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Abstract

Accurate chemical sensors are vital in medical, military, and home safety appli-

cations. Training machine learning models to be accurate on real world chemical

sensor data requires performing many diverse, costly experiments in controlled

laboratory settings to create a data set. In practice even expensive, large data sets

may be insufficient for generalization of a trained model to a real-world testing dis-

tribution. This dissertation is concerned with the application of modern machine

learning and deep learning techniques to a real-world, low-data chemical sensing

task. In order to mitigate the challenges of an application with costly data, we

develop algorithms in adversarial learning and data synthesis, regularize models

with multitask and multi-loss learning, and transfer knowledge between multiple

domains such that the ultimate goal of chemical detection is improved. We in-

clude novel research on data sets within the chemical sensing as well as natural

image and molecular representation literature. Machine learning and deep learn-

ing models have been adapted with novel architectures from tabular, time series,

and natural image domains which ultimately improve downstream classifier per-

formance.
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Executive Summary

Dissertation Keystones

Pretrained Chemistry Embedding

Neural Network 
Sensor Embedding

C1=CC=CC=C1

SMILES Image
Representation

Figure 1: A preview of the ChemVise approach (Chapter 4). A modification to
the transfer learning protocol allows us to incorporate chemistry knowledge for
a novel hardware sensor array. Extensions to ChemVise lead to ChemTime (Chapter
6), which facilitates classification and inference using representation sequences in
an information-dense space.

This dissertation develops novel algorithms for the representation of natural

images and sensor data. Learning effective representations for downstream super-

vised, unsupervised, and synthesis tasks is essential to modern deep learning ap-

plication. Transfer learning (Weiss et al., 2016) is a powerful approach to leverage

data from related domains between tasks by sharing parameters of deep learning

models. For a real-world novel chemiresistive array, however, there does not ex-

ist a set of neural network parameters which can handle encoding data from an
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unknown hardware sensor array. We therefore turn to the literature on semantic

embeddings of class targets from the natural image literature with a novel exten-

sion to molecular representation (Ramesh et al. (2022), Chapter 4).

For chemical sensing, compute-efficient parameterized representations of chem-

ical sensor resistances in a chemistry-informed space improves inference, reduces

detection time, and builds explainability into classification outcomes. Included in

this dissertation are multiple approaches to multitask and adversarial learning al-

gorithms for bespoke neural network architectures on downstream applications

including natural image synthesis and classification, and early multivariate time

series classification (Figure 2, Chapter 6).

Figure 2: Chapter 6 will extend the ChemVise algorithm to ChemTime by incorpo-
rating inference and early classification for sequences of learned representations.
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Our Contributions

• We induce reconstructive cycles and multitask learning for a natural image

synthesis task. We demonstrate not only can baseline conditional GANs be

improved by additional losses without requiring additional data or labelling,

but data synthesis further improves supervised learning outcomes on auxil-

iary classification models. Data synthesizing models and their advantages to

downstream representations are explored in Chapter 2.

• We are the first to apply multitask learning with adversarial data synthesis

losses to a real-world chemiresistive sensor array data set. We demonstrate

that multitask-loss supervised neural networks from Cycles Improve Condi-

tional Generators substantially improved classification outcomes for an ob-

scured set of chemical analytes shown in Chapter 3. Extensions to this find-

ing lead to further inquiry on combining generative cycles with downstream

time series classifiers in Chapter 6.

• We develop a novel architecture and extension of visual-semantic embedding

research (Frome et al., 2013; Ramesh et al., 2022) in the natural image do-

main to a chemistry application (Chapter 4). The novelty of ChemVise comes

from modifying transfer learning to map chemiresistive sensor array data

from a bespoke sensing device to a generic molecular representation space.

Translating chemiresitive data to pretrained representation spaces shapes the

ongoing direction of this research. Extensions to the ChemVise paradigm to

multivariate time series classification are explored in Chapter 6.

• We design the first empirical study of the machine learning literature on mul-

tivariate hardware sensor arrays for the classification of chemical analytes

8



based on the blueprint from Ruiz et al. (2021). We benchmark over 30 mul-

tivariate time series classification algorithms with a novel hardware sensor

array to determine appropriate algorithms for a real-world deployed tool.

Our research in Chapter 5 expands the set of classifiers beyond the scope

of other similar studies on multivariate time series, and alters the scope of

research to focus on optimization of sensor array chemistries with unique

binding affinities to maximize analyte discriminability.

• We propose, implement, and study the first semantic-representation model

for the early classification of chemical analytes. Chapter 4 demonstrates how

ChemVise meaningfully embeds target analytes for arbitrary chemical sens-

ing hardware data. ChemTime (Chapter 6) will leverage these chemistry-

informed latent spaces with the signal-translation model utilizing contem-

porary machine learning to provide explainable, inferential classifications of

representation sequences.

• We introduce and benchmark the novel architecture and training algorithm

ChemTime, with multiple experimental results demonstrating substantial im-

provement in rapid classification, early classification, and signal efficiency

for a real-world detection task against a peer group of highly competitive

and recently published multivariate time series classifiers.
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Figure 3: Here we summarize the interconnectedness and diversity of our pub-
lished and publish-pending publications. In color, we denote our primary do-
mains of application: AI in education, natural images, and chemical sensing. In
blue, Identifying Struggling Students and Identifying Explanations in Chatlogs apply
outlier analysis and transfer learning of large language models to promote student
learning in an online platform. In green, our development of multitask reconstruc-
tive conditional GANs for natural images in Cycles Improve Conditional Generators.
ChemTime-BakeOff in red combines our first application of multivariate time se-
ries classifiers to real-world hardware sensing data (formerly Chemical Sensing Bake
Off ) with ChemTime, the extension of the ChemVise approach to multivariate time
series for rapid and early classification using representation sequences. ChemTime-
BakeOff, ACGANs Improve Chemical Sensors, and ChemVise in red are our publica-
tions on the application of novel deep learning architectures with semantic and
multitask training to chemiresistive sensor data.

10



Contents

1 Preliminaries 15

1.1 Representations of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Representations of Molecules . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Chemical Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Chemical Sensing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Data Synthesis 26

2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 26

2.2 Conditional GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Auxiliary Classifier GANs . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Cycles Improve Conditional Generators . . . . . . . . . . . . . . . . . 28

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Cycles for Conditional Generation . . . . . . . . . . . . . . . . . . . . 32

2.8 Conditional Autoencoder-GAN . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Inverse Conditional Autoencoder GAN . . . . . . . . . . . . . . . . . 33

2.10 Cycle Conditional Autoencoder-GAN . . . . . . . . . . . . . . . . . . 35

2.11 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Quantifying Generative Quality . . . . . . . . . . . . . . . . . . . . . . 38

2.13 Data Mining in a Low-Data Regime . . . . . . . . . . . . . . . . . . . 40

2.14 Augmenting Training Data . . . . . . . . . . . . . . . . . . . . . . . . 41

2.15 Cyclical Models Perform Classification . . . . . . . . . . . . . . . . . . 42

2.16 Chapter Conclusions and Subsequent Directions . . . . . . . . . . . . 43

11



3 Multitask Adversarial Training 45

3.1 Chapter Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Generative Multitask Models . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Scaling Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Zero-Shot Learning with Semantic Training 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 ChemVise Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Linear Combinations Approximations . . . . . . . . . . . . . . . . . . 69

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Representation Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Variable Exposure Times . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 The Great Chemical Sensing Bake Off 76

5.1 Contest Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Bake Off Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Bake Off Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Rapid Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Training and Inference Time . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 ChemTime: Early Classification of Time Series 86

12



6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Early Classification of Time Series . . . . . . . . . . . . . . . . . . . . 88

6.3 Contemporary Early Classification Literature . . . . . . . . . . . . . . 90

6.4 ChemTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 ChemTime Implementation and Design Considerations . . . . . . . . . 95

7 Results Against the Field 99

7.1 Rapid Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Future Inclusions 105

A Additional Material and Experimental Results 107

A.1 Bake Off Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

13



14

Notation

This dissertation makes use of mathematical notation for a variety of data de-

scriptions and model training algorithms. Here, we standardize notation for at-a-

glance recognition:

Object Notation

Real value x

Vector x⃗

Matrix X

Array X

Machine Learning Model X
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1 Preliminaries

Extensive literature exists for the applications of time series classification (Ruiz

et al., 2021), deep representation learning (Weiss et al., 2016), and chemical sensor

classification (Zhang et al., 2021) - though bridging between these domains to im-

prove real-world chemical detectors remains unexplored. In this chapter we will

motivate each element of the synthesis and introduce topics which will be subse-

quently explored. Section 1.1 introduces the topic of representation learning to im-

prove downstream task performance. Section 1.3 and 1.4 will introduce the unique

domain of chemical sensors and the method with which the data used throughout

multiple chapters are gathered. Section 1.5 will introduce the application of ma-

chine learning to time series classification.

1.1 Representations of Data

The “depth” of deep learning refers to the iterative layer functions applied to in-

put data in a neural network model. Successive neural network layers compose

a linear projection with a simple nonlinear activation function such as pooling or

element-wise hinge functions. An emergent behavior within these layers which

has revolutionized artificial intelligence and machine prediction is representation

learning (Bengio et al., 2013). Successive neural network layers are capable of

learning abstractions of input data which facilitates further transformations of

subsequent layers. In natural image processing, convolutional filters may learn

to detect lines, then edges, then abstract shapes given sufficient model capacity

(Krizhevsky et al., 2012). Deep neural networks trained to predict the class of an

input sample implicitly learn representations due to representation bias (Caruana,

1997). Representation bias implies that neural network losses are minimized when
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Figure 4: The AC-T-CAEGAN will be built iteratively in the following chapters on
multitask adversarial training for data synthesis, chemistry representation spaces,
and time series representations. The CAEGAN (Chapter 2) and ACGAN (Chapter
3) are combined into one training procedure with modified time series architecture
from Chapter 6.

models learn representations of input samples generalizable to multiple classes.

Perhaps the most revolutionary idea of contemporary deep learning is an ex-

ploitation of representation bias called transfer learning (Weiss et al., 2016). Trans-

fer learning utilizes parameterized representations from a deep neural network

trained under a different loss function or data set to encode samples to meaningful

vector embeddings. Explosive results in modern artificial intelligence and deep

learning rely on the transfer of representations, including ChatGPT and GPT-3

(Brown et al., 2020), DALL-E 1 and 2 (Ramesh et al., 2021, 2022), and Stable Diffu-

sion (Rombach et al., 2021).

Each chapter of this dissertation proposal builds on the concept of learning rep-

resentations in different ways. Multitask learning induced through reconstructive

and adversarial losses demonstrates that the representation bias improves the gen-

eralizability of parameterizations of neural networks (Chapters 2 and 3). Subse-

quent chapters will extend transfer learning of representations to transfer learning

for semantic target embeddings (Chapter 4, Frome et al. (2013)). Figure 4 shows

a hypothetical combination of multiple approaches to improving representations,

from adversarial losses on sequences of representations learned by a time series

embedding model.
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1.2 Representations of Molecules

Partially due to the meteoric rise of deep learning approaches for natural im-

age and natural language processing, many practitioners are intensely research-

ing the application of machine and deep learning to applied chemistry which was

originally met with skepticism by chemists practicing hand-coded heuristics such

as the Morgan Fingerprint (Mater and Coote, 2019; Morgan, 1965). Researchers

have seen rising application of machine learning to the physical sciences, with

“many demonstrating significant improvements in predictive accuracy and ability

to replicate human decision making” (Mater and Coote, 2019; Chen et al., 2018).

For an excellent review of deep learning applications to chemistry and the recep-

tion history of chemical applications, please refer to (Mater and Coote, 2019) as

well as (Schmidt et al., 2019) for an excellent survey of surface chemistry. For an

introduction to machine learning and its applications for chemists we recommend

(Mueller et al., 2016).

A primary concern of computation for applied chemistry is the representation

of chemical analytes in machine-readable format. This topic has been relevant

to chemical researchers for over 160 years - long before even the advent of elec-

tronic computation (David et al., 2020; Wiswesser, 1968). In the deep learning field

as in chemistry, representations must serve the purpose of encoding meaningful

elements of the object they represent and for machine and deep learning must

be processable with vector mathematics. The question of representation poses as

many challenges to the encoding of molecules and compounds as it does to images

and written text. No singular representation will be appropriate for every task, so

countless molecular descriptors, embeddings, and encoding techniques have been

proposed to compete on a variety of downstream supervised tasks using transfer
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learning (Weiss et al., 2016).

One such chemical representation is SMILES (Weininger, 1988), which encodes

molecular structure to ASCII strings given by depth-first traversal over molecu-

lar bonds. While the SMILES approach does represent molecules in a machine-

readable manner, deep learning researchers have recently relied on the implicit

representation learning that occurs in multi-layer networks as the source of infor-

mation density in vector representations (Bengio et al., 2012). The feedforward

deep neural network outlined in Chemception (Goh et al., 2017) was trained on

a set of molecular images derived from SMILES strings (Figure 5) to predict the

toxicity, activity, and solvation properties of the input. As a consequence of im-

plicit representation learning in deep neural networks, the penultimate activations

of this model may be used to represent molecular analytes in dense real-valued

vector embeddings. The Chemception embeddings encode semantically meaning-

ful distances between points which facilitate vector mathematics and downstream

learners for fine-tuned tasks (Chapter 4). Chemception and Mol2vec (Jaeger et al.,

2017) use modern deep learning practice to outperform the earlier Morgan Finger-

prints representation using pattern recognition on a massive corpus of chemistry

data.

Contemporary research utilizes deep learning for chemistry, and in particular

compound representations for supervised learning such as drug interaction (Ryu

et al., 2018; Cai et al., 2019), new material discovery (Wei et al., 2019; Schmidt et al.,

2019), and drug design (Yang et al., 2019; Gebauer et al., 2022; Elton et al., 2019;

Rifaioglu et al., 2020). These approaches utilize pretrained or novel deep learning

embedding models to learn encodings given a large set of example molecules. The

encodings are used as information-dense representations of training data for an



1. Preliminaries 19

SMILES Representation:
'C1C2C=CC1C3C2C4(C(=C(C3(C4(Cl)Cl)Cl)Cl)Cl)Cl'

Language Representation:
“Isodrin” (Insecticide)

Depth-First Traverse

Canonization

Figure 5: A simple but flawed approach to preparing molecular data for convolu-
tional neural network training is converting molecular SMILES to images.

external task outside of the initial scope of the embedding model.

Not all representations are created equal. Figure 6 shows how simple approaches

to the representation of chemiresistive signal data may fail by overlaying challeng-

ing samples on a linear decomposition approach. Classifiers trained to classify a

chemical analyte in this example experiment fail to generalize to obscured hold-

out samples due to an overly simple encoding model. Learning representations

of complex data is a recurring theme of Chapters 2, 3, 4, and 6. Though deep

learning models learn parameterized representations of data which may be used

as inference as in Goh et al. (2017) and Soloveitchik et al. (2021), explicit domain

knowledge may be modelled in representation spaces which beget greater infer-

ential capabilities. This dissertation proposal will emphasize transfer learning for

structured representation spaces, and discuss how these meaningful embeddings

can incorporate research from the machine learning and chemical sensing litera-

ture. We will emphasize confidence, inference, and out-of-distribution capabilities

through representation learners on chemiresistive signals which traditional ma-

chine learning classifiers or black-box deep learning approaches may lack.
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(a) (b)
Figure 6: Visualization of the shortcomings of linear decomposition with linear
classifiers for mixture data. Left: Under a 2-dimensional PCA transformation, sig-
nal data of single-analyte exposures may be well-separated by a linear classifier.
Right: Under a PCA embedding of signal data, the same model fails to accurately
discriminate between samples containing Analyte A. Samples marked with x con-
tain Analyte A and are intermixed with non-Analyte A single-analyte exposures,
leading to poor classification results from this linear classifier.

