
Performing Transaction Synthesis

through Machine Learning Models

Authors:

Justin Charron

Li Li

Yudi Wang

Shihao Xia

Faculty Advisors:

Professor Elke Rundensteiner

Assistant Professor Yanhua Li

Sponsor Organization:

ACI Worldwide, Inc.

Sponsor Advisor:

Eric Gieseke (ACI)

i

Performing Transaction Synthesis through Machine Learning

Models

A Major Qualifying Project

Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE

in partial fulfilment of the requirements for the

Degree of Bachelor of Science by:

Justin Charron

Li Li

Yudi Wang

Shihao Xia

Date:

22 March 2017

Report Submitted to:

Professor Elke Rundensteiner, Professor Yanhua Li

Worcester Polytechnic Institute

Eric Gieseke

ACI Worldwide, Inc.

ii

TABLE OF CONTENTS

TABLE OF FIGURES iv

ABSTRACT vi

EXECUTIVE SUMMARY vii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 4

2.1: Literature Review 4

2.1.1 CASTLE 4

2.1.2 PCTA 5

2.2: Technical Background 6

2.2.1 Scikit-learn 6

2.2.2 Java-ML 6

2.3: Machine Learning Methods 7

2.3.1 Clustering 7

2.3.2 Naive Bayes Classifier 8

2.3.3 Apriori Algorithm 8

2.4: Statistical Distributions 9

2.4.1 Gaussian Distributions 9

2.4.2 Multivariate Gaussian Distribution 10

2.4.3 Poisson Distributions 11

2.4.4 Beta Distributions 12

2.4.5 Conditional Distributions 13

2.4.6 Marginal Distributions 14

2.5: Hortonwork‟s Ambari Distribution 14

2.5.1 Hadoop Cluster 15

2.5.2 Spark 15

2.5.3 Apache Phoenix and HBase 16

2.5.4 Apache Commons Math 17

CHAPTER 3: METHODOLOGY 18

3.1: Goals and Objectives 18

3.2: Project Architecture 18

iii

3.2.1 Design 22

3.3: Ingestion Engine 22

3.3.1 What does the data look like 22

3.4: Data Preprocessing 23

3.5: Index Mapping Table 23

3.6: Column Analysis 26

3.7: Validation Methods 30

3.7.1 KL Divergence 30

3.7.2 Covariance Matrix 31

3.8: Run Time Optimization 32

3.8.1 Data Ingestion 34

3.8.2 Model Generation 34

CHAPTER 4: COLUMN ANALYSIS 35

4.1: MCC Code 35

4.2: User Country 37

4.3: Merchant Country 39

4.4: Card Type 41

4.5: Merchant State 43

CHAPTER 5: RESULTS 45

5.1: Data Synthesis 45

5.2: Validation Testing 47

5.2.1 Validation Process 48

CHAPTER 6: CONCLUSIONS 51

CHAPTER 7: FUTURE WORKS 54

BIBLIOGRAPHY 56

APPENDIX A 59

APPENDIX B: Detailed Project Pipeline 63

iv

TABLE OF FIGURES

Figure 1.1. Sample graph from 2015 project. (Baia, et al., 2015) ... 2

Figure 2.1. Mapping original to generalized items using global generalization. (Gkoulalas-

Divanis, 2011) ... 5

Figure 2.2. Gaussian curve formula. .. 9

Figure 2.3. Gaussian graph of heights from men and women (Sauro, n.d.) 10

Figure 2.4. Multivariate Gaussian distribution with the 3-sigma ellipse, the two marginal

distributions, and the two histograms. .. 11

Figure 2.5. Example poisson graph (StatisticsHowTo, n.d.). ... 12

Figure 2.6. Example beta distribution graph. (Robinson, David) ... 13

Figure 2.7. Probability of either gender having a pet (StatisticsHowTo, n.d.) 14

Figure 2.8. The frequency of different pets between men and women. .. 14

Figure 3.1. Project architecture. .. 19

Figure 3.2. Hadoop cluster structure. .. 20

Figure 3.3. Project outline. .. 22

Figure 3.4. Index mapping table working in HBase. .. 25

Figure 3.5. Translating Index Back to Original Data Diagram. .. 26

Figure 3.6. Frequency counts of each unique MCC code in the test data..................................... 27

Figure 3.7. Attempting to fit MCC code frequencies to a Gaussian curve. 28

Figure 3.8. Sample output of multivariate Gaussian distribution calculation............................... 30

Figure 3.9. Discrete probability distribution for KL divergence. ... 31

Figure 3.10. Runtime without optimization. ... 33

Figure 4.1. Frequency counts of MCC code column. ... 36

Figure 4.2. Gaussian fit of MCC Code column. ... 37

Figure 4.3. Frequency count of User Country column. .. 38

Figure 4.4. Gaussian fit of User Country column. .. 39

Figure 4.5. Frequency count of Merchant Country column.. 40

Figure 4.6. Gaussian fit of Merchant Country column. .. 41

Figure 4.7. Frequency count of Card Type column. ... 42

Figure 4.8. Gaussian fit of Card Type column.. 42

v

Figure 4.9. Frequency count of Merchant State column. .. 44

Figure 4.10. Gaussian fit of Merchant State column. ... 44

Figure 5.1. Synthesized data. .. 45

Figure 5.2. Validation diagram. .. 48

Figure 5.3. Validation testing sample. .. 49

vi

ABSTRACT

ACI Worldwide is a payment processing company that uses fraud detection solutions to

process the massive amount of transactions that go through the company every day. The goal of

this MQP project was to address privacy concerns in using real transaction data to test fraud

detection software. We worked with our advisors at WPI and ACI to develop a product that can

be used by third party companies to test their fraud detection solutions. Our team looked at

different machine learning and statistical methods to build working models from the large

quantities of transactional data and then use those models to synthesize artificial data that follow

the same patterns and behaviors. Our team also developed a test suite to measure the accuracy of

and validate the generated data.

vii

EXECUTIVE SUMMARY

ACI Worldwide and MQP Projects

 ACI Worldwide, the “Universal Payments” company, is a payment processing company

that services more than 5,100 customers worldwide with more than 1,000 of them being some of

the world‟s largest financial institutions. Processing more than $14 trillion in payments daily,

having an effective suite of fraud detection software is crucial for ACI to operate their business

effectively. Through the sponsoring of a series of Major Qualifying Projects (MQP) at

Worcester Polytechnic Institute, ACI has a history of experimenting with the latest and most

powerful rising open-source technologies available. These projects allow ACI to make their

fraud detection and payment processing systems as fast and up to date as they can to handle the

increasing amounts of raw data that they process daily.

 All of the MQP projects at WPI that ACI has sponsored have built on top of each other

and mainly focus on ACI‟s fraud detection suite. The first such project took place in 2013 and

created what is now ACI‟s Complex Event Processing (CEP) system. This system was built

using the Esper engine with the goal of replacing previously slow-running SQL queries. The

following project in 2014 expanded on the CEP system by using distributed computing platforms,

namely Kafka and Storm, to make the system horizontally scalable. The 2015 MQP sponsored

by ACI built a graph database using technologies such as Titan and Cassandra that was capable

of computing extra attributes on each node and retrieving nodes quickly. That project also built

a visualization engine to use the graph database using Vis.JS. This made the job of data analysts

at ACI easier by providing a tool with which outlier detection could be performed.

viii

Model Generation

 The goal of this MQP project was to address privacy concerns in using real transaction

data to test fraud detection software. Our team‟s objective was to create a model that accurately

represented the behaviors and patterns that existed in the transaction data that ACI processes, and

then to use this model to generate new synthesized data that does not contain any private

information yet still exhibits the same behaviors and patterns of the original data. To do this, we

started by looking at a number of existing machine learning methods and libraries that could be

used to generate this model.

 Our team decided to first implement a precursory approach to model generation that used

statistical methods to build a Multivariate Gaussian distribution on the data. A simple sampling

of this distribution was used to generate the new, fake data. Columns that did not contain

continuous data, such as string data, were fitted to a normal curve based on the frequency of each

unique value and then translated into continuous data.

