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ABSTRACT 

ACI Worldwide is a payment processing company that uses fraud detection solutions to 

process the massive amount of transactions that go through the company every day.  The goal of 

this MQP project was to address privacy concerns in using real transaction data to test fraud 

detection software.  We worked with our advisors at WPI and ACI to develop a product that can 

be used by third party companies to test their fraud detection solutions.  Our team looked at 

different machine learning and statistical methods to build working models from the large 

quantities of transactional data and then use those models to synthesize artificial data that follow 

the same patterns and behaviors.  Our team also developed a test suite to measure the accuracy of 

and validate the generated data. 
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EXECUTIVE SUMMARY 

ACI Worldwide and MQP Projects 

 ACI Worldwide, the “Universal Payments” company, is a payment processing company 

that services more than 5,100 customers worldwide with more than 1,000 of them being some of 

the world‟s largest financial institutions.  Processing more than $14 trillion in payments daily, 

having an effective suite of fraud detection software is crucial for ACI to operate their business 

effectively.  Through the sponsoring of a series of Major Qualifying Projects (MQP) at 

Worcester Polytechnic Institute, ACI has a history of experimenting with the latest and most 

powerful rising open-source technologies available.  These projects allow ACI to make their 

fraud detection and payment processing systems as fast and up to date as they can to handle the 

increasing amounts of raw data that they process daily. 

 All of the MQP projects at WPI that ACI has sponsored have built on top of each other 

and mainly focus on ACI‟s fraud detection suite.  The first such project took place in 2013 and 

created what is now ACI‟s Complex Event Processing (CEP) system.  This system was built 

using the Esper engine with the goal of replacing previously slow-running SQL queries.  The 

following project in 2014 expanded on the CEP system by using distributed computing platforms, 

namely Kafka and Storm, to make the system horizontally scalable.  The 2015 MQP sponsored 

by ACI built a graph database using technologies such as Titan and Cassandra that was capable 

of computing extra attributes on each node and retrieving nodes quickly.  That project also built 

a visualization engine to use the graph database using Vis.JS.  This made the job of data analysts 

at ACI easier by providing a tool with which outlier detection could be performed. 
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Model Generation 

 The goal of this MQP project was to address privacy concerns in using real transaction 

data to test fraud detection software.  Our team‟s objective was to create a model that accurately 

represented the behaviors and patterns that existed in the transaction data that ACI processes, and 

then to use this model to generate new synthesized data that does not contain any private 

information yet still exhibits the same behaviors and patterns of the original data.  To do this, we 

started by looking at a number of existing machine learning methods and libraries that could be 

used to generate this model. 

 Our team decided to first implement a precursory approach to model generation that used 

statistical methods to build a Multivariate Gaussian distribution on the data.  A simple sampling 

of this distribution was used to generate the new, fake data.  Columns that did not contain 

continuous data, such as string data, were fitted to a normal curve based on the frequency of each 

unique value and then translated into continuous data. 

 

Technologies Used 

 Our team used open-source libraries throughout our entire project, many of them from 

Apache.  The initial model generation was done using an Apache Derby server embedded into 

our Java program, and the calculations and curve fitting were done using Apache Math.  We then 

created a Hadoop server on which we hosted an HBase database to hold the transaction data, 

using Apache Phoenix to read and write to this database.  Our group then refactored the model 

generation code to use Spark and its built-in HBase support.  We moved to Spark to make use of 

its RDD-based calculations, which are already optimized to be horizontally scalable to be run in 

a Hadoop server using MapReduce. 
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Data Validation 

 Once new data was synthesized, it was necessary to do some validation to make sure that 

the synthesized data simulated the original data successfully without revealing any private 

information. Our process was simple: calculate the covariance matrix of the actual data first, and 

then calculate the covariance matrix of the synthesized data, then compare these two covariance 

matrices to get the similarity percentage. This percentage approaches 1 the closer the simulated 

data is to the original dataset. 

 

Future work 

During the course of this project, several areas were found that the project could be 

expanded upon.  One of these such areas is an entirely new use case for the models generated for 

the data.  It would be possible that if there were a model generated on a specific customer‟s 

transactions that fraud detection could be performed by comparing new incoming transactions to 

the model generated for that customer.  A possible implementation of this could look at how 

many standard deviations away from the mean each column was located.  There is also still room 

in our project for further horizontal scaling of the model generation and curve fitting parts by 

running them on larger Hadoop servers. 
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CHAPTER 1: INTRODUCTION 

ACI Worldwide, the “Universal Payments” company, is a payment processing company 

that services more than 5,100 customers worldwide with more than 1,000 of them being some of 

the world‟s largest financial institutions.  Processing more than $14 trillion in payments daily, 

having an effective suite of fraud detection software is crucial for ACI to effectively operate their 

business.  One important aspect of an effective fraud detection suite is the data being consumed.   

As denoted by the FTC, under the Safeguards Rule in the United States “financial 

institutions” must protect their customers‟ sensitive information and ACI satisfies the conditions 

put forth by the FTC of being a “financial institution” (Federal Trade Commision, 2006).  Due to 

the need to adhere to FTC guidelines, ACI requires the approval of the customer to use their data 

in any sort of analysis which is time consuming to collect.  Therefore, a method of assuring that 

the customers‟ data is secure and protected whilst allowing for a relatively small downtime in 

redacting any sensitive information by generating data from models is highly sought after not 

just by ACI but by other companies worldwide as well.  To accomplish this, ACI continued its 

history of teaming up with WPI to sponsor this concept as a major qualifying project. 

ACI has a history of sponsoring major qualifying projects from WPI on a variety of 

subjects concerning their transaction systems.  All of the projects have been designed to build on 

top of each other to further expand and improve ACI‟s extensive fraud detection suite.  The first 

project took place in 2013 and focused on creating ACI‟s Complex Event Processing (CEP) 

system that used the Esper engine to replace previously slow-running SQL queries.  The next 

project in 2014 expanded upon the previous one to use the distributed computing systems Kafka 

and Storm to make it horizontally scalable, increasing the speed of data ingestion and feature 

computation with more machines added to the cluster.   
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The 2015 WPI project expanded upon the previous two by using a distributed graph 

database and visualization engine to make data viewing easier.  The students did this with the use 

of Titan, a distributed graph database with Cassandra as the backend storage system.  The Titan 

database was able to quickly retrieve nodes in the graph and compute any extra attributes as well.  

For visualization, the team used Vis.JS to make a fully interactive graphical solution that worked 

cross-browser.  Below is a sample of this solution. 

 

Figure 1.1. Sample graph from 2015 project.  (Baia, et al., 2015) 

Each of the colored dots in the graph is a node which represents a specific customer, 

transaction, retailer, account, or website.  Each line in the graph links these nodes based on the 

input transactions.  Rather than trying to find anomalies in the raw transaction data, Data 

Analysts can now use this tool to visually analyze the patterns that exist in the data and search 

for outliers to find fraudulent data and examine behavior. 
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 As a follow-up to the 2015 project, our team‟s primary objective was to develop a 

pipeline that would be capable of anonymizing transaction data that can then be safely and 

quickly used by ACI and any third-party companies as an input in applications like fraud 

detection without fear of breaking any law.  Statistical analysis and machine learning were the 

main methods we researched in our attempt to solve the problem at hand.  Eventually, after much 

deliberation the team decided to focus on statistical methods as our main approach in solving this 

problem. 
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CHAPTER 2: BACKGROUND 

This section introduces research papers, machine learning libraries and methods, and 

several useful statistical distributions and methods we examined during the course of the project. 

