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ABSTRACT 

 

In the search for developing sustainable, renewable and carbon neutral fuel supplies, 

bioethanol provides a potential replacement to petroleum-based fuels. Further optimization and 

engineering is necessary to produce organisms capable of fermenting lignocellulosic biomass 

that will not compete with human food supplies. A profile of ten wild-type Saccharomyces 

cerevisiae strains was developed for ethanol yields from growth on different sugars. 

Additionally, several higher ethanol producing yeast knockout strains were identified by use of a 

Bromothymol Blue pH indicator assay. 
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Introduction: 

Due to global climate change and rising fossil fuel costs, biological fuel sources show 

increasing promise for replacing fossil fuels with renewable and sustainable alternatives. As 

fossil fuels produce greenhouse gases, primarily CO2 during combustion, a fuel which does not 

lead to a net increase in atmospheric greenhouse gases is essential. While bioethanol would also 

yield CO2 in combustion engines, the CO2 is being produced from carbon recently sequestered 

by plants, as opposed to carbon in fossil fuels which was fixed millions of years ago. Therefore 

using fuels (such as biodiesel, bioethanol and biomethane) in which the carbon source was 

recently fixed by plants, will lead to a cycling of carbon from atmosphere to plant tissue to fuel 

and then back to the atmosphere. In addition to not contributing to net greenhouse gas emissions, 

biological sources of fuel can be both renewable as plants are grown continuously, and 

sustainable as there is not a finite supply as is the case with fossil fuel sources. 

The biological production of ethanol has been conducted for thousands of years with 

brewer’s yeast, Saccharomyces cerevisiae, as it is produces high ethanol yields and grows 

rapidly in simple conditions. Unfortunately, the best energy sources for S. cerevisiae are also 

those found in human food sources (starch-rich sources in both cases), which brings up the ‘food 

versus fuel’ debate. It is an unfavorable situation for yeast and humans to have competing food 

sources, so other options must be explored. It is important to find microbes which are capable of 

fermenting the non-food portion of plant matter, or to alter S. cerevisiae so that it is capable of 

metabolizing lignocellulosic plant tissue that is not nutritional for humans. As brewer’s yeast has 

already been bred over the years to have high ethanol production and tolerance, it is one of the 

most attractive organisms to work with. In addition to these traits, the S. cerevisiae genome has 

been sequenced and much is known about this organism, making genetic manipulation an easier 

process. Furthermore, it is the only organism with a whole genome deletion library, making 
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genome scale mutant hunts possible. A final note of potential importance is that S. cerevisiae is 

an organism with GRAS (generally recognized as safe) status by the U.S. Food and Drug 

Administration, which may eliminate concerns about potential runoff contamination and other 

biohazard safety problems (U.S. Food and Drug Administration 2001). 

Lignocellulose consists of cellulose, hemi-cellulose and lignin, the last of which is 

essentially unfermentable. In the non food portion of corn for example, the dry weight consists 

of: cellulose 40-50%, hemi-cellulose 25-35%, and lignin 15-20% (Gray, et al. 2006). Figure 1 

below shows that the content of each of these components may vary greatly between different 

crops and wastes, so optimizing organisms for fermenting cellulose or hemi-cellulose may be 

very important to maximize ethanol production. Cellulose is most frequently in the range of 

50%, but hemi-cellulose can range from less than 20% to as much as 50% in wheat straw or 85% 

in leaves (Sun and Cheng 2002). 

 
Figure 1: Cellulose, hemi-cellulose and lignin profiles for a variety of crops and wastes (Sun and 

Cheng 2002). 

 

Lignin is a complex and irregular molecule, and as a result is more difficult to degrade. 

Cellulose and hemi-cellulose, while major constituents of plants are not fermented easily by 



 9 

yeast. Cellulose consists of long chains of 1-4) linked glucose molecules. Hemi-cellulose 

consists most frequently of a chain of  1-4) linked xylose molecules with a variety of branched 

sugars, with the most common being xylose, mannose, galactose and arabinose (Gray, et al. 

2006). There are a variety of types of hemi-celluloses that vary by plant species, such as xylan, 

arabinoxylan, xyloglucan and others, which makes metabolizing them a more complex process. 

Glucose is largest component monosaccharide of lignocellulose, with xylose the second most 

abundant (Kuijper 2006). Figure 2 below shows an example of hemi-cellulose structure. 

 
Figure 2: Sample hemi-cellulose structure. Note the xylose (X) (1-4) linked backbone with 

branched xylose, arabinose (A), galactose (G) and other compounds such as ferulic acid 

(FeA) which links lignin and hemi-cellulose (Gray, et al. 2006). 

 

As lignocellulose is a complex and compact matrix of cellulose, hemi-celluloses and lignin, 

it necessitates degradation into simpler components before feeding to microbes for fermentation. 

In order to make lignocellulosic plant matter more readily fermentable by yeast and other 

microbes, there are a variety of pre-treatment methods that are important to utilize. Pre-treatment 

methods may be physical, chemical or biological, and all have varying advantages and 

disadvantages. The simplest physical methods are chipping and grinding mechanisms to reduce 

particulate sizes, increasing surface areas of biomass. Next are the most common physical-
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chemical methods involving steam explosion. Steam explosion uses high pressure and steam 

treatment followed by a rapid pressure decrease, to break down hemi-cellulose and lignin, 

allowing cellulose to be attacked by enzymes (Sun and Cheng 2002). As steam explosion results 

in the formation of compounds inhibiting enzymes and microbe growth and fermentation, 

ammonia and CO2 explosion may also be used. While these treatments are more expensive, they 

do not result in inhibitor compound formation, and CO2 is cheaper than ammonia explosion (Sun 

and Cheng 2002). 

Chemical pre-treatment techniques may use acid hydrolysis, base hydrolysis, ozone 

treatment, and hydrogen peroxide treatment. Acid treatment tends to degrade hemi-cellulose the 

most, while base treatment tends to degrade lignin to a higher degree, but both treatments may 

result in the formation of various inhibitors (Gray, et al. 2006). Ozone treatment on the other 

hand does not result in the creation of deleterious compounds while it effectively degrades 

lignin, but it is an expensive process because it requires large amounts of ozone (Sun and Cheng 

2002). A final method using hydrogen peroxide breaks down lignin and hemi-cellulose. While 

physical and chemical pre-treatment steps are important for pulling apart the complex of 

cellulose, hemi-cellulose and lignin, many pre-treatments are focused only at cellulose, as it is a 

source of glucose. As the focus is on cellulose, many of the above methods result in losses of 

fermentable sugars found in hemi-cellulose, which is a great loss of potential energy, as hemi-

cellulose can compose a significant portion of plant matter (see Figure 1). It is important to strike 

a balance between the method that best exposes cellulose to enzymatic degradation, as well as 

retaining hemi-cellulose as a significant energy source. 

 After physical and chemical processes, enzymatic action is used to break down cellulose 

and hemi-cellulose polymers into saccharides that are fermentable by microbes. There are three 
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main types of cellulases involved in converting cellulose to individual glucose units: 

endoglucanase, exoglucanase and -glucosidase. Endoglucanase attacks the interior of cellulose 

molecules to create a many smaller molecules, exoglucanase cleaves cellobiose ( 1-4) linked 

glucose disaccharide) units from the ends of cellulose, and -glucosidase breaks cellobiose into 

two glucoses (Sun and Cheng 2002; Gray, et al. 2006). The major issues with these cellulases are 

that it may be prohibitively expensive to produce large enough quantities for commercial 

production, recycling of enzymes between batches can be difficult, and enzyme activities may be 

low, in part due to inhibitors from lignin and product feedback inhibition (Sun and Cheng 2002; 

Gray, et al. 2006). These cellulases can be obtained from several bacterial and fungal sources, 

with the fungi Trichoderma reesei identified as one species which secretes high quantities of all 

three types of cellulases as well as some hemi-cellulases (Foreman, et al. 2003). 