Technologies Used

 Our team used open-source libraries throughout our entire project, many of them from

Apache. The initial model generation was done using an Apache Derby server embedded into

our Java program, and the calculations and curve fitting were done using Apache Math. We then

created a Hadoop server on which we hosted an HBase database to hold the transaction data,

using Apache Phoenix to read and write to this database. Our group then refactored the model

generation code to use Spark and its built-in HBase support. We moved to Spark to make use of

its RDD-based calculations, which are already optimized to be horizontally scalable to be run in

a Hadoop server using MapReduce.

ix

Data Validation

 Once new data was synthesized, it was necessary to do some validation to make sure that

the synthesized data simulated the original data successfully without revealing any private

information. Our process was simple: calculate the covariance matrix of the actual data first, and

then calculate the covariance matrix of the synthesized data, then compare these two covariance

matrices to get the similarity percentage. This percentage approaches 1 the closer the simulated

data is to the original dataset.

Future work

During the course of this project, several areas were found that the project could be

expanded upon. One of these such areas is an entirely new use case for the models generated for

the data. It would be possible that if there were a model generated on a specific customer‟s

transactions that fraud detection could be performed by comparing new incoming transactions to

the model generated for that customer. A possible implementation of this could look at how

many standard deviations away from the mean each column was located. There is also still room

in our project for further horizontal scaling of the model generation and curve fitting parts by

running them on larger Hadoop servers.

x

ACKNOWLEDGEMENTS

Our team would like to thank Professor Elke Rundensteiner and Professor Yanhua Li

from WPI and our mentor Eric Gieseke from ACI Worldwide for their constant support and

guidance throughout the duration of this project. Also, we would like to thank ACI Worldwide

for sponsoring this project and for providing many of the resources necessary to complete this

project. Without their help, this project could not have been possible.

1

CHAPTER 1: INTRODUCTION

ACI Worldwide, the “Universal Payments” company, is a payment processing company

that services more than 5,100 customers worldwide with more than 1,000 of them being some of

the world‟s largest financial institutions. Processing more than $14 trillion in payments daily,

having an effective suite of fraud detection software is crucial for ACI to effectively operate their

business. One important aspect of an effective fraud detection suite is the data being consumed.

As denoted by the FTC, under the Safeguards Rule in the United States “financial

institutions” must protect their customers‟ sensitive information and ACI satisfies the conditions

put forth by the FTC of being a “financial institution” (Federal Trade Commision, 2006). Due to

the need to adhere to FTC guidelines, ACI requires the approval of the customer to use their data

in any sort of analysis which is time consuming to collect. Therefore, a method of assuring that

the customers‟ data is secure and protected whilst allowing for a relatively small downtime in

redacting any sensitive information by generating data from models is highly sought after not

just by ACI but by other companies worldwide as well. To accomplish this, ACI continued its

history of teaming up with WPI to sponsor this concept as a major qualifying project.

ACI has a history of sponsoring major qualifying projects from WPI on a variety of

subjects concerning their transaction systems. All of the projects have been designed to build on

top of each other to further expand and improve ACI‟s extensive fraud detection suite. The first

project took place in 2013 and focused on creating ACI‟s Complex Event Processing (CEP)

system that used the Esper engine to replace previously slow-running SQL queries. The next

project in 2014 expanded upon the previous one to use the distributed computing systems Kafka

and Storm to make it horizontally scalable, increasing the speed of data ingestion and feature

computation with more machines added to the cluster.

2

The 2015 WPI project expanded upon the previous two by using a distributed graph

database and visualization engine to make data viewing easier. The students did this with the use

of Titan, a distributed graph database with Cassandra as the backend storage system. The Titan

database was able to quickly retrieve nodes in the graph and compute any extra attributes as well.

For visualization, the team used Vis.JS to make a fully interactive graphical solution that worked

cross-browser. Below is a sample of this solution.

Figure 1.1. Sample graph from 2015 project. (Baia, et al., 2015)

Each of the colored dots in the graph is a node which represents a specific customer,

transaction, retailer, account, or website. Each line in the graph links these nodes based on the

input transactions. Rather than trying to find anomalies in the raw transaction data, Data

Analysts can now use this tool to visually analyze the patterns that exist in the data and search

for outliers to find fraudulent data and examine behavior.

3

 As a follow-up to the 2015 project, our team‟s primary objective was to develop a

pipeline that would be capable of anonymizing transaction data that can then be safely and

quickly used by ACI and any third-party companies as an input in applications like fraud

detection without fear of breaking any law. Statistical analysis and machine learning were the

main methods we researched in our attempt to solve the problem at hand. Eventually, after much

deliberation the team decided to focus on statistical methods as our main approach in solving this

problem.

4

CHAPTER 2: BACKGROUND

This section introduces research papers, machine learning libraries and methods, and

several useful statistical distributions and methods we examined during the course of the project.

2.1: Literature Review

 Our team started off by researching the current privacy protection methods that exist for

sensitive information. We found many methods that focused on anonymizing existing data as

opposed to generating new unidentifiable data, which was our goal. Our goal can still be

accomplished through the use of existing anonymization or clustering methods, however these

introduce a level of error and inaccuracy in the data and some data loss would be expected.

Below are a few of the academic papers that we looked at.

2.1.1 CASTLE

 Most of the existing privacy preserving techniques, such as k-anonymity methods, are

designed for static data sets only, which cannot be applied to continuous, transient, and usually

unbounded streaming data. Moreover, in streaming applications, there is a need to offer strong

guarantees, on the maximum allowed delay between an incoming data and its anonymized output.

CASTLE (Continuously Anonymizing STreaming data via adaptive cLustEring) (Cao, 2008) is a

cluster-based scheme that anonymizes data streams and, at the same time, ensures the freshness

of the anonymized data by satisfying specified delay constraints. It can produce ks-anonymized

data streams and avoid security flaws. CASTLE can also output anonymized data progressively,

and offers better output quality than existing methods.

5

2.1.2 PCTA

 Privacy-Constrained Clustering-Based Transaction data Anonymization, or PCTA, was

developed to solve an issue that was similar to this project‟s main problem, where privacy

concerns were preventing useful medical data from being able to be released and used to support

applications such as biomedical studies. The research paper also addressed the large amount of

information loss that was present in anonymization methods at the time of the study.

PCTA is a framework that performs data generalization on top of a clustering method. It is

flexible in that it can support whatever clustering algorithm that is input to it. Because of this,

PCTA can produce usable data sets that address a large variety of privacy issues while only

allowing a minimal amount of information loss. PCTA proved to produce significantly better

results than previous methods based on a single privacy model.

Figure 2.1. Mapping original to generalized items using global generalization. (Gkoulalas-Divanis, 2011)

6

2.2: Technical Background

2.2.1 Scikit-learn

 Scikit-learn is a free software machine learning library with many simple and efficient

tools for data mining and data analysis using the Python programming language (Pedregosa,

2011). It features various classification, regression and clustering algorithms including support

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific libraries NumPy and SciPy. Scikit-learn is

largely written in Python, with some core algorithms written in Cython, a superset of Python that

allows for C functions and types, that Scikit-learn utilizes to achieve better performance

(Cython). Support vector machines are implemented by a Cython wrapper around LIBSVM;

logistic regression and linear support vector machines by a similar wrapper around LIBLINEAR.

It is open source and commercially usable with the BSD license.

2.2.2 Java-ML

 Java Machine Learning Library (Java-ML) is a collection of machine learning algorithm

packages such as data manipulation, clustering, feature selection, classification, and statistics.

The classification package (net.sf.javaml.classification) provides several classification methods

such as Bayes, meta (provides meta-classifiers), and tree (provides classification trees and

derivative algorithm). Another useful package is Statistics (net.sf.javaml.utils.Statistics) which

implements some of the common distributions, such as Gaussian, a variety of tests, etc. The

code is mostly adapted from the CERN Jet Java libraries: Copyright 2001 University of Waikato

Copyright 1999 CERN-European Organization for Nuclear Research. Permission to use, copy,

modify, distribute and sell this software and its documentation for any purpose is therefore

7

granted without any fees.

2.3: Machine Learning Methods

 As one of the potential routes that we could of taken the project, the team researched

several different machine learning techniques. The three main methods chosen for research were

clustering, naive bayes classifier, and utilizing the apriori algorithm.

