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Abstract

This paper introduces a novel approach to assist augmented reality (AR) re-
search by creating a versatile data-capturing rig and an integrated software
pipeline. In this project we focus on monocular depth estimation.

The project’s primary objectives encompass designing and implementing
a user-friendly software pipeline and a scalable hardware rig. The scalability
of the hardware rig is enabled through the support for multiple sensors with
varying computational capabilities and position on the rig. The pipeline serves
as an interface to enable the simultaneous activation of a suite of sensors,
session recording, post-processing of collected data, and efficient storage for
future utilization. The physical rig, featuring wireless connectivity and mobil-
ity, allows mounting a computational device and an array of diverse sensors
on an easily constructed frame. The seamless integration of various sensors
enhances the rig’s utility, allowing researchers to gather diverse datasets es-
sential for various AR tasks, such as depth estimation, object recognition, and
light estimation.
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Introduction

Augmented Reality (AR) has entered the general consumer market through
standard portable devices such as mobile phones, blending technology into the
world to see the world differently or to see a different world. AR has become a
way for users to interact with physical worlds through virtual overlay. Analysts
estimate AR will become a $̃1.2 trillion market by 2035 [1]. AR will help us
with applications ranging from tourism to advertisement [2].

AR research and experimentation is an expensive, delicate, and time-consuming
task. Performing AR experimentation often requires having a multi-sensor
setup (e.g., RGB camera and ground truth RGB-D camera for monocular depth
estimation). For example, cameras need to be space and time-aligned. More-
over, it is often necessary to set up custom drivers and libraries to collect data
[3]. These sensors can also be expensive, even in thousands of US dollars [4].
Additionally, AR research often requires access to a large amount of data as
it often relies on deep learning models. Scaling such endeavors to record ses-
sions from multiple aligned sensors is necessary to facilitate the research and
development process of AR experimentation.

To assist AR experimentation, we devised a versatile data capture rig to
simplify data capture and alignment from two sensors. Moreover, we created
a novel software pipeline to collect, store, and process data captured from a
generalized list of sensors. When creating this rig and these pipelines, we
worked with some specific goals in mind:

• Automatic data capturing

• Easy-to-use software

• Easy to assemble and build the physical rig

These goals aim to minimize the complexity of spinning up the software
stack and building a rig. This should allow any researchers, whether techni-
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cally knowledgeable or not, to set up a capturing rig quickly and easily begin
recording sessions from multiple sensors.

In this project, we developed a complete data-capturing rig, including soft-
ware and hardware components, to capture multi-sensor data to facilitate AR
research. The scalable software stack provides a UI to allow users remote
control of the session recording. A WebSocket control server coordinates the
recording throughout multiple recording devices. A WebSocket storage server
facilitates data saving to almost any storage system (e.g., S3, GCP, FTP, etc.)
through a generalized filesystem interface. A postprocessing server triggered
over HTTP POST allows performing image alignment to align and visually
overlap the scenes captured from different cameras. We provided the code
repository for this project on GitHub 1.

Using our data capturing rig and pipeline, we collected a dataset to vali-
date our methodology consisting of 50 pairs of RGB and ground truth depth
images. This dataset was used to ensure our hardware setup and software
pipeline accuracy. It consists of a single scene but can be easily expanded to
include a variety of environments.

In summary, we contributed the following to ExpAR through this major
qualifying project:

• Built a distributed, generic, multi-sensor, and remote-controlled data col-
lection pipeline. Users can install the software client on any device, such
as a phone, robot, remote control car, or drone, to make it into a data-
capturing device part of a more extensive coordinated setup.

• Streamlined processes include image alignment, data collection, scene
alignment, remote starting and stopping, and storing data on the cloud.
This allows easier user interaction with the recording devices and stream-
lines the steps to obtain a usable post-processed dataset.

• It provided an easily expandable industry-standard Airflow data postpro-
cessing solution. This allows anyone to add new data pipelines to further
post-process the data and automate AR research and development tasks.

• Openly available and open source code on GitHub.

• Openly available physical build design instructions, materials, and files.

1https://github.com/cake-lab/ExpAR-depth-datacapturing
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3

Background and Related Works

3.1 Overview of existing AR data capturing meth-

ods

Over the last decade, AR technology has seen tremendous growth in the gen-
eral consumer market. As a result, high-quality research on AR systems has
become increasingly commonplace and valuable in the tech market. AR exper-
imentation now observes a wealth of AR tasks such as depth estimation, object
detection, and simultaneous localization and mapping [5, 6]. Each task has an
active research community focused on developing systems and algorithms to
solve these problems as efficiently as possible.

However, as the quantity and scale of these research experiments grows,
it becomes challenging to accurately evaluate the AR systems proposed [4].
To streamline AR experimentation, a scalable and generalizable solution for
evaluating the diverse range of AR tasks would be invaluable. Two approaches
have emerged to address this challenge: creating large, diverse datasets for
real-world environments and developing specialized capturing methods for
standardized AR data acquisition.