There are a variety of reasons why large molecules such as cellulose and hemi-cellulose are 

not easily fermented by S. cerevisiae. In the case of cellulose, the metabolic equipment is simply 

not present to break cellulose into glucose monomers. Fungi such as T. reesei show promise for 

solving S. cerevisiae’s lack of cellulases, either by pre-treatment using cellulases isolated from T. 

reesei, or engineering these genes into yeast (Foreman, et al. 2003; Gray, et al. 2006). Another 

option is species such as Clostridium thermocellum that produce cellulases in addition to being 

able to ferment ethanol. Unfortunately many species, like C. thermocellum, have low ethanol 

yields and are much more fastidious to grow than yeast, e.g. 60º C with obligate anaerobic 

conditions (Rani and Seenayya 1999). 

To metabolizing hemicellulose, the larger molecules need to be broken down with hemi-

cellulases into the constitutive hexoses and pentoses, and then these simple units can enter 

metabolic pathways. There are many hexoses that yeast is naturally able to ferment, but pentoses 
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are less efficiently converted to ethanol. Having these enzymes is not enough because common 

pentoses (xylose and arabinose) do not enter glycolysis easily. While S. cerevisiae technically 

has the enzymes necessary to feed pentoses into glycolysis, endogenous enzymes do not have 

high activities and favor reactions that do not push pentoses toward glycolysis (Jeffries and Jin 

2004).  

Shown in Figure 3 below, xylose must first be converted to xylitol via xylose reductase 

(XR), and xylitol is then converted to xylulose via xylitol dehydrogenase (XDH). After XDH, 

xylulokinase (XK) converts xylulose into xylulose-5-phosphate (X5P), which is an intermediate 

of the non-oxidative pentose phosphate pathway (PPP). PPP intermediates will then be converted 

to glycolysis intermediates as either glucose-6-phosphate (G6P) or glyceraldehyde-3-phosphate 

(GA3P) (Chu and Lee 2007). The three enzymes (XR, XDH and XK) are in fact present in S. 

cerevisiae, although there are other species, such as Candida shehatae and Pichia stipitis, whose 

enzymes are more effective in pentose metabolism (Jeffries and Jin 2004). Additionally, the two 

step conversion from xylose to xylulose can be accomplished in one step through xylose 

isomerase (XI), although XI is not found in bakers yeast (Chu and Lee 2007). 
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Figure 3: The metabolic pathway for which xylose is broken down. Initial critical enzymes such 

as xylose reductase (XR), xylitol dehydrogenase (XDH), xylulokinase (XK) and xylose 

isomerase (XI) are at the top of the figure. Transketolase (TKL) and transaldolase (TAL) in the 

pentose phosphate pathway are also important to note. All enzymes are boxed whereas substrates 

are in plain text (Chu and Lee 2007). 

 

While xylose is the most significant pentose found in plant tissue, arabinose (specifically L-

arabinose) may also be present in significant amounts and must enter glycolysis in a similar 

manner to xylose. Figure 4 below shows arabinose entering the PPP at the same point that xylose 

must enter (as the X5P intermediate). Arabinose must first be converted to either xylitol or to L-

ribulose before conversion to X5P (Kuijper 2006). 
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Figure 4: The pathway showing both xylose and arabinose metabolism. The enzymes of the 

upper arabinose pathway are as follows: 5.3.1.4 is L-arabinose isomerase, 2.7.1.16 is L-

ribulokinase, and 5.1.3.4 is L-ribulose-5-phosphate 4-epimerase. The enzymes of the lower 

arabinose pathway feeding into xylitol are as follows: 1.1.1.21 is aldose/xylose reductase, 

1.1.1.12 is arabinitol 4-dehydrogenase, and 1.1.1.10 is L-xylulose reductase. Note that arabinose 

has two methods of feeding into the PPP, one of which utilizes xylose enzymes XDH and XK 

(Kuijper 2006). 
 

Although engineering of exogenous XR and XDH (from P. stipitis) or XI (from Thermus 

thermophilus or Piromyces sp. E2) into S. cerevisiae has greatly increased ethanol production 

when using xylose as a carbon source, there are other important enzymes involved in pentose 

metabolism (Chu and Lee 2007). Transaldolase (TAL in Figure 3) is central to the PPP and is a 

rate limiting enzyme in S. cerevisiae strains that are expressing P. stipitis XR and XDH 

(Walfridsson, et al. 1995). Additionally, many articles have shown that it is important to 

overexpress the native XK and other PPP enzymes such as TKL for increasing ethanol yield 

(Jeffries and Jin 2004; Chu and Lee 2007). 

When comparing initial strategies to increase pentose metabolism, the two main strategies 

are the addition of exogenous XR and XDH or the addition of XI. Both methods have shown to 
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be effective, but a comparison of the two tactics concluded that the XR-XDH combination 

produces more ethanol than XI (Chu and Lee 2007). It is also important to note that in the study 

mentioned, and many others, the endogenous XDH gene (gre3) was deleted in both strains, 

which increased ethanol and decreased xylitol formation. This is due to the fact that S. 

cerevisiae’s XDH actually favors the reverse reaction, forming xylitol instead of xylulose (Chu 

and Lee 2007). Another potential reason to choose XR and XDH over XI is that if significant 

amounts of arabinose are present, arabinose metabolism does not use XI, while it can use XDH 

(See Figure 4), and this may or may not affect arabinose integration into the PPP. Additionally, 

there are further methods for increasing the efficiency of the XR-XDH combination. One such 

mechanism has been to alter the ratios of exogenous XR and XDH expression in S. cerevisiae. It 

has been shown that greatly increasing the amount of XDH relative to XR will decrease xylitol 

formation and increase ethanol production (Walfridsson, et al. 1997). It has not been 

demonstrated whether adding all three enzymes would increase ethanol production more than the 

XR and XDH combination or XI alone. This would depend on how fast XK (the next enzyme in 

the pathway) can convert xylulose to X5P, as a bottleneck would be formed from XDH and XI 

both producing xylulose. 

One of the reasons adding XI to yeast is an attractive option is that it avoids the 

accumulation of xylitol, and more significantly it avoids a redox imbalance formed by XR and 

XDH. The reaction catalyzed by XR uses the coenzyme NADPH preferentially over NADH, and 

the reaction catalyzed by XDH can only use the coenzyme NAD
+
 (Liang, et al. 2007). This is a 

significant problem during anaerobic fermentation (which normally favors ethanol production) 

because NADPH can continually be reformed by the PPP, but NAD
+
 cannot be reformed as 

glycolysis does not result in a gain of NAD
+ 

(Chu and Lee 2007). The end result of this 
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imbalance is that XDH is inhibited, and forms more xylitol than xylulose, stopping xylose 

metabolism. Fortunately, a recent experiment has altered XR’s preference from NADPH to 

prefer NADH, which allows for the cycling of NADH and NAD
+
 between these two enzymes, 

removing the redox imbalance (Liang, et al. 2007). 

After reviewing a variety of enzymes important for pentose metabolism, as S. cerevisiae is 

currently able to effectively metabolize hexoses, there are further potentially rate limiting steps 

to be examined. Transport is not a rate limiting step with relatively slower pentose metabolizing 

strains, but as metabolic pathways are better manipulated, it becomes rate limiting. One method 

for pentoses, such as xylose, to enter yeast cells is through facilitated diffusion using hexose 

transporters (Chu and Lee 2007). The endogenous transporters found in S. cerevisiae have much 

higher affinities for glucose, but certain transporters are more effective with xylose than others: 

specifically HXT4, HXT5 and HXT7 (glucose transporters), GAL2 (galactose transporter), and 

AGT1 (sucrose-proton symporter) (Chu and Lee 2007). GAL2 is also important for arabinose 

uptake (Jeffries and Jin 2004). While these native genes may be good targets for upregulation, a 

xylose/glucose proton symporter (GXS1) and xylose/glucose facilitator (GXF1) have recently 

been identified from Candida intermedia, which have a high affinity for xylose (Leandro, et al. 