 

2.1: Literature Review 

 Our team started off by researching the current privacy protection methods that exist for 

sensitive information.  We found many methods that focused on anonymizing existing data as 

opposed to generating new unidentifiable data, which was our goal.  Our goal can still be 

accomplished through the use of existing anonymization or clustering methods, however these 

introduce a level of error and inaccuracy in the data and some data loss would be expected.  

Below are a few of the academic papers that we looked at. 

 

2.1.1 CASTLE 

 Most of the existing privacy preserving techniques, such as k-anonymity methods, are 

designed for static data sets only, which cannot be applied to continuous, transient, and usually 

unbounded streaming data. Moreover, in streaming applications, there is a need to offer strong 

guarantees, on the maximum allowed delay between an incoming data and its anonymized output. 

CASTLE (Continuously Anonymizing STreaming data via adaptive cLustEring) (Cao, 2008) is a 

cluster-based scheme that anonymizes data streams and, at the same time, ensures the freshness 

of the anonymized data by satisfying specified delay constraints.  It can produce ks-anonymized 

data streams and avoid security flaws. CASTLE can also output anonymized data progressively, 

and offers better output quality than existing methods. 
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2.1.2 PCTA 

 Privacy-Constrained Clustering-Based Transaction data Anonymization, or PCTA, was 

developed to solve an issue that was similar to this project‟s main problem, where privacy 

concerns were preventing useful medical data from being able to be released and used to support 

applications such as biomedical studies.  The research paper also addressed the large amount of 

information loss that was present in anonymization methods at the time of the study. 

PCTA is a framework that performs data generalization on top of a clustering method.  It is 

flexible in that it can support whatever clustering algorithm that is input to it.  Because of this, 

PCTA can produce usable data sets that address a large variety of privacy issues while only 

allowing a minimal amount of information loss.  PCTA proved to produce significantly better 

results than previous methods based on a single privacy model. 

 

Figure 2.1. Mapping original to generalized items using global generalization. (Gkoulalas-Divanis, 2011) 
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2.2: Technical Background 

2.2.1 Scikit-learn 

 Scikit-learn is a free software machine learning library with many simple and efficient 

tools for data mining and data analysis using the Python programming language (Pedregosa, 

2011).  It features various classification, regression and clustering algorithms including support 

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to 

interoperate with the Python numerical and scientific libraries NumPy and SciPy.  Scikit-learn is 

largely written in Python, with some core algorithms written in Cython, a superset of Python that 

allows for C functions and types, that Scikit-learn utilizes to achieve better performance 

(Cython).  Support vector machines are implemented by a Cython wrapper around LIBSVM; 

logistic regression and linear support vector machines by a similar wrapper around LIBLINEAR.  

It is open source and commercially usable with the BSD license. 

 

2.2.2 Java-ML 

 Java Machine Learning Library (Java-ML) is a collection of machine learning algorithm 

packages such as data manipulation, clustering, feature selection, classification, and statistics.  

The classification package (net.sf.javaml.classification) provides several classification methods 

such as Bayes, meta (provides meta-classifiers), and tree (provides classification trees and 

derivative algorithm).  Another useful package is Statistics (net.sf.javaml.utils.Statistics) which 

implements some of the common distributions, such as Gaussian, a variety of tests, etc.  The 

code is mostly adapted from the CERN Jet Java libraries: Copyright 2001 University of Waikato 

Copyright 1999 CERN-European Organization for Nuclear Research.  Permission to use, copy, 

modify, distribute and sell this software and its documentation for any purpose is therefore 
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granted without any fees. 

 

2.3: Machine Learning Methods 

 As one of the potential routes that we could of taken the project, the team researched 

several different machine learning techniques.  The three main methods chosen for research were 

clustering, naive bayes classifier, and utilizing the apriori algorithm. 

2.3.1 Clustering 

 Clustering, or cluster analysis, is the process of dividing a dataset into groups, or clusters, 

that contain data that have one or more properties similar with one another.  In respect to 

machine learning, clustering would be defined as an unsupervised learning algorithm as it 

derives patterns or similarities from datasets with no labeled responses (MathWorks).  The 

similarities are defined through the use of Euclidean or probabilistic distance.  There are a 

variety of clustering algorithms each with their own advantages and disadvantages.  Regardless 

of the type of clustering algorithm, there are four standards that need to be kept in mind when 

using a clustering algorithm (Jain, 2010).   

 First, the data representation, or the features that you select to cluster around, must be the 

best representation of the dataset that is being grouped.  A bad feature selection would not create 

clusters that represent the entire dataset.  Secondly, the reason behind grouping a specific cluster 

together must be in line with how the groupings are selected as having different weights on the 

different features would lead to different cluster representations of the data.  Next, the number of 

clusters needs to be decided to ensure that the proper depth of the dataset is being shown through 

the clusters.  Finally, the validity of the clusters need to be verified.  In other words, a cluster can 

only occur if a particular cluster can be made around a specified feature (Jain, 2010). 
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2.3.2 Naive Bayes Classifier 

 The Naive Bayes Classifier is a supervised learning family of algorithms that applies 

Bayes‟ theorem on a dataset and assumes the features of the data being classified are 

independent of one another.  Naive Bayes Models can be easily built from large datasets due to 

the simplicity of the algorithms themselves.  Naive Bayes Classifiers also perform really well on 

datasets with dependent features due in part to optimality not being necessarily dependent on 

whether or not the assumptions on the independence between the features are appropriate.  A 

classifier is optimal if the actual and estimated distributions agree on the same most-probable 

class (Rish, 2001). 

 

2.3.3 Apriori Algorithm 

The Apriori Algorithm searches through a dataset for data points that appear frequently 

throughout and creates boolean association rules with those data points using two criteria: the 

minimum confidence and the minimum support.  Association rules are statements that show 

relationships between different data in a database.  One of the criteria, minimum confidence, is a 

specific percentage that the association rules generated must surpass in order to be accepted as a 

strong association rule.  The other criteria, minimum support, is the minimum amount a data 

point has to appear in a dataset in order to be considered as part of the set used to create 

association rules.  (Wasilewska) 

 

 



9 

 

2.4: Statistical Distributions 

 In order to model large volumes of transaction data, we needed to research several 

different statistical distributions to determine the most optimal approach.  For the purposes of the 

project, the team focused on five main statistical distributions which were the following: 

Gaussian, Poisson, Beta, Conditional, and Marginal Distributions. 

