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Abstract

Continued fractions are of current interest in mathematics [8]. In a recent publication [7], Jack E. Graver

describes a method for computing terms in the Calkin-Wilf sequence, a list of the positive rationals introduced

by Neil Calkin and Herbert S. Wilf in 2000 [3]. This paper explores an original method which uses continued

fractions to evaluate and locate terms in the Calkin-Wilf sequence, as well as its natural extension to include

all of the rational numbers. A generalization of the Calkin-Wilf tree leads to a characterization of rational

numbers by continued fractions with integer coefficients. Finally, the meaning of infinite continued fractions

and irrational numbers is studied using the structure of the Calkin-Wilf tree. We characterize the irrational

numbers which have periodic continued fractions by developing a matrix representation of the setup, and we

explain why irrational square root numbers have periodic continued fractions with palindromic coefficients.
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Executive Summary

The Calkin-Wilf tree first appeared in a publication by Neil Calkin and Herbert S. Wilf in 2000 [3]. It is

a binary tree with nodes labelled by rational numbers. The left child of p/q is p/(p+ q), and the right child is

(p + q)/q. The Calkin-Wilf tree has two intriguing and useful properties: first, every fraction in the tree is

reduced. In addition, every possible reduced fraction appears exactly once in the tree. By reading off the

elements one level at a time, we produce the Calkin-Wilf sequence ℓ(n), a list which includes each rational

number exactly once. We would like to directly evaluate and locate terms in this sequence. Continuing the

work from a recent publication by Jack E. Graver [7], we derive a method which directly computes ℓ(n) for a

natural number n using continued fractions. The method reveals that a path in the tree from 0/1 to p/q

corresponds with a continued fraction for p/q where the coefficients are the numbers of consecutive left and

right movements along the path. Moreover, the method is reversible; we can find n such that ℓ(n) = p/q for a

rational number p/q. A strong connection is identified between the tree and the Euclidean algorithm.

We make the first extension to the Calkin-Wilf tree by considering how to reverse the generating rules.

These reverse rules are used to construct more of the tree above the root. The result is a copy of the

Calkin-Wilf tree, upside-down, and all negative! This double tree includes all rational numbers—positive,

negative, and zero. With sensible indexing, the double tree produces an extended Calkin-Wilf sequence, and

our method for evaluating and locating positive terms is naturally fitted to work for negative terms.

Next, we allow all forward and reverse movements from any node in the tree. This generates a four-way

tree which includes the double tree and much more. Remarkably, any path in this tree from 0/1 to p/q still

corresponds with a continued fraction for p/q, however, the coefficients are allowed to take integer values.

Positive coefficients represent forward movement, and negative coefficients represent reverse movement. This

is a complete characterization of the rational numbers by continued fractions with integer coefficients.

Every natural-numbered level of the Calkin-Wilf tree contains rational numbers and is reached by paths of

finite length. It follows that rational numbers have finite continued fractions, and therefore, infinite continued

fractions cannot be rational. Some infinite continued fractions have a repeating sequence of coefficients and

are called periodic. We use the rules of the Calkin-Wilf tree to study the irrational numbers with periodic

continued fractions. The analysis leads to a delightfully simple explanation of why square root numbers have

periodic continued fractions with palindromic coefficients. In addition, we are surprised that periodic paths

in the four-way tree represent complex numbers! Examples are given for the third and fourth roots of unity.

We conclude with a matrix representation of the Calkin-Wilf tree which proves that an irrational number

x has a periodic continued fraction exactly when x = (ax + b)/(cx + d), where ( a b
c d ) is nontrivial in SL2(Z).
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1 Introduction

Can you make a list of the rationals containing each number exactly once? If you made such a list, you

would want to know how to answer questions such as, “What is the 200th number in the list?” or, “Where

does 22/7 appear?” At first it is not obvious how to perform these tasks, or if they are possible at all.

The rationals are countable, which means we could construct a list that includes every rational number at

least once. The usual approach is to create a table where the entry in row i and column j is j/i. We may

rotate this table forty-five degrees and read the entries left to right, one level at a time, to obtain the desired

list.

1 2 3 4 5 ⋯

1 1
1

2
1

3
1

4
1

5
1
⋯

2 1
2

2
2

3
2

4
2

5
2
⋯

3 1
3

2
3

3
3

4
3

5
3
⋯

4 1
4

2
4

3
4

4
4

5
4
⋯

5 1
5

2
5

3
5

4
5

5
5
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

1
1

1
2

2
1

1
3

2
2

3
1

1
4

2
3

3
2

4
1

1
5

2
4

3
3

4
2

5
1

⋰ ⋰ ⋮ ⋱ ⋱

Figure 1: Arrangements of the rational numbers

Notice that each rational number appears infinitely often in the form of different fractions. If we want

to list each rational exactly once, we may choose to include only the fractions which are reduced. But it

becomes difficult to identify terms in this new list due to the complexity of factoring large numbers. So to

answer our questions, we will consider a different approach to the listing.