2006).  

As S. cerevisiae preferentially transports and utilizes glucose, it is essential that engineering 

of yeast strains maintain pentose uptake and activity when glucose is also present. In plant 

extracts containing cellulose and hemi-cellulose, a mixture of sugars will be obtained after pre-

treatment, which necessitates the organism used for fermentation be able to utilize all of the 

substrates available for maximum ethanol yield. It has been shown that xylose consumption and 

ethanol production increases in the presence of lower concentrations of glucose, when compared 
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to an equal amount of only xylose (van Zyl, et al. 1999). Furthermore this study showed that, 

using a raffinose-xylose combination resulted in more ethanol than the glucose-xylose 

combination. Other studies have shown that xylose and arabinose consumption are increased in 

the presence glucose, although arabinose metabolism still needs optimization to produce ethanol 

(Karhumaa, et al. 2006). Picking plant sources that yield the best substrate ratios may be 

important for optimizing industrial ethanol production. As high concentrations of glucose inhibit 

pentose uptake and metabolism, choosing the best substrates and altering important enzymes and 

transporter activities will be important in the optimization process (Karhumaa, et al. 2006).  

Many important genes have been identified for creating recombinant yeasts which can more 

effectively ferment a wider variety of substrates. In addition to substrate variety, engineering 

increased ethanol tolerance is possible, and it can a significant increasing yield, as shown by 

Alper, et al. (2006). There are still many factors that have yet to be discovered with respect to 

optimizing ethanol, and one area to begin searching is in current libraries of organisms with non-

essential genes knocked-out. Saccharomyces cerevisiae has a library of over 5000 genes, which 

is a significant undertaking to screen all these mutants for their influence on ethanol yield. 

Designing an assay to pre-screen mutants for potentially higher producing can save a great deal 

of time and effort. The Y101 knockout library was pre-screened and 44 potentially higher 

producing mutants were identified by use of the Bromothymol Blue (BTB) Assay (Robillard 

2007).  

The BTB assay uses bromothymol blue as a pH indicator because agar plates with this 

reagent change color from a dark green-blue to orange as they become acidic. Specifically, 

colonies of yeast that are more acidic will be a darker orange color, those that are less acidic will 
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be a paler yellow color. Figure 5 below shows the BTB color range in liquid at different pH 

values. 

 

pH 6 (acidic)     pH 7 (neutral)     pH 8 (basic) 

Figure 5: BTB color change as pH changes (Robillard 2007). 

Increasing acidity does not necessarily show increased ethanol, as ethanol and CO2 are the 

primary products of fermentation (C6H12O6 → 2 CH3CH2OH + 2 CO2), but some CO2 will be 

converted into carbonic acid in aqueous conditions, increasing the acidity. The addition of this 

indicator to plates will not quantitatively determine ethanol production, but it provides a 

qualitative method for screening large numbers of mutants in an easy manner. The Y101 yeast 

knockout library was chosen as an initial target to screen with the BTB assay as S. cerevisiae is a 

higher ethanol producing organism. Figure 6 below is one example of a plate of knockout 

mutants from Robillard, 2007. This assay should also be considered for use in other mutant or 

wild type libraries for species that are capable of ethanol production. 
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A)  B)  

Figure 6: A) Sample plate from Robillard, 2007 of Y101 knockout mutants in BTB assay. 

Note the large, darker orange colony on the left side of the plate. This colony was selected 

as a potentially higher producing. B) An unstreaked BTB plate for comparison. Note the 

color change to yellow or orange with increasing acidity. 

 

 

 

Materials and Methods: 

1. Saccharomyces cerevisiae growth: 

S. cerevisiae from frozen stocks were streaked with a toothpick onto YPD agar plates and 

grown for 24 hours at 30º C. All plates were stored short term in a 4º C refrigerator. Individual 

colonies were selected and used to inoculate 3 mL liquid YPD cultures for each strain to be 

tested with sugars. The ten strains selected were: Y1, Y47, Y49, Y52, Y53, Y101, Y103, Y195, 

Y197 and Y717, based on previously used strains in Robillard (2007). Table 1 shows mating 

types and genetic information for the 10 strains used. After growing overnight in 30º C shaker, a 

10
-4

 dilution of cultures were spread on BTB plates to isolate individual colonies (see Appendix 

A for BTB plate protocol). BTB plates were grown for 48 or 72 hrs depending on the strain. 

Strains Y47, Y49, Y53 and Y101 needed only 48 hours, while the rest needed 72 hours for 

colonies to grow large enough to select.  
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Strain ID Mating Type Genetic information Additional Notes 

Y1 Mat a /  
leu2-3; 112trp1-1; can1-100; ura3-1; ade2-1; 
his3-11 Common lab strain 

Y101 Mat a his3 1; leu2 0; met15 0; ura3 0 Common lab strain 

Y103 Mat a /  

his3 1/his3 1; leu2 0/leu2 0; lys2 0/LYS2; 

MET15/met15 0; ura3 0/ura3 0 Common lab strain 

Y47 Mat a /  Prototroph  

Y49 Mat a /  Prototroph  

Y52  Prototroph  

Y53  Prototroph  

Y195 Mat  ura3-52  

Y197 Mat a /  ura3-52/ura3-52  

Y717   
Commercial strain, 
ATCC# 9763 

Table 1: Mating type and genetic information for the 10 wild-type strains used.  

 

For ethanol measurement via gas chromatogram analysis, individual colonies were selected 

from BTB plates and first grown in shaking, liquid YPD overnight. The next day these cultures 

were diluted 1:10 and the OD600 was taken for each culture. All cultures were adjusted to the 

density of the culture with the lowest OD600 count (generally between 1.0 and 2.0, undiluted 

OD600). 100 L of each adjusted culture was used to inoculate 2 mL of the various sugar media 

(and YP control). The media contained 5 g/L yeast extract, 10 g/L Bactopeptone, and 20 g/L of 

one of the following sugars: glucose, sucrose, xylose, maltose, raffinose, lactose, dextran, 

fructose, galactose, mannose, pectin, amylopectin, cellulose, -cellulose and L-arabinose. Each 

of the sugars tested were of the D isomers, with the exception of L-arabinose, which is the more 

commonly found form in nature. Samples were grown for 72 hours, shaking in 15 mL conical 

tubes with sealed screw caps. Once every 24 hours, the screw caps were loosened briefly to 

allow for gas exchange, and then re-sealed to prevent vaporization of ethanol.  After 72 hours of 

shaking incubation, the conical tubes were centrifuged for 10 minutes at 2000 rpm. Some 

cultures were very thick, such as amylopectin, and required this amount of time to fully pellet. 1 

mL of each supernatant was saved in 1.5 mL eppendorf tubes or 200 L was saved in 96-well 
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plate format with foil covers. 5 L was used for gas chromatogram analysis. The remaining 

supernatants were stored in -20º C freezer.  

The 44 Y101 knockout mutants of interest identified in Robillard (2007) were grown in 100 

L of YPD + G418 (or YPD for the Y101 WT control). 2 L of each frozen stock from the 

library was used to inoculate 100 L of media and cells were grown for 48 hours at 30º C. 100 

L of 50% glycerol (as a cryo-protectant) was added to each well, and cells were frozen in -80º 

C storage. From this plate of 44 mutants and 3 wells of Y101 controls, 5 L of each well was 

used to inoculate a fresh plate of 200 L YPD and cultures were grown for 48 hours at 30º C 

with foil plate covers. Plates were centrifuged for 5 minutes at 1000 rpm. 5 L was used for gas 

chromatogram analysis and the remaining supernatant was frozen. 