1.3 Chemical Sensing

Chemical sensors measure physical and chemical properties of analytes into mea-

surable signals. Examples of chemical sensors include breathalyzers, carbon monox-

ide sensors, and electrochemical gas sensors (Rana et al., 2021). The detection of

particular chemical analytes is highly relevant in civilian safety, manufacturing,

and military applications (Weiss et al., 2018; Wiederoder et al., 2017). Chemire-

sistive sensors respond to chemical analytes by reporting changes in resistance

through a coated resistor. Chemical analytes interact at the molecular level by

bonding with the sensor coating, called adsorption. Analyte adsorption to the sen-

sor coating causes the resistance through the sensing element to change as a func-

tion of the binding affinity between the analyte and surface. The binding affinity

between analytes and coatings is affected by their molecular and polymer chemical

properties.

Many research groups have invested in developing parallel sensor arrays with
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diverse approaches to gas discrimination (Park et al., 1999; Tomchenko et al., 2003;

Nallon et al., 2016; Zhang et al., 2021). There has been increasing interest in fast,

accurate, and ”highly sensitive gas sensors with excellent selectivity” in part due

to high demand for environmental safety and healthcare applications and signifi-

cant research has been conducted to investigate the application of highly selective

materials (Wiederoder et al., 2019; Yaqoob and Younis, 2021). Wiederoder et al.

(2017) address the challenges of rapid discrimination of multiple target analytes

with low-cost, low-power, miniaturized sensors capable of analyte detection de-

spite obscurants with ”an array of semi-selective chemical sensors that respond

to many analytes simultaneously” which creates ”unique analyte signatures for

detection and classification of multiple analytes” on a single platform.

1.4 Chemical Sensing Data

Research included in this dissertation proposal builds machine and deep learn-

ing classifiers on data drawn from an 8-sensor chemiresistive array with chem-

ically diverse coatings to maximize analyte discriminability as in (Nallon et al.,

2016; Wiederoder et al., 2017; Weiss et al., 2018). The data and results of subse-

quent chapters call upon several experiments performed with various hardware

chemiresistive sensor arrays, but the deep learning methodology for transferring

analyte representations and supervised classification of multiple analytes may be

applied to any chemical sensor array. Concepts surrounding transfer learning and

semantic representations (Chapters 4, 6) can be extended to any data domain with

appropriate choice of target embeddings.

Chemiresistive chemical sensors utilize resistance changes of electrodes with

unique coatings. Different vapor analytes have different adsorption affinities to
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the different coatings, resulting in discriminative resistance changes adaptable for

various chemical analytes. Figure 7 visualizes the temporal regions of a full ana-

lyte exposure experiment. Analyte exposure experiments utilizing chemiresistive

sensors contain three exposure periods (Nix, 2022):

1. Controlled flux of analyte and adsorption to the active surface.

2. Change in electrical resistance due to interaction of sensor coating with ad-

sorbed or absorbed analyte molecules.

3. Cessation of analyte flux followed by flux of zero gas (Nitrogen). Desorption

(departing) of analyte from sensors which reverses resistance change.

To collect one experimental trial of the data sets used in subsequent chapters,

the sensors first rest for a baseline period of ten seconds. This period is used to

calculate the mean shift in sensor resistance to standardize the data during pre-

processing. A controlled flow of analyte vapor is released into the sensor chamber

for a thirty second adsorption response time before the exposure valve is shut.

Finally, a desorption time begins and lasts forty seconds in which the sensor resis-

tances recover and no further analyte vapor is released, indicated in Figure 7 by

the lengthy period of gradual decline in resistance. Between trials, an eight minute

recovery period allows the sensors to fully recover and any lingering analyte va-

por to dissipate. Triplicate trials for each analyte concentration are performed for

data integrity.

The unique coatings on the chemiresistive sensor cause lead to characteristic

resistances of analytes which facilitate discrimination of the gas exposures. Figure

8 shows an example of the contrast in sensor responses to 17.5% Analyte A and
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Figure 7: One experimental sample including baseline, absorption, and desorption
for an exposure of Analyte B. The sensor resistances rapidly increase during the
analyte exposure period as chemical analytes adsorb onto sensor coatings before
returning to baseline levels during desorption as analytes diffuse from the surface.

17.5% Analyte B vapors given the same set of eight sensors with bespoke chemire-

sistive coatings. From the 8-channel characteristic signal machine learning models

learn decision patterns for generalization to unseen testing samples.

1.5 Time Series Classification

Time series data are sequences of features with some inherent ordering, such as

stock closing prices for each day of a year. The structural ordering of the features

affects the discriminability of samples in the same manner as neighboring pixels

in a natural image determine meaning to a human viewer (Bagnall et al., 2017).

This ordering does not need to be through time but could be through frequencies,

magnitudes, or observations along any ordered axis.

Time series classification is highly relevant in applications across all domains in

the physical sciences, manufacturing industries, technology, and more. From sen-
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Figure 8: Two five second single-analyte exposures to different analytes at the same
concentration. Discrepancies in sensor resistance are explained by adsorption in-
teractions between analytes and sensor coatings.

sors (Weiss et al., 2018), video analysis Jönsson and Eklundh (2004), computer net-

work traffic analysis (Madan and Mangipudi, 2018), biomedical monitoring (Lin

et al., 2005), manufacturing (Li et al., 2011), and airline industry efficiency (Se-

menick Alam and Sickles, 2000), time series may be the most prolific and diverse

form of data humans regularly create, interact with, and learn from (Gupta et al.,

2020). The inherent information in the ordering of features makes time series a

foundational starting point of data analysis applications which must capture de-

pendencies through time, rather than considering an observation as a collection of

features.

One univariate time series observation s is a sequence of ordered pairs (timestamp, value)

(Xing et al., 2012). This proposal extends machine learning for time series to mul-

tivariate time series (MTS). MTS data contain multiple features at each timestep of

a signal, where the time series is a list of vectors over d dimensions and n obser-

vations. Data set X is given by observations < X1, ..., Xn >. The t-th time index

of the i-th sample of dimension k is the scalar xi,t,k (Ruiz et al., 2021). Early and

rapid classification of multivariate time series (Chapters 3, 5, and 6) will call upon

subsequences of x⃗. The length-l prefix subsequences of sample Xi are Xi[:, 1, t], or
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the first t time observations of sample Xi for all features. Subsequences are some-

times called shapelets in the literature and are used as discriminative sub-elements

of signals with distance metrics (Bostrom and Bagnall, 2017).
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2 Data Synthesis

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs, (Goodfellow et al., 2014)) learn a gen-

erative function with parameters mapping from a low-dimensional standard nor-

mal prior to an estimate of the training distribution in the data space based on a

game-theoretic min-max game. Two deep learning agents, the generator G and

discriminator D, alternate weight updates to maximize the adversary agent error.

GANs have received extensive research for their promising capabilities to learn

approximations to training data distributions given a min-max game. The min-

max optimization uses expectation over samples from the training set X ∼ pdata

of the error of the discriminator given by logD(X). The discriminator error on

real samples is balanced against that of error on generated samples given by the

expectation over samples z⃗ ∼ pz(z) decoded by the generator G(z⃗), where z is the

multivariate standard normal prior. The agents update in turn, where the gen-

erator tries to minimize the objective against a maximizing discriminator solved

by

LGAN = min
G

max
D

V (D,G) = EX[logD(x⃗)]

+ Ez⃗[log 1− D(G(z⃗))].

(1)

Figure 9: GAN Architecture.
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(a) The conditional
generator.

(b) The conditional
discriminator.

(c) The auxiliary classifier
discriminator.

Figure 10: Baseline conditional GAN architectures.

2.2 Conditional GANs

Conditional GANs (Figure 10) impart structure on the inputs to the generator and

discriminator by concatenating some label y⃗ to the input vectors of each model

(Mirza and Osindero, 2014). This conditions the min-max optimization as:

min
G

max
D

V (D,G) = EX[logD(x⃗|y⃗)]

+ Ez⃗[log 1− D(G(z⃗|y⃗))].
(2)

2.3 Auxiliary Classifier GANs

The Auxiliary Classifier GAN (ACGAN) modifies the concatenated-input discrim-

inator of the CGAN to instead predict the corresponding class of input training and

synthetic samples (Odena et al., 2017). This modification is discussed in Section 2.4

as a potential benefit of training mixed-loss adversarial models. The ACGAN al-

ters GAN training by incorporating an auxiliary classifier head on the output of

the discriminator, with a conditional component given by:

LC = EX[logP (C = c⃗)] + Ez⃗[logP (C = c⃗)]. (3)

Using this conditional loss, the discriminator is trained to maximize LGAN +LC

(1) while the Generator is trained to maximize LC − LGAN (Odena et al., 2017). In

addition to producing labeled data by specifying conditions, approximating con-
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ditional distributions of training data with conditional generators is demonstrated

to improve generative quality and discriminability of samples over unconditional

GANs when labels are available (Odena et al., 2017).

2.4 Cycles Improve Conditional Generators

Beyond demonstrations producing high-quality synthetic images, training genera-

tive models may improve downstream data efficiency, generalization, and robust-

ness of deep learning models across many domains (Child, 2021). Generative Ad-

versarial Networks (GANs) have received extensive ongoing study since their in-

ception, and extensions proposed in the seminal introduction of GANs hinted at

the subsequent development of conditional GANs which specify the desired class

of generated samples (Goodfellow et al., 2014; Mirza and Osindero, 2014). Condi-

tional image synthesis with GANs learns functional approximations from a joint

prior-condition space to a joint condition-data natural image space given labeled

training samples (Mirza and Osindero, 2014; Odena et al., 2017).

Accounting for conditional distributions in the training of data synthesis mod-

els allows for selection of generated data classes which may improve data effi-

ciency and model robustness during downstream training (Section 2.14, (Child,

2021)). The utilization of downstream supervised learners may additionally be

a promising metric in the training of conditional generators, particularly in non-

natural image tasks which lack standards of evaluating synthesized samples (3).

This chapter proposes alterations to the CGAN architecture and training pro-

cedures which improve upon baseline conditional image synthesis according to a

variety of established and proposed evaluation metrics with a corresponding in-

cremental study isolating contributions to model improvement. We demonstrate
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that incremental improvements on conditional image synthesis as measured by

generative quality metrics correlate to improved downstream learner accuracy for

models trained on synthesized samples (2.14). This finding begets ongoing study

of the role of conditional data synthesizers for data set augmentation to improve

model robustness, data efficiency, and performance on low-data paradigms.

We study three models which improve upon baseline conditional generative

GANs by inducing cycles inspired by unpaired image-to-image translation from

CycleGAN (Zhu et al., 2017) with extensions to conditional data generation (Sec-

tion 2.4). We define cycles as a composition of functions from an initial space to an

intermediate space and back with low reconstructive error such that each function

image fulfills some distributional requirement: in the case of CycleGAN ((Zhu

et al., 2017), 2.6), both spaces are image spaces with an adversarial discrimina-

tor. By setting one of these spaces to be a multivariate normal latent prior, we

induce an autoregressive model with an added adversary, here called the condi-

tional autoencoder-GAN outlined in Section 2.8.

Two incremental modifications to this design are introduced in Sections 2.9 and

2.10 which isolate the contributions of cycles versus autoencoding for encoder-

decoder models. A study comparing equivalent baseline conditional GANs to

cyclical models is performed in Section 2.12. We find that enforcing conditional, re-

constructive, and cyclical losses on the proposed models improves image synthesis

outcomes.

2.5 Contributions

This chapter contributes to the improvement of conditional natural image synthe-

sis with GANs and the utilization of conditional generation for simultaneous or
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downstream supervised learning as follows:

1. A novel formulation of three conditional cyclical GANs to incorporate cy-

cling between spaces as well as a bipartite latent space for conditioning (Sec-

tion 2.4).

2. An incremental study on the inclusion of cycles to conditional generators

demonstrating improvement on baseline conditional generators across a va-

riety of experiments and metrics (Section 2.11).

3. A proposed utilization of conditional image synthesis for supervised learn-

ing data set augmentation as an alternative generation metric (Section 2.14).

2.6 CycleGAN

The family of models proposed in this chapter draws from the CycleGAN unpaired

image-to-image translation model (Zhu et al., 2017). CycleGAN (Figure 11) train-

ing uses two unpaired image sets drawn from distinct training distributions X

and Y , typically natural images. Two models comparable to GANs are trained

simultaneously: One generator learns F(x⃗) = ˆ⃗y for training data x⃗ ∈ X directed

by a discriminator trained to distinguish training from synthesized samples in Y -

space, and another function which learns G(y) = x for training data y ∈ Y taught

by a discriminator who learns to distinguish training from synthesized samples in

Y -space. These generators are trained under the cycle constraint enforced by the

reconstructive penalty F(G(y⃗)) ≈ y⃗ and G(F(x⃗)) ≈ x⃗ (Equation 6).
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Figure 11: CycleGAN Architecture. Each space X, Y is accompanied by a discrim-
inator returning the adversarial generation loss Equation 1.

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ EX[logDY (x⃗)]

(4)

Given generative models G,F with images in spaces X, Y respectively and dis-

criminators DX ,DY on spaces X, Y respectively, the full optimization objective

L(G,F,DX ,DY ) is given by:

LGAN(G,DY , X, Y ) + LGAN(F,DX ,Y,X) + λLcyc(G,F) (5)

Where

Lcyc(G,F) = Lrecon(F,G, X) + Lrecon(G,F, Y )

= EX[||F(G(x⃗))− x⃗||1]

+ EY [||G(F(y⃗))− y⃗||1].

(6)

The hyperparameter λ tunes the relative importance of reconstruction and ad-

versarial components. This system optimizes the following:

G∗,F∗ = argmin
G,F

max
Dx,Dy

L(G,F,DX ,DY ). (7)
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Though CycleGAN emphasizes natural image style transfer, this research in-

vestigates the usage of cycles between an unpaired multivariate normal latent

space and a natural image data space for conditional synthesis and demonstrates

that the regularization imparted by cycles may improve training outcomes over

non-cyclical baseline models via regularization imparted by additional optimiza-

tion objectives.

2.7 Cycles for Conditional Generation

This research proposes the Conditional Autoencoder-GAN (CAEGAN, 2.8), In-

verse Conditional Autoencoder GAN (ICAEGAN, 2.9), and Cycle-Conditional Au-

toencoder GAN (CCAEGAN, 2.10) as incremental cyclical alterations to the condi-

tional GAN (CGAN, (Mirza and Osindero, 2014)) for conditional data synthesis.

Training paradigms comparable to cycles have been proposed in the GAN lit-

erature previously (Donahue et al., 2016). Though implemented differently in Bi-

GAN in which the discriminator evaluated corresponding pairs of latent and data

points, Donahue et. al. imparted the significance of reconstructing latent codes

from samples for the purpose of disentangling learned features (Donahue et al.,

2016).

