss, at higher frequencies, is a direct 

result of increased path length at the ceramic-conductor interface.  Rather that there is a strong negative 

correlation of conductor loss to surface roughness, shown by the length-scale relative length results.  

 These observations indicate that the greater conductor loss, at higher frequencies, is a direct result of cross-

section conductor edge angle.  The edge inclination is shown to be formed by the surface roughness; the 

angle is larger for rougher surfaces. 
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 The dependence of loss on the surface roughness characteristics, for the different conductors, changes as a 

function of frequency.   
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4.0  CHAPTER IV 
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PAPER #2 

 

 

 

Quantitative Edge Cross-section Angle Impact on Conductor 

Loss  
 

 

Synopsis 

The objective of this paper is to investigate the impact, by experimentation, of the conductor-edge 

effects on conductor loss, for circuits made by thick-film fabrication.  The methodology for measuring the 

conductor-edge angle, with an interferometer microscope, is explained.  The impact of the conductor-edge 

angle is quantified over a range of conductor conductivities, frequencies and skin depths.  The ceramic 

substrate has a range of surface roughnesses that have been characterized.  The substrate surface roughness 

characterization is compared to conductor-edge angle measurement to determine the edge angle impact on 

conductor loss.   
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Abstract— This paper describes a method of forming different conductor edge cross-section angles by using thick-film screen 

printing on substrates of different surface roughness. The edge angle for each surface type is compared visually and measured using an 

interferometer microscope.  The conductor edge angle is correlated to the respective transmission loss sample.  The impact of different 

inclination angles on conductor loss is observed.   

 

Index Terms— Conductor loss, edge angle, thick film, surface roughness, surface topography.  

INTRODUCTION 

Conductor loss is the largest transmission loss factor for telecommunications applications using ceramic 

substrates with low tan δ.  A wide range of state of the art packaging applications utilize these forms 

of PCB circuitry.  The inclination angle, Fig. 4.1, of the microstrip conductor edge influences the       

conductor loss at GHz frequencies with a lower angle causing larger losses.   

 

Fig. 4.1.  Cross section illustration of PCB formed using thick-film print showing conductor angle 

of inclination. 

 

  It is well known that loss increases with the square root of frequency due to the skin effect.  The 

skin effect causes this loss, at GHz frequencies, by restricting the electric current to the area close to the 

surface of the conductor.   As the current becomes more confined, the resistance and therefore transmission 
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loss increases.  In addition, current flowing on a good conductor tends to flow close to and parallel to a 

sharp edge therefore further restricting the current to the smaller edge area, increasing resistance further [1-

3]. 

  Most modeling methods of calculating conductor transmission loss ignore edge effects since they 

use the assumption that the conductor is infinitely thin or that the conductor has perfect conductivity.  The 

strip thickness of a microstrip circuit is significantly less than the width and thus the infinitely thin 

assumption may well be justified [4-5]. Silver/copper has high conductivity and therefore perfect conductor 

assumptions are often used.  However, the predicted fields of an infinitely thin strip or perfectly conducting 

material mathematically cause a current density singularity close to the conductor edge [6].  Modeling with 

finite thickness, especially since it is thin, a full-wave analysis can take an unreasonably long time.     

  The research in this area has focused on how to predict the edge losses by using 

numerical/analytical calculation [7-12]. The Barsotti [9] models shows that a sharper 

edge angle results in larger transmission losses but this model is not yet proven to predict the impact of 

small inclination angles. 

  There is little published measurement data on edge effects and it is unknown what impact the low 

inclination angles would have on transmission loss performance.  This study measures the transmission loss 

of microstrip topology with a range of conductor edge angles below 20˚.  The edges are formed by varying 

the surfaces topography.  The microstrip edge inclinations are measured quantitatively and correlated to the 

transmission loss.   

EXPERIMENTAL METHOD 

  Thick film screen printing technology was used to make the microstrip circuits for this study.  

Prior to printing, the surface of the Aluminum Nitride or AlN substrates had been treated with three 
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different surface finishing techniques: lapping, vapor honing and chemical etching, a description of these 

processes is given in Table 4.1.  

 

Table 4.1, AlN Surface finishing process 

Process Description Ra Length-

scale 

Chemically etched Held in an Anodex solution for 1 hour at 150 °C, then in an 

HCl solution for 1hour at 150 °C, followed by cold water 

rinse.  This process is repeated twice. 

1.09µm 1.0818 

Vapor Honed Blasted with 220 grit aluminum oxide and water, then vapor 

honed for 2.5 minutes with 0.5mil of material removed. 

0.559µm 1.023 

Lapped Lapped using an oil-based abrasive; cleaned in ultrasonic bath 

and rinsed with alcohol (ACUMET). 

0.184µm 1.004 

Surface finish process descriptions for AlN substrate to form different surface topographies 

 

  The substrate surfaces of the AlN substrate have been characterized previously [13]. Length-scale 

[14] fractal analysis was used with a sampling interval of 69nm. Several measurements were taken in order 

to measure the surface area and surface slope relative to scale.  The average roughness, Ra, is a 

conventional parameter used for measuring surface roughness and is included, however, it does not 

effectively measure surface area and slope characteristics. 

 

  Four substrate plates, of each surface finish, were printed with microstrip circuits; two were 

printed with ALN 11 paste, and two with ALN 33.  

 

ALN 11© [15] is a silver conductor, with measured bulk conductivity of 2.2 x10
7
S/m  
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ALN 33© [16] is a silver/palladium conductor (10:1), with measured bulk conductivity of 6 

x10
6
S/m.   

 

  The ceramic substrate is aluminum nitride and the standard notation is used: AlN.  This should not 

be confused with the conductor nomenclature - ALN 11 or ―high conductivity conductor‖ and ALN 33 or 

―medium conductivity conductor‖.  All the samples were printed in a clean room environment, with the 

same screen (325F 2N wire diameter 22.86µm), same process parameters, at the same time.  As a standard 

part of thick-film process, once printed the samples were left ―to settle‖ for a controlled period of 15 

minutes.  The print used a trailing edge squeegee with rectangular cross-section and a speed of 0.0127m/s. 

