
Versatile Montgomery Multiplier
Architectures

by

Gunnar Gaubatz

A Thesis
Submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical Engineering

by

April, 2002

Approved:

Dr. Berk Sunar
Thesis Advisor
ECE Department

Dr. Fred J. Looft
Thesis Committee
ECE Department

Dr. John A. McNeill
Thesis Committee
ECE Department

Dr. John A. Orr
Department Head
ECE Department

Abstract

Several algorithms for Public Key Cryptography (PKC), such as RSA, Diffie-Hellman,

and Elliptic Curve Cryptography, require modular multiplication of very large oper-

ands (sizes from 160 to 4096 bits) as their core arithmetic operation. To perform this

operation reasonably fast, general purpose processors are not always the best choice.

This is why specialized hardware, in the form of cryptographic co-processors, become

more attractive.

Based upon the analysis of recent publications on hardware design for modular

multiplication, this M.S. thesis presents a new architecture that is scalable with re-

spect to word size and pipelining depth. To our knowledge, this is the first time a word

based algorithm for Montgomery’s method is realized using high-radix bit-parallel

multipliers working with two different types of finite fields (unified architecture for

GF (p) and GF (2n)).

Previous approaches have relied mostly on bit serial multiplication in combination

with massive pipelining, or Radix-8 multiplication with the limitation to a single type

of finite field. Our approach is centered around the notion that the optimal delay in

bit-parallel multipliers grows with logarithmic complexity with respect to the operand

size n, O(log3/2 n), while the delay of bit serial implementations grows with linear

i

complexity O(n).

Our design has been implemented in VHDL, simulated and synthesized in 0.5µ

CMOS technology. The synthesized net list has been verified in back-annotated timing

simulations and analyzed in terms of performance and area consumption.

ii

Preface

In this thesis I describe research work I performed in the Cryptography and Infor-

mation Security Lab during my graduate studies at WPI. This work would not have

been possible without the support of many people. I would like to use this place to

express my most sincere gratitude to all those who have made this possible.

First and foremost I would like to thank my advisor Prof. Berk Sunar for the

advice, guidance, trust, and—last not least—the funding he has provided me with. I

feel honored by being able to work with him and look forward to a continued research

relationship for my Ph.D.

I became involved with Cryptography in my first semester of graduate studies at

WPI, when I took my first course on the subject with Prof. Christof Paar. I would

like to thank him for his excellent lectures, his enthusiasm and the opportunity to

work with him.

I am very grateful to the members of my thesis committee, Prof. Fred Looft and

Prof. John McNeill, for their support, advice and time, especially since the latter is

usually in short supply.

Thanks must also go out to my colleagues in the CRIS lab Colleen O’Rourke,

Adam Elbirt, Selçuk Baktir and Seth Hardy, for the good spirit and friendship. A

iii

iv

big “Thank you!” to my friends and roommates Jens-Peter Kaps and Pavan Reddy

for interesting night-long discussions and general friendship.

Finally, and most importantly, I want to thank my parents Erwin and Ingeborg

Gaubatz and my sister Corinna for their unconditional love and support they provide

me with. It means a lot to me.

To all of you thank you very much!

Worcester, Massachusetts, May 2002

Gunnar Gaubatz

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Modular Multiplication in Public Key Cryptosystems 3

1.1.2 Keysizes and Complexity of Public Key Schemes 4

1.2 Algorithm Agility and Reusability . 5

1.3 Scalability . 6

1.4 Thesis Outline . 8

2 Finite Field Arithmetic 9

2.1 Definitions . 9

2.2 Arithmetic over Prime Fields GF (p) 11

2.3 Arithmetic over Binary Extension FieldsGF (2n) 12

2.3.1 Addition . 12

2.3.2 Multiplication . 13

v

CONTENTS vi

3 Previous Work 14

3.1 Montgomery Based Multiplier Designs 14

3.1.1 Bitserial Integer Multiplier . 15

3.1.2 Unified Bitserial Integer and Polynomial Multiplier 17

3.1.3 Radix-8 Integer Multiplier . 17

3.2 Alternative Schemes for Modular Multiplication 19

3.3 Scalable versus Fixed Precision Architectures 21

3.4 Unified Architectures . 22

4 Montgomery Multiplication 23

4.1 General Algorithm . 26

4.2 Word-based Algorithms . 27

4.3 Finely Integrated Operand Scanning (FIOS) Algorithm 28

4.3.1 Bitserial FIOS Method . 29

4.3.2 High-Radix FIOS Method . 31

4.3.3 Complexity Comparison . 33

5 Inherent Parallelism 34

5.1 Unified Digit Multiplier Core . 36

5.1.1 A Detailed Look at Integer Multiplication 37

5.1.2 Special Case: Carryless Multiplication 42

CONTENTS vii

5.2 Parallel Computation of Product and Reduction 44

5.3 Pipelining . 45

5.3.1 Pipelining of Multiple Arithmetic Units 45

5.3.2 Pipelining within Arithmetic Units 46

6 System Architecture 48

6.1 Unified Digit Multiplier . 49

6.1.1 Partial Product Array . 49

6.1.2 Column Compression . 50

6.1.3 Selective Carry Propagation 52

6.1.4 Final Adder . 52

6.2 MM Engine . 54

6.3 Pipeline Stage (MM Unit) . 56

6.3.1 Initialization Phase . 57

6.3.2 Execution Phase . 58

6.4 FIFO Buffer Queue . 60

7 Implementation 63

7.1 Design Methodology . 63

7.1.1 Functional Verification . 64

7.1.2 Synthesis . 65

CONTENTS viii

7.1.3 Back-Annotated Timing Simulation 66

7.2 Test Pattern Generation . 67

8 Results 68

8.1 Performance Evaluation . 69

8.1.1 Influence of Pipelining on Performance 70

8.1.2 Influence of the Word Size on Performance 73

8.2 Analysis of Results . 78

8.2.1 Speed . 80

8.2.2 Time × Area Product . 80

9 Conclusions 84

9.1 Further Research . 85

List of Tables

6.1 Pipeline organization and timing . 61

8.1 Number of clock cycles for 256-bit operands 72

8.2 Number of clock cycles for 1024-bit operands 73

8.3 Clock periods for different word sizes 75

8.4 Area for different word sizes . 77

ix

List of Figures

5.1 8× 8-bits digit multiplier . 39

5.2 [4:2] Compressor constructed from two (3,2) counters 40

5.3 Double array column compression topology 41

5.4 Optimal topology for binary polynomials: XOR Tree 43

5.5 Pipelining of multiple arithmetic units 46

5.6 Pipelined arithmetic unit . 47

6.1 Wallace tree for reducing 9 PP’s (5 horiz. carries) 51

6.2 Pipeline structure . 59

8.1 Clock period with respect to word size 76

8.2 Area requirements of different (w,p) configurations 78

8.3 Total time for 256 bit operands . 79

8.4 Total time for 1024 bit operands . 79

8.5 Time - area tradeoff for 256 bit operands 81

8.6 Time - area tradeoff for 1024 bit operands 81

x

Chapter 1

Introduction

Many Public Key Cryptographic (PKC) algorithms, such as RSA, Diffie-Hellman, and

Elliptic Curve Cryptography, require modular multiplication of very large operands

(sizes from 160 to 4096 bits) as their core arithmetic operation. To perform this

operation reasonably fast, general purpose processors are not always the best choice.

This is why specialized hardware, e.g. in the form of cryptographic co-processors,

become more attractive.

Based upon the analysis of recent publications on hardware design for modular

multiplication, this M.S. thesis presents a new architecture that is scalable with re-

spect to word size and pipelining depth. To our knowledge this is the first time a word

based algorithm for Montgomery’s method is realized using high-radix bit-parallel

multipliers that can perform two different types of arithmetic, (1) integer arithmetic

1

CHAPTER 1. INTRODUCTION 2

for operations in rings Zn or finite fields GF (p), and (2) binary polynomial arithmetic

for finite fields GF (2n) in a single unified architecture.

Earlier designs have relied mostly on bit serial multiplication in combination with

massive pipelining, or Radix-8 multiplication with a limitation to integer arithmetic.

Our approach is centered around the notion that the optimal delay in bit-parallel

multipliers grows with logarithmic complexity with respect to the operand size n,

e.g. O(log3/2 n), while the delay of bitserial implementations grows with linear com-

plexity O(n). Based on this observation we expect our design to be comparable in

performance with other designs, and ultimately outperform them for large values of w.

1.1 Motivation

Since its conception in 1976 by Whitfield Diffie and Martin Hellman [DH76] Public

Key Cryptography has come a long way. Many competing algorithms and standards

have been proposed and implemented. The entire concept of “eCommerce” is based

on the availability of reliable and secure methods for not only encryption, but also

authentication, and integrity.

With the ongoing digital revolution and advances in high performance computing,

powerful desktop computer systems are available to almost everybody at low cost.

While there has always been a demand for hardware implementations of public key

cryptography, the volume has risen dramatically in recent years, due to a paradigm

CHAPTER 1. INTRODUCTION 3

shift in communications, from wirebound to wireless. New and small handheld devices

with low power consumption and more and more features keep appearing. Those

devices do not possess the computing power of desktop computers, but still require

strong security mechanisms. Here is where specialized cryptographic hardware comes

into play. With the aforementioned multitude of different algorithms and standards,

it is essential for any such hardware to support the necessary arithmetic primitives

needed by those algorithms.

1.1.1 Modular Multiplication in Public Key Cryptosystems

The majority of the currently established Public-Key Cryptosystems (RSA, Diffie-

Hellman, Digital Signature Algorithm (DSA), Elliptic Curves (ECC), etc.) require

modular multiplication in finite fields as their core operation which accounts for up

to 99% of the time spent for encryption and decryption. In order to improve the

performance of the overall cryptosystem, it is therefore crucial to optimize modular

multiplication.

One method of modular multiplication that is particularly suitable for those cryp-

tosystems mentioned above is Montgomery Multiplication. It is a method that avoids

the division that is usually necessary for finding the remainder, at the cost of an ad-

ditional multiplication. Since division is much more costly than multiplication, this

method represents a significant improvement over regular modular multiplication.

CHAPTER 1. INTRODUCTION 4

1.1.2 Keysizes and Complexity of Public Key Schemes

Current Public Key schemes are computationally very expensive. On one side this

has to do with the complexity of the operations involved, e.g. modular multiplication,

modular inversion, etc. On the other hand, the length of the operands involved in

such operations is much larger than the word size of traditional microprocessors. They

range between 160 bits for Elliptic Curve-based cryptosystems and 2048 bits or more

for RSA or Diffie-Hellman.

Operations on such large operands naturally need to be broken down into word

based multi-precision operations. The speed complexity of operations like multipli-

cation is given as O(n2), meaning that the time necessary for multiplication grows

quadratically with the operand length n in words.

To illustrate the complexity a little more, the following short example shows an

estimate x of the number of integer multiplications necessary for the central opera-

tion of two popular Public Key Schemes. One is a 160 bit Elliptic Curve scalar point

multiplication and the other a 1024 bit RSA modular exponentiation. For more infor-

mation on selecting key sizes for cryptographic applications, see [LV00]. For simplicity

we assume a word size w of 32 bits and only count simple integer multiplications and

nothing else. Although modular squaring can be implemented faster than multipli-

cation, no distinction is made in this case. The number of integer multiplications p

necessary for one full precision modular multiplication can be approximated as 2n2,

CHAPTER 1. INTRODUCTION 5

where n = dN/we. The average number K of modular multiplications necessary for

either ECC or RSA is based on simple shift-add-methods.

ECC RSA

Operand length N 160 bits 1024 bits

Words / operand n 5 32

ModMul K 2,280 1,536

Integer Mul p ≈ 2n2 50 2048

Total # Mul x = pK 114,000 3,145,728

This table shows that the number of integer multiplications necessary to perform a

single encryption is 114,000 for ECC and over 3 million for RSA. From these numbers

it should be evident that public key cryptography is a time consuming application,

especially on low-powered hardware for mobile use.

1.2 Algorithm Agility and Reusability

A number of different public key algorithms are in use today. To ensure compatibility

with the rest of the world, cryptographic applications have to support a large portion

of those algorithms. While software implementations are often easy to upgrade and

to adapt to new algorithms or larger key sizes, the same is not necessarily true for

hardware implementations.