3.2 Related Works: Diverse Datasets

As AR technology becomes increasingly accessible to a broad consumer audi-
ence, AR systems must adapt to diverse environments. Ensuring that an AR
system generalizes effectively across various settings is a crucial challenge
in the field. However, many studies have only evaluated their systems within
a narrow range of scenes [6]. Moreover, existing datasets often focus solely
on indoor or outdoor environments [7]. Nevertheless, several datasets aim to
lower the entry barrier for comprehensive evaluation.
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3.2.1 NYU-Depth V2

NYU-Depth V2 stands as one of the pioneering RGB-D datasets, offering 1449
meticulously labeled pairs of RGB and depth images from 464 indoor scenes
captured through an RGB-D Kinect camera [8]. Additionally, it provides 407,024
raw, unlabeled frames. While widely used for computer vision depth estima-
tion, its dependency on Kinect cameras confines the dataset to indoor set-
tings. Further, the methodology’s reliance on a single sensor for RGB and
depth frames hampers its adaptability and scalability. In contrast, our data
capturing setup accommodates a range of depth and RGB sensors, facilitating
the acquisition of higher quality data suitable for indoor and outdoor environ-
ments.

3.2.2 ARKitScenes

ARKitScenes, a comprehensive RGB-D dataset for indoor scene comprehen-
sion, is captured using an iPad Pro and integrates synchronized data from
wide and ultra-wide cameras, a LiDAR scanner, and IMU [9]. The dataset in-
cludes ARKit camera poses and scene reconstructions, serving diverse tasks
like 3D object detection, scene reconstruction, and indoor navigation. How-
ever, its reliance on sensors exclusive to Apple devices restricts its generaliz-
ability. Conversely, our methodology enables the utilization of various depth
data sources, such as time-of-flight or stereo cameras, in combination with
any RGB sensor.

3.2.3 DIODE (Dense Indoor and Outdoor DEpth)

The DIODE (Dense Indoor and Outdoor DEpth) dataset marks a significant
advancement in monocular depth estimation by offering a wide array of in-
door and outdoor scenes captured using a single sensor setup—the FARO
Focus S350 scanner [7]. Prior datasets tended to focus solely on indoor or
outdoor environments, limiting algorithm generalization across diverse set-
tings. DIODE’s inclusivity of indoor and outdoor scenarios empowers re-
searchers to assess algorithm performance across real-world conditions. Its
high-resolution images and precise, dense depth measurements are invaluable
for benchmarking and advancing depth estimation techniques. Nonetheless,
the high cost and limited accessibility of the FARO sensor pose barriers to
widespread adoption. In contrast, our data capture rig’s versatility with an
array of depth sensors empowers the acquisition of indoor and outdoor depth
data.
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3.3 Related Works: AR Data Capture Methods

In addition to training on pre-extisting, general datasets like those listed above,
researchers usually must collect specific data in order to fine tune their sys-
tems precisely to their task. Because of this, developing AR systems often
requires a specialized setup to enable data collection on specific data. Many
works have included their hardware setup to enable data capturing based on
specific tasks.

3.3.1 Immersive Light Field Video with a Layered Mesh
Representation

Broxton et al. [10] introduces an innovative data capture rig to capture high
quality immersive light field video. The rig is a six degree-of-freedom cam-
era array: a hemispherical rig consisting of 46 action sports cameras placed
equidistantly across the hemisphere. This setup enables the capture of light
field video from a multitude of perspectives, essential for creating realis-
tic, immersive virtual environments with accurate motion parallax and view-
dependent reflections.

The rig’s ability to capture immersive light field video greatly enhances
the realism and interactivity in AR environments. By providing a multitude
of perspectives, the technology developed by Broxton et al. not only achieves
a high level of detail in virtual reconstructions but also significantly improves
the user’s sense of presence and immersion. However, while this rig is capable
of capturing high quality light field video, it’s versatility towards other AR
tasks is limited by it’s shape and lack of sensor diversity.

3.3.2 MobiDepth

Zhang et al. [11] proposes a new approach for mobile AR depth estimation
by leveraging existing dual-camera systems in smartphones. MobiDepth uses
iterative field-of-view cropping and heterogeneous camera synchronization to
align dual cameras efficiently for use in stereo depth estimation. To evaluate
their AR system, they created a simple hardware setup consisting of an Intel
Realsense L435i RGB-D camera and a phone camera horizontal aligned on a
small platform. While this capture rig easy to set up and implement, it has
made no considerations for different sensors, different amounts of sensors, or
different computational devices handling the sensors. In contrast, our capture
rig has been built from the ground up to include these attributes. Moreover,
our work provides a software stack to automate capturing and processing data
from a range of capturing devices.
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3.4 Common dataset format for AR research

For a dataset to be useful for research, it should be structured in a way that
is easy to access, understand, and implement during training and testing. Be-
cause of this, most datasets follow a very similar structure. Data is usually
split up by scene, each containing a list of RGB and ground truth frames. Other
valuable data can be added to the dataset for greater training accuracy. For
instance, ARKitScenes includes intrinsic camera parameters for each frame,
while NYU-Depth V2 contains one set of intrinsic parameters for the entire
dataset but includes accelerometer data for each frame [8, 9]. While almost
all datasets contain a set of raw dumps of frames marked with timestamps,
some contain manually labeled frames such as NYU-Depth V2 and KITTI depth
[12].
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4

Designing the Physical Data
Capturing Rig

Figure 4.1: Picture of the final rig build.

To address the challenges of evaluating AR systems at scale, we designed
a versatile capture rig. Our capture rig was designed to be compatible with a
wide range of sensors physically mounted simultaneously while being portable
enough to capture diverse scenes. The design is reminiscent of a server rack
design, with one or more computational layers and a top layer to hold several
sensors. As a proof of concept, we created a rig with two layers; we mounted
an Intel Realsense L515 Lidar camera to collect ground truth depth data, an
NVIDIA Jetson Nano as the computational host for the L515 sensor, and a
Google Pixel 8 Pro to capture high-quality input images for depth estimation.
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Figure 4.1 shows the complete assembled rig, including the sensors and the
host device.