 

2.4.1 Gaussian Distributions 

 Gaussian distributions, commonly known as the normal distribution, organize data sets 

into a binomial distribution that centers around a mean value.  This distribution is commonly 

shown to be in the shape of a “bell curve” since the majority of the data falls within one standard 

deviation from the mean which naturally creates a bell like curve.  The gaussian distribution is 

the most common type of distribution and can be found to represent many things in our daily 

lives.  Some common examples would be the heights of people, IQ scores, blood pressure and 

the like (StatisticsHowTo, n.d.).  The equation used to model a gaussian curve is shown in Figure 

2.2.  The notation is as follows:  sigma (σ) is the standard deviation of the data being modeled, μ 

is the mean value derived from the data, and x is a normal random variable (StatisticsHowTo, 

n.d.).
 

 

Figure 2.2.  Gaussian curve formula. 
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Figure 2.3. Gaussian graph of heights from men and women (Sauro, n.d.) 

2.4.2 Multivariate Gaussian Distribution 

As the number of columns in a dataset is always greater than one, it‟s indispensable to 

implement multivariate normal distribution dealing with multi-dimension case. Multivariate 

normal distribution or multivariate Gaussian distribution, is a generalization of the one-

dimensional (univariate) normal distribution to higher dimensions. One possible definition is that 

a random vector is said to be k-variate normally distributed if every linear combination of its k 

components has a univariate normal distribution. It is often used to describe, at least 

approximately, any set of (possibly) correlated real-valued random variables each of which 

cluster around a mean value. 
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Figure 2.4. Multivariate Gaussian distribution with the 3-sigma ellipse, the two marginal distributions, and the two histograms. 

2.4.3 Poisson Distributions 

Poisson distributions are typically used to model datasets that are non-normal.  The poisson 

distribution gives the probability of a particular event occurring based on past information 

(StatisticsHowTo, n.d.).  Some clear examples of how a poisson distribution could be utilized 

would be to forecast future profits for businesses and to determine the most optimal time to avoid 

rush hour traffic.  The poisson function is P(x; λ) = (e−λ) ∗ (λx) x!.  The notation is as 

follows: λ is the expected number of occurrences within the interval and x is the actual number 

of occurrences.  Some special properties of the poisson distribution is that the mean and variance 

are equal to λ. 
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Figure 2.5. Example poisson graph (StatisticsHowTo, n.d.). 

2.4.4 Beta Distributions 

 A Beta distribution is normally used to represent the outcomes of percentages or 

proportions.  In other words, the beta distribution shows a probability distribution of probabilities 

for situations where the probability is unknown but can be guessed.  For example, a beta 

distribution is a good predictor of a baseball player‟s batting average.  A player‟s batting average 

obviously changes across the season and with previous expectations to fall within the average 

batting record, an initial beta distribution can be drawn and then updated as new information is 

available (Robinson, David).  One form of the probability density function for beta distributions 

is xα−1(1−x)β−1B(α,β) (StatisticsHowTo, n.d.). 
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Figure 2.6. Example beta distribution graph. (Robinson, David) 

2.4.5 Conditional Distributions 

 Conditional probability distribution models the probability of an event occurring in 

regards to one or more other events.  Due to how conditional probability can support more in 

depth probability statements, multi-event predictions can be made.  As seen in the example from 

Figure 2.6, the probabilities of a man and woman, of an unknown sample size, owning or not 

owning a pet are displayed.  With the knowledge from the table, anyone can calculate 

complicated predictions like if a person does not own a pet what is the probability that they are 

female.  The function for conditional probability is P(B|A) = P(A and B) / P(A) (StatisticsHowTo, 

n.d.). 
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Figure 2.7. Probability of either gender having a pet (StatisticsHowTo, n.d.) 

2.4.6 Marginal Distributions 

 Marginal probability distributions model the independent probability distributions 

between two random variables.  Differing from conditional distributions, marginal distributions 

only display the sum probabilities of one random variable at a time.  For example, in Figure 2.7 

the different pet preferences can be turned into probabilities by individually dividing the 

different pet totals over the total amount of pets.  One common way to show a marginal 

probability distribution is through the use of a frequency distribution table (StatisticsHowTo, 

n.d.).  The other way to calculate marginal probability is to use the marginal probability 

distribution functions which are g(x) = Σy f (x,y) and h(y) = Σx f (x,y). 

 

Figure 2.8. The frequency of different pets between men and women. 

2.5: Hortonwork’s Ambari Distribution 

 Apache Ambari is an open-source management platform for monitoring Apache Hadoop 

clusters.  The use of Ambari simplifies any manual effort in installing and maintaining a Hadoop 

Cluster.  The list of software that the Ambari distribution offers will be discussed in more detail 
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in the methodology section. 

 

2.5.1 Hadoop Cluster 

 Apache Hadoop is an open-source software that allows for distributed and scalable 

processing of large datasets.  Hadoop itself contains the following modules: the Hadoop 

Common, Hadoop Distributed File System, Hadoop MapReduce, and Hadoop YARN.  Hadoop 

Common contains the utilities that the other modules all need to function.  The HDFS module is 

used for its speed in accessing the application data when performing operations.  Hadoop YARN 

is a module that handles the job scheduling and the resource management for the cluster.  Finally, 

Hadoop MapReduce is the module that performs parallel processing of large datasets (Hadoop, 

2016). 

 

2.5.2 Spark 

 Apache Spark originated from a 2009 research project from the University of California 

Berkeley AMPLab under the name of Mesos.  The Mesos project was a cluster management 

framework that aimed to support a variety of cluster computing systems (Phatak, 2015).  Apache 

Spark, originally just called Spark, was built off of the Mesos project to include an emphasis on 

“interactive iterative computations” like machine learning to aid in cluster computing.  The team 

behind Spark later donated the project, in early 2010, to the Apache Software Foundation who 

open sourced it (Phatak, 2015).   

 Apache Spark offers various advantages in processing big data over its competitors.  The 

engine provides a unified framework to handle big data through offering support for a large 

variety of datasets, such as text data and graph data, and for working with different sources of 
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data, such as data batches or real-time streaming data.  Spark also cleanly integrates with other 

cluster processing engines like Hadoop and can also process data obtained from a variety of 

different databases like Cassandra and HDFS.  Spark has also been shown to run applications 

100 times faster in memory on Hadoop clusters and ten times faster when running the 

applications on disk.  Spark‟s other features include the support for SQL queries, graph data 

processing, and machine learning (Phatak, 2015). 

 

2.5.3 Apache Phoenix and HBase 

Apache HBase is an open source project under the care of the Apache Software 

foundation.  HBase itself is a NoSQL database designed to store large amounts of data.  The 

database is primarily paired with software platforms that perform calculations on these vast data 

sets, like Apache Hadoop.  Due to the fact that HBase is a NoSQL database, the structure of the 

database table and the data stored within differ from the conventional SQL type databases 

(George).  

Although Apache HBase does utilize the column-oriented format when storing data on 

disk, HBase is not a column-oriented database in the traditional relational database management 

system sense.  A traditional relational database provides real-time analytical access to the stored 

data while HBase focuses on providing access to specific cells of data instead (George).   

 Paired nicely with HBase, Apache Phoenix is a SQL wrapper that enables the use of 

many familiar SQL commands to interact with the Apache HBase database on a Hadoop cluster.  