 

  There were two sets of microstrip circuits on each plate.  Each microstrip circuit set consisted of 

three signal traces of different lengths, shown in Fig. 4.2, the longest being 40mm, which is used for the 

transmission loss measurements.  Every plate also had a serpentine line, as shown top right.  The serpentine 

was used to measure bulk conductivity, σ.  

   

  Measurements of conductor loss and surface texture are described elsewhere [13, 17]. 

 

 

 

Fig. 4.2.  Top view photograph of a 0.625mm thick AlN substrate with one of two sets of three 

transmission lines, nominal lengths: 10, 20, and 40mm.  The serpentine line is used to measure bulk 

conductivity.  The area selection for the conductor edge taper measurement are shown 
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  The transmission line samples were measured using an interferometer microscope (Wyko NT110) 

at the Technion, Israel Institute of Technology.  An area of 588μm x 447μm was measured in three places 

along the transmission line.  One of the measurements was taken on the opposing edge, Fig. 4.2.  Within 

each area the profile was taken three times: at each side on the area and the middle.  The profile taken was 

an average of 37 pixels each pixel has a length of 0.795μm. 

 

 

                   (a)                                               (b) 

Fig. 4.3.   Interferometer measurement on lapped surface sample.  (a) - the height map (red is 

highest, blue is lowest), the red is the conductor material height measurement, the green-yellow the 

tapering/angle of the conductor edge and the blue area is the lapped ceramic surface. (b) – characteristic 

of ceramic and conductor to ceramic profile. 

 

  The profile measures the surface location in parallel with the y-axis shown as the line parallel to the y-axis 

on the height map, Fig. 4.3(a).  The profile height map gives the ceramic level, inclination information and 

conductor level.  The tapered/inclination angle of the conductor edge is taken from the conductor-ceramic 

contact area and a line averaged through the profile result for at least the first 30% of the surface location 

on the z-axis.  The y-axis is a finer scale than the x-axis for Fig. 4.3(b); therefore the measured angle, 

represented, appears larger than it is. 
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RESULTS 

  Cross sections of the fired conductor edges are shown in Fig. 4.4 for each surface finish type. 

 

Fig. 4.4.  Cross section of microstrip circuit, x50 magnification, across the width of the conductor 

at the edge.  Shown is the AlN substrate with conductor ALN33 on Lapped (top), Vapor Honed (middle) 

and Chemically Etched (base) surface finish.  

 

  The edges of the ALN33 conductor visually change characteristic depending on the surface finish, 

as shown by Fig. 4.4.  The lapped substrate sample has a more tapered edge than the chemically etched 

substrate.  

  The conductor edges measurements from the interferometer microscope are shown in 

Fig. 4.5. 
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Fig. 4.5. Edge angle mean results (with error bar) versus substrate process for ALN11 and 

ALN33: chemically etched, vapor honed and lapped surface finish. 

  The conductor edge inclination angles for the different surfaces results for ALN 11 and 

ALN33 conductors are given in Fig. 5.  For both ALN11 and ALN33 the chemically etched 

surface sample has the largest inclination angle, the honed sample has the medium inclination 

angle and the lapped has the smallest inclination angle.  The ALN33 conductor exhibits greater 

differentiation between the surface samples.  The ALN33 and ALN11 samples have a similar 

chemically etched edge measurement at around 14-15°.  The honed ALN33 sample measures 

8.5°compared to the ALN11 honed sample that measures 11.8°.  The ALN33 and ALN11 lapped 

samples also have a significant differentiation with 7° and, 10° respectively.   The roughest 

substrate is finished with chemical etching, the medium surface roughness is finished with a 

vapor hone process and the smoothest surface is finished by lapping. 
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Table 4.2: T-test results 

Test ALN11 ALN33 

Chemically etched versus Honed 0.29 0.01 

Honed versus Lapped 0.38 0.02 

Chemically etched versus Lapped 0.02 0.002 

 

Student t-test results for each combination of measured conductor edge angles for both ALN 11 

and ALN33. 

  Student t-tests were performed on all six data set combinations for the inclination/taper 

angle of the conductor.  All of the measurement comparisons were discernable for the ALN 33 

conductor with 0.02 or less probability of the null hypothesis.  The null hypothesis assumes that 

there is no difference between the two sets of data.  For the ALN 11 conductor the chemically 

etched versus lapped case also supports that the two sets of data are different, with 0.02 

probability that they are from the same set.  However, the other cases have weaker results with 

the chemically etched versus honed result of 0.38 probability and honed versus lapped with 0.29 

probability.    
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Fig. 4.6.  Conductor edge angle mean results versus average roughness and length-scale fractal 

analysis for the two conductor types: ALN11 and ALN33. 

 

   As the average roughness increases the conductor edge inclination angle increases for 

both conductor types as shown by Fig. 4.6.  As the length-scale (and therefore surface slope) 

increases the inclination angle increases for both conductor types.  The length-scale 

measurement method has shows greater differentiation than the average roughness.   
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Fig. 4.7.  Transmission loss of ALN 11 and ALN 33 fired conductors on chemically etched, vapor 

honed and lapped surface finishes as a function of frequency. 

 

  Transmission loss of the strip made with ALN 33, medium conductivity, and ALN11, 

high conductivity, are shown as a function of frequency in Fig. 4.7.  At frequencies greater than 

5GHz the loss results, of both conductors, begin to diverge depending on the surface finish.  At 

frequencies greater than 15GHz the loss results are distinctly different.  The chemically etched 

surface has the lowest loss for each conductor.  At 20GHz the lapped surface has the highest loss 

for each conductor. 
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DISCUSSION  

 The loss measurements correlate with the edge inclination topography; as the edge angle 

increases, the transmission loss decreases Fig 4.8; this is the same trend in behavior that Barsotti 

predicted [8].  It can be concluded that the loss differences seen here are from edge topology 

effects. 

