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Abstract

Imbalanced datasets are prevalent in machine learning, posing significant challenges due
to the underrepresentation of certain classes. This often leads to biased models with poor
predictive performance on minority classes. The project we completed dives into various
strategies to mitigate such biases, focusing on innovative methods that enhance model accuracy
and fairness across different data distributions. We explore ten distinct techniques, including
Nearest Neighbor Guidance (NNGuide), Parameter-Efficient Long-Tailed Recognition (PEL),
and Ensemble Learning combined with data augmentation strategies like SMOTE. Each method
was rigorously tested across popular datasets like CIFAR-10, CIFAR-100, and ImageNet-LT,
utilizing metrics such as AUROC and F1 scores for a comprehensive evaluation. Our findings
not only highlight the strengths and limitations of each approach but also guide the selection of
appropriate techniques depending on the specific characteristics of the dataset. The insights from
this research contribute to both theoretical and practical advancements in handling class
imbalance, offering a pathway to more robust and equitable machine learning applications. This
study underscores the necessity of tailored approaches to manage class disparities, paving the
way for future innovations in the field.
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Executive Summary

This paper explores various methods for addressing class imbalance in machine learning.
Class imbalance is a persistent challenge that significantly impacts model performance across
different applications. Our research systematically analyzes and compares the effectiveness of
ten innovative methods designed to enhance Out-Of-Distribution (OOD) detection and
long-tailed recognition using datasets such as CIFAR-10, CIFAR-100, and ImageNet-LT.

A few of the techniques studied include Nearest Neighbor Guidance (NNGuide), which
improves OOD detection by integrating distance-based metrics with classifier confidence;
Parameter-Efficient Long-Tailed Recognition (PEL), which optimizes the fine tuning of
pre-trained models to enhance performance on under-represented classes; and Ensemble
Learning combined with Data Augmentation strategies like SMOTE, which are crucial for
mitigating the effects of class imbalance.

Our analysis consisted of thorough statistical evaluations and performance metrics, such
as AUROC and F1 scores, to assess each method’s effectiveness across various scenarios.
Notably, methods like the Visual-Linguistic Transformer (VL-LTR) and Class-Balanced
Distillation (CBD) demonstrated significant improvements in recognizing tail classes,
showcasing their potential in real-world settings where data distribution is often skewed.

The insights gained from this comparative study not only contribute to the academic
discourse on addressing class imbalance but also provide practical recommendations for
deploying these methods in operational environments. Future work will focus on refining these
approaches and exploring their applicability in other domains, potentially enhancing the
robustness and fairness of machine learning models across diverse applications.
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Introduction and Motivation

Machine learning has emerged as a powerful tool for extracting valuable insights and
making predictions from vast amounts of data through a variety of different domains. However
when faced with the challenge of imbalance datasets, where the distribution of classes is skewed
with an uneven representation of classes, a conventional algorithm may struggle to learn from
minority class examples and exhibit biases towards the majority class. Long-tailed class
imbalance, a common problem in practical visual recognition tasks, often limits the practicality
of deep network based recognition models in real-world applications, since they can be easily
biased towards dominant classes and perform poorly on tail classes (Zhang et al., 2023). In many
real-world scenarios, the minority class instances are scarce, resulting in limited availability of
training for these classes which makes it challenging for algorithms to learn representative
patterns and features from these minority classes. Imbalance datasets are prevalent in many
real-world scenarios from fraud detection, medical diagnosis, anomaly detection, and text
classification and more (Olawale, 2020). Misclassifying the minority class instances in these
situations can come at a high cost, including financial loss, compromised security, or adverse
health outcomes. The occurrence of rare events which are represented by the minority classes
within these applications can be important when analyzing the datasets, making it essential to
develop robust and effective techniques for handling class imbalance. There are many long-tailed
learning methods that attempt to address these issues, however finding a state-of-art technique
that is well generalized over multiple datasets while effectively handling imbalanced datasets can
be challenging. In this context, the goal of this report is to explore different long-tailed learning
methods and discuss the various strategies used to handle imbalance datasets and then determine
which methods perform the best overall. We will examine the most recent state-of-the-art
approaches aimed at improving the performance and fairness of machine learning models on
imbalance datasets to highlight the recent advancements and best practices in the field of
imbalanced learning. In this report we will explore the limitations of these long-tailed learning
methods as well as discuss the strengths and weaknesses of the techniques the methods utilize
when handling class imbalance at both the data and algorithm levels.