Phoenix also naturally integrates with any system that utilizes Hadoop technology like Apache 

Spark.  Due to the integration of native map-reduce support, scans of large datasets from HBase 

would be reduced to mere seconds using phoenix (Apache Software Foundation). 
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2.5.4 Apache Commons Math 

 Apache Commons Math is a useful library under the Apache Software Foundation that 

provides a variety of mathematical tools for usage in a number of different scenarios.  The main 

draw of this particular library is the abundance of statistical and mathematical operations it 

contains.  The classes of particular interest in this library were specifically the Multivariate 

Normal Distribution, RealMatrix and RealVector as they provided the necessary functions and 

structures for transaction synthesis pipeline.  In addition to its vast repertoire of classes, the 

Apache Commons Math package was also designed to be easily integratable with no little to no 

external dependencies needed which allows for easy usage (Apache Software Foundation, 2016).  

Since this library contained a number of convenient statistical structures and functions, the team 

decided to heavily utilize this library.  The below are the classes and the functions we utilized for 

our pipeline.   
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3 METHODOLOGY 

3.1 Goals and Objectives 

 In order to achieve our goal of addressing privacy concerns in using real data and 

transactions to test fraud detection software, our team divided the project into stages.  These 

stages include the Ingestion Engine, Preprocessing, Distribution generation, Data Synthesis, and 

Validation.  After ingesting the transaction data and performing preprocessing to prepare the data 

for learning we created models to represent the patterns that exist in the data.  These models 

allowed us to generate new synthesized data that behaves and looks the same as the real data, and 

therefore is suitable to use for testing purposes.  This model could also possibly be used to 

predict, with a fair degree of accuracy, the purchasing behavior of a particular customer and 

check if a new transaction fits their usual behavior pattern.  Simplicity was a focus the team 

decided on and thus the following methodology would reflect this philosophy. 

 

3.2 Project Architecture 

 In the backend of our project, we created a Hadoop cluster using the ACI resources 

allowed to us using three Linux server machines.  We also implemented a distributed database 

using HBase, which was included in the Hadoop installation.   



19 

 

 

Figure 3.1. Project architecture. 

Hadoop Cluster 

 The system is hosted on a Hadoop cluster that contains one master node and two different 

slave nodes.  These nodes are on three separate RedHat Linux Servers.  Each individual machine 

contains separate components.  This diagram shows an overview of the different components. 
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Figure 3.2. Hadoop cluster structure. 

HBase Master Server - This server stores all of the HBase database information and allows 

operations on the data. 

○ Region Server - The slave servers to the HBase Master 

● Namenode - The master server where commands are issued to the datanodes. 
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○ Datanode - The slave machines that Hadoop uses in its distributed calculations. 

○ SNamenode - The secondary namenode that would become active if the main 

namenode became unusable. 

● NodeManager - Monitors and acts as the gatekeeper for the traffic that each server 

machine handles. 

● ResourceManager - Manages the queue that allocates resources to the jobs sent into the 

cluster. 

● Hive - Data storage infrastructure that is built over Hadoop.  Allows for an SQL-like 

interface to query any stored data. 

○ Hive Metastore - Storage for Hive metadata. 

● History Server - Contain the results of the jobs ran on the Hadoop cluster. 

● Zookeeper Server - Centralized service for providing distributed synchronization, 

maintaining configuration information, naming, and providing general group services. 
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3.2.1 Design 

The overall outline of our project is as follows: 

 

Figure 3.3. Project outline. 

3.3 Ingestion Engine 

 The Ingestion Engine is a program written in Java that reads in given test data and 

uploads it to the HBase database with the use of Apache Phoenix.  The data we worked with 

throughout the project was already “scrubbed”, and did not contain any real personal or private 

information.  However, the project can easily be expanded to use real data by simply uploading 

any arbitrary amount of information to the HBase server. 

3.3.1 What does the data look like 

 The data being processed were transaction records.  Each transaction had around 200 
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columns associated with it, which covered everything from the transaction amount and customer 

information, all the way down to the specific terminal and location the transaction was 

performed at.  The large data set was unformatted and in a text file.  Since it was not feasible for 

us to use every attribute of a transaction, we worked with our advisors to pick a list of about 30 

columns that seemed the most useful.  Each column is represented as an object in a JSON file 

that we adapted from the previous year‟s project, and is described by a line offset and a length 

(each transaction being on one line ~1100 characters long).  Our program took in this JSON and 

parsed only the data in those specified columns to upload into a table in the database, reducing 

the amount of storage space required on the HBase server. 

 

3.4 Data Preprocessing 

Data pre-processing is an important step in the data mining process.  The phrase “garbage in, 

garbage out” is particularly applicable to data mining and machine learning projects.  Data 

gathering methods are often loosely controlled, resulting in out-of-range values (e.g., Income: -

100), impossible data combinations (e.g., Sex: Male, Pregnant: Yes), missing values, etc.  

Analyzing data that has not been carefully screened for such problems can produce misleading 

results.  Thus, the representation and quality of data is the most urgent concern before running 

any sort of analysis.  (Pyle, 1999) 

 

3.5 Index Mapping Table 

3.5.1 Index Mapping Table Overview 

 Most of the columns in datasets obtained from ACI Worldwide are discrete such as zip 

code, fraud index, transaction date, first name and last name of customers, so it‟s impossible to 
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analyze these columns straightforwardly.  In order to learn the frequency distributions and 

correlativity on not only continuous data columns such as transaction amount but also on these 

discrete columns, it‟s expedient to build an index mapping table to store those discrete columns 

of data, and translate them to continuous data.  With the support of Apache Phoenix, which takes 

SQL queries, compiles them into a series of HBase scans, and orchestrates the running of those 

scans to produce regular JDBC result sets, it works perfectly that all SQL queries can be 

implemented in HBase, which is a type of NoSQL database.  The primary reason for selecting 

HBase to store the data ingested by the Ingestion Engine was the easy integration into a Hadoop 

Cluster.   

3.5.2 Index Mapping Table Features 

The index mapping table contains two main features: storing original data values as 

indices, which can be used efficiently in analyzing the original data distribution and translating 

indices back to original data values.  

3.5.2.1 Storing Original Data Values As Indices 

In order to analyze discrete columns in the transaction dataset, the first step is to translate 

them into continuous columns. The way we approach this process is using indices to represent 

discrete values. 

Figure 3.6 shows how the index mapping table is used for storing original discrete data 

values as indices.  It has four columns in total: The first column is the unique ID which Hbase 

requires as an identifier for each independent row, the second column stores the column name 

that the data belongs to, the third column stores the index number of the data from 1 to the last 

number, the last column stores the original value of this data. 
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Figure 3.4. Index mapping table working in HBase. 

In order to optimize the storage space index mapping table required in HBase, our team 

finally remove the unique ID column and add one more TRX_ID (Transaction ID) column as a 

more semantic identifier for each row of data. 

 

3.5.2.2 Translating Indices Back To Original Value 

Because the newly synthesized data which is generated based on the typical distribution 

can only stay in an index version, in order to understand what the actual value is behind the 

corresponding index, it is vital to translate the index back into the original data value.   
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Figure 3.5. Translating index back to original data diagram. 