CHAPTER 1. INTRODUCTION 6

Algorithm agility, the ability to support many different algorithms with the same

architecture, is an important concept in the field of cryptography. The security of

most cryptographic algorithms is not proven, but merely presumed to be intractable

with currently available computing power. Moore’s law therefore plays an important

role in estimating key lengths for long term security. Also, one can never be entirely

sure that better methods for cryptanalysis, than those currently known, do not exist.

Quite recently a theoretical attack on RSA, based on an improved scheme for factoring

integers, has been proposed in [Ber01] which, if practical, could render RSA keys of

less than ∼1500 bits insecure.

Instead of implementing a complete cryptographic algorithm in hardware, it is of-

ten better to simply build universal arithmetic units. Several of such units for certain

complex operations commonly found in cryptographic algorithms, can be integrated

into a microcontroller or microprocessor. The programmability of the processor pro-

vides the flexibility of this approach, the specialization of the arithmetic unit pro-

vides the performance, and the universality of the arithmetic primitives enhances the

reusability.

1.3 Scalability

Another benefit of our design is that it is a fully scalable architecture, meaning on one

hand, that parameters like wordsize and pipelining depth can be chosen arbitrarily.

CHAPTER 1. INTRODUCTION 7

This gives implementors the flexibility to fit the design for various applications with

differing area, timing or power constraints.

Consider the example of a network processor inside a stand-alone router. While

power consumption is not much of an issue here, high-speed performance certainly is,

so a large word size and deep pipeline would be the appropriate choice of parameters.

Consider a different example, like a handheld device. It should be small for easy

handling, consume as little power as possible for long battery life and have a different

purpose than just encrypting data. In such a setting there is not much room left for

an area intensive modular multiplier. But since we have a scalable architecture, it is

possible to fit in a small scale version of the design which can then assist the main

CPU leaving more processing power for the actual handheld applications.

A second meaning of scalability refers to the concept of arbitrary operand size,

even after implementation in hardware. The operand size is directly related to the

security level of the crypto algorithm. If, for example, a certain security level of a

crypto algorithm becomes inadequate due to improved computing power available to

attackers, increasing the operand size usually increases the security level, given the

algorithm itself is unbroken. Therefore scalable hardware is less prone to become

obsolete due to demands for higher security.

CHAPTER 1. INTRODUCTION 8

1.4 Thesis Outline

After a short introduction into the mathematics of finite field arithmetic in the second

chapter, the third chapter will present some of the earlier works in this field. Different

concepts will be analyzed for useful ideas as well as for possible drawbacks.

Following that, the general idea of Montgomery’s algorithm and more specific de-

tails of its implementation will be presented in chapter four. Chapter five will explore

the different levels of parallelism that the algorithm offers to hardware designers.

Chapter six follows a bottom-up scheme of presenting the reader with the system

architecture of the design that has been developed as part of this thesis. Chapter seven

talks briefly about implementation issues and details, before the performance results

and the analysis thereof are thoroughly discussed in chapter eight and summarized

with the conclusions in chapter nine.

Chapter 2

Mathematical Background: Finite

Field Arithmetic

The purpose of this chapter is to give the reader a short introduction into the math-

ematics of finite field arithmetic, without getting into too many details. A basic

knowledge of set theory and abstract algebra is assumed.

2.1 Definitions

Definition 1 (Rings) [MvOV97] A ring (R,+,×) consists of a set R with two bi-

nary operations + (addition) and × (multiplication) on R, satisfying the following

axioms:

1. (R,+) is an Abelian group with identity denoted 0.

2. The operation × is associative. That is, a×(b×c) = (a×b)×c for all a, b, c,∈ R.

9

CHAPTER 2. FINITE FIELD ARITHMETIC 10

3. There is a multiplicative identity denoted 1, with 1 6= 0, such that 1×a = a×1 =

a for all a ∈ R.

4. The operation × is distributive over +. That is, a× (b+ c) = (a× b) + (a× c)
and (b+ c)× a = (b× a) + (c× a) for all a, b, c ∈ R.

The ring is a commutative ring if a× b = b× a for all a, b ∈ R.

An example of a ring is the set of integers Z.

Definition 2 (Fields) [MvOV97] A field is a commutative ring in which all non-

zero elements have multiplicative inverses.

This means that for all elements a ∈ R \ {0} there is another element a−1 from

the same set such that a× a−1 = 1. Any ring for which this condition is not fulfilled

is therefore not a field. The set of integers Z, for example, is not a field, since the

only two elements that have a multiplicative inverse in Z are −1 and 1. On the other

hand, the ring Zp with addition and multiplication performed modulo p is a field if

and only if p is prime.

Definition 3 (Field Characteristic) [MvOV97] The characteristic of a field is 0

if

m︷ ︸︸ ︷
1 + 1 + · · ·+ 1 is never equal to 0 for any m ≥ 1. Otherwise, the characteristic of

the field is the least positive integer m such that
∑m

i=1 1 equals 0.

Definition 4 (Polynomial Rings) [MvOV97] If R is a commutative ring, then a

polynomial in the indeterminate x over the ring R is an expression of the form

f(x) = anx
n + · · ·+ a2x

2 + a1x+ a0

CHAPTER 2. FINITE FIELD ARITHMETIC 11

where each ai ∈ R and n ≥ 0. The element ai is called the coefficient of xi in f(x).

The largest integer m for which am 6= 0 is called the degree of f(x), denoted deg f(x);

am is called the leading coefficient of f(x).

Definition 5 (Finite Fields) [MvOV97] A finite field is a field F which contains a

finite number of elements. The order of F is the number of elements in F .

Some facts about finite fields [MvOV97]:

1. If F is a finite field, then F contains pm elements for some prime p and integer

m ≥ 1.

2. For every prime power order pm, there is a unique (up to isomorphism) finite

field of order pm. This field is denoted by Fpm , or sometimes by GF (pm).

2.2 Arithmetic over Prime Fields GF (p)

Arithmetic over prime fields GF (p) is in principle simply a combination of integer

arithmetic with intermittent modular reduction steps whenever the result grows larger

than the modulus M . Just like regular integer arithmetic it depends on carry propa-

gation. Modular multiplication in its simplest form requires trial division for finding

the multiple of the modulus that needs to be subtracted from the result and is there-

fore inherently slow. For this reason the Montgomery multiplication algorithm is used

in this thesis as a faster alternative.

CHAPTER 2. FINITE FIELD ARITHMETIC 12

2.3 Arithmetic over Binary Extension Fields

GF (2n)

Finite fields GF (pm) with m > 1 are often represented in polynomial basis represen-

tation. The special case where p = 2 is usually referred to as binary extension fields.

This class of finite fields is particularly suitable for arithmetic on digital computers

because of the straightforward representation of coefficients as binary bit strings.

Arithmetic in binary extension fields has different properties than prime fields,

but is structurally very similar. The role of the prime modulus is adopted by an

irreducible polynomial f(x) of degree m.

2.3.1 Addition

Addition of two binary polynomials is performed as the addition of its coefficients

modulo two without any carries

A(x) +B(x) =
m∑

i=0

(ai + bi)x
i mod 2

which in terms of logic circuits directly translates into XOR combinations of the

coefficients

A(x) +B(x) =
m∑

i=0

(ai ⊕ bi)xi

It is obvious that addition of binary polynomials can be implemented in hardware

very efficiently. Subtraction is the exact same operation, since each coefficient is its

CHAPTER 2. FINITE FIELD ARITHMETIC 13

own additive inverse.

2.3.2 Multiplication

Multiplication in GF (2n) is only slightly more complex:

A(x)B(x) =
m∑

i=0

m∑

j=0

(aibj)x
i+j mod f(x)

With p = 2 the partial products aibj are the outputs of simple logical AND gates

in hardware and summed up as before by XOR gates, according to their position in

the resulting polynomial.

Modular reduction takes place by adding (subtracting) f(x)xk−m repetitively to

the result, as long as the degree of the result k ≥ m. This approach is very simplistic,

but achieves the desired effect. A more efficient method for modular reduction is

available in form of Montgomery’s algorithm. Only a couple of minor adaptions are

necessary to make this integer arithmetic algorithm work in conjunction with binary

polynomials, as shown in [KA98].

In conclusion it can be said that except for the modular reduction, binary poly-

nomial arithmetic is very similar in structure to integer arithmetic. The only big

difference is the absence of any sort of carry propagation, which makes this type of

arithmetic so attractive for high speed hardware implementations.

Chapter 3

Previous Work

There have been numerous designs implementing modular multiplications over the

years. This chapter describes some of them and contains a detailed analysis of their

merits and drawbacks.

Not all of these designs are based on Montgomery multiplication, and are therefore

not directly comparable to our design. Still there are other aspects in those designs

that are worthy of further investigation, like scalability issues and the use of systolic

arrays.

3.1 Montgomery Based Multiplier Designs

Three of the proposed architectures that will be discussed in this section are based

on Montgomery’s algorithm for modular multiplication. It is not surprising that they

14

CHAPTER 3. PREVIOUS WORK 15

appear almost identical, given the fact that they all originated from the same team of

researchers at Oregon State University and are based one upon the other. Still there

are a couple of details distinguishing the three designs which are worth mentioning.

3.1.1 Bitserial Integer Multiplier

The foundation for this series of multiplier architectures was laid in 1999 by A. Tenca

and Ç. Koç’s original paper [TK99]. It was centered around the ideas of the word

based Montgomery Multiplication algorithm for finite fields GF(p) known from tra-

ditional software implementations, but the multiplication itself was performed in a

bitserial fashion. Two design choices play a key role in why the design performs ad-

equately fast despite the fact that the use of bitserial multiplication requires a lot of

clock cycles:

1. Carry propagation during the addition of partial products is deferred until the

very end of the algorithm by using Carry Save Adders extensively and keeping

the result in redundant representation throughout most of the algorithm. This

makes it possible to use wordsizes of up to 128 bits without causing a significant

degradation of the clock frequency.

2. Massive pipelining achieves a high degree of parallelization at the cost of a

negligible start-up latency.

CHAPTER 3. PREVIOUS WORK 16

One of the outstanding advantages of this architecture is the level of scalability

that it displays. First of all the wordsize of the datapath is configurable and no major

re-design is necessary. Secondly the number of pipeline stages is configurable as well,

and adding a stage comes at nearly no cost, since it only requires an instantiation of

one further macro-cell. These two parameters, wordsize and pipeline-depth, give the

implementor a lot of choice with regards to area and speed. The notion of scalability

also plays an important role once the design is manufactured. The word based algo-

rithm around which this design is based does not, in principle, limit the maximum

operand size it can handle. In practice, of course, issues like the size of certain storage

elements and counters do impose a maximum wordsize. For practical applications,

however, the demand for larger operands is predictable for the near future, so that

provisions to accomodate them can be made easily.

The main drawbacks of the architecture are the fact that operand conversions

from integer to the Montgomery domain representation and vice-versa are necessary

before, respectively, after the multiplication. This, however, is a general drawback of

Montgomery’s method in opposition to other techniques. Also, this becomes negligible

once a sufficient number of modular multiplications need to be performed in a row,

e.g. like in a modular exponentiation for the RSA cryptosystem.

Another flaw of the design is the high number of clock cycles needed to compute a

full modular multiplication in comparison to that of other techniques. This has to do

CHAPTER 3. PREVIOUS WORK 17

mainly with the bitserial approach that was chosen in favour of a high radix design.

Finally, this first version of the design is suitable only for integer arithmetic modulo

N in a ring ZN . It does not address other types of finite field arithmetic in use by

modern cryptosystems like arithmetic over binary extension fields GF (2n). This type

of arithmetic is frequently used in Elliptic Curve Cryptosystems (ECC).

3.1.2 Unified Bitserial Integer and Polynomial Multiplier

The first extension of this basic architecture by E. Savaş was published in August

2000 [STK00]. The paper describes a modification of the architecture’s arithmetic

kernel which, in addition to integer arithmetic, also allows computation on binary

extension fields GF (2n) at the cost of only a slight increase of the gate count.

Despite this added functionality the basic drawbacks mentioned in connection with

the original design remain. Conversion between number systems are still necessary

and the number of clock cycles is high.

3.1.3 Radix-8 Integer Multiplier

G. Todorov et. al. [TTK01] published another modification in May 2001. As before it

is based upon the original architecture by Tenca and Koç, but this time investigates

the use of high radix multiplication as an alternative to bitserial multiplication.

Unfortunately the radix chosen by the team is fixed to 8, so that w bits of one

CHAPTER 3. PREVIOUS WORK 18

operand are multiplied by only 3 bits of the second operand in each arithmetic unit.