 

2. Clostridium thermocellum growth: 

C. thermocellum was initially grown from frozen stocks (ATCC # 27405) in CMS media; 

see Appendix B for protocol (Rani and Seenayya 1999). As C. thermocellum is a thermophillic 

obligate anaerobe, 2 mL cultures were grown at 60º C, without shaking, in gas tight jars 

containing nitrogen gas.  Using a 2 way stop-cock, as much air as possible was vacuumed out 

and then nitrogen gas was added. This was repeated twice to remove as much oxygen as 

possible. After 5 days incubation, 5 mL cultures of CMS with various sugars were set up in 15 

mL conical tubes with screw tops. Amylopectin, pectin, cellulose, -cellulose, cellobiose (one  

1-4 linked glucose disaccharide) and glucose were tested at 4 g/L, plus CMS media without 

sugar. Using a Pasteur pipette with the cap held over most of the tube mouth, each sample was 

flushed with nitrogen gas for 30 seconds to remove as much air as possible. Screw caps were 

tightened immediately and samples were place in 60º C incubation without shaking for 7 days. 

Cultures were centrifuged for 10 minutes at 2000 rpm, and 200 L of supernatant was frozen for 
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analysis. C. thermocellum from the initial culture was streaked onto standard BTB plates, as well 

as those containing CMS, BTB and 18 g/L agar, but no growth was observed. 

 

4. Gas Chromatogram analysis: 

Samples were run on a Perkin Elmer Autosystem Gas Chromatogram, with a 0.53 mm 

capillary column. Running temperatures were as follows: oven: 100º C; detector: 200º C; 

injector: 250º C. Flow rate was 1.5 mL/min, with an automatic stop time of 2 minutes. Percent 

ethanol values were calculated with a standard curve generated from running standards of 0.25%, 

0.5%, 1% and 2% ethanol. For each different type of media, a new standard curve was generated. 

All samples (including standards) were pre-diluted 1:50 in diH20. See Appendix C for complete 

GC protocol and a sample standard curve. 

 

 

Results: 

1. Darker colonies generally correlate with higher ethanol production. 

The ten wild-type strains were pre-grown on BTB plates and the results of two plates are 

shown below. Strains Y49, 47, Y52 and Y717 are shown in Figure 7. These were among the 

higher ethanol producing strains and the colonies are generally darker, an orange-red color. 
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A)  B)  

Figure 7: A) Y49 (left) and Y47 (right) on a BTB plate. B) Y52 (left) and Y717 (right) on a 

BTB plate. These strains were among the highest ethanol producers and are a very red-

orange color. 

 

2. Highest ethanol yields resulted from hexose sugars in strains Y101, Y49, Y717, Y53, 

Y52 and Y47.  

 

Figures 8, 9 and 10 show the results for ethanol produced from the first three batches of 

sugars tested across 10 WT strains. As ethanol percents are generated with standard curves 

which do not intersect the y-axis at exactly the origin, some very low ethanol values show 

negative values. The amount of ethanol produced is negligible in these cases.  It is quite clear 

that simple hexoses and disaccharide-hexoses such as glucose, sucrose, maltose, galactose, 

mannose and fructose are carbon sources that result in high ethanol production. Additionally, 

many WT strains show different profiles of what sugars they are capable of fermenting. 

Generally, strains Y101, Y49, Y717, Y53, Y52 and Y47 consistently produced more ethanol 

with a variety of energy sources, although other strains occasionally resulted in high yields. 

Figure 8 and 9 demonstrate that the same strains, even in different batches have consistent 

ethanol yields, with a variety of substrates. 
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Figure 8: First batch of sugars tested on S. cerevisiae. 
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Figure 9: Second batch of sugars tested on S. cerevisiae. 
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A third batch of sugars is shown in Figure 10. This figure is a retest of sugars due to 

anomalous results where a variety of generally unfermentable sugars showed high levels of 

ethanol (see Appendix E). The wild-type strains tested would not be expected to produce ethanol 

off of those carbon sources, so the experiment was repeated. The retest produced more expected 

results with only glucose and maltose producing high ethanol. Note that in Figures 8 and 10, 

strains Y49 and Y717 were able to ferment maltose, while strains Y1 and Y101 were unable to 

ferment maltose in both batches. 
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Figure 10: Retested third batch of sugars on S. cerevisiae, due to results from the third 

batch (Appendix E). 

 

3. Clostridium thermocellum needs further optimization to increase growth. 

C. thermocellum had quite low ethanol yields (less than 0.3%) which is presumably due to 

an environment not fully anaerobic. The results in Figure 11 show that C. thermocellum can 

effectively grow on a wide range on substrates that were unfermentable for S. cerevisiae, but that 
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ethanol yields and growth rates are much lower. Interestingly, Pectin produced less ethanol than 

the media control with no carbon source. This may have been due to the limits of the linear range 

of the ethanol standard curve, or detection limits for the gas chromatogram. There was visible 

growth (culture turbidity) after 3-5 days in the gas tight jar culture, where it was possible to 

remove air and flush with nitrogen multiple times. After 7 days of growth in 15 mL conical tubes 

to measure ethanol content, growth was barely observable. For ethanol measurement, cultures 

could not be grown without caps in the gas tight jar due to high levels of ethanol vaporization at 

60º C. C. thermocellum did not grow on either the standard BTB plates (Appendix A), or those 

containing CMS media and BTB. These plates dried out rapidly in 60º C. 
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Figure 11: Sugars tested on Clostridium thermocellum. 
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4. Seven potentially higher producing knockout mutants identified via BTB assay. 

The 44 knockout mutants identified from the BTB assay were each tested twice and the 

mean ethanol produced for each mutant is shown in Appendix F. Of the 44 mutants that showed 

darker colonies in the BTB assay, 31 showed an average higher ethanol production than wild 

type, while 13 produced less ethanol than wild type Y101. This is 70% accuracy to predict higher 

producing strains. Seven of the 44 strains were particularly noteworthy and were retested in 15 

mL conical tubes; the results are in Figure 12 below. All of these produced more ethanol than 

wild type in this test, with the YIL049W knockout producing more than double the ethanol of 

wild type, and the YIL098C knockout producing nearly double. 
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Figure 12: Y101 knockout mutants identified from Appendix F as the highest producing 

knockouts. All 7 retested mutants produced more ethanol than WT, with knockouts of YIL098C 

and YIL049W the two highest producing. 
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Discussion: 

A wide variety of sugars (15 in total) were chosen to test across ten wild-type strains to 

develop a profile for the best ethanol producing strains (Figures 8-10) . As a beginning step in 

the process of optimizing ethanol production, choosing a strain that has a higher initial ethanol 

output and tolerance is important. While general labs strains have been engineered to become 

significantly more ethanol tolerant (Alper, et al. 2006), it will be beneficial to choose a target for 

engineering that already has higher ethanol tolerance and the ability to ferment a wider variety of 

substrates. The most robust starting organism will help in maximizing product when feeding an 

organism a complex mix of plant tissues that will certainly contain many different sugars.  

Unfortunately, none of the strains tested were able to ferment the sugars present in large 

quantities in cellulose and hemi-cellulose; the non human food portion of plants. This is not 

surprising, and it indicates what metabolic machinery needs to be improved upon or added in 

these strains to increase ethanol production. For example, Y717 and Y52 are both higher ethanol 

producing strains that effectively metabolize glucose, sucrose, maltose, mannose, galactose and 

fructose, but important carbon sources like xylose and cellulose are unfermentable by these 

strains. Fitting the strain to the substrate is certainly important, as some strains may produce 

large amounts of ethanol with one carbon source, but very little with another. Y101 and Y1 are 

two such examples as they produces high ethanol with several substrates, but close to zero 

ethanol when fed maltose. Maltose did result in relatively high ethanol production for some 

strains, such as Y717, Y52, Y47 and Y49 (See Figure 8). Y101 and Y1’s lack of ability to 

ferment maltose may be due to the fact that they are domesticated, haploid lab strains, which 

may have reduced some of their functionality. Y717 on the other hand is a commercial strain 

obtained from the ATCC, and diploid as well, which generally makes a strain more robust. Y47, 
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Y49, Y52 and Y53 are all prototrophs (see Table 1) so they will grow quickly without requiring 

amino acid supplementation.  