Related Works

Nearest Neighbor Guidance
The methods described in the paper "Nearest Neighbor Guidance for Out-of-Distribution

Detection'' focus on improving out-of-distribution (OOD) detection in machine learning models
through a novel approach called Nearest Neighbor Guidance (NNGuide). Below, I've detailed the
methods used in the paper, describing the fundamental approach, the specific techniques
employed, and the evaluation framework used to test the effectiveness of these methods. The
paper begins by outlining the importance of detecting OOD samples in machine learning
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systems, particularly those deployed in open-world environments where inputs may not always
match the training distribution (Park et al., 2023). Traditional approaches, like classifier-based
scores derived from a trained network, often suffer from overconfidence, incorrectly classifying
far-OOD samples as in-distribution. The paper critiques these methods for their limitations and
sets the stage for introducing their approach. The core of the paper's methodological contribution
is the development of NNGuide, a new tool that combines the reliability of nearest neighbor
methods with the detailed, precise scoring capabilities of classifier-based approaches. NNGuide
works by leveraging both the distance-based metrics and classifier confidence scores to guide the
detection of OOD samples. This is achieved by adjusting the classifier confidence of a test input
based on its similarity to its nearest neighbors from a feature-embedded ID (in-distribution) data
bank. The specific formula used modifies the base confidence score by incorporating the mean of
the k-nearest neighbor distances, scaled by their respective confidences. This mechanism helps to
mitigate the classifier's overconfidence by bounding the confidence scores based on neighbor
proximity. The effectiveness of NNGuide is evaluated using comprehensive experiments on the
ImageNet OOD detection benchmark, including scenarios involving natural distribution shifts in
the data. They use standard OOD detection metrics like AUROC, FPR95, and AUPR to compare
NNGuide against other established methods. Their results demonstrate that NNGuide
consistently outperforms traditional approaches across various metrics and conditions. Extensive
ablation studies are conducted to parse out the contributions of different components of
NNGuide, demonstrating its robustness and adaptability to various architectures and
configurations. The paper also delves into the theoretical aspects of NNGuide, providing
propositions and proofs to support the method's efficacy. These theoretical insights underline
how the guidance mechanism works under different conditions and contribute to a deeper
understanding of why the method improves detection performance. The methods used in this
paper represent a significant step forward in OOD detection, blending robust distance-based
metrics with the nuanced capabilities of classifier-based systems through an innovative guidance
approach. The detailed experiments and theoretical backing provided help establish NNGuide as
a promising new tool for enhancing the reliability of machine learning models in varied and
unpredictable environments.

Parameter-Efficient Long-Tailed Recognition
The paper titled "Parameter-Efficient Long-Tailed Recognition" introduces a fine-tuning

method, PEL, designed to adapt pre-trained models for long-tailed recognition tasks efficiently.
PEL addresses the challenge of fine-tuning pre-trained models on long-tailed datasets, where a
few classes dominate the distribution. The method focuses on reducing overfitting and improving
performance on tail classes without extensive additional training epochs or data. The core issue
tackled by PEL is overfitting during fine-tuning, which particularly affects performance on
less-represented (tail) classes (Shi et al., 2023). Two common approaches, full fine-tuning
(adjusting all network parameters) and classifier fine-tuning (adjusting only the classifier), are
found to exacerbate overfitting. PEL introduces parameter-efficient fine-tuning (PEFT), which

6



involves adjusting a small subset of model parameters, thus preserving the pre-trained model's
discriminative power while efficiently adapting to new tasks. PEL employs various PEFT
techniques, such as:
Bias-terms Fine-tuning (BitFit): Modifies only the bias terms in the model.

Visual Prompt Tuning (VPT): Introduces learnable prompts at different model layers.

Adapter and Low-Rank Adapter (LoRA): Adds small, trainable modules within the model's
architecture without altering the majority of pre-trained weights.

AdaptFormer: A variation of the Adapter that integrates adjustments in parallel to existing model
computations.

To expedite convergence and leverage semantic relationships inherent in class labels,
PEL introduces a novel classifier initialization method. It utilizes textual features extracted from
the CLIP model's textual encoder, providing a more effective starting point for the fine-tuning
process. PEL's effectiveness is demonstrated across several long-tailed datasets, showing
superior performance compared to existing state-of-the-art methods, particularly in handling tail
classes. The method achieves significant improvements in accuracy with substantially fewer
training epochs and without the need for additional training data. This methodological approach
effectively leverages the strengths of pre-trained models while addressing the challenges specific
to long-tailed recognition, providing a robust, efficient, and scalable solution for adapting deep
learning models to imbalanced datasets.