Transaction data has two types of columns, discrete and continuous. As mentioned before, 

a majority of those columns are discrete, such as “CARD_BIN”, “ACCTNUM” (Account 

Number), and “CARD_TYPE”. But there are still columns with continuous data type such as 

“TRX_AMOUNT” (Transaction Amount).When translating generated data values which are in 

index form back to original data values, it is essential to treat continuous columns and discrete 

columns as two separate situations: For discrete columns, the index mapping table will 

straightforwardly map them back to their original values and original data types. For continuous 

columns, the index mapping table will keep them in the same data type and value as generated. 

3.6 Column Analysis 

 When beginning to create models for the data, our group first implemented the use of 

simple statistical methods.  We started by looking at discrete columns that were represented as a 

string or integer (Card type, merchant country, MCC code, etc.) and performed a frequency 

count of the unique values in each of these columns.  We then tried to fit the data to a curve, one 
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such Gaussian fit attempt is shown below for the MCC code (the x-axis values are not 

representative of the actual MCC codes). 

 

Figure 3.6. Frequency counts of each unique MCC code in the test data. 
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Figure 3.7. Attempting to fit MCC code frequencies to a Gaussian curve. 

 While these methods were not the most accurate representations of the real data, they did 

help our group to understand what the data we were working with looked like and how it 

behaved.  This method also assumed that the columns being used were independent of each other, 

which was most likely not the case.  For an in-depth look into the columns the team analyzed, 

refer to 4 COLUMN ANALYSIS. 

 Then, we moved on to modeling the data using multivariate Gaussian distributions.  

While this does take multiple columns into account, it again falls short in that it forces the data to 

a best-fit Gaussian curve which may, in many cases, not accurately represent the data.  Our 

group used functions packaged into Apache‟s Math library to calculate the covariance and mean 

matrices of the columns we chose.  We then created a new multivariate Gaussian distribution 
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using these matrices as the parameters and then generated a number of random samples using 

that distribution.   

After creating the new multivariate Gaussian distribution, we used them to synthesize 

new data.  Due to the issues with utilizing Apache Math‟s random sample method, the process 

we used was as follows.  Cholesky decomposition was performed on the covariance matrix of the 

new multivariate Gaussian distribution and then the lower triangular matrix was calculated with 

the help of the existing Java library, JAMA.  Using the Apache Math vector and matrix libraries, 

the lower triangular matrix was transformed by being multiplied by a vector of random normal 

vectors with the same length as there are of columns in the covariance matrix.  Finally, the 

resultant vector is multiplied by the mean matrix, now converted into a matrix, to return a vector 

that made up one row of data.  This procedure is repeated until the number of rows matched the 

number of rows in the original dataset (Seydel, 2012).  The data we produced was in the indexed 

continuous format which was not understandable, so we reused the index mapping table to 

translate all of the data back to their original types. 

Performing the covariance and mean matrix calculations on this newly generated data, we 

compared them to the original to see how accurate this synthesized data was.  A sample output of 

this is shown in Figure 3.9 below with the covariance matrix from the original data on top and 

the covariance matrix of the synthesized data on the bottom for comparison.  The two mean 

matrices are also shown in the figure at the very bottom. 
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Figure 3.8. Sample output of multivariate Gaussian distribution calculation. 

To test the validity of these Multivariate Gaussian models, we created the validation suite 

in the section below. 

 

3.7 Validation Methods 

3.7.1 KL Divergence 

 In probability and information theory, the Kullback-Leibler divergence, (Kullback, 1951) 

(Kullback, 1959) also called discrimination information, information divergence, information 

gain, KL divergence, is a measure of the difference between two probability distributions P and 

Q. In applications, P typically represents the “true” distribution of data, observations, or a 

precisely calculated theoretical distribution, while Q typically represents a theory, model, 

description, or approximation of P. During current implementation, P here represents the 

distribution of original data, while Q represents the distribution of synthesized data. 

 Specifically, the Kullback-Leibler divergence from Q to P, denoted DKL(P ‖ Q), is a 
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measure of the information gained when one revises one‟s beliefs from the prior probability 

distribution Q to the posterior probability distribution P. In other words, it is the amount of 

information lost when Q is used to approximate P. (Burnham, 2002) KL divergence has different 

definitions on P and Q over different cases such as discrete probability distributions and 

continuous random variables. But the only situation here need to be considered is discrete 

probability distributions. In this case, the Kullback–Leibler divergence from Q to P is defined to 

be (MacKay, 2003):  

 

Figure 3.9. Discrete probability distribution for KL divergence. 

 In words, it is the expectation of the logarithmic difference between the probabilities of P 

and Q, where the expectation is taken using the probabilities of P. The KL divergence is defined 

only if Q(i)=0 implies P(i)=0, for all i (absolute continuity). Whenever P(i) is zero the 

contribution of the i-th term is interpreted as zero. 

3.7.2 Covariance Matrix 

In probability theory and statistics, a covariance matrix (also known as dispersion matrix) 

is a matrix whose element in the (i, j) position is the covariance between the i
th 

and j
th

 elements of 

a random vector. A random vector is a random variable with multiple dimensions. Each element 

of the vector is a scalar random variable. Each element has either a finite number of observed 

empirical values or a finite or infinite number of potential values. The potential values are 

specified by a theoretical joint probability distribution. 

Intuitively, the covariance matrix generalizes the notion of variance to multiple 
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dimensions. As an example, the variation in a collection of random points in two-dimensional 

space cannot be characterized fully by a single number, nor would the variances in the x and y 

directions contain all of the necessary information; a 2x2 matrix would be necessary to fully 

characterize the two-dimensional variation. 

In order to compare the behavior of synthesized data and original data, it‟s crucial to 

compare the covariance matrix. 

 

3.8 Run Time Optimization 

 In building the model generation portion of our project, we first started out using Apache 

Math‟s built in distribution framework and Multivariate Normal Distribution for data sampling.  

While these methods were easy to use, and worked effectively, they were only run on a single 

local virtual machine on ACI‟s network.  These methods were not built for the vast amounts of 

data or columns that ACI possesses and therefore did not scale well when the amount of test data 

was increased. 
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Figure 3.10. Runtime without optimization. 

 The runtime of our project when using 100,000 transactions as input and changing the 

number of columns in the model generated is shown above in Figure 3.10.  Our group therefore 

searched for ways to improve runtime and the scalability of the calculations performed.  Because 

we already had a Hadoop server setup, we wanted to look into its MapReduce capabilities in 

order to be able to submit a job and have it run distributed on the Hadoop machines.  In the end, 

the code was refactored to utilize Apache Spark‟s existing MLlib functions in calculating the 

distributions.  By refactoring our code towards a job to be submitted on a Hadoop machine, our 

project would be horizontally scalable depending on the number of machines that are in the 
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server. 