 

 

Fig. 4.8  Conductor edge angle mean results versus transmission loss at 20 and 10 GHz for the 

two conductor types: ALN11 and ALN33; with the coefficient of correlation 𝑅2 

 

  The high conductivity conductor, ALN11, has a low range of cross-section angles and 

this is not seen to have a marked effect on loss at 10GHz, as shown by Fig. 4.8.  However at 

20GHz this has a significant effect with an angle increase of 4˚ causing a decrease of 0.7dB in 

loss.  The medium conductivity conductor has a decrease in loss of 0.5dB with 
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an angle increase of 9˚.  It makes sense that the impact of edge loss would be more pronounced 

in the higher conductivity material since it relates to the skin effect. 

  When the edges are compared, the lapped surface conductor has a sharper edge, Fig. 

4.5, implying that the lapped surface, which has a smaller surface roughness, has a greater lateral 

paste flow across the surface.  The increased surface roughness/inclination and therefore surface 

area of the chemically etched surface, causes greater adhesion/inclination friction of the paste 

and less lateral motion of the conductor. 

     If the average cross-section area of the lapped and chemically etched sample 

conductors are compared; the conductor area of the last 20µm closest to the edge, where the 

current density is highest, is smaller in the lapped sample compared to the chemically etched 

sample.  The smaller conductor area constrains the current and increases the current density and 

therefore loss.   

The edge topographies of the high conductivity trace, ALN11, and the medium conductivity 

trace, ALN33, conductors show a difference in edge topography depending on the surface finish.  

This is especially true for the ALN33 conductor, most likely due to a difference in paste 

rheology.  It is possible that a larger difference in surface characteristic would create a larger 

difference in the edges for ALN11 and ALN33 conductors, however, the range of surface 

topographies used is typical of ceramic substrates in the microelectronics industry. 

It is a possibility that the edges could be varied by changing the conductor paste rhelogy 

instead of the surface characteristic.  This can be done by altering another process parameter 

such as paste viscosity, printing speed/pressure and screen parameters, for example, mesh 

number/wire diameter.  Environment changes such as temperature or humidity can have a 

significant effect on paste rhelogy. 
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Conventional theory states that an increased surface roughness or ceramic-conductor interface 

non-uniformity result in increased loss [18]. However, these results show that the roughest 

surface, the chemically etched surface finish, has the smallest loss and the smoothest surface, the 

lapped surface, has the greatest loss.  This shows that the loss differences, seen in this case, are 

caused by the conductor inclination angle, which has a larger impact on the loss results than the 

ceramic-conductor interface non-uniformity. 

CONCLUSION 

  Edge topography has been measured for two thick-film paste systems, with high and 

medium conductivities, on substrates with three substrate surface topographies formed by 

different surface treatments. It has been shown quantitatively that the substrate with a chemically 

etched surface finish has the roughest surface and the largest conductor cross-section angle.  The 

lapped surface substrate has the smoothest surface and the lowest conductor edge inclination.  

  For frequencies greater than 15GHz the greater mean edge angle results in a lower 

transmission loss with an angle increase of 4˚ causing a decrease of 0.7dB in loss at 20GHz on a 

40mm transmission line.  The differences in ranking of transmission losses between the AlN 

substrates is a result of the conductor edge topography and not a result of the conductor/substrate 

interface roughness. 

  For thick-film processing applications, especially with edges < 20˚, the edge topography 

loss may be considered a significant portion of the conductor/transmission loss. 
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5.0  CHAPTER V: FURTHER WORK 

Math Modeling 

Electromagnetic simulation programs are essential tools in the design of 

telecommunication systems.  The long term goal of this study is to take the knowledge gleaned 

from these experiments to assist in making better, more accurate mathematical models.  Rather  

than taking the surface roughness feature of the substrate to determine high frequency loss, the 

edge angle and perhaps other features should also be taken into consideration.  This study has 

shown that surface roughness can indirectly decrease high frequency loss but that is the opposite 

result of most numerical and empirical tools currently available. 

With the advent of modern laser optical microscopes, the field of surface metrology has 

many more characterization and parameterization tools at its disposal than it did thirty years ago. 

In the 1980s Hammerstad used average roughness in an equation, in order to curve fit to 

measured loss data.  There are many parameters or possible algorithms that could better describe 

the surface roughness influence on conductor loss.  In particular the length-scale or area-scale 

parameterization is a promising parameter for the characterization of conductor loss since it 

measures roughness at different scales and can therefore be used to calculate loss over broad 

frequency ranges. 

 

Edge profile  

If the profile of conductors on different substrates are compared; distinct differences in 

the profiles can clearly be seen, Fig. 5.1.  The differences of these profiles may influence the 
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conductor loss by changing the mean average of the conductor edge-angle.  The edge profile of 

the thick-film samples made with AlN substrates, were measured for the study described in 

chapter III.  Despite a distinct different in surface roughness, there was no difference detected 

between the edge profiles of these different samples although there was some variation in edge 

angle detected; the mean average results were used for correlation with conductor loss.   

 

 

(a)     (b)    (c) 

 Fig. 5.1 the conductor and ceramic substrate, showing the conductor profile, of (a) an 

alumina substrate with silver alloy conductor, (b) AlN vapor honed substrate with ALN33, and 

(c) an LTCC substrate with silver alloy. 

 

The methodology used to measure the edges could be used in other studies to observe influences 

of edge profile on conductor loss but it has yet to be proven. 

 

Microstructure 

Silver is a commonly used conductor for the fabrication of microelectronics circuits.  The 

conductors used for this study were all silver alloys.  The primary reason for using silver is of 
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course its comparatively low cost - it is dramatically cheaper than gold.   Another apparent 

benefit of silver is the theoretical conductivity is 1.5 times that of gold. 

  

Silver and gold tend to behave differently under the same or similar processing 

conditions, such as thick-film processing, this can result in different material and microstructural 

properties.  Silver thick film materials generally do not sinter as densely as gold and hence the 

thick film conductivity is often worse [40].  Glass frit is often used as a fluxing agent to help 

increase the density of silver but this can cause the fired film to be glass heavy at the lower 

surface.  The pastes used in this study were all fritless.  Also, it is suggested that the edge 

definition of silver prints is frequently poorer than gold.   