2.3.1 Clustering

 Clustering, or cluster analysis, is the process of dividing a dataset into groups, or clusters,

that contain data that have one or more properties similar with one another. In respect to

machine learning, clustering would be defined as an unsupervised learning algorithm as it

derives patterns or similarities from datasets with no labeled responses (MathWorks). The

similarities are defined through the use of Euclidean or probabilistic distance. There are a

variety of clustering algorithms each with their own advantages and disadvantages. Regardless

of the type of clustering algorithm, there are four standards that need to be kept in mind when

using a clustering algorithm (Jain, 2010).

 First, the data representation, or the features that you select to cluster around, must be the

best representation of the dataset that is being grouped. A bad feature selection would not create

clusters that represent the entire dataset. Secondly, the reason behind grouping a specific cluster

together must be in line with how the groupings are selected as having different weights on the

different features would lead to different cluster representations of the data. Next, the number of

clusters needs to be decided to ensure that the proper depth of the dataset is being shown through

the clusters. Finally, the validity of the clusters need to be verified. In other words, a cluster can

only occur if a particular cluster can be made around a specified feature (Jain, 2010).

8

2.3.2 Naive Bayes Classifier

 The Naive Bayes Classifier is a supervised learning family of algorithms that applies

Bayes‟ theorem on a dataset and assumes the features of the data being classified are

independent of one another. Naive Bayes Models can be easily built from large datasets due to

the simplicity of the algorithms themselves. Naive Bayes Classifiers also perform really well on

datasets with dependent features due in part to optimality not being necessarily dependent on

whether or not the assumptions on the independence between the features are appropriate. A

classifier is optimal if the actual and estimated distributions agree on the same most-probable

class (Rish, 2001).

2.3.3 Apriori Algorithm

The Apriori Algorithm searches through a dataset for data points that appear frequently

throughout and creates boolean association rules with those data points using two criteria: the

minimum confidence and the minimum support. Association rules are statements that show

relationships between different data in a database. One of the criteria, minimum confidence, is a

specific percentage that the association rules generated must surpass in order to be accepted as a

strong association rule. The other criteria, minimum support, is the minimum amount a data

point has to appear in a dataset in order to be considered as part of the set used to create

association rules. (Wasilewska)

9

2.4: Statistical Distributions

 In order to model large volumes of transaction data, we needed to research several

different statistical distributions to determine the most optimal approach. For the purposes of the

project, the team focused on five main statistical distributions which were the following:

Gaussian, Poisson, Beta, Conditional, and Marginal Distributions.

2.4.1 Gaussian Distributions

 Gaussian distributions, commonly known as the normal distribution, organize data sets

into a binomial distribution that centers around a mean value. This distribution is commonly

shown to be in the shape of a “bell curve” since the majority of the data falls within one standard

deviation from the mean which naturally creates a bell like curve. The gaussian distribution is

the most common type of distribution and can be found to represent many things in our daily

lives. Some common examples would be the heights of people, IQ scores, blood pressure and

the like (StatisticsHowTo, n.d.). The equation used to model a gaussian curve is shown in Figure

2.2. The notation is as follows: sigma (σ) is the standard deviation of the data being modeled, μ

is the mean value derived from the data, and x is a normal random variable (StatisticsHowTo,

n.d.).

Figure 2.2. Gaussian curve formula.

10

Figure 2.3. Gaussian graph of heights from men and women (Sauro, n.d.)

2.4.2 Multivariate Gaussian Distribution

As the number of columns in a dataset is always greater than one, it‟s indispensable to

implement multivariate normal distribution dealing with multi-dimension case. Multivariate

normal distribution or multivariate Gaussian distribution, is a generalization of the one-

dimensional (univariate) normal distribution to higher dimensions. One possible definition is that

a random vector is said to be k-variate normally distributed if every linear combination of its k

components has a univariate normal distribution. It is often used to describe, at least

approximately, any set of (possibly) correlated real-valued random variables each of which

cluster around a mean value.

11

Figure 2.4. Multivariate Gaussian distribution with the 3-sigma ellipse, the two marginal distributions, and the two histograms.

2.4.3 Poisson Distributions

Poisson distributions are typically used to model datasets that are non-normal. The poisson

distribution gives the probability of a particular event occurring based on past information

(StatisticsHowTo, n.d.). Some clear examples of how a poisson distribution could be utilized

would be to forecast future profits for businesses and to determine the most optimal time to avoid

rush hour traffic. The poisson function is P(x; λ) = (e−λ) ∗ (λx) x!. The notation is as

follows: λ is the expected number of occurrences within the interval and x is the actual number

of occurrences. Some special properties of the poisson distribution is that the mean and variance

are equal to λ.

12

Figure 2.5. Example poisson graph (StatisticsHowTo, n.d.).

2.4.4 Beta Distributions

 A Beta distribution is normally used to represent the outcomes of percentages or

proportions. In other words, the beta distribution shows a probability distribution of probabilities

for situations where the probability is unknown but can be guessed. For example, a beta

distribution is a good predictor of a baseball player‟s batting average. A player‟s batting average

obviously changes across the season and with previous expectations to fall within the average

batting record, an initial beta distribution can be drawn and then updated as new information is

available (Robinson, David). One form of the probability density function for beta distributions

is xα−1(1−x)β−1B(α,β) (StatisticsHowTo, n.d.).

13

Figure 2.6. Example beta distribution graph. (Robinson, David)

2.4.5 Conditional Distributions

 Conditional probability distribution models the probability of an event occurring in

regards to one or more other events. Due to how conditional probability can support more in

depth probability statements, multi-event predictions can be made. As seen in the example from

Figure 2.6, the probabilities of a man and woman, of an unknown sample size, owning or not

owning a pet are displayed. With the knowledge from the table, anyone can calculate

complicated predictions like if a person does not own a pet what is the probability that they are

female. The function for conditional probability is P(B|A) = P(A and B) / P(A) (StatisticsHowTo,

n.d.).

14

Figure 2.7. Probability of either gender having a pet (StatisticsHowTo, n.d.)

2.4.6 Marginal Distributions

 Marginal probability distributions model the independent probability distributions

between two random variables. Differing from conditional distributions, marginal distributions

only display the sum probabilities of one random variable at a time. For example, in Figure 2.7

the different pet preferences can be turned into probabilities by individually dividing the

different pet totals over the total amount of pets. One common way to show a marginal

probability distribution is through the use of a frequency distribution table (StatisticsHowTo,

n.d.). The other way to calculate marginal probability is to use the marginal probability

distribution functions which are g(x) = Σy f (x,y) and h(y) = Σx f (x,y).

Figure 2.8. The frequency of different pets between men and women.

2.5: Hortonwork’s Ambari Distribution

 Apache Ambari is an open-source management platform for monitoring Apache Hadoop

clusters. The use of Ambari simplifies any manual effort in installing and maintaining a Hadoop

Cluster. The list of software that the Ambari distribution offers will be discussed in more detail

15

in the methodology section.

2.5.1 Hadoop Cluster

 Apache Hadoop is an open-source software that allows for distributed and scalable

processing of large datasets. Hadoop itself contains the following modules: the Hadoop

Common, Hadoop Distributed File System, Hadoop MapReduce, and Hadoop YARN. Hadoop

Common contains the utilities that the other modules all need to function. The HDFS module is

used for its speed in accessing the application data when performing operations. Hadoop YARN

is a module that handles the job scheduling and the resource management for the cluster. Finally,

Hadoop MapReduce is the module that performs parallel processing of large datasets (Hadoop,

2016).

2.5.2 Spark

 Apache Spark originated from a 2009 research project from the University of California

Berkeley AMPLab under the name of Mesos. The Mesos project was a cluster management

framework that aimed to support a variety of cluster computing systems (Phatak, 2015). Apache

Spark, originally just called Spark, was built off of the Mesos project to include an emphasis on

“interactive iterative computations” like machine learning to aid in cluster computing. The team

behind Spark later donated the project, in early 2010, to the Apache Software Foundation who

open sourced it (Phatak, 2015).

 Apache Spark offers various advantages in processing big data over its competitors. The

engine provides a unified framework to handle big data through offering support for a large

variety of datasets, such as text data and graph data, and for working with different sources of

16

data, such as data batches or real-time streaming data. Spark also cleanly integrates with other

cluster processing engines like Hadoop and can also process data obtained from a variety of

different databases like Cassandra and HDFS. Spark has also been shown to run applications

100 times faster in memory on Hadoop clusters and ten times faster when running the

applications on disk. Spark‟s other features include the support for SQL queries, graph data

processing, and machine learning (Phatak, 2015).