Ensemble Learning
The methods discussed in the paper "A review of ensemble learning and data

augmentation models for class imbalanced problems" explore innovative strategies to address the
challenge of class imbalance in classification problems. The paper evaluates a variety of
ensemble learning techniques, which are methods that combine multiple models to achieve better
predictive performance than any single model could on its own. These techniques include
bagging, a method that generates multiple versions of a predictor and uses them to get an
aggregated predictor, boosting, an approach focused on training predictors sequentially, each
trying to correct its predecessor, and stacking, which is training a new model to combine the
predictions of several other models. Data augmentation plays a crucial role in addressing class
imbalance by artificially enhancing the dataset with new, synthetic examples. The methods
reviewed include:
SMOTE (Synthetic Minority Over-sampling Technique): This method generates synthetic
samples from the minority class to balance the class distribution.

Random Oversampling and Undersampling: These methods involve replicating the minority
class samples or reducing the majority class samples.
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Advanced Techniques: The paper also discusses more sophisticated approaches like the use of
Generative Adversarial Networks (GANs) to generate realistic synthetic data.

The paper presents a comprehensive framework for evaluating the performance of
different combinations of data augmentation and ensemble learning methods. It uses several
datasets to test these methods and utilizes metrics like the Area Under the ROC Curve (AUC),
F1 score, and accuracy to assess model performance (Ahmad Khan et al., 2023). A significant
contribution of this study is the integration of ensemble learning with data augmentation to tackle
the unique challenges posed by imbalanced datasets effectively. The paper explores how
different combinations of these methods can enhance model performance, particularly in
scenarios where one class significantly outnumbers another. In summary, the paper provides a
methodological review of how ensemble learning and data augmentation can be used
synergistically to improve the outcomes in class-imbalanced situations. This approach not only
mitigates the issue of overfitting but also ensures that the minority class is more accurately
predicted, thereby enhancing overall model robustness.

µ2Net
The paper "A Continual Development Methodology for Large-Scale Multitask Dynamic

ML Systems" presents a novel methodology for developing machine learning models,
specifically focusing on dynamic multitask systems. The proposed methodology builds upon the
existing µ2Net framework, introducing significant enhancements tailored for multitask learning
(Gesmundo, 2022). The enhancements include a new scoring function that incorporates size and
compute penalties. This function uses an exponential decay penalty to account for the complexity
and efficiency of the model. Also, the paper extends the hyperparameter search space, allowing
for greater flexibility in model training. This includes adjustments in learning rates, warm-up
ratios, and optimization techniques. The methodology adds new types of mutation actions to
modify the network architecture dynamically including layer cloning and removal, which allows
selective cloning of layers to inherit parameters and optimizer states, as well as the removal of
transformer layers to reduce model complexity and compute requirements, and also includes
hyperparameter mutation which allows the adjustment of hyperparameters within a predefined
search space to fine-tune model performance. A key aspect of the methodology is its focus on
continual learning. Models are incrementally extended by learning new tasks and integrating new
methodological improvements without starting from scratch. Also, the system undergoes
multiple task iterations, where each iteration introduces methodological extensions or new tasks,
progressively expanding the model's capabilities. The methodology is empirically evaluated to
ensure its effectiveness in real-world scenarios. It compares the new method with existing
baselines using a standard machine learning evaluation approach to assess performance
trade-offs. The methodology also demonstrates the scalability of the method by applying it to a
large number of image classification tasks, highlighting improvements in model quality and
computational efficiency. In summary, the paper introduces a robust framework for developing
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scalable and efficient multitask machine learning systems that adapt and evolve through
continual learning and dynamic architecture modifications. This approach not only enhances
model performance but also optimizes computational resources, making it highly relevant for
large-scale machine learning applications.

VL-LTR
The paper "VL-LTR: Learning Class-wise Visual-Linguistic Representation for

Long-Tailed Visual Recognition" introduces innovative methods for enhancing visual
recognition in long-tailed distributions by leveraging visual-linguistic data. The core component
of the methodology is CVLP, which aims to align class-wise image and text data using
contrastive learning. The approach takes advantage of both the visual features from images and
linguistic information from text descriptions. This training strategy allows the model to
understand and correlate high-level abstract information from texts with the low-level details
from images, enhancing its recognition capabilities across variably represented classes. The LGR
head is a novel addition that utilizes the visual-linguistic embeddings generated during CVLP
(Tian et al., 2021). It applies these embeddings to guide the recognition process, particularly
focusing on improving the model's performance in recognizing tail classes with fewer samples.
The LGR head uses attention mechanisms to weigh the importance of different textual features
relative to the visual input, dynamically adjusting the recognition process based on the content of
both modalities. To refine the model's focus and reduce noise, the method includes an anchor
sentence selection process. This process filters out less relevant or noisy text descriptions,
selecting the most informative and discriminative textual data for training. This helps in
maintaining high-quality linguistic data that enhances the model's learning and generalization
capabilities. The paper validates these methods through extensive experiments on multiple
benchmarks like ImageNet-LT, Places-LT, and iNaturalist 2018. The VL-LTR model
demonstrates significant improvements over previous state-of-the-art methods, particularly in
handling classes with fewer samples, showcasing the effectiveness of integrating visual and
linguistic modalities in long-tailed recognition scenarios. In summary, the VL-LTR methodology
effectively combines the strengths of visual and linguistic data to address the challenges posed
by long-tailed distributions in visual recognition tasks, setting a new benchmark in the field.