 

Any shape or feature that inhibits the flow of electrons, by increasing the electron path, 

will increase the conductor loss.  Even microstructure defects such as grain boundaries and 

porosity, shown in Fig. 5.2, can have an influence on the conductor loss [39].   Thus it might be 

beneficial to include microstructural considerations and their impact on conductor loss. 
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Fig. 5.2 the fritless fired silver alloy ALN33 showing microstructure features such as 

grain boundaries and porosity. 
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6.0  CHAPTER VII: CONCLUSION 

 Microstrip configurations were produced, by thick-film fabrication, on three clearly discernible 

surfaces of AlN substrates with conductors of low, medium and high conductivity. 

 The substrate surfaces were characterized and ranked using conventional average roughness, Ra, 

peak to valley roughness, Rt, and relative lengths as calculated from scale sensitive length-scale 

fractal analysis, giving the same ranking of surface treatments. 

 The conductor-edge angles were measured using interferometer microscope. 

 Conductor loss was measured for frequencies ranging from kHz to 20 GHz. 

 The dependence of loss on the surface roughness characteristics, for the different conductors, 

changes as a function of frequency.   

 The edge inclination is shown to be formed by the surface roughness; the angle is larger for 

rougher surfaces. 

 At 20 GHz the loss shows an inverse correlation with roughness, Ra, and with relative lengths as 

calculated by length-scale fractal analysis, for low, medium and high conductivity conductor 

lines.  

 These observations do not support the claim that greater conductor loss, at higher frequencies, is 

a direct result of increased path length at the ceramic-conductor interface.  Rather that there is a 

strong negative correlation of conductor loss to surface roughness.  
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 The experiments show that the greater conductor loss, at higher frequencies, is a direct result of 

smaller conductor-edge angle. 
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Abstract 

The effect of surface roughness on electrical insertion loss at microwave frequencies has been 

evaluated on LTCC substrates.  This involved the selection of suitable measurement instruments 

and examination of the data by using conventional roughness formula.  Application of laser 

scanning microscopy (SLM) and interferometric microscopy on two samples of varying 

roughness, pertaining to different LTCC tape systems, were examined and compared.   Taking 

other loss factors into account, the impact of surface roughness effect on overall Radio 

Frequency loss performance is shown.  Comparisons between determined conductor loss and 

theoretical conductor loss, using the established conductor loss surface roughness correction 

formula, are shown.  The utilization of Sa and Sq (root mean square) surface roughness 

parameters is discussed. 

Low Temperature Co-fired Ceramic is used extensively for high frequency applications.  LTCC 

technology is a way of producing multilayer circuits with the help of a tape lamination and fire 

process. LTCC tape systems are supplied in a range of dielectric loss tangents and surface 

roughness; 2 tape systems with different surface roughness and loss tangent are used for this 

study.   These 2 tape systems have different compositions and use different processes. 

 

INTRODUCTION 

 

Insertion loss is a significant design driver within the microwave industry.  This paper 

will show how surface roughness relates to conductor loss and in turn how the conductor loss 

factor can contribute to overall insertion loss.   
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Tape systems with lower dielectric loss factors have been developed, now attention is 

turning to conductor loss effect in this medium.   

 

There has been recent effort in the PCB manufacturing [1-2] industry to examine surface 

roughness effect on insertion loss.  Laing et al [3] show the surface roughness loss factor versus 

frequency with various surface roughnesses using the Rq parameter.  There is no doubt within 

this industry sector that surface roughness can significantly impact insertion loss  at frequency. 

The objective of this investigation is to investigate the surface roughness effect on 

insertion loss.  Part of this aim is to show the shortcomings of conventional surface parameters of 

surface metrology.  Surfaces are often seen as Euclidian or at best with linearly periodic 

characteristics.  It would be of benefit to microwave design engineers to comprehend the nature 

and complexity of surfaces especially when considering surface roughness.    

Method 

Loss Measurement 

Insertion Loss is essentially power out divided by power in expressed in dB. The overall 

insertion loss is a combination of the rejected signal and attenuated signal.  

 

The rejected signal or reflected loss was considered when measuring the samples.  

Reflected loss is caused by mismatch between the input/output transition and the conductor path 

itself.   

 

The overall loss was measured using a Vector Network Analyzer (VNA) to obtain s-

parameters.  Transmission line equations were used to calculate the reflected loss.  Samples 
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compromising 3 different microstrip lengths were used to extrapolate and corroborate the 

attenuated signal per centimeter.  The reflected loss is then subtracted from the overall measured 

loss to attain the attenuated signal.   The frequency range extends to 30GHz. 

 

Loss Calculation 

The loss of interest is part of the attenuated signal.  The phase, and amplitude, of the 

attenuated signal is represented by the propagation constant   [4]: 

 j       (1) 

 

The attenuation constant  for microstrip structures can be broken into 3 loss factors: 

dielectric loss, radiative loss and metal or conductor loss:  

crd               (2) 

 

Dielectric loss represents the power dissipated in the dielectric material.  The dielectric 

loss tangent, tan , was measured using split-post [5] and split cylinder [6] techniques; the 

dielectric constant, or relative permittivity
r , was monitored with a ring-resonator [7] for every 

firing. Once dielectric loss tangent was found, dielectric loss equations from Schneider [8] were 

used to calculate dielectric loss attenuation.  Since microstrip topologies require the 

electromagnetic wave to propagate through air and dielectric material this results in an effective 

permittivity
eff .  
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Once the dielectric loss is found (eq. 3) then it is subtracted from the determined 

attenuated signal. 

 

The radiative loss factor for the topologies considered is comparatively small; it is 

assumed zero for stripline structures and is design dependant within microstrip.  The microstrip 

samples have been designed to mitigate radiative loss, that is avoid discontinuities and substrate 

thickness is minimized so that it is a fraction of the quarter wavelength at 30GHz. 

 

 Conductor loss is caused by the power dissipated due to the conducting surfaces of the 

line.  The insertion loss of a microstrip line over a low-loss dielectric substrate at microwave 

frequencies is dominated by the conductor loss.   