While only an initial step in screening strains for their substrate fermenting versatility and 

ethanol yield, it provides an important starting point. Screens such as the one done here will help 

in a two-fold manner: by eliminating the weakest strains from the focus of research, and by 

identifying areas where potentially useful strains need improvement. The most important areas 

for improvement are for yeasts to be able to ferment cellulose and hemi-cellulose, so feed-stocks 

will need pre-treatment to break cellulose and hemi-cellulose into monomers, and pentose 

metabolizing enzymes will need to be added to S. cerevisiae. In addition to these two aspects, 

discovering genes that may be detrimental to ethanol production is another step in the 

optimization process.   

Although the BTB assay does not predict every instance of high ethanol producing strains, 

it has been demonstrated that 70% of the predicted higher producing strains actually produced 

more ethanol. Therefore this assay may be a useful tool to screen a variety of strains. As the 

color change in BTB plates shows increasing acidity, it is useful as a qualitative, but not 

quantitative, measurement of increased metabolism. This increased acidity is correlated with 

increased ethanol production as carbonic acid is formed as a byproduct of fermentation. 

Appendix D provides descriptions of the 44 Y101 knockout mutations tested, the results 

displayed in Appendix F.  

The strains of particular interest in Figure 12 have knockouts in a variety of genes with 

some that appear to be generally unrelated to ethanol production, and some that will clearly 

influence cell metabolism. YMR312W is a subunit of the Elongator complex involved in 

transcription with RNA polymerase II holoenzyme, and its deletion results in altered mRNA 
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expression for a wide variety of genes. This deletion mutant will therefore have an assortment of 

altered cellular pathways and it is unknown how this may affect metabolism. YLL041C is the 

iron-sulfur protein subunit of succinate dehydrogenase. This is interesting, because as an enzyme 

involved in the TCA cycle, the aerobic respiration pathway, increased ethanol may result from 

TCA cycle being shut down and glycolytic fermentation as the only energy source. Glycolysis 

produces ethanol and acetate as its final products, so a non-functional TCA cycle may be 

somewhat beneficial for ethanol production. YIL098C was of particular interest because it 

resulted in over 1% ethanol, while wild type produced less than 0.6% ethanol. YIL098C is a 

mitochondrial matrix protein involved in assembly of ATP synthase and knockout mutants have 

decreased glycogen accumulation. This provides further evidence that proteins involved in 

aerobic respiration (in the mitochondria) may be detrimental to increased ethanol formation, as 

pyruvate is not turned into ethanol in aerobic respiration. If the YIL098C knockout mutant 

cannot accumulating glycogen, perhaps it is producing more ethanol as a source of stored energy. 

YIL049W was the highest producing of the re-tested knockout mutants in Figure 12, producing 

more than double the ethanol as compared with wild type. It is particularly interesting as it is a 

protein of unknown function, although it is utilized in filamentous growth. Further 

characterization of the YIL049W protein may be important, as the knockout showed promising 

ethanol yields. YIL017C is part of degradation of fructose-1,6-bisphosphatase, and it is a 

negative regulator of gluconeogenesis. Fructose-1,6-bisphosphatase acts in gluconeogenesis, 

performing the opposite function of phosphofructokinase in glycolysis. YOR253W is a subunit 

of N-terminal acetyltransferase, which is involved in several cellular functions such as cell cycle, 

heat-shock resistance, mating, and others. YCL008C is part of the ESCRT-I complex which is 

involved in protein sorting into the endosome. It is unclear how these last three proteins may 
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impact ethanol production as their effects are wide-reaching. The genes identified in this report 

have a variety of functions and influence many aspects other than ethanol formation. As the BTB 

assay is a qualitative means for predicting ethanol yield, there are likely many more genes that 

are important to up or downregulate for maximizing ethanol.  

As C. thermocellum has the ability to metabolize cellulosic sources of carbon to form 

ethanol, it is important to learn more about this organism. Using this microbe to ferment 

cellulosic carbon sources may not be the most efficient process, but it is a potential candidate to 

use for obtaining enzymes that can be inserted into more efficient fermenting microbes. The 

greatest difficulties encountered with this organism are its fastidious growth requirements as an 

obligate, thermophilic anaerobe. While growing cultures at 60º C it is not prohibitively difficult, 

it does raise difficulties for retaining ethanol, which has a boiling point of 78.4º C. Maintaining 

cultures which evaporate rapidly may skew results to show low ethanol levels. If this organism 

was to be the subject of further experiments, two-way stoppers for individual test tubes would be 

necessary to ensure a more anaerobic environment. Additionally, a smaller head-space (5 mL of 

culture was grown in 15 mL tubes) would likely help, allowing less room for ethanol 

evaporation. In addition to complications with growth in liquid cultures, the high growing 

temperature makes the use of agar plates even more difficult. C. thermocellum colonies may 

have grown on the various BTB plates tested if allowed to grow for longer, but this was not 

possible as the plates dried out in approximately 1 week, and no growth was observed in this 

time.  
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Future Experiments: 

 

Further characterization of YIL049W and YIL098C: 

As YIL049W and YIL098C were identified as high producing knockout mutants, it may 

help to gain further information on these proteins, especially in the case of YIL049W. While it is 

known that YIL098C is a mitochondrial protein, little is known about YIL049W. It would also 

be beneficial to learn more about YIL049W for the sake of science, as it has not been studied 

significantly. If either of these proteins inhibit ethanol production, it could be a simple way of 

boosting ethanol yield by knocking it out in other strains.  

 

Screen all mitochondrial proteins: 

As both YIL098C and YLL041C were higher producing knockout strains and both are 

involved in aerobic metabolism, a closer examination of all nuclear encoded mitochondrial 

proteins may be beneficial. As ethanol is not produced during the aerobic TCA cycle, the 

deletion of certain of these proteins may in fact increase ethanol yield, by stopping the cycle. 

Shunting pyruvate toward ethanol production instead of the TCA cycle may be possible by 

deletion of certain genes. Of course deletion of key enzymes involved in metabolism may stunt 

growth greatly, resulting in lower ethanol yields, but a closer look is certainly warranted. 

 

Screen Y101 library mutants with sugars other than glucose:  

The easily fermentable sugars such as glucose and some other hexoses (Figures 8 and 9) are 

most abundant in human food crops, so the fermentation of generally unfermentable sugars is 

desired. Certain genes may inhibit fermentation of some sugars over others. This would involve 

creating more BTB plates with a carbon source other than glucose to perform the initial BTB 

assay.  
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Screen E. coli libraries with BTB assay: 

S. cerevisiae is a useful model organism with a library of mutants, but there are other 

organisms with this tool as well. E. coli is another organism that can produce ethanol, and 

screening E. coli mutant libraries with the BTB assay followed by quantitative methods may 

identify further genes of importance in ethanol production. 

 

Add pentose fermenting genes to S. cerevisiae and conduct further co-substrate 

experiments: 

Small amount of glucose and raffinose have been shown to increase xylose metabolism and 

ethanol yield (van Zyl, et al. 1999). Perhaps other sugars may be beneficial to test as co-

substrates with xylose. In order to perform co-substrate experiments, the addition of a variety of 

genes that would enable S. cerevisiae to ferment xylose will be necessary as the wild-type strains 

are not effective in utilizing xylose. The genes of interest for addition and upregulation are 

discussed above in the introduction. 
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Appendix A: Bromothymol Blue (BTB) agar plate protocol for S. cerevisiae 

 

SC drop out media: 

1. 6.7 g/L Yeast nitrogen base without amino acids 

2. 1.4 g/L Yeast synthetic drop out supplement 

3. 18 g/L Bactoagar 

Autoclave 20 minutes 

 

4. 40 mL of 50% Glucose solution (w/V) per Liter of SC media 

Autoclave Glucose solution for 20 minutes (separate container from 3 components 

above). 

