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Abstract 
Azo dyes present in textile wastewater require removal due to their negative environmental and 

health effects. Although there are several ways to treat such wastewater, this study focused on 

photocatalytic degradation on a titanium dioxide (TiO2) paper substrate. The dyes studied were 

Direct Red 23, 80, and 81, Direct Yellow 27 and 50, and Direct Violet 51. Solutions of each dye 

were prepared at a concentration of 25 mg/L in water and run through a photocatalytic reactor.  

Color removal in the solution was monitored using UV-Vis spectroscopy. At the end of the 

experiment the final solution was tested for toxicity, total organic carbon, and the presence of 

ammonia and nitrate ions.  

Complete color removal was observed for each dye. The results were modeled based on a 

pseudo-first order reaction. It was found the degradation rate of the azo dyes was related to the 

structural features. This rate increased with the presence of sulfate groups and decreased with 

molecules containing more than one azo groups and additional aromatic rings. Complete 

oxidation of the dye molecules was not achieved which resulted in many by-products formed. 

Nitrogen atoms in the structure of all tested dyes were converted to ammonia and nitrate. 

However, the results show that much of the nitrogen was converted to N2 gas. Most solutions had 

a reduced total organic content of at least 80% with the minimum reduction being 60%. The 

majority of dye solutions increased in toxicity after exposure to the reactor due to the presence of 

aromatic amines. To decrease toxicity, a biological secondary treatment would be necessary as it 

would further degrade the toxic aromatic amines.  
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Introduction 
Concerns of textile dyes in the wastewaters from factories have been a growing concern for 

many years. Estimates state that as much as 15% of dye used in the staining process is released 

in the wastewater effluents.(Lachheb, Puzenat et al. 2002) Dye pollutants can have dramatic 

effects on the environment.(Baptista 2007) Textile dyes in wastewater are a concern not only 

because they are displeasing aesthetically but are linked to health hazards as well.(Sweeny, 

Chipman et al. 1994) It is therefore crucial to investigate techniques to remove these harmful 

pollutants safely. 

Current methods in the removal of azo dyes either require the adsorption of the dye onto a 

material or chemical reactions.(Anjaneyulu, Sreedhara Chary et al. 2005) Absorption onto sludge 

or activated carbon can be successful; however, the process generates secondary pollution that 

requires costly disposal. Chemical reactions with chlorine or coagulation techniques introduce 

harmful chemicals that are released into the environment. Developments in photocatalysis have 

led researchers to design reactors that oxidize azo dyes using photoactivated titanium dioxide 

(TiO2).(Kazuhito Hashimoto 2005) Exposing TiO2 in water to near UV-light produces hydroxyl 

radicals on the surface of the catalyst, these reactive radicals can completely oxidize organic 

compounds found in the water. The photocatalytic reactors are successful in the removal and 

purification of waters containing azo dyes and hold many promising benefits. The azo dyes 

themselves are oxidized into carbon dioxide and water leaving behind zero pollutants. The 

success of this advance oxidation process has led research to pursue further investigations into 

the photocatalysis of organic compounds using irradiated TiO2. 

The oxidation of azo dyes over photoactivated TiO2 has been studied extensively,(Aguedach, 

Brosillon et al. 2005; Thiruvenkatachari, Vigneswaran et al. 2008) as well as investigations into 

the operational parameters that control the rate of oxidation.(Daneshvar, Salari et al. 2003) 

However, many of these experiments were only carried out with a single dye. It was the purpose 

of this research to study the kinetics of the oxidation of several azo dyes and investigate the 

importance of dye structure on their degradation. The dyes were tested in a batch reactor system 

using TiO2 powder supported on a non-woven synthetic paper that was irradiated by UV lamps. 

The reaction rate and kinetics were monitored throughout the experiment using UV-Vis 

spectroscopy. Total organic carbon tests and ion detection through the Nessler method and 
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chromatography were conducted on the final solutions as well as a simple toxicity test using 

plant seeds. 

Background 

Azo Dyes 
Azo dyes are a common classification of dyes, accounting for between 60-70% of all dyes. This 

class of dyes gives off bold colors in a variety of hues. Although most commercially available 

azo dyes are reds, oranges, and yellows, it is theoretically possible for the entire spectrum to be 

produced. As research continues, more colors of azo dyes will be produced. This section will 

discuss azo dyes in to the context of their chemical structure, direct dye class, and toxicity. 

Structure 

One of the practical ways to classify dyes is by their chemical structure. The shared feature in 

each group of dyes is the common structural groups. The structural similarity that characterizes 

azo dyes is the presence of at least one –N=N- group,(Kurbiel 1978; Price 2002) as shown in 

Figure 1: Azo dye general structure. 

 

Figure 1: Azo dye general structure 

The R and R’ components of the azo functional group can be either aryl or alkyl groups.  

Direct Dyes  

The "direct dye" classification in the Color Index system “refers to various planar, highly 

conjugated molecular structures that also contain one or more anionic sulfonate group.” Most 

direct dyes are azo dyes. They are water-soluble, anionic compounds (Types of Dyes). Their flat 

shape and their length enable them to lie along-side cellulose fibers and maximize the Van-der-

Waals, dipole and hydrogen bonds . 

Direct dyes are commonly used in the textile industry. They are advantageous since they are 

available in powered form, making them much easier to handle and measure. In addition, they 

can be applied directly to textiles without needing a separate adhesion mechanism. A 
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disadvantage to direct dyes, however, is that it is common for a textile dyed with a direct dye to 

‘bleed.’ To counter this disadvantage, there are some treatments that can be used to help keep the 

direct dyed textiles from losing their color.  

Toxicity  

One concern about using azo dyes is their toxicity. There are three known ways by which azo 

dyes can be toxic.(Brown and De Vito 1993) First, azo dyes themselves may be carcinogenic, a 

characteristic determined by the structure. For example, the different isomers of hydrophobic azo 

dyes containing amino groups, para-isomers are carcinogenic and ortho-isomers are not 

carcinogenic.(Cancer 2010) Second, reduced azo dyes and cleavage of the azo linkage produces 

toxic aromatic amines, which have one or more aromatic rings in their molecular structure.  

Some of these compounds have negative environmental or health-related effects. Dyes are one of 

the major sources of aromatic amines found in the environment.(Pinheiro, Touraud et al. 2004)  

Third, azo dyes can be activated via direct oxidation of the azo linkage to highly reactive 

electrophilic diazonium salts. 

Textile Wastewater 
Natural dyes had been used for centuries as the only method of dying textiles. These dyes were 

rare and costly, so textile dying was limited.  Synthesized dyes transformed the textile industry 

since they were cheaper and readily available. This transformation sparked great exploration of 

synthetic dyes and helped create a commercial market that continues to grow, even 

today.(Dorner 2002)  

However, the wastewaters generated by the textile industry’s dying process contain significant 

amounts of dissolved dye, mostly azo dyes. It is believed that up to 15% of dyes used for 

production are released in the dying process effluent stream.(Lachheb, Puzenat et al. 2002) 

Few published studies demonstrated the presence of dyes in the aquatic environment. Azo 

disperse dyes are hydrophobic and are not expected to be found in the water column but 

adsorbed on the sediment. However, since the dyes are combined with dispersing agents, the 

hydrophilic properties of the products are much higher than the dyes alone, allowing for an 

increased presence of dyes in waters that receive effluents from textile processing plants.(de 

Aragão Umbuzeiro, Freeman et al. 2005) 
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There are several reasons why the colors of dyes cause problems in textile waste water. Acute 

and/or chronic effects can occur from direct exposure. Even small amounts of released colorant 

cause aesthetic changes due to the coloration of surface waters. The absorption and reflection of 

sunlight entering the water is changed by the presence of dyes. This change interferes with 

growth of bacteria and can significantly change the level of biological impurities in the 

water.(Slokar and Majcen Le Marechal 1998) In addition, international environmental standards 

are heightening, creating the need for more technology to remove the azo dye 

pollution.(Lachheb, Puzenat et al. 2002) 

Current Treatment Methods 

There are several methods that are available for waste water treatment. The methods discussed in 

Table 1: Current Treatment Methods are specified to the textile industry and include physical, 

chemical, biological, and emerging technologies.  

  



10 
 

Treatment Methodology Treatment Advantages Limitations 

Physical Methods 

1. Adsorption   

  a. Activated carbon Pre/post Economically attractive.  Good removal efficiency Cost intensive regeneration process 

  

b. Peat Pre Effective adsorbant due to cellular structure.  No 
activation required. 

Surface area is lower than activated carbon. 

  

c. Wood chips Pre  Good sorption for specific colorant. Larger contact times and huge quantities are required. 

2. Ion-exchange Main  Regeneration with low loss of adsorbents. Specific application 

Chemical Methods 

1. Oxidation   Effective for both soluble and insoluble colorants. Problem with sludge disposal.  

  

a. Fenton's reagent Pre/main Capable of decolorizing wide variety of wastes. No 
alternation in volume. 

Prohibitively expensive 

  

b. Ozonation Main Effective for azo dye removal Not suitable for dispersed dyes. Released aromatic 
amines.  