 

Skin effect is essentially where the signal exponentially decays from the propagating 

edge into the conductor.  This is a well-known phenomenon in microwave engineering and is 

central to our understanding of how surface roughness effects conductor loss.   

 

The signal level of 37% intensity is 1 skin depth.    As the frequency increases s

decreases and the signal will conduct closer to the outer edge of the conductor where the EM 

wave is propagating.  Figure 1 illustrates the skin effect in a microstrip topology.   

 

 

ro

s
f 


1

        (4) 



 93 

 

Where  represents bulk conductivity; the bulk conductivity was measured for both tape 

systems. 

 

 

Figure 1: Skin effect representation shown for a range of frequencies using silver 

conductivity of 62893081 mhos/m.   

 

The equation that been established for surface roughness effect on conductor loss 

attenuation [9] is represented by: 
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Surface Texture Measurements 
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An interferometric and scanning laser microscope (SLM) were used to measure the 

surface roughness data.  Two LTCC tape systems with different roughness are used to examine 

the roughness-loss relationship.  These samples with differing roughness are from different tape 

systems.  The samples consist of a transmission line printed a microstrip topology on LTCC. 

 

Six regions of 250x250µm were measured; the measured textures were analyzed using 

Map Premium software (Digital Surf). 

 

Surface Texture Characterization 

 

The conventional parameters Sa and Sq were used to compare conductor loss at 

microwave frequencies with measured conductor loss. Sa is the areal average of the absolute 

values of the surface height deviations measured from the best fitting plane.   


a

a dxdyyxZS ),(      (6) 

 Sq, the root mean square (rms) roughness is very similar to Sa; the surface heights are 

―squared‖ prior to being integrated.   

 
a

dxdyyxZSq
2

),(  (7) 

Sa and Sq value are insensitive to the spatial distribution of the surface heights; two very 

high peaks will contribute the same value whether the peaks are close to each other or separated 

over the measurement field.  A deep valley or a high peak of same magnitude will result in the 

same Sa or Sq value. 
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Sa and Sq will average the absolute value without representing any anisotropic 

characteristic of the surface. Since the signal propagates along a specific axis, this may be a 

source of error.  Although there is no evidence to suggest the surface is anisotropic. 

The conventional parameters Sa and Sq do not directly relate the surface roughness 

profile to the electrical path length at a particular frequency or scale. 

Results 

Table 1 summarizes the measured parameters Sa (eq. 6), Sq (eq.7), and tanδ (eq. 3) and 

bulk conductivity σ (eq. 4).  

 

Table 1 – Summary of Measured Roughness, Dielectric Loss Tangent and Bulk Conductivity 

Parameters 

 Sa  Sq 

Tape system1 1.56µm 1.98µm 

Tape system2 1.18µm 1.6µm 

  Tanδ at 20GHz 

Tape system1 0.00154 

Tape system2 0.006 

 Bulk Conductivity σ 

Tape system1 2.22 x 710  S/m 

Tape system2 1.39 x 710  S/m 

 

Figure 2 shows measured attenuated losses for LTCC tape system 1.  The attenuated loss 

is broken into the conductor and dielectric loss factors following the method described in loss 

calculation section.  The conductor loss is significantly larger over the frequency ranges shown. 
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Figure 2: Measured Attenuated Loss for LTCC Tape System 1 

 

 

Figure 3 shows the total losses including the reflected loss for this specific configuration 

in the same tape system. Even including the reflected losses, it can be seen that conductor loss is 

still the largest loss factor. 
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Figure 3: Measured Total Loss for LTCC Tape System 1 

 

Figure 4 shows measured attenuated losses for LTCC tape system 2.  The attenuated loss 

is broken into the conductor and dielectric loss factors using the method described above.  The 

conductor loss is significantly larger over the frequency ranges shown.  Both dielectric and 

conductor losses are larger than for tape system 1 with the dielectric loss taking up a larger 

fraction for the higher frequency ranges. 
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Figure 4: Measured Attenuated Loss for LTCC Tape System 2 

Figure 5 includes reflected losses with conductor and dielectric losses for tape system 2. 

Conductor loss is still the largest loss factor.  Due to improved return losses the reflected loss 

constitutes a lower fraction of the loss in general when compared to Tape System 1.  
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Figure 5: Measured total loss for LTCC tape system2 
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Figure 6: Measured Conductor Loss versus Theoretical Conductor Loss for Tape System 1

 

Figure 6 represents the determined conductor loss by the method explained in the loss 

calculation section derived from measurement of the total loss versus the conductor loss that is 

theoretically calculated by equation 5 using the data collected 

for tape system 1.  
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Figure 7: Measured Conductor Loss versus Theoretical Conductor Loss for Tape System 2.  

 

 

Figure 7 represents the determined conductor loss by the method explained in the loss 

calculation section versus the conductor loss calculated by equation 5 using the data collected for 

tape system 2. 

 

Discussion 

The total loss increases with frequency and both the dielectric and conductor loss factors 

increase as frequency increases.  The conductor loss remains the largest loss factor in this 

topology for both tape systems. 

 

It is often assumed that surface roughness does not have a large effect on insertion loss 

for RF frequencies.  This assumption could be precarious especially if engineering materials 
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Tape system 2 has a lower conductivity that results in higher conductor loss than tape system 1 

for the frequency range used in this study.   

 

Equation 5 was formulated by Hammerstad and Jensen [9] to curve fit empirical data for 

conductor traces where there is a minimum of 5 skin depths.  It can be seen in Figure 6 and 

Figure 7 that the measured conductor loss matches well with the theoretical conductor loss from 

low GHz to approx 20GHz.  Above 20GHz the measured conductor loss deviates from the 

theoretical conductor loss calculation.   

 

Surfaces have irregular complex textures and are self-similar over limited ranges of scale; 

length scale fractal analysis is a useful tool for surface scale length parameterization. It is thought 

that a surface specific length measurement may provide a useful correlation when calculating 

conductor loss at frequencies above 20GHz. Conventional surface parameters have their 

limitations and the field of surface metrology has become increasingly sophisticated since 1980.  