 

5. Add autoclaved amino acid supplements to SC media in the following amounts: 

10 mL/ L Leucine 

9 mL/ L Uracil 

6 mL/ L Tryptophan 

3 mL/ L Histidine 

 

pH adjustment: 

6. After autoclaving SC media, adjust pH of entire bottle while keeping on hot plate 

so media does not solidify. 

7. Add 1.5 mL/ L of 5 N NaOH 

8. Mix media and test pH with pH strip 

9. Media should be ~ pH 7, if not adjust until it is at 7 

 

Bromothymol Blue addition: 

10. Add 0.13 g/ L of BTB 

Media will turn to a dark blue-green. 

11. Mix thoroughly and pour plates (~25 mL per plate or until plates are half full) 
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Appendix B: CMS media protocol for C. thermocellum growth 

 

Add the following CMS media components: 

1.5 g/L KH2PO4  

2.0 g/L K2HPO4 

2.0 g/L Urea 

0.8 g/L MgSO4 

0.15 g/L CaCl2 

3.5 g/L Sodium Citrate 

0.5 g/L Yeast Extract 

0.15 g/L Cysteine HCl 

0.002 g/L Resazurin 

4.0 g/L Cellobiose (or glucose, cellulose, etc.) 

 

pH adjustment: 

pH will be ~7.5. Test pH with strip and adjust to 6.7-7.0 with HCl 

Autoclave 20 minutes 

 

For CMS BTB plates: 

CMS media was made as described above with the absence of Resazurin which is 

another indicator. 

18g/L agar was added 

 

0.13 g/L BTB was added after autoclaving 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

Appendix C: Gas Chromatogram Protocol 

 

Turning on the GC and running samples: 

1. Turn on GC power switch 

2. Turn N2, H2 and Air tanks on 

3. Turn on Integrator 

4. Hit ‘Status Escape’ and wait until display reads ‘Ready’. Display will flash if not ready 

5. Press ‘Auto Zero’ key when GC is ready. 

6. Turn hydrogen knob (on top of GC) all the way on. Wait approximately 1 minute. 

7. Open right panel and place igniter firmly on detector. Wait until you can see a slight 

orange glow on the detector. 

8. Turn air knob (on top of GC) all the way on. Listen for double pop noise. If unsure 

whether gas is lit, retry, waiting for a few minutes between ignition attempts. 

9. Dilute all samples and Standards (0.25%, 0.5%, 1% and 2% [can include 4% as well] 

ethanol) 1:50 in reagent grade water. 

10. Rinse syringe thoroughly with rdH20 before using. 

11. Pull up 1 L of sample and then 1 L of air into syringe. Make sure no air bubbles are 
present in the sample. 

12. Insert syringe into the detector and push plunger down in one smooth motion, while 

hitting the ‘Start’ key on the Integrator at the same time. While insert syringe support the 

needle so as not to bend it. 

13. Rinse syringe 3-4 times in rdH20 and prepare next sample. The next sample can be 

injected as soon as the green ready light on the integrator is on. 

 

Turning off the GC: 

1. Wait at least 10 minutes after last sample was run before turning off 

2. Turn carrier gas (N2) off. Wait till pressure drops to zero. 

3. Turn Air and H2 gas off. 

Note: H2 gas will take a few days to drop as it has a closed seal with the GC. 

4. Turn off flow valves for Air and H2 on top of the GC. The voltage on the display should 

drop. 

5. Turn off GC power 

6. Turn off Integrator power 

 

Data Analysis: 

1. Make a standard curve with ethanol standards for each different type of media. Plot 

percent ethanol vs. ethanol peak area. Run a linear regression line to the data plot. See 

sample standard curve below: 
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Note: Ethanol peak areas should have a retention time between 0.34-0.38, but this will vary 

depending on who injects the samples. The retention times are printed to the right of peaks 

and below the graph, next to the corresponding peak area. 

2. Use standard curve to calculate ethanol percents based on peak areas for each sample. 
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Appendix D: BTB Assay dark colonies from Y101 library screen  

The 44 genes below were identified from Robillard, 2007. Gene ID’s and Open Reading 

Frame (ORF) names are provided 

 
ORF Name: YNL148C 

Gene ID: ALF1 

Info: Microtubules are conserved cytoskeletal elements that form by the polymerization of alpha- and beta-tubulin 

heterodimers. The formation of polymerization-competent tubulin heterodimers requires that alpha-tubulin and beta-

tubulin be properly folded. Specific cofactors are required for the folding of alpha- and beta-tubulin in vitro and 

homologs of these cofactors have been found in many organisms, including S. cerevisiae. In S. cerevisiae, ALF1 is a 

non-essential gene that is homologous to mammalian cofactor B 3, 1. In vitro, cofactor B acts in the post-chaperonin 

folding of alpha-tubulin 3. Consistent with in vitro studies, Alf1p genetically acts upstream of Pac2p/cofactor E 3, 1. 

ALF1 genetically interacts with the other tubulin cofactors (CIN1/cofactor D, RBL2/cofactor A), and is essential in 

combination with specific alpha-tubulin mutants 3, 1. alf1 null mutants are super-sensitive to benomyl, a 

microtubule depolymerizing drug 1. Alf1p interacts with alpha-tubulin in the yeast two-hybrid and 

immunoprecipitation assays 1. Alf1p and cofactor B both contain a single CLIP-170 domain, which is found in 

several microtubule-associated proteins and is required for the Alf1p-alpha-tubulin interaction 1. Alf1p binds to a 

face of alpha-tubulin distinct of that of beta-tubulin binding 1. Alf1p-GFP localizes to cytoplasmic microtubules, 

suggesting that Alf1p may play an additional role in microtubule maintenance 1. 

 

ORF Name: YML086C 

Gene ID: ALO1 

Info: D-Arabinono-1,4-lactone oxidase, catalyzes the final step in biosynthesis of D-erythroascorbic acid, which is 

protective against oxidative stress. ALO1 encodes D-arabinono-1,4-lactone oxidase (called ALO in other 

organisms), a mitochondrial protein that converts D-arabinono-1,4-lactone to D-erythro-ascorbate (EASC), the 

enantiomer of vitamin C. Saccharomyces cerevisiae does not normally synthesize vitamin C (ASC), but Alo1p is 

sufficiently promiscuous that it can convert a number of related substrates to either EASC or ASC, depending on the 

chirality of the substrate. Like vitamin C, EASC is an antioxidant. Deletion of ALO1 results in increased sensitivity 

to oxidative stress and an increased rate of gross chromosomal rearrangements, implying that Alo1p suppresses 

oxidative damage of DNA. Transcription of ALO1 is not regulated in response to oxidative stress. Alo1p exists as a 

monomer embedded in the mitochondrial membrane and binds FAD. 

 

ORF Name: YDR275W 

Gene ID: BSC2 

Info: Protein of unknown function, ORF exhibits genomic organization compatible with a translational read 

through-dependent mode of expression. 

 

ORF Name: YIL049W 

Gene ID: DFG10 

Info: Protein of unknown function, involved in filamentous growth. 

 

ORF Name: YDR069C 

Gene ID: DOA4 

Info: Ubiquitin hydrolase, required for recycling ubiquitin from proteasome-bound ubiquitinated intermediates, acts 

at the late endosome/prevacuolar compartment to recover ubiquitin from ubiquitinated membrane proteins en route 

to the vacuole.  