2.5.3 Apache Phoenix and HBase

Apache HBase is an open source project under the care of the Apache Software

foundation. HBase itself is a NoSQL database designed to store large amounts of data. The

database is primarily paired with software platforms that perform calculations on these vast data

sets, like Apache Hadoop. Due to the fact that HBase is a NoSQL database, the structure of the

database table and the data stored within differ from the conventional SQL type databases

(George).

Although Apache HBase does utilize the column-oriented format when storing data on

disk, HBase is not a column-oriented database in the traditional relational database management

system sense. A traditional relational database provides real-time analytical access to the stored

data while HBase focuses on providing access to specific cells of data instead (George).

 Paired nicely with HBase, Apache Phoenix is a SQL wrapper that enables the use of

many familiar SQL commands to interact with the Apache HBase database on a Hadoop cluster.

Phoenix also naturally integrates with any system that utilizes Hadoop technology like Apache

Spark. Due to the integration of native map-reduce support, scans of large datasets from HBase

would be reduced to mere seconds using phoenix (Apache Software Foundation).

17

2.5.4 Apache Commons Math

 Apache Commons Math is a useful library under the Apache Software Foundation that

provides a variety of mathematical tools for usage in a number of different scenarios. The main

draw of this particular library is the abundance of statistical and mathematical operations it

contains. The classes of particular interest in this library were specifically the Multivariate

Normal Distribution, RealMatrix and RealVector as they provided the necessary functions and

structures for transaction synthesis pipeline. In addition to its vast repertoire of classes, the

Apache Commons Math package was also designed to be easily integratable with no little to no

external dependencies needed which allows for easy usage (Apache Software Foundation, 2016).

Since this library contained a number of convenient statistical structures and functions, the team

decided to heavily utilize this library. The below are the classes and the functions we utilized for

our pipeline.

18

3 METHODOLOGY

3.1 Goals and Objectives

 In order to achieve our goal of addressing privacy concerns in using real data and

transactions to test fraud detection software, our team divided the project into stages. These

stages include the Ingestion Engine, Preprocessing, Distribution generation, Data Synthesis, and

Validation. After ingesting the transaction data and performing preprocessing to prepare the data

for learning we created models to represent the patterns that exist in the data. These models

allowed us to generate new synthesized data that behaves and looks the same as the real data, and

therefore is suitable to use for testing purposes. This model could also possibly be used to

predict, with a fair degree of accuracy, the purchasing behavior of a particular customer and

check if a new transaction fits their usual behavior pattern. Simplicity was a focus the team

decided on and thus the following methodology would reflect this philosophy.

3.2 Project Architecture

 In the backend of our project, we created a Hadoop cluster using the ACI resources

allowed to us using three Linux server machines. We also implemented a distributed database

using HBase, which was included in the Hadoop installation.

19

Figure 3.1. Project architecture.

Hadoop Cluster

 The system is hosted on a Hadoop cluster that contains one master node and two different

slave nodes. These nodes are on three separate RedHat Linux Servers. Each individual machine

contains separate components. This diagram shows an overview of the different components.

20

Figure 3.2. Hadoop cluster structure.

HBase Master Server - This server stores all of the HBase database information and allows

operations on the data.

○ Region Server - The slave servers to the HBase Master

● Namenode - The master server where commands are issued to the datanodes.

21

○ Datanode - The slave machines that Hadoop uses in its distributed calculations.

○ SNamenode - The secondary namenode that would become active if the main

namenode became unusable.

● NodeManager - Monitors and acts as the gatekeeper for the traffic that each server

machine handles.

● ResourceManager - Manages the queue that allocates resources to the jobs sent into the

cluster.

● Hive - Data storage infrastructure that is built over Hadoop. Allows for an SQL-like

interface to query any stored data.

○ Hive Metastore - Storage for Hive metadata.

● History Server - Contain the results of the jobs ran on the Hadoop cluster.

● Zookeeper Server - Centralized service for providing distributed synchronization,

maintaining configuration information, naming, and providing general group services.

22

3.2.1 Design

The overall outline of our project is as follows:

Figure 3.3. Project outline.

3.3 Ingestion Engine

 The Ingestion Engine is a program written in Java that reads in given test data and

uploads it to the HBase database with the use of Apache Phoenix. The data we worked with

throughout the project was already “scrubbed”, and did not contain any real personal or private

information. However, the project can easily be expanded to use real data by simply uploading

any arbitrary amount of information to the HBase server.

3.3.1 What does the data look like

 The data being processed were transaction records. Each transaction had around 200

23

columns associated with it, which covered everything from the transaction amount and customer

information, all the way down to the specific terminal and location the transaction was

performed at. The large data set was unformatted and in a text file. Since it was not feasible for

us to use every attribute of a transaction, we worked with our advisors to pick a list of about 30

columns that seemed the most useful. Each column is represented as an object in a JSON file

that we adapted from the previous year‟s project, and is described by a line offset and a length

(each transaction being on one line ~1100 characters long). Our program took in this JSON and

parsed only the data in those specified columns to upload into a table in the database, reducing

the amount of storage space required on the HBase server.

3.4 Data Preprocessing

Data pre-processing is an important step in the data mining process. The phrase “garbage in,

garbage out” is particularly applicable to data mining and machine learning projects. Data

gathering methods are often loosely controlled, resulting in out-of-range values (e.g., Income: -

100), impossible data combinations (e.g., Sex: Male, Pregnant: Yes), missing values, etc.

Analyzing data that has not been carefully screened for such problems can produce misleading

results. Thus, the representation and quality of data is the most urgent concern before running

any sort of analysis. (Pyle, 1999)

3.5 Index Mapping Table

3.5.1 Index Mapping Table Overview

 Most of the columns in datasets obtained from ACI Worldwide are discrete such as zip

code, fraud index, transaction date, first name and last name of customers, so it‟s impossible to

24

analyze these columns straightforwardly. In order to learn the frequency distributions and

correlativity on not only continuous data columns such as transaction amount but also on these

discrete columns, it‟s expedient to build an index mapping table to store those discrete columns

of data, and translate them to continuous data. With the support of Apache Phoenix, which takes

SQL queries, compiles them into a series of HBase scans, and orchestrates the running of those

scans to produce regular JDBC result sets, it works perfectly that all SQL queries can be

implemented in HBase, which is a type of NoSQL database. The primary reason for selecting

HBase to store the data ingested by the Ingestion Engine was the easy integration into a Hadoop

Cluster.

3.5.2 Index Mapping Table Features

The index mapping table contains two main features: storing original data values as

indices, which can be used efficiently in analyzing the original data distribution and translating

indices back to original data values.

3.5.2.1 Storing Original Data Values As Indices

In order to analyze discrete columns in the transaction dataset, the first step is to translate

them into continuous columns. The way we approach this process is using indices to represent

discrete values.

Figure 3.6 shows how the index mapping table is used for storing original discrete data

values as indices. It has four columns in total: The first column is the unique ID which Hbase

requires as an identifier for each independent row, the second column stores the column name

that the data belongs to, the third column stores the index number of the data from 1 to the last

number, the last column stores the original value of this data.

25

Figure 3.4. Index mapping table working in HBase.

In order to optimize the storage space index mapping table required in HBase, our team

finally remove the unique ID column and add one more TRX_ID (Transaction ID) column as a

more semantic identifier for each row of data.

3.5.2.2 Translating Indices Back To Original Value

Because the newly synthesized data which is generated based on the typical distribution

can only stay in an index version, in order to understand what the actual value is behind the

corresponding index, it is vital to translate the index back into the original data value.

26

Figure 3.5. Translating index back to original data diagram.

Transaction data has two types of columns, discrete and continuous. As mentioned before,

a majority of those columns are discrete, such as “CARD_BIN”, “ACCTNUM” (Account

Number), and “CARD_TYPE”. But there are still columns with continuous data type such as

“TRX_AMOUNT” (Transaction Amount).When translating generated data values which are in

index form back to original data values, it is essential to treat continuous columns and discrete

columns as two separate situations: For discrete columns, the index mapping table will

straightforwardly map them back to their original values and original data types. For continuous

columns, the index mapping table will keep them in the same data type and value as generated.