2 The Calkin-Wilf Tree

Begin with a fraction p/q where p and q are positive integers. There are two simple operations we can

perform on this fraction to produce new fractions; we could add the numerator to the denominator, or add

the denominator to the numerator. These operations are called the left rule and the right rule, respectively,

as seen in Figure 2.

What happens when we perform these rules on the fraction 1/1? The left rule gives 1/(1+1) which is 1/2,

and the right rule gives 2/1. We can perform the rules again on these fractions, and so on. The structure

that results from repeating this process is called the Calkin-Wilf tree [3]. The first four levels of the tree are

shown in Figure 2.
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1
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1

Figure 2: The Calkin-Wilf tree

The Calkin-Wilf tree has two important features. First, every fraction in the tree is reduced. In addition,

every possible reduced fraction will appear exactly once in the tree. From these properties, it follows that by

reading off the elements of the tree, one level at a time, we obtain a list which includes each rational number

exactly once. This list is called the Calkin-Wilf sequence, denoted ℓ(n), and it begins 1/1, 1/2, 2/1, 1/3,

3/2, 2/3, 3/1, 1/4, . . . How can we answer questions like, “What is the 200th number in the list?” From the

construction, it is clear that the location of a number in the list depends on its location in the tree.

Consider a new tree where the nodes are labeled in the order of the sequence, left to right and one level

at a time. This tree in Figure 3 represents the term number n of the corresponding fraction ℓ(n) in the

Calkin-Wilf sequence. What are the generating rules for this tree? Looking at the first few levels, it becomes

clear that the left and right children of n are 2n and 2n + 1, respectively. These are meaningful operations in

binary, so for clarity, we will rewrite the nodes of the tree in base 2. Now we can interpret the generating

rules as appending a ‘0’ to go left, and a ‘1’ to go right.

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Figure 3: The n trees

To make this most natural, we should carefully consider where the appending process begins. Since 1/1

is the term n = 1, it should be reached by appending a ‘1’. So it is sensible to extend the tree by one step

backward right for no n. This new node has value 0/1, since the right rule from 0/1 gives 1/1. Later we will

justify this extension more thoroughly.

Now we can use n to locate ℓ(n) in the Calkin-Wilf tree; writing n in binary, the digits in order describe

a sequence of left and right rules which, when applied to 0/1, evaluate to ℓ(n). For example, to find the 14th

fraction in the sequence, write 14 in binary: 1110. From 0/1, perform the right rule three times, followed by

one left rule. This is the path 0/1→ 1/1→ 2/1→ 3/1→ 3/4. Then ℓ(14) = 3/4.
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3 Continued Fractions

Until now, we have followed closely to the method developed by Graver in [7]. From here on, we will

continue with an original approach. It works well to use n in binary to compute ℓ(n), but it is inefficient to

perform one rule at a time. Instead, let’s consider what consecutive movements look like algebraically.

We make m right movements from p/q by adding the denominator to the numerator m times. This

gives the fraction (p +mq)/q, which simplifies to m + p/q. Likewise, we make m left movements from p/q

by adding the numerator to the denominator m times, which gives p/(mp + q). To simplify, we invert the

reciprocal of this fraction, giving 1/((mp+ q)/p). This is 1/(m+ q/p), which, after one more double-inversion,

is 1/(m + 1/(p/q)).

p

q

m rightÐÐÐÐ→ m + p

q

p

q

m leftÐÐÐ→ 1

m + 1
p
q

What happens when we combine these two types of movements? We may consider a generic path through

the Calkin-Wilf tree to p/q and use the rules for consecutive movements to write this fraction in terms of its

ancestors.

0
1

⋱
p(k)

q(k)

⋰

⋮

⋱
p′′

q′′

⋰
p′

q′

⋱
p
q

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

m(k) levels

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m′′ levels

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m′ levels

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m levels

Figure 4: The path to p/q

At the bottom of Figure 4, we see that p/q is m right movements from its ancestor p′/q′. So we can write

p

q
=m + p′

q′
(1)
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Similarly, we see that p′/q′ is m′ left movements from its ancestor p′′/q′′. So we can write

p′

q′
= 1

m′ + 1
p′′

q′′

(2)

Combining (1) and (2) gives

p

q
=m + 1

m′ + 1
p′′

q′′

(3)

Then p′′/q′′ can be written in terms of its ancestor, and so on. We continue to make these substitutions until

reaching an ancestor of the form m(k)/1 which is m(k) right movements from 0/1. So the final expression for

p/q is

p

q
=m + 1

m′ + 1
m′′+ 1

⋱ +
1

m(k)+ 0
1

(4)

And 0/1 is zero, so this simplifies to

p

q
=m + 1

m′ + 1
m′′+ 1

⋱ +
1

m(k)

(5)

The result is surprisingly simple: we can write p/q as a continued fraction whose coefficients are the numbers

of consecutive left and right movements in the tree.