Long-Tail Learning via Logit Adjustment
The paper titled "Long-Tail Learning via Logit Adjustment" proposes a sophisticated

approach to tackle the challenges of long-tail distribution in machine learning classification
tasks, focusing on enhancing model performance on rare or under-represented classes. The core
methodological innovation in the paper is the use of logit adjustment to improve the performance
on long-tailed datasets. The techniques include modifying the training loss to account for class
frequencies by introducing an adjustment term directly into the softmax cross-entropy loss
(Krishna Menon et al., 2021). This adjustment helps increase the relative margins between logits
of rare versus dominant labels, promoting better generalization on rare classes. The adjustments
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also include adjusting the logits of a trained model based on class frequencies, aiming to
recalibrate the output towards a more balanced prediction across classes. The paper emphasizes
the statistical underpinning of the logit adjustment method. It is shown to be Fisher consistent for
minimizing the balanced error, a metric that averages per-class errors. This statistical property
ensures that the method not only improves empirical performance but is also grounded in robust
theoretical principles. A reference implementation of the methods is made available,
demonstrating the practical applicability of the techniques. The implementation details provide
insights into integrating the logit adjustment into existing training pipelines. The methods are
empirically validated on real-world datasets, where they demonstrate significant improvements
in handling class imbalance. The results show better performance compared to existing
techniques, especially in enhancing the detection and classification of under-represented classes.
In summary, the paper provides a methodologically sound and empirically effective approach to
addressing the challenges of long-tail learning in classification tasks. By adjusting logits based
on class frequencies, the proposed techniques ensure more equitable learning across different
classes, improving the model's performance on rare categories without compromising overall
accuracy.

Relative Mahalanobis Distance
The paper "A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection''

introduces the Relative Mahalanobis Distance (RMD) method to enhance Out-Of-Distribution
(OOD) detection in neural networks, particularly focusing on near-OOD scenarios where
traditional methods like the Mahalanobis Distance (MD) tend to fail. The traditional MD method
is utilized for OOD detection by calculating the distance from a test input's feature map to
class-conditional Gaussian distributions fitted to each class of the in-distribution data. The MD is
computed as the minimum distance across all classes, which is then used as a confidence score
for determining whether a sample is in-distribution or not. However, this method often fails for
near-OOD detection because it does not effectively differentiate between subtly different but
critical variations among classes. To address the shortcomings of MD in near-OOD scenarios, the
paper proposes RMD, which adjusts the traditional MD by subtracting the distance from the test
input to a "background" Gaussian distribution modeled on the entire training dataset without
considering class labels (Ren et al. 2021). This background model acts as a baseline
representation of the training data's overall feature space, providing a reference point that helps
highlight deviations more indicative of OOD samples. The effectiveness of RMD is validated
through experiments on challenging datasets, including CIFAR-100 vs. CIFAR-10, which are
designed to test the model's ability to discern between closely related datasets (near-OOD). The
results show significant improvements in AUROC scores for RMD over MD, demonstrating its
superior capability in detecting near-OOD samples. The paper also compares RMD to other
OOD detection techniques, showing that RMD provides a more stable and reliable measure for
detecting near-OOD samples without requiring additional model training or complex
hyperparameter tuning. In summary, this method enhances near-OOD detection accuracy by
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incorporating a relative measure against a comprehensive background model, making it more
robust against the variations within near-OOD samples that traditional MD might overlook.