3.6 Column Analysis

 When beginning to create models for the data, our group first implemented the use of

simple statistical methods. We started by looking at discrete columns that were represented as a

string or integer (Card type, merchant country, MCC code, etc.) and performed a frequency

count of the unique values in each of these columns. We then tried to fit the data to a curve, one

27

such Gaussian fit attempt is shown below for the MCC code (the x-axis values are not

representative of the actual MCC codes).

Figure 3.6. Frequency counts of each unique MCC code in the test data.

28

Figure 3.7. Attempting to fit MCC code frequencies to a Gaussian curve.

 While these methods were not the most accurate representations of the real data, they did

help our group to understand what the data we were working with looked like and how it

behaved. This method also assumed that the columns being used were independent of each other,

which was most likely not the case. For an in-depth look into the columns the team analyzed,

refer to 4 COLUMN ANALYSIS.

 Then, we moved on to modeling the data using multivariate Gaussian distributions.

While this does take multiple columns into account, it again falls short in that it forces the data to

a best-fit Gaussian curve which may, in many cases, not accurately represent the data. Our

group used functions packaged into Apache‟s Math library to calculate the covariance and mean

matrices of the columns we chose. We then created a new multivariate Gaussian distribution

29

using these matrices as the parameters and then generated a number of random samples using

that distribution.

After creating the new multivariate Gaussian distribution, we used them to synthesize

new data. Due to the issues with utilizing Apache Math‟s random sample method, the process

we used was as follows. Cholesky decomposition was performed on the covariance matrix of the

new multivariate Gaussian distribution and then the lower triangular matrix was calculated with

the help of the existing Java library, JAMA. Using the Apache Math vector and matrix libraries,

the lower triangular matrix was transformed by being multiplied by a vector of random normal

vectors with the same length as there are of columns in the covariance matrix. Finally, the

resultant vector is multiplied by the mean matrix, now converted into a matrix, to return a vector

that made up one row of data. This procedure is repeated until the number of rows matched the

number of rows in the original dataset (Seydel, 2012). The data we produced was in the indexed

continuous format which was not understandable, so we reused the index mapping table to

translate all of the data back to their original types.

Performing the covariance and mean matrix calculations on this newly generated data, we

compared them to the original to see how accurate this synthesized data was. A sample output of

this is shown in Figure 3.9 below with the covariance matrix from the original data on top and

the covariance matrix of the synthesized data on the bottom for comparison. The two mean

matrices are also shown in the figure at the very bottom.

30

Figure 3.8. Sample output of multivariate Gaussian distribution calculation.

To test the validity of these Multivariate Gaussian models, we created the validation suite

in the section below.

3.7 Validation Methods

3.7.1 KL Divergence

 In probability and information theory, the Kullback-Leibler divergence, (Kullback, 1951)

(Kullback, 1959) also called discrimination information, information divergence, information

gain, KL divergence, is a measure of the difference between two probability distributions P and

Q. In applications, P typically represents the “true” distribution of data, observations, or a

precisely calculated theoretical distribution, while Q typically represents a theory, model,

description, or approximation of P. During current implementation, P here represents the

distribution of original data, while Q represents the distribution of synthesized data.

 Specifically, the Kullback-Leibler divergence from Q to P, denoted DKL(P ‖ Q), is a

31

measure of the information gained when one revises one‟s beliefs from the prior probability

distribution Q to the posterior probability distribution P. In other words, it is the amount of

information lost when Q is used to approximate P. (Burnham, 2002) KL divergence has different

definitions on P and Q over different cases such as discrete probability distributions and

continuous random variables. But the only situation here need to be considered is discrete

probability distributions. In this case, the Kullback–Leibler divergence from Q to P is defined to

be (MacKay, 2003):

Figure 3.9. Discrete probability distribution for KL divergence.

 In words, it is the expectation of the logarithmic difference between the probabilities of P

and Q, where the expectation is taken using the probabilities of P. The KL divergence is defined

only if Q(i)=0 implies P(i)=0, for all i (absolute continuity). Whenever P(i) is zero the

contribution of the i-th term is interpreted as zero.

3.7.2 Covariance Matrix

In probability theory and statistics, a covariance matrix (also known as dispersion matrix)

is a matrix whose element in the (i, j) position is the covariance between the i
th

and j
th

 elements of

a random vector. A random vector is a random variable with multiple dimensions. Each element

of the vector is a scalar random variable. Each element has either a finite number of observed

empirical values or a finite or infinite number of potential values. The potential values are

specified by a theoretical joint probability distribution.

Intuitively, the covariance matrix generalizes the notion of variance to multiple

32

dimensions. As an example, the variation in a collection of random points in two-dimensional

space cannot be characterized fully by a single number, nor would the variances in the x and y

directions contain all of the necessary information; a 2x2 matrix would be necessary to fully

characterize the two-dimensional variation.

In order to compare the behavior of synthesized data and original data, it‟s crucial to

compare the covariance matrix.

3.8 Run Time Optimization

 In building the model generation portion of our project, we first started out using Apache

Math‟s built in distribution framework and Multivariate Normal Distribution for data sampling.

While these methods were easy to use, and worked effectively, they were only run on a single

local virtual machine on ACI‟s network. These methods were not built for the vast amounts of

data or columns that ACI possesses and therefore did not scale well when the amount of test data

was increased.

33

Figure 3.10. Runtime without optimization.

 The runtime of our project when using 100,000 transactions as input and changing the

number of columns in the model generated is shown above in Figure 3.10. Our group therefore

searched for ways to improve runtime and the scalability of the calculations performed. Because

we already had a Hadoop server setup, we wanted to look into its MapReduce capabilities in

order to be able to submit a job and have it run distributed on the Hadoop machines. In the end,

the code was refactored to utilize Apache Spark‟s existing MLlib functions in calculating the

distributions. By refactoring our code towards a job to be submitted on a Hadoop machine, our

project would be horizontally scalable depending on the number of machines that are in the

34

server.

3.8.1 Data Ingestion

 Up until this point, our group had been using Apache‟s Phoenix plugin for Java that

provides a SQL interface on top of Hadoop. Because the local virtual machine and the server

machine that our HBase database was run on were located on separate machines, this led to

increasingly long read times from the server as the amount of test data was increased. Our group

already knew that Spark was optimized to make use of MapReduce methods, but as we looked

more into Spark libraries we found that it not only had built-in HBase support but it also used

Spark‟s data structure called an RDD. A Spark RDD, or Resilient Distributed Dataset, behaves

in the front end as a data structure similar to an array, but in the back end it uses a distributed

framework that has multiple “regions” split across the different machines in the server.

 Because of this distributed nature, working with the HBase data using Spark‟s RDDs not

only makes the process scalable, once the job is run on the same Hadoop server that the HBase

database lies on, there is virtually no read time as Spark RDDs work with the entire dataset.

3.8.2 Model Generation

Our group also looked into optimizing the time it took for fitting the Gaussian curves and

for generating the models. Again, turning to Spark, we refactored what methods we could to

reduce our dependency on libraries such as Apache Math. We were able to convert the

covariance and mean matrix calculations to use Spark methods. However, switching to the

methods provided by Spark the team encountered issues with incorporating Apache Math‟s

random sampling method and turned towards using Cholesky decomposition to generate the

random datasets.

35

4 COLUMN ANALYSIS

 This chapter looks at the different columns that our team ran an initial analysis over. We

looked at several individual columns in the data that were chosen as being columns that we want

in the distributions. The methods we used to analyze these columns were the following. First,

we performed a frequency count of each unique string in the column. Then, we attempted to fit

that column‟s values to look like a Gaussian distribution by sorting the highest frequency in the

middle and the next highest alternating to the left and right of the center. The frequencies were

normalized to percentages, and then a best fit Gaussian distribution was found using Apache

Math‟s curve fitting implementation.

An analysis of the results from each column looked at is below. It is important to note

that the data our team was given to use as test data was already “scrubbed.” This means that all

private information has been removed and this data may not accurately represent the real

transactional data that ACI has access to.

4.1 MCC Code

One of the first columns from the dataset we reviewed was the Merchant Category Code

(MCC). The MCC code shows the type of merchant the transaction belonged to. For example,

the MCC code for a merchant that is a clothing store would differ from a restaurant's merchant

code. The MCC code distribution of the dataset we reviewed is displayed in the figure below.

36

Figure 4.1. Frequency counts of MCC code column.