2. Coagulation and  
precipitation 

Pre/main Short detention time and low capital costs.  Good 
removal efficiencies 

High cost of chemicals for pH adjustment. Dewatering 
and sludge handling problems.  

Biological methods 

1. Aerobic process Main Color removal is facilitated along with COD removal. Longer detention times and substrate specific removal.  
Less resistant to recalcitrant.  

2. Single cell  
(Fungal, Algal, and Bacterial) 

Post Good removal efficiency for low volumes and 
concentrations. Very effective for specific colorant 
removal. 

Culture maintenance is cost intensive.  Cannot cope up 
with large volumes of colored effluents.  

Emerging Technologies 

1. Advanced oxidation  
processes 

Main Complete mineralization ensured. Growing number of 
commercial application.  Effective pretreatment 
methodology in  integrated systems enhances 
biodegradability 

Cost intensive process 

2. Photocatalysis Post Process carried out at ambient conditions. Inputs are 
atoxic and inexpensive. Complete mineralization with 
short detention times. 

Effective for small amount of colorants. Expensive 
process. 

3. Sonication Pre Simplicity in use. Very effective in integrated systems Relatively new method and awaiting full scale 
application. 

4. Engineering Wetland  
Systems 

Pre/post Cost effective technology and can be operated with 
huge volumes of wastewater 

High initial installation cost. Requires expertise and 
managing during monsoon becomes difficult.  

Table 1: Current Treatment Methods (Anjaneyulu, Sreedhara Chary et al. 2005)
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Treatment Issues  

Wastewater from textile dying is usually treated in an activated sludge plant and the liquid 

effluent is released. However, studies have shown the ineffectiveness of this method. Regarding 

the degradation of C.I. Disperse Blue 79: after processing using a conventionally operated 

activated sludge, 85% of the dye remained in the systems, of which 3% was retained in the 

primary sludge, 62% by the activated sludge, and 20% was found in the final liquid effluent 

released into the environment. The use of biological treatment improved the effectiveness of 

sludge systems, but exhibited increased levels of mutagenic activity.(de Aragão Umbuzeiro, 

Freeman et al. 2005) 

In the Cristais River, for example, the concentration of the discharged effluent was around 3%.  

Due to the particular dyes (Disperse blue 373, Disperse Orange 37, Disperse Violet 93) used in 

the upstream facility, there were high levels of mutagenicity in the Salmonella/microsome assay. 

The intestinal microflora may play an important role in the activation of these compounds 

because of the involvement of nitro reduction and azo reduction in the activation of these dyes. 

Therefore, if these dyes were ingested, one of the first organs to suffer would be the 

intestines.(Alves de Lima, Bazo et al. 2007) 

Regulations 

Due to the toxicity of textile wastewater, many countries have passed regulations to control these 

effluent outputs. One country that has enacted such regulations is the United States. In 1972, the 

U.S Environmental Protection Agency (EPA) created the Clean Water Act to restore and 

maintain the chemical, physical, and biological integrity of the nation’s waters. As a result of this 

act, all toxic pollutants were to be identified and arrangements were to be created for the removal 

and appropriate disposal of materials.(EPA 1972) 

From 1972 to 1975, research into wastewater treatment was performed at the Cracow Water 

Protection Section at the Water Economy Research Institute (IGW) in Warsaw, Poland as part of 

an agreement with the EPA. The focus of the research was to analyze the various techniques, 

summarized in Table 1: Current Treatment Methods (Anjaneyulu, Sreedhara Chary et al. 2005), to 

treat wastewater (removal of color, detergents, other refractory pollutants) and determine the 

most effective and economic solution. Initially, the following technologies were analyzed: rapid 

filtration on single and multi-media beds, adsorption on granular activated carbon, ion exchange 
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on anionic and cationic resins, coagulation with the use of typical coagulants and with the 

application of auxiliary chemicals, oxidation with ozone and chloride, and reverse osmosis 

results were used to create regulations.(Kurbiel 1978) 

Titanium Dioxide 

History 

Titanium dioxide has seen many applications for its unique photocatalytic properties. Sunlight 

and near-UV light photoactivates the TiO2. In the presence of water, the catalyst produces 

hydroxyl radicals that are capable of oxidizing organic compounds to carbon dioxide and water. 

Because of this important quality, TiO2 has seen many uses in water treatment and 

purification.(Tang and Huren 1995; Pizarro, Guillard et al. 2005) TiO2 is a great material to work 

with because of its stability, low cost, and is nontoxic. There are two common forms of titanium 

dioxide, anatase and rutile, with anatase being the stronger oxidizer. However, most TiO2 

powders contain both types since performance is enhanced with the presence of 

rutile.(Thiruvenkatachari, Vigneswaran et al. 2008) The fascination with titanium dioxide has 

continued to grow and products incorporating the material have reached market.(Staff 2009) 

Because of the knowledge, familiarity and wide acceptance in the scientific community, TiO2 is 

an ideal material to use in studies. Moreover, it is one of the most efficient photocatalysts. 

(Reutergådh and Iangphasuk 1997) Extensive studies have been carried out using TiO2 for the 

degradation of organic compounds in attempts to understand the oxidation process.(Tang and 

Huren 1995; Pizarro, Guillard et al. 2005; Liu, Hsieh et al. 2006) 

Oxidation 

Titanium dioxide exposed to sunlight 

becomes photoactive, the surface of the 

catalysts generates free electrons, and 

valance band holes form. 

(Thiruvenkatachari, Vigneswaran et al. 

2008) Water encounters the valance holes 

and the water oxidizes to form hydroxyl 

radicals. Hydroxyl radicals are non-

selective, strong oxidizers and very 

Figure 2: Image taken from Hashimoto 2005 showing the 

reversible reaction occurring in the surface of TiO2 when 

exposed to UV-light.(Kazuhito Hashimoto 2005) 
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reactive. The free radicals are able to oxidize organic compounds in solution and almost 

completely degrade contaminants.(Konstantinou and Albanis 2004) Oxygen from the air and 

dissolved in the water can accept the free electrons on the surface of photoactivated TiO2 

generating the radical anion, O2
-
. The anions can further oxidize the organic compounds. The 

electrons and valance band gaps can also react directly with organics for further degradation. 

(Thiruvenkatachari, Vigneswaran et al. 2008) Many of the reactions occurring on the surface of 

titanium dioxide lead to the breakdown of the dyes making it an efficient photocatalyst. There are 

many parameters that control the extent of oxidation including pH, concentration of the organic 

compounds and TiO2, and the presence of reagents.(Daneshvar, Salari et al. 2003) 

Kinetics 

The kinetics of the photodegradtion of azo dyes has been well published.(Konstantinou and 

Albanis 2004; Aguedach, Brosillon et al. 2005) Most results have been found to fit the 

Langmuir-Hinshelwood (L-H) model, where a monolayer of adsorption is occurring on the 

surface.(Langmuir 1918) The L-H model is widely used in analyzing heterogenous reactions 

occurring on the surface of catalysts, where two molecules are required to absorb on the surface 

for the reaction to occur.(Fogler 2005) Therefore, the reaction is dependent on the concentrations 

of both species. The rate law derived from the model is defined by Equation 1: Rate Law. 

Equation 1: Rate Law 

  
  

  
 
    

    
 

Where r is the rate if the reaction, C is the dye concentration in solution, t is time, k is the 

reaction constant and K is the adsorption equilibrium factor for the reactant on a surface. Testing 

was done using this model for the kinetics of the oxidation of azo dyes. If we assume the term 

K*C is negligible, that term in the denominator is eliminated. Integrating the simplified rate law 

equation yields the following equation used to model the data. 

Equation 2: Integrated Rate Law 

  
 

  
        

Where C0 is the initial concentration and kapp is the apparent reaction constant. 
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Toxicity 

Recent studies have shown that titanium dioxide as nanoparticles are toxic. The toxicity has to do 

with the nano-size of the TiO2 rather than the compound itself, because in nano-form the 

particles can be absorbed through the skin and penetrate cells.(M.N 2006) A study on algae and 

daphnids showed that titanium dioxide did inhibit growth of both tested organisms proving 

biological toxicity.(Hund-Rinke and Simon 2006) Tests with nano sized TiO2 on human lung 

cells also show carcinogenic properties.(Falck, Lindberg et al. 2009) It has become a growing 

concern that investigations into the health and environment effects have been ignored while the 

list of applications for nanoparticles grows.(Som, Wick et al. 2011) Nanoparticles have the 

potential for being great alternatives to harmful chemicals currently used in processes, however 

if they prove toxic themselves this obviously hinders the technology. It is also uncertain which 

properties of the nanoparticles influence toxicity such as size, shape, density, or coatings. Effects 

of long-term accumulation of nanoparticles in bodies are currently unknown and difficult to 

study, but the findings in the acute effects of TiO2 are enough to cause concern.  

Most studies on the oxidation of textile dyes with TiO2 have been done in slurry reactors with the 

nanoparticles suspended in the solution.(Tang and Huren 1995) Nanoparticles have proven to be 

difficult to separate from systems due to their size so more steps to remove the nanoparticles are 

required to produce safe wastewater. Researchers are now exploring alternatives to slurry 

reactors with TiO2 supported onto surfaces. 