3.8.1 Data Ingestion 

 Up until this point, our group had been using Apache‟s Phoenix plugin for Java that 

provides a SQL interface on top of Hadoop.  Because the local virtual machine and the server 

machine that our HBase database was run on were located on separate machines, this led to 

increasingly long read times from the server as the amount of test data was increased.  Our group 

already knew that Spark was optimized to make use of MapReduce methods, but as we looked 

more into Spark libraries we found that it not only had built-in HBase support but it also used 

Spark‟s data structure called an RDD.  A Spark RDD, or Resilient Distributed Dataset, behaves 

in the front end as a data structure similar to an array, but in the back end it uses a distributed 

framework that has multiple “regions” split across the different machines in the server. 

 Because of this distributed nature, working with the HBase data using Spark‟s RDDs not 

only makes the process scalable, once the job is run on the same Hadoop server that the HBase 

database lies on, there is virtually no read time as Spark RDDs work with the entire dataset. 

3.8.2 Model Generation 

Our group also looked into optimizing the time it took for fitting the Gaussian curves and 

for generating the models.  Again, turning to Spark, we refactored what methods we could to 

reduce our dependency on libraries such as Apache Math.  We were able to convert the 

covariance and mean matrix calculations to use Spark methods.  However, switching to the 

methods provided by Spark the team encountered issues with incorporating Apache Math‟s 

random sampling method and turned towards using Cholesky decomposition to generate the 

random datasets. 
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4 COLUMN ANALYSIS 

 This chapter looks at the different columns that our team ran an initial analysis over.  We 

looked at several individual columns in the data that were chosen as being columns that we want 

in the distributions.  The methods we used to analyze these columns were the following.  First, 

we performed a frequency count of each unique string in the column.  Then, we attempted to fit 

that column‟s values to look like a Gaussian distribution by sorting the highest frequency in the 

middle and the next highest alternating to the left and right of the center.  The frequencies were 

normalized to percentages, and then a best fit Gaussian distribution was found using Apache 

Math‟s curve fitting implementation. 

An analysis of the results from each column looked at is below.  It is important to note 

that the data our team was given to use as test data was already “scrubbed.”  This means that all 

private information has been removed and this data may not accurately represent the real 

transactional data that ACI has access to. 

 

4.1 MCC Code 

One of the first columns from the dataset we reviewed was the Merchant Category Code 

(MCC).  The MCC code shows the type of merchant the transaction belonged to.  For example, 

the MCC code for a merchant that is a clothing store would differ from a restaurant's merchant 

code.  The MCC code distribution of the dataset we reviewed is displayed in the figure below. 
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Figure 4.1. Frequency counts of MCC code column. 

 The above graph shows the frequency distribution of each unique MCC code in the test 

dataset of 100,000 lines of transaction data.  This chart has been sorted, but the order does not 

make a difference.  In this chart, the merchant at the X value 46 had the highest number of 

occurrences while the lowest number of occurrences is at X value 0.  As you can see, a large 

amount of the transactions (~68%) took place at the top 5 merchants, with the bottom 25 

combined adding up to less than 1%.  After performing a frequency count of each unique string 

these values were sorted to look like a Gaussian curve and then normalized to percentages, which 

can be seen in the figure below.  Then, a best fit Gaussian curve was found for these data points 

using Apache Commons Math.  These mappings from the Gaussian curve are the same mappings 

that are saved to the Index Mapping Table where each X value maps to a unique string in the 

column, in this case an MCC code. 
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Figure 4.2. Gaussian fit of MCC Code column. 

 The results of the Gaussian fit on the MCC column, seen in the figure above, turned out 

well.  The merchants that had a large amount of transactions seem to fit the curve well, as do the 

columns on the lower end.  The points in between still fit with a low (~2%) margin of error. 

4.2 User Country 

 In this transaction dataset, the User Country is the country in which the person who made 

the transaction resides.  The results of the analysis performed on the User Country column can be 

seen in figures 5.3 and 5.4 below.  For this column, we can see that 95% of the transactions in 

the test data were performed by customers from the top two countries, with the remaining 5% 

being spread out over the bottom 90 countries in the data.  This sharp distribution was modeled 
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clearly with the calculated Gaussian distribution, as seen in Figure 5.4. 

 We can infer from this column distribution that the large majority of our consumers come 

from one same country, which should be the United States here, but we still have a broad range 

of consumers who comes from 92 countries which shown in the x-axis. 

 

Figure 4.3. Frequency count of User Country column. 
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Figure 4.4. Gaussian fit of User Country column. 

4.3 Merchant Country 

 The Merchant Country in this data is the country where the merchant took place at 

resides.  The results of the Merchant Country column can be seen in figures 5.5 and 5.6.  As can 

be seen in Figure 5.5, about 80% of the transactions took place in the highest two countries, with 

there being 15 countries overall that transactions took place at.  The Gaussian fit of this data 

worked quite well, with all of the points closely matching the curve.  

 We can infer from this column distribution that: 

● Most of the customers in the test dataset come from two countries because 

transactions that are more local to the customer are more likely to occur than transactions 

that occur in a foreign country. 

● There are still, however, a great number of countries that do not have a large 
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number of merchant transactions, which may represent the fact that there are still 

customers that like to travel or the fact that the original dataset did not contain a large 

number of transactions from these other countries and the frequency count reflects that. 

 

Figure 4.5. Frequency count of Merchant Country column. 



41 

 

 

Figure 4.6. Gaussian fit of Merchant Country column. 

4.4 Card Type 

 The results from the Card Type column can be seen in figures 5.7 and 5.8.  The card type 

of a transaction is simply the company the card that was used in the transaction belongs to (Visa, 

American Express, etc.).  The curve made by this data naturally fit the Gaussian curve very well, 

with almost 90% of the transactions falling within the top three card types. 

 We can infer from this column analysis that: 

● Although consumers may have various types of credit or debit card such as VI 

(Visa), AX (American Express), BC (BC Card), CA (Master Card), DS (Discover Card), 

E (Visa Electron), JC (Japan Credit Bureau), and TO (Maestro), there are only three card 

types that dominate usage in daily transactions.  Since these three card types are the most 

used, it is safe to assume that they are the most popular. 
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Figure 4.7. Frequency count of Card Type column. 

 

Figure 4.8. Gaussian fit of Card Type column. 
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4.5 Merchant State 

 The Merchant State column indicates the state the merchant that the transaction took 

place at resides.  Since there are many countries in the data, the list of states is several hundred 

entries long.  This data did not fit the Gaussian fit curve that well.  One possible reason for this 

could simply be the amount of entries and the way they are spread.  This data seems to be too 

spread out in the lower regions for the Gaussian to fit well.  Another explanation could be that 

we did not account for multiple strings representing the same state - for example, the state 

Massachusetts could be represented by the strings “MA”, “Mass”, or “Massachusetts”.  In order 

to take something like this into account in our program, there would have to be some sort of 

dictionary built for this column (and possibly other columns where this may make sense) that 

could be loaded in at runtime to alter how the mapping function works. 

 Further improvements could be made: 

● In order to analyze the columns more accurately, the vocabularies which utilize 

the same semantics should be grouped into only one column. 

● A country-based filter should be added to make the merchant state analysis more 

specific. 
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Figure 4.9. Frequency count of Merchant State column. 