 The above graph shows the frequency distribution of each unique MCC code in the test

dataset of 100,000 lines of transaction data. This chart has been sorted, but the order does not

make a difference. In this chart, the merchant at the X value 46 had the highest number of

occurrences while the lowest number of occurrences is at X value 0. As you can see, a large

amount of the transactions (~68%) took place at the top 5 merchants, with the bottom 25

combined adding up to less than 1%. After performing a frequency count of each unique string

these values were sorted to look like a Gaussian curve and then normalized to percentages, which

can be seen in the figure below. Then, a best fit Gaussian curve was found for these data points

using Apache Commons Math. These mappings from the Gaussian curve are the same mappings

that are saved to the Index Mapping Table where each X value maps to a unique string in the

column, in this case an MCC code.

37

Figure 4.2. Gaussian fit of MCC Code column.

 The results of the Gaussian fit on the MCC column, seen in the figure above, turned out

well. The merchants that had a large amount of transactions seem to fit the curve well, as do the

columns on the lower end. The points in between still fit with a low (~2%) margin of error.

4.2 User Country

 In this transaction dataset, the User Country is the country in which the person who made

the transaction resides. The results of the analysis performed on the User Country column can be

seen in figures 5.3 and 5.4 below. For this column, we can see that 95% of the transactions in

the test data were performed by customers from the top two countries, with the remaining 5%

being spread out over the bottom 90 countries in the data. This sharp distribution was modeled

38

clearly with the calculated Gaussian distribution, as seen in Figure 5.4.

 We can infer from this column distribution that the large majority of our consumers come

from one same country, which should be the United States here, but we still have a broad range

of consumers who comes from 92 countries which shown in the x-axis.

Figure 4.3. Frequency count of User Country column.

39

Figure 4.4. Gaussian fit of User Country column.

4.3 Merchant Country

 The Merchant Country in this data is the country where the merchant took place at

resides. The results of the Merchant Country column can be seen in figures 5.5 and 5.6. As can

be seen in Figure 5.5, about 80% of the transactions took place in the highest two countries, with

there being 15 countries overall that transactions took place at. The Gaussian fit of this data

worked quite well, with all of the points closely matching the curve.

 We can infer from this column distribution that:

● Most of the customers in the test dataset come from two countries because

transactions that are more local to the customer are more likely to occur than transactions

that occur in a foreign country.

● There are still, however, a great number of countries that do not have a large

40

number of merchant transactions, which may represent the fact that there are still

customers that like to travel or the fact that the original dataset did not contain a large

number of transactions from these other countries and the frequency count reflects that.

Figure 4.5. Frequency count of Merchant Country column.

41

Figure 4.6. Gaussian fit of Merchant Country column.

4.4 Card Type

 The results from the Card Type column can be seen in figures 5.7 and 5.8. The card type

of a transaction is simply the company the card that was used in the transaction belongs to (Visa,

American Express, etc.). The curve made by this data naturally fit the Gaussian curve very well,

with almost 90% of the transactions falling within the top three card types.

 We can infer from this column analysis that:

● Although consumers may have various types of credit or debit card such as VI

(Visa), AX (American Express), BC (BC Card), CA (Master Card), DS (Discover Card),

E (Visa Electron), JC (Japan Credit Bureau), and TO (Maestro), there are only three card

types that dominate usage in daily transactions. Since these three card types are the most

used, it is safe to assume that they are the most popular.

42

Figure 4.7. Frequency count of Card Type column.

Figure 4.8. Gaussian fit of Card Type column.

43

4.5 Merchant State

 The Merchant State column indicates the state the merchant that the transaction took

place at resides. Since there are many countries in the data, the list of states is several hundred

entries long. This data did not fit the Gaussian fit curve that well. One possible reason for this

could simply be the amount of entries and the way they are spread. This data seems to be too

spread out in the lower regions for the Gaussian to fit well. Another explanation could be that

we did not account for multiple strings representing the same state - for example, the state

Massachusetts could be represented by the strings “MA”, “Mass”, or “Massachusetts”. In order

to take something like this into account in our program, there would have to be some sort of

dictionary built for this column (and possibly other columns where this may make sense) that

could be loaded in at runtime to alter how the mapping function works.

 Further improvements could be made:

● In order to analyze the columns more accurately, the vocabularies which utilize

the same semantics should be grouped into only one column.

● A country-based filter should be added to make the merchant state analysis more

specific.

44

Figure 4.9. Frequency count of Merchant State column.

Figure 4.10. Gaussian fit of Merchant State column.

45

5 RESULTS

5.1 Data Synthesis

 5.1.1 Synthesis Implementation

 With the use of Cholesky decomposition and Spark‟s multivariate Gaussian distribution

methods, the team successfully generated 1,000 lines of continuous data from the 1000 lines read

from the original dataset with ten different columns and attempted to translate them back to their

more readable original state. As the first try, the team only attempted to translate fifteen rows of

continuous data with the index mapping table back to the original values. The translation took

two minutes when run locally and successfully produced readable data as seen in Figure 5.1.

Unfortunately, further results were no longer able to be obtained due to persistent technical

issues at the end of our project.

Figure 5.1. Synthesized data.

46

 5.1.2 Synthesized Data Analysis

Clearly, due to small size of our results it is difficult to reach any sort of significant

conclusion. Technical issues involving the status of the server machines impeded any further

progress; nonetheless, it is still possible to analyze our current results to determine whether or

not the synthesized dataset made sense. The following inferences were obtained after some

analysis on our generated dataset (the data does not contain any sensitive information and is

randomly generated from patterns gleaned from a test dataset that was scrubbed of sensitive data

as well).

● There is a customer from Liechtenstein (User Country Code 417) that visited

Lakeland (Zip code 33815), Florida (Merchant State FL) and made some

transactions there.

● The customer has a credit card with card BIN (Bank Identification Number)

054123, card type E (Visa Electron), and with a card expiration date of 11/25.

● The amount in this customer‟s transactions varies roughly from $0 to $400, which

leads to the conclusion that if there is a new transaction of large amount such as

$5,000 that appears in this customer‟s transaction record, it may be possible to

detect this new transaction as a fraudulent transaction.

● There are two negative transaction amounts that appeared in the transaction list

which are an unfortunate byproduct of random generation. Further improvement

could obviously be made to the data and model generation.

 Obviously, the synthesized data could be interpreted to represent that one specific

47

customer; however, further tests and analysis on the full 1000 lines of generated data would

produce a more concrete result and analysis set.

5.2 Validation Testing

 After synthesizing and translating data back to its original state, the team needed to verify

whether the generated data had a similar behavior to the original transaction data. Unfortunately,

once again due to technical issues concrete validation cannot be performed. Nonetheless, a

“theoretical validation” was performed that underwent the steps that an actual validation would

have taken.

48

5.2.1 Validation Process

Figure 5.2. Validation diagram.

All of the classes in validation inherit the same interface, Similarity. The public method,

similarity, returns an integer which will be in range of 0 to 1 that indicates the similarity between

two comparable objects. The MatrixSimilarity class uses the CovMatrixSimilarity class and

ArraySimilarity to calculate similarity between two matrixes. A similarity value between two

matrices is composed of the similarity of two covariance matrices that come from themselves

and a total similarity which results from comparing each column in both matrixes. The similarity

of two covariance matrices is calculated by the sign of the value in the covariance matrix. If two

49

values in the same position in two matrices have the same sign, the function will treat them with

the same relevance and vice versa. The similarity of two arrays comes from KL divergence,

which is a famous algorithm used to test the divergence of two different arrays. MatrixSimilarity

will combine these two similarities to create a final similarity.

Figure 5.3. Validation testing sample.

The figure above shows how the validation process works. The MatrixSimilarity class

receives two matrices that contain the original dataset and the synthesized data in continuous

format to compare. An instance of the similarity method can return a value in the range of 0 to 1

that indicates how similar the two matrices are. If the return value is close to 1, it implies that

these two matrices are quite similar and vice versa. The left side part of the figure above

indicates that if the MatrixSimilarity class instance receives two matrices that are exactly the

same, the similarity function will return the integer “1” which shows that the generated dataset

and the original dataset are 100% same, which is too ideal to happen. After changing any one of

the matrices, which is shown in the right side of the figure above, the similarity function will

50

return an integer that is between 0 and 1 depending on how close the generated matrix is to the

original one.