Methods for supporting TiO2 are currently being used in studies. Embedding the titanium dioxide 

onto glass slides have resulted in successful experiments.(Khataee, Pons et al. 2009; Lu, Chien et 

al. 2010) The TiO2 remains on the surface of the glass while the solution cascades down as a thin 

film over the slide. The supported TiO2 retains its photocatalytic properties and the UV light is 

able to penetrate the thin film of solution leading to the oxidation of the organic compounds. An 

easier to use synthetic paper product can be purchased from suppliers that contain the TiO2 

nanoparticles on the fibers. The paper can be cut to size and manipulated easily to fit different 

applications. The TiO2 paper has been successful in promoting the breakdown of organic 

compounds in water.(Aguedach, Brosillon et al. 2005; Pelton, Geng et al. 2006) As research 

continues, it is important for innovators to develop safe technologies with nanoparticles to ensure 

a healthy and sustainable future. 



15 
 

Reactor 

Design 

Researchers at ENSIC University in Nancy, France have designed and constructed a batch 

reactor for the oxidation of azo dyes. It has already been used in research by M.N. 

Pons.(Khataee, Pons et al. 2009) The reactor consists of a reservoir containing dye and a 

peristaltic pump that pumps the dye to the top of a sloped surface. The dye distributes over the 

reactor in a thin-film cascading down the slope. The dye passes over a paper embedded with 

photocatalytic titanium dioxide nanoparticles. A cover with UV lamps sits over the reactor in 

order to photoactivate the TiO2 and oxidation to occur. The effluent dye returns to the reservoir 

where it is recycled through the system.  

 

Figure 3: Photo and sketch of reactor used at ENSIC. 
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Analytical Techniques 

UV-Visible Spectroscopy 

UV-Visible spectroscopy is a useful analytic technique in 

determining the color and concentration of a compound.  

Molecules containing non-binding valence electrons, such as 

pi-bonds, have unique properties that emit color when excited 

by light.(Michigan State University) These light absorbing 

groups are called chromophores. The energy difference 

between the higher and lower-occupied orbital is directly 

related to a wavelength of light (λ=h*c/ΔE). The 

wavelength that excites the electrons into a higher orbital 

is absorbed and gives the molecule its color.(Thermo 

Scientific) Most dyes and pigments contain many chromophores conjugated together in order for 

the molecule to absorb light in the visible spectrum. Auxochromes are functional groups attached 

to chromophores that modify the wavelenght absorbance of the chromophores but auxocrhromes 

do not produce any colors themselves. Often auxochromes are charged altering the electron 

cloud of the chromophores. Azo dyes contain many delocalized electrons and differing structures 

of the azo dyes yield unique colors. Colors seen by the eye are actually the wavelengths not 

absorbed and reflect back from the compound. So the color seen is the complimentary color of 

the color absorbed, see Figure 4. (Michigan State University)  The detector uses UV light as well 

as visible light because not all absorbance occurs in the visible spectrum.  

A spectrophotometer uses these mentioned properties to determine the color and concentration of 

compounds in a solution. For the spectrophotometer, a sample is prepared by placing a small 

amount of the solution in a cuvette. The cuvette has clear walls that allow the light from the 

spectrophotometer to pass through the sample.  The spectrophotometer then shines a range of 

wavelengths on the sample measuring the amount of light absorbed once it has passed through 

the sample. The amount of absorbance to the wavelength of light produces a plot with large 

peaks at wavelengths where the electrons raise to their excited state. That peak wavelength can 

be used to identify compounds. If the concentration of the sample is known in the solution, the 

absorbance can be corrected to the molar absorbance.  

Figure 4: Color wheel showing the colors in the 

visible spectrum and their 

wavelengths.(Michigan State University) 
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Total Organic Carbon  

Total organic carbon has been a concern in water supplies since the passing of the Safe Water 

Drinking Act in 1976. Several sources can exist for organic compounds in water and once there, 

the molecules can be harmful to the environment and require expensive treatment processes to 

remove.(Schumacher 2002) Therefore, it is important to remove as much of the organics at the 

source of wastewaters before they are released into the environment to improve overall water 

quality. Removal of organics are required for safe drinking and if left in the environment, the 

organics can participate in reactions creating harmful products.(Volk, Wood et al. 2002) Organic 

carbon plays an important role in the ecosystem as well and it is crucial not to disturb this 

delicate balance.(Fisher and Likens 1973) 

Total organic carbon is measured by the amount of carbon dioxide produced after the 

combustion of the compounds.(Shimadzu) Compounds in the sample are vaporized, carried to a 

reactor and oxidized completely to carbon dioxide. The carrier gas is analytical air that contains 

the same molar ratio of air (21% oxygen, 79% nitrogen) so oxygen is present for the reaction, but 

it has no carbon dioxide present so all carbon dioxide in the system is from the combustion of the 

sample. The generated carbon dioxide passes a non-dispersive infrared detector (NDIR) for 

measurement. 

There are several methods in TOC measurements. The analysis method used in this study for 

TOC was Non-Purgeable Organic Carbon (NPOC). NPOC is different from typical TOC 

measurements because the measured total inorganic carbon is not subtracted from the total 

carbon to get the TOC. Instead, the sample is acidified with hydrogen peroxide to remove all 

carbonates leaving only organic carbon behind in the solution. This method assumes there are no 

purgeable organic carbon compounds that would be removed from the sample by sparging with 

the analytical gas. In most water samples, there are very little purgeable organic compounds so 

NPOC was considered accurate for TOC analysis. 

Ammonia 

Ammonia has been detected in the final solutions of azo dye degradation.(Augugliaro, Baiocchi 

et al. 2002) This is an environmental concern because ammonia decrease water 

quality.(EPA2011) Excess ammonia in wastewater can enhance growth in aquatic life causing 

problems such as toxic algae blooms.(Vitousek, Aber et al. 1997) Therefore, it is important to 
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monitor ammonia concentrations in the oxidation of azo dyes and the most widely used method 

for nitrate detection is the Nessler method. 

Nessler method is a common method for the detection of ammonia in a solution. The method 

was first published in 1868 by Julius Nessler who discovered when potassium 

tetraiodomercurate, K2[HgI4], is added to a solution containing ammonia the solution changes to 

a yellow-brown color.(Nessler 1868) Nessler reagent refers to K2[HgI4] and Nesslerization is still 

a common analytical technique. Current use of the Nessler method is a modified version from the 

original 1898 version for a more accurate and quantitative analysis. The Nessler reagent is added 

to the distillate product causing a color change upon reaction with the ammonia. Samples were 

observed using a UV-Vis Spectrophotometer and concentrations determined from a linear 

calibration curve. 

Ion Chromatography 

Ion chromatography has become one of the most important techniques in modern analytical 

chemistry. By exploiting the pKa values of compounds in a sample it is possible to separate the 

components and measure their concentrations.(Jackson 2000) The molecules in the sample 

absorb onto a solid phase in the chromatography column through ionic bonding. A wash is 

applied the system and the pH is increased incrementally and the different compounds desorb 

one at a time separating the molecules. The eluent competes with the solute ions for the 

functional group on the solid phase matrix. The ions with the weaker charges are knocked off 

first.(Haddad and Jackson 1990) The compounds are detected by either a UV spectrophotometer 

or a mass spectrophotometer. A chromatogram is produced showing peaks representing different 

compounds with the area related to the concentration. Ion chromatography is an accurate and 

robust analytical technique. 

Ion chromatography is very practical in environmental analyses. By-products of the oxidation of 

azo dyes are nitrates and other anions, which can be harmful. Nitrates in the water supply are 

very harmful and can cause Methemoglobulinemia which can be fatal in infants.(Self and 

Waskorn 2008) In the design of an oxidation reactor for azo dyes it is important that compounds 

produced are safer than the starting dyes. Ion chromatography was vital in the design of the 

system since alternatives for detecting anions are lacking.   
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Materials 

Dyes 
Table 2: Studied azo dyes 

The azo dyes tested in this report were 

purchased from Sigma-Aldrich (US-MO) 

and are summarized in Table 2: Studied azo 

dyes. More complete information on the dyes 

can be found in Appendix C: Dye 

Information. Stock solutions of the dyes were dissolved in ultrapure water and used to prepare 

solutions for experiments. 

Titanium Dioxide Paper 
Titanium dioxide supported on non-woven paper (Ahlstrom Research & Services, Pont-Eveque, 

France) was used as the photocatalyst for all experiments. The deposited TiO2 powder on the 

paper was PC-500 and bound with SiO2. SEM images show the photocatalytic paper before and 

after experiments. 

 

Figure 5: SEM Images: Above, paper before experiments. Below, paper after experiments. 
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Studied Azo Dyes Mw (g/mol) λmax (nm) 

Direct Red 23 813.71 502 

Direct Red 80 1371.07 529 

Direct Red 81 675.60 510 

Direct Yellow 27 662.62 398 

Direct Yellow 50 956.82 395 

Direct Violet 17 719.1 546 
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Methods 

Reactor 

The photocatalytic reactor built at ENSIC (Nancy, France) using photocatalytic paper was used 

for the oxidation of the tested azo dyes. Dye solutions were pumped at 108 mL/min using a 

peristaltic pump to the top of the reactor where the solution was distributed in a thin film over the 

photocatalytic paper.  The circulation rates used for each experiment were the same. At the 

bottom of the reactor, tubes returned the dye back to the reservoir. 