Class-Balanced Distillation
The paper titled "Class-Balanced Distillation for Long-Tailed Visual Recognition" by

Iscen et al. introduces a novel framework called Class-Balanced Distillation (CBD), aimed at
improving long-tailed visual recognition. This methodology is particularly effective in
addressing the challenges posed by datasets where a few classes are vastly overrepresented
compared to others. The proposed CBD employs a two-stage learning process. In the initial
stage, multiple teacher models are trained using instance sampling. This traditional approach
samples each instance with equal probability, irrespective of class frequency, which is effective
for learning generalizable features but can underrepresented tail classes. The second stage
introduces class-balanced sampling, where each class has an equal probability of being sampled,
to focus on under-represented classes. This stage uses knowledge distillation from the teacher
models to train a student model, incorporating the features learned by the teachers into the
student model through a feature distillation process (Iscen et al., 2021). CBD enhances feature
representations by using knowledge distillation, where the student model learns from the distilled
knowledge of the teachers. This method allows the student to learn a more balanced
representation across all classes, improving its ability to recognize tail classes without losing
performance on head classes. An innovative aspect of CBD is the use of an ensemble of teacher
models trained under different conditions (e.g., with different data augmentations) to provide a
rich source of knowledge for the distillation process. This diversity helps in capturing a broader
range of features and nuances, which is particularly beneficial for classes that are less
represented. The effectiveness of CBD is demonstrated through extensive experiments on
long-tailed recognition benchmarks such as ImageNet-LT and iNaturalist datasets. The results
show that this method substantially outperforms traditional approaches, particularly in enhancing
recognition accuracy for tail classes while maintaining or improving performance on head
classes. In summary, the Class-Balanced Distillation method provides a robust and scalable
approach to addressing the challenges of long-tailed distributions in visual recognition tasks. By
intelligently leveraging the strengths of both instance and class-balanced sampling and enriching
the training process with knowledge distillation, CBD achieves superior recognition performance
across varied class frequencies.

Bilateral-Branch Network
This paper introduces a Bilateral-Branch Network (BNN) that incorporates two distinct

learning branches: Conventional Learning Branch which utilizes a uniform sampler and focuses
on learning universal patterns and representation learning from the original data distribution, and
Re-Balancing Branch which has a reversed sampler tailored for the tail classes, focusing on the
under-represented data to adjust and enhance classifier learning. Each of these branches performs
a specific task to ensure comprehensive learning across classes that are both heavily populated as
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well as sparse. By having branches that encompass both learning methods, BNN utilizes an
adaptive trade-off parameter which changes with the number of training stages. As the training
progresses, the focus shifts towards balancing the branch, increasing the attention on the
under-represented classes and improving the performance on these classes (Zhou et al., 2020).
The trade-off between branches is controlled by an automatic adjusted parameter which allows
the network to start with a focus on broad learning and shifts towards the imbalance in class
representation. The outputs of both branches are combined using the automatic parameter to
determine the final output of the network. This paper includes empirical results on several
benchmark long-tailed datasets, such as the iNaturalist dataset, demonstrating that the BNN
significantly outperforms existing methods. This performance is attributed to the effective
handling of both the head and tail classes, with a balanced focus on pattern recognition and
specific class adjustment. The BNN method effectively addresses the inherent problems of
long-tailed distributions in visual recognition tasks by integrating two learning branches with an
adaptive learning focus.

Momentum Contrast
The paper "Momentum Contrast for Unsupervised Visual Representation Learning"

introduces a novel method known as Momentum Contrast (MoCo) for enhancing unsupervised
learning in visual tasks (He et al., 2020). MoCo proposes a dynamic dictionary-based approach
for contrastive learning, which addresses the challenges associated with maintaining consistency
and size of the dictionary during training. This method involves two main components:
Dynamic Dictionary: MoCo utilizes a queue mechanism where the encoded representations of
the current mini-batch are enqueued, and the oldest mini-batch is dequeued. This queue is
decoupled from the mini-batch size, allowing the dictionary to grow significantly without being
limited by the batch size.

Momentum-based Encoder Update: To maintain the consistency of the encoded representations
in the dictionary, MoCo uses a momentum-based update for the key encoder. The key encoder is
updated as a moving average of the query encoder, which ensures that the keys evolve smoothly
and remain consistent over time, despite the changing input data.

MoCo conceptualizes the learning process as a dictionary look-up. An encoded query
should match its corresponding key in the dictionary and be distinct from all other entries. This is
facilitated by the contrastive loss function, which minimizes the distance between similar pairs
and maximizes the distance between dissimilar pairs. The InfoNCE loss function is employed,
which uses a softmax-based classifier to distinguish the correct key from a set of negative
samples. MoCo is applied in the context of an instance discrimination pretext task, where a
positive pair consists of different views (e.g., crops) of the same image, and all other pairs are
considered negative. This task helps in learning robust visual features from unlabeled data. The
effectiveness of MoCo is demonstrated through extensive experiments on datasets like ImageNet
and Instagram-1B, showing significant improvements in tasks such as image classification,
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object detection, and segmentation. MoCo is shown to achieve competitive results with
supervised pre-training methods, suggesting it as a viable alternative for various applications. In
summary, MoCo provides an effective framework for unsupervised visual representation learning
by innovatively managing the dictionary size and maintaining encoder consistency through
momentum updates. This approach bridges the gap between unsupervised and supervised
learning in many vision tasks.
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Research Objectives
When addressing the challenges of dealing with imbalanced datasets, we came up with three
research objectives:

1. Evaluate and compare the performance of the 10 different long-tailed learning methods
across CIFAR-10, CIFAR-100, and ImageNet-LT datasets.