2.8 Conditional Autoencoder-GAN

The CAEGAN (Figure 12) combines reconstructive cycles with a GAN generator

by adding a reconstructive loss term to the CGAN. Loss contribution given by dis-

criminator evaluation of generated samples structures the variation space without

an explicit prior divergence penalty as in the VAE (Kingma and Welling, 2014).

The autoencoder-GAN collapses the GAN generator and autoencoder decoder
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into a shared parameter model, where gradients are summed and back-propogated

to both the encoder and decoder. The generative and reconstructive tasks share

parameterizations, leveraging the assumption that the training distribution and

the learned approximation share a latent representation space.

Equation (8) gives the triple-criterion optimized by the CAEGAN:

L = LGAN + λ(LC + Lrecon) (8)

Two of the loss elements are directly borrowed from the nominal models: the ad-

versarial LGAN (1) and the autoencoding pixel-wise reconstruction loss Lrecon given

by mean squared error between the input sample and model output. LC (Equation

3) is given by a supervised loss from the encoder’s prediction of the input sample

label, meaning the model must predict the corresponding conditions of the input

sample in the encoding step.

2.9 Inverse Conditional Autoencoder GAN

The Inverse Conditional Autoencoder GAN (ICAEGAN, Figure 13) serves as the

foil to the conditional GAN for an incremental study with the addition of a cycle

which recovers latent codes from generated samples. The inverse mapping which

returns latent sample estimations of input images not provided by a typical GAN

– though it is known to be useful for auxiliary supervised feature learning (Odena

et al., 2017). Methods such as contrastive learning (Dai and Lin, 2017) and BiGAN

(Donahue et al., 2016) emphasize the importance of recovering the sampled latent

code which led to the generation of an image. The reconstruction loss is taken

between the latent sample v and the reconstruction v̂.



2. Data Synthesis 34

Figure 12: Conditional Autoencoder-GAN (CAEGAN) architecture. Training sam-
ples are encoded to a paired latent space given by a variation vector in the prior
distribution, and a condition in the label space. From this joint space encoded
training samples may be reconstructed, or new samples synthesized from prior
sampling.

Figure 13: Inverse Conditional Autoencoder GAN (ICAEGAN) Architecture. Pairs
sampled from the joint latent-condition space are decoded by a conditional gener-
ator, then re-encoded by an encoding function, resulting in a reconstructive loss on
the prior and a supervised loss on the condition estimate.
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L = LGAN + λ(LC + Lv recon) (9)

The reconstructive loss Lrecon is given by recovering the latent sample v⃗ in the

latent variation space V given decoded samples G(v⃗). The multivariate standard

normal prior and condition space are sampled and decoded by the conditional

generator. This decoded random latent sample is evaluated by a discriminator,

and each model receives an adversarial loss LGAN given by (1). Departing from

the CGAN, by inducing cycles by reconstructions of encoded or decoded points

the generated sample is now re-encoded to the condition-variance space which

defines the reconstructive and predictive losses on the recovered variation and

condition samples LC and Lrecon (Equation 3).

2.10 Cycle Conditional Autoencoder-GAN

The Cycle Conditional Autoencoder-GAN (CCAEGAN, 14) is the extension of the

training algorithms proposed by the CAEGAN and ICAEGAN. Where the CAE-

GAN and ICAEGAN perform reconstruction of a space under the image of another

space (data-latent-data and latent-data-latent, respectively), the cycle autoencoder-

GAN performs both tasks using shared coefficients. This leads to a four part loss,

given by:

L = LGAN + λ(LC + Lrecon + Lv⃗ recon) (10)

Where the LC now comes from two sources: supervised learning of training

data labels Lc⃗|x⃗, and reconstructing the random samples of C-space by generating

and re-encoding latent samples from the condition given the decoding of the (v⃗, c⃗)
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Figure 14: Cycle Conditional Autoencoder-GAN Architecture. Here, two cycles
are performed by a shared encoder and generator which incorporate losses from
both CAEGAN and ICAEGAN components.

pair:

LC = Lc⃗|x⃗ + Lc|G(v⃗,⃗c) (11)

The CCAEGAN serves as a third incremental step to induce cycles for condi-

tional GANs. The CAEGAN may perform well due to the advantage of recon-

structing training samples, which baseline GANs cannot do. This could lead to

the model performing well on quantitative metrics by reproducing training sam-

ples while failing to produce novel samples (DeVries et al., 2019; Odena et al.,

2017). The ICAEGAN and CCAEGAN contrast the CAEGAN as the ICAEGAN

only learns from training labels in the same manner as a GAN: indirectly through

the lens of the discriminator’s feedback.

2.11 Experiments

This section proposes experiments comparing the incremental cyclical models and

baselines for generative and supervised learning tasks for a natural image data

set. Section 2.12 compares experiments in natural image synthesis quality for the
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CIFAR-10 data set quantified by Fréchet Inception and Fréchet Joint Distances, two

metrics in image synthesis and conditional image synthesis evaluation (Krizhevsky

et al., 2009; DeVries et al., 2019). We include Section 2.14 as a proposed alternative

metric for the quality of a trained conditional generator.

Last, we include 2.15 as a proposed direction of research combining generative,

supervised, and cyclical models into a united family of distribution-comprehension

algorithms which demonstrate adversarial training of natural image synthesis mod-

els may improve upon baseline supervised learners.

In order to compare different conditional image synthesis models we empha-

size standardized architecture, hyperparameter, training procedures consistent with

building blocks from DCGAN (Radford et al., 2015). The DCGAN design is marked

by the following characteristics:

• Stride convolutions instead of pooling layers.

• Batch normalization between layers in both generator and discriminator.

• ReLU activations in the generator with a tanh output.

• leakyReLu activation in the discriminator.

Each model used the same architectures and hyperparameters: learning rate

ϵ = 2e − 4 , Adam optimizer with β1 = 0.5, β2 = 0.999, batch size of 16, and 200

training epochs, resulting in 625, 000 training updates per adversary. Each compo-

nent utilizes five 2-dimensional convolution layers of size 4, stride 2, and padding

1, with ReLU or leakyReLU activations and batchnorm mirroring (Radford et al.,

2015).

There exist numerous large GANs which significantly outperform the DCGAN-

based models considered here for the FID metric (Mirza and Osindero, 2014; Suman Ravuri,
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2019; Brock et al., 2018; Sauer et al., 2022). The models considered here serve as a

study on how the minimal addition of cycles to a DCGAN alter FID and FJD out-

comes given three possible cycles without changing the generative architecture.

Lastly, models such as BigGAN include substantial amounts of training modifica-

tions including but not limited to spectral normalization, self attention modules,

hinge losses, skip-z connections, orthogonal regularization, and truncation tricks

(Brock et al., 2018). Though these changes improve model training stability and

FID scores, our goal is to directly compare minimal changes between conditional

GANs without these design tweaks.

2.12 Quantifying Generative Quality

This section evaluates the generative quality of the proposed and baseline models

using the CIFAR-10 (Krizhevsky et al., 2009) data set, a collection of 60, 000 natural

images evenly distributed across 10 content classes. A predefined train-test split

is used to evaluate supervised learners on the unseen partition as well as compare

distributional distance between generated samples and unseen testing examples

to evaluate generative quality using the Fréchet Inception and Fréchet Joint Dis-

tances.

The Fréchet Inception Distance (FID, (Heusel et al., 2017)) quantifies the quality

of a generated distribution with respect to a target distribution by encoding each

in a learned representation in the penultimate layer of the Inception-v3 model, a

pretrained natural image classifier (Szegedy et al., 2015). The FID is a standard

metric for evaluating generative models (Karras et al., 2020; DeVries et al., 2019;

Zhang et al., 2019).

The FID does not account for the joint distribution of samples and classes for
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Table 1: Fréchet distances across model architectures for CIFAR-10 synthesis.
Lower is better.

FID FJD

CGAN 44.37± 0.05 51.97± 0.05
ACGAN 43.91± 0.03 61.59± 0.06
CAEGAN (OURS) 37.67± 0.37 46.42± 0.04
ICAEGAN (OURS) 39.06± 0.02 48.16± 0.02
CCAEGAN (OURS) 35.72 ± 0.02 43.22 ± 0.03

conditional data to measure class adherence. The Fréchet Joint Distance (FJD, (De-

Vries et al., 2019)) accounts for joint distributions of images and conditions to

express generated sample quality, adherence to the intended class, and distance

from other classes. The FJD quantifies the distance between maximum likelihood

Gaussian estimation of the conditional distributions in the penultimate layer of

Inception-v3.

Table 1 demonstrates the generative quality for baseline and proposed con-

ditional generators. Training and evaluation were performed ten times for each

model class. At the conclusion of training, the FID and FJD of the trained model

are measured. The variability in the generative quality of these trained models is

recorded in the standard error reported for each experiment.

It is worth noting that with the exception of the additional cycle the ICAEGAN

and CGAN are identical models, as are the CAEGAN and CCAEGAN. There is

no increased model capacity or architectural difference beyond the additional loss

components introduced by reconstructive cycles. When quantifying the quality of

the generated distribution, the ICAEGAN outperforms the CGAN to a substantial

degree. By contrasting these models we demonstrate cycles being a substantial

benefit to the training of generative models given a fixed decoder capacity.
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Figure 15: Weighting the non-generative (non-adversarial) losses in a multi-loss
model is vital to consistently performant generative models. At 0 weight on the
reconstructive and supervised losses, models perform significantly worse than an
identical design with weights closer to 1.

The discrepancy between the baseline and CAEGAN models cannot be ex-

plained only by the autoencoders generating samples based on leaking reconstruc-

tion of the training distribution as described in Section 2.10 as the ICAEGAN does

not perform data-space reconstruction of training samples, and the CCAEGAN has

diluted the contribution of the data-space reconstruction compared to the CAE-

GAN. Rather, generative performance is consistently improved when the learned

generative weights are updated in part by the addition of non-adversarial cycle

losses. Figure 15 demonstrates the relationship of weight on the non-generative

losses against the corresponding generative scores as measured by the FID and

FJD. Data synthesis outcomes can be improved with non-zero weights on losses

not directly relevant to data synthesis.

2.13 Data Mining in a Low-Data Regime

Often, data mining application data sets contain few samples. Shortcomings of

adversarial training such as modal collapse and divergence are exacerbated when

models (typically the discriminator) overfit to the training data due to the reduced
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Table 2: Small-data Fréchet distances across model architectures. Lower is better.

FID FJD DIFFERENCE

CGAN 79.70± 0.83 90.56± 0.90 10.86
ACGAN 71.02 ± 0.40 88.58± 0.41 17.56
CAEGAN 71.77± 0.67 83.00 ± 0.68 11.23
ICAEGAN 86.04± 1.04 99.01± 1.19 12.93
CCAEGAN 73.00± 0.80 84.11± 0.85 11.11

problem difficulty.

In this section we investigate how the performances reported in Table 1 change

with a substantially smaller data set. One quarter of the training dataset of CIFAR-

10 (12, 500 images) are used to evaluate potential collapses or differences more

apparent in the model designs for this more challenging image synthesis task.

2.14 Augmenting Training Data

The quality of a conditional image synthesizer may be quantified by the down-

stream performance of a data mining supervised learner trained using synthesized

samples. Synthetic data sets corresponding to a higher classification accuracy may

indicate higher quality conditional synthesis, particularly for non-natural image

tasks without explicit metrics such as the FID and FJD.

Table 3 reports the down-stream test accuracy of a multi-classification neural

network according to a swathe of synthetic sample data set proportions. In each

cell, ten trials are performed in which a baseline supervised learner is trained us-

ing a training set which is the indicated percentage of the CIFAR-10 training set.

The remainder of the 50, 000 images are filled in with synthesized labeled samples

given by the row name. This means that for the 75% column, 37, 500 CIFAR-10

samples are chosen from a pre-determined shuffle of the training data constant
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Table 3: Test accuracy when training data is augmented with different proportions
of generated samples.

MODEL 75% REAL 25% REAL 10% REAL 5% REAL 0% REAL

CGAN 69.89± 0.05 64.06 ± 0.38 34.13± 0.16 24.91± 0.09 18.55± 0.12
ACGAN 69.45± 0.04 44.72± 0.20 27.93± 0.17 21.24± 0.17 16.13± 0.15
CAEGAN 69.45± 0.04 51.18± 0.18 34.45± 0.19 25.89± 0.15 19.45± 0.16
ICAEGAN 69.44± 0.05 49.61± 0.14 32.78± 0.17 25.42± 0.13 19.25± 0.15
CCAEGAN 70.00 ± 0.05 52.41± 0.19 36.49 ± 0.21 26.46 ± 0.10 19.95 ± 0.10

for each experiment, and the image of 12, 500 latent samples are drawn from the

corresponding generator and concatenated to the data set.

Results in Table 3 demonstrate how using conditional sample synthesis con-

tributes to model testing performance for a variety of ratios of training data to

GAN-augmented data, measuring the trained generator’s adherence to semantic

content present in CIFAR-10 testing samples as determined by the testing loss of a

model trained on the conditional synthesized samples.

2.15 Cyclical Models Perform Classification

The final result on the benchmarking contribution of research is the demonstration

that cyclical models do not just improve on comparable CGANs for image synthe-

sis, but situationally outperform comparable supervised learners on image classifi-

cation. One motivation for the study of generative models is improved utilization

of training data for robust, efficient models. Efficiency of training data becomes

increasingly vital for deep learning success as the number of samples decreases.

The encoding component of each of the cycle models CAEGAN, ICAEGAN, and

CCAEGAN perform the multiple attention task of encoding samples to the varia-

tion and code spaces. To measure supervised learning outcomes each cell of Table
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Table 4: Top-1 test accuracy of classification heads of conditional cycle models.
Higher is better.

MODEL 75% OF TRAIN 25% OF TRAIN 10% OF TRAIN 5% OF TRAIN

PREDICTOR 69.87 ± 0.23 59.12 ± 0.06 47.09± 0.07 32.60± 0.12
CAEGAN 68.55± 0.04 56.34± 0.08 45.78± 0.07 41.07 ± 0.17
ICAEGAN 18.60± 0.80 20.71± 0.56 15.30± 0.89 14.05 ± 0.41
CCAEGAN 65.25± 0.25 50.86± 0.25 41.21± 0.18 34.30± 0.13

4 indicates ten models trained from scratch on a CIFAR-10 subset.

Instead of training only a predictive model, the three cycle models each use the

encoding portions of their architectures to encode the testing samples alongside

adversarial generative and reconstructive learning.

Table 4 demonstrates that the complexity of handling autoencoding, genera-

tive, and supervised tasks is a burden for the cyclical models for large volumes

of data. Though the CAEGAN and CCAEGAN testing accuracy is in stride with

the simple predictor for 75% and 25% of the training set, the results fall off for

the CCAEGAN when using 10% (5, 000) of training samples. However, a turning

point exists between 10% (5, 000 samples) and 5% (2, 500 samples) of the original

set: the regularization imparted upon the encoder by managing the generative, re-

constructive, and predictive tripartite loss improves the model’s testing accuracy,

as both the CAEGAN and CCAEGAN pull ahead of the comparable supervised

learner. The ICAEGAN performance remains poor throughout due to the encoder

training without direct access to the training data set.