Method Development 
Before testing the different azo dyes, it was important to establish a routine for the reactor that 

would yield consistent results for the dyes.  The first four trials using Direct Red 81 at a 

concentration of 25 mg/L were conducted. At the start of each experiment, the reactor was 

equalized with the dye for 30 minutes with the UV lamps off. After 30 minutes, a sample was 

collected and the lights were turned on and the reactor was left to run for roughly 24 hours. 

Samples were collected from the reservoir periodically for UV-Vis measurements through the 

duration of testing. Between each trial, the reactor was cleaned with a rinse of ultrapure water 

and around 35 µM of hydrogen peroxide for the day with the UV lamps on. At the end of the 

day, the reactor was washed overnight with ultrapure water with the UV lamps off. After trials 

four and trial five, the reactor was cleaned only with ultrapure water with lamps remaining on. 

There was no 30-minute initial incubation for trials five and six. 

Kinetics Experiments 
In order to the test the significance of dye structure to the kinetics of oxidation, 25 mg/L samples 

of dye were prepared and run through the photocatalytic reactor for eight hours. The dye was 

pumped at 108 mL/min. The UV lamps were left on continuously, even between experiments. 

While the reactor was running around 10 mL of sample was collected from the reservoir for UV-

Vis spectroscopy. At the end of the experiment around 40 mL of sample from the reservoir was 

taken for TOC, ammonia, chromatography and toxicity tests. The reactor was rinsed with 

ultrapure water between dyes.  

UV-Visible Spectroscopy 
UV-Vis Spectroscopy (model Anthelic, SECOMAM) was performed on samples taken from the 

reservoir throughout the experiment.  A one-centimeter quartz cuvette was used for all 
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measurements. A spectrum analysis was performed on each sample from 200 nm to 700 nm in 

wavelength. A blank cuvette filled with ultrapure water was used prior to each measurement. For 

sample measurements, the cuvette was rinsed with the sample, dumped, and more sample added 

before being measured. Linear calibration curves were generated separately comparing 

concentration of the dye to the intensity of the absorption at the highest peak, these curves were 

used to determine the concentration and the percent of color removed from the solution over the 

course of the experiment. 

Total Organic Carbon 
Samples from the beginning and the end of the experiment were taken to preform total organic 

carbon (TOC) measurements. Measurements were performed using combustion catalytic 

oxidation with a non-dispersive infrared detector (NDIR) (model TOC-VCSH, Shimadzu). In the 

instrument acid was added to the samples to remove all inorganic carbon following the non-

purgeable organic carbon method. The acidified sample was then combusted and oxidized to 

carbon dioxide over a platinum catalyst. The amount of carbon dioxide generated was correlated 

to the TOC dissolved in the solution. The inorganic carbon was not detected, but since ultrapure 

water was used in the sample preparation it was assumed that little to no inorganic carbon was 

present and the TOC measurements following this method were accurate. 

Nessler Method 
The concentration of ammonia in the final solutions was determined through Nesslerization. 10 

mL of the final solutions were placed in test tubes. Two drops of polyvinyl alcohol, a dispersing 

agent, and two drops of a mixture of potassium sodium tartrate and sodium citrate, mineral 

stabilizers, were added to each sample. 400 µL of Nessler reagent (K2[HgI4]) was added to each 

sample. The absorbance at λ=425nm was measured by a DR/2400 portable Spectrophotometer 

(HACH, US-CO).The resulting absorbance was multiplied by a factor determined from a linear 

calibration curve that determined the concentration of ammonia in the sample. 

Ion Chromatography 
Nitrates were measured by ion chromatography. 2 mL of sample was collected from the final 

solutions and filtered through a 0.45 µm syringe filter.(VWR, US-PA) Samples were tested on 

Dionex chromatography system including a dual pump, eluent generator, and detector modules. 
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An IonPac AS18 column (Dionex, US-CA) was used for the separation of anions and the anions 

were detected through conductivity. 

Toxicity 
The toxicity of the dyes was compared using a lettuce test. Two samples of each dye were used, 

one prior to the experiment and one following the experiment. A mineral water sample (Vittel) 

was used as a normal control and a salt water sample was used as a negative control.   

Each sample was tested in its own container. A piece of absorbent paper was placed at the 

bottom of the container, 3 mL of the sample was added to the container, eight lettuce seeds were 

placed on the absorbent paper, the container was covered with aluminum foil, four small holes 

were made in the aluminum foil, and the container was placed in a heated cabinet at 

approximately 25°C for five days.     

At the end of the five days, the containers were opened and analyzed. The number of germinated 

seeds was counted and the length of each germinated seed root was measured. If a seed did not 

germinate, the length of “0.0 cm” was not included in the average length calculation. The 

average length of seed roots in each dye sample was measured and compared to the controls. The 

greater the difference between the length of the dye sample roots and the normal control, the 

more likely that there were toxic chemicals in the water.  

The two main goals of this experiment were to 1) identify and compare initial toxicities and 2) 

calculate and compare toxicity removal for each of the dyes. In order to make these comparisons, 

each sample was assigned a relative toxicity, RT, based on the lengths of the germinated seeds. 

The relative toxicity of any given solution is defined by Equation 3: Relative Toxicity. 

Equation 3: Relative Toxicity 

   
                
                 

 

where ‘L’ is the average length of the germinated seeds for the particular sample. From this 

equation, the relative toxicity of pure water is zero and the relative toxicity of salt water is 100. 

Using the relative toxicity, the change in toxicity of the solutions was calculated using Equation 

4: Change in Toxicity. If ΔRT is positive, toxicity increased; if ΔRT is negative, toxicity 

decreased. 
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Equation 4: Change in Toxicity 

                      

Results and Discussions 

Method Development 
The Direct Red 81 samples taken from the reservoir for the method development were tested in 

the UV-Vis spectrophotometer with a spectrum analysis from 200-700nm, the UV-Vis spectrum 

absorbance for direct red 81 is shown in Figure 6. The concentration in the reservoir was 

monitored using the absorbance at 510 nm since it was the highest peak for the Direct Red 81. 

Figure 7 shows the results for the dye concentration over time. Using the integrated rate law 

derived in the background, a linear trend line fitted the data well. In most cases, the R
2
 value was 

greater than 0.98 with the lowest value of 0.952. This indicated that the assumption of the 

equilibrium term K*C being negligible was correct due to the linearity of the data. kapp (1/min), 

the apparent first-order rate constant, was used to compare rates for each experiments and are 

summarized in Figure 8. 

 

Figure 6: Absorbance spectrum of Direct Red 81 
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Figure 7: Graph showing decrease in concentration of Direct Red 81 over time in the six trials. 

It was found that kapp increased for the first three trials. It was theorized that the down time 

between experiments with the UV lamps off could be influencing the reaction rate. It is 

understood that the irradiated TiO2 becomes hydrophilic and after two hours of exposure to UV 

light, the contact angle is reduced to zero.(Kazuhito Hashimoto 2005) Removing the source of 

UV light caused the photoactivated TiO2 to lose its hydrophilic properties but at a very slow 

rate. So depending on the duration of time the TiO2 was in the dark, the initial mass transfer and 

adsorption rates may be affected. The amount of time between trials one, two and three followed 

this pattern, as there was less down time between experiments as work progressed.  

 

Figure 8: kapp of Direct Red 81 for method development 
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To test this theory trial four was started three days after the UV lamps had been turned off, this 

was longer than any down time between experiments. Therefore, it was expected that the 

reaction rate would decrease when compared to trial two and three. The kapp for trial four 

increased from trial three suggesting that rest periods may not be affecting the reaction rate as 

originally proposed so another explanation was tested. 

Previous studies have used hydrogen peroxide to improve the photocatalytic rates for 

TiO2.(Mahmoodi, Arami et al. 2005) Hydrogen peroxide was used in our cleaning method and 

some of the hydrogen peroxide might have been retained in the reactor despite the washing. Or 

the hydrogen peroxide might be reacting with TiO2 binding agent with the paper somehow. To 

test this theory two more trials were carried out without using hydrogen peroxide in the cleaning 

procedure.  The reaction rate for trials four, five and six remained close to constant when 

compared to each other. Consistent results were finally achieved and a method could be 

established to compare the azo dyes to one another. These results supported the theory that the 

hydrogen peroxide used in the cleaning after experiments was affecting the reaction rate of the 

following experiment. It should be noted that the actual cause for the shift in reaction was not 

fully understood and the actual effect of hydrogen peroxide on the system was not investigated 

further. For the kinetics experiments, hydrogen peroxide was not used for cleaning and the UV 

lamps were left on between experiments to ensure that light exposure would not be a factor.  

Kinetics 
All tested azo dyes achieved complete discoloration. The color of the solution was monitored 

with the UV-Vis spectrometer and Figure 9 is an example of the results from the UV-Vis spec. 