The speed improvements over the bitserial design are only marginal, considering that

the radix-8 design was synthesized using 0.5µ CMOS technology instead of 1.2µ as in

the earlier paper. The results do not show the anticipated performance improvement

over bitserial multiplication that are expected from high-radix designs, simply because

the increase in radix was not high enough. The attempt at reducing the increased

complexity of adding up partial products by using Booth-Recoding [Boo51] on the

multiplier input, produces such a huge overhead in delay that it hides the benefits of

the higher throughput in bits per clock cycle.

Apart from the controversial [OVL96] benefits of Booth recoding for reducing the

delay of small multipliers, it additionally makes the design of a unified Montgomery

multiplier tremendously complicated. Techniques like Booth recoding conceptually

rely on the notion of carry propagation, and don’t work for multiplication of binary

polynomials. As a consequence the proposed design had to drop the support of

GF (2n) arithmetic, which prevents its use in algorithm agile cryptographic processing

units.

CHAPTER 3. PREVIOUS WORK 19

3.2 Alternative Schemes for Modular Multiplica-

tion

In August 2000 J. Großschädel presented his work [Gro00] on an alternative modular

multiplier architecture, which is based on Barrett’s technique for modular reduction.

The main advantage of Barrett’s method is that it operates in the regular number

system and no transformation into a residue number system is necessary. The basic

principle behind this technique is to compute an estimated quotient q̃ =
⌊
P
M

⌋
which

is used to subtract a multiple of the modulus q̃M from the most significant bits of

the product P . This produces a nearly complete reduction of the product. The full

reduction is computed in the final step by repeatedly subtracting the modulus and

comparing the result.

The drawback of this technique is the fact that the quotient estimation works on

the most significant portion of the result, which makes it very difficult to come up

with a scalable architecture to allow arbitrary precision modular multiplication. As

expected the design proposed by Großschädel turns out to be fixed in precision to a

maximum of 1024 bit operands.

The main purpose of this architecture was to serve as the core for modular expo-

nentiation in an RSA crypto accelerator chip. The limitation to this specific applica-

tion essentially prevented a more flexible design capable of operating on both types

CHAPTER 3. PREVIOUS WORK 20

of fields GF (p) and GF (2n).

On the other hand, concentrating on one particular application brought about

a very fast architecture which only needs 227 clock cycles to perform one modular

multiplication, while running at a clock frequency of 200 MHz. This is made possible

by a very large partial parallel multiplier of size 1056 × 16 bits, based on a systolic

array structure. The huge area requirements of this design approach, however, are

obvious.

In May 2001 the same author presented an entirely new architecture [Gro01] that

completely relies on a bitserial shift-add method for multiplication combined with

repetitive subtraction of the modulus. Like in the previous design, the subtraction

of the modulus is based on estimations made from the most significant portion of

the intermediate result. This time, however, the architecture provides the necessary

mechanisms to perform multiplication on two different types of fields, the affore-

mentioned Galois Fields GF (p) and GF (2n). Similar to the bitserial multiplication in

the Tenca-Koç design, carry propagation is deferred until the end of the multiplication

by using Carry Save Adders and keeping the result in redundant representation.

Once again, one of the main drawbacks of the design is the evaluation of the

most significant portion of the result for modular reduction, which resulted in a full-

precision data-path implementation. Again the design is not scalable with respect

to arbitrary precision operand sizes. Due to the bitserial multiplication strategy the

CHAPTER 3. PREVIOUS WORK 21

number of clock cycles is larger than that of the previous architecture.

On the positive side this increase in the clock cycle count also greatly reduces

the area requirements. Additionally this design also works with a regular number

representation.

3.3 Scalable versus Fixed Precision Architectures

As is evident from the last section, the general algorithm of how to perform modular

multiplication is irrelevant – a lot of different methods exist and all of them work.

The real issue is the flexibility that an architecture provides in terms of scalability

and choice of parameters like area requirements, speed and support of different types

of arithmetic.

The cost-effectiveness of a hardware architecture is determined not only through

the cost associated with development and manufacturing, but also through the du-

ration of its use. This in turn is highly dependend on the flexibility the architecture

exhibits in different circumstances. If, hypothetically speaking, advances in crypt-

analysis suggest that the RSA cryptosystem with keylengths of 1024 bits prove to be

not adequate for long term security any more, then the keysize needs to be extended.

Architectures which do not scale to meet the new demands have to be replaced and

thus create costs.

CHAPTER 3. PREVIOUS WORK 22

3.4 Unified Architectures

The flexibility of an architecture to work with different types of arithmetic is a key

feature for modern information security applications. A wealth of competing crypto-

graphic algorithms exist and have been standardized. Supporting a broad range of

these algorithms is no longer optional, but a necessity. The most promising model of

addressing this issue in the design of a cryptographic co-processor is to add efficient

arithmetic and logic primitives to a standard microprocessor / -controller architec-

ture. This ensures an upgrade path to support future algorithms and changes to

existing schemes, while preserving the speed advantages of a specialized design.

By combining the support for integer and binary polynomial arithmetic into one

single unified architecture, as done in [STK00] and [Gro01], less area is needed for

the same functionality.

Chapter 4

Montgomery Multiplication

In 1985 Peter L. Montgomery proposed a method [Mon85] for modular multiplica-

tion using Residue Number System (RNS) representation of integers. It replaces the

costly division operation usually needed to perform modular reduction by simple shift

operations, at the cost of having to transform the operands into the RNS before the

operation and re-transforming the result thereafter.

A radix R is selected to be two to the power of a multiple of the machine word

size and greater than the modulus, i.e. R = 2kw > M . For the algorithm to work

R and M need to be relatively prime, i.e. must not have any common non-trivial

divisors. With R a power of two, this requirement is easily satisfied by selecting an

odd modulus. This also fits in nicely with the cryptographic algorithms that we are

targetting, where the modulus is either a prime – always odd with the exception of 2

23

CHAPTER 4. MONTGOMERY MULTIPLICATION 24

– or the product of two primes and therefore odd as well.

RNS representations of integers are called M-residues and are usually denominated

as the integer variable name with a bar above it. An integer a is transformed into

its corresponding M-residue ā by multiplying it by R and reducing modulo M . The

back-transformation is done in an equally straight-forward manner by dividing the

residue by R modulo M . Thus we have the following equations as transformation

rules between the integer and the RNS domain:

ā = aR (mod M) (4.1)

a = āR−1 (mod M) (4.2)

Montgomery Multiplication can be written simply as the product of two M-

residues divided by the radix modulo M :

c̄ = āb̄R−1 (mod M) (4.3)

Division by the Radix is necessary to make the result again an M-residue. This

becomes more obvious as we expand the equation in the following way, in which we

also introduce the function name MM(Op1, Op2) for the Montgomery Multiplication

algorithm:

CHAPTER 4. MONTGOMERY MULTIPLICATION 25

c̄ = MM(ā, b̄)

= āb̄R−1 (mod M)

= aRbRR−1 (mod M)

= (ab)R (mod M)

= cR (mod M)

Assuming we have an implementation for of the MM algorithm at our disposal, it

looks as if we still need a method to perform regular modular reduction if we want

to transform integer variables into their respective M-residues. However, once the

precision, and therefore the radix R, is fixed for the implementation, we can use

the pre-computed constant R2 (mod M) in conjunction with the MM algorithm for

transformation purposes:

ā = MM(a,R2)

= aR2R−1 (mod M)

= aR (mod M)

(4.4)

a = MM(ā, 1)

= aRR−1 (mod M)

(4.5)

The benefits of Montgomery Multiplication over classical methods involving divi-

sion are not overly evident for applications with only a few modular multiplications.

However, for algorithms in which a lot of modular multiplications need to be per-

CHAPTER 4. MONTGOMERY MULTIPLICATION 26

formed with respect to the same modulus, the performance gain is much more obvi-

ous, since the ratio between transformation overhead and actual modular arithmetic

is much lower.

For the sake of simplicity we will drop the ”bar” notation for distinguishing M-

residues from integers throughout the remainder of this thesis, since the transforma-

tion to and from the RNS is not of significance here. When it becomes necessary to

distinguish the two domains, extra indication will be provided.

4.1 General Algorithm

Algorithm 1 outlines an implementation of Montgomery’s method for the single pre-

cision case. A multiple precision word based version will be presented later. This

particular example illustrates well the separate multiplication and reduction steps of

the method.

As a prerequisite this algorithm expects a value M ′ that like the modulus M itself,

may be treated as a constant, because it rarely changes. This value M ′ is part of the

main trick behind Montgomery’s method: it is used in conjunction with the lower

half of the product P to compute the number of multiples U of the modulus M that

need to be added to P to make its lower half become zero. Note that an addition

of an integer multiple of the modulus does not change the congruence between the

result and the product P . Since now the lower half is all zero, we can safely shift the

CHAPTER 4. MONTGOMERY MULTIPLICATION 27

Algorithm 1: Single precision Montgomery multiplication

Require: a, b ∈ ZM , n = dlog2 Me, R = 2n, M ′ = −M−1 (mod R)

1: P = ab

2: U = (P mod R)M ′ mod R

3: c = (P + UM)/R

4: if c >M then

5: c = c−M

6: end if

result to the right, which is equivalent to a division by R.

It must be noted without going into any further details that the result c might

not always be fully reduced with respect to the modulus M . Therefore it might be

necessary to perform a final subtraction of the modulus. Depending on the algorithm

employing Montgomery Multiplication, however, in some cases this may be delayed

until the final step which transforms the M-residue result back to integer form.

4.2 Word-based Algorithms

In practice, primitive arithmetic operations such as multiplication and addition are

limited to a certain word size w. Operands of cryptographic algorithms, on the other

hand, tend to be very large, so that multiple precision arithmetic comes into play.

CHAPTER 4. MONTGOMERY MULTIPLICATION 28

The simplest way of adapting Montgomery’s algorithm to large operand sizes would

hence be, to just replace every arithmetic operation by its multi-precision equivalent.

More efficient ways to achieve the same are analyzed and presented in [KAK96].

The criteria for selecting the most suitable algorithm is not limited to the number

of multiplication operations alone. The specific architecture targeted for the imple-

mentation also plays an important role. While the ”Coarsely Integrated Operand

Scanning” (CIOS) method is the most suitable one for implementation on a standard

PC, certain Digital Signal Processors (DSPs) feature special arithmetic operations

and multiple memory busses which make an implementation of the ”Finely Integrated

Product Scanning” (FIPS) method a much better choice.

4.3 Finely Integrated Operand Scanning (FIOS)

Algorithm

In a custom hardware implementation the amount of speed-up compared to general

purpose processors and software mostly relies on the level of parallelization that can

be achieved. For the selection of a particular Montgomery Multiplication algorithm

this means that data dependencies between parallel arithmetic units and storage of

intermediate results need to be kept to a minimum and local. From this perspective

the most suitable algorithm is a slight variant of the ”Finely Integrated Operand

CHAPTER 4. MONTGOMERY MULTIPLICATION 29

Scanning” (FIOS) method.

4.3.1 Bitserial FIOS Method

A bitserial word based version of the FIOS Montgomery algorithm has first been

proposed in [TK99]. It was later refined to also work on binary extension fields

[STK00] with only minor architectural changes.

The following conventions are used in the explanation of the algorithm: Entire

words of an operand are type-set in upper-case and referenced with their index in

square brackets starting from zero. Thus A[3] stands for the fourth word of A. Sin-

gle operand bits are indicated using lower-case operand names with the index as a

subscript, i.e. b8 references the ninth bit in B.

As can be seen in Algorithm 2 the multiplication and reduction steps are tightly

integrated. First one word of A is multiplied by a single bit of operand B and added

with the previous round’s intermediate result D. The least significant bit is examined

and stored for use during the remainder of the inner i-loop. In case the bit is set, the

odd modulus M will be added to the product in order to zero out the least significant

bit. This makes it possible to shift the result one bit to the right without losing

information. Writing back a word of the intermediate result D to memory is delayed

by one step (line 8) in order to include the next round’s least significant bit that gets

shifted in.

CHAPTER 4. MONTGOMERY MULTIPLICATION 30

Algorithm 2: Bitserial word based version of the Montgomery algorithm

1: D = 0 {initialize all words of the result}

2: for j = 0 to n− 1 do

3: (c, S) = A[0]bj +D[0]

4: u = s0

5: (c, S) = (c, S) +M [0]u

6: for i = 1 to e− 1 do

7: (c, T) = c+ A[i]bj +D[i] +M [i]u

8: D[i− 1] = (t0, Sw−1...1)

9: S = T

10: end for

11: end for

CHAPTER 4. MONTGOMERY MULTIPLICATION 31

The low area requirements of this algorithm make it very attractive for hardware

implementations in which size and/or power consumption are the critical constraints.