When actually performing the validation, these two matrices will be replaced by the

original and synthesized data in continuous format. The reason for abstracting transaction data to

mathematical matrices is that there are many existing, well tested algorithms, frameworks or

libraries that could be used in a similarity test. In the MatrixSimilarity class, covariance matrix

related functions from Apache Common Math to calculate covariance matrices were used. The

covariance matrix is a mathematical way to measure the joint variability of two matrices. A value

of one variable in one matrix will correspond with the value of the variable in the same position

in the other matrix and the correlation value in a covariance matrix is positive and vice versa.

These compose the core algorithm behind the similarity function.

51

6 CONCLUSIONS

6.1 Conclusions

 The goal of this project was to detect distribution patterns in data, build statistical models,

and generate transaction data that simulated the actual data‟s behavior without revealing private

information. The index mapping table, distribution model and validation method created during

this project provided an effective pipeline to meet our project‟s main criteria.

 The index mapping table was capable of performing data preprocessing and clean up. The

two major features of the table were: converting the original discrete transaction data to

continuous indices to prepare for future data analysis, and to translate generated continuous data

back to their original discrete state. The index mapping table provided an efficient way to

approach the actual data and also helped in creating a much more readable version of the

synthesized data.

 Subsequently, the distribution model is capable of generating data based on the original

transaction data. After analyzing the most typical five columns from transaction dataset

separately, we concluded that every column presented behaviors that tended toward a Gaussian

distribution although not every column had a perfect fit. As a result, multivariate Gaussian

distribution is an ideal distribution type while dealing with all the columns together.

Accordingly, our distribution model successfully generated through the use of Spark‟s

multivariate Gaussian distribution functions with the help of Cholesky decomposition generated

several rows of correlated transaction data that was also successfully translated back to readable

data through the index mapping table.

 The validation method is capable of evaluating how close the synthesized data is to the

original data. The major tool for comparison are the two covariance matrices. The validation

52

method is capable of using the two covariance matrices (the original continuous transaction data

and the generated continuous transaction data) as input and will straightforwardly output a

percentage representing how similar these two datasets are to each other. Unfortunately, this

portion of the pipeline was never officially tested with the generated data due to technical issues

nearing the end of the project duration.

In conclusion, the team has designed and built a working pipeline that could handle data

ingestion, model generation, data synthesis, and a theoretical method of validating the

synthesized data, which satisfies all of the project requirements.

 6.2 Reflections

 Throughout the course of this project, the team encountered many trials and tribulations

that were a roadblock on the path to project completion. Although not unscathed, the team still

managed to break through to create a working pipeline. We hope to impart the experiences we

learned to any future groups that would attempt to expand upon this project. Firstly, do not

underestimate the scope of the project. Even though at first glance, the objective is simple, data

generation using patterns drawn from a test dataset, the scope of the project encompasses much

more than that. The project approach, the different technologies available for use, and the

equipment needed to use for the project are just some of the considerations that need to be made

before the project can even begin.

 Next, communication is key. If the project does not have an extremely communicative

leader, then progress becomes muddy and slow. Proper communication between the different

team members would greatly increase the speed and quality of the work being completed as each

team member could aid one another if one part of the pipeline was causing an issue. Also, time

53

management is an important skill to have when undergoing any sort of lengthy project and if

managed by a conscientious leader should bring any group far.

 As for the development process, the main issues the team encountered were mainly

related to technical issues. An important lesson for future groups is to secure a sufficiently large

group of servers with a large storage space that can be utilized for extremely long periods of time

to avoid the same issues our group underwent. In addition to having better technical planning, a

more in-depth study of the material the project is about would have also greatly helped with any

design decisions that needed to be made.

 Finally, a huge roadblock the team encountered was the integration of various different

technologies into our system. Although there are many impressive technologies available,

choosing the right ones, that not only integrated with our system but also performed the

necessary actions, was one of the more difficult and time-consuming processes during the project

experience.

54

7 FUTURE WORKS

7.1 Improvement on Current Project

 One obvious expansion is to discover and fix the issue regarding the data generation and

translation. As mentioned in the Data Synthesis section in Results, there are a few negative data

values in the Transaction Amount column, which are supposed to contain all positive values.

Although more of an issue with using randomness to generate data, in a future work investigation

into a more accurate method of data generation and synthesis is recommended. Alternatively,

the team recommends investigating the usage of machine learning instead of statistical methods

in an attempt at solving this problem.

 Connected to the data generation, a recommendation to any future teams is to implement

a different method of data generation compared to the one currently utilized within this pipeline.

The reasoning behind using a custom data generation as opposed to an existing method like the

“sampling” method in Apache Commons Math is due to a “Matrix is Singular” error. Future

teams may want to look into solving this error which would allow the usage of the numerous

sampling methods that are currently available.

 As explained in the Data Synthesis section, the team only managed to generate and back

translate fifteen rows of data into the readable format that is shown in that section. In other

words, another recommendation for any future projects built upon this one is to test the data

synthesis and back translation on the full 100,000 lines to ensure that the generation and

validation are performing properly.

55

7.2 Other Use Cases

 A second interesting use case can be looked at is involving the usage of generated

distributions to implement a method of fraud detection that examined how well a new incoming

transaction fitted a generated model. If, for example, the new transaction was at a new retailer or

country that the customer has never been to before then that transaction would give a much

worse fit to the distribution than a transaction performed at a retailer that the customer has been

to many times before. A possible implementation of this could look at how many standard

deviations away from the mean each column was located.

 Another possible expansion would be to implement the ability for the program to analyze

a dataset and then compute the distribution that best fits that particular dataset. Using existing

machine learning libraries, the best distribution to fit a column or a set of columns as well as the

correlation between the different columns could be found and a dynamic model could be created.

Using these methods could also expand upon our team‟s model and data generation engine to

improve model and synthesized data accuracy. Finally, the current validation suite‟s execution

speed is rather slow on larger datasets and converting the suite to use distributed calculations

would vastly improve the speed.

56

BIBLIOGRAPHY

Apache Software Foundation. (2017). Overview. Retrieved 3/23/2017 from

https://phoenix.apache.org/

Apache Software Foundation. (2016). Commons Math: The Apache Commons

Mathematics Library. General Format. Retrieved from

http://commons.apache.org/proper/commons-math/index.html

Baia, J, et al. (2015). Scalable multi dimensional threat analysis for financial risk analysis.

Major Qualifying Project, Worcester Polytechnic Institute.

Banovic, N, et al. (2016). Modeling and Understanding Human Routine Behavior. Human-

Computer Interaction Institute.

Burnham, K.P., Anderson, D.R. (2002). Model Selection and Multi-Model Inference (Springer).

(2nd edition), p.51

Cython. (n. d.). Retrieved 1/15/2017 from http://cython.org/

Cao, J., Carminati, B., Ferrari, E., & Tan, K. L. (2008). CASTLE: A delay-constrained scheme

for ks-anonymizing data streams. 2008 IEEE 24th International Conference on Data

Engineering. doi:10.1109/icde.2008.4497561

Federal Trade Commission. (2006, April). Financial Institutions and Customer Information:

Complying with the Safeguards Rule. Retreived from https://www.ftc.gov/tips-

advice/business-center/guidance/financial-institutions-customer-information-complying

George, Lars. (2011). HBase The Definitive Guide. Sebastopol, CA: O'Reilly Media, Inc.

Gkoulalas-Divanis, A., & Loukides, G. (2011). PCTA: privacy-constrained clustering-based

transaction data anonymization. Proceedings of the 4th International Workshop on

Privacy and Anonymity in the Information Society (PAIS '11).

http://dx.doi.org.ezproxy.wpi.edu/10.1145/1971690.1971695.

Jain, A.K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters.

Volume 31, Issue 8. Pages 651-666. http://dx.doi.org/10.1016/j.patrec.2009.09.011

Kullback, S., Leibler, R.A. (1951). "On information and sufficiency". Annals of Mathematical

Statistics. 22 (1): 79–86. doi:10.1214/aoms/1177729694. MR 39968.

Kullback S. (1959). Information Theory and Statistics. John Wiley & Sons.