 

Figure 4.10. Gaussian fit of Merchant State column. 
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5 RESULTS 

5.1 Data Synthesis 

     5.1.1 Synthesis Implementation 

 With the use of Cholesky decomposition and Spark‟s multivariate Gaussian distribution 

methods, the team successfully generated 1,000 lines of continuous data from the 1000 lines read 

from the original dataset with ten different columns and attempted to translate them back to their 

more readable original state.  As the first try, the team only attempted to translate fifteen rows of 

continuous data with the index mapping table back to the original values. The translation took 

two minutes when run locally and successfully produced readable data as seen in Figure 5.1.  

Unfortunately, further results were no longer able to be obtained due to persistent technical 

issues at the end of our project. 

 

Figure 5.1. Synthesized data. 
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     5.1.2 Synthesized Data Analysis 

Clearly, due to small size of our results it is difficult to reach any sort of significant 

conclusion. Technical issues involving the status of the server machines impeded any further 

progress; nonetheless, it is still possible to analyze our current results to determine whether or 

not the synthesized dataset made sense.  The following inferences were obtained after some 

analysis on our generated dataset (the data does not contain any sensitive information and is 

randomly generated from patterns gleaned from a test dataset that was scrubbed of sensitive data 

as well). 

● There is a customer from Liechtenstein (User Country Code 417) that visited 

Lakeland (Zip code 33815), Florida (Merchant State FL) and made some 

transactions there. 

● The customer has a credit card with card BIN (Bank Identification Number) 

054123, card type E (Visa Electron), and with a card expiration date of 11/25. 

● The amount in this customer‟s transactions varies roughly from $0 to $400, which 

leads to the conclusion that if there is a new transaction of large amount such as 

$5,000 that appears in this customer‟s transaction record, it may be possible to 

detect this new transaction as a fraudulent transaction. 

● There are two negative transaction amounts that appeared in the transaction list 

which are an unfortunate byproduct of random generation.  Further improvement 

could obviously be made to the data and model generation. 

 

 Obviously, the synthesized data could be interpreted to represent that one specific 
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customer; however, further tests and analysis on the full 1000 lines of generated data would 

produce a more concrete result and analysis set. 

 

5.2 Validation Testing 

 After synthesizing and translating data back to its original state, the team needed to verify 

whether the generated data had a similar behavior to the original transaction data.  Unfortunately, 

once again due to technical issues concrete validation cannot be performed.  Nonetheless, a 

“theoretical validation” was performed that underwent the steps that an actual validation would 

have taken. 
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5.2.1 Validation Process 

 

Figure 5.2. Validation diagram. 

All of the classes in validation inherit the same interface, Similarity.  The public method, 

similarity, returns an integer which will be in range of 0 to 1 that indicates the similarity between 

two comparable objects.  The MatrixSimilarity class uses the CovMatrixSimilarity class and 

ArraySimilarity to calculate similarity between two matrixes.  A similarity value between two 

matrices is composed of the similarity of two covariance matrices that come from themselves 

and a total similarity which results from comparing each column in both matrixes. The similarity 

of two covariance matrices is calculated by the sign of the value in the covariance matrix. If two 
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values in the same position in two matrices have the same sign, the function will treat them with 

the same relevance and vice versa. The similarity of two arrays comes from KL divergence, 

which is a famous algorithm used to test the divergence of two different arrays. MatrixSimilarity 

will combine these two similarities to create a final similarity. 

 

Figure 5.3. Validation testing sample. 

The figure above shows how the validation process works. The MatrixSimilarity class 

receives two matrices that contain the original dataset and the synthesized data in continuous 

format to compare. An instance of the similarity method can return a value in the range of 0 to 1 

that indicates how similar the two matrices are. If the return value is close to 1, it implies that 

these two matrices are quite similar and vice versa. The left side part of the figure above 

indicates that if the MatrixSimilarity class instance receives two matrices that are exactly the 

same, the similarity function will return the integer “1” which shows that the generated dataset 

and the original dataset are 100% same, which is too ideal to happen. After changing any one of 

the matrices, which is shown in the right side of the figure above, the similarity function will 
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return an integer that is between 0 and 1 depending on how close the generated matrix is to the 

original one.  

When actually performing the validation, these two matrices will be replaced by the 

original and synthesized data in continuous format. The reason for abstracting transaction data to 

mathematical matrices is that there are many existing, well tested algorithms, frameworks or 

libraries that could be used in a similarity test. In the MatrixSimilarity class, covariance matrix 

related functions from Apache Common Math to calculate covariance matrices were used. The 

covariance matrix is a mathematical way to measure the joint variability of two matrices. A value 

of one variable in one matrix will correspond with the value of the variable in the same position 

in the other matrix and the correlation value in a covariance matrix is positive and vice versa. 

These compose the core algorithm behind the similarity function. 
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6 CONCLUSIONS  

6.1 Conclusions 

 The goal of this project was to detect distribution patterns in data, build statistical models, 

and generate transaction data that simulated the actual data‟s behavior without revealing private 

information. The index mapping table, distribution model and validation method created during 

this project provided an effective pipeline to meet our project‟s main criteria. 

 The index mapping table was capable of performing data preprocessing and clean up. The 

two major features of the table were: converting the original discrete transaction data to 

continuous indices to prepare for future data analysis, and to translate generated continuous data 

back to their original discrete state. The index mapping table provided an efficient way to 

approach the actual data and also helped in creating a much more readable version of the 

synthesized data. 

 Subsequently, the distribution model is capable of generating data based on the original 

transaction data. After analyzing the most typical five columns from transaction dataset 

separately, we concluded that every column presented behaviors that tended toward a Gaussian 

distribution although not every column had a perfect fit. As a result, multivariate Gaussian 

distribution is an ideal distribution type while dealing with all the columns together.  

Accordingly, our distribution model successfully generated through the use of Spark‟s 

multivariate Gaussian distribution functions with the help of Cholesky decomposition generated 

several rows of correlated transaction data that was also successfully translated back to readable 

data through the index mapping table. 

 The validation method is capable of evaluating how close the synthesized data is to the 

original data. The major tool for comparison are the two covariance matrices. The validation 
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method is capable of using the two covariance matrices (the original continuous transaction data 

and the generated continuous transaction data) as input and will straightforwardly output a 

percentage representing how similar these two datasets are to each other.  Unfortunately, this 

portion of the pipeline was never officially tested with the generated data due to technical issues 

nearing the end of the project duration. 

In conclusion, the team has designed and built a working pipeline that could handle data 

ingestion, model generation, data synthesis, and a theoretical method of validating the 

synthesized data, which satisfies all of the project requirements. 

 

   6.2 Reflections 

 Throughout the course of this project, the team encountered many trials and tribulations 

that were a roadblock on the path to project completion.  Although not unscathed, the team still 

managed to break through to create a working pipeline.  We hope to impart the experiences we 

learned to any future groups that would attempt to expand upon this project.  Firstly, do not 

underestimate the scope of the project.  Even though at first glance, the objective is simple, data 

generation using patterns drawn from a test dataset, the scope of the project encompasses much 

more than that.  The project approach, the different technologies available for use, and the 

equipment needed to use for the project are just some of the considerations that need to be made 

before the project can even begin. 