To demonstrate the elegance of this method, let’s compute ℓ(49). Write 49 in binary: 110001. Splitting

this number into consecutive ‘1’s and ‘0’s makes groups of sizes 2, 3, and 1. Then ℓ(49) is equal to the

continued fraction with coefficients 1, 3, and 2:

ℓ(49) = 1 + 1

3 + 1
2

= 9

7

So the 49th number in the Calkin-Wilf sequence is 9/7. In general, we can use this method to answer questions

such as,“What is the 200th number in the list?”

A keen and useful observation about this method is that it is reversible; we can write a reduced fraction

p/q as a continued fraction, then use the coefficients to form groups of consecutive ‘1’s and ‘0’s, and then

read the groups as one binary number, and convert back to decimal to obtain the n for which ℓ(n) = p/q.

This process is illustrated in Figure 5. Now we can answer questions such as, “Where does 22/7 appear in

the list?”
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n = 49 → 110001 → 11

2̄

000
°
3

1
®
1

→ 1 + 1

3 + 1
2

→ ℓ(n) = 9

7

ℓ(n) = 9

7
→ 1 + 1

3 + 1
2

→ 11

2̄

000
°
3

1
®
1

→ 110001 → n = 49

Figure 5: Reversing the method

The subtlety in the reversed process is to decide how to write p/q as a continued fraction. This can be

done in many ways, so it is important that we specify which ones correspond with the path to p/q in the tree.

From the construction of the continued fraction by consecutive left and right rules, we know that the leading

coefficient represents right movements. And since the path begins with right movement from 0/1, the final

coefficient also represents right movements. In between, the coefficients alternate representing left and right

movements. So we conclude that a continued fraction describes a path in the tree when it has an odd number

of coefficients.

It is always possible to write a given continued fraction with an odd number of coefficients by modifying

the final coefficient; if m(k) > 1, we write this coefficient as (m(k) − 1) + 1/1, producing a new final coefficient.

And if m(k) = 1, we write the previous coefficient as (m(k−1) + 1) and remove m(k). In either case, we change

the parity of the number of coefficients.

4 Euclidean Algorithm

The Calkin-Wilf tree is closely related to the Euclidean algorithm. Recall that this algorithm finds the

greatest common divisor of two numbers a and b by writing a = q ⋅ b + r for positive integers q and r < b. The

process is repeated with the two numbers b and r until r = 0. Once this happens, the value of b is the greatest

common divisor of the original two numbers.

Consider the right half of the Calkin-Wilf tree in Figure 6. The fraction 9/7 appears in the lowest level.

We perform the Euclidean algorithm on 9 and 7, which takes three iterations before r = 0. Notice that the

values of q, 1, 3, and 2, are the numbers of left and right movements along the path in the tree, and the

values of b and r are the numerators and denominators of the fractions at the turning points. Also, we see at

the end of the algorithm that the greatest common divisor of 9 and 7 is 1, and we should expect that since

every fraction in the tree is reduced.

The Euclidean algorithm is deterministic, which reminds us that in the Calkin-Wilf tree, there is a unique

sequence of left and right movements to a particular reduced rational p/q. Now we have an algorithm which,

given a reduced rational p/q, can recover the sequence of left and right movements from 0/1 to p/q in the tree.
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a = q ⋅ b + r

9 = 1 ⋅ 7 + 2

7 = 3 ⋅ 2 + 1

2 = 2 ⋅ 1 + 0

Figure 6: The Euclidean algorithm

5 The Double Tree

We know how to navigate down the Calkin-Wilf tree using left and right rules. Reasonably, we may wonder

how to travel back up the tree, undoing the left and right rules. This is simple; to undo a left movement,

subtract the numerator from the denominator, and to undo a right movement, subtract the denominator

from the numerator.

We can use these backward movements to discover more of the tree above 0/1. A backward right

movement from 0/1 gives −1/1, and from there, more backward movements reveal a copy of the Calkin-Wilf

tree, upside-down, and all negative!

−41 −34 −53 −25 −52 −35 −43 −14
−31 −23 −32 −13

−21 −12
−11

0
1

1
1

1
2

2
1

1
3

3
2

2
3

3
1

1
4

4
3

3
5

5
2

2
5

5
3

3
4

4
1

Figure 7: The double tree
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Now we have a complete answer to the question, “Can you make a list of the rationals containing each

number exactly once?” because this double tree includes all of the rationals—positive, negative, and zero.

Reading the levels of this tree produces a doubly infinite sequence which answers the question.

n = . . . −5 −4 −3 −2 −1 0 1 2 3 4 5 . . .

ℓ(n) = . . . − 3
2
− 1
3
− 2
1
− 1
2
− 1
1

0
1

1
1

1
2

2
1

1
3

3
2

. . .