Bitwise multiplication can be implemented by a single AND gate per bit position.

Furthermore the costly propagation of carries produced by the additions can be post-

poned until the very end of the algorithm by keeping intermediate results in Carry

Save notation.

4.3.2 High-Radix FIOS Method

Algorithm 2 can be easily modified from bitserial multiplication to high radix digit

multiplication, as shown in Algorithm 3. The intrinsic complexity of digit multipliers,

however, significantly increases the area requirements of hardware implementations.

On the other hand it also helps to decrease the number of clock cycles it takes to

complete the algorithm. Furthermore, as the word size w of the digit multiplier

increases, the clock period only grows logarithmically due to parallelizable addition

of partial products.

Apart from multiplier complexity, the major change in the new algorithm is that

not only the least significant bit of the result is to be made zero by adding M . An

additional multiplication is necessary to compute the factor U , which represents the

number of multiples of M to be added, to zero out the entire least significant word

of the result. Accordingly the result can be shifted w bits to the right without losing

CHAPTER 4. MONTGOMERY MULTIPLICATION 32

Algorithm 3: High Radix version of the Montgomery algorithm

1: D = 0 {initialize all words of the result}

2: for j = 0 to e− 1 do

3: (C, S) = A[0]B[j] +D[0]

4: U = SM ′
0 (mod 2w)

5: (C, S) = (C, S) +M [0]U

6: (C, S) >> w

7: for i = 1 to e− 1 do

8: (C, S) = (C, S) + A[i]B[j] +D[i] +M [i]U

9: D[i− 1] = S

10: (C, S) >> w

11: end for

12: D[n− 1] = S

13: end for

CHAPTER 4. MONTGOMERY MULTIPLICATION 33

data.

4.3.3 Complexity Comparison

As it has been stated before, the more complex structure of digit multipliers signifi-

cantly increases the area requirements of a hardware implementation of Montgomery’s

Algorithm. That said, however, it is also true that more data can be processed in

fewer clock cycles, and that the clock period grows logarithmically instead of linearly.

These observations lead to the conclusion that a Montgomery architecture based on

high radix digit multipliers can perform asymptotically better than its bitserial coun-

terpart. The emphasis of the last sentence is on asymptotical, since additional over-

head in practical implementations of digit multipliers might obscure this theoretical

observation for word sizes below a certain threshold.

Chapter 5

Inherent Parallelism in

Montgomery Multiplication

The common trade-off when it comes to implementation of an algorithm in hardware

versus one in software is that flexibility is sacrificed for speed. In many cases, however,

the use of a particular algorithm is very specific to a certain application, so that a loss

of flexibility is a low price to pay for the performance improvement. An additional

benefit is that the hardware solution can be optimized for reduced power consumption,

since only a subset of all the features available on general purpose processors will be

necessary.

There are a number of different ways to improve on the performance of complex

operations in hardware. While logic and arithmetic operations take at least one clock

34

CHAPTER 5. INHERENT PARALLELISM 35

cycle each in software implementations, multiple logic operations can be combined

into a single clock cycle in custom built hardware. Intermediate results can be stored

in fast local registers instead of in a standard register file which may be placed far

away. Loop-Unrolling may be used to perform multiple iterations of a task in a

single clock cycle where this would help in balancing the critical paths of different

tasks. Data independent shift operations or even permutations can be hardwired and

therefore cost virtually nothing, while they are slow in software.

Perhaps the most efficient way of speeding up complex operations in hardware,

however, is through the utilization of inherent parallelisms that a particular algorithm

offers. Identifying these parallelisms is only the first step, during which automated

tools for algorithm analysis and transformation might be helpful. It should be noted,

however, that the success rate of such tools is limited and often even thorough analysis

by hand is difficult.

In the following sections three possible ways are identified, how to parallelize the

Montgomery algorithm at different levels. The degree of parallelism that can be

achieved varies with the data dependency of a particular level. Sometimes, when real

simultaneity is impossible due to dependence on output from an earlier step, processes

can still be overlapping in time, e.g. through the use of pipelining. Depending on the

definition this can still be viewed as a form of parallelism, so it is included in this

chapter.

CHAPTER 5. INHERENT PARALLELISM 36

The first and innermost level of parallelism can be found inside the high radix

digit multiplier, which is a core component of this architecture. One level higher

the parallel computation of the product A[i]B[j] and the product used for reduction

UM [i] are computed completely in parallel, once the initialization phase is over.

Finally, pipelining of multiple MM Units constitutes yet another level of parallelism.

5.1 Unified Digit Multiplier Core

Multiplication as an arithmetic operation in hardware has been studied well. Many

different methods and architectures have been proposed and built. A very general

characterization shows serial multipliers on one side and bit-parallel designs on the

other side of the area-delay trade off spectrum.

Bitserial multiplication is usually very easy to implement, requires little area and

introduces very little delay into the critical path. However, due to the iterative nature

of the operation the number of clock cycles needed for a n×n bit multiplication grows

linearly with the operand size n. Even if we ignore the problem of carry propagation

for a moment, there are physical limits to the fastest clock speed that can be achieved

in a particular technology, and it is thus doubtful if bitserial multiplication is the best

choice when it comes to performance.

Parallel multiplier designs are typically much more complex and tend to have a

longer critical path which in turn limits the maximum clock speed. However, the

CHAPTER 5. INHERENT PARALLELISM 37

parallel generation of partial products also enables their addition in a parallelized

fashion, using tree structures. The addition of all partial products can be performed

in one single long clock cycle. The delay introduced, e.g. by a Wallace tree structure

for n partial products, has the lowest bound of log3/2 n levels of full adders.

This observation leads to the conclusion that parallel multipliers can outperform

serial architectures in terms of speed, at the cost of more complex hardware. On

the other hand increased complexity and irregularities in the hardware design also

introduce additional delays due to longer wires. Obviously there must be an optimum

operand size for the parallel multiplier.

5.1.1 A Detailed Look at Integer Multiplication

In very generic terms the process of multiplication can be broken up into two basic

steps, (1) generation of partial product terms, and (2) addition of partial products.

Partial Product Generation The first step basically consists of multiplying each

bit of the first operand with each bit of the second operand and aligning the result

in the correct bit position (column) for the second step. Single bit multiplication is a

very inexpensive operation as it only takes a simple AND gate.

Addition of Partial Products Compared to the simplicity of step one, the second

step is much more complex. Adding up partial product words involves carry propa-

CHAPTER 5. INHERENT PARALLELISM 38

gation which is a classic problem in computer arithmetic. The problem of designing

fast and efficient adder structures has been studied over a long time and many ar-

chitectures have been proposed. Common to them all is again the trade-off between

area and delay.

Digit Multipliers As we move from bitserial towards high radix digit multipli-

ers, the problem of adding the partial products becomes even more complex. Fully

propagating all carries up to the most significant bitposition in each addition step is

not feasible and also not necessary. Alternative solutions make use of partial carry

propagation through a technique known as Carry Save Addition which defers the full

carry propagation until the end of the operation. Partial carries that are generated

at one level along the way are only passed on to the immediate next stage, one level

lower. These partial carries are sometimes also called horizontal carries. The addition

process of step (2) can therefore be split up into the two sub-processes (a) column

compression, and (b) final addition. The typical architecture of a digit multiplier is

depicted in Figure 5.1

Column Compression The amount of delay that is introduced by column com-

pression greatly depends on the topology of the compression network. These com-

pression networks are typically constructed from so-called (3,2) counters, which are

technically the same as full adders. The name is derived from the number of in-

CHAPTER 5. INHERENT PARALLELISM 39

A b0
A b1
A b
A b
A b
A b
A b
A b

2

3

4

5

6

7

15Bit Slice: 01234567891011121314

Final Adder

Result

Partial Product Generation

Column Compression

Horizontal Carries

Figure 5.1: 8× 8-bits digit multiplier

puts and outputs, respectively, and the fact that the two output bits, sum and carry,

interpreted as a two bit integer give the count of active input bits.

The combination of two (3,2) counters as shown in Figure 5.2 constitutes an

element known as a [4:2] compressor. Note that in actuality it has five inputs and

three outputs, but one of each is used for horizontal carry propagation and not counted

towards compression ratio. Higher order compressors can be built in a similar way.

Most of the regular topologies proposed for column compression are based upon

these two building blocks. A good example is the double array topology shown

in figure 5.3. The problem with simple regular topologies is that, although they

often improve the delay of column compression, it is still linearly dependend on the

multiplier word size.

The more complex types of regular topologies are tree topologies, such as Binary

CHAPTER 5. INHERENT PARALLELISM 40

Horizontal Carry Out Horizontal Carry In

Carry Sum

(3
,2

)
C

ou
nt

er
(3

,2
)

C
ou

nt
er

I0I1I2I3

[4
:2

] C
om

pr
es

so
r

Figure 5.2: [4:2] Compressor constructed from two (3,2) counters

Tree, Balanced Delay Tree and Overturned Staircase Tree. In the case of a balanced

delay tree, for example, the delay only grows with complexity O(2
√
n).

The biggest problems of more complex topologies compared to simpler ones are

their increased wire lengths. As the feature sizes of technologies shrink below 0.5µ, the

delay caused by parasitic resistance and capacitance of long wires begin to dominate

the gate delay.

Complex compression topologies would ideally require a three dimensional layout

in which each column can accommodate a two dimensional tree structure. The floor-

plan for current VLSI technologies, however, is limited to two dimensions, and so

the layout has to be flattened into a single bit slice, moving components away from

CHAPTER 5. INHERENT PARALLELISM 41

(3,2)(3,2)

(3,2)

(3,2)

(3,2) (3,2)

(3,2)

(3,2)

(3,2)

[4:2] Compressor

In
co

m
in

g
C

ar
rie

s

O
ut

go
in

g
C

ar
rie

s

Partial Products

Critical PathSC

(3,2)

Figure 5.3: Double array column compression topology

each other. This problem becomes even more apparent with irregular topologies, like

Wallace Trees.

Wallace trees are composed entirely of (3,2) counters and were first proposed

in [Wal64]. They achieve the highest degree of parallelization possible and their

delay only grows with complexity O(log3/2 n). Traditionally Wallace Trees were not

embraced by designers, because they are much harder to design and layout due to

their irregular structure, as mentioned before.

In recent times, however, algorithmic layout and placement has been investigated

CHAPTER 5. INHERENT PARALLELISM 42

as a possible solution to this problem. Oklobdzija et al. [OVL96] were the first to

propose an algorithm that honors the difference between fast and slow inputs and

outputs of (3,2) counters. However, it did not consider the influence of different

wirelengths on the overall delay along the critical path. Later versions of such an

algorithm that also address wire delays were presented in [FO01].

Final Adder Column compression produces as output the product A × B in re-

dundant Carry Save form, i.e. each column ends with two outputs, carry and sum.

To bring it back into non-redundant binary integer representation, all sum outputs

must be added to the carry outputs using the Final Adder which completes the task

of fully propagating all the remaining carries up to the MSB.

Since the Carry output is one bit position more significant than the Sum, it has

to enter the final adder shifted to the left by one. In hardware this is easily done by

appropriately wiring the two components, as can be seen in Figure 5.1.

5.1.2 Special Case: Carryless Multiplication

In our goal to build an architecture that is suitable for multiplication of integers

as well as binary polynomials, we have to modify the digit multiplier slightly. As

has been pointed out in chapter 2 the main difference between integer and binary

polynomial arithmetic is that the latter does not have to deal with carries at all.

All computations between coefficients of the same order are performed modulo

CHAPTER 5. INHERENT PARALLELISM 43

Figure 5.4: Optimal topology for binary polynomials: XOR Tree

2. This property has the beneficial effect that addition can be performed by simply

XOR’ing the two operands.

The modifications to the multiplier circuit which allow both integer and polyno-

mial operations are relatively simple and only affect the column compression section

and, to a lesser degree, the final adder. Since carries are not relevant for arithmetic

modulo 2, we must take care that they are not propagated from one bit slice to the

next–otherwise they would get added to the result. We therefore insert controlled

gates between neighboring columns that form a sort of carry blockade for each hori-

zontal carry that is generated in a bit slice. The cost for this modification is nearly

negligible. An AND gate controlled by the mode signal for each horizontal carry is

all that is needed. If the value of the mode signal is a logical zero, any incoming

CHAPTER 5. INHERENT PARALLELISM 44

carry will be inhibited from passing through. The final adder is not necessary either.