Further study using length scale fractal analysis [10] is underway. 

The reflected loss has been included since it can be a major contributing loss factor.  

However, it should be noted that reflected loss is highly design dependant. This is can be seen by 

comparing Figure 3 with Figure 5. 

 

Conclusions 

Surface roughness and insertion losses have been determined for two different LTCC 

systems, the results show that the conductor loss factor is a high fraction of total loss and is 

therefore a major loss factor for this topology and frequency range.  
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The established Hammerstad and Jensen conductor surface roughness correction formula 

has been found to curve fit the determined conductor loss to 20GHz.  However above 20GHz the 

determined conductor loss does not match the calculated conductor loss profile. 
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Abstract 

 This study tests the theory that the edge definition of a thick-film print conductor can 

alter high frequency loss characteristic. High frequency loss degrades both GHz analogue and 

fast switching digital signals.  A telecommunication electronic system contains transmission 

lines consisting of a conductor strip, which carries signals in the form of electromagnetic (EM) 

waves. This strip of conductor on the surface of a ceramic substrate is as a guide to the EM 

signal and results in conductor loss.  Conductor loss is the largest loss factor for GHz frequency 

applications. As the frequency increases, the current concentrates closer to the conductor 

extremities especially at the conductor edge. The ceramic surface, in particular surface 

roughness, can influence the topography of the conductor strip when the conductor is formed by 

thick-film processing. Using AlN with known surface characteristics, the edge definition for 

several conductors is measured and correlated to loss over a range of frequencies. 

 

Introduction 

 

This paper tests the theory that the conductor edge topography is the primary topography 

influence on conductor loss results for printed circuit boards manufactured by thick-film 

processes.  Most conductor loss research has focused on the influence of surface roughness 

topography; the consensus being that increased surface roughness increases conductor loss [1].  

However, for microelectronics fabricated by thick-film technology it shall be shown that 

increased surface roughness can change the conductor edge topography to result in reduced 

conductor loss. 
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Most classic methods of calculating conductor loss ignore edge effects since they work 

on the premise that the conductor is infinitely thin.  The strip thickness of a microstrip circuit is 

much smaller than the width and this does not change the field except at the edges.  The edge 

research that has been made has focused on the numerical/analytical calculation techniques [2]. 

There is little published measurement data on edge effects. 

 

Microstrip topology test samples of thick-film conductor printed on AlN substrates were 

fabricated and the transmission loss measured.  The ceramic surfaces are characterized using 

length-scale fractal analysis and edge topography differences observed.  The edge topographies 

are ranked and compared to the loss rank. 

 

 

Theoretical Development 

 

The transmission loss of a microstrip line over a low-loss dielectric substrate at 

microwave frequencies is dominated by the conductor loss [3].  Conductor loss is the power that 

is absorbed by the conductor material as the electrical signal propagates along the signal trace. 

The skin effect is a well known phenomenon, where the current density becomes 

concentrated at the conductor extremities as frequency increases.  In a microstrip topology, the 

most common type of circuit, the signal decays exponentially from the dielectric-conductor 

interface into the conductor.   Therefore the current density is concentrated at the insulator 

surface and at the conductor edges.  At GHz frequencies the skin effect is so pronounced that, for 



108 

 

a good conductor such as silver, the current flow is contained within a fraction of a micron from 

the substrate surface and edge and therefore is influenced by the surface/edge topography. 

The current density is increased at the conductor edge, shown by Figure 1 due to fringing 

fields [4].  The two current carrying conductors will exert a magnetic force on one another.  The 

magnetic force/field loops around each conductor; therefore the orthogonal electric field is 

vertical underneath the current strip and horizontal at the edge; this is also known as fringing 

field.  The vertical and horizontal electric fields add; increasing the current density at the edge.  

It has been noted that a large amount of conductor loss occurs at the edges [5].  The 

mathematical solution states that current density increases at the conductor edge, becoming 

larger as the corner gets sharper [6].    

 

 

Figure 1 Cross-sectional front view of conductor (a) Shows the magnetic and electric fields (b) Is an 

illustration of the skin depth, the current is concentrated in the darker green shaded area; this conductor 

strip edge is wedge shape (c) Is an illustration of  the skin depth, the current being concentrated in the darker 

green shaded area, the darker the shade the higher the current density;  the conductor has a tapered edge. 
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When circuits are fabricated by thick-film printing, the conductor paste/ink is transferred 

through the screen to the substrate; this is a complex phenomenon and relates to the rheology of 

the ink [7]. The ink is required to flow through the openings of the screen and wet the surface of 

the substrate.  This essentially involves lubrication theory [8] where the flow of fluids in one 

dimension is significantly smaller than the others.  Data from shear testing suggests that the ink 

acts as a Bingham plastic [9]; that is, the ink acts as a combination of Newtonian and shear – 

thinning, pseudoplastic, material; this is not known quantitatively. 

  

Figure 2 Illustration of settling mechanism for thick-film print conductors. 

After printing, the trace is left to settle, allowing the lateral motion of the paste across the 

substrate to come to a complete stop. The adhesive forces between the atoms in the liquid and the 

substrate with the surface inclination will compete against the cohesive forces within the liquid, 

as shown by Figure 2.  Hence, the amount of lateral motion will depend on the surface 

inclination/adhesive force between the printed ink and substrate surface [10]. Greater surface 

roughness will mean greater area and higher angle of inclination, which in turn causes greater 

local adhesion [11] and resistance force, this leads to less lateral motion.  The thick-film print 
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fired conductor has a non-uniform thickness across the width, where the conductor gets thinner 

at the edges of the print.   

 

Many parameters can be used to characterize surfaces.  Length-scale fractal analysis 

calculates the lengths of a profile as a function of scale by virtually stepping along the surface 

[12].  The smaller the steps the closer the stepping pattern follows the actual surface profile and 

the longer the calculated profile length.   

 

 

Figure 3 An example length-scale analysis illustration, showing how as the scale, or step length, decreases 

the measured length increases.  The nominal lengths are all 110µm.  