Figure 8: The extended Calkin-Wilf sequence

By indexing the sequence as in Figure 8, the positive fractions maintain their term numbers from the

Calkin-Wilf sequence. The fraction 0/1 has term number 0, representing zero movements, which justifies its

role as the starting place for paths in the tree. The negative fractions have negative term numbers and are

reached only by backward movements. Is there a natural way to extend the continued fraction method to

represent backward paths?

Since ℓ(−n) = −ℓ(n), we should expect that the continued fraction for ℓ(−n) is the negative of the

continued fraction for ℓ(n). But multiplying a continued fraction by negative one is equivalent to making all

of the coefficients negative. This gives us a way to interpret the path to a negative rational in the tree, where

backward left and right movements are represented by negative coefficients in the continued fraction. For the

reversed method, we use the negative coefficients to write groupings of ‘1’s and ‘0’s representing backward

movements. As a binary number, this is the value of n for the negative term ℓ(−n). Now we can perform the

original and reverse methods for terms in the extended sequence.

ℓ(−49) = −ℓ(49) = −9
7
= −(1 + 1

3 + 1
2

) = −1 + 1

−3 + 1
−2

ℓ(−49) = −1 + 1

−3 + 1
−2
↔ −1 ∣ − 1
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

−2

∣ −0 ∣ − 0 ∣ − 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−3

∣ −1
−̄1

↔ −110001 ↔ n = −49

Figure 9: The methods for negative terms

6 The Four-way Tree

Investigating backward movements leads us to wonder what would happen if we allowed these types of

movements from anywhere in the tree. That is, from every fraction p/q, we produce four other fractions by

adding or subtracting the numerator from the denominator, and vice versa. Beginning with 0/1, the result of

repeating this process is shown in Figure 10.

This structure contains the double tree and much more. Since every rational number appears in the

double tree, it is clear that the four-way tree necessarily has duplicates. Along the antidiagonal, we see that
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Figure 10: The four-way tree

every element is 0/1, since the left and backward left rules add and subtract zero from the denominator. Each

occurrence of 0/1 produces an identical copy of the tree, so it is clear that each rational number appears

infinitely often.

What is the significance of a path in this tree? We would like to relate any path from 0/1 to p/q with a

continued fraction for p/q. To do this, we should follow the procedure from the original method. Just as

we identified algebraic rules for making m consecutive left and right movements, we can determine rules for

making m consecutive backward movements. As expected, these rules have the same structure as the rules

for forward movements, and instances of m are replaced with −m.
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Given a path from 0/1 to p/q in the four-way tree, we can write p/q in terms of its ancestors using the four

rules in Figure 11. After making the substitutions, the result is a continued fraction with integer coefficients.

Positive coefficients represent forward movements, and negative coefficients represent backward movements.

p
q

p+q
q

p
p+q

p−q
q

p
q−p p

q

m left←ÐÐÐ 1

−m + 1
p
q

p

q

m right←ÐÐÐÐ −m + p

q

p

q

m leftÐÐÐ→ 1

m + 1
p
q

p

q

m rightÐÐÐÐ→ m + p

q

Figure 11: Rules for consecutive movements

So the paths in this tree represent all ways to write rational numbers as continued fractions with integer

coefficients. And every such continued fraction with rational value p/q and an odd number of coefficients

determines a path in the tree from 0/1 to p/q.

The only caveat to evaluating continued fractions with integer coefficients is that it is possible to arrive

at division by zero. An example is given in Figure 12. For these continued fractions to be meaningful

representations of rationals in the tree, we must specify a convention for addition and division with 1/0.

Naturally, we define m + 1/0 to be 1/0 for any integer m, and the inverse 1/(1/0) to be 0/1, which is zero.

Following these conventions, we can evaluate any continued fraction with integer coefficients, and its value

will match the rational number at the end of the corresponding path in the four-way tree. For example, the

continued fraction in Figure 12 represents the path which makes 1 right, 2 backward left, 1 right, 3 left, and

2 backward right movements, which is a path from 0/1 to −2/1 in the four-way tree.

−2 + 1

3 + 1
1+ 1
−2+ 1

1

= −2 + 1

3 + 1
1+ 1
−1

= −2 + 1

3 + 1
0

= −2 + 1
1
0

= −2 + 0 = −2

Figure 12: Arithmetic with 1/0

7 Infinite Paths

Having characterized the relationship between finite continued fractions and rational numbers, it is natural

to wonder whether infinite continued fractions also have an interpretation in these trees. Since continued

fractions for rational numbers are finite, it follows that infinite continued fractions cannot be rational. And

worse, infinite continued fractions cannot be evaluated in the traditional sense. We must decide how to assign

meaningful values to these continued fractions other than by direct computation. A reasonable approach is to

consider the sequence of convergents. This sequence is obtained by truncating the continued fraction after the
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first n coefficients. This is a sequence of finite continued fractions whose values are directly computable. For

example, consider the infinite continued fraction in Figure 13. The first five convergents are shown with their

rational values. This sequence converges to the golden ratio φ, which is the irrational number (1 +
√
5)/2.