2. Identify the strengths and weaknesses of each long-tailed learning method in handling
different degrees of class imbalance and dataset sizes.

3. Assess how well each long-tailed learning method generalizes across datasets with
varying complexities, from balanced to highly imbalanced class distributions.

Performance Evaluation Across Datasets
In order to evaluate the performance of the ten long-tailed learning methods, we compare

the performance of these methods across three distinct datasets: CIFAR-10, CIFAR-100, and
ImageNet-LT. We utilize performance metrics including the accuracy, precision, and runtime
when training each method using the three datasets. Our goal is to rank the ten long-tailed
methods based upon which method is most effective based upon the metrics collected and by
doing so, we can identify the most efficient long-tailed learning method across different datasets.

Strengths and Weaknesses Analysis
To identify the strengths and weaknesses of the ten long-tailed learning methods, we

assess how the methods handle different degrees of class imbalance as well as dataset sizes. By
identifying the patterns and trends, our goal is to better understand the strengths and limitations
for each method. This will provide more insights into which long-tailed learning methods excel
at certain imbalance ratios and dataset sizes. We hope to find common challenges and limitations
these methods face when addressing imbalanced dataset scenarios.

Generalization Across Datasets
To assess how well the ten long-tailed learning methods are able to adapt to other

datasets, we observe the behavior of each long-tailed learning method across diverse datasets.
Our goal is to gain valuable insight into the transferability of knowledge learned from one
dataset to another with varying complexities. Through this analysis, we hope to apply this
information within real-world scenarios where long-tailed learning methods must adapt across
diverse datasets.
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Methodology and Analysis
Datasets:

There were three datasets that were mainly used in these papers, and we will use in our
further evaluations, are CIFAR-10, CIFAR-100, and ImageNet-LT. CIFAR-10 and CIFAR-100
are popular datasets used for benchmarking image recognition algorithms. Both datasets contain
roughly 60,000 images that are split into training and test sets. However, CIFAR-10 is split into
10 classes of 6,000 images per class, split up into broad categories such as dogs, cats, etc. This
makes it easy for general image recognition as the images are so broad. This differs from
CIFAR-100 as this dataset contains 100 classes with 600 images in every class. These classes are
also grouped into 20 superclasses. This makes it easy for testing algorithms on precise
classification as well as a larger group of class structures. Finally, ImageNet-LT differs from both
of these greatly. This dataset is designed to be close to a real world example, as some classes are
abundant but many are underrepresented. This is also a long-tail version of the ImageNet dataset,
which contains over one million images over 1,000 classes. ImageNet-LT addresses the
challenge of imbalanced datasets as it encompasses a skewed distribution of images across many
classes, which makes it a great resource for evaluating algorithms.

Preprocessing
The preprocessing steps for each method varied slightly due to different requirements. A

common step we encountered was resizing the images to a uniform size to ensure consistency in
input dimensions across the dataset, changing the image size to 256x256 or 224x224 pixels. The
pixel values of the images would also need to be normalized to standardize the input data and
make the optimization more efficient to prevent issues like vanishing or exploding gradients
during training. During testing, we applied class weights or resampling techniques to account for
class imbalance when the model required training with such techniques to ensure that the
evaluation reflects the model’s performance under similar conditions as during training.

Performance Evaluation
In order to understand which methods achieved the best accuracy, we used a diverse

range of methods, including Momentum Contrast (MoCo), Bilateral-Branch Network (BBN),
Class-Balanced Distillation (CBD), Long-Tail Learning via Logit Adjustment, µ2Net+, VL-LTR
(Visual-Linguistic Transformer for Long Tailed Recognition), Parameter-Efficient Fine-Tuning
with Limited Data (PEL), Nearest Neighbor Guidance (NNGuide), Relative Mahalanobis
Distance (RMD), and Learning Ensemble methods. Each method follows the same
implementation as the pre-trained models to keep consistency within the evaluation. The datasets
were divided into training, validation, and test sets to recreate scenarios with imbalanced
datasets. The performance evaluation was based on measuring classification accuracy for each
method followed by statistical analysis to compare the performance using the three datasets.