Each dye had a distinct peak in the visible light range where absorbance was greatest. These 

peaks were used to monitor the concentration of the dye in the solution over time. The longer the 

solution was in the reactor the more color reduction there was. This is seen in the reduction of 

the absorbance of the large peak. Eventually the UV-Vis spec would not be able to detect any 

absorbance at the peak and thus complete discoloration had occurred. Using the linear 

concentration curves developed for each dye, the concentration of dye in the solution was 

interpolated. Knowing the dye concentration over time allowed better analysis for the kinetics. 

All UV-Vis spec. graphs used in the analysis are included in the appendix.  
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Figure 9: Example of UV-Vis spec. results for azo dyes. The absorbance decreases as time increases. The wavelength were 

absorbance was greatest, was used for determining concentration. 

Figure 10 summarizes the results of the kinetics experiments. The pseudo-first order reaction 

constant was found from the semi-log plot of the natural log of the original concentration over 

the concentration versus time. The slope of the line was the reaction constant and the adsorption 

coefficient grouped together, called kapp for the purpose of this report. The larger the kapp, the 

faster the reaction occurred. kapp was important for ranking dyes based on their reaction rates. 

Once the dyes were organized, that was analyzed in order to establish a trend in the rate based on 

the dye structures. 

 

Figure 10: Results of kinetics study. kapp used to compare reaction rates between dyes. 
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Table 3 lists the dyes fastest to slowest as well as significant structural features of the dyes. At 

first it appeared that the rate of degradation for the dyes is random but upon closer observation a 

pattern emerged. It was clear from the data that one structural feature did not control the rate of 

color removal, rather it was a combination of features that determined the rate. One of these 

features was the negatively charged sulfate groups.  A common group found in azo dyes the 

sulfate groups make the dye molecule more polar, which in turn increases the solubility of the 

organic molecule in the inorganic solvent water. These findings agreed with a previous study on 

acid azo dyes.(Muthukumar, Sargunamani et al. 2005) The increased solubility would improve 

the mass transfer between the dye and 

surface of the catalyst. This would explain 

why Direct Red 80, the largest dye 

molecule, was still faster in degradation than 

some of the smaller molecules, and why 

Direct Yellow 50 was the fastest in 

discoloration. 

 What is interesting in these findings, is the presence of anions has been shown to inhibit the rate 

of degradation,(Özkan, Özkan et al. 2004) but in these finding when the negatively charged 

groups are on the molecule they appear to increase the rate. A possible explanation for this 

phenomenon is the better-dissolved dye molecule has better mass transfer with the surface of the 

catalyst and the free hydroxyl radicals in the solution. When the sulfate groups do become free, 

there may be so many active sites on the catalyst that a few occupied sites by the sulfate groups 

do little to inhibit the reaction.  

The number of azo groups also appeared to influence the degradation rate. Most of the azo dyes 

studied had at least two azo bonds except for Direct Yellow 27. The impact of the number of azo 

groups has been seen before in previous studies that concluded similar results, the more azo 

groups the longer the reaction.(Shu and Huang 1995; Tanaka, Padermpole et al. 2000) 

The number of aromatic rings also seemed to be another factor. When comparing the dye 

molecules that have the same number of sulfates and azo groups the rates arranged themselves 

     

Dye kapp Sulfates Azo groups Rings 

DY 50 0.0543 4 2 6 

DY 27 0.0488 2 1 4 

DY 81 0.0453 2 2 4 

DR 80 0.0389 6 4 8 

DV 51 0.0306 2 2 5 

DR 23 0.0231 2 2 6 

Table 3: Dye kapp and structural features 
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fastest to slowest based on the number of rings. This makes sense logically since the greater 

number on bonds that need to be oxidized the longer it will take to degrade the molecule. 

Total Organic Carbon 
Table 4: Total  Organic Carbon Tests 

Dye Initial TOC (mg/L) Final TOC (mg/L) % removed Content 

Direct Red 23 2.194 0.8618 60.7 % 30 % 

Direct Red 80 2.966 0.3911 86.8 % 25 % 

Direct Red 81 4.674 0.8462 81.9 % 50 % 

Direct Violet 51 4.089 0.7401 81.9 % 50 % 

Direct Yellow 27 4.465 0.3728 91.7 % 40 % 

Direct Yellow 50 2.768 0.5875 78.8 % 40 % 

Table 4 summarizes the results of the total organic carbon tests. The solutions contained at least 

60% less organic carbon after running through the photocatalytic reactor for eight hours. Most 

solutions were reduced by at least 80%. The results show the destructive power of the 

photocatalytic reactor. The azo dyes in the initial solutions were reduced to carbon dioxide and 

water. The carbon dioxide escapes the reactor and explains the removal of organic carbon from 

the system. The percentage of removed organic carbon appears to depend on the rate of reaction 

as well as the size of the molecule. The color from the samples had been removed for several 

hours before TOC samples were collected. These results suggested that the azo bond is the 

primary target of the hydroxyl radicals. The color was removed early in the reaction from the 

breaking of the azo bond but the byproducts remained in the system and continued to oxidize.  

Initial organic carbon concentrations vary between dyes even though solutions were prepared at 

equal concentrations of 25 mg/L. The differences are related to the dye content of the dye 

powders from the suppliers. Also, the dye structures contain different amounts of carbon. 

Ammonia and Nitrate 
Figure 11 summarizes the results for the presence of ammonia anions. Each tested sample was 

the final product after eight hours of testing in the reactor. DR 23F was a sample collected after 

the reactor was run overnight. The concentration of ammonia in the final solution was dependent 

on the number if nitrogen atoms in the dye structure as well as the rate of the reaction. The faster 

reactions tended to have lower concentrations of ammonia in the final solution than the slower 

reactions. The formed ammonia molecules continued to oxidize, eventually becoming nitrates 

(NO3
-
). The reduction of ammonia and formation of nitrate from the sample collected after eight 

hours and the sample collected the following morning of Direct Red 23 supported this theory. It 
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appears though the oxidation of ammonia was a slow reaction, since a small decrease in the 

concentration of ammonia was observed. 

 

 
Figure 11: Presence of ions comparison 

Previous research by Herrmann et al. went into significant detail on the evolution of ammonia 

and nitrates in the photocatalysis of azo dyes.(Lachheb, Puzenat et al. 2002) They showed strong 

evidence that the process favors the formation of nitrogen gas over ammonia and nitrate as the 

concentration of the ions was far below the expected value. Ammonia can be generated 

following protonation reactions of nitrogen bonds. 
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The ammonia can then be oxidized to nitrates by hydroxyl radicals. Assuming all the nitrogen 

molecules not in the azo bonds were converted to ammonia, the expected concentration of 
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typically large. Less ammonia and nitrates in the product effluent was beneficial since there 

would be less impact on aquatic life.  

SEM Analysis 
SEM Analysis on the paper substrate before and after experiments should a reduction in the amount of 

carbon present on the sample. A likely source of carbon would be a binding agent for the SiO2 and TiO2. 

After continuous use of the paper, some of the binding agent might have washed away. This could explain 

why the reaction rates increased after uses, as more catalyst was exposed as the binder was removed. 

Some SiO2 and TiO2 might have washed away as well but in the end the SEM analysis showed that the 

weight ratios of SiO2 and TiO2 increased with TiO2 almost doubling in percentage from 6.42% to 10.29%.  

Toxicity 
To test for toxicity, lettuce seed growth test was performed in pure water, salt water, and the 

initial and final solutions of the tested dyes. Figure 12: Lettuce Test Samples shows all 14 

samples on Day Zero, prior to being placed in the heated cabinet (at 25°C), and the initial and 

final Direct Violet 51 samples on Day 5.  

 

 

Figure 12: Lettuce Test Samples 

When the samples were removed from the heated oven, the lengths of the germinated seeds were 

recorded. The data table for all of the seed lengths can be found in   

← All Samples - Day 0 

Direct Violet 51, Day 5 ↑ 

Left: Initial, Right: Final 
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Appendix B: Lettuce Test.  Figure 13: Relative Toxicity Comparison of Initial Dye compares the 

initial relative toxicities of the dyes. The relative toxicities were calculated by Equation 3: 

Relative Toxicity. Since the length of the germinated seeds in water sample was lower than 

several other samples, indicating a higher toxicity, the actual length of the water sample was not 

used in the relative toxicity equation. Instead, 5.0 cm was used as the base length as it was 

greater than all the other average lengths. The seeds in the saltwater sample did not grow as 

expected and was used as the bottom baseline. Using this calculation, the dye with the highest 

initial relative toxicity was Direct Yellow 50 and the dye with the lowest relative toxicity was 

Direct Violet 51.  

 
Figure 13: Relative Toxicity Comparison of Initial Dye Solutions  
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products. For samples taken at the beginning of a trial, the toxicity was attributed to the azo dyes. 
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in toxicity were Direct Violet 51 and Direct Yellow 27 which had the greatest toxicity removal 

of all the dyes.  Direct Red 23, 80, and 81 and Direct Yellow 50 all increased in toxicity.  Direct 

Red 23 had the great increase in toxicity.  