1 1 + 1
1

1 + 1
1+ 1

1
1 + 1

1+ 1
1+ 1

1

1 + 1
1+ 1

1+ 1
1+ 1

1

⋯ 1 + 1
1+ 1

1+ 1
1+⋱

1 2 3/2 5/3 8/5 ⋯ φ

Figure 13: Convergents of an infinite continued fraction

If we decide that infinite continued fractions are meaningful, then we can locate their values in the

Calkin-Wilf tree. The coefficients determine a path which leads beyond all of the natural numbered levels of

the tree, to where the elements are irrational. This part of the tree does not behave like the rational section

above it. For instance, it is not true that each irrational number appears exactly once. In fact, each irrational

number appears infinitely often!

We can use paths in the tree to determine the structure of these infinite continued fractions. Some paths

may appear random, such as that for the circle constant π, whose continued fraction coefficients begin 3,

7, 15, 1, 292, . . . . Other continued fractions may have a sequence of coefficients which repeats indefinitely.

These are called periodic continued fractions. The continued fraction for the golden ratio is periodic with a

repeating sequence of ‘1’s. Naturally, periodic coefficients create periodic paths which we can study in the

infinite extension of Calkin-Wilf tree.

Begin with a finite sequence of left and right movements. Label the start of the path x/1, and then use

the left and right rules to evaluate the other elements. Finally, set the end of the path equal to x. This forces

x to have a periodic path, and we can solve for x. An example is given in Figure 14. See that x satisfies

x2 − x − 1 = 0, and from the quadratic formula we find that x is the golden ratio.

x
1

x
x+1

2x+1
x+1 = x

x2 − x − 1 = 0

x = φ

Figure 14: Creating a periodic path

We can use this path to write x in terms of its ancestors, the second of which is x again. This gives a

recursive definition of x which can be fed into itself to produce a periodic continued fraction for x. Again, we

find that the continued fraction for the golden ratio is periodic of all ‘1’s.
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x

⋅

x

x = 1 + 1

1 + 1
x

x = 1 + 1

1 + 1
1+ 1

1+⋱

Figure 15: Producing a periodic continued fraction

From a periodic path, we can determine an irrational number, its minimal polynomial, and its continued

fraction. In another example, we discover x =
√
2 with a period of ‘2’s.

x
1

x+1
1

x+1
x+2

x+1
2x+3

3x+4
2x+3

x2 − 2 = 0

x =
√
2

x = 1+ 1

2 + 1
1+x

x = 1+ 1

2 + 1
2+ 1

2+⋱

Figure 16: Periodic path for
√
2

What about periodic paths in the four-way tree? Consider the example in Figure 17 with forward and

backward movements.

x
1

x+1
1

−x+1
x

− 1
x
= x

x2 + 1 = 0

x = i
x = 1 + 1

−1 + 1
1+x

x = 1 + 1

−1 + 1
2+ 1
−1+⋱

Figure 17: Periodic path for i

To our surprise, this is a periodic continued fraction which represents a complex number! We must decide

if this is meaningful. As before, we will study the convergents of this continued fraction. The first six are

shown in Figure 18.

1 1 + 1
−1 1 + 1

−1+ 1
2

1 + 1
−1+ 1

2+ 1
−1

1 + 1
−1+ 1

2+ 1
−1+ 1

2

1 + 1
−1+ 1

2+ 1
−1+ 1

2+ 1
−1

⋯

1 0 −1 1
0

1 0 ⋯

Figure 18: Convergents of the continued fraction for i

The sequence of convergents oscillates between four values. This reflects that i is the fourth root of unity.
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Since the convergents do not converge, our rationale supports that this continued fraction should not have a

real number value. Instead, we have shown that it satisfies x2 + 1 = 0 and thus represents a complex number.

Consider another example in Figure 19. We find that x satisfies x2+x+1 = 0, which is the third cyclotomic

polynomial, so x is the third root of unity. The sequence of convergents for the continued fraction oscillates

between three values: 0, −1, and 1/0.

x
1

x+1
1

−x+1
x
= x x2 + x + 1 = 0

x = ω3

x = 0 + 1

−1 + 1
1+x

x = 0 + 1

−1 + 1
1+ 1
−1+⋱

Figure 19: Periodic path for ω3

There are periodic paths which do not produce results like we have seen so far. A path of m left movements

produces the equation mx2 = 0, so x = 0/1, which is rational. A path of m right movements produces the

equation x +m = x, which appears to have no solution when m is nonzero. However, from our definition of

arithmetic with 1/0 in the previous section, we see that x = 1/0 is a solution. After these two results, we

might think that a path is useful as a period if it is a combination of left and right movements, but that

is not always true. It is possible to construct a path which, after labelling one end x and performing the

sequence of movements, results the other end labelled x as well. Setting this equal to x does not produce a

quadratic equation; rather, it is an identity which holds for any value of x. We call such a path an identity

path. Two examples are given in Figure 20. The trivial identity path is made by no movements at all. It is

easy to construct an identity path using the four-way tree; simply find two nodes with the same label, and

choose the unique path between them. It may be that all identity paths are generated by a certain collection

of sequences or patterns of movements.