We therefore pick the final result straight from the sum output of the column com-

pression section instead from the final adder. A multiplexer controlled by the mode

signal delivers the correct result to the output.

5.2 Parallel Computation of Product and Reduc-

tion

Going back to algorithm 3 we see that the main operation performed in the inner loop

is an addition of four terms, of which two are multiplications. Once the initializa-

tion phase–where the factor U is computed–is over, both products can be computed

completely independent from one another, as they have no common terms. The first

product A[i]B[j] is the actual product of the M-residues āb̄ = aRbR mod M , while

the second product is responsible for the reduction āb̄R−1 (mod M). It performs

the reduction by adding such a multiple of M to the first product that the lowest

word becomes zero and shifting right by w bits is possible. The right shift essentially

is a partial division by R, which is a multiple of the word size (see Alg. 1).

Since both products are completely independent from one another, it is possible

to build an MM unit that sports two separate unified multiplier cores. Computing

the two products in parallel reduces the clock period significantly and also simplifies

CHAPTER 5. INHERENT PARALLELISM 45

the control logic, since the multipliers are dedicated to one task.

5.3 Pipelining

Closer examination of the word based Montgomery algorithm shows that each iter-

ation of the inner loop only works on a limited data set. More specifically, for any

iteration i = 0 . . . e − 1 the intermediate result D[i − 1] is only dependent on the

previous value of D[i]. While the output of the first iteration is all zero from the

reduction, the second iteration produces the new value for D[0], the third iteration

computes D[1], and so forth, until the inner loop is finished.

5.3.1 Pipelining of Multiple Arithmetic Units

In a software implementation on a processor with only one arithmetic unit D[i − 1]

would have to be stored in memory temporarily, until the next iteration of the outer

loop. Since all memory operations impose a speed penalty on the algorithm, it is

better if it can be avoided. In a hardware implementation where the number of

available arithmetic units is in the hand of the designers, this is much easier to do.

A couple of arithmetic units can be placed in a row, connecting the in- and outputs

with the intermediate results, as in Figure 5.5. A new iteration of the outer loop is

started whenever the first result of a preceding unit enters the next.

This process is called pipelining and apart from minimizing memory accesses its

CHAPTER 5. INHERENT PARALLELISM 46

MM

Unit

MM

Unit

MM

Unit

B[j]

A[i]

M[i]

D[i]

FIFO Register D

R
eg

is
te

rs
R

eg
is

te
rs

R
eg

is
te

rs
R

eg
is

te
rs

Figure 5.5: Pipelining of multiple arithmetic units

biggest advantage is that it also parallelizes the execution of an algorithm. For a

pipeline depth of p arithmetic units or pipeline stages, p iterations are started one

after another with a short delay, thereby overlapping them in time. Only when the

first result D[0] leaves the last stage, it has to buffered in memory until the first stage

becomes available again, for a new round.

5.3.2 Pipelining within Arithmetic Units

Pipelining Montgomery’s algorithm is not restricted to combining several arithmetic

units alone. Albeit shorter, another pipeline can be created by splitting the datapath

inside the unit into two separate stages, like shown in Figure 5.6. The first stage

contains the two parallel multipliers, while the second stage adds the results of the

CHAPTER 5. INHERENT PARALLELISM 47

multipliers and a shifted version of the previous result. Partitioning the task in such

a way reduces the critical path to that of one multiplier. It also increases the number

of clock cycles necessary for executing the inner loop by one. For a sufficiently large

number of iterations in the inner loop, however, the effects of this additional cycle

on the total delay become negligible and the overall benefit of having a shorter clock

period prevails.

CS2CS1

U

CS

A[i] B[j] D[i] M[i]

D[i−1]

MUX

Figure 5.6: Pipelined arithmetic unit

As can be seen from Algorithm 3, the inner loop is preceded by an initialization

step in which the value U is computed. Data dependencies that are present only

during this initialization step, introduce a start-up latency of five clock cycles before

the first value D[0] is passed on to the next pipeline stage. Once initialization is

complete, however, a new word D[i] is computed with each cycle.

Chapter 6

System Architecture

In this chapter architectural details of an actual implementation of a unified high radix

Montgomery multiplier design will be discussed. Some of these details have already

been mentioned in the previous chapter, but only to a degree that was necessary to

convey the ideas about differences to other architectures.

Since the algorithm after which this Montgomery multiplier was modeled, has

already been explained in some detail, the following sections will present detailed

views of the hierarchical building blocks in a bottom-up order. In other words, the

core function blocks at the bottom of the hierarchy will be presented first, followed

by the next higher blocks which are based around the core elements or combine them,

and so on.

48

CHAPTER 6. SYSTEM ARCHITECTURE 49

6.1 Unified Digit Multiplier

At the center of the architecture is the double core of unified digit multipliers. As

indicated in the previous chapter the two multipliers compute the product and its

reduction modulo M completely in parallel, once the initialization phase is over.

6.1.1 Partial Product Array

At one point during the initialization phase, which will be discussed a little later in

this chapter, it is necessary to add the 2w bits wide product A[i]B[j] and the w bits

wide intermediate result D[i] within the same clock cycle. Using a separate adder

circuit to accomplish this would result in an increased clock period with a negative

impact on performance. One alternative would be to add it one cycle later, but that

would increase the start-up latency.

The best solution therefore is to incorporate the operand that has to be added

into the partial product array of the digit multiplier. Since the delay only increases

logarithmically with the height of the partial product array, one additional term in

the array is insignificant. The only part of the multiplier affected by this modification

is the column compression tree. The final adder remains entirely unchanged. On the

other hand this ”little trick” avoids the complexity of having another adder circuit

with its own carry propagation related issues. The difference between a regular digit

multiplier and one that incorporates an additional w bits wide word in the array is

CHAPTER 6. SYSTEM ARCHITECTURE 50

that the maximum depth of the extended array is increased by one and this difference

becomes less significant as w increases.

6.1.2 Column Compression

The column compression layer of the unified digit multiplier is implemented using

modified Wallace trees for each bit slice. These sum up the partial products using

Carry-Save addition and produce the result in redundant sum and carry representa-

tion. Each level of the trees has a certain number of horizontal carries coming in from

the neighboring bit slice and produces outgoing horizontal carries entering the next

bit slice. The number of incoming and outgoing carries depends largely on which

half of the partial product array the considered bit slice is in. For the first half in

which the height h of the array increases from left to right, the incoming carries is

h− 4, or 0 for the first three bit slices. The number of outgoing carries is exactly one

more h − 3, except for the first two columns. For the second half of the array the

height suddenly drops by two, because the additional w bits wide word only covers

the lower half of the array, and continues to decrease linearly by one per column.

Here the number of incoming carries is h− 1, and that of outgoing carries h− 2. As

an example Figure 6.1 shows the Wallace tree for compression of the center column

in an 8× 8 bit multiplier’s extended partial product array.

The Wallace trees for each bit slice have been designed by hand in a fashion that

CHAPTER 6. SYSTEM ARCHITECTURE 51

(3,2) (3,2) (3,2)

(3,2)(3,2)

(3,2)

HA

In
co

m
in

g
C

ar
rie

s

O
ut

go
in

g
C

ar
rie

s

Partial Products

SC

Critical Path
5 XOR Delays

Figure 6.1: Wallace tree for reducing 9 PP’s (5 horiz. carries)

follows the principles of the algorithm proposed in [OVL96]. This algorithm does not

consider the influence of wire lengths on the delay of the tree, but since this thesis

does not cover the entire design flow including place and route, it does not matter.

Evaluation of the designs was based on the number of XOR delays that any given

path contains. The path between the two inputs A, B and the Sum output of a full

adder were counted as two XOR delays, while the path from the Carry input to the

Sum output only contributes a single XOR delay. In cases where only two partial

trees had to be connected, a half adder was used instead of a full adder to further

reduce the path delay.

Even though this design methodology does not yield the optimal result for the

binary polynomial case, it achieves the desired bound of O(log3/2 w) XOR delays for

CHAPTER 6. SYSTEM ARCHITECTURE 52

integer multiplication. Nevertheless, polynomial multiplication is still faster than the

integer case, since the final adder can be bypassed.

6.1.3 Selective Carry Propagation

In the case of polynomial multiplication the horizontal carries generated in any bit

slice must not be passed on to the following columns. In order to control this behavior

by a signal specifying the type of arithmetic, additional circuitry is necessary. As

already described in the previous chapter, the simple solution is to insert rows of

AND gates between bit slices that are controlled by the field selection signal F SEL.

Horizontal carries are propagated through the gates only if F SEL = 1. Otherwise

the outputs will be zero.

Compared to the large number of gates that the multiplier consumes in its regular

configuration, the increase in number of gates caused by the addition of this feature

is irrelevant, yet the functionality of the whole circuit is improved dramatically.

6.1.4 Final Adder

The purpose of the Final Adder is to convert the redundant carry-save representation

of the product back into non-redundant form. To do so it has to add the sum outputs

from all columns but the first to all the carry outputs shifted left by one position.

The first sum output from column 0 is directly taken as the final result. The carry

CHAPTER 6. SYSTEM ARCHITECTURE 53

vector is 2w − 1 bits long and the sum vector 2w − 2 bits. The final non-redundant

result is of length 2w.

The straightforward approach to implement this final adder would be to simply

choose the fastest available adder circuit for 2w−1 bits and place it after the column

compression network. The usual choice of adders would include Carry-Select adders

and members of the Carry-Look-Ahead family. The problem of this approach is,

however, that the fast adder architectures consume a much higher number of logic

gates per bit than simpler circuits such as Ripple Carry Adders.

The typical delay given for these fast adders relies upon the assumption that all

input operands are available at the same time. However, if we take a closer look at

the arrival time profile of the column compression outputs, we realize that the middle

columns have the largest delay, while the columns at the edges arrive first. Based on

this observation that were first made in [OVL96] we can build a hybrid final adder

based on the arrival profile of the column compression layer.

For this purpose we partition the delay profile into a zone with growing delay, a

plateau section where the delay is nearly constant, and a region of decreasing delay.

For the first region we can use a simple ripple adder for as long as the carry ripple

time is less than the delay of the compression tree. As soon as both delays approach

the same value, a fast adder such as a Carry-Look-Ahead continues the addition and

covers the rest of the plateau section and a little of the zone with decreasing arrival

CHAPTER 6. SYSTEM ARCHITECTURE 54

times. For the last section a simpler adder type can be used in conjunction with

a Carry Select type of mechanism. Two simple adders of the same type can start

adding up the same inputs, with the only difference being the value of the incoming

carry. When the real carry in is available from the fast adder, it can be used to select

the correct result using a multiplexer.

This technique helps reduce both the delay and the gate count of the final adder,

by overlapping the final addition with column compression and reducing the size of

the adder in the critical section of the delay profile.

6.2 MM Engine

The MM Engine is the combination of the two unified digit multipliers with a three

input adder into a two stage pipelined block. The name was chosen, because this

component delivers the computational power of the arithmetic unit, but it relies on

control signals coming in from the outside, much like the engine of a car delivers the

movement, but needs to be controlled by either the driver or the cruise control.

Each of the two digit multipliers is followed by a register. A mul enable signal for

each of these is used to control its behavior to either accept a new result from the

multiplier at the time of a clock edge, or preserve its value. These two registers mark

the boundary of the first pipeline stage of the engine.

In the second stage, a three input unified adder sums up the results of both

CHAPTER 6. SYSTEM ARCHITECTURE 55

multipliers of width 2w along with a third value, which is the feed-back of the upper

w+1 bits of the previous cycle’s result shifted to the right by w positions. The adder

operates in two steps:

1. One row of half and full adders combine the three input operands into carry-

save notation. Since one operand is only w + 1 bits long, half adders combine

the upper w − 1 bits of the full-size operands, while full adders combine the

common portion. The sum outputs of the adder cells now contain the pure

XOR sum as necessary for the polynomial arithmetic mode.

2. In order to provide carry propagation as needed in the integer arithmetic mode,

a carry select adder of width 2w adds the sum outputs with the carries shifted

left by one bit position, much in the same way it was done with the multipliers’

final adders. The only difference here is that the arrival of the operands is close

to homogeneous and using a combination of different adders does not give any

advantage.