4.1 Hardware architecture and components re-

quired

We had three main goals for our data-capturing rig. First, we wanted our
rig to be modular, allowing different sensors and computational devices to be
compatible. Second, we wanted our rig to be scalable, allowing many differ-
ent sensors to collect data simultaneously. Lastly, we wanted our rig to be
portable, allowing it to capture many different scenes, environments, and ob-
jects. To accomplish this, we decided on a design that resembled a server
rack, a rectangular platform with multiple layers for different computational
devices.

In the top layer, ten horizontal cuts were made across the layer, with each
cut being ¼" wide. These slots allow users to mount any sensor with a stan-
dard ¼" tripod thread to the top of the rig. Because of the design of the slots,
sensors can be moved horizontally along the slots or vertically by moving be-
tween slots. Ideally, this will allow a suite of sensors to be attached to the
device in whichever configuration is most optimal.

The rig’s design allocates the lower tiers for housing computational hard-
ware. Along with several pilot holes for our computational device, we have
also added a hole in the center of the bottom layer to allow a tripod mount to
be added. The rig is 12" in width, 10" in depth, and 3" in height without any
sensors on top. This size was chosen to allow the rig to be large enough to
accommodate several sensors or computational devices while also being small
enough to be portable.

Using these specifications, we produced an SVG file to create the layer
platforms. We used a laser cutter to cut the designs into two 12" by 10" by
1/8" pieces of plywood. Then, using a brass standoff kit, we assembled the
layer platforms by securely fastening the laser-cut plywood pieces together.
The brass standoff kit facilitated a sturdy yet adjustable structure, allowing
us to configure the layers according to the specific requirements outlined in
the design. The precision of the laser cutter ensured accurate cuts, enabling
seamless alignment during assembly. These designs are summarized in ap-
pendix A for reference and reproducibility.

Overall, the build was completed with the following bill of materials:

• Stainless Steel D Shaft D-Ring 1/4: Attached to the center of the bottom
layer. Allows for mounting the rig on a tripod.
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• 1/4 " "-20 Male Thread Screw Mount: Used to screw in sensors to the
top layer of the rig

• Structurally strong wood or other material to laser cut: Used as the base
layers of the rig.

• Tripod Phone Mount Holder with a Head Standard 1/4" Screw: Used to
mount phone to the sensor layer.

• TP-Link USB Wi-Fi Adapter: Used to enable wireless communication to
the host device.

• Portable Charger 22.5W 20000mAh: Used to power the host device. Al-
lows for rig mobility.

• UBS-A to Micro USB Cable 1ft for Fast Charging and Data Sync: Used to
connect the host device to the batter pack.

• M2 M2.5 M3 Male Female Hex Brass Spacers, Standoffs, Screws, and
Nuts Assortment Kit: Used to attach individual rack layers together.

• Jetson Nano with SD Card: Host device used to manage sensors.

• Micro USB Power Supply (>2A): Used to power host device when mobil-
ity is unnecessary.

• Ground truth sensor (e.g., Intel RealSense L515): Used to capture ground
truth data.

4.1.1 Computational Requirement of the Capture

The data capturing rig requires dedicated client device(s) to manage its suite
of sensors. This includes crucial tasks like sensor synchronization and calibra-
tion, data collection, and data transfer. Client devices can include microcon-
trollers, phones, or any other computational device programmable to manage
sensors. To fulfill the computational need to manage our sensor suite, we
opted for the NVIDIA Jetson Nano.

The Jetson Nano strikes a crucial balance between compactness, perfor-
mance, and power efficiency. Its capabilities enable it to simultaneously han-
dle data streams from multiple sensors while remaining small enough to fit
within the rig. Furthermore, its low power consumption allows for continuous
operation powered by a power bank. However, the Jetson Nano has its own set
of drawbacks: its limited I/O ports restrict the number of sensors per control
board, and while powerful compared to other options, it might face challenges
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Figure 4.2: Cable connections of the various hardware components.

handling numerous data streams concurrently. Despite these drawbacks, the
Jetson Nano met our requirements and was integrated into the final rig design.
Figure 4.2 shows the cable connections from the Jetson Nano to its sensor and
other necessary peripherals.

4.2 Selection of sensors

To ensure that our dataset was useful, we needed to use high-quality sensors
that provided accurate and high-quality RGB and ground truth images. We
used an Intel Realsense L515 Lidar camera to collect our ground truth depth
images and a Google Pixel 8 Pro to collect our input RGB images.

4.2.1 The Intel Realsense L515 as the ground truth

The L515 sensor operates as an RGB-D camera leveraging a Micro-Electro-
Mechanical System (MEMS) mirror for environmental scanning. It generates
high-resolution depth maps with exceptional precision, maintaining accuracy
within 14mm up to 9m2 at a smooth framerate of 30 fps [13]. This capability
facilitated the collection of remarkably precise depth data. Integrating the
L515 into our setup was facilitated by its ¼" tripod screw interface, allowing
for effortless attachment to the top layer of our capture rig, as shown in Figure
4.3.

Several other depth sensors could have been used to capture depth infor-
mation. The Microsoft Kinect has historically been popular for assembling
datasets containing depth information [14]. Its widespread availability and
affordability have made it valuable for research. However, its depth mea-
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Figure 4.3: Picture of the Intel Realsense L515 Lidar camera attached to the
capture rig.

surement technique (structured light) is ineffective in bright sceneries and,
therefore, has limited application outdoors [15].