x
1

x+1
1

−x+1
x

− 1
x

− 1
x+1

x
x+1

x
1

x
1

x+1
1

−x+1
x

− 1
x

x−1
x

x−1
1

x
1

Figure 20: Identity paths
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8 Square Roots and Palindromes

We have seen that certain periodic paths from x to x produce a quadratic equation. But recall that

quadratic equations have two solutions. How is the second solution represented by the path? When we follow

the path from one end to the other, we may choose at which end to start. Both directions produce the same

quadratic equation, and each direction converges to one of the two solutions.

For example, the periodic path for φ is a left movement followed by a right movement. The reverse of this

path is a backward right movement followed by a backward left movement. This second periodic path is in

the upper half of the double tree, so we expect convergence to a negative number, which is (1 −
√
5)/2, the

second solution to x2 − x − 1 = 0.

The consequences are more exciting for square root numbers. These numbers are the solutions to quadratic

equations of the form ax2 + c = 0. Notably, the two solutions are negatives of each other. For example, the

solutions to x2 − 2 = 0 are
√
2 and −

√
2. We have seen the periodic path for

√
2 in Figure 16, and we found a

continued fraction for
√
2 by writing the lower node x in terms of its ancestors above. If instead we write the

upper x in terms of its ancestors, we will write a continued fraction for −
√
2. But recall that the coefficients

of the continued fraction for −x are the negatives of the coefficients for x. This is profound—following the

path forward and backward produces the same numbers of movements. Thus, the sequence of coefficients is a

palindrome! We conclude this result for all solutions to ax2 + c = 0 which are irrational.

9 Matrix Representation

Periodic paths are surprising and intriguing. It is natural to wonder which irrational numbers can be

found in this way. To answer the question, observe that after performing a sequence of movements from x/1,

the result is of the form (ax + b)/(cx + d), where a, b, c, and d are integers. We establish a periodic path by

setting this equal to x. Solving for x produces a quadratic equation. Therefore, if x has a periodic continued

fraction, then x must be a quadratic irrational number.

Is the converse true? We would like to know which quadratic integers have periodic continued fractions.

There is an elegant answer when we represent the Calkin-Wilf process with matrices. Identify the fraction

(ax+ b)/(cx+d) with the matrix ( a b
c d ). Then x = (1x+ 0)/(0x+ 1) ≡ ( 1 0

0 1 ) is the identity matrix. To perform

the left rule, we multiply on the left by L = ( 1 0
1 1 ), and to perform the right rule, we multiply on the left by

R = ( 1 1
0 1 ). Multiple movements are made using powers of these matrices:

Lm = ( 1 0
1 1 )

m = ( 1 0
m 1 ) Rm = ( 1 1

0 1 )
m = ( 1 m

0 1 )
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For example, we make 2 right, 3 left, and 1 right movements from x by the following matrix multiplication:

R1L3R2x = ( 1 1
0 1 )( 1 0

3 1 )( 1 2
0 1 )( 1 0

0 1 ) = ( 4 9
3 7 ) ≡

4x + 9
3x + 7

Setting x = 0/1, this matrix computes a term of the Calkin-Wilf sequence in the second column; we are

familiar with this path from 0/1 to 9/7. But the matrix ( 4 9
3 7 ) can produce the result of following this path

from any x, rational or irrational.

The trees can be made relative to x with fractions or their matrix representations as shown in Figure 21.

x
1

x+1
1

x+1
x+2

x+1
2x+3

x+1
3x+4

3x+4
2x+3

2x+3
x+2

2x+3
3x+5

3x+5
x+2

x+2
1

x+2
x+3

x+2
2x+5

2x+5
x+3

x+3
1

x+3
x+4

x+4
1

( 1 0
0 1 )

( 1 1
0 1 )

( 1 1
1 2 )

( 1 1
2 3 )

( 1 1
3 4 ) ( 3 4

2 3 )

( 2 3
1 2 )

( 2 3
3 5 ) ( 3 5

1 2 )

( 1 2
0 1 )

( 1 2
1 3 )

( 1 2
2 5 ) ( 2 5

1 3 )

( 1 3
0 1 )

( 1 3
1 4 ) ( 1 4

0 1 )

Figure 21: The relative Calkin-Wilf tree

The second column of each matrix holds the numerator and denominator of a fraction in the Calkin-Wilf

tree. However, these matrices are not unique by their second column; there will be many different matrices

with the same second column. Thus, the relative four-way tree has more information than the one in Figure

10 which is lost when considering only the second column of each matrix.