2.16 Chapter Conclusions and Subsequent Directions

We have demonstrated how the inclusion of cycles improves upon comparable

CGANs. We demonstrate that the relationship between conditional image synthe-
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sis and supervised learning may benefit both tasks as performance in one area may

be used as a metric for the other. These results were consistent across the FID, FJD

and proposed augmentation metrics for CIFAR-10. The consistency with which

the three highly different cyclical models outperformed the baselines lends itself

to the notion that alternative training metrics may regularize against shortcomings

of adversarial training by limiting the space of viable parameters.

Generalizations on the theme of cycles for reconstruction may be extended to

any model architectures which rely on learning representations of data, and may

be beneficial beyond conditional GANs for image synthesis including extensions

to autoregressive and supervised learners. Contemporary research including (Kar-

ras et al., 2020) investigates the utilization of augmentations for stabilizing GAN

training, particularly for limited-data domains. The study of regularization ef-

fects including but not limited to the corresponding quality of synthesized images

and model inference during training may be a productive area of research for the

stabilization of GAN training. Despite notorious instability in GAN training par-

ticularly for low-n tasks, concurrent training of generative and supervised models

may be a promising direction for data-efficient multi-task deep learning models.

Subsequent chapters will call upon the novel architectures and multitask train-

ing as presented here. Chapter 3 will utilize alternative multitask training paradigms

inspired by the meaningful latents found in 2.7. Chapter 4 uses strongly-structured

latents as an alternative to the weakly-structured latents found in Chapter 2. Re-

search from this Chapter was extended using adversarial training with CAEGAN-

ACGANs and time series chemical sensing data in a forthcoming paper Multitask

Conditional Data Synthesis with Cycles.
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3 Multitask Adversarial Training

Chapter 1.3 motivated the development of a chemical sensor capable of discrimi-

nation of a broad range of chemical analytes. From the hardware perspective, an

array of semi-selective chemical sensors may respond to many analytes simultane-

ously. The machine learning component of the device, however, may fail to learn

decision boundaries which remain accurate in the detection of obscured or novel

chemical analytes with a traditional classifier.

In order to measure model response to a likely change in real-world deploy-

ment distribution caused by obscurant analytes, we utilize single-analyte expo-

sures of four chemical analytes of interest (Analyte A, B, C, or D). Models trained

with these single-analyte exposures are tested on unseen double-analyte exposures

(combinations A-B, A-C, A-D, B-C, C-D) in which Analyte A may be present but

masked by some unknown obscurant analyte. Section 3.2 discusses the compli-

cations of gathering exhaustive experimentation beyond single-analyte exposures.

The classification of Analyte A in the presence of obscurant analytes emulates the

vital task of hazardous analyte detection for real-world applications where envi-

ronmental factors are unpredictable for experimentation.

We propose the utilization of Auxiliary Classifier Generative Adversarial Net-

works (ACGANs) as supervised learners which make use of adversarial and mul-

titask training to improve out-of-distribution performance (Odena et al., 2017).

Though generative deep learning has been applied to molecular synthesis and

drug discovery (Elton et al., 2019; Gebauer et al., 2022), the inclusion of adversar-

ial and generative training to chemical analyte discrimination may be beneficial to

chemical discrimination with sensor devices and to our knowledge are yet unex-

plored (Ruder, 2017; Mater and Coote, 2019; Wei et al., 2019). We hypothesize that
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simultaneous adversarial training of a data-synthesizing model improves gener-

alizability of the discriminator-classifier model through the parameterization bias

imparted by multitask learning (Caruana, 1997; Shinohara, 2016; Child, 2021). Re-

sults in Section 3.5 demonstrate inducing additional data-synthesizing tasks (Sec-

tion 3.3) without additionally annotated data significantly improves testing out-

comes for distribution-shifted data (Section 3.2).

3.1 Chapter Contributions

• We propose the utilization of ACGANs as generalizable multi-task learners

which improve testing classification outcomes on challenging distribution

shifts. We leverage multi-task learning without requiring additional experi-

mental labels or annotations (Section 3.3).

• We record optimized benchmarks for four baseline machine learning models

as well as a comparison between feedforward neural network classifiers and

ACGANs given optimized hyperparameters for discrimination of Analyte A

as well as detection in the presence of obscurant analytes (Section 3.4, 3.5).

• We perform model comparisons between comparable ACGAN and feedfor-

ward neural networks to diagnose how inducing additional tasks may ben-

efit generalizability of deep learners for chemical sensing under distribution

shifts (Section 3.5).

• We study the scaling behavior of classifier models with respect to the com-

bination of single- and double-analyte training samples to improve future

chemical sensor data set development (Section 3.6).
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3.2 Data

The data considered throughout this section are drawn from two types. Single-

analyte exposures are created by exposing one chemical analyte of a given con-

centration to the multi-sensor array for a constant length exposure. The second,

more challenging data are the double-analyte exposures: a two-analyte mixture is

exposed to the sensor array for a time period. These double-analyte exposures are

substantially more difficult to classify as the desired information (the presence of

Analyte A) is obscured by an additional analyte which alters the sensor response

profiles (Figure 8). The introduction of three other obscurant analytes each modi-

fies the resistance curves in different ways. Though Analyte A is still present, the

relationships of sensor responses from the unobscured curve have been altered. In

order to measure model quality for a challenging obscured-analyte out of distribu-

tion task, a supervised model must account for this change in distribution without

access to these double-analyte responses during training.

In Figure 17, we see separation between samples containing Analyte A and

those not containing Analyte A. Experiments One and Two may have sensor coat-

ings more conducive to the discrimination of Analyte A from other analytes as

judged by the distance and linear separability and distance of Analyte A samples

under one ISOMAP transformation (Tenenbaum et al., 2000).

For chemiresistive sensor signal classification, an example machine learning

approach to the discrimination of chemical Analyte A from chemical Analytes B,

C, and D succeeds when one analyte is present at a time (Figure 18a). For the

more complex detection test of obscured signals given by analyte mixtures, the

generalization performance of this model is poor, as the positive class samples are

distributed along both sides of the decision boundary (Figure 18b). The ability to
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Figure 16: Sensor response curves to Analyte A are shown unobscured (top left)
and obscured in three different ways. Obscurants change the characteristic sensor
resistance response of Analyte A alone.

discriminate Analyte A signals from other analyte exposures even when obscured

by a secondary analyte is a vital task for chemical sensors, and one which demands

changes to standard data mining practice.

In addition to being harder to classify, mixture data are substantially harder to

exhaustively gather. The experimental cost of datasets even with limited numbers

of analytes and concentrations quickly becomes intractable as trials require expert

supervision, experimental design, hardware setup, and data verification processes.

Given a number of chemical analytes of interest x1, ..., xn at various concentrations

c1, ..., ck, the number of experiments necessary to perform experimentation of all

mixtures at all concentrations is given by
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Figure 17: Exploratory data analysis demonstrating ISOMAP dimensionality re-
duction (Tenenbaum et al., 2000) from the space of sensor response curves to two
dimensions for four sensor array data sets. In this visualization, an ISOMAP
embedding trained on single-analyte exposures then encodes both the single
and double-analyte sets. Samples containing the analyte of interest Analyte A
are marked with crosses to differentiate the positive classification label. We
find double-analyte exposures distributed among single-analyte exposures, and
positive-class samples distributed among negative classes.
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(a) (b)
Figure 18: Visualization of the shortcomings of linear decomposition with linear
classifiers for mixture data. Left: Under a 2-dimensional PCA transformation, sig-
nal data of single-analyte exposures may be well-separated by a linear classifier.
Right: Under a PCA embedding of signal data, the same model fails to accurately
discriminate between samples containing Analyte A. Samples marked with x con-
tain Analyte A and are intermixed with non-Analyte A single-analyte exposures,
leading to poor classification results from this linear classifier.

n∑
p=1

(
n

p

)
kp (12)

where p represents the number of analytes in the mixture. Figure 19 visualizes

the complexity of gathering representative data sets for even a limited number of

analytes and concentrations: in this case, simultaneous exposure of one, two, three,

or four chemical analytes each at one of four potential vapor concentrations.

Limitations in experimental data volume lead to investigations in improving

model performance on a challenging chemical sensor problem - particularly when

the space of possible analyte exposures is highly complex and expensive to sam-

ple from. Generalizing from laboratory to real-world data incurs additional com-

plexity due to distributional differences which may lead to detection failures in

machine learning tools (Bousmalis and Levine, 2017). In classifying the presence

of Analyte A borne in vapor by an olfactory system, it is vital to measure the per-

formance of the classifier for unseen obscurant analytes. Since it is prohibitive to
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Figure 19: The corresponding number of experimental trials to be performed given
four analytes (A, B, C, D) at four possible exposure magnitudes (12.5%, 15%, 20%,
25%).

perform exhaustive experimentation of double-analytes in a laboratory setting, we

turn to the optimization of classifiers in order to handle unseen challenging distri-

butions.

Triplicate experiments are performed for each of four analytes at each of four

concentrations{6.25%, 12.5%, 17.5%, 25%}. We retain an unseen holdout set of double-

analyte exposures. This small data set (n ≈ 30 for each of three experimental data

sets) of two simultaneous analyte exposures are used as the holdout set to mea-

sure how well methods are able to generalize to unseen distributions of obscured

analytes.

3.3 Generative Multitask Models

ACGANs are one approach to induce a multitask training paradigm with no ad-

ditional labels or exterior tasks. Rather than including additional tasks with ex-

tra labels on training samples, the model utilizes additional induced tasks via the
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Figure 20: The ACGAN modifies the GAN architecture to include an auxiliary
classifier head on the discriminator output layer. A condition classification task
extends a data synthesizing model to a conditional data synthesizing model. We
utilize the classifier output which shares parameter optimization with the discrim-
inator as a regularized supervised learner.

adversarial data synthesis process which optimize the model with respect to the

same training data and labels but with additional loss terms (Caruana, 1997). We

hypothesize the representation bias phenomena (Baxter, 2000) from the additional

tasks improves model parameterizations. Deeper representations may improve

supervised learning generalizability over comparable feedforward classifiers, par-

ticularly for low-data experiments with a shifted testing distribution.

The Auxiliary Classifier GAN (ACGAN, interested readers may refer to (Odena

et al., 2017) on adversarial supervised training) modifies the discriminator of the

GAN to predict the corresponding class of input training and synthesized sam-

ples. ACGANs account for conditional probabilities approximating the joint data

distribution p(x⃗, c⃗) by conditioning the generation and discrimination of samples

on the analyte label c⃗. In training, the generator G uses a condition c⃗, here repre-

senting a chemical exposure label, to conditionally generate from a random latent

sample z converging to an approximation of the conditional training distribution.

The ACGAN alters GAN training by incorporating an auxiliary classifier head on

the output of the discriminator, with a conditional component given by:
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LC = EX[logP (C = c|x⃗)]

+ Ez⃗[logP (C = c|G(z⃗))].

(13)

Using the conditional loss, the Discriminator is trained to maximize LC +LGAN

(1) while the Generator is trained to maximize LC − LGAN (Odena et al., 2017).

Odena (2017) finds the inclusion of the conditional adversarial training quantifi-

ably stabilizes training and improves discriminability of generated samples along-

side advantages in representation bias through multitask learning by balancing

adversarial and supervised losses (Caruana, 1997). Utilizing the conditional dis-

crimination of the ACGAN to classify samples from a shifted testing distribution

with results from Section 3.5 demonstrates that adversarial training improves upon

feedforward networks for three distribution-shifted chemical sensing data sets.

3.4 Methods

The data are split into two categories for the experiments in Section 3.5. Single-

analyte exposures compose the training set which is used to train machine and

deep learning classifiers to predict the presence of Analyte A. The single-analyte

exposure data are also used for validation in which unseen holdout samples are

used to optimize over hyperparameter grid searches (Algorithm 1) in Section 3.4.

Results in Section 3.5 use three separate real chemical sensing data sets with

different sensor materials, analyte concentrations, and analyte exposures. Each

experiment is separated into a single-analyte data set and a double-analyte data

set. Single-analyte data sets are utilized as training and validation data for hy-

perparameter optimization. Double-analyte exposure experiments are utilized as

testing data.



3. Multitask Adversarial Training 54

For each set of experiments, we train the following supervised learners which

represent a diverse set of baseline classifiers. Each model is optimized over a broad

swathe of hyperparameters selected by cross-validation given the experiment, data

set, and exposure time period t ∈ {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5} seconds. The hy-

perparameter grid searches utilized for each model are as follows:

1. Auxiliary Classifier GANs (Odena et al., 2017)

• Model width: 8, 16, 32, 64, 128

• Learning rate: 0.001, 0.002, 0.01, 0.05

• Training epochs: 4, 8, 16, 32, 64, 128

• Batch size: 4, 8, 16

• Latent Dimension: 32

2. Feedforward Neural Networks (Rumelhart et al., 1986)

• Model width: 8, 16, 32, 64, 128

• Learning rate: 0.001, 0.002, 0.01, 0.05

• Training epochs: 4, 8, 16, 32, 64, 128

• Batch size: 4, 8, 16

3. Baseline models (Implemented via (Pedregosa et al., 2011)):

(a) Decision Tree Classifier (Breiman et al., 2017)

• Max depth: 1-8

• Minimum samples per split: 2-8

• Max features considered: 1, 2, 4, 8,
√
vars
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(b) Random Forest Classifier (Ho, 1995)

• Number of estimators: 2, 5, 25, 100, 200, 400, 800

• Splitting criterion: gini, entropy

• Max depth: 2, 4, 8, 16, 32

(c) K-Neighbors Classifier (Silverman and Jones, 1989)

• Number of neighbors: 1-20

• Weights: Uniform weighting, distance weighting

• Distance power: 1, 2

(d) Logistic Regression (Cox, 1958)

• Parameter Lasso penalty: 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.25, 0.5,

0.75, 1.0

For each of the six models the following optimization method is used. For each

experiment and for each time t ∈ {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5} seconds, the model

is trained on half of the training data using a stratified sampling by analyte concen-

tration. The other half is the validation set used to select the optimal hyperparam-

eter configurations given 5-fold cross validation (Stone, 1974). The optimal model

from the exhaustive hyperparameter search is taken to be the highest-performing

model based on validation set F1 (Pedregosa et al., 2011) score for that time pe-

riod. The F1 score is given by the harmonic mean of the precision and recall of the

model classifications. The validation process is repeated 5 times to find optimal hy-

perparameters, and the corresponding testing F1 score is recorded. The mean and

standard error of testing performance is provided for each data set, experiment,

and model in Section 3.5.
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Algorithm 1 A hyperparameter gridsearch algorithm for one model, experiment,
and time period.