It is known that varying structure of dyes yield different toxicities.(Cancer 2010) However, in 

addition to the large source of error, the small sample of dyes included in the test—each with 

very different structures—did not allow for a detailed analysis of toxicity compared to structural 

features. At this point in the experimental series, the most important result was that not all dyes 

decreased in toxicity between initial and final exposure to the reactor.  

It is challenging to compare toxicity of the dye solutions between studies due to the relative 

nature of studies. For example, in a study of toxicity reduction of textile wastewater using E. coli 

cultures, performed at Universidade Estadual de Campinas in Brazil, the maximum toxicity 

removal by photocatalysis was 50%,(Gomes de Moraes, Sanches Freire et al. 2000) very 

different results from those obtained during this study. 

 
Figure 14: Toxicity Removal Comparison of Dyes 
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prior to this secondary treatment, the biological treatment disadvantage of being unable to 

process large volumes of colorant effluents would not be a concern.(Anjaneyulu, Sreedhara 

Chary et al. 2005) 

In a study at the Université de Rennes 1 in Rennes, France, the treatment of azo dyes has been 

reported coupling photocatalysis and biological treatment. A commercial strain of P. fluorescens 

Migula 1895 was cultivated with glucose, yeast extract, and the considered azo dye.  Samples were taken 

at regular time intervals and analyzed using UV-Vis spectroscopy to monitor dye degradation. The study 

confirmed the feasibility of integrating these two treatment methods.(Brosillon, Djelal et al. 

2008) 
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Conclusions 
Six direct azo dyes were successfully degraded and the color completely removed from all 

solutions. However, the dye molecules were not completely degraded after eight hours of 

photocatalysis. TOC results showed that organic compounds remained in the solution, but the 

amount of organic carbon was reduced significantly suggesting the oxidation of the dye 

molecules to carbon dioxide gas. As expected, ammonia and nitrate ions were produced during 

the mineralization of the compounds. The concentration of the ions was far below the highest 

possible concentration that could be achieved from the degradation, suggesting the favored 

reaction was the conversion to nitrogen gas. 

The kinetics of the reaction varied between dyes. All dyes followed a pseudo-first order reaction 

based on the linear relation of the ln(Co/C) versus time. It was theorized that the difference in 

reaction rates was based on the different structural features in each dye. Sulfate groups increased 

reaction rates possibly by increasing the solubility and thus the mass transfer between the dye 

and the hydroxyl radicals. Discoloration was achieved long before total degradation of the dye 

molecules suggesting that the azo bond is the primary target of the hydroxyl radicals. A higher 

number of azo bonds resulted in a longer reaction time. Molecules containing larger numbers of 

aromatic rings took longer to oxidize than the smaller molecules. These results suggested that the 

oxidation of aromatic rings was a much slower reaction than the oxidation of the azo bond, so 

larger molecules will take longer to completely mineralize. It was concluded that not one 

structural characteristic controlled the reaction rate entirely, but rather a combination of features 

influenced the kinetics.    

Toxicity results showed that the majority of the dyes increased in toxicity meaning the 

degradation by-products, the aromatic amines produced during dye degradation, were more toxic 

than the dyes themselves.  To better understand the varying results, further trials should be 

performed to study the effects of specific dye structural features on toxicity change.  In order to 

decrease toxicity in the dye solutions, a biological secondary treatment was recommended.     



35 
 

References 
Agency, E. P. (2011). "Water: Monitoring & Assessment."   Retrieved Feb. 1st, 2012. 
Aguedach, A., S. Brosillon, et al. (2005). "Photocatalytic degradation of azo-dyes reactive black 5 and 

reactive yellow 145 in water over a newly deposited titanium dioxide." Applied Catalysis B: 
Environmental 57(1): 55-62. 

Alves de Lima, R. O., A. P. Bazo, et al. (2007). "Mutagenic and carcinogenic potential of a textile azo dye 
processing plant effluent that impacts a drinking water source." Mutation Research/Genetic 
Toxicology and Environmental Mutagenesis 626(1–2): 53-60. 

Anjaneyulu, Y., N. Sreedhara Chary, et al. (2005). "Decolourization of Industrial Effluents – Available 
Methods and Emerging Technologies – A Review." Reviews in Environmental Science and 
Biotechnology 4(4): 245-273. 

Augugliaro, V., C. Baiocchi, et al. (2002). "Azo-dyes photocatalytic degradation in aqueous suspension of 
TiO2 under solar irradiation." Chemosphere 49(10): 1223-1230. 

Baptista, R. J. (2007). "Brooklyn, New York Dye Industry."   Retrieved January 19, 2012, from 
http://colorantshistory.org/BrooklynDyeIndustry.html. 

Brosillon, S., H. Djelal, et al. (2008). "Innovative integrated process for the treatment of azo dyes: 
coupling of photocatalysis and biological treatment." Desalination 222(1–3): 331-339. 

Brown, M. A. and S. C. De Vito (1993). "Predicting azo dye toxicity." Critical Reviews in Environmental 
Science and Technology 23(3): 249-324. 

Cancer, W. H. O.-I. A. f. R. o. (2010). "General Introduction to the Chemistry of Dyes." IARC Monographs 
on the Evaluation of Carcinogenic Risks to Humans 99: 55-67. 

Daneshvar, N., D. Salari, et al. (2003). "Photocatalytic degradation of azo dye acid red 14 in water: 
investigation of the effect of operational parameters." Journal of Photochemistry and 
Photobiology A: Chemistry 157(1): 111-116. 

de Aragão Umbuzeiro, G., H. S. Freeman, et al. (2005). "The contribution of azo dyes to the mutagenic 
activity of the Cristais River." Chemosphere 60(1): 55-64. 

"Direct Dyes."   Retrieved 12 January, 2012, from http://www.dyescolours.com/direct-dyes.html. 
Dorner, M. (2002). "Early Dye History and the Introduction of Synthetic Dyes Before the 1870s." Silk 

Circa 1840  Retrieved 12 January, 2012, from 
http://www.smith.edu/hsc/silk/papers/dorner.html. 

EPA (1972). Federal Water Pollution Control Act. 33 U.S.C. 1251. U. S. E. P. Agency. 
Falck, G., H. Lindberg, et al. (2009). "Genotoxic effects of nanosized and fine TiO2." Hum Exp Toxicol 

28(339). 
Fisher, S. G. and G. E. Likens (1973). "Energy Flow in Bear Brook, New Hampshire: An Integrative 

Approach to Stream Ecosystem Metabolism." Ecological Monographs 43(4): 421-439. 
Fogler, H. S. (2005). Elements of Chemical Reaction Engineering, Prentice Hall. 
Gomes de Moraes, S., R. Sanches Freire, et al. (2000). "Degradation and toxicity reduction of textile 

effluent by combined photocatalytic and ozonation processes." Chemosphere 40(4): 369-373. 
Haddad, P. R. and P. E. Jackson (1990). Ion chromatography: principles and applications, Elsevier. 
Hund-Rinke, K. and M. Simon (2006). "Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on 

Algae and Daphnids (8 pp)." Environmental Science and Pollution Research 13(4): 225-232. 
Jackson, P. E. (2000). Ion Chromatography in Environmental Analysis. Encyclopedia of Analytical 

Chemistry. R. A. Meyers. Chichester, John Wiley & Sons Ltd.: 2779-2801. 
Kazuhito Hashimoto, H. I., Akira Fujishima (2005). "TiO2 Photocatalysis: A Historical Overview and Future 

Prospects." Japanese Journal of Applied Physics 44(12): 8269-8285. 

http://colorantshistory.org/BrooklynDyeIndustry.html
http://www.dyescolours.com/direct-dyes.html
http://www.smith.edu/hsc/silk/papers/dorner.html


36 
 

Khataee, A. R., M. N. Pons, et al. (2009). "Photocatalytic degradation of three azo dyes using 
immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye 
molecular structure." Journal of Hazardous Materials 168(1): 451-457. 

Konstantinou, I. K. and T. A. Albanis (2004). "TiO2-assisted photocatalytic degradation of azo dyes in 
aqueous solution: kinetic and mechanistic investigations: A review." Applied Catalysis B: 
Environmental 49(1): 1-14. 

Kurbiel, J. (1978). Removal of Color, Detergents, and Other Refractory Substances from Textile 
Wastewater, Polish Institute of Meterology and Water Management. 

Lachheb, H., E. Puzenat, et al. (2002). "Photocatalytic degradation of various types of dyes (Alizarin S, 
Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania." 
Applied Catalysis B: Environmental 39(1): 75-90. 

Langmuir, I. (1918). "THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND 
PLATINUM." Journal of the American Chemical Society 40(9): 1361-1403. 

Liu, C.-C., Y.-H. Hsieh, et al. (2006). "Photodegradation treatment of azo dye wastewater by UV/TiO2 
process." Dyes and Pigments 68(2–3): 191-195. 

Lu, P.-J., C.-W. Chien, et al. (2010). "Azo dye degradation kinetics in TiO2 film-coated photoreactor." 
Chemical Engineering Journal 163(1–2): 28-34. 