Previously, we used the Euclidean algorithm to reconstruct the sequence of left and right movements

along the path from 0/1 to p/q in the Calkin-Wilf tree. How can we do the same for matrices in the relative

tree? Since the second column ( bd ) of each matrix ( a b
c d ) represents the fraction b/d in the Calkin-Wilf tree,

we simply perform the Euclidean algorithm on b and d. The result is a sequence of left and right movements

from 0/1 to b/d. In the matrix representation, we write ( a b
c d ) as a sequence of multiplications by L and R to

a matrix of the form ( x 0
y 1 ). If we impose the restriction that this matrix has determinant 1, which will be

justified below, we have that x = 1 and y is free. Then this matrix is ( 1 0
y 1 ) for some positive integer y. This

is Ly, so we finish the deconstruction with y left movements from ( 1 0
0 1 ). An example is shown in Figure 22.

These matrices in the relative tree are related to the extended Euclidean algorithm and Bézout’s identity,

which states that there exists an integer combination of two integers which is equal to their greatest common

divisor. As the entries b and d of these matrices represent numerator-denominator pairs of Calkin-Wilf

tree elements, we know that gcd(b, d) = 1. But since these matrices have determinant 1, we also know that
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ad − bc = 1. So each matrix represents one such integer combination of b and d satisfying Bézout’s identity.

1

2
= 0 + 1

1 + 1
1

( 3 1
5 2 ) = R0L1R1( 1 0

2 1 )

= L1R1L2

Figure 22: The Euclidean algorithm for matrices

How do we represent backward movements? Naturally, the inverses of these matrices are L−1 = ( 1 0−1 1 )

and R−1 = ( 1 −10 1 ) such that the above powers of L and R hold for all integers m. This allows us to construct

a matrix representation of the four-way tree which we can use to compute a rational number at the end of a

path in the original four-way tree.

Which matrices appear in this relative four-way tree? They are of the form ( a b
c d ) and are a product of

L = ( 1 0
1 1 ) and R = ( 1 1

0 1 ) and their inverses. It is well known that these two matrices generate the special

linear group SL2(Z), the set of all matrices ( a b
c d ) with integer entries satisfying ad− bc = 1. We may quotient

this space by ±( 1 0
0 1 ) since multiplying each term of the fraction (ax + b)/(cx + d) by negative one does not

change its value. The result of this quotient is the projective special linear group PSL2(Z).

What does the matrix representation reveal about periodic paths? Starting from x and fixing a sequence

of movements as the period, we find that the elements along the path are of the form (ax + b)/(cx + d). We

identify such an element with the matrix ( a b
c d ). Then to ask which fractions (ax + b)/(cx + d) are reachable

by left and right movements is to ask which matrices ( a b
c d ) are generated by L and R. We know that these

are the matrices in SL2(Z).

Just as the double tree includes each rational number exactly once, there is a relative tree which contains

each matrix in PSL2(Z) exactly once. Beginning with the anti-diagonal of matrices generated by Lm for

integer m, we create the double tree structure from each of these matrices. Then every matrix in PSL2(Z)

appears exactly once by the result of the Euclidean algorithm for matrices in relative trees.

We have seen how to produce an irrational number with a periodic continued fraction by setting the

element at the end of a periodic path equal to x. That is, we solve (ax+ b)/(cx+ d) = x. So we conclude that

x has a periodic continued fraction exactly when x = (ax + b)/(cx + d), where ( a b
c d ) is nontrivial in SL2(Z).

That is, ( a b
c d ) cannot be ±( 1 0

0 1 ), since this matrix is produced by an identity path. From a number x which

is written in this form, we obtain the value of x using the quadratic formula.
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10 Further Studies

The Calkin-Wilf tree is of current interest. Neil Calkin and Herbert S. Wilf’s expository paper [3] has

collected nearly 70 citations since its publication in 2000, including many in recent years. Below are brief

descriptions of three areas of further study.

The Stern-Brocot Tree

Related to the Calkin-Wilf tree is the Stern-Brocot tree, another arrangement of the rational numbers [6].

Both trees are shown in Figure 23. In each tree, the root 1/1 is the left child of 0/1 and the right child of 0/1.

A child in the Stern-Brocot tree is obtained by taking the mediant of its most recent left and right ancestors.

That is, if these two ancestors are a/b and c/d, then the child is (a + b)/(c + d). A depth-first search of the

tree produces a list of rationals ordered by magnitude.

1
1

1
2

1
3

1
4

4
3

3
2

3
5

5
2

2
1

2
3

2
5

5
3

3
1

3
4

4
1

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Figure 23: The Calkin-Wilf and Stern-Brocot Trees

We see that the same rational numbers appear in each level of both trees. The levels are linked [2] by

a permutation which is constructed as follows: for level n of one tree, label the entries 0 to (n − 1) with n

digit binary numbers. Then perform the bit reversal on these numbers. This establishes a permutation on

the entries which transforms one tree into the other. Note that bit reversal is an order 2 action, so each

permutation consists only of 2-cycles. Thus, the same permutation is applied to a level of either tree to

produce the other. An example of the permutation for the third levels is shown in Figure 24.