Require: Supervised learning model m. Exposure time t. A number k of folds for
cross-validation. A set of hyperparameters to consider {h0, ..., hp}. A number of
trials to re-perform the experiment for standard error. Training single-analyte
dataset (n ≈ 100) from one of three experiments. Testing double-analyte dataset
(n ≈ 30).
Declare a split K of the training data into k disjoint partitions using label-
stratified sampling.
for each trial do

for h ∈ H do
for each train-validation split i ∈ K do

Remove ith partition of training data as validation.
Train a classifier on the training partition using the hyperparameter

configuration.
Record the model’s F1 score on the validation set.

end for
end for
Select the model hyperparameter configuration with the lowest mean vali-

dation score.
Retrain this model on the entire training set.
Record this model’s testing F1 performance.

end for
Summarize mean and standard error of testing F1 performances across trials
given optimal models.
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Table 5: Mean ± standard error testing F1 score of classification of Analyte A given
single-analyte training and testing sets. Models are cross-validated for hyperpa-
rameter selection on a validation set before being tested on a holdout set of single-
analytes. For each experimental data set, the best overall model is highlighted in
dark green and the second best overall model is highlighted in light green.

Model Experiment One Experiment Two Experiment Three
ACGAN 0.7540± 0.0121 0.7968 ± 0.0114 0.8684± 0.0130

Neural Network 0.8504 ± 0.0113 0.6980± 0.0287 0.6186± 0.0140
Decision Tree Classifier 0.2679± 0.0536 0.4075± 0.0815 0.7529± 0.1506
K-Neighbors Classifier 0.4254± 0.0851 0.5271± 0.1054 0.8448± 0.1690

Logistic Regression 0.3661± 0.0732 0.4610± 0.0922 0.8843 ± 0.1769
Random Forest Classifier 0.2969± 0.0594 0.4875± 0.0975 0.7949± 0.1590

3.5 Results

We report the improvements to rapid and accurate classification of an analyte of

interest in the presence of potential obscurant analytes. Throughout, the F1 score

is used as the metric to quantify success.

Results from Table 5 indicate a lack of certainty in the superior model for the

classification of Analyte A without the presence of obscurants in the testing set.

Multiple models perform well on a single-analyte training set when optimized on

single-analyte training data. ACGANs perform best on Experiment Two single-

analyte classification data, and are second best for Experiments One and Three.

Results from Table 6 indicate that the usage of the ACGAN discriminator as a

supervised learner dramatically improves testing outcomes across data sets com-

pared to comparable neural networks and baseline machine learning models. Chang-

ing the testing distribution significantly reduces F1 metric outcomes compared to

results in Table 5, but the ACGAN loses less ground when compared to peer mod-

els which demonstrate a failure to generalize to the testing set.

Figure 21 visualizes the difference between comparable feedforward neural

network and ACGAN models for a change in testing distribution for all three
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Table 6: Mean ± standard error testing F1 score of classification of Analyte A in the
presence of an additional analyte given training on single-analyte exposures. Mod-
els are cross-validated for hyperparameter selection on a validation set of single-
analytes before being tested on an unseen set of double-analyte exposures to mea-
sure the generalizability of classifiers to new distributions. For each experimental
data set, the best overall model is highlighted in dark green and the second best
overall model is highlighted in light green.

Model Experiment One Experiment Two Experiment Three
ACGAN 0.4436 ± 0.0493 0.5525 ± 0.0614 0.4655 ± 0.0517

Neural Network 0.1804± 0.0497 0.1804± 0.0497 0.0691± 0.0402
Decision Tree Classifier 0.2169± 0.0434 0.2098± 0.0420 0.1119± 0.0224
K-Neighbors Classifier 0.2755± 0.0551 0.2287± 0.0446 0.0906± 0.0181

Logistic Regression 0.2339± 0.0468 0.2231± 0.0446 0.1170± 0.0234
Random Forest Classifier 0.1474± 0.0295 0.1797± 0.0359 0.0111± 0.0022

Figure 21: Across data sets and exposure times, ACGANs trained with single-
analyte exposures outperform comparable feedforward neural networks when
tested on double-analyte exposures. These performances account for a cross-
validation optimized model over a large gridsearch of parameters for each pos-
sible exposure window and experimental data set.
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Figure 22: For Experiment Two, we demonstrate F1 score outcomes for the clas-
sification of double-analyte samples for variable time windows. For each combi-
nation of a random sample of k double-analyte experiments and n single-analyte
experiments, the resulting F1 outcome on holdout double-analytes is reported for
each exposure window time. Moving from top left to bottom right, the classifier is
trained with incrementally more double-analyte exposures.

data sets. Though optimized on comparable hyperparameter sets, the addition

of the adversarial data synthesis task for ACGANs has substantially improved

the performance on the more challenging double-analyte distribution for all time

windows. Though F1 improvement trends of neural networks and ACGANs are

comparable when increasing exposure time, ACGANs perform substantially better

on generalization to an out-of-distribution testing set of obscured double-analytes

across all exposure windows with the exception of a near-time for three- and four-

second exposures in Experiment One.

3.6 Scaling Behavior

Figure 22 explores the possibility of including double-analyte training data to im-

prove learning outcomes for double-analyte classification. As the number of double-

analyte experiments included in training increases, we find decreased variability
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in F1 outcomes with respect to variable numbers of single-analyte training data.

In addition, including 16 double-analyte samples significantly improves learning

outcomes for all numbers of additional single-analytes. There exists an inflection

point between 0 and 4 double-analyte samples which causes the addition of further

single-analyte samples to detract from training, particularly in small time window

detection problems. The variance in classification outcomes is highly dependent

on time and number of single-analytes for zero double-analytes (top-left), and con-

sistently low with 16 double-analyte training samples, regardless of the number of

singles-analyte samples.

The addition of double-analyte training samples improves classification out-

comes for these chemical sensing data sets. In addition, we have demonstrated

little improvement beyond 32 single-analyte training samples on the learning out-

comes for double-analyte classification. These two results together indicate that

given the experimental design used in this paper with four analytes. further ex-

periments may be required to sample from the space of double-analyte exposures.

Though this effect is consistent in three chemical sensing experiments using four

analytes of interest, it may not hold for higher numbers of analytes as the scaling

behavior of experimentation with high numbers of analytes. We may expect simi-

lar scaling behavior in the number of double-analyte experiments used as training

data for differing analytes, analyte combinations, or sensor designs. However, ex-

haustively sampling from double-analytes rises quadratically with the number of

analytes of interest, whereas single-analyte sampling used in this research remains

linear.
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3.7 Discussion

Though GANs are known to suffer collapse in low-data training, we demonstrate

that the ACGAN may be trained such that its supervised generalizability is signif-

icantly improved beyond that of comparable neural networks or baseline models.

This finding may be corroborated by ongoing research into the representations

learned by multitask synthesizing-predicting models and investigations into the

apparent data efficiency and robustness to distribution shifts of these adversarial-

trained models. It is possible that deeper, more generalizable representations are

learned as a function of additional optimization terms induced from data synthe-

sis.

Data synthesizing models represent a highly flexible function from a latent

prior to a complex manifold approximating the training distribution. For this rea-

son further analysis of the role of generators as adaptive augmentations for the

training of classifying discriminators is necessary. Auxiliary classifier discrimina-

tion evaluation of synthetic samples may serve as a form of training data augmen-

tation factoring into the increased generalizability seen in Section 3.5. Conditional

generators could play a similar role to augmentations in the training of auxiliary

discriminators, and further research is needed into the relationship between aug-

menting data sets with synthetic samples versus perturbed ones particularly in the

adversarial learning paradigm at various training data volumes and complexity.

For sensor tasks where the testing distribution is known to depart from train-

ing, adversarial-trained classifier models may be appropriate for tasks in which

gathering exhaustive data on the new distribution may be intractable. The repre-

sentation bias from multitask models may benefit supervised learners for low-data

paradigms, even in the absence of additionally-annotated data. Further research
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will extend results from this chapter to incorporate cycles for multitask generation

as in Chapter 2. Incorporating time series neural network architectures into the

ACGAN components discussed here will further improve results from a super-

vised and unsupervised perspective on chemical sensor classification.
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4 Zero-Shot Learning with Semantic Training

Chapter 1 motivated accurate chemical sensors as vital to industry and safety ap-

plications. Training machine learning models to be accurate on real world chemi-

cal sensor data requires performing many diverse, costly experiments in controlled

laboratory settings to create a data set. In practice even expensive, large data sets

may be insufficient for generalization of a trained model to a real-world testing dis-

tribution. Rather than perform greater numbers of experiments requiring exhaus-

tive mixtures of chemical analytes, this chapter proposes learning approximations

of complex exposures from training sets of simple ones by using single-analyte ex-

posure signals as building blocks of a multiple-analyte space. We demonstrate this

approach to synthetic sensor responses surprisingly improves the detection of out-

of-distribution obscured chemical analytes. Further, we pair these synthetic signals

to targets in an information-dense representation space utilizing a large corpus of

chemistry knowledge. Through utilization of a semantically meaningful analyte

representation spaces along with synthetic targets we achieve rapid analyte clas-

sification in the presence of obscurants without corresponding obscured-analyte

training data.

Transfer learning for supervised learning with molecular representations makes

assumptions about the input data. Instead, we borrow from the natural language

and natural image processing literature for a novel approach to chemical sensor

signal classification using molecular semantics for arbitrary chemical sensor hard-

ware designs. The techniques for semantic training introduced here have been

demonstrated in the natural image and natural language literature to improve ac-

curacy and reduce catastrophic errors in classification. Incorporating these tech-

niques may help chemiresistive sensor arrays classify challenging distributions
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Figure 23: ChemVise utilizes activations from a pretrained supervised molecular
property model to represent analytes of interest with geometric interpretation. The
utilization of arithmetic means between points in analyte space creates improved,
tunable decision boundaries for chemical sensor classifiers. We find that seman-
tic chemistry representations outperforms non-chemical embeddings and leads to
greater discriminability of obscured chemical analytes.

and raise the floor on out-of-distribution performance.

4.1 Introduction

Classifying chemical vapors is vital to military, industrial, and safety applications.

Hazardous chemical detection becomes challenging in the presence of obscurants

and environmental factors as sensor responses change. This chapter addresses

the generalizability of data mining applied to challenging chemical vapor mix-

tures with novel deep learning approaches. We take inspiration from embedding-

translation models in calling our approach “ChemVise”, a portmanteau of the con-

stituent Chemception (Goh et al., 2017) molecular attribute prediction model and
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DeViSE (Frome et al., 2013) visual-semantic embeddings. Rather than natural im-

age and sentence semantics, we utilize deep representations of SMILES molecular

images paired with chemiresistive sensor signals to learn improved representa-

tions for downstream predictors (Figure 23). Improved chemical representations

for chemical sensing allows even challenging double-analyte samples to be en-

coded such that they are linearly separable with simple classifiers. We find our ap-

proach significantly outperforms competitive models for the detection of obscured

chemical analytes with only unobscured analytes as training data.

In order to classify more challenging analyte mixtures which do not appear

in the training set, we borrow from zero-shot, transfer, and multi-modal learning

approaches in deep natural image and language learning (Larochelle et al., 2008;

Frome et al., 2013; Radford et al., 2021). We contribute the following to the chal-

lenging task of obscured analyte detection for one chemical detection paradigm,

with generalizations available for any sensing hardware design:

1. We introduce the novel ChemVise approach which modifies transfer learning

to utilize chemistry domain knowledge for any chemiresistive sensor data

(Section 4.2).

2. We apply linear combinations for analyte mixture molecular-semantic rep-

resentations for the improved detection of obscured analytes (Section 4.3).

The utilization of linear combinations for chemistry representations as well

as linear combinations for sensor response to mixture data is yet unexplored

in the literature.

3. We demonstrate that transfer learning of ChemVise outperforms other ma-

chine and deep learning approaches to chemical sensing as well as alterna-

tive non molecular-semantic representations (Section 4.4).
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Figure 24: Two example single-analyte exposures. Left: A 5-second window in-
cluding the moment a mixture of 12.5% Analyte A is exposed to the array of eight
sensors. Right: A 5-second window including the moment a mixture of 12.5% An-
alyte B is exposed to the array of eight sensors. Machine learning classifiers use
discrepancies in sensor resistances responses to discriminate between analytes.

4. We provide an outline for the generalization of this approach to arbitrary

sensing hardware. Whereas most transfer learning techniques would be do-

main specific, this approach can adapt the training of the deep encoder for

arbitrary input data to the same latent representation space (Section 4.7).

The ability to import significant domain knowledge in the form of transfer

learning is vital to the rapid development of diverse and accurate sensors. Promis-

ing results in chemistry-applied deep learning indicate that well-tuned models

shorten the development cycle of new tools and in some cases can replace repeti-

tive laboratory experiments (Wei et al., 2019).

By utilizing single-analyte exposures canonical dimensions of multi-analyte

mixture space and incorporating external chemistry knowledge, supervised learn-

ing outcomes are improved and constraints to experimental hardware, budget, and

time limit may be mitigated.

Our surveying efforts above report many other techniques utilizing molecu-

lar and compound embeddings for downstream supervised learning. However,
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to our knowledge our ChemVise approach (Section 4.2) utilizing transfer learning

representations as targets to train embedding models for arbitrary input data re-

mains unexplored in chemical sensing and materials science. Natural image and

natural language researchers (Frome et al., 2013; Socher et al., 2013; Radford et al.,

2021) have emphasized semantically meaningful target spaces for supervised and

generative deep learning. Sentence-to-image generation and image-to-sentence

captioning are a promising recent breakthrough which large language transform-

ers have had incredible recent successes (Ramesh et al., 2022). Multi-modal deep

representation learners use paired encoder-decoder models which operate in the

same meaningful embedding space, and learn to link the two embeddings with a

translation model. Rather than natural image and sentence semantics, however,

our ChemVise approach utilizes deep representations of molecular SMILES im-

ages encodings paired with chemiresistive sensor signals to learn improved latent

representations for downstream predictors (Figure 25).

4.2 ChemVise Method

Our proposed ChemVise approach to chemical sensing borrows from the deep

learning literature on zero-shot learning (Larochelle et al., 2008), transfer learning

(Weiss et al., 2016), and domain transfer (Ramesh et al., 2022) to utilize a trans-

formed target space given by an expert model (Figure 23). DeVise (Frome et al.,

2013) used a pretrained skip-gram language embedding model and a pretrained

deep convolutional neural network to embed images and their text labels as high-

dimensional real-valued vectors in two distinct representation spaces. A trans-

lation model is then trained to map between an image-representation space to a

label-representation space, thereby linking the spaces and allowing zero-shot se-
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Figure 25: Embeddings of four analytes of interest as well as six comparison an-
alytes and compounds. The penultimate activations of the Chemception model
are used as embeddings and reduced to two dimensions with PCA for inspec-
tion. Chemception provides representations of analytes used as targets for the
ChemVise embedder.

mantic prediction of input images.

There exist many pretrained deep representation models trained on large chem-

istry corpi mentioned in Section 1.3. In this work we utilize penultimate activa-

tions of the pretrained Chemception (Goh et al., 2017) supervised model which

was trained to predict toxicity, activity, and solvation of a large dataset of chemi-

cals. The inherent representation learning of deep neural networks provides rep-

resentations of analytes we use to create a more meaningful target space for the

ChemVise embedding model which trained from scratch for our novel chemical

sensing hardware.

ChemVise uses targets represented by embeddings rather than traditional la-

bels for a chemiresistive sensor signal input. Using representations of analytes as a

target rather than typical one-hot classification or multiple regression targets leads



4. Zero-Shot Learning with Semantic Training 69

to improved decision boundaries and signal representations and can be adapted

to arbitrary sensing hardware. Figure 25 shows 2D visualizations of embeddings

of analytes given by Chemception (Goh et al., 2017) encodings of analytes repre-

sented as images of SMILES strings match our intuition about similarity of analytes

in a high-dimensional space. Representation spaces replace the label space as the

target for a high-dimensional output2.