Hadoop. (2016, October 11). What is Apache Hadoop? Retrieved from

https://phoenix.apache.org/
http://commons.apache.org/proper/commons-math/index.html
http://cython.org/
http://dx.doi.org.ezproxy.wpi.edu/10.1145/1971690.1971695
http://dx.doi.org/10.1016/j.patrec.2009.09.011

57

http://hadoop.apache.org/

MacKay, David J.C. (2003). Information Theory, Inference, and Learning Algorithms (First ed.).

Cambridge University Press. p. 34.

MathWorks. (n. d.) Unsupervised Learning. Retrieved from

https://www.mathworks.com/discovery/unsupervised-learning.html

Pedregosa, F., et al. (2011). Scikit-learn: machine learning in python. Journal of Machine

Learning Research. 12: 2825–2830.

Penchikala, S. (2015). Big Data Processing with Apache Spark. Retrieved from

https://www.infoq.com/articles/apache-spark-introduction

Pentland, A, Liu, A. (1999). Modeling and Prediction of Human Behavior. Neural Computation.

11, 229–242.

Phatak, M. (2015). History of Apache Spark : Journey from Academia to Industry. Retrieved

from http://blog.madhukaraphatak.com/history-of-spark/

Putze, F. (2012). Human Behavior Modeling. Retrieved 10/16/2016 from

https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/KM2012-V12-

HumanBehaviorModeling.pdf

Pyle, D., 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers, Los Altos,

CA.

Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46). IBM New York.

Chicago

Robinson, David. (2014, December 20). Understanding the beta distribution (using baseball

statistics). Varianceexplained. Retrieved from

http://varianceexplained.org/statistics/beta_distribution_and_baseball/

Sauro, Jeff. (n. d.). [A frequency graph of the heights of men and women]. Usablestats.

Retrieved from http://www.usablestats.com/lessons/normal

Seydel, R. (2012). Tools for Computational Finance. [PDF]. Retrieved from

http://www.springer.com/cda/content/document/cda_downloaddocument/9781447129929

-c2.pdf?SGWID=0-0-45-1314437-p174313273

StatisticsHowTo. (n. d.). Retrieved 10/16/2016 from http://www.statisticshowto.com/

http://hadoop.apache.org/
https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.infoq.com/articles/apache-spark-introduction
http://blog.madhukaraphatak.com/history-of-spark/
https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/KM2012-V12-HumanBehaviorModeling.pdf
https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/KM2012-V12-HumanBehaviorModeling.pdf
http://varianceexplained.org/statistics/beta_distribution_and_baseball/
http://www.usablestats.com/lessons/normal
http://www.statisticshowto.com/

58

Wasilewska, A. APRIORI Algorithm [PDF document]. Retrieved from

http://www3.cs.stonybrook.edu/~cse634/lecture_notes/07apriori.pdf

http://www3.cs.stonybrook.edu/~cse634/lecture_notes/07apriori.pdf

59

APPENDIX A

APPENDIX A: User Guide

System Requirements:

● JDK 1.7 and above

● Apache Maven 3.0 and above

● HBase (with Phoenix)

● Spark

Project Logic Structure:

Project code is divided into three parts: Index Mapping, Ingestion Engine, and Validation. Each

part has its own pom.xml for dependency management.

Goal of Index Mapping: to index the continuous data to discrete data and have the ability to

translate them back.

Goal of Ingestion Engine: to generate synthesized data using spark engine

Goal Validation: to validate how well the synthesized and original data match

Install & Run:

This project used Maven to construct dependencies. Make sure pom.xml is in all project folders

and using [mvn install] under each project folder maven will download dependencies and build

the project automatically.

Ingestion Engine

The Ingestion_Engine_2016 project contains both the data ingestion and distribution generation

parts. Running both of these parts happens in the IngestData class in the engine package.

Uploading Data

To run the ingestion engine to upload the data to the Hadoop server, you may use the ParseData

class. This only needs to be done once and uses a file that contains the transaction data in a

continuous, non-delimited format with the line indexes and lengths specified in the JSON file

input into the IngestData class.

60

Building Distributions

Distribution building depends on a Hadoop server with an HBase database running on it. The

name of the table our group used was “TRX4” but this may be changed in the

FittedMultivariateGaussian class in the distribution package.

There are two ways to build a distribution:

1. Distribution on the entire data: no arguments are given to the constructor

2. Distribution on a subset of data: the constructor takes in the column being filtered and the

string to filter by

There are two methods of generating a distribution currently. The first method is using the

generate() function, which uses Phoenix to read the data and local Apache Math calculation

methods to generate the distribution. The sparkGen() function was written to use spark‟s built in

HBase reading and RDD calculations, which are horizontally scalable when run on a Hadoop

cluster. However, the sparkGen() function will only generate a distribution on the entire data, not

filtered.

Distributions are saved both on the HBase server and locally in a file in the

Intestion_Engine_2016/distributions folder.

Index Mapping:

Index mapping is a tool, like dictionary, that used inside the ingestion engine to index continues

data so that they can be treated as discrete data. Discrete data is like name, country name and etc..

IndexData will create a table „INDEXTABLE‟ in HBase as dictionary. It has ability translate

back and forward between continuous data and discrete data. To translate generated data from

continuous type back to original type, you need to translate whole matrix which represents the

generated data. If the column is in continuous data type, the index mapping table will jump over

and keep this column in the same form.

Convert discrete data to continuous data

IndexData class is built for translating continuous data to discrete data. Before the translation, we

need to create a new IndexData instance with a parameter, a connection object connected to

HBase with Apache Phoenix:

61

 IndexData index = new IndexData(connection)

Then we can use instance method mapIndexByArray to translate continuous data. The function

takes two parameter, first is the name of the column that holds continuous data, second is thedata

itself as a double array:

 Index.mapIndexByArray(columnName, continuousDataArray)

Convert continuous data to discrete data

The TranslateData class is built for translating continuous data to discrete data. Before using it,

we need to create a new TranslateData instance.

 TranslateData dict = new TranslateData(connection)

Next we must set the name of the lookup table for the TranslateData instance, otherwise it

doesn‟t know which table it should use to translate data:

 dict.setTableName(“INDEXTABLE”)

Now we can use the instance function, translate, to translate the data. The function takes three

parameters: first is the continuous data matrix, which is our generated data, second is the offset

of the continuous data columns in a matrix(we suppose all the columns that holds continuous

data are in front of all the discrete data columns), the third parameter is a string array that holds

all of the names of the discrete columns:

 dict.translate(dataMatrix, continuousColOffset, discreteColNameArray)

Validation

Validation is a way to verify the similarity of the synthesized transaction data and original

transaction data. We abstract these two dataset into two matrices with the same dimension and

62

compare the covariance matrix of the datasets to check whether they have similar behavior or not.

To validate synthesized data

If we want to know how similar the generated data and original data are, we can use the class

MatrixSimilarity. First let us create two example matrices(In actual validation, they will be

replaced by two matrices of real data):

RealMatrix m1 = new Array2DRowRealMatrix(new double[][]{

{1,2,3},

{4,5,6},

{7,8,9}

});

RealMatrix m2 = new Array2DRowRealMatrix(new double[][]{

{1,2,3},

{4,5,6},

{7,8,9}

});

Then create a MatrixSimilarity instance with these two matrices. Now we can get a similarity

value by using an instance of the similarity method:

 double similarity = new MatrixSimilarity(m1,m2).similarity();

Detailed Implementation Example:

1. Before embedding IngestionEngine to project, make sure you have HBase database address

and set up Phoenix properly on HBase

2. Insert into your main function these lines of code:

Connecton connection = DriverManager.getConnection(“jdbc:phoenic:xxxx”); [1]

FittedMultivariateGaussian fit = new FittedMultivariateGaussian();

String[] discreteCols = {“name1”,”name2”}; [2]

String[] continuousCols = {“name3”,”name4”}; [2]

fit.sparkGen(connection, discreteCols, continuesCols); [3]

63

Comment:

1. xxxx is your hbase database address

2. name1, name2, name3, name4 are column names in -the transaction dataset, such as

“MCC_CODE”, and “CARD_BIN”. If the column is discrete, it belongs to the discreteCols

variable; If the column is continuous, it belongs to the continuousCols variable.

3. Call sparkGen() with the Phoenix connection to Hbase, an array of the names of the discrete

columns, and an array of the names of the continuous columns.

APPENDIX B: Detailed Project Pipeline

Figure 3.3. Complete Project outline.