1
4

4
3

3
5

5
2

2
5

5
3

3
4

4
1

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

000 100 010 110 001 101 011 111

0 4 2 6 1 5 3 7

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Figure 24: Permuting the third levels
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By appending a ‘1’ to the front of each binary labelling, we obtain the term number n of each fraction in

the Calkin-Wilf or Stern-Brocot sequence. From this relationship between the two trees, we can apply to the

Stern-Brocot sequence what we know about evaluating and locating terms in the Calkin-Wilf sequence using

continued fractions. The Stern-Brocot tree may reveal other insightful properties of the rational numbers and

continued fractions by its alternative structure.

The Hyperbinary Sequence

In their original paper, Calkin and Wilf presented their sequence of rational numbers as the product of a

related sequence. In particular, the numerators and denominators of rationals in the Calkin-Wilf sequence

{1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1, 1/4, . . . } appear to be identical with a shift. The integer sequence of

numerators is {1, 1, 2, 1, 3, 2, 3, 1, 4, . . . } and is called the hyperbinary sequence, denoted b(n) for n ≥ 0.

Each term n counts the number of ways to write n in binary where each place value is used at most twice.

For example, b(4) counts the hyperbinary representations of four: 12, 20, and 100, which are (2 + 1 + 1),

(2+ 2), and (4), respectively. The Calkin-Wilf sequence is produced by forming ratios of consecutive terms in

this sequence. That is, ℓ(n) = b(n − 1)/b(n) for n ≥ 1.

The properties of the Calkin-Wilf sequence reveal some structure of the hyperbinary sequence. Since each

rational in ℓ(n) is reduced, we have that consecutive terms in b(n) are coprime. And since every possible

reduced rational appears exactly once in ℓ(n), we have that every possible ordered pair of integers appears

exactly once as a pair of consecutive terms in b(n). For example, there is exactly one location in b(n) where

a 9 is followed by a 7.

In addition, we learn about the hyperbinary sequence from the left and right rules. If a term in the

Calkin-Wilf tree has numerator b(n), then its left and right children have numerators b(2n+ 1) and b(2n+ 2).

But the left and right children of b(n)/b(n+ 1) have numerators b(n) and (b(n) + b(n+ 1)) using the left and

right rules. Comparing expressions, we obtain the following recursive rules:

b(2n + 1) = b(n)

b(2n + 2) = b(n) + b(n + 1)

Figure 25: Recursive rules for b(n)

Together with the initial condition b(0) = 1, these rules generate the entire sequence b(n).

We would like to learn more about the hyperbinary sequence using the Calkin-Wilf tree, and vice versa.

Perhaps there is a relationship between b(n) and continued fractions, or b(n) and the Stern-Brocot tree,

which can be examined using the properties that have been discussed in this report.
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The Action of SL2(Z) on the Upper-Half Plane

The special linear group SL2(Z), also called the modular group, is foundational to the study of modular

forms. The upper-half plane, denoted H, is the set of complex numbers with positive imaginary component.

We find that the matrices in SL2(Z) act transitively on H via

( a b
c d ) ⋅ z =

az + b
cz + d

for complex numbers z in H. We have already seen that ±( 1 0
0 1 ) are identity actions, so we may instead

consider the quotient group SL2(Z)/ ± ( 1 0
0 1 ), which is the projective special linear group PSL2(Z).

The irrational numbers with periodic continued fractions are the solutions to x = (ax + b)/(cx + d) where

( a b
c d ) is nontrivial in SL2(Z). If x is in H, then we may think of solutions to this equation as the fixed points

of ( a b
c d ) acting on H.

Notice that different matrices in SL2(Z) may represent have the same fixed points. For example, some

of the matrices which fix
√
2 are ( 3 4

2 3 ), ( 17 24
12 17 ), and ( 99 140

70 99 ). These are produced by the convergents of

the continued fraction for
√
2. These convergents are also found by tiling copies of the periodic path for

√
2 end-to-end, then writing a continued fraction using for x from its ancestry. The first column of each

matrix represents the value of that convergent. The second columns also converge to
√
2. It would be

convenient to find some mapping from SL2(Z) to itself which collapses the matrices fixing the same x onto one

representative. This would partition the group into equivalence classes representing the quadratic irrationals

with periodic continued fractions. Alternatively, there may be an action for which these matrices lie on

the same orbit. Such a mapping or action may have other interesting properties and consequences for the

structure of SL2(Z) or the relative Calkin-Wilf trees.

We would like to apply what we know about periodic paths and their continued fractions to the actions of

SL2(Z) on the upper-half plane, and vice versa. These mappings have been well-documented, and the results

in this area of study may reveal more about the nature of the relative Calkin-Wilf tree or periodic continued

fractions. It is possible that this perspective could explain the three and four oscillating convergents of the

third and fourth roots of unity. Perhaps the Calkin-Wilf tree can be used to simplify certain proofs of results

in the study of modular forms.
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