Time-of-flight sensors like the Intel Realsense D435 could also have been
used as they are compact enough to fit atop the rig and provide accurate depth
information. However, time of flight sensors tend to be less accurate and have
shorter ideal ranges compared to Lidar-based depth cameras [16]. For these
reasons, we chose the L515 Lidar sensor as it combines accuracy, range, and
compactness to be an effective camera for collecting depth information.

4.2.2 Google Pixel 8 Pro

To capture input RGB images, we used the main 50 MP rear camera on a
Google Pixel 8 Pro. This was chosen mainly for its availability to us and its
incredible image quality. Since most people have access to an Android phone
with a relatively high-quality camera, we believed it would be important to
create an Android application to allow these devices to interface with our
data-capturing architecture, lowering the barrier of entry to data collection.
Consequently, we needed to create an Android application that would enable
the phone to be integrated into our pipeline, which is detailed in section 5.5.
The Pixel 8 Pro was attached to our rig using a phone mount with a ¼" tri-
pod screw interface which allowed the phone to be placed sideways, as shown
in Figure 4.4. This allows for close placement to the L515 sensor to ensure

11



Figure 4.4: Picture of the Google Pixel 8 Pro attached to the capture rig.

approximate manual alignment between the RGB input and the ground truth
depth images. It also guarantees that post-processing can correct any dispar-
ities in height or orientation.
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5

Scalable Software Stack

5.1 Overview of the software stack

The software stack was designed to record, store, and process the data from
the rig. The software was split architecturally into microservices to keep the
processing power requirement low for the recording device. The recording
client, whether in Python or Kotlin for Android, only handles the data cap-
turing and transmission to the server side, making it suitable for most low-
power SoCs. The storage server handles receiving and saving data. The ses-
sion recorder coordinator is a stateful microservice that coordinates recording
with all the connected recording devices. Last, the Airflow server, triggered at
the end of a session recording, handles data post-processing pipelines for the
rig. Figure 5.1 shows the entire software architecture of the data-capturing
rig.

There are several difficulties involved with creating a scalable data-capturing
architecture. As the amount of sensors grows, the amount of data handled by
the pipeline must also increase to accommodate them. To create an architec-
ture that is both generalizable and scalable, we noted several development
tools that can be beneficial in creating a versatile pipeline.

When capturing large amounts of sensor data, it is inconvenient to store
each image locally as datasets routinely take up hundreds of gigabytes of
storage. Therefore, implementing a cloud storage platform is beneficial for
dataset creation. Shared cloud storage platforms like AWS, Google Cloud
Storage, and Azure can be easily set up to store terabytes of data reliably
by paying low prices per gigabyte per month. FTP servers could also be set
up to store data in dedicated storage for free if one is available. Each stor-
age platform has well-documented libraries to allow easy data transfer from
the capture pipeline into storage buckets. Additionally, Python has a library
called PyFilesystem that manages data transfer to all common cloud storage

13



Figure 5.1: Software stack architecture.

platforms in a single library.
Apache Airflow is a platform designed to streamline and simplify data

pipelines [17]. It is designed to be scalable and flexible, allowing easy manip-
ulation of data streams before or after processing. Airflow integrates seam-
lessly into most common cloud storage platforms such as AWS, Google Cloud
Storage, and Azure. Because of this, Airflow is a valuable tool for post-
processing sensor data. Once sensor data has been stored in local or cloud
storage, Airflow can post-process and calibrate the captured images to ensure
the input and ground truth are aligned.

To facilitate simple deployment of the architecture, Docker can be used
for containerization and standardization. Docker allows each section of the
pipeline to be quickly deployed and executed while ensuring accurate installa-
tion to minimize compatibility issues. This enhances portability and facilitates
scalability, as the encapsulation of each pipeline segment within Docker con-
tainers enables seamless scaling without intricate reconfiguration. Docker
simplifies the orchestration and reproducibility of the pipeline architecture,
enabling efficient and reliable execution across a diverse range of sensors
and computational devices.

Figure 5.2 visually shows the workflow from the UI to the output. The soft-
ware components communicate with each other through WebSockets or HTTP
POST requests. The web User Interface (UI) (1) provides session recording
information, such as the session name or destination storage, to the control
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server, which will relay it to the recording devices (2, 3). The devices will start
recording when the "Start Recording button is pressed on the UI. The frames
are saved in storage (4, 5) and then aligned through the image correction (6).

Figure 5.2: Visual example software workflow using the capturing rig.

By offloading the recording coordination, file system saving, and data pro-
cessing to an external server, it is possible to minimize the computing power
required for the recording client. This has additional benefits, such as lower
power usage, which is necessary to allow long session recordings when using
a battery pack to power the right in a mobile setting.

Two types of recording clients are supported: (1) those running the Python
data-capturing script (e.g., Jetson Nano) and (2) those running the Android
app. Both types get data from a sensor (e.g., a phone camera on the Android
app) and transfer the data to storage while coordinating the session recording
with the control server.

5.2 Control Server

The control server (GitHub) was developed using FastAPI with the standard
uvicorn ASGI server. The server holds three endpoints: (1) GET request han-
dler on "/" to provide the recording controller web user interface, (2) Web-
Socket handler on "/ws-recorder" to handle recorder connections (e.g., Jetson
Nano), and (3) Websocket handler on "/ws-webui" to handle connections with
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the recording web user interface. Figure 5.3 shows the flow of events between
the web UI, control server, and recording devices.