 

The tiling or stepping sequence in length-scale analysis is demonstrated in figure 3.  A 

series of progressively shorter step sizes are used to calculate the measured lengths of the profile 

as a function of scale.  The step size is the scale of observation, or calculation.  The relative 

length at a particular scale is the measured length at that scale divided by the nominal, or 

straight-line, length.   
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Experimental Method 

 

Thick film screen printing technology was used to make the microstrip circuits for this 

study.  Four substrate plates were printed with microstrip circuits; two were printed with ALN 11 

paste, and two with ALN 33.  

 

ALN 11© [13] is a silver conductor, with measured bulk conductivity of 2.2 x107S/m  

ALN 33© [14] is a silver/palladium conductor (10:1), with measured bulk conductivity 

of 6 x106S/m.   

   

             All circuits were printed in a clean room environment, with the same screen, 

same process parameters, at the same time.  There were two sets of microstrip circuits on each 

plate.  Each microstrip circuit set consisted of three signal traces of different lengths, the longest 

being 40mm, which is used for the loss measurements.  Every plate also had a serpentine line, as 

shown in figure 5 middle right.  The serpentine was used to measure bulk conductivity, .  

The total loss was measured using an Anritsu Vector Network Analyzer with (GGB 

industries) picoprobes, to obtain S-parameters (signal parameters). S-parameters are used to 

describe the electrical behavior of an electrical device when undergoing various steady state 

stimuli by small signals.  The losses were measured on both circuits after calibrating with the 

picoprobe substrate standard.  The first circuit was used for analysis. The measurement of the 

second circuit was taken as validation of the first measurement. The loss measurements were 
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viewed using SONNET software® and analyzed using Microsoft Excel.  The frequency range 

extends from DC to 20GHz.   

Transmission line equations [15] were used to calculate the reflected loss from the 

mismatch measurement. Reflected loss is caused by a mismatch between the input and output 

transition and the conductor path itself.  This mismatch was measured for each of the circuits.  

Reflected losses are design dependant, and, therefore, the reflected loss is subtracted from the 

total loss to calculate the transmission loss.  Three different microstrip lengths were used to 

measure and corroborate the transmission losses for each of the lines.   

 

 

Figure 4  Top view photograph of an AlN substrate with conductor with two sets of three transmission lines 

with nominal lengths: 10, 20, and 40mm.  The serpentine line is used to measure bulk conductivity. 

 

The surface of the AlN substrates were treated with three different surface finishing 

techniques: lapping, honing and chemical etching.  These techniques are detailed in Table 1.  Six 

profiles (height z as a function of position x) were measured on each surface finish with a 

Perthen (Mahr Federal) profiler using an unskidded stylus with a tip radius of 2μm.  The 
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sampling interval was 69nm and the trace length 560μm.  The profiles were Gaussian filtered 

with wavelength cut off 0.08mm, and length-scale fractal analysis performed (ASME B46 2002).  

The measured profiles were analyzed using Map Premium software® (Digital Surf) and Sfrax 

(www.surfract.com). 

 

                                           Table 1 Surface Finish Process  

Surface Finish Process 

Lapped 

Lapped using an oil-based abrasive; cleaned in ultrasonic 

bath and rinsed with alcohol (ACUMET). 

Vapor Honed 

Blasted with 220 grit aluminum oxide and water, then vapor 

honed for 2.5 minutes with 0.5mil of material removed. 

Chemically Etched 

Held in an Anodex solution for 1 hour at 150 °C, then in an 

HCl solution for 1hour at 150 °C, followed by cold water rinse.  This 

process is repeated twice. 

 

  

Sections of these samples, a sample is shown by figure 4, were cross sectioned to 

examine the edge topography.  The diced parts were mounted in Buehler Epothin epoxy Resin 

and manually polished following the [16] precious metals procedure.  To preserve the edge, the 

conductors were plated with Nickel [17], using electrolytic plating method.  The cross sections 

were viewed with a Nikon Epiphot optical microscope, images taken with a Nikon Digital Sight 

DS-U1 camera using ACT-2U software.  A minimum of four edges of each conductor, per 

surface finish, were viewed. 

 

http://www.surfract.com/
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Results and Discussion 

 

 

Figure 5 Electrical loss of 40mm ALN33 conductor line on chemically etched, vapor honed and lapped 

surface. 

 

As the frequency increases the loss result, from the fired ALN33 conductor, from each of 

the samples, with different surface finish, begin to diverge at frequencies greater than 5GHz, 

figure 5.  The chemically etched surface has the lowest loss.  The lapped surface has the highest 

loss. 
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Figure 6 Electrical loss of 40mm ALN11 conductor line on chemically etched, vapor honed and lapped 

surface. 

 

As the frequency increases the loss result, from the fired ALN11 conductor, from each of 

the samples, with different surface finish, begin to diverge at frequencies greater than 12GHz, 

figure 6.  The chemically etched surface has the lowest loss.  The lapped surface has the highest 

loss. 
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Figure 7 Length-scale Fractal Analysis for AlN with Chemically etched, Vapor Honed and Lapped Surface 

finish. 

 

The length-scale roughness characterizations of profiles from the four different substrate 

surface treatments are shown in figure 7 with the mean and variation of 6 measurements taken 

from 6 different areas of the substrate.   F-tests [18] were performed on all six measurements.  

All of the surface comparisons were discernable, i.e., statistically different, for scales less than 

60µm with a level of confidence greater than 95%. 

The relative lengths of the profiles measured from all three surface treatments are similar 

at scales above 100µm.  The relative lengths increase rapidly with the decrease in scale between 

scales 2µm and 20µm.  The chemically etched surface clearly has a longer length than all the 

other surfaces at scales below 50µm.  The lapped surface clearly has a shorter length than all the 

other surfaces at scales below 30µm.  The surfaces were isotropic therefore; the increase in 

length corresponds with an increase in surface area. 
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Conventional theory states that an increased surface roughness results in increased loss 

but the roughest surface, the chemically etched surface finish, has the lowest loss and the 

smoothest surface, the lapped surface, has the highest loss, shown by figures 5 and 6.   