The final 2w + 1 bits wide result is selected to be either the sum outputs of the

half/full adders in step 1, or the outputs of the carry select adder, depending on

the F SEL signal. Again, the added functionality requires only very little additional

gates, in this case the multiplexers necessary for bypassing the carry select adder.

The critical path of the second pipeline stage is clearly shorter than that of the

first stage, which includes the digit multiplier. Balancing the two stages in terms of

CHAPTER 6. SYSTEM ARCHITECTURE 56

delay would certainly be beneficial for achieving a higher clock frequency, but it is

connected with a number of other problems, like additional latency during the initial

computation of the parameter U . Another possibility might be to add a third pipeline

stage by partitioning the multipliers into two balanced stages. Again this would mean

increased latency during initialization, but it would also influence the clock period

in a positive way. Such ideas have not been investigated any further yet, but could

prove interesting for further research.

6.3 Pipeline Stage (MM Unit)

The MM Unit serves as a kind of shell for the MM Engine by adding a finite state

machine controlling the data path. It also adds registers for holding the parameter U

once it is computed, and for a local copy of the input B[j] which does not change in

the course of executing the inner loop of the algorithm. Another important element

in the unit is the word counter. It is used for keeping track of the iteration count and

changing states accordingly. The counter’s start value is not fixed to any particular

value, but has to be loaded once the unit is started up. This feature is crucial to the

scalability of the design. If it were fixed to a specific value the design could not be

used for any different operand sizes. This flexibility is very important in the context

of algorithm agility, the possibility to run different algorithms with different sets of

parameters and security settings.

CHAPTER 6. SYSTEM ARCHITECTURE 57

Upon reset the MM unit enters the idle state MM IDLE. This is the state when

the unit is inactive. Apart from being the reset state, MM IDLE is also entered after

all inner loop iterations have finished. The only task for the unit in the idle state is

to wait for a clock edge while the control signal START NEXT is low. Then it enters

the first of the three states in the initialization phase, MM INIT0.

6.3.1 Initialization Phase

During the initialization phase of the unit, the control logic sets up the data path

for computation of the parameter U , which is then stored in a local register for use

throughout the inner loop.

For the three steps of this initialization phase only one multiplier is active at a

time, due to data dependencies. Once completed, however, both multiplier cores are

utilized in every cycle throughout the inner loop.

The three initialization cycles are as follows (CS1 and CS2 denote the double

precision outputs from the multipliers, before they are added to form CS):

MM INIT0 Multiplier 1 computes CS1 = A[0]B[j] +D[0]

MM INIT1 Multiplier 2 computes U = S1M
′ (mod 2w)

MM INIT2 Multiplier 2 computes CS2 = UM [i]

These three steps only take place inside the first pipeline stage of the unit. CS1

CHAPTER 6. SYSTEM ARCHITECTURE 58

is kept inside the latch during steps 2 and 3. Thereby, one cycle later, CS1 and CS2

can be added together in the second stage of the unit, while at the same time the

next set of inputs, A[1], B[j], D[1] and M [1], enters the first stage.

Note that the initialization step does not produce any output, yet. The idea

behind Montgomery Multiplication is to add such a multiple of the modulus to the

product, that the lowest word becomes zero. Thereby we can safely shift the result

to the right without loosing any data, i.e. divide by R.

6.3.2 Execution Phase

During the last of the three initialization steps, when the unit is in state MM INIT2,

the unit loads the number of words to be computed into the counter, and with the

next positive clock edge changes from initialization phase to execution phase. The

unit then is in the state MM RUN, where it produces a new intermediate result D[i]

with each clock cycle.

The first new output D[0] is available after the second set of inputs, A[1],M [1]

and the former D[1], has passed through the unit, i.e. after the second cycle of the

execution phase has completed. The output can either be stored in a temporary

register and reused in the following runs of the unit, or it can be fed into a subsequent

unit that is started with a delay of five cycles. In the latter case it is necessary to

have D[0] available to the next unit during its first cycle.

CHAPTER 6. SYSTEM ARCHITECTURE 59

However, the input to the next pipeline stage requires the second word D[1] three

cycles after D[0], since the new unit goes through its own initialization phase of

computing U in three steps. After that each subsequent word D[i] again enters the

next stage with every clock cycle.

B[j]

A[i]

M[i]

D[i]

MM
Engine

MM
Engine

MM
Engine

FSMFSMFSM

DelayDelay

M
U

X

M
U

X

start_next

MM Unit MM Unit MM Unit

start_next

FSM

Result

FIFO

Figure 6.2: Pipeline structure

Another thing that should be noted is that the inputs A[i] and M [i] pass through

each pipeline stage without change. This means they need only be read from memory

once, for the first stage, and can then be passed from stage to stage with the right

amount of delay. This greatly simplifies the memory access scheme and also reduces

the load on those wires.

Based on these timing requirements, which are illustrated in Table 6.1, we define a

CHAPTER 6. SYSTEM ARCHITECTURE 60

group of delay registers to be inserted between neighboring pipeline stages. The por-

tion responsible for the delay of D[i] consists of 2 registers of width w. It additionally

features a bypass multiplexer which directly passes D[0] on to the next pipeline stage

the instant it is available at the output of the previous stage. All the other words

D[i], i = 1 . . . e−1 are delayed by the two registers. The remaining registers provide a

constant delay of five clock cycles for the data path of A[i] and M [i], which branches

off from the input to the first stage and is routed around the unit. A detailed view

of the pipelining structure is provided in Fig. 6.2.

6.4 FIFO Buffer Queue

The task of the FIFO buffer queue depicted in figure 6.2 is to act as cyclic temporary

storage for the intermediate result words D[i]. During the course of the algorithm

these are being worked on over and over again, until the final result is ready. Since

the number of words is variable, there is no way to tell how long a particular word

needs to be delayed before it can be fed back into the first pipeline stage. Therefore

a FIFO of sufficient storage capacity is necessary. What size is sufficient depends on

the maximum operand length the Montgomery multiplier is supposed to handle, as

well as the word size and number of pipeline stages of the design.

From the pipeline timing in table 6.1 it is clear to see how for each pipeline stage

D[0] leaves the unit at the time D[3] enters it. Hence there are three words D[i] in

C
H

A
P

T
E

R
6.

S
Y

S
T

E
M

A
R

C
H

IT
E

C
T

U
R

E
61

Stage 1 Stage 2 Stage 3

Clk in temp out in temp out in temp out

0 A[0], B[0], D[0]
1 M ′ S1, CS1

2 M [0] U
3 A[1],M [1], D[1] CS2

4 A[2],M [2], D[2] CS1, CS2 0
5 A[3],M [3], D[3] CS1, CS2 D[0] A[0], B[1], D[0]
6 . . . CS1, CS2 D[1] M ′ S1, CS1

7 . . . D[2] M [0] U
8 D[3] A[1],M [1], D[1] CS2

9 . . . A[2],M [2], D[2] CS1, CS2 0
10 A[3],M [3], D[3] CS1, CS2 D[0] A[0], B[2], D[0]
11 . . . CS1, CS2 D[1] M ′ S1, CS1

12 . . . D[2] M [0] U
13 D[3] A[1],M [1], D[1] CS2

14 . . . A[2],M [2], D[2] CS1, CS2 0
15 A[3],M [3], D[3] CS1, CS2 D[0]
16 . . . CS1, CS2 D[1]
17 . . . D[2]
18 D[3]
19 . . .

T
ab

le
6.1:

P
ip

elin
e

organ
ization

an
d

tim
in

g

CHAPTER 6. SYSTEM ARCHITECTURE 62

each unit, if the unit is in its execution phase. Between neighboring units there are

chains of delay registers for timing the data. The chain responsible for delaying D[i]

is exactly two registers long. This means that a fully working pipeline in which all p

units are in execution phase can hold a maximum of Npmax words of D[i], where

Npmax = 2(p− 1) + 3p = 5p− 2. (6.1)

The number of words D that are being processed the unit is e =
⌈
N
w

⌉
, where N

denotes the operand size in bits. In the beginning of the computation, all words of

the temporary result are zero, so they do not have to be stored explicitly. Only after

having passed through the pipeline at least once, they have to be temporarily stored

in the FIFO, until the first stage is free again. Therefore the maximum number of

words that must fit inside the FIFO is exactly the difference between the total number

of words and the maximum number of words inside the pipeline.

NFIFO = e−Npmax =

⌈
N

w

⌉
− (5p− 2) (6.2)

To be on the safe side and to also allow for extra precision in case the need arises,

this value should be only considered as the absolute bare minimum of storage space

in the FIFO. It is recommended to allow for extra space when designing the FIFO.

Chapter 7

Implementation

This chapter discusses the design process that has been followed in the course of

realizing the Montgomery multiplier. The typical flow for custom digital ASIC design

has been covered only partially, simply because it was not the purpose of this work

to produce actual silicon. Rather it can be viewed as a proof of concept that the

architecture is feasible for an efficient hardware implementation of Montgomery’s

algorithm.

7.1 Design Methodology

An algorithmic description of a particular version of Montgomery’s method, the Finely

Integrated Operand Scanning (FIOS) method, in pseudo-code served as the basis for

the hardware. It was thoroughly analyzed for potential parallelization. Different

63

CHAPTER 7. IMPLEMENTATION 64

arrangements of arithmetic units and data paths have been investigated in the process.

In order to implement the arithmetic cores like the digit multipliers and adders

efficiently, it was necessary to investigate the latest findings in integer multiplier

design. Books on Computer Arithmetic, e.g. [Kor93] and [FO01], were a good starting

point, that was augmented by further literature search on the subject. The IEEE

Xplore database proved to be an invaluable tool for this purpose, as well as the

Google World Wide Web search engine.

Once the architecture was specified, the components of the design were described

the in structural VHDL code. This approach makes the performance of the design

less dependent on the synthesis features of the VHDL compiler suite. Only the

components containing a finite state machine were expressed in a mixture of structural

and algorithmic description and state machine encoding was left to the compiler.

7.1.1 Functional Verification

At several times during the design process, the correct function of the components has

been verified using a VHDL testbench. A testbench essentially is a piece of behavioral

VHDL code without any signals to the outside, that instantiates the component that

is to be tested, also called Device Under Test (DUT), feeds specific data to its inputs

(test vectors or patterns) and reads back the results, comparing them to the expected

results.

CHAPTER 7. IMPLEMENTATION 65

Testing a complex computer arithmetic architecture presents a special challenge

to the designer of a testbench. The test patterns that have to be generated can not

just simply be random vectors, but need to make sense in terms of the computation

that is to be performed. Next to the input test patterns there also have to be the

corresponding output vectors for comparison. In addition to the correct values, the

correct timing of the data, with respect to the clock cycle in which it enters or leaves

the circuit, is also very important. The architecture consists of many stages of logic

and intermediate register stages, therefore the output of results does not necessarily

coincide with the input of test vectors.

Functional verification does not take into account the different critical path de-

lays a design has. The critical path delay is directly related to the maximum clock

frequency a design can run with, and will only be determined at the time of synthesis.

7.1.2 Synthesis

After the design has been successfully verified, the next step is to synthesize it into a

net list using elementary gates provided by the technology vendor. For the purposes

of this thesis the 0.5µ AMI 05 CMOS technology from Mentor Graphics’ ASIC Design

Kit (ADK) [Gra] was found to be adequate, since it allows for a good comparison of

this design with the previously proposed ones.

Exemplar Logic’s LeonardoSpectrum has been used to synthesize the design into

CHAPTER 7. IMPLEMENTATION 66

a net list and to produce preliminary timing estimates. Preliminary, because the

synthesis tool does not take care of placement and routing of the elementary gates, so

the exact wire delay from interconnects cannot be determined. Still, the critical path

delay reported by the synthesis tool can give a good indication of what the expected

performance of the design will be like, since a linear wire-delay model adds a global

amount of wire delay based on the area of the design. At feature sizes at and above

0.5µ wire delay is not such a critical issue as long as most wires are local and kept

short, which is the case in most of this design.

The result of the synthesis are typically two files, (1) structural VHDL code of the

flattened design based on the components of the specific technology, and (2) timing

information in Standard Delay Format (SDF). For every basic elementary gate in the

design the SDF file contains the path delay for every possible path between input

and output ports. The structural VHDL output is usually used in conjunction with

an SDF file to perform back-annotated timing simulation.