 

ORF Name: YPR023C 

Gene ID: EAF3 

Info: Esa1p-associated factor, nonessential component of the NuA4 acetyltransferase complex, homologous to 

Drosophila dosage compensation protein MSL3. 

 

ORF Name: YMR312W 

Gene ID: ELP6 

http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058174
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=7024
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=7024
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058174
http://db.yeastgenome.org/cgi-bin/locus.pl?dbid=S0000809
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058174
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?dbid=S0005876
http://db.yeastgenome.org/cgi-bin/locus.pl?dbid=S0005791
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058174
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YNL148C#S000058454
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=3885
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=19853
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=16209
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=6979
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=6979
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=6979
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=6355
http://db.yeastgenome.org/cgi-bin/GO/go.pl?goid=5740
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Info: Subunit of Elongator complex, which is required for modification of wobble nucleosides in tRNA; required for 

Elongator structural integrity. Elp6p is part of the six-subunit Elongator complex, which is a major histone 

acetyltransferase component of the RNA polymerase II holoenzyme responsible for transcriptional elongation. 

Elongator contains two discrete subcomplexes, one consisting of Iki3p/Elp1p, Elp2p, and Elp3p, and the other 

consisting of Elp4p, Iki1p/Elp5p, and Elp6p. Elongator binds to both naked and nucleosomal DNA, can acetylate 

both core histones and nucleosomal substrates, and plays a role in chromatin remodeling. Its activity is directed 

specifically toward the amino-terminal tails of histone H3 and H4, with the predominant acetylation sites being 

lysine-14 of histone H3 and lysine-8 of histone H4.  Of the six Elongator subunits, only Iki1p/Elp5p is essential for 

growth, and deletion of the other individual subunits causes significantly altered mRNA expression levels for many 

genes. Disruption of the Elongator complex confers resistance to the Kluyveromyces lactis zymotoxin, and a 

reduced sensitivity to the Pichia inositovora toxin. 

 

ORF Name: YHR123W 

Gene ID: EPT1 

Info: sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability. Gene products 

are diacylglycerol cholinephosphotransferase, diacylglycerol ethanolaminephosphotransferase. 

 

ORF Name: YIL098C 

Gene ID: FMC1 

Info: Mitochondrial matrix protein, required for assembly or stability at high temperature of the F1 sector of 

mitochondrial F1F0 ATP synthase; null mutant temperature sensitive growth on glycerol is suppressed by multicopy 

expression of Odc1p. Deletion results in decreased metabolite accumulation (glycogen). 

 

ORF Name: YOR375C 

Gene ID: GDH1 

Info: NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate; 

rate of alpha-ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources, 

Exhibits sensitivity at 15 generations when grown in medium of pH 8. Topoisomerases are highly conserved; yeast 

Top1p shares 57% identity with human Top1. The Top1 protein, like other type IB topoisomerases, relaxes 

supercoiled DNA by forming a DNA-enzyme complex and transiently cleaving one strand via a nucleophilic attack 

that results in a covalent linkage with the 3' end of the cleaved strand. The 5' end can then rotate freely. Top1p is the 

target of the antitumor drug camptothecin. Camptothecin increases the half-life of the enzyme-DNA complex, which 

results in double-stranded DNA breaks during DNA replication. Specific amino acid substitutions in Top1p have the 

same effect as the drug. Suppressors of these mutations were identified that reduced the enzyme's affinity for DNA. 

 

ORF Name: YGL121C 

Gene ID: GPG1 

Info: Proposed gamma subunit of the heterotrimeric G protein that interacts with the receptor Grp1p; involved in 

regulation of pseudohyphal growth; requires Gpb1p or Gpb2p to interact with Gpa2p. 

 

ORF Name: YLR384C 

Gene ID: IKI3 

Info: Subunit of Elongator complex, which is required for modification of wobble nucleosides in tRNA; maintains 

structural integrity of Elongator; homolog of human IKAP, mutations that cause familial dysautonomia. Iki3p/Elp1p 

is part of the six-subunit Elongator complex, which is a major histone acetyltransferase component of the RNA 

polymerase II holoenzyme responsible for transcriptional elongation. Elongator contains two discrete subcomplexes, 

one consisting of Iki3p/Elp1p, Elp2p, and Elp3p, and the other consisting of Elp4p, Iki1p/Elp5p, and Elp6p. 

Elongator binds to both naked and nucleosomal DNA, can acetylate both core histones and nucleosomal substrates, 

and plays a role in chromatin remodeling. Its activity is directed specifically toward the amino-terminal tails of 

histone H3 and H4, with the predominant acetylation sites being lysine-14 of histone H3 and lysine-8 of histone H4. 

Within Elongator, Iki3p/Elp3p interacts specifically with Elp2p. Of the six Elongator subunits, only Iki1p/Elp5p is 

essential for growth, and deletion of the other individual subunits causes significantly altered mRNA expression 

levels for many genes. Disruption of the Elongator complex confers resistance to the Kluyveromyces lactis 

zymotoxin, and a reduced sensitivity to the Pichia inositovora toxin. Mutations in the human Iki3p homolog IKAP 

are associated with the disease Familial Dysautonomia. 
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ORF Name: YIL007C 

Gene ID: NAS2 

Info: Protein with similarity to the p27 subunit of mammalian proteasome modulator; not essential; interacts with 

Rpn4p. 

 

ORF Name: YOR253W 

Gene ID: NAT5 

Info: Subunit of the N-terminal acetyltransferase NatA (Nat1p, Ard1p, Nat5p); N-terminally acetylates many 

proteins, which influences multiple processes such as the cell cycle, heat-shock resistance, mating, sporulation, and 

telomeric silencing. 

 

ORF Name: YLR335W 

Gene ID: NUP2 

Info: Protein involved in nucleocytoplasmic transport, binds to either the nucleoplasmic or cytoplasmic faces of the 

nuclear pore complex depending on Ran-GTP levels; also has a role in chromatin organization. NUP2 encodes a 

non-essential nuclear pore protein that has a central domain similar to those of Nsp1p and Nup1p. Transport of 

macromolecules between the nucleus and the cytoplasm of eukaryotic cells occurs through the nuclear pore complex 

(NPC), a large macromolecular complex that spans the nuclear envelope. The structure of the vertebrate NPC has 

been studied extensively; The yeast NPC shares several features with the vertebrate NPC, despite being smaller and 

less elaborate. Many yeast nuclear pore proteins, or nucleoporins, have been identified by a variety of genetic 

approaches. Nup2 mutants show genetic interactions with nsp1 and nup1 conditional alleles. Nup1p interacts with 

the nuclear import factor Srp1p and with the small GTPase Ran. 

 

ORF Name: YLR338W 

Gene ID: OPI9 

Info: Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative 

sequence data; partially overlaps the verified ORF VRP1/YLR337C. 

 

ORF Name: YIL050W 

Gene ID: PCL7 

Info: Pho85p cyclin of the Pho80p subfamily, forms a functional kinase complex with Pho85p which 

phosphorylates Mmr1p and is regulated by Pho81p; involved in glycogen metabolism, expression is cell-cycle 

regulated. Involved in regulation of glycogen biosynthetic process, regulation of glycogen catabolic process. 

 

ORF Name: YNL264C 

Gene ID: PDR17 

Info: Phosphatidylinositol transfer protein (PITP), downregulates Plb1p-mediated turnover of phosphatidylcholine, 

found in the cytosol and microsomes, homologous to Pdr16p, deletion affects phospholipid composition. 

 

ORF Name: YIL053W 

Gene ID: RHR2 

Info: Constitutively expressed isoform of DL-glycerol-3-phosphatase; involved in glycerol biosynthesis, induced in 

response to both anaerobic and, along with the Hor2p/Gpp2p isoform, osmotic stress. 