M.N, M. (2006). "Do nanoparticles present ecotoxicological risks for the health of the aquatic 
environment?" Environment International 32(8): 967-976. 

Mahmoodi, N. M., M. Arami, et al. (2005). "Decolorization and aromatic ring degradation kinetics of 
Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a 
photocatalyst." Chemical Engineering Journal 112(1–3): 191-196. 

Muthukumar, M., D. Sargunamani, et al. (2005). "Statistical analysis of the effect of aromatic, azo and 
sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation 
processes." Dyes and Pigments 65(2): 151-158. 

Nessler, J. (1868). "Ueber Bestimmung des Ammoniaks und der Salpetersäure in sehr verdünnten 
Lösungen." Fresenius' Journal of Analytical Chemistry 7(1): 415-416. 

Pelton, R., X. Geng, et al. (2006). "Photocatalytic paper from colloidal TiO2—fact or fantasy." Advances 
in Colloid and Interface Science 127(1): 43-53. 

Pinheiro, H. M., E. Touraud, et al. (2004). "Aromatic amines from azo dye reduction: status review with 
emphasis on direct UV spectrophotometric detection in textile industry wastewaters." Dyes and 
Pigments 61(2): 121-139. 

Pizarro, P., C. Guillard, et al. (2005). "Photocatalytic degradation of imazapyr in water: Comparison of 
activities of different supported and unsupported TiO2-based catalysts." Catalysis Today 101(3–
4): 211-218. 

Price, H. (2002). "Dye Classification." The Chemistry of Dyes  Retrieved 12 January, 2012, from 
http://www.chm.bris.ac.uk/webprojects2002/price/classify.htm. 

Reutergådh, L. B. and M. Iangphasuk (1997). "Photocatalytic decolourization of reactive azo dye: A 
comparison between TiO2 and us photocatalysis." Chemosphere 35(3): 585-596. 

Schumacher, B. A. (2002). Methods for the Determination of Total Organic Carbon (TOC) in Soils and 
Sediments. U. S. E. P. Agency. Las Vegas, NV, Ecological Risk Assessment Support Center. 

Scientific, T. Basic UV-Vis Theory, Concepts and Applications. 
Self, J. R. and R. M. Waskorn (2008). Nitrates in Drinking Water. Colorado, United States, Colorado State 

University Extension. Fact Sheet No. 0.517. 
Shimadzu Total Organic Carbon Analyzer. 
Shu, H.-Y. and C.-R. Huang (1995). "Degradation of commercial azo dyes in water using ozonation and 

UV enhanced ozonation process." Chemosphere 31(8): 3813-3825. 

http://www.chm.bris.ac.uk/webprojects2002/price/classify.htm


37 
 

Slokar, Y. M. and A. Majcen Le Marechal (1998). "Methods of decoloration of textile wastewaters." Dyes 
and Pigments 37(4): 335-356. 

Som, C., P. Wick, et al. (2011). "Environmental and health effects of nanomaterials in nanotextiles and 
façade coatings." Environment International 37(6): 1131-1142. 

Staff, N. (2009). "Titanium Dioxide (TiO2) Nanoparticles In Household Products Linked To Cancer In 
Mice."   Retrieved January, 18, 2012, from 
http://www.science20.com/news_articles/titanium_dioxide_tio2_nanoparticles_household_pro
ducts_linked_cancer_mice. 

Sweeny, E. A., J. K. Chipman, et al. (1994). "Evidence for Direct-acting Oxidative Genotoxicity by 
Reduction Products of Azo Dyes." Environ Health Perspect 102(6): 119-122. 

Tanaka, K., K. Padermpole, et al. (2000). "Photocatalytic degradation of commercial azo dyes." Water 
Research 34(1): 327-333. 

Tang, W. Z. and A. Huren (1995). "UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous 
solutions." Chemosphere 31(9): 4157-4170. 

Textile School (2010). "Types of Dyes." Textile School  Retrieved 12 January, 2012. 
Thiruvenkatachari, R., S. Vigneswaran, et al. (2008). "A review on UV/TiO&lt;sub&gt;2&lt;/sub&gt; 

photocatalytic oxidation process (Journal Review)." Korean Journal of Chemical Engineering 
25(1): 64-72. 

University, M. S. "UV-Visible Spectroscopy."   Retrieved 1/12/2012, 2012, from 
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-
Vis/spectrum.htm#uv1. 

Vitousek, P. M., J. D. Aber, et al. (1997). "HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: 
SOURCES AND CONSEQUENCES." Ecological Applications 7(3): 737-750. 

Volk, C., L. Wood, et al. (2002). "Monitoring dissolved organic carbon in surface and drinking waters." 
Journal of Environmental Monitoring 4: 43-47. 

Özkan, A., M. H. Özkan, et al. (2004). "Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on 
TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effects of some 
inorganic anions on the photocatalysis." Journal of Photochemistry and Photobiology A: 
Chemistry 163(1–2): 29-35. 

 

 

  

http://www.science20.com/news_articles/titanium_dioxide_tio2_nanoparticles_household_products_linked_cancer_mice
http://www.science20.com/news_articles/titanium_dioxide_tio2_nanoparticles_household_products_linked_cancer_mice
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm#uv1
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm#uv1


38 
 

Appendices  

Appendix A: UV Spectroscopy  

Key: 

Series 1: Trials were used to develop experimental method and varied in set-up.  

DR81_T1 to DR81_T6 

 

Series 2: Trials were run for up to 3 hours with samples taken every 15 minutes. UV light 

remained on for entire series and reactor was cleaned for at least an hour between trials.  

DR23_1, DR23_2, DR80_1, DR80_2, DR81_1, DR81_2, DV51_1, DV51_2, DY27_1, 

DY27_2, DY50_1, DY50_2 

 

Calibration Curves: Data was collected for all six dyes 

DR23_C, DR80_C, DR81_C, DV51_C, DY27_C, DY50_C 
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DR81_T1 

Sample S1 S3 S5 S6 S7 S8 S9 S10 S11 

Time 0 60 120 210 330 450 1365 1485 1665 

Peak (at λmax) 1.020 0.887 0.750 0.597 0.462 0.336 0.129 0.117 0.124 

Concentration 22.33 19.43 16.43 13.09 10.14 7.38 2.86 2.60 2.75 

ln(Co/C) 0.000 0.139 0.307 0.534 0.789 1.107 2.054 2.152 2.093 
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DR81_T2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 

Time 0 30 150 270 390 480 1380 1500 

Peak (at λmax) 1.152 1.040 0.706 0.287 0.112 0.064 0.016 0.013 

Concentration 25.20 22.76 15.47 6.32 2.50 1.43 0.39 0.33 

ln(Co/C) 0.000 0.102 0.488 1.383 2.309 2.866 4.166 4.350 
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DR81_T3  

Sample S1 S2 S3 S4 S5 S6 S7 

Time 0 30 120 240 360 420 1360 

Peak (at λmax) 1.155 1.048 0.218 0.063 0.020 0.010 0.014 

Concentration 25.26 22.93 4.81 1.42 0.48 0.27 0.35 

ln(Co/C) 0.000 0.097 1.658 2.876 3.962 4.528 4.275 
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DR81_T4 

Sample S1 S2 S3 S4 S5 S6 

Time 0 30 120 240 360 420 

Peak (at λmax) 0 30 90 150 270 350 

Concentration 1.081 0.900 0.267 0.062 -0.004 0.003 

ln(Co/C) 23.65 19.71 5.89 1.40 -0.03 0.12 
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DR81_T5 

Sample S1 S2 S3 S4 S5 S6 S7 S8 

 Time 0 30 90 150 210 270 300 360 

Peak (at λmax) 1.150 0.901 0.236 0.059 0.029 0.042 0.034 0.026 

Concentration 25.16 19.73 5.21 1.35 0.67 0.96 0.80 0.62 

ln(Co/C) 0.000 0.243 1.574 2.927 3.625 3.270 3.449 3.696 
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DR81_T6 

Sample S1 S2 S3 S4 S5 S6 S7 

Time 0 30 60 90 120 180 210 

Peak (at λmax) 1.104 0.798 0.491 0.265 0.108 0.025 0.003 

Concentration 24.16 17.47 10.78 5.83 2.41 0.59 0.12 

ln(Co/C) 0.000 0.324 0.483 1.098 1.980 3.389 4.980 
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DR23_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.809 0.509 0.357 0.250 0.183 0.122 0.081 0.050 0.023 0.019 0.016 0.011 

Concentration 24.02 15.14 10.67 7.48 5.51 3.71 2.49 1.56 0.78 0.65 0.57 0.42 

ln(Co/C) 0.000 0.462 0.812 1.167 1.471 1.867 2.266 2.733 3.433 3.613 3.744 4.046 
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DR23_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.857 0.574 0.428 0.316 0.246 0.185 0.144 0.097 0.069 0.047 0.023 0.018 

Concentration 25.45 17.08 12.76 9.43 7.36 5.57 4.34 2.96 2.15 1.49 0.78 0.62 

ln(Co/C) 0.000 0.399 0.690 0.992 1.240 1.518 1.769 2.150 2.472 2.839 3.491 3.708 
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DR80_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.760 0.414 0.285 0.162 0.082 0.041 0.019 0.010 0.008 0.007 0.008 0.007 