7.1.3 Back-Annotated Timing Simulation

The synthesized design is run through the functional simulation again, using the same

testbench as before, only this time timing information is provided in form of the SDF

file and the delay of every signal can be inspected. In this step timing related problems

can be detected much better than in a pure functional simulation. It is also useful

CHAPTER 7. IMPLEMENTATION 67

for verifying the maximum clock frequency reported by the synthesis tool.

7.2 Test Pattern Generation

The test vectors for the testbench were created using Maple V. It first generates a

random set of numbers of length N bits which are then transformed into the Mont-

gomery Residue Number System (RNS). Then the numbers are split into single words

of the size w and stored in an array and in the testbench stimuli file. The stimuli file

contains all the necessary input words in the right order as the design expects them.

This file is read by the testbench using VHDL file operations, and the test stimuli are

fed to the top level design.

The Maple testbench generator program continues by performing the exact same

algorithm 3 that is the basis for the architecture. Thus all steps produce exactly

the same intermediate results that are expected from the design. These intermedi-

ate results are written out into a different file for comparison with the simulation

results that occur during computation of the Montgomery product. This makes the

debugging process much easier and enables the verification of the interaction between

pipeline stages. At the current time the results are still inspected manually, but an

automatic testbench verification is possible.

Chapter 8

Results

This chapter presents and discusses the results obtained from the synthesis tools and

from extrapolation for a number of different parameter settings. Specifically this

means delay and area efficiency for several configurations with different choices of

wordsize w, numbers of pipeline stages p and optimization efforts.

Since the design has so far only implemented for the word sizes w = 4 and 8,

the timings for w = 16 and 32 have been extrapolated. The equation used for ex-

trapolation, Eq. 8.3, takes into account the individual contribution of each separate

component to the overall delay, based on the word size w. These delay characteristics

have been taken directly from established literature [Kor93] [FO01] and are believed

to be acurate. For example, the error between estimated and reported critical path

for word sizes w = 4 and 8 is less than 3%, so that the estimated critical path delay

68

CHAPTER 8. RESULTS 69

for w = 16 and 32 is considered to lie within an acceptable margin of error.

The following performance evaluation will discuss different aspects of the design’s

capabilities by not only presenting the speed in different configurations, but also by

taking area consumption into account.

8.1 Performance Evaluation

Performance of an arithmetic architecture can be evaluated in a multitude of ways,

depending on its expected use. The most common performance evaluation certainly

is to measure the time necessary for computation of a benchmark test. The rules are

simple, the faster a design performs, the better it is. However, there are cases in which

this rule does not apply. Certain applications and environments in which low power

consumption and/or a small footprint on the chip area are regarded more important

than pure number crunching capabilities, the time × area product has become a

vital measure of comparability. With the growing popularity of mobile handheld

appliances and increased deployment of smartcards this method of evaluation is on

the rise, while simple benchmarks, purely focused on speed, tend to be important to

high-performance computing applications only.

The overall speed of the architecture in this thesis is dependent on the number

of clock cycles needed to perform a multiplication for a given operand size, but also

on the clock period that can be achieved. While the former is purely a parameter of

CHAPTER 8. RESULTS 70

the configuration (w, p), the latter is also dependent on the chosen technology and

optimization efforts of the synthesis tool.

Interestingly enough the clock period does not seem to be dependent on the num-

ber of pipeline stages p in the design. This appears logical since the data path of each

arithmetic unit ends in a set of registers which represents a boundary for the critical

path. Exact replication of the same unit over and over again therefore should not

have significant influence on the clock period. This observation, however, was made

without taking influences of wire delays into consideration, so the real impact of the

parameter p is unknown. Nevertheless, the potential number of long wires is limited

to certain control signals and the clock tree, and compensation for these effects is

possible.

8.1.1 Influence of Pipelining on Performance

This first part of the performance analysis focusses on the influence of pipelining

on the performance of the architecture in connection with the word size of the data

path. The direct influence of the word size on the speed of the architecture, however,

is not considered here, only its saturating influence on pipeline effectiveness. The

number of pipeline stages p and the word size w of the system data path are put into

context with the total number of clock cycles Zclk necessary for performing a single

Montgomery multiplication with N bits of precision.

CHAPTER 8. RESULTS 71

The number of clock cycles Zclk can be expressed as in the following equation:

Zclk =

⌈
N

wp

⌉(⌈
N

w

⌉
+ 5

)
+ 5

(⌈
N

w

⌉
+ (p− 1) mod p

)
− 1 (8.1)

The equation can be broken down in the following way:

1.
⌈
N
wp

⌉
is the number of times the intermediate result cycles through the pipeline

to complete the outer loop of the algorithm

2.
(⌈

N
w

⌉
+ 5
)

denotes the number of clock cycles used for the inner loop including

the five clock cycles initial latency

3. 5
(⌈

N
w

⌉
+ (p− 1) mod p

)
accounts for the additional cycles spent on pipeline

delay

4. −1 is the final stage correction

Note that for some values of p the utilization of the pipeline starts to saturate, i.e.

when the complete operands fit into the pipeline. The first pipeline stage then has

to wait until the last stage starts producing output again. This point of saturation

is reached when the condition 5p >
⌈
N
w

⌉
+ 5 is fulfilled. In that case the number of

clock cycles is increased by the number of unused or idle clock cycles Zidle which can

be expressed as

Zidle =

⌊
N − 1

wp

⌋(
5p−

⌈
N

w

⌉
− 4

)
(8.2)

CHAPTER 8. RESULTS 72

An example with real numbers helps to illustrate the impact that additional

pipeline stages have on reducing the total number of clock cycles. Two different

operand sizes of real world importance have been selected to give a further hint of

how the architecture is expected to perform in a given application. Two tables give

the number of clock cycles for a given pipeline depth.

The first case withN = 256 bits (table 8.1) corresponds to an application involving

an Elliptic Curve Cryptosystem with a high security setting. The second example with

N = 1024 bits (table 8.2) is relevant to modular exponentiation based systems like the

Digital Signature Algorithm (DSA) or the RSA cryptosystem, with a medium level

of security. More information on the relationship between operand size and security

level of different cryptosystems can be found in [LV00].

p 1 2 3 4 5 6 7 8 9 10

w = 4 4415 2212 1517 1118 911 773 689 586 551 497

w = 8 1183 596 411 310 263 226 199 194 194 194

w = 16 335 172 125 98 98 97 97 96 96 96

w = 32 103 56 49 48 48 48 48 47 47 47

Table 8.1: Number of clock cycles for 256-bit operands

The effect of pipeline saturation is nicely visible for large values of w in table 8.1.

For relatively short operand sizes like N = 256 it therefore makes less sense to have

CHAPTER 8. RESULTS 73

p 1 2 3 4 5 6 7 8 9 10

w = 4 66815 33412 22445 16718 13571 11237 9671 8386 7583 6810

w = 8 17023 8516 5723 4270 3467 2930 2531 2162 1999 1763

w = 16 4415 2212 1517 1118 911 773 689 586 551 497

w = 32 1183 596 411 310 263 226 199 194 194 194

Table 8.2: Number of clock cycles for 1024-bit operands

a long pipeline in conjunction with a wide data path. For the second case with

N = 1024, however, the advantage of a long pipeline is obvious, since the speed-up

factor is almost directly proportional to the number of stages.

8.1.2 Influence of the Word Size on Performance

The performance of the architecture is dependent on the word size of the system

data path in two different ways. One of them is apparent from the structure of the

parallel digit multiplier core. The partial product array is basically a skewed matrix

of w × w bits. If w increases, this means that more partial products need to be

added together, thereby adding to the critical path. By using a tree based column

compression technique, the critical path only grows logarithmically with w.

The second dependence on w is not as apparent, and is hidden in the final adder

that is responsible for carry propagation. As in the case of column compression the

CHAPTER 8. RESULTS 74

delay introduced by the addition techniques used in the final adder grows logarith-

mically with w.

The total delay the multiplier is composed of consists of (1) the delay of partial

product generation tpp, (2) multiplier column compression tcc, (3) final addition tfa

and (4) multiplexing according to field selection tmux. The result of the multiplication

needs to be stored in a register, therefore we also have to take into account the setup

time and clock to Q propagation delay of a typical D-Flipflop. For the total critical

path delay in the case of GF (p) this gives us

tcp = tpp + tcc + tfa + tmux + tFF

= tg(2 + 4
⌈
log3/2 w

⌉
+ 4(dlog3 we − 1) + 4) + tFF

(8.3)

Thus, for a technology dependent average gate delay of tg = 0.6ns and tFF = 1.5ns

(AMI 0.5µ slow CMOS process) we can estimate the critical path delay to be 21.9 ns

for a word size of w = 8. Similarly, after applying the equation above for w = 16 , we

get an estimate of 26.7 ns for the total delay. Please note, that in the case of GF (2n)

the final adder is not used, so there is a performance improvement of tfa which will

allow us to run the circuit at an even higher speed.

Equation 8.3 was found to approximate the clock period in dependence on the

word size w with appropriate accuracy for extrapolation purposes. Using the actual

timing reports from implementations for w = 4 and 8 the error between delay reported

by the synthesis tool and delay estimated using equation 8.3 was determined as:

CHAPTER 8. RESULTS 75

For w = 4:

Tsynth = 16.72ns

Test = 17.10ns

∆ =
|Tsynth−Test|

Tsynth
= 2.3%

For w = 8:

Tsynth = 22.47ns

Test = 21.90ns

∆ =
|Tsynth−Test|

Tsynth
= 2.5%

The error between estimated and actual reported clock period is less than 3%.

This is good enough for using the equation to extrapolate the clock period for word

sizes that could not be implemented as part of this thesis.

Design Clock period [ns]

w = 4 (Speed opt.) 16.72

w = 4 (Area opt.) 23.64

w = 8 (Speed opt.) 22.47

w = 8 (Area opt.) 32.57

w = 16 (extrapol.) 26.7

w = 32 (extrapol.) 33.9

w = 64 (extrapol.) 38.7

Table 8.3: Clock periods for different word sizes

Table 8.3 lists the clock periods found, either empirically or by extrapolation, for

different sizes w and optimizing strategies. By optimizing for little area instead of

CHAPTER 8. RESULTS 76

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64

C
lo

ck
 p

er
io

d
[n

s]

Word size in bits

Figure 8.1: Clock period with respect to word size

for minimal delay, the synthesis tool tries to re-use as many gates as possible, so

that the total number of gates is decreased. This strategy sacrifices speed over chip

area and might be the ideal choice in cases where the design has special low-power

requirements, as in mobile applications. The graph in figure 8.1 shows nicely how the

clock period only increases logarithmically with the word size.

Another important benchmark by which the efficiency of a design can be measured

is the amount of area it consumes. Table 8.4 lists the area requirements of the design

with varying data path word sizes for different numbers of pipeline stages. For w = 16

and 32 the required area is unknown since those word sizes have not been implemented

yet. What is known, however, is the general structure of the architecture, which can

CHAPTER 8. RESULTS 77

be used in extrapolating the anticipated chip area. Based on the reported areas

from implemented designs and a concept of how the word size influences the area

of particular components of the architecture, equation 8.4 was used for estimation

purposes. For a fixed value of w the area is almost exactly linearly dependent on p,

as is evident from figure 8.2.

AMM(w, p) = 25 · w2 + (306 · p− 77.5)w + 190 · p+ 300 (8.4)

Design Area (equivalent gates)

p Word size w

4 8 16 (est.) 32 (est.)

1 1785 3901 10546 33402

2 3619 8159 22032 68984

4 7251 16632 45004 140148

8 14502 33584 90948

16 29014 67488

32 58038

Table 8.4: Area for different word sizes

CHAPTER 8. RESULTS 78

1k

10k

20k

50k

100k

5 10 15 20 25 30

A
re

a
in

 e
qu

iv
al

en
t g

at
es

Number of pipeline stages

w=4
w=8

w=16
w=32

Figure 8.2: Area requirements of different (w,p) configurations

8.2 Analysis of Results

Using the clock periods of a couple of design choices from table 8.3 and the number

of clock cycles from tables 8.1 and 8.2, the total time necessary to compute a Mont-

gomery product for precision N is easily computed. The results have been plotted to

a graph and included as Figure 8.3 and Figure 8.4.

The influence of pipelining is clearly visible in the hyperbolic shape of the curve.

As expected, designs with a larger radix perform superior compared to those with

a small w. At the same time, however, the speed improvements through pipelining

saturate much faster, so that adding more stages does not produce further speed-up.