Strengths and Weaknesses Analysis
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To assess the robustness of each method, the methods were simulated with different
degrees of class imbalance within the datasets. We also took into factor the performance of the
methods on datasets of different sizes, ranging from small to large. Secondly, we explored the
sensitivity of each method to hyperparameters and training strategies, such as learning rate, batch
size, and data augmentation techniques. The variations in hyperparameters gave insight to the
performance and stability of the methods. We also take into account the generalization across
datasets in order to identify which methods indicate their ability to generalize well to new data
environments.

Results

Accuracy of Methods

Figure 1: Barchart displaying the accuracy of methods across all three datasets

Method CIFAR-10 CIFAR-100 ImageNet-LT

Momentum Contrast 89.7 77.3 69.3

Bilateral-Branch
Network

88.3 59.12 76.5

Class-Balanced
Distillation

62.5 65.4 57.7
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Long-Tail Learning
via Logit Adjustment

80.92 43.89 51.3

u2Net+method 92.67 43.89 82.5

Visual-Linguistic
Transformer for
Long-Tailed
Recognition

77 75.2 70.1

Parameter-Efficient
Fine-Tuning with
Limited Data

79.1 84.9 78.3

Nearest Neighbor
Guidance

38.6 81.74 88.82

Relative Mahalanobis
Distance

81.01 89.71 88.82

Learning Ensemble 94.93 77.02 77.06

Table 1: Accuracy results of methods across three different datasets

From the results of our experiments, we were able to compile the highest accuracy
achieved for each of the ten methods when being trained by CIFAR-10, CIFAR-100, and
ImageNet-LT datasets. The Relative Mahalanobis Distance method was able to achieve an
average accuracy score of 86.51%. Using the accuracy achieved from the experiments, we were
able to determine the overall ranking of these methods based on the average accuracy score they
achieved from all three datasets.

1. Relative Mahalanobis
2. Learning Ensemble
3. Parameter-Efficient Fine-Tuning with Limited Data
4. Momentum Contrast
5. Bilateral-Branch Network
6. Visual-Linguistic Transformer for Long-Tailed Recognition
7. u2Net+method
8. Nearest Neighbor Guidance
9. Class-Balanced Distillation
10. Long-Tail Learning via Logit Adjustment

Generalization Across Datasets
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MoCo demonstrated strong generalization capabilities across datasets with varying
complexities and class imbalances. The pretrained MoCo model performed well in classification
tasks which lead to improved performance on datasets with different characteristics. BBN
generalization capabilities depended on its ability to capture both local and global features
effectively. Although BBN was able to perform well with datasets with similar characteristics it
was trained on, its performance on datasets with significantly different characteristics resulted in
significantly worse accuracy scores. Class-Balanced Distillation addressed class imbalance by
utilizing a teacher model to distill knowledge to a student model. The generalization across
datasets relied on the quality and diversity of the teacher model which led to a poor performance
of accuracy when using the three datasets used in our experiment. Long-Tail Learning via Logit
Adjustment relied on recalibrating class probabilities in order to alleviate the effects of class
imbalance. However, it was unable to adapt to different data distributions and imbalance levels
because of its limitations on existing techniques for handling imbalanced datasets. The u2Net+
method relied on its innovative design and method extensions aimed at enhancing the
capabilities and performance of Machine Learning models, however it struggled with adapting to
the CIFAR-100 dataset. The VL-LTR model leveraged transformer-based architectures for
long-tailed recognition tasks (Tian et al., 2021). By integrating visual and linguistic information
using Transformer-based architectures, VL-LTR consistently performed well with overall
accuracy, particularly when given limited data for certain classes. PEL addressed generalization
across datasets by focusing on fine-tuning pretrained models with limited data in order to
improve generalization performance. PEL achieved high accuracy scores for all three datasets,
displaying its effective and efficient ability to generalize across datasets. NNGuide utilized
information from the “nearest neighbor” for the models decision-making process, enhancing its
ability to detect samples that differ significantly from the training data distribution (Park et al.,
2023). NNGuide was able to generalize well when adapting to large scale datasets. RMD
successfully improved the robustness and reliability of OOD detection, leading to more accurate
classification and anomaly detection from various datasets, displaying its ability to generalize
well with different datasets. The Learning Ensemble method combined multiple models and
techniques to improve generalization performance. By leveraging the diversity of individual
models, ensembles reduce variance, improves generalization, and yields more reliable
predictions, making the method a powerful approach at dealing with a diverse selection of
datasets.