The networking architecture of the system allows client devices to connect
to the server, requiring only the server to have a public IP address accessi-
ble by the clients. This removes the need to setup port forwarding for each
recording device, which could lead to security vulnerabilities as well as a less
streamlined user experience.

Figure 5.3: Sequence diagram of the event messages between the user inter-
face, control server, and recording devices.

5.2.1 GET WebUI /

The GET request handler provides the recording controller web user inter-
face. The page displays buttons to start and stop the recording and generate
a v4 UUID as an identifying name for the session. Additionally, the webpage
includes text fields to manually enter a recording session’s unique identifier,
storage server URI, and storage bucket URI. Once a connection is established
with the control server, the web UI displays the currently connected recording
devices. Figure 5.4 shows the design of the web UI, including all necessary
fields and the list of recording devices by IP address.
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Figure 5.4: Screenshot of the web UI used to control the suite of sensors or
host devices.

5.2.2 WS /ws-webui

The "/ws-webui" WebSocket endpoint handles messages from the interface to
the control server and vice versa. The interface sends messages with the fol-
lowing JSON payload to the control server when a recording session is started:

1 {
2 "session-id": "75442486-0878-440c-9db1-a7006c25a39f",
3 "storage-uri": "osfs://storage",
4 "storage-server-uri": "ws://reese-federico-mqp.duckdns.org:8990

/storage-stream",
5 "status": true
6 }

When a recording session ends, the web UI sends a message with the fol-
lowing payload:

1 {
2 "status": false
3 }

The control server provides updates about the rig status to the web UI
through the "Rig Information" event. This event is triggered as an update to
the web UI every time a start or stop recording message is sent. The "Rig
Information" event contains the following payload:

1 {
2 "recorders": [ "ip-address-of-recorder1" ],
3 "session-recording": {
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4 "status": false,
5 "storage-uri": "osfs://storage",
6 "storage-server-uri": "ws://reese-federico-mqp.duckdns.org:89

90/storage-stream",
7 "session-id": ""
8 }
9 }

5.2.3 WS /ws-recorder

The control server provides a "/ws-recorder" endpoint, which allows opening
connections with client devices to connect to it and share system events. Sys-
tem events are only sent from the control server to the client and never vice
versa.

An array of connected devices is updated every time a recording device
connects. A device is removed from the array when it disconnects.

Every time a message is sent to the "/ws-webui" endpoint, it is directly re-
layed to all the registered recording devices through the "/ws-recorder" end-
point.

5.3 Storage Server

The storage server receives a base 64 encoded ASCII string of the file’s bytes
over a WebSocket channel and saves it to a specified storage target using the
PyFilesystem interface. The storage server supports any file type, as the file
format is directly specified in the message. Extrinsic and intrinsic data on
the L515, for example, are dumped as .json files. Images could be saved as
png/jpeg depending on the sensor. The storage server (GitHub) was developed
using FastAPI with the standard uvicorn ASGI server. This architecture has
several benefits.

First, the PyFilesystem library allows saving files to various storage sys-
tems, including the local filesystem, Amazon S3, Google Cloud Storage, FTP,
and several more. The library allows easy integration with all of them simply
by specifying the target URL of the storage media through a protocol speci-
fier. For example, for a local filesystem, "osfs://," for FTP, "ftp://." Usernames
and passwords can also be encoded within the URL to specify the authenti-
cation parameters — more about the PyFilesystem interface is available at
PyFilesystem.

Another benefit of this architecture is the ability to offload the job of sav-
ing files, a time, network, and computationally expensive operation prone to
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errors (e.g., network stability) to a separate microservice. If the server host-
ing this microservice were overloaded, a second server could be spun up to
balance the load.

Last, using WebSockets instead of traditional HTTP GET/POST requests
reduces the overhead of handshakes and other standard TCP operations that
would increase network latency and bandwidth usage.

The sequence diagram in Figure 5.5 shows the client-server message com-
munication and payload required to save a file.

Figure 5.5: Sequence diagram of the event messages between recording de-
vices and storage server.

5.4 Python Recording Client

The Python script was designed universally to allow for any number of sensors
to be recorded. It was also designed parametrically to allow specifying con-
figuration settings by the user through a standard JSON file (Section 5.4.1).
The script was separated architecturally into different layers responsible for
(1) capturing, (2) storage communication, (3) sensor communication, and (4)
control server communication.

The Python script was tested on a Jetson Nano running Python 3.8 with
the latest release of the Intel librealsense library built from scratch from their
repository (Section 5.4.2).

5.4.1 JSON Configuration

The Python script uses a JSON configuration file provided by the data cap-
turing rig user to interpret which sensors to read data streams from. This
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configuration file includes an array of sensors to be read and, for each sensor,
a list of streams to be read throughout a session recording. These streams can
be, for example, RGB, Depth, Intrinsic, and Extrinsic data.

Below is an example of a configuration file used for the Intel RealSense
L515 RGB-D camera, which is read over USB 3.0 by the Jetson Nano.

1 {
2 "sensors": [
3 {
4 "name": "L515", "type": "IntelRealSenseL515",
5 "identifier": 0,
6 "streams": [
7 {
8 "name": "depth", "format": "png", "identifier": 0,
9 "shape": {"width": 640, "height": 480, "channels": 1}

10 },
11 {
12 "name": "rgb", "format": "png", "identifier": 1,
13 "shape": {"width": 960, "height": 540, "channels": 3}
14 },
15 {"name": "intrinsic data", "identifier": 2, "data": "

data"},
16 {"name": "extrinsic data", "identifier": 3, "data": "

data"}
17 ]
18 }
19 ]
20 }

Each sensor is identified by a name, which will be used for storage to iden-
tify the saved data. The script uses the sensor type to know which library and
handler to get data from that specific sensor. The identifier is a unique nu-
merical identifier that can be used to identify the particular sensor, similarly
to the name.