It is known that the edge topography also has an influence on the loss result.  The edge 

topographies of both the ALN11 and ALN33 conductors show a marked difference in edge 

topography depending on the surface finish.   

 

 

 

Figure 8 Cross section of microstrip circuit, x10 magnification, taken across the width of the conductor.  

Shown is the AlN substrate with conductor ALN33 on Lapped (top), Vapor Honed (middle) and Chemically Etched 

(base) surface finish. 
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It can be seen from figure 8 that the width of the lapped conductor strip is approximately 

0.1mm wider than the width of the conductor strip on the chemically etched substrate.  The 

conductor edges shape is also different. 

   

 

Figure 9 cross section of microstrip circuit, x50 magnification, across the width of the conductor at the 

edge.  Shown is the AlN substrate with conductor ALN33 on Lapped (top), Vapor Honed (middle) and Chemically 

Etched (base) surface finish. 

 

The edges of the ALN33 conductor change topography depending on the surface finish as 

shown by figure 9.  The chemically etched surface has a conductor with an abrupt edge 

compared to the lapped surface with a tapered edge.  
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Figure 10 cross section of microstrip circuit, x50 magnification, across the width of the conductor at the 

edge.  Shown is the AlN substrate with conductor ALN11 on Lapped (top), Vapor Honed (middle) and chemically 

etched (base) Surface finish. 

 

Similarly, the edges of the ALN11 conductor change topography depending on the 

surface finish as shown by figure 10.  The chemically etched surface has a conductor with an 

abrupt thick to thin thickness change when compared to the lapped surface which has a more 

tapered edge.  The ALN11 and ALN33 conductors have the same results. 
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Table 2: Loss Rank for ALN11 and ALN33 Compared to Surface Roughness and Edge Topography 

 

Surface Finish 

Surface 

Roughness 

of AlN ceramic 

 

 

 

Loss for 

ALN33 

Loss for 

ALN11 

 

Taper angle 

of Edge 

For ALN33 

 

Taper angle 

of Edge 

For ALN11 

Lapped 

 

Lowest 

 

Highest 

 

Highest 

 

Lowest 

 

Lowest 

Vapor Honed 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

Chemically 

Etched 

 

Highest 

 

Lowest 

 

Lowest 

 

Highest 

 

Highest 

 

 

For the ALN 33 conductor the width of the lapped conductor strip is wider than the width 

of the conductor strip, shown by figure 8, on the chemically etched substrate and the edge 

topography is also different, figure 9.  When compared, the lapped surface conductor has a 

sharper edge implying that the lapped surface, which has a lower surface area, has had a larger 

lateral paste flow across the surface.  The increased surface roughness/inclination and therefore 

surface area, figure 7, of the chemically etched surface, causes greater adhesion/inclination 

friction of the paste and less lateral motion of the conductor.   

 

 

 



121 

 

 

Conclusions 

  

 Conductor loss, surface roughness and edge topography were measured for two conductor 

materials on three different substrate surface treatments. 

 The ALN11 fired conductor trace is wider on the lapped surface than on the chemically etched 

surface. 

 The sample with the chemically etched surface has a conductor edge with a more distinct thick to 

thin change than the lapped surface conductor sample. 

 The conductor edge topography has been shaped by the ceramic surface characteristic between 

the printed conductor paste and the substrate. 

 The differences in loss between the samples made with lapped, vapor honed, and chemically 

etched AlN substrates is as a result of the conductor edge topography and not as a result of the 

conductor/substrate interface roughness. 

 The greater the angle of the conductor edge, the lower the transmission loss. 
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9.0  APPENDIX C 

MATLAB PROGRAM FOR PAPER I, CHAPER III: MATLAB PROGRAM TO 

MEASURE THE LENGTH OF THE CONDUCTOR EDGE PROFILE 

Matlab program for edge profile 

%Tracey's edge length program 

% read image file 

I=imread('HMAP_11_7.bmp'); 

% Initialize, a, b variable denote the pixel position on the  

% bitmap image, c, d are white & black pixel counters and the  

% initial edge length is 1. 

 

a=1; 

b=1; 

c=0; 

d=0; 

e=1; 

f=1; 

l=0; 

 

% outer loop going to each pixel in image file (512x512) 

 

while b<513 

        if a<512  

           a=a+1;  

%Is it a white pixel? 

                if I(a,b)>0 

                    d=d+1; 

                    switch I(a,b)>0  
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%Is it next to a black pixel? 

                        case I(a+1,b)==0 

                        l=l+1; 

                        case I(a,b+1)==0 

                        l=l+1; 

                        case I(e,b)==0 

                        l=l+1; 

                        case I(a,f)==0 

                        l=l+1; 

                             

                    end 

                else 

                c=c+1; 

                end 

        else 

        a=0; 

        b=b+1; 

            if b>=2 

            f=b-1; 

                if a>=2 

                e=a-1; 

                end 

            end    

        end 

end 

 

% output 

 

d 

c 

e 

f 

l 

rel_length=l/512 
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10.0  APPENDIX D 

ANALYZE SUBSTRATE SURFACES  

The influence of roughness values on loss, for the different conductor lines, can be 

understood in terms of skin depth.   The figure below depicts skin depth as a function of 

frequency for the three different conductor lines.  The figure includes the values of roughness 

parameters, Ra and Rt that were measured for the surfaces. 

 

Skin depth as a function of frequency for three different conductor lines including the 

values for roughness parameters, Ra (lines), and Rt (ranges). 
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These values show how the roughness values are of the same magnitude as the skin depth 

for the higher frequencies.  For ALN11 and ALN33 this occurs at lower frequencies than for 

ALN23.  It also shows that the effect of the frequency on loss should appear first, for the material 

with the greater roughness value, the chemically etched surface.  This was only observed for the 

ALN23 line, and there only for the 10 and 15 GHz condition where the skin effect is not 

prominent.  For all other cases, the surface with greater roughness shows lower loss. 

 

 