Scalability and Efficiency
MoCo demonstrated its ability to scale to different sized datasets as well as its efficiency

in training and was able to outperform most of the other contrastive learning approaches. The
computational efficiency of MoCo made it suitable for large-scale datasets with a limited amount
of resources for training. While BBN offered a competitive performance compared to the other
long-tailed learning methods, its scalability was limited by the computational resources required
for its training, making it less efficient when compared to the other methods. Because the CBD
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method is impacted by the computational cost of distillation, this method is not as efficient at
training multiple models when compared to the other methods. However, its innovative
two-stage learning framework and knowledge distillation strategies achieves high performances
for large scale imbalance datasets such as ImageNet-LT. The Long-Tail Learning via Logit
Adjustment has a much lower computational cost when compared to the other methods while
maintaining scalability for datasets of varying sizes. The u2Net+ method offered a competitive
performance and scalability for both CIFAR-10 and ImageNet-LT datasets, however because of
its dependency on its architectural design and computational requirements, it was unable to
successfully adapt and perform well on the CIFAR-100 dataset. VL-LTR requires a high
computational cost especially for large-scale datasets. While the transformer-based model offers
state-of-the-art performance, its scalability is also limited by the computational resource
requirements from the model. The PEL method depends on its fine-tuning techniques to achieve
scalability and efficiency (Shi et al., 2023). Requiring only 10 epochs and fine-tuning far fewer
model parameters when compared to other existing methods, PEL excels at being able to adapt to
different sized data-sets while remaining quick and efficient. The NNGuide scalability and
efficiency is dependent upon the computational cost of nearest neighbor search and guidance.
The architecture of the model impacts the scalability as it is unable to perform well on smaller
sized data sets like CIFAR-10. The RMD method achieves high scalability with low
computational overhead as it depends on distance relative to class centroids (Ren et al. 2021).
Because of its distance-based techniques, it is very efficient in handling class imbalance while
maintaining scalability across datasets. The Learning Ensemble method combines multiple
models which leads to higher computational requirements compared to methods that use single
models. While this method can scale well for different sized data sets, the computational costs of
the method can potentially hinder its scalability.

Conclusion

MoCo for Unsupervised Learning:MoCo is valuable for learning representations from
large-scale unlabeled datasets, particularly in computer vision and machine learning tasks. Its
applications extend to computer vision and other machine learning tasks where labeled data may
be scarce or unavailable.
BBN for Multi-modal Tasks: BBN is designed for tasks requiring multi-modal input or feature
fusion, improving performance in tasks like image captioning and multi-modal retrieval. Its
versatility makes it particularly valuable in applications such as image captioning and
multi-modal retrieval.
CBD for Long-Tailed Recognition: CBD addresses class frequency imbalances in datasets like
ImageNet-LT, showing substantial improvements in accuracy, especially for tail classes. Its
effectiveness in long-tailed recognition tasks highlights its importance in real-world applications
where class imbalances are common.
VL-LTR for Visual-Linguistic Integration: VL-LTR integrates visual and linguistic

19



information using Transformer-based architectures, achieving high overall accuracy and
significant improvements in few-shot learning. VL-LTR shows the most promise for tasks that
require understanding both visual and textual content.

These models have shown effectiveness in their respective areas, and the choice for the
best model depends on the specific requirements for the task at hand. For example, if dealing
with unlabeled data, MoCo might be the best choice, while for long-tailed recognition tasks,
CBD or VL-LTR would be more suitable. Overall, these models showcase the diverse
capabilities of deep learning methods and their potential to address complex challenges across
different domains.

Future Research

The rapid advancement of long-tailed learning techniques has significantly expanded the
horizons of artificial intelligence, enabling groundbreaking progress across various domains.
Future work can explore enhancements to the existing model architectures used in these
methods, addressing challenges in domain adaptation and transfer learning can positively
contribute to the advancement of machine learning and improve model performance and
generalization across diverse datasets.

As deep learning models become increasingly complex, ensuring interpretability and
explainability is paramount, especially in high-stakes applications such as healthcare or finance.
Future work could focus on developing better techniques to interpret and explain the decision
making behind these models, providing insight to the internal workings of these methods and
increasing trust and transparency.

Addressing ethical considerations and mitigating biases in AI systems are crucial for
responsible deployment. Future research should focus on developing methods and frameworks to
detect and mitigate biases to ensure fairness and uphold ethical standards throughout the
development and deployment lifecycle of the machine learning methods used. This could involve
identifying biases in training data as well as understanding how biases propagate through the
entire machine learning pipeline.
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