Concentration 24.66 13.33 9.12 5.10 2.50 1.15 0.43 0.12 0.07 0.04 0.09 0.04 

ln(Co/C) 0.000 0.615 0.994 1.575 2.290 3.062 4.038 5.291 5.838 6.364 5.633 6.444 
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DR80_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.754 0.416 0.253 0.148 0.084 0.039 0.017 0.018 0.013 0.008 0.009 0.002 

Concentration 24.44 13.39 8.08 4.65 2.55 1.10 0.38 0.39 0.25 0.08 0.09 -0.12 

ln(Co/C) 0.000 0.601 1.107 1.658 2.262 3.100 4.166 4.141 4.576 5.742 5.552 -- 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 250 300 350 400 450 500 550 600 650 700

A
b

so
rb

an
ce

 

Wavelength (nm) 

Absorbance - Direct Red 80 (Trial 2) 

y = 0.0392x 
R² = 0.9922 

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

0 10 20 30 40 50 60 70 80

Ln
(C

o
/C

) 

Time (min) 

Kinetics pseudo-1st order 



49 
 

DR81_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 1.159 0.525 0.277 0.148 0.083 0.048 0.040 0.026 0.020 0.017 0.016 0.009 

Concentration 25.36 11.50 6.09 3.29 1.86 1.09 0.93 0.62 0.48 0.41 0.40 0.25 

ln(Co/C) 0.000 0.791 1.427 2.043 2.615 3.147 3.310 3.704 3.971 4.124 4.156 4.615 
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DR81_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 1.157 0.475 0.264 0.135 0.069 0.034 0.028 0.014 0.025 0.027 0.013 0.007 

Concentration 25.30 10.43 5.81 2.99 1.56 0.79 0.67 0.34 0.59 0.63 0.33 0.20 

ln(Co/C) 0.000 0.886 1.471 2.135 2.787 3.463 3.634 4.295 3.763 3.691 4.354 4.847 
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DV51_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 1.163 0.678 0.414 0.265 0.166 0.099 0.066 0.041 0.030 0.019 0.018 0.011 

Concentration 25.12 14.71 9.04 5.85 3.72 2.28 1.57 1.03 0.80 0.57 0.53 0.38 

ln(Co/C) 0.000 0.535 1.022 1.457 1.909 2.398 2.772 3.190 3.443 3.784 3.858 4.186 
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DV51_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 60 75 105 120 135 150 165 0 15 

Peak (at λmax) 1.198 0.696 0.466 0.238 0.120 0.100 0.086 0.079 0.075 0.053 1.198 0.696 

Concentration 25.86 15.08 10.16 5.26 2.73 2.30 1.99 1.84 1.77 1.30 25.86 15.08 

ln(Co/C) 0.000 0.539 0.934 1.593 2.247 2.420 2.563 2.641 2.684 2.993 0.000 0.539 
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DY27_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.517 0.209 0.108 0.064 0.043 0.024 0.020 0.013 0.021 0.004 0.000 0.006 

Concentration 26.04 10.71 5.69 3.49 2.46 1.53 1.31 0.98 1.34 0.53 0.29 0.62 

ln(Co/C) 0.000 0.889 1.521 2.009 2.361 2.836 2.991 3.285 2.965 3.890 4.486 3.735 
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DY27_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.510 0.191 0.096 0.056 0.038 0.036 0.024 0.023 0.020 0.020 0.019 0.019 

Concentration 25.70 9.85 5.08 3.10 2.20 2.13 1.54 1.45 1.34 1.34 1.24 1.25 

ln(Co/C) 0.000 0.960 1.621 2.115 2.459 2.491 2.817 2.873 2.955 2.955 3.028 3.024 
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DY50_1 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.470 0.176 0.082 0.032 0.008 -0.011 -0.002 0.005 -0.002 -0.001 -0.004 -0.010 

Concentration 23.18 8.75 4.16 1.74 0.54 -0.39 0.06 0.39 0.06 0.08 -0.07 -0.35 

ln(Co/C) 0.000 0.974 1.718 2.592 3.752 -- 5.896 4.079 5.896 5.628 -- -- 
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DY50_2 

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Time 0 15 30 45 60 75 90 105 120 135 150 165 

Peak (at λmax) 0.497 0.212 0.107 0.060 0.041 0.045 0.043 0.040 0.035 0.054 -0.007 -0.009 

Concentration 24.50 10.54 5.38 3.06 2.15 2.37 2.25 2.11 1.88 2.77 -0.19 -0.30 

ln(Co/C) 0.000 0.843 1.516 2.079 2.434 2.335 2.390 2.453 2.566 2.180 -- -- 
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DR23_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) -0.0012 0.0007 0.0186 0.0462 0.0826 0.1631 0.4194 0.8404 
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DR80_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) 0.0036 0.0119 0.0271 0.0493 0.0915 0.1675 0.3589 0.7828 
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DR81_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) 0.0036 0.0119 0.0271 0.0493 0.0915 0.1675 0.3589 0.7828 
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DV51_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) 0.0047 0.0087 0.0389 0.0682 0.1324 0.2480 0.5873 1.1704 
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DY27_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) -0.0023 0.0000 0.0080 0.0189 0.0392 --  0.2432 0.4970 
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DY50_C 

Concentration (mg/L) 0.125 0.25 0.625 1.25 2.5 5 12.5 25 

Peak (at λmax) -0.0040 0.0005 0.0108 0.0283 0.0496 0.0960 0.2530 0.5073 
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Appendix B: Lettuce Test 
 

Sample ↓ 
Seed Length (cm) Average  

Seed 
Length 

Relative  
Toxicity 

% 
Change 

Relative 
Change 1 2 3 4 5 6 7 8 

DR23 
Initial 1.2 2.5 3.3 3.7 4 3 3.5 3.3 3.063 38.8 50% 

Final           4 4 4.1 4.033 19.3 -19.4 

DR80 
Initial         1.6 3.1 3.6 3.6 2.975 40.5 69% 

Final         3.1 3.6 3.7 4 3.600 28.0 -12.5 

DR81 
Initial     0.1 1 2.9 3.4 4 4.2 2.600 48.0 66% 

Final       2.2 3.4 3.4 3.9 4.2 3.420 31.6 -16.4 

DV51 
Initial         3.2 3.2 3.3 3.5 3.300 34.0 118% 

Final         2.2 3 3.3 3.5 3.000 40.0 6.0 

DY27 
Initial 3.2 3.3 3 2.7 3 3.5 3.6 4 3.288 34.3 124% 

Final       0.9 3.4 3.2 3.6 3.3 2.880 42.4 8.2 

DY50 
Initial         1.2 1.7 1.9 4 2.200 56.0 67% 

Final     0.8 2 3.1 4.1 4.2 4.6 3.133 37.3 -18.7 

Standards 
Salt                2.8 0.000 100.0 

N/A 
Water       1.4 3.6 3.6 4 4.4 5.000 0.0 
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Appendix C: Dye Information  

 

Name: Direct Red 81  

Formula: C29H19N5Na2O8S2 

Weight: 675.60 g/mol 

λmax: 510nm 

Sulfate Groups: 2 

Azo Groups: 2 

Rings: 5 

 

 

Name: Direct Red 80  

Formula: C45H26N10Na6O21S6 

Weight: 1371.07 g/mol 

λmax: 529nm 

Sulfate Groups: 6 

Azo Groups: 4 

Rings: 8 

 

 

Name: Direct Red 23  

Formula: C35H25N7Na2O10S2 

Weight: 813.71 g/mol 

λmax: 502nm 

Sulfate Groups: 2 

Azo Groups: 2 

Rings: 6 
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Name: Direct Yellow 27  

Formula: C25H20N4Na2O9S3 

Weight: 662.62 g/mol 

λmax: 398nm 

Sulfate Groups: 2 

Azo Groups: 1 

Rings: 4 

 

 

Name: Direct Yellow 50  

Formula: C35H24N6Na4O13S4 

Weight: 956.82 g/mol 

λmax: 395nm 

Sulfate Groups: 4 

Azo Groups: 2 

Rings: 6 

 

 

Name: Direct Violet 51  

Formula: C32H27N5Na2O8S2 

Weight: 719.1 g/mol 

λmax: 546nm 

Sulfate Groups: 2 

Azo Groups: 2 

Rings: 5 
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Appendix D: Sample Calculations 

Sample calculation for ammonia and nitrate 

              
   
  
 

       
 
   

    
    

 
 

Direct Red 23 has three nitrogen atoms not in azo-bonds so the highest concentration of 

ammonia and nitrate ions is three times the molar concentration of the dye. 

  
    

 
     

    

 
 

The measured amount of ammonia was 0.57 mg/L. 

    
  
 

      
 
   

   
    

 
 

The measured amount of nitrates was X mg/L. 

 
  
 

      
 
   

  
    

 
 

The total number of moles and the percent difference from the expected was solved following 

the below method. 

  
    

 
  

    

 
  

    

 
 

  
    
   

    
 

  
    
 

        

 