Each stream is identified by a name, used fo separate the data into specific
folders for storage purposes.

5.4.2 Controlling the Capturing Sensors

To capture data from the Intel RealSense L515 camera, it is necessary to in-
stall the RealSense Library (librealsense). Due to using an arm64 SoC on the
Jetson Nano, no pre-builts were available for librealsense. Therefore, the li-
brary was built from scratch using CMake for our platform. Python bindings
were then built for librealsense to communicate with the Python 3.8 inter-
preter. Guides for the build steps are available in the librealsense repository
documentation under the NVidia Jetson Devices section of the docs. Steps to
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build the Python bindings are provided under the Python Wrapper documen-
tation.

The librealsense API allows getting frames from the L515 camera through
the self.pipeline.wait_for_frames() function call. Frames are converted from
bytes into PNG, which is the default format from the librealsense API, and
sent to the storage server. The format is left unchanged to avoid introducing
processing or compression latency in the pipeline.

5.5 Android Recording Client

The Android application offers a streamlined user experience, developed in
Android Studio using Kotlin. At launch, it presents the user with a textbox
for the URL to the control WebSocket server and a viewfinder to help with
camera alignment. Once a URL is entered and submitted, the app automati-
cally connects to the WebSocket controller and waits for commands. The app
will then manage 1) connecting to the storage server, 2) ensuring synchro-
nization with other sensors, 3) continuously capturing images, and 4) sending
the data to the storage server. There is no equivalent to PyFilesystem for an-
droid development, therefore the app must send its data to the python storage
server running PyFilesystem for cloud storage to be handled. Each image is
saved with the recording session UUID and ISO 8601 plus millisecond date
and timestamp, consistent with the Python script’s file format. While record-
ing, the app displays information as toast notifications to the user to provide
the recording status or helpful debugging information if a link in the pipeline
fails.

5.6 Image Correction

In multi-sensor systems, aligning images captured by different sensors is cru-
cial for various applications such as augmented reality, stereo vision, and 3D
reconstruction. This section uses homography estimation to align images from
an Intel RealSense L515 depth camera and a Google Pixel Phone. The ob-
jective is to achieve pixel-perfect alignment between images from different
sensors.

5.6.1 Calibration with Checkerboard

A calibration process was employed using a 7x9 checkerboard to establish cor-
respondences between the images. We used a 7x9 checkerboard (Figure 5.6)
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for camera calibration with 20x20 mm squares from the Mobile Robot Pro-
gramming Toolkit. OpenCV’s cv2.findChessboardCorners function automat-
ically detects the corners of the checkerboard in the images. The identified
corners serve as the reference points for homography calculation.

ret , corners = cv2 . findChessboardCorners(image, (9 , 7))

Figure 5.6: A 7x9 checkerboard is used to estimate the homography matrix to
perform the alignment between different sensors.

5.6.2 Homography Calculation

Homography matrices play a fundamental role in computer vision and image
processing, providing a mathematical representation of the projective trans-
formation between two images of the same scene taken from different view-
points. A homography matrix, often denoted as H, is a 3x3 matrix that relates
the coordinates of points in one image to their corresponding points in an-
other. Mathematically, if p represents a point in homogeneous coordinates
in one image, and p′ represents its corresponding point in the other image,
the relationship is expressed as p′ = H · p. The homography matrix is deter-
mined by solving a system of linear equations using a set of corresponding
points between the images. Typically, a minimum of four non-coplanar points
is required to define the homography matrix uniquely. The matrix captures
essential geometric transformations such as rotation, translation, scaling, and
skewing, making it a powerful tool in various computer vision applications.
Mathematically, the planar homography relates the transformation between
two planes (up to a scale factor):x′

y
′
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 = H

xy
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The detected checkerboard corners from both devices were used to com-
pute the homography matrix using OpenCV’s cv2.findHomography function.
The homography matrix encapsulates the geometric transformation between
the two sets of points.

H, status = cv2 . findHomography( image_pts , template_pts )

5.6.3 Image Alignment and Downsampling

To ensure efficient processing and prevent the generation of artificial depth
data, images were downscaled to the size of the smaller image. Upscaling
could lead to inaccuracies and increased computational overhead.

5.6.4 Homography Application and Storage

The calculated homography matrix was applied to all frames captured during
a session recording. The aligned frames were saved as a post-processing step
using Airflow pipelines. The homography matrix was serialized and held into
a Python pickle for easy retrieval and application in subsequent sessions.

aligned_image = cv2 . warpPerspective
(image, homography_matrix , (output_width , output_height ) )

5.6.5 Implementation Script

The homography alignment process can be found in alignment_script.py. This
script performed the calibration and homography calculation and applied the
transformation to align images captured by the L515 and Pixel Phone.

5.7 Addressing Scalability and Generalizability

challenges

Scaling and universality were considered at every chain level when architect-
ing the rig’s software stack.

The storage server was introduced to offload the writing process to the
file system or a cloud storage point such as an Amazon S3 or Google Cloud
Storage bucket to a server, avoiding slowdowns on the recording client side.

The API with the control and storage servers was generalized to allow any
network-connected device, regardless of platform or type, to connect as a
recording device.
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The Python recording client was also generalized to allow adding custom
interfaces to stream data from sensors, allowing virtually any sensor to pro-
vide data during a session recording.