A deep fully-connected neural network is trained to map from the input data

space of sensor signals to this molecular-semantics representation space. Any su-

pervised learning algorithm with a multidimensional real-valued output may be

used. The ChemVise process provides a trained embedder which encodes any

sensor response input in the information-dense space with improved separability

between classes. Subsequently any classifier can be used in the chemistry space for

improved classification outcomes (Figure 26) compared to non-embedded samples

(Figure 18).

Each point of an analyte representation space encodes a similarity and dissim-

ilarity to other molecule and compound points. ChemVise must provide a faithful

embedding to the properties of chemical compounds as well as multi-analyte mix-

ture signals. For this reason we implement linear combinations between single-

analyte exposures with synthetic targets given by the geodesic center of the two

canonical elements.

4.3 Linear Combinations Approximations

We utilize a natural image processing approach incorporating linear combinations

to propose an application to multi-analyte signal processing. linear combinations

2Further detail on the implementation and training of ChemVise along with a PyTorch-style
pseudocode is available in the extended materials section.
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Figure 26: This visualization shows the validation singles and testing doubles
(black) embedded by the ChemVise model then classified with a linear SVC.
This image is for visual illustration only as ChemVise utilizes a 512-dimensional
representation space, which is more accurate than the same model under a 2-
dimensional PCA decomposition. Left: ChemVise embeddings given training the
deep learning model to map signal samples to their corresponding target given by
the matching color “+”. The tunable decision boundary linearly separates the pos-
itive and negative samples. Right: Double-analyte samples under this trained em-
bedding model fall in line with the correct classification given by the SVC trained
with only single-analytes. This embedding outperforms simple decomposition
embeddings by incorporating molecular semantics into the embedded represen-
tations, and allows even double-analyte samples to be linearly separated.
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Figure 27: Left: Sensor experiment exposing eight chemiresistive sensors with
unique polymer and graphene coatings to a mixture of 12.5% Analyte A and 12.5%
Analyte B. Right: The summation of 12.5% Analyte A and Analyte B signals ap-
proximates the simultaneous double-analyte exposure to Analyte A and Analyte B.
The synthesized double-analyte target in the analyte representation space is taken
to be the weighted sum of the two single-analyte representation vectors according
to the linear combinations parameter (Section 4.3)
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is a natural image augmentation designed to promote simple linear behavior in-

between training examples for deep neural networks (Zhang et al., 2017). The data-

agnostic augmentation synthesizes samples given by linear interpolations between

random examples and their training labels:

x⃗k = λx⃗i + (1− λ)x⃗j (14a)

y⃗k = λy⃗i + (1− λ)y⃗j (14b)

Where yi, yj are analyte exposure embedding vectors corresponding to sensor re-

sponse vectors xi, xj .

Linear combinations as applied to chemiresistive sensing approximates real

double-analyte chemical sensor exposures using only single-analyte exposures as

training data. We set the mixture probability density function as a tunable uniform

distribution between a and b. The maximum and minimum of the distribution may

be tuned to account for what level of mixture sensitivity should be classified as a

positive sample. Here, we utilize (a, b) = (0.3, 0.7) as the bounds for mixtures

representing the typical concentrations in the training data. Otherwise, utilization

remains the same as in the natural image paradigm wherein samples are linearly

interpolated during training using linear combinations of training pairs.

4.4 Results

In addition to single-analyte exposures of one analyte to the sensor array, multiple

analytes may be exposed simultaneously. Here we refer to a two-analyte mixture

exposed to the sensor device as a double-analyte exposure, and may be a combina-
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tion of any two analytes with any relative magnitude. In our binary classification

results 4.4, a mixture containing any amount of Analyte A is treated as a positive

sample and all other mixture pairs are treated as negative samples.

We provide results for a training paradigm given by training on single-analyte

exposures and testing on challenging out-of-distribution obscured double-analyte

exposures. We demonstrate the importance of representation selection (Section 4.5)

as well as optimized models for the rapid detection of obscured Analyte A given

variable-length exposure windows (Section 4.6). Results within follow a consis-

tent algorithm (K-fold validation hyperparameter gridsearch) for the selection of

hyperparameters prior to observation of the holdout testing data.

4.5 Representation Matters

Though our design utilizes the pretrained Chemception (Goh et al., 2017) to repre-

sent analyte SMILES images as meaningful vectors in a target space, in theory any

space could be used to represent analyte labels for embedder training. Here we

compare the Chemception representation space with two alternative analyte rep-

resentation spaces to use as targets for the embedding prior to SVC classification.

“One-hot” denotes utilizing 512-dimensional (matching the Chemception embed-

ding dimension) representations for analytes where signals containing Analyte i

are represented as ei, where ei is the zero-vector with 1 at index i. “Equidistant

spherical” denotes utilizing equidistant points from the 512-dimensional unit hy-

persphere as representations for the chemical analytes.

Figure 28 demonstrates the importance of the semantically meaningful space

for the ChemVise embedding. Whereas one-hot and equidistant spherical repre-

sentation spaces struggle to provide meaningful representation spaces for down-
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Figure 28: Classification metric on double-analyte exposures as a function of em-
bedding model and downstream classifier. Downstream classifiers include a K-
Neighbors classifier in the representation space, or a Support Vector Classifier in
the representation or 2-dimensional projection of the representation space. The
choice of Chemception, one-hot, or equidistant spherical targets modifies the train-
ing of the embedding deep learning model prior to classification by the classifier
head.
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Figure 29: Matthews Correlation Coefficient score given the prediction of Analyte
A in a holdout set of 39 real double-analyte experiments after training on only
single-analyte exposures. Given five hyperparameter optimizations over five 5-
fold cross validation experiments, model performances for 7 different exposure
window lengths from 2.4 to 4.0 seconds.

stream SVC classification, Chemception consistently provides a high-quality rep-

resentation space for three candidate classifiers. Semantic meaning implemented

as intra-analyte distances dramatically improves the decision boundary outcomes

over two approaches which do not incorporate external chemistry knowledge.

4.6 Variable Exposure Times

In Figure 29 we demonstrate results on the rapid classification of Analyte A in

the presence of obscurant analytes with no corresponding obscured-analyte train-

ing data. Though multiple machine and deep learning approaches show a pos-

itive scaling behavior in the response metric as a function of exposure time, the

ChemVise approach substantially and consistently outperforms the alternative mod-

els for the out-of-distribution detection task.
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4.7 Conclusion

ChemVise representation learning outperformed linear decomposition embeddings

as well as standard machine and deep learning supervised models by incorpo-

rating molecular semantics into the embedded representations. We demonstrated

how improved chemical representations incorporating domain knowledge on molec-

ular semantics for chemical sensing allow double-analyte samples to be encoded

such that they are linearly separable with simple classifiers when only single-

analyte real experiments are available. This approach may benefit researchers per-

forming chemical detection with arbitrary hardware designs, and does not require

pretrained models in the input domain. Rather, chemical classification may utilize

sensor data from any sensors provided a corresponding target domain exists and

is sufficiently studied.

Though transfer learning may be appropriate when the input data lies in a well-

studied domain with learnable representations, the utilization of ChemVise-style

target adaptation dramatically increases the number of tasks which may incor-

porate exterior data corpi. The ChemVise approach may extend the toolbox of a

machine learning engineer performing supervised learning on a more diverse set

of tasks with nonstandard inputs. The implementation would retain the deep em-

bedding model and replace the target space with an appropriate pretrained model

capable of representing the targets of the data set with some meaningful distance

encoding. The generalizable approaches to supervised learning discussed here

may dramatically improve sensor machine learning results and move away from

complex, hand-tuned representations of domain knowledge.
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5 The Great Chemical Sensing Bake Off

Multivariate time series classification (MTSC) problems are highly common in real-

world applications (Ruiz et al., 2021; Gupta et al., 2020). The publishing of mul-

tivariate time series classifiers may outpace the rate of real progress in the im-

provement of classification performance across benchmarks. For this reason we

investigate a broad array of approaches to multivariate chemiresistive time series

classification including at least one representative from all popular algorithm types

(Ruiz et al., 2021; Ottervanger et al., 2021).

5.1 Contest Rules

Each model is trained four times on each 75% split on the training data for each

training data set. Then each of these split models is validated on a holdout set of

testing data corresponding to that experiment. This is performed for each of 34

models (Table 30) and 11 chemical sensing data sets described in 1.3.

As in Ruiz et al. (2021), each of the bake off models utilizes the suggested pa-

rameters from the model authors. To account for discrepancies in training and

validation time, we quantify the trade-off between training and performance in

order to account for the benefits of hyperparameter tuning for the full bake off in

Figure 37.

5.2 Bake Off Models

A diverse cast of models representing multiple approaches to univariate and multi-

variate time series classification are drawn for our chemical sensing bake off (Zhao

et al., 2017; Dempster et al., 2020; Lubba et al., 2019; Löning et al., 2019; Middle-
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Figure 30: Competitive classifiers for chemiresistive sensor array classification, a
brief description, and their origin.

hurst et al., 2020, 2021; Bostrom and Bagnall, 2017; Schäfer and Leser, 2017; Schäfer,

2015; Yeh et al., 2018; Deng et al., 2013; Rodriguez et al., 2006; Wang et al., 2017)

(Cortes and Vapnik, 1995; Fix and Hodges, 1989; Seeger, 2004; Quinlan, 1986; Ho,

1995; Freund and Schapire, 1997; Chan et al., 1982; Rao, 1948). Each is given a brief

description in Table 30. Univariate time series models are adapted to the multi-

variate time series classification paradigm with each of two algorithms detailed in

Section 5.3. Non-temporal machine learning models are adapted using a tabular-

ization of the multivariate time series data with column concatenation described

in Section 5.3.

5.3 Bake Off Results

Figure 31 visualizes the mean performance of models across all eleven experi-

mental data sets, with four splits of each training data set. Some models fail to

converge for many data sets and have been removed from subsequent analyses

(Matrix Profile Column Ensembles Ensembles, BOSS Ensemble Column Ensem-
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Figure 31: Average model F1 score and standard error on validation sets across 44
splits of 11 chemiresistive sensor array data sets.

bles, and Quadratic Discriminant Analysis). Our hypotheses on the chemiresistive

data structure have assumed shapelets or time warping KNN would be the most

successful models. Though these are effective, random transformations with lin-

ear classifiers (ROCKET) as well as complex ensembling (HIVECOTE) outperform

shapelet-based approaches on average across models, despite failing to model the

inductive bias from the training to testing set across a number of hardware arrays

and data collection protocols.

12345678910

7.1136MatrixProfile-Concat
6.7955WEASELMUSE
6.4659RotationForest-Concat
5.8523FullyConvolutionalNetwork
5.8295RandomInterval 5.1477 Catch22

4.8864 CanonicalIntervalForest
4.7841 ShapeletTransform
4.1250 HIVECOTEV2
4.0000 Rocket

Critical Difference of Rank by Model

Figure 32: Critical difference plot demonstrating cliques of top 10 models by rank.
Clique bars indicate statistical uncertainty of difference in average rank of clique
members. Full critical difference available in Appendix Figure 45.

Figure 32 shows the critical difference between the top 10 model average ranks
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Figure 33: Average of all model performances (minus outliers) for 4 splits on
each experiment. Differences in analyte discriminability due to varying sensor
chemistries lead to a general score for the disciminability of chemical analytes un-
der a certain sensor ensemble “lens.“ Formulating improved sensor chemistries
increases analyte discriminability without regard for model inductive biases.

over 44 splits of the 11 sensor array training sets. The horizontal bands link a

clique of models with statistically insignificant difference of average rank given

performance across all splits. In the top-performing clique we find models from

each of the primary families of time series classifiers - random kernels, feature

ensembles, shapelets, decision trees, and deep learning (Gupta et al., 2020).

In addition to investigating the average performance of models across a variety

of domain datasets, we are in a unique position in developing an effective chemical

sensing tool at the hardware level. For our bake off, the optimization at the model

selection step across datasets may lead to an effective model, but in addition we

seek an effective dataset on which training leads to successful models in the dis-

crimination of a target analyte. One approach to finding an optimal sensor array

set is to compare the average performance of diverse models learning outcomes

on the dataset (Figure 33). The corresponding testing accuracy of a model trained
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Figure 34: Two approaches to multivariate adaptation of univariate time series
classifiers. Above the line, the column concatenation approach outperforms the
column ensembling approach for the dataset and model. Hypotheses on the na-
ture of sensor chemistries are confirmed by the necessity of multivariate informa-
tion when determining class predictions, evidenced by the weak performance of
column ensembling.

on a particular set gives a sense of the predictability and discriminability of the

sensors, while ”factoring out” the inductive biases of each model by considering a

highly diverse set of classifiers.

Univariate time series classification models are a well-researched literature and

may be adapted to multivariate time series classification tasks with two alterations

to the training algorithm of arbitrary univariate classifiers. These adaptations in-

clude the following:

1. Column Concatenation: given training data array D of n samples of k dimen-

sions of length t (n, k, t) and classifier C, reshape the data by concatenating

dimension di to the last element of dimension di−1, yielding array of shape

(n, k ∗ t):
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(n, k, t) → (n1,1, ..., n1,t, n2,1, ..., n2,t, ...nk,1, ..., nk,t)

Then train classifier C on resulting array D∗ of shape (n, k ∗ t)

2. Column Ensembling: given training data array D of n samples of k dimen-

sions of length t (n, k, t) and classifier C, define k training subarrays (n, d1, t), (n, dk, t)

for each dimension d of k.

Train classifier Ci on each resulting array Di = (n, di, k), and use ensemble

voting to classify the sample (Polikar, 2006).

These approaches have the advantage of relying on a rich literature of univari-

ate time series classification, but each has a substantial downside. Column con-

catenation (1) substantially increase the dimension of the feature space, which is

particularly disadvantageous for decomposition classifiers such as matrix profile

classifiers as well as increasing the effect of the curse of dimensionality for high

dimensional spaces. In addition this removes the option to early-classify samples

(Chapter 6) and is incompatibility with state-based approaches such as an RNN.

Second, the column ensembling approach (2) may train multiple classifiers which

each fail to accurately predict the totality of the sample given one channel of in-

formation, as we assume with our chemical sensing data in which the diversity in

sensor coating affinities yields discriminability. Individual sensors do not contain

enough information for a classifier to make a reasonable prediction.

5.4 Rapid Classification

Research in the rapid detection of harmful chemical analytes often incentives rapid

classification for improved safety devices. Here we propose a contest in the rapid
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Figure 35: F1 scores of top-10 models trained on incrementally decreasing expo-
sure times. Models which fall below an F1 score of 0.8 on the testing set for an
exposure time are eliminated. As exposure lengths are incrementally decreased,
models have reduced information via number of features to discriminate between
analyte classes. Models which remain performant on short exposure times are
highly feature-efficient in their decisions, and lead to rapid real-world detection
when inference compute time is not considered.

classification of chemical Analyte A in increasingly challenging, foreshortened sig-

nals. Figure 35 visualizes the results of our experiment in the survival of models

in retaining high classification accuracy during increasingly challenging rounds of

chemical sensing by decreased exposure windows. At each iteration, the length of

the exposure window is reduced by 0.25 seconds and all models are trained on the

best set of experimental data, which we found to have higher average performance

than the next best sensor array and data collection protocol. Early and rapid classi-

fication will be expanded thoroughly in Chapter 6 to include the literature on early

classification of time series (Xing et al., 2012) and our novel architectures incorpo-

rating transfer learning representation spaces for semantic embeddings (Chapter

4).