CHAPTER 8. RESULTS 79

0

5

10

15

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10

T
im

e
[u

s]

Number of Pipeline Stages p

w=4, speed optimized
w=4, area optimized

w=8, speed optimized
w=8, area optimized

w=16, estimated
w=32, estimated

Figure 8.3: Total time for 256 bit operands

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16

T
im

e
[u

s]

Number of Pipeline Stages p

w=4, speed optimized
w=4, area optimized

w=8, speed optimized
w=8, area optimized

w=16, estimated
w=32, estimated

Figure 8.4: Total time for 1024 bit operands

CHAPTER 8. RESULTS 80

8.2.1 Speed

The maximum speed that can be achieved with the new architecture in certain con-

figurations is able to compete with and outperform the previously proposed bitserial

and Radix-8 Montgomery based designs. The minimum total time needed for a 256

bit Montgomery product sinks below 2µs in configurations where w is high. Unfor-

tunately this does not necessarily mean that the design is preferable over a bitserial

design in every case. The area consumption increases dramatically with the word

size. In order make a valid statement about the efficiency of a configuration, the time

× area product needs to be evaluated for each configuration.

8.2.2 Time × Area Product

The time× area product gives an idea about how much chip area needs to be sacrificed

for a certain targeted speed. Using the mathematical toolkit Maple and the formulae

for time and area requirements developed so far, the values of the time × area product

for all configurations w = 4 . . . 32, p = 1 . . . 20 have been computed for N = 256, 1024

and sorted by ascending area requirements. The resulting graphs in figure 8.5 and

figure 8.6 give a clear overview of the tradeoff that is involved.

In the first graph for N = 256 we can see that the area necessary for achieving

a time of less than 2µs is close to 70,000 equivalent gates. This number of gates is

much too high for applications with limited available area. If we settle for a little

CHAPTER 8. RESULTS 81

1

2

5

10

20

50

100

1k 2k 5k 10k 20k 50k 100k 200k 500k

T
im

e
[u

s]

Area in equivalent gates

w=4
w=8

w=16
w=32

Figure 8.5: Time - area tradeoff for 256 bit operands

1

2

5

10

20

50

100

200

500

1000

1k 2k 5k 10k 20k 50k 100k 200k 500k

T
im

e
[u

s]

Area in equivalent gates

w=4
w=8

w=16
w=32

Figure 8.6: Time - area tradeoff for 1024 bit operands

CHAPTER 8. RESULTS 82

less performance, such as 4.5µs, the area requirements shrink to 22,000 gates. This

is still a lot when compared with the timings from the bitserial design which reaches

its maximum speed at 3.2µs for 256 bits, albeit at area costs of about 13,000 gates.

We see a similar pattern in the graph for N = 1024, where our design reaches an

execution time of 40µs with an area of 33,000 gates. It does not matter much that

the absolute minimum time achieved with our design is 6.6µs, about twice as fast at

almost seven times the area.

A couple of remarks on our design:

• The word size w influences both the width and, most importantly, the depth

of the digit multipliers. The radix-8 design presented in [TTK01] has a fixed

depth of three bits and only varies the width. Therefore a larger word size

does not influence the clock period as much as in our design, and more bits can

be processed in the same clock cycle at a higher speed. Making the word size

independent of the multiplier depth is one item to be investigated in further

research.

• Except for the bitserial design in [STK00] the two other architectures can not

handle binary polynomial arithmetic. While its support does not contribute

significantly to the latency, it does not come for free in terms of area cost. Our

design is able to handle both types of arithmetic, and offers a huge potential of

further flexibility. At the time of writing this thesis an attempt [O’R02] is under

CHAPTER 8. RESULTS 83

way to extend this architecture to additionally handle the NTRU cryptosystem’s

Star Multiplication of polynomial rings.

• The bitserial and the radix-8 design both defer carry propagation until the very

end of the algorithm, while our design fully propagates the carries in each clock

cycle. This has a negative effect on the clock period and therefore is the prime

target for future optimization.

• In contrast to the previous designs, where the start-up latency of each pipeline

stage is two clock cycles, our architecture has a latency of five. This in effect

reduces the potential for parallelization through pipelining. The same goes for

the higher radix due to a high w. The number of words e = dN
w
e that are

processed in the inner loop of the algorithm is inversely proportional to the

word size, thereby reducing the maximum pipeline length.

Chapter 9

Conclusions

A new architecture for modular multiplication based on Montgomery’s algorithm has

been proposed, which combines positive features from previously proposed architec-

tures with recent advances in digit multiplier design. The result is a highly scalable

design with the ability perform integer and binary polynomial modular arithmetic at

high speeds.

Analysis of previous work proved to be essential and forms the foundation for

the proposed new architecture. The most important result of this analysis was to

identify the bit serial approach to multiplication as the limiting factor. By basing our

contribution on bit-parallel digit multipliers we tried to get around this limitation

and achieved promising results.

Although the design is still in its early stages and a number of improvements

84

CHAPTER 9. CONCLUSIONS 85

are necessary to reach peak performance, the point has been made that high radix

multiplication is a viable alternative to bit serial multiplication. The architecture has

been implemented in VHDL, synthesized and tested successfully. Preliminary timing

analysis shows that even at this early stage the performance is acceptable. The main

bottlenecks have been identified and can thus be tackled with an improved design.

The flexibility of the architecture stems from the fact that the radix and therefore

the word size of the data path is not limited, and neither is the number of pipeline

stages. This makes the design fit in a large number of application contexts ranging

from high performance network processor down to hand held appliances. Once the

performance bottlenecks have been removed, the architecture is a real contender.

9.1 Further Research

As mentioned earlier the architecture presented in this thesis is an early prototype

and there are some issues left that need to be addressed to improve performance:

• Making the word size and therefore the multiplier width independent from the

multiplier depth to improve the throughput,

• Deferring carry propagation until the very end of the algorithm by deploying

carry save addition as much as possible

• Reducing the start-up latency of the initialization step to improve the pipeline

effectiveness

CHAPTER 9. CONCLUSIONS 86

The ultimate goal of our research is to create a flexible hardware solution capable

of addressing the current and future needs for security of information. As advances

are being made in the field of cryptanalysis, the security parameters of cryptographic

systems, such as key sizes, but also complete algorithms, need to adapt. To protect

investment in the infrastructure of information systems, scalable and flexible archi-

tectures become increasingly important. The presented research is one of the first

steps towards this goal, but many more must follow.

A number of primitives for various types of arithmetic need to be identified and

implemented efficiently in an algorithm agile security processor. The list includes,

but is not limited to

• modular squaring of integers and polynomials

• modular inversion

• modular convolution of polynomials

• new types of operations, e.g. data dependent permutations, etc.

Bibliography

[Ber01] D. J. Bernstein. Circuits for integer factorization: A proposal.

http://cr.yp.to/papers.html#nfscircuit, 2001.

[Boo51] A. D. Booth. A Signed Binary Multiplication Technique. Quarterly Jour-

nal of Mechanics and Applied Mathematics, pages 236–240, June 1951.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, IT-22:644–654, 1976.

[FO01] M. Flynn and S. Oberman. Advanced Computer Arithmetic Design. John

Wiley & Sons, INC., New York, 2001.

[Gra] Mentor Graphics. ADK HTML Data Book AMI 0.5 Micron.

http://www.mentor.com/partners/hep/AsicDesignKit/dsheet/ami05-

databook.html.

[Gro00] J. Großschädl. High-Speed RSA Hardware Based on Barret’s Modular

Reduction Method. In Çetin K. Koç and Christof Paar, editors, Work-

87

BIBLIOGRAPHY 88

shop on Cryptographic Hardware and Embedded Systems — CHES 2000,

volume LNCS 1965, pages 191–203, Worcester, Massachusetts, USA, Au-

gust 17–18 2000. Springer-Verlag.

[Gro01] J. Großschädl. A Bit-Serial Unified Multiplier Architecture for Finite

Fields GF (p) and GF (2m). In Ç. Koç, D. Naccache, and C. Paar, editors,

Workshop on Cryptographic Hardware and Embedded Systems — CHES

2001, pages 206–223, Paris, France, May 2001. Springer-Verlag.

[KA98] Ç. K. Koç and T. Acar. Montgomery Multplication in GF (2k). Design,

Codes, and Cryptography, 14(1):57–69, 1998.

[KAK96] Ç. K. Koç, T. Acar, and B. Kaliski. Analyzing and Comparing Mont-

gomery Multiplication Algorithms. IEEE Micro, pages 26–33, June 1996.

[Kor93] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall, 1993.

[LV00] A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In Hideki

Imai and Yuliang Zheng, editors, Third International Workshop on Prac-

tice and Theory in Public Key Cryptography — PKC 2000, volume LNCS

1751, Berlin, 2000. Springer-Verlag.

[Mon85] P. L. Montgomery. Modular Multiplication without Trial Division. Math-

ematics of Computation, 44(170):519–521, April 1985.

BIBLIOGRAPHY 89

[MvOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

[O’R02] C. M. O’Rourke. Efficient NTRU Implementations. Master’s thesis, ECE

Department, Worcester Polytechnic Institute, Worcester, Massachusetts,

USA, May 2002. Work in Progress.

[OVL96] V. G. Oklobdzija, D. Villeger, and S. S. Liu. A Method for Speed Opti-

mized Partial Product Reduction and Generation of Fast Parallel Multi-

pliers Using an Algorithmic Approach. IEEE Transactions on Computers,

45(3):294–306, March 1996.

[STK00] E. Savaş, A. F. Tenca, and Ç .K. Koç. A Scalable and Unified Multiplier

Architecture for Finite Fields GF (p) and GF (2m). In Çetin K. Koç and

Christof Paar, editors, Workshop on Cryptographic Hardware and Embed-

ded Systems — CHES 2000, pages 277–292, Berlin, Germany, LNCS 1965

2000. Springer-Verlag.

[TK99] A. F. Tenca and Ç. K. Koç. A Scalable Architecture for Montgomery Mul-

tiplication. In Ç. Koç and C. Paar, editors, Workshop on Cryptographic

Hardware and Embedded Systems — CHES 1999, volume LNCS 1717,

pages 94–108, Worcester, Massachusetts, USA, August 1999. Springer-

Verlag.

BIBLIOGRAPHY 90

[TTK01] A. F. Tenca, G. Todorov, and Ç. K. Koç. High Radix Design of a Scalable

Modular Multiplier. In Çetin K. Koç, David Naccache, and Christof Paar,

editors, Workshop on Cryptographic Hardware and Embedded Systems —

CHES 2001, pages 189–205, Paris, France, May 14–16 2001. Springer-

Verlag.

[Wal64] C. S. Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions on

Electronic Computers, pages 14–17, February 1964.

	Introduction
	Motivation
	Modular Multiplication in Public Key Cryptosystems
	Keysizes and Complexity of Public Key Schemes

	Algorithm Agility and Reusability
	Scalability
	Thesis Outline

	Finite Field Arithmetic
	Definitions
	Arithmetic over Prime Fields GF(p)
	Arithmetic over Binary Extension Fields GF(2n)
	Addition
	Multiplication

	Previous Work
	Montgomery Based Multiplier Designs
	Bitserial Integer Multiplier
	Unified Bitserial Integer and Polynomial Multiplier
	Radix-8 Integer Multiplier

	Alternative Schemes for Modular Multiplication
	Scalable versus Fixed Precision Architectures
	Unified Architectures

	Montgomery Multiplication
	General Algorithm
	Word-based Algorithms
	Finely Integrated Operand Scanning (FIOS) Algorithm
	Bitserial FIOS Method
	High-Radix FIOS Method
	Complexity Comparison

	Inherent Parallelism
	Unified Digit Multiplier Core
	A Detailed Look at Integer Multiplication
	Special Case: Carryless Multiplication

	Parallel Computation of Product and Reduction
	Pipelining
	Pipelining of Multiple Arithmetic Units
	Pipelining within Arithmetic Units

	System Architecture
	Unified Digit Multiplier
	Partial Product Array
	Column Compression
	Selective Carry Propagation
	Final Adder

	MM Engine
	Pipeline Stage (MM Unit)
	Initialization Phase
	Execution Phase

	FIFO Buffer Queue

	Implementation
	Design Methodology
	Functional Verification
	Synthesis
	Back-Annotated Timing Simulation

	Test Pattern Generation

	Results
	Performance Evaluation
	Influence of Pipelining on Performance
	Influence of the Word Size on Performance

	Analysis of Results
	Speed
	Time Area Product

	Conclusions
	Further Research