5.8 Dataset Data Format and Structure

The clients save data to the storage server by playing it in a nested folder
structure identifying the recording session (e.g., v4 UUID from the web UI),
the sensor name (e.g., L515, Pixel), and the stream name (e.g., depth, RGB,
intrinsic, extrinsic). Each file is saved with an ISO 8601 compliant date and
time timestamp with seconds expressed as floating point with four decimals.

1 storage-uri/
2 session-id/
3 sensor-name/
4 stream-name/
5 2023-11-30T13:58:02.226Z.png

An example using the L515 Intel RealSense and an Android Phone on OSFS
storage would be:

1 osfs://storage-uri/
2 eda0f965-5f41-4537-a7a0-3524ba2ded93/
3 Google_Pixel_8_Pro/
4 rgb_stream/
5 2023-11-30T13:58:02.226Z.png
6 L515/
7 color_frame/
8 2023-11-30T13:58:02.226Z.png
9 depth_frame/

10 2023-11-30T13:58:02.226Z.png
11 color_intrin/
12 2023-11-30T13:58:02.226Z.json
13 depth_intrin/
14 2023-11-30T13:58:02.226Z.json
15 depth_to_color_extrin/
16 2023-11-30T13:58:02.226Z.json
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6

Testing and Experimentation

To validate the efficacy of our methodology, a series of experiments were exe-
cuted to gauge the accuracy and efficiency of our data capture process. This
section delves into assessing latency on our primary host devices, namely the
Jetson Nano and the Pixel 8 Pro. Subsequently, we delve into an in-depth
analysis of the alignment accuracy of our data, along with an evaluation of
the precision of the depth-estimated images compared to our ground truth
images. Furthermore, a comprehensive examination of the dataset workflow
and the usability of the web-based User Interface (UI) is presented.

6.1 Latency Evaluation

In ensuring the applicability of our capture rig across diverse AR systems,
achieving low latency, ideally targeting 30 frames per second (fps) video, be-
comes imperative. To assess our rig’s proximity to this metric, we analyzed
the average latency exhibited by our host devices, the Jetson Nano and the
Pixel 8 Pro, each analyzed across 100 frames. This was measured by pressing
"start recording" and a timer was started. Once 100 frames had come in from
a sensor, it was sent the "end recording" command and time was stopped.
Once our two sensors were finished sending frames, the average latency was
calculated. The computed average latency per frame was 0.76 seconds for the
Jetson Nano and 0.43 seconds for the Pixel 8 Pro. Although these figures fall
short of the 30 fps benchmark, they represent a notable speed sufficient for
data capturing. While each sensor is able to capture data at 30 fps, the data
transfer pipeline acted as a bottleneck for our end-to-end latency. Further
insights on latency are discussed in Section 7.1.
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6.2 Evaluation of Data Processing and Inference

Accuracy

To ensure precise alignment between the Pixel 8 Pro and L515 sensors within
our processing pipeline, we measured the average Structural Similarity Index
Measure (SSIM) score between their respective color images, which were con-
verted to grayscale to eliminate individual color processing discrepancies. We
utilized a least squares scaling factor to ensure that the scale between each
image was consistent. Our dataset achieved an average SSIM of .37.

Figure 6.1: Histogram of theSSIM score between aligned Pixel 8 and L515
color images.

Figure 6.1 shows the distribution of AbsRel values across the dataset. The
graph appears slightly skewed to the left with a strong peak around .37 and
a trail of slightly higher scores. The average SSIM score suggests that our
alignment function is under-performing. If our data alignment was perfect,
the average SSIM score would be close to 1, whereas a poor score is gen-
erally considered anything between -1 and 0. Therefore, while our alignment
pipeline is partially aligning the frames, it is a perfect alignment. This exposes
a fundamental issue with our pipeline: using a single checkerboard image for
sensor alignment resulted in insufficient spatial data to compute an accurate
homography matrix.

Furthermore, our evaluation encompassed testing the accuracy of monocu-
lar depth estimation derived from our input images against ground truth data.
Leveraging DPT MiDaS Large1 for monocular depth estimation, we compared

1https://github.com/isl-org/MiDaS
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Figure 6.2: Comparison of Pixel 8 Pro color image, L515 ground truth depth
image, and MiDaS estimated depth iamge.

the estimated depths with ground truth images. Figure 6.2 shows the color
image, ground truth and MiDaS estimated depth images from a single image
in our dataset.

Figure 6.3: Histogram of theAbsRel between estimated and ground truth
depth images.

Before calculating accuracy, we used a mask to remove any pixels from the
calculation marked as 0 by the L515 sensor due to insufficient depth confi-
dence. Moreover, we once again used least squares scaling to normalized the
pairs of images. This was necessary as the MiDaS model outputs images with
relative depth information without any concrete units, so we needed to scale
our ground truth images accordingly.
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Figure 6.4: AbsRel achieved by MiDaS on several common datasets included
in [5]

The subsequent average AbsRel is .75. Figure 6.3 shows the distribution
of errors across the dataset. Interestingly, both the peak accuracy and spread
of outliers are much closer to 0 when compared to the alignment AbsRel. This
correlation suggests that an improved dataset alignment could significantly
enhance depth estimation accuracy using the Pixel’s images with the L515
sensor. Columns 2 and 3 on Figure 6.4 show the AbsRel of a trained MiDaS
model against 5 datasets, where the column is the dataset used for training
and the row is the dataset used for testing. When compared to the accuracies
achieved in [5], MiDaS performs poorly on our dataset. We suspect that the
drop in performance is more related to our dataset alignment. We believe
that better dataset alignment might result in an increase in accuracy from the
MiDaS model.
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7

Discussion

7.1 Development Challenges and Constraints

During the creation of our architecture, several challenges emerged which
threatened the scalability of our pipeline and thus needed careful considera-
tion. One prominent issue that arose was end-to-end latency concerns. Ideally,
the capture rig could capture and transfer frames at a steady 30 fps. However,
due to computational limitations with the Nano, we could not process frames
quickly enough for this to be the case due to bottlenecks in the RGB and depth
alignment and NumPy computations. These bottlenecks could be mitigated
with a stronger computational device or through clever multi-threading.