An early classifier is serial if C[s[1, l0]) = C(s[1, l0 + i]) for any i > 0 - that is, the

classifier C does not benefit from longer prefixes of the data and will not change the
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Figure 36: Wall-clock time in seconds to train and score each model on a training
and testing set. Models with prohibitively high time to train lead to worse out-
comes in the hyperparameter optimization step, where fewer configurations may
be used. Models with prohibitively high time to infer fail to rapidly classify sensor
signals.

estimate with further steps (Xing et al., 2012). Investigating Figure 35 in reverse,

we find the best classifiers to be serial given exposure times of around 3.25 to 3.5

seconds, and do not benefit from further exposure to signals. Classifiers which

remain serial to very brief exposure windows include ROCKET, Catch22, HIVE-

COTEV2, and RandomInverval classifiers. These represent a surprisingly diverse

mix of shapelet-based approaches, model ensembles, and transformation classi-

fiers, and demonstrates that shapelet-based approaches though inductively sound

for the data may struggle with variance in sensor responses and generalizability.

5.5 Training and Inference Time

Figure 36 compares the time to train and test each model. Outlaying models in-

clude the MatrixProfile-Concat, HIVECOTEV2, and FullyConvolutionalNetwork.
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The MatrixProfile-Concat training time demonstrates one shortcoming of the col-

umn concatenation technique of univariate classifier adaptation which is the sig-

nificant increase in compute for dimensionality compared to the MatrixProfile-

Ensemble. In addition the FullyConvolutionalNetwork would train significantly

faster on a graphical processing unit, but specialty hardware may not be available

for a real-world deployed tool with limited processing and power requirements.

Training time is highly significant for the hyperparameter optimization process

as a model with 100x faster training may attempt 20x larger 5-fold cross validation

hyperparameter sweeps than the more expensive model which could lead to a re-

ordering of results under a wall-time restricted experiment.

An inference time plot also tells a very important story. When we deploy a

hardware chemical sensing device, the amount of compute may be very limited.

The time to process the inference of a sample would need to be factored into the

rapid classification scores as the processing of the testing sample would delay re-

porting the classification result, resulting in wasted time in a safety situation.

To weigh the importance of time to train and test against accurate predictions,

we visualize the spread of model training time and testing performance in Figure

37. We see various outliers in the time to train with significant competition from

models with slightly lower accuracy but orders of magnitude faster time to train.

ROCKET and Catch-22 are highly promising in this time-corrected performance.

5.6 Discussion

A bake off is a fundamental cornerstone of applied machine learning. Address-

ing the inductive biases of a variety of models is particularly motivating when we

also have access to a variety of experimental protocols and sensor coatings, which
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Figure 37: Time to train vs. average model performance across sensor arrays. Mod-
els with higher compute costs at training time tend to outperform those with lower
training time on holdout data. This efficiency curve has optimal points with a few
modern, efficient classifiers.

themselves make assumptions about the nature of chemical discrimination. By

replicating the experimental design of Ruiz (Ruiz et al., 2021), we find that as a

trend models which perform well on the diverse UEA archive (Bagnall et al., 2018)

of multivariate time series classification data sets also perform well on our chemi-

cal sensing task.

Additional nuance in bespoke chemical sensing models gives a highly promis-

ing direction for future research. Chapter 4 may by adapted from the multiple

classification task on input signals to a multivariate time series classification task

leveraging semantic information in a chemistry-informed representation space to

form meaningful clusters through time. These sequences of unsupervised clusters

will also call upon the outlier detection and out-of-distribution literature. By first

training a semantic representation model, the meaningful embeddings may yield

greater inference for unsupervised learning, clustering, and out-of-distribution

analyses.
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6 ChemTime: Early Classification of Time Series

This chapter will make use of animations in order to demonstrate the real-time

classifications, representations, and decision boundaries for multivariate time se-

ries classifiers on a real-world chemical sensing task. Animations corresponding to

figures of this section may be found online at https://github.com/alexander-moore.

6.1 Introduction

Model benchmarking in Chapter 5 does not tell the complete story about model

performances on hardware sensor arrays. Generalization to more complex expo-

sure types (Chapter 3), time to train and inferential time, and explainability are

also commanding forces of model selection for a real-world chemical sensing tool.

Though previous chapters have explored the topic of rapid classification for low

sequence length exposure times, early classification learns adaptable versions of

single models to classify unlabelled samples at a confident stopping time. In this

chapter we propose a novel extension of the ChemVise paradigm for the early clas-

sification of multivariate chemiresistive sensor time series, and demonstrate how

using known biases of the targets and data dramatically improve the performance

for this unique classification task.

Some classifiers introduced in Chapter 5 have limitations which preclude them

from deployment to a real-world hardware sensing tool. Algorithms requiring

fixed-length time series cannot be adapted to variable-length sequences without

sequence padding, and cannot be extended to early classification. Some approaches

are non-parametric and computationally expensive in processing or memory re-

quirements, particularly for limited throughput onboard computers in a deployed

tool with power constraints. For a detection paradigm where one second of chem-

https://github.com/alexander-moore
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ical exposure can have dramatic consequences, even highly accurate models may

be inappropriate if they come with long detection times. In addition, domain ex-

perts often require additional levels of confidence, explainability, and inference

which some black-box models such as the deep learning suite and some machine

learning approaches fail to offer.

As a trend, many time series classifiers bootstrap the input data to generate

multiple transforms, sets of summary statistics and feature analysis. However,

these approaches require processing an entire signal of constant input length. Of-

ten in time series applications a classification estimate is required in a shorter time

frame, or the length of the input sequence is variable. In addition there may be an

informative signal relevant to the class label early in the signal which is followed

by irrelevant information, potentially for a long time. In this situations it is vital to

turn to early classification of time series (ECTS). Early classification corresponds

to returning the predicted label of the sample before the final feature of the sig-

nal is observed. These models require some decision function which determines if

the classifier has observed enough information to return the predicted class early.

Additional results in this chapter will investigate rapid classification: observing

complete signals which have been intentionally foreshortened as an alternative to

the early classification paradigm.

Previous results in Chapters 3, 4, and 5 have noted the importance of rapid clas-

sification on multivariate time series data from chemiresistive sensor arrays. Each

of these chapters includes results for the performance of models as we manually re-

duce the length of the exposure window, corresponding to more rapid detection of

the chemical analyte in wall-clock time as well as classification on a reduced num-

ber of features. Chapter 6 will utilize the early classification literature and contrast
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the ideas of rapid and early classification for this task with diverse algorithms for

models which self-select their stopping times with a variety of confidence mea-

sures and differentiable mechanisms.

In addition to the early and accurate classification of particular chemical an-

alytes under a chemiresistive sensor array, this chapter will outline the explain-

ability and inferential advantages and disadvantages to a number of models to

arrive at a highly interpretable embedding model with multiple utilities to ongo-

ing chemical detection research.

6.2 Early Classification of Time Series

In a seminal paper on the early classification of time series, Xing et al. (2012)

proposes a simple approach to the early classification of time series using a one-

nearest-neighbor approach (1NN). At training time each observation is labelled

with a minimum prediction length (MPL) corresponding to the timestep at which

the sample may be assigned to one class. At inference time, time series s is classi-

fied by ascending through time series values i and returning the dominating class

label of time series of 1NN(s) that have an MPL of at most i. To generalize, they

learn a reasonable stopping point for the time series given by the point at which

samples may be classified as determined on a validation set.

For the application of early classification to chemiresistive sensor arrays and

obscured chemical analytes, this mechanism fails in a few ways. The training

data may limit the earliness of detection as inferential samples must wait until

the MPL of the training data (Xing et al., 2012). Second, the 1NN approach may

overfit a training set for high-noise sensors or obscured analytes. Earlier results in

the detection of obscured chemical analytes using our sensor arrays demonstrate
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that KNN-based approaches including the improved DTW algorithm fail to learn

generalizable representations for the holdout single and double-analyte exposures

(Chapter 3, Bagnall et al. (2017)).

Xing et al. (2012) address these 1NN shortcomings in their Early Classification

on Time Series method (ECTS). Their approach to ECTS forms clusters on training

data in each prefix space resulting in a sequence of clusters through time. Sta-

ble clusters may be formed at training time, then report when a new point joins a

known stable cluster at inference time. This method however requires taking pair-

wise distances between the inference sample and the entire training set at testing

time. This is a non-parametric approach which makes no inductive biases on the

data, but may require extensive computation at inference time to determine cluster

membership at each time point.

One shortcoming of the ECTS approach (Xing et al., 2012) is calculating dis-

tances between signals in the time-series space. This means we can expect clas-

sifiers to perform similarly to KNN classifiers over time series, such as Dynamic

Time Warping (DTW, Bagnall et al. (2017)). DTW significantly outperforms KNN

due to accounting for varying distance metrics and is a high quality benchmark

across UEA MTSC archive (Bagnall et al., 2018). However, Bagnall et al. (2017)

finds that DTW today is only a baseline, and modern approaches can substan-

tially outperform even time-warping based KNN. Likewise, we anticipate modern

multivariate time series classifiers in conjunction with representation learning for

ECTS may substantially improve early classification outcomes.
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6.3 Contemporary Early Classification Literature

Other research has investigated parameterized approaches to early classification

on time series using differentiable neural network mechanisms. Hartvigsen et al.

(2019) utilizes a bespoke LSTM network architecture with a learned early decision

criterion. Rußwurm et al. (2019) proposes a similar end-to-end-differentable pa-

rameterized approach using distributions of stopping probabilities over the time

series with an additional output probability density function head applicable to

any architecture. Other approaches to parametric multivariate early classification

are included here with a brief discussion on their relevance to our methods and

chemical sensing task.

Hsu et al. (2019) proposes applying the modern attention mechanism for deep

learning ECTS. Shortcomings with attention may include known long sequence

lengths before positive class samples are seen, and attention between discrete re-

gions of the multivariate signal may not be appropriate for our sensor detection

task.

RelClass Parrish et al. (2013) is a probabilistic framework using quadratic dis-

criminants and support vector machines for ECTS returning the degree of confi-

dence with which one can say that the current incomplete data is sufficient to come

to the same classification as the complete data with high probability. Likewise,

Mori et al. (2017) employs a similar method which includes a metric for prediction

reliability. These techniques are comparable to Xing et al. (2012)’s ECTS in the ear-

marking of signal subsets at training time for lookup at inference time. We may

utilize this probabilistic framework on signals projected into our parameterized

latent space sequences from Chapter 4.

He et al. (2020) supplies a confidence-based model for multivariate early time
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series classification with multiple interpretable rules. This approach emphasizes

explainability and confidence of estimates but does not make use of parameter-

ized learning for the classifier, and does not have a representation layer which

facilitates transfer learning. Adapting the methods from confidence-based models

in ChemTime’s latent may be a fruitful direction.

Ottervanger et al. (2021) provides a small survey of nine multivariate early time

series classifiers (some are included here, including Hartvigsen et al. (2019), He

et al. (2020) and Xing et al. (2012)) and includes implementations which we may

draw from for a bake-off style to compare our ChemTime approach to in future re-

sults sections. Ottervanger et al. (2021) makes the additional step of an automated

machine learning approach to maximize earliness and accuracy for each model in

an automated grid-searching pipeline.

Ismail Fawaz et al. (2019) surveys time series deep learning without early clas-

sification. These bespoke time series neural network architectures and training

paradigms may be relevant for chemical sensors and adaptation for neural net-

work early classification as we saw in 5. Deep learning multivariate time series

classifiers may be adapted with Rußwurm et al. (2019) to append the end-to-end

differentiable early stopping probability density function, or with ChemVise (Chap-

ter 4) transformations in conjunction with latent early classifiers.

6.4 ChemTime

We propose ChemTime as an adaptation of the transfer learning techniques from

Chapter 4.2 by incorporating contemporary research on early classification to a

semantic-prediction time series representation model. We hypothesize that the

improved representations measured by improved supervised learning outcomes
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Figure 38: PCA Visualization of ChemTime latent representation through time for
a dataset of chemical sensor data. As the RNN component of ChemTime iterates
over a chemiresistive sensor signal, the state vector is projected into Chemcep-
tion’s activation space. The sequences of projections yield an inferable, predi-
cable representation for the boosting classifier. Full animated figure available at
https://github.com/alexander-moore.

for out-of-distribution double-analyte data will remain true for time series and

early classification data in future experimentation. We additionally incorporate el-

ements of the literature on early classification Xing et al. (2012); Hartvigsen et al.

(2019); Rußwurm et al. (2019) with time series neural network architectures (Is-

mail Fawaz et al., 2019; Ruiz et al., 2021) to make early classifications in the chemistry-

informed meaningful latent.

Our approach benefits from inferential machine learning techniques due to

meaningful semantic embeddings rather than an activation space or simple class

predictions. Experts can manually inspect linear projections of the representation

space where regions and distances are informed by molecular chemistry. We can

induce measurements on the space such as confidence given by distances to deci-

https://github.com/alexander-moore
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Figure 39: Distances through time from boosting classifier decision boundaries
give inference over samples. A validation set may determine the optimal early
classification window for testing set samples based on embedding trajectory.

sion boundaries and distance to training samples. SVCs fit on untransformed data

could yield this metric but are not performant on untransformed data (Figure 18).

Wiens et al. (2012) has previously used distance to the SVM as confidence in the

classification, but using distances to samples for a confidence measure in represen-

tation space is yet unexplored to our knowledge.

Figure 39 visualizes this advantage by plotting the distances of the embedded

samples from a boosting classifier’s decision boundary. As time passes in the ex-

posure signal, positive class samples tend to move in the positive class direction as

negative class samples move into the negative direction. In this manner complex

multivariate time series signals may be summarized into a single sequence given

by distance. Simple 1NN classification for ECTS is sufficient to induce early clas-

sification on this model Xing et al. (2012). Using techniques from Section 6.3, an

early-decision threshold could be determined using a validation set. When sam-
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ples in a new testing distribution pass the decision threshold, the classification is

returned regardless for the current timestep. In this manner, techniques from the

established univariate early classification literature (Xing et al., 2012) can be used

in conjunction with the ChemTime projection for representation sequences.

Representation targets given by Chemception embeddings (Goh et al., 2017)

serve as cluster centroids known prior to training informed by molecular repre-

sentation. Distances to these centroids, and mean pairwise distance from other

clusters in the embedded training set give us a sense for the discriminability of

analytes at each time point in the resistance curve. Xing et al. (2012) emphasized

the minimum prediction length (here, exposure time) of samples in the training set

such that the label could be uniquely determined by the 1-nearest neighbor clas-

sifier. Here, we may determine the sequence length such that the testing sample

confidently belongs to one analyte cluster given only simple linear projections on

an internal state to a representation layer.