 

ORF Name: YFL033C 

Gene ID: RIM15 

Info: Glucose-repressible protein kinase involved in signal transduction during cell proliferation in response to 

nutrients, specifically the establishment of stationary phase; identified as a regulator of IME2; substrate of Pho80p-

Pho85p kinase. 

 

ORF Name: YDR388W 

Gene ID: RVS167 

Info: Actin-associated protein, subunit of a complex (Rvs161p-Rvs167p) involved in regulation of actin 

cytoskeleton, endocytosis, and viability following starvation or osmotic stress; homolog of mammalian 

amphiphysin.  
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ORF Name: YLL041C 

Gene ID: SDH2 

Info: Iron-sulfur protein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the 

oxidation of succinate to the transfer of electrons to ubiquinone. Involved in TCA cycle, aerobic respiration 

pathways. 

 

ORF Name: YGR229C 

Gene ID: SMI1 

Info: Protein involved in the regulation of cell wall synthesis; proposed to be involved in coordinating cell cycle 

progression with cell wall integrity. Involved with 1,3-beta-glucan biosynthetic process, cell wall organization and 

biogenesis. 

 

ORF Name: YJL192C 

Gene ID: SOP4 

Info: ER-membrane protein; suppressor of pma1-7, deletion of SOP4 slows down the export of wild-type Pma1p 

and Pma1-7 from the ER. 

 

ORF Name: YIL073C 

Gene ID: SPO22 

Info: Meiosis-specific protein essential for chromosome synapsis, similar to phospholipase A2, involved in 

completion of nuclear divisions during meiosis; induced early in meiosis. 

 

ORF Name: YNL224C 

Gene ID: SQS1 

Info: Protein of unknown function; overexpression antagonizes the suppression of splicing defects by spp382 

mutants; green fluorescent protein (GFP)-fusion protein localizes to both the cytoplasm and the nucleus. 

 

ORF Name: YCR081W 

Gene ID: SRB8 

Info: Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the 

RNA polymerase II holoenzyme; essential for transcriptional regulation; involved in glucose repression. 

 

ORF Name: YCL008C 

Gene ID: STP22 

Info: Component of the ESCRT-I complex, which is involved in ubiquitin-dependent sorting of proteins into the 

endosome; homologous to the mouse and human Tsg101 tumor susceptibility gene; mutants exhibit a Class E Vps 

phenotype. 

 

ORF Name: YOL006C 

Gene ID: TOP1 

Info: Topoisomerase I, nuclear enzyme that relieves torsional strain in DNA by cleaving and re-sealing the 

phosphodiester backbone; relaxes both positively and negatively supercoiled DNA; functions in replication, 

transcription, and recombination. Topoisomerases catalyze the interconversion between topological states of DNA 

by breaking and rejoining DNA strands. These changes in DNA topology are required during several cellular 

processes such as replication, transcription, recombination, and chromosome condensation. There are three classes 

of topoisomerases that are distinguished by substrate (IA, IB, II). Type I topoisomerases cleave one DNA strand, 

while Type II enzymes cleave a pair of complementary DNA strands. The type IB topoisomerases relax both 

positively and negatively supercoiled DNA; TOP1 encodes the type IB enzyme in yeast. Type IA topoisomerase, 

encoded by TOP3 in yeast, relaxes only negatively supercoiled DNA, and yeast topoisomerase II is encoded by the 

TOP2 gene. 

 

ORF Name: YDR074W 

Gene ID: TPS2 

Info: Phosphatase subunit of the trehalose-6-phosphate synthase/phosphatase complex, which synthesizes the 

storage carbohydrate trehalose; expression is induced by stress conditions and repressed by the Ras-cAMP pathway. 

In Saccharomyces cerevisiae, trehalose is a major reserve carbohydrate involved in reponses to thermal, osmotic, 
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oxidative, and ethanol stresses, as well as the suppression of denatured protein aggregation. Trehalose biosynthesis 

is a two-step process in which glucose 6-phosphate and UDP-glucose are converted by trehalose-6-phosphate 

synthase (TPS), encoded by TPS1, into alpha,alpha-trehalose 6-phosphate, which is then converted with water into 

trehalose and phosphate by trehalose-6-phosphate phosphatase (TPP), encoded by TPS2. The trehalose biosynthetic 

pathway can affect glycolysis in that one of its intermediates, trehalose-6-phosphate, inhibits hexokinase activity, 

which restricts the influx of sugars to glycolysis during the switch to fermentative metabolism. Tps1p and Tps2p are 

part of the alpha,alpha-trehalose-phosphate synthase complex with Tps3p and Tsl1p, regulatory proteins with 

partially overlapping functions, though some Tps1p appears to be present in the cell as a monomer. TPS1, TPS2, 

TPS3 and TSL1 are coinduced under stress conditions, and corepressed by the Ras-cAMP pathway. Deletion of 

TPS1 results in loss of both TPS activity and trehalose biosynthesis, whereas deletion of TPS2 results in temperature 

sensitivity and loss of TPP activity.  

 

ORF Name: YOL093W 

Gene ID: TRM10 

Info: tRNA methyltransferase, methylates the N-1 position of guanosine in tRNAs. 

 

ORF Name: YPR066W 

Gene ID: UBA3 

Info: Protein that acts together with Ula1p to activate Rub1p before its conjugation to proteins (neddylation), which 

may play a role in protein degradation; GFP-fusion protein localizes to the cytoplasm in a punctate pattern. 

 

ORF Name: YLL039C 

Gene ID: UBI4 

Info: Ubiquitin, becomes conjugated to proteins, marking them for selective degradation via the ubiquitin-26S 

proteasome system; essential for the cellular stress response. 

 

ORF Name: YGR072W 

Gene ID: UPF3 

Info: Component of the nonsense-mediated mRNA decay (NMD) pathway, along with Nam7p and Nmd2p; 

involved in decay of mRNA containing nonsense codons; involved in telomere maintenance. 

 

ORF Name: YIL017C 

Gene ID: VID28 

Info: Protein involved in proteasome-dependent catabolite degradation of fructose-1,6-bisphosphatase (FBPase); 

localized to the nucleus and the cytoplasm. 

 

ORF Name: YOL105C 

Gene ID: WSC3 

Info: Partially redundant sensor-transducer of the stress-activated PKC1-MPK1 signaling pathway involved in 

maintenance of cell wall integrity; involved in the response to heat shock and other stressors; regulates 1,3-beta-

glucan synthesis. 

 

Gene ID: YJL163C 

Info: Putative protein of unknown function. 

 

 

Gene ID: YIL028W 

Info: Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative 

sequence data. 

 

Gene ID: YIL029C 

Info: Putative protein of unknown function; deletion confers sensitivity to 4-(N-(S-glutathionylacetyl)amino) 

phenylarsenoxide.  

 

Gene ID: YIL092W 
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Info: Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the 

cytoplasm and to the nucleus. 

 

Gene ID: YNL305C 

Info: Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the vacuole; 

YNL305C is not an essential gene. 

 

Gene ID: YOL114C 

Info: Putative protein of unknown function with similarity to human ICT1 and prokaryotic factors that may function 

in translation termination; YOL114C is not an essential gene. 

 

Gene ID: YPL066W 

Info: Hypothetical protein. 

 

Gene ID: YPL102C 

Info: Dubious open reading frame, not conserved in closely related Saccharomyces species; deletion mutation 

enhances replication of Brome mosaic virus in S. cerevisiae, but this is likely due to effects on the overlapping gene 

ELP4. 
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Appendix E: Third batch of sugars tested. Retested results shown in Figure 10 
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Appendix F: 44 Y101 knockout mutants of interest from BTB assay 
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average of two separate trials while the Y101 WT is an average of 6 points (Y101 WT was run in 

triplicate for both mutant trials). Selected knockout mutants of interest shown in Figure 10. 
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