Furthermore, bandwidth limitations from the client to the storage server
created a bottleneck throughout the pipeline. While WebSockets enabled the
rig to be mobile to capture various scenes, it came at the cost of latency.
Replacing the WebSocket connection between client devices and the storage
server with a more efficient and compressed data transfer protocol could alle-
viate this bottleneck.

Additional problems could arise in the scalability of our pipeline. While
the architecture was designed from the ground up with scalability in mind,
it is challenging to accommodate every possible combination of sensors and
computational topologies. Future issues may arise due to compatibility issues
with specific sensors or libraries. These issues must be addressed on a case-
by-case basis when they arise.

While we were able to implement PyFileSystem for the Python client, there
is no alternative to replace it in Kotlin. Because of this, the storage server was
created to transfer data from the Android device to varying cloud storage plat-
forms. While this maintained a generalizable structure for our architecture,
it increased the complexity of the overall architecture and might cause addi-
tional bandwidth or latency concerns.
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7.2 Future improvements and scalability consid-

erations

There are many possible future improvements to this project. These are some
of the primary ones we have identified with our project advisor and WPI Cake
Lab researchers.

First, synchronizing frame capturing is a complex task. Currently, frames
are captured as quickly as possible or with a delay of some specified time
(e.g., one frame per second). However, it is convenient for the rig to have
a synchronization system to capture co-temporal frames on all devices. This
trigger could be a hardware pulse device physically connected to the record-
ing clients with a cable. This would reduce timing and synchronization issues
and provide better time-aligned quality data.

Some cameras need to be calibrated to obtain the best quality data. Intro-
ducing a pre or postprocessing pipeline to perform camera calibration would
be helpful. This task, supported by a simple user interface, would help re-
searchers streamline the camera calibration process to a simple web user
interface.

Other future improvements revolve around improving the rig’s performance
to enable data capturing at faster framerates. Framerates can be bottlenecked
in many places, such as the capturing camera, real-time data postprocessing,
bandwidth, network latency, etc. More sensors should be tested to identify
and address rig performance weaknesses.
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7.3 Integration with other AR tasks

Figure 7.1: A survey of recent AR systems work and their evaluation method-
ology as included in [4]

.

There are several different tasks of relevance in the field of AR research. Ta-
ble 7.1 provides some examples of recently published papers and their re-
spective categories of AR tasks being researched. Although our focus in
this project was depth estimation, there are others such as lighting, track-
ing, recognition and detection. These are only some examples, but with the
quickly evolving field of AR research, more AR research tasks appear every
year. Future improvements to this project involve testing the support of our
rig for other types of devices and sensors, such as LiDAR and radar, involved
in these AR tasks. Depending on the types of sensors, some changes might be
necessary, such as implementing a new transport layer in case the bandwidth
of a WebSocket connection over LAN is insufficient to support the research
tasks.
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8

Conclusion

As the field of AR grows ever larger into a general consumer market, it is
necessary for the evaluation of AR systems to be scalable and generalizable
to ensure excellent results. We created a versatile data capture rig and a
scalable software pipeline to contribute to the tools available for AR evalua-
tion. We captured a test dataset to verify that our data-capturing setup was
efficient and accurate. While discrepancies in our accuracy were discovered,
this project lays a good foundation and methodology for designing and im-
plementing future data capturing rig and software stack. Overall, our robust
hardware and software infrastructure is poised to significantly contribute to
the advancement and reliability of AR evaluation in an expanding consumer
market.
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Glossary

AbsRel Absolute relative difference. vi, 26–28

AR Augmented Reality. 1–3, 5, 7

ASGI Asynchronous Server Gateway Interface. 15, 18

FTP File Transfer Protocol. 13

HTTP HyperText Transfer Protocol. 19

IMU Inertial Measurement Unit. 4

LAN Local Area Network. 31

OSFS Operating System File System. 24

RGB Red Green Blue. 1, 11, 12, 29

RGB-D Red Green Blue and Depth. 1

SoC System on Chip. 13, 20

SSIM Structural Similarity Index Measure. vi, 26

UI User Interface. vi, 14–17
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Appendix A

Laser Cut Design Considerations
of the Rig

Below are the designs used to laser-cut the rig. The overall dimensions are
12" by 10". On the control layer(top), we added pilot holes used to mount the
NVIDIA Jetson Nano (green bounding box) and slits to wrap zip ties around
the power bank used to power the Jetson Nano(red bounding box). In the
center, we cut a hole to mount a ¼" tripod adapter to allow the whole rig to
be mounted to a tripod. On the sensor layer (bottom), we made ten horizontal
cuts across the long side to allow for mounting a suite of sensors in various
orientations. On the four corners of both layers, we cut 3mm holes to screw
the stand-offs through, allowing the whole rig to be assembled.
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