A recurrent neural network is an iterative model which embeds each step of

the input series according to the new set of features and the current internal mem-

ory. This begets a simple representation update at each time step of the input

sequence. This sequence of representations also yields a class prediction, estimate

confidence, cluster membership, and visualizable representation for each time at

inference, each for a single linear operation given by a projection of the concatena-

tion of the state vector and new time step features. This begets a further advan-

tages of ChemTime: the possibility for open-ended real time classification of time

series signals. For arbitrary signal lengths, at any sampling frequency with two

linear operations the internal state is updated and the new representation is clas-

sified with a simple boosting classifier, yielding extremely low-latency responses
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investigated in Section 7.1.

Xing et al. (2012) fits a 1-Nearest Neighbor classifier given by early predic-

tion time on the training set at each time step, including at inference time. Tak-

ing pairwise distances between suffixes of the entire training corpus may be in-

tractable for long sequences or limited compute devices. For our detection de-

vice and lightweight edge device computation, this calculation may be intractable.

Instead, parametric representations learned from the data as in ChemTime may

encode knowledge from an arbitrarily large training corpus for arbitrarily large

sequence lengths without increasing computation expenses. Bespoke neural net-

work architectures for time series processing alleviate these shortfalls in previous

approaches to time series classification.

6.5 ChemTime Implementation and Design Considerations

Training a deep learning representation of time series data may be done in a variety

of supervised and unsupervised ways. Inducing novel loss functions motivated

in Chapters 2, 3, and 4 give us multitask classifiers for unsupervised representa-

tions of time series, as well as semantic training for improved supervised learning

through transfer of chemistry knowledge to our chemiresistive sensor task.

Multiple novel architectures facilitate the application of time series and transfer

learning paradigms to our chemical sensing task. One important departure from

earlier chapters is the inclusion of recurrent layers which corresponding to the

inductive bias of time series data (Section 1.5). Recurrent layers iteratively process

features through the time dimension of a sample and update a learned memory

state at each time. In this manner the network has a limited bandwidth memory

for ongoing representations of the sample through the signal. We may utilize these
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representations through time as embeddings of input samples for each time step.

1 # Require:

2 # chemception_enc: Chemception with final linear layer removed

3 # RNN: One -layer iterative neural network

4 # lm: Linear projection from RNN state to target representation

dimension

5 # chem_start: time index where analyte exposure begins

6 # criterion: Euclidian distance , cosine distance , DEViSE distance

7

8 for signal , label in train_loader: # load a batch of labelled sensor

samples

9 # Encode training labels to analyte -space. Before analyte flux

begins , label should be an innate gas

10 y_rep_seq = [chemception_enc(label) if i > chem_start else

chemception_enc(’Nitrogen ’) for i in signal.sequence_length]

11

12 # Iterate over sequence with RNN

13 x_seq = RNN(x)

14

15 # Project RNN state sequence to representation space

16 y_hat_seq = [lm(x) for x in x_seq]

17

18 # Classification metric to target embeddings

19 loss = criterion(y_hat_seq , y_rep_seq)

20

21 # Downstream classifier on embedded signals

22 # Use final output of projection for boosted input

23 emb_xtrain = lm(RNN(( x_train))[-1]

24 opt_model = SVC.train(emb_xtrain , ytrain)

25
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26 # Use the classifier to predict final representation of testing

signals

27 emb_xtest = lm(RNN(x_test))[-1]

28 emb_ytest_hats = opt_model.predict(emb_xtest)

29 test_score = classification_metric(emb_ytest_hats , ytest)

Pseudocode 6.5 demonstrates a simple training loop for a PyTorch-style im-

plementation of ChemTime. ChemTime works with an inner training loop which

predicts the label of the sample at every time step of the signal. Unlike normal

RNN training, the loss is taken at every time step and aggregated over the time

steps of the batch of signals. This yields a model that at each time step updates

the internal state representation. This internal state is projected to the chemistry-

informed latent with a simple linear projection learned during the optimization.

Labels are manually crafted on the laboratory training data such that ”no analyte”

is the label until the known analyte is flux begins (Section 1.3).

ChemVise Moore et al. (2023) introduced a molecular-semantic latent space styled

on combined natural image-natural language spaces as in DeViSE Frome et al.

(2013) and DALL-E Ramesh et al. (2021) for improved classification of out-of-

distribution chemical analytes. Though ChemVise demonstrated how a chemistry-

informed latent space using a pretrained molecular target embedding model im-

proved classification outcomes over baselines, it failed to leverage inherent time

series structure in the data.

ChemTime modifies the ChemVise approach by replacing the tabular-data em-

bedding model with an iterative time series embedder with a moving-target ap-

proach to signal embedding. At each time step, the iterative encoder model uses

a recurrent neural network backbone to encode the resistance signals of the in-

put. At each iteration, a linear projection layer maps the state vector to a point



6. ChemTime: Early Classification of Time Series 98

in the molecular embedding space. The model loss is given by the sum of losses

over the sequence of timesteps t, L =
∑

t Lt where Lt may be given by an embed-

ding distance such as a cosine distance, euclidean distance (summation of mean

squared error losses), or bespoke hinged representation loss as in DeViSE Frome

et al. (2013).

ChemTime has multiple benefits over the predecessor architecture. Utilizing se-

quences of representations in a meaningful latent space yields improved classifi-

cation outcomes, inference during testing, and earlier classification compared to

the fixed-window approach. Results sections will demonstrate the benefits of a

light-weight approach for rapid classification, and the benefits of inference and

analysis when sequences of representations may be used for meta-classification in

the chemistry-informed latent.

Label Sequence Generation

ChemTime requires rephrasing a chemical exposure label into a sequence of targets

in a chemistry representation space. Data are provided with labels corresponding

to the concentration of the analyte exposure. For example, an exposure of 17% An-

alyte B will be labelled [0,17,0,0]. We build a sequence of targets by first getting

the representation of Analyte B as the activations of Analyte B in a chemistry rep-

resentation model. For the purposes of ChemTime, we utilize Chemception, though

any molecular representation could be used Goh et al. (2017). This representation

is then unrolled into a sequence by concatenating a ’None’ representation (the ac-

tivations of the inert gas Nitrogen under the same molecular representaion model)

for each time step in which the flux of analyte vapor has not begun, and the repre-

sentation at all subsequent time steps.



7. Results Against the Field 99

RNN and Linear Projection

ChemTime uses a two-stage projection to iterate over a resistance signal and map

to the chemistry-informed latent space. The first is a RNN which concatenates the

feature vector at time index t with the state vector from the previous time step.

This is passed through a simple linear layer to return the updated internal state for

the next timestep.

Boosting

Subsequent to training the ChemTime sequence embedding model, a tabular ma-

chine learning model may be fit on the final representations in the sequence. This

is to classify the samples, which can be done with a naive nearest-target approach,

or with a learned decision boundary. ChemTime results discussed here use a sim-

ple SVC with a binary decision discriminating Analyte A samples from samples

containing Analytes B, C, and D.

7 Results Against the Field

In order to provide demonstrate the performance of ChemTime against a relevant

field of effective multivariate time series classifiers, we evaluate the model per-

formances across a diverse set of real-world chemical sensor hardware experi-

ments. We estimate classifier performance for a general chemiresistive sensor

array by studying eleven different sensor configurations, each with unique sur-

face chemistries as in Chapter 5. Model performance on these eleven distinct data

sets demonstrates the efficacy of each classifier family for the broader domain of

chemiresistive sensor array classification.
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Figure 40: Average model performance measured by F1 testing-set score across 44
splits of 11 chemiresistive sensor array data sets. Each model from Chapter 5 is
benchmarked and color-coded with respect to the average performance of Chem-
Time across the testing distribution.

We study the supervised performance of classifier families with the following

process developed in Section 5.3. Each classifier is trained four times on each of

eleven real-world chemiresistive sensor array data sets. Each of these four training

iterations uses 75% split on the training data where a 25% fold is removed from the

training corpus for that classifier split. Then each of these split models is validated

on a holdout set of testing data corresponding to that experiment which does not

include training split samples nor withheld split samples. This is performed for

each model described in Table 30, ChemTime and 11 chemical sensing data sets

described in Section 1.3.

Figure 31 visualizes the mean performance of models across all eleven experi-

mental data sets, with four splits of each training data set. We situate ChemTime as

the green bar against which all other models are contrasted. In terms of direct av-

erage performance across 44 splits, we find ChemTime to be the absolute 7th ranked
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Figure 41: Wall-clock time in seconds to test each model on a testing set of 32 hold-
out trials. The height of each bar represents the time each model takes to process
a batch of testing trials and return a classification on the presence of Analyte A.
Extreme outliers exist in the processing time of a 5-second exposure signal. We
accentuate the low inference time of ChemTime with a green arrow, and notice that
high-performing red models are correspondingly high in inference time.

model against the competition of general classifiers.

Figure 41 visualizes the wall-clock time needed to compute the prediction of

a five-second exposure for each model in the study. We find that some models

inference time excludes them from application to this task. Models which outper-

form ChemTime plotted in red all take substantially longer to perform a prediction.

HIVECOTE stands as an extreme outlier which takes over six times the length of

the signal in seconds to process the batch. As part of a deployed tool, we expect

rapid classification. This requirement rules out a large number of models despite

their high performance.

This chapter introduced the relevance of classification computation time to this

chemical sensing task. In order to find models which optimally balance rapid com-

putation and accuracy across a field of chemical sensing data sets. These findings
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Figure 42: Time to infer vs. average model performance. An efficiency frontier
exists between the inference time in seconds for sample labelling and the average
model performance on a testing set. ChemTime appears to improve on the efficiency
frontier by responding faster than the existing frontier.

are visualized in Figure 42, with outliers in computation time and performance

removed. We find there exists an efficiency frontier in the trade-off between com-

putation time and performance: two factors which are highly relevant for the de-

tection of chemical analytes. Though some models are inferior in one metric with

respect to another nearby model, there does exist a trade off between computa-

tion time that must be sacrificed to improve accuracy, and vice-versa. We note that

ChemTime appears to improve this frontier from the baseline set in Chapter 5.4.

7.1 Rapid Classification

Rapid classification is vital for a successful deployable chemical sensor. Two fac-

tors contribute to balancing a fast and accurate model predicting incoming resis-

tance data. First, the length of the analyte exposure. Longer analyte exposures
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Figure 43: F1 scores of top-10 models trained on incrementally decreasing exposure
times. Models which fall below an F1 score of 0.8 on the testing set for an exposure
time are eliminated.

contribute to increased classification performances until models become serial, or

do not improve given more information about the signal. The point at which clas-

sifiers become serial is vital to discovering data-efficient classifiers capable of rapid

classification. In a deployed chemical sensing tool, the ability to respond quickly

given a short analyte exposure is vital. This period of response is measured in

two ways: the inference time (Figure 41) which measures the period of computa-

tion from observing the signal to reporting a classification, as well as the signal

exposure time. Both of these time periods must be considered when selecting a

rapid-response model.

In order to study which models consistently perform well despite a challenging

paradigm of short sensor-exposure times, we propose the ”survival plot” Figure

43. In this plot, models are trained on 4.75-second exposures from the chemical ses-

ning training data. Each model is then scored on a holdout validation set. Models

which maintain a F1 performance metric above 0.8 on this validation set remain in

contention, while underperforming models are eliminated. This iterative process
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Figure 44: Survival plot biased by the inference times factored into the length of
exposure. When accounting for the processing time of the model as part of the
length of exposure, the improvement of ChemTime is remarkable. Furthermore,
ChemTime benefits from real-time signal processing which many others do not.

is summarized in Figure 43 in which model performances drop off as a function

of the reduced exposure windows, where all models fail to remain accurate given

2.75-second exposures. Many models remain serial from 3.5-seconds onward.

After observing some period of analyte exposure signal, some amount of com-

putation is required to return the predicted label of the sample. The time this com-

putation takes is a vital element to the rapid classification of chemical analytes in

the real world, where short time delays in positive class identification could have

devastating consequences. Therefore there are three key elements to identifying

successful real-world models for a deployed chemical sensing tool: the amount

of time the signal must be observed, the amount of processing time to return a

classification, and the accuracy of that model in predicting the correct label within

that time frame. Figure 44 summarizes this trivariate optimization by modifying

Figure 43. Each curve from Figure 43 has been biased by the computation time

the model requires in the total exposure time direction. The utility of ChemTime in

this paradigm is even more apparent: when correcting for the total inference time
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of each model, the extremely rapid classification of ChemTime makes the success

of the model stand out from other accurate models which require substantially

more computation time. In the real world, this faster computation means Chem-

Time could observe more of the signal (and harvest more information) to make

more accurate classifications while responding within the same time constraints as

other models. These benefits would be even greater if ChemTime was implemented

into real-world hardware such that the time series iteration was performed in real

time.

8 Future Inclusions

ChemTime represents a significant improvement against the field of general-purpose

multivariate time series classifiers for the domain of multivariate chemiresistive

sensors for chemical sensing. By modelling biases from the data into the archite-

cure and incorporating domain knowledge in the target space in order to induce a

boosting classifier we substantially improve the time efficiency, performance, and

rapid classification of unseen analyte samples. However, these findings only invite

further research on the modification of ChemTime architecture to include improved

representation, early classification techniques, and outlier detection for sequences.

ChemTime, inheriting from ChemVise, draws upon the conjoined image-language

representation space of DeViSE (Frome et al., 2013). This joined representation

space for the chemical sensing application presently uses the Chemception (Goh

et al., 2017) activation space. A drop-in improvement for ChemTime representations

of molecules in the codomain may be an improvement. Furthermore, DeViSE and

the later more popular CLIP (Radford et al., 2021) latent advertise learning a con-

joined representation space for the improvement of out-of-distribution classifica-
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tion. Substantial ongoing study could be dedicated to the classification of chemical

analytes which do not belong to the training distribution. Due to the relationship

between the molecular-semantic latent and the behavior of chemiresistive sensors,

we may expect interesting findings in the study of zero-shot or few-shot learning

using the ChemTime paradigm. Further research may investigate data synthesis

leveraging similar hypotheses on the nature of these latents.

Though iterative representations of samples are highly motivating for unsu-

pervised clustering in latent spaces, learning meaningful representations requires

a meaningful loss over the training samples. There are many meaningful losses

for the network to learn time series representations of input samples, particularly

when drawing from Chapters 2 and 4. These include cycle reconstructive losses,

adversarial losses, and semantic training losses. These losses may be further ex-

tended to address the representation loss. Though presently a summed MSE loss

over the sequence, an improved loss function modelling the importance of a rapid

classification may improve performance.

Finally, the choice of boosting model begets a great deal of exploration and ex-

perimentation for the future of ChemTime. Boosting models could be brought in

depending on the task at hand, and could be an ensembling of multiple models

for maximum performance on a variety of tasks. Time series boosting models and

sequence analysis may be appropriate for the sequence of representations, in par-

ticular those emphasizing the velocity and acceleration of the embeddings with

respect to their relative directions to the targets.
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A Additional Material and Experimental Results

A.1 Bake Off Supplements

Figure 45 supplements the smaller critical difference plot in Chapter 5. There exists

a wide-spanning clique of the best models as measured by critical difference be-

tween average rank. This clique includes representation from each major approach

to multivariate time series representation, discussed in Chapter 5. Chapter 6 pro-

poses the new ChemTime model which belongs to the high-performing clique, but

with substantially improved response time for inference and real-world real-time

classification.
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Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Király, F. J. (2019).
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