 Next, communication is key.  If the project does not have an extremely communicative 

leader, then progress becomes muddy and slow.  Proper communication between the different 

team members would greatly increase the speed and quality of the work being completed as each 

team member could aid one another if one part of the pipeline was causing an issue.  Also, time 
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management is an important skill to have when undergoing any sort of lengthy project and if 

managed by a conscientious leader should bring any group far. 

 As for the development process, the main issues the team encountered were mainly 

related to technical issues.  An important lesson for future groups is to secure a sufficiently large 

group of servers with a large storage space that can be utilized for extremely long periods of time 

to avoid the same issues our group underwent.  In addition to having better technical planning, a 

more in-depth study of the material the project is about would have also greatly helped with any 

design decisions that needed to be made. 

 Finally, a huge roadblock the team encountered was the integration of various different 

technologies into our system.  Although there are many impressive technologies available, 

choosing the right ones, that not only integrated with our system but also performed the 

necessary actions, was one of the more difficult and time-consuming processes during the project 

experience. 

  



54 

 

7 FUTURE WORKS 

7.1 Improvement on Current Project 

 One obvious expansion is to discover and fix the issue regarding the data generation and 

translation. As mentioned in the Data Synthesis section in Results, there are a few negative data 

values in the Transaction Amount column, which are supposed to contain all positive values.  

Although more of an issue with using randomness to generate data, in a future work investigation 

into a more accurate method of data generation and synthesis is recommended.  Alternatively, 

the team recommends investigating the usage of machine learning instead of statistical methods 

in an attempt at solving this problem. 

 Connected to the data generation, a recommendation to any future teams is to implement 

a different method of data generation compared to the one currently utilized within this pipeline.  

The reasoning behind using a custom data generation as opposed to an existing method like the 

“sampling” method in Apache Commons Math is due to a “Matrix is Singular” error.  Future 

teams may want to look into solving this error which would allow the usage of the numerous 

sampling methods that are currently available. 

 As explained in the Data Synthesis section, the team only managed to generate and back 

translate fifteen rows of data into the readable format that is shown in that section.  In other 

words, another recommendation for any future projects built upon this one is to test the data 

synthesis and back translation on the full 100,000 lines to ensure that the generation and 

validation are performing properly.   
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7.2 Other Use Cases 

 A second interesting use case can be looked at is involving the usage of generated 

distributions to implement a method of fraud detection that examined how well a new incoming 

transaction fitted a generated model.  If, for example, the new transaction was at a new retailer or 

country that the customer has never been to before then that transaction would give a much 

worse fit to the distribution than a transaction performed at a retailer that the customer has been 

to many times before.  A possible implementation of this could look at how many standard 

deviations away from the mean each column was located. 

 Another possible expansion would be to implement the ability for the program to analyze 

a dataset and then compute the distribution that best fits that particular dataset.  Using existing 

machine learning libraries, the best distribution to fit a column or a set of columns as well as the 

correlation between the different columns could be found and a dynamic model could be created.   

Using these methods could also expand upon our team‟s model and data generation engine to 

improve model and synthesized data accuracy.  Finally, the current validation suite‟s execution 

speed is rather slow on larger datasets and converting the suite to use distributed calculations 

would vastly improve the speed.  
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APPENDIX A 

APPENDIX A: User Guide 

System Requirements: 

● JDK 1.7 and above 

●  Apache Maven 3.0 and above 

● HBase (with Phoenix) 

● Spark 

  

Project Logic Structure:  

Project code is divided into three parts: Index Mapping, Ingestion Engine, and Validation. Each 

part has its own pom.xml for dependency management. 

Goal of Index Mapping: to index the continuous data to discrete data and have the ability to 

translate them back. 

Goal of Ingestion Engine: to generate synthesized data using spark engine 

Goal Validation: to validate how well the synthesized and original data match 

  

Install & Run: 

This project used Maven to construct dependencies. Make sure pom.xml is in all project folders 

and using [mvn install] under each project folder maven will download dependencies and build 

the project automatically. 

  

Ingestion Engine 

The Ingestion_Engine_2016 project contains both the data ingestion and distribution generation 

parts. Running both of these parts happens in the IngestData class in the engine package. 

 

Uploading Data 

To run the ingestion engine to upload the data to the Hadoop server, you may use the ParseData 

class. This only needs to be done once and uses a file that contains the transaction data in a 

continuous, non-delimited format with the line indexes and lengths specified in the JSON file 

input into the IngestData class.  
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Building Distributions 

Distribution building depends on a Hadoop server with an HBase database running on it. The 

name of the table our group used was “TRX4” but this may be changed in the 

FittedMultivariateGaussian class in the distribution package. 

There are two ways to build a distribution: 

1. Distribution on the entire data: no arguments are given to the constructor 

2. Distribution on a subset of data: the constructor takes in the column being filtered and the 

string to filter by 

There are two methods of generating a distribution currently. The first method is using the 

generate() function, which uses Phoenix to read the data and local Apache Math calculation 

methods to generate the distribution. The sparkGen() function was written to use spark‟s built in 

HBase reading and RDD calculations, which are horizontally scalable when run on a Hadoop 

cluster. However, the sparkGen() function will only generate a distribution on the entire data, not 

filtered. 

Distributions are saved both on the HBase server and locally in a file in the 

Intestion_Engine_2016/distributions folder. 

  

Index Mapping: 

Index mapping is a tool, like dictionary, that used inside the ingestion engine to index continues 

data so that they can be treated as discrete data. Discrete data is like name, country name and etc.. 

IndexData will create a table „INDEXTABLE‟ in HBase as dictionary. It has ability translate 

back and forward between continuous data and discrete data. To translate generated data from 

continuous type back to original type, you need to translate whole matrix which represents the 

generated data. If the column is in continuous data type, the index mapping table will jump over 

and keep this column in the same form. 

 

Convert discrete data to continuous data  

IndexData class is built for translating continuous data to discrete data. Before the translation, we 

need to create a new IndexData instance with a parameter, a connection object connected to 

HBase with Apache Phoenix: 
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                             IndexData index = new IndexData(connection) 

 

Then we can use instance method mapIndexByArray to translate continuous data. The function 

takes two parameter, first is the name of the column that holds continuous data, second is thedata 

itself as a double array: 

 

                       Index.mapIndexByArray(columnName, continuousDataArray) 

  

Convert continuous data to discrete data 

The TranslateData class is built for translating continuous data to discrete data. Before using it, 

we need to create a new TranslateData instance. 

 

                          TranslateData dict = new TranslateData(connection) 

 

Next we must set the name of the lookup table for the TranslateData instance, otherwise it 

doesn‟t know which table it should use to translate data: 

 

                                    dict.setTableName(“INDEXTABLE”) 

 

Now we can use the instance function, translate, to translate the data. The function takes three 

parameters: first is the continuous data matrix, which is our generated data, second is the offset 

of the continuous data columns in a matrix(we suppose all the columns that holds continuous 

data are in front of all the discrete data columns), the third parameter is a string array that holds 

all of the names of the discrete columns: 

 

                  dict.translate(dataMatrix, continuousColOffset, discreteColNameArray) 

  

Validation 

Validation is a way to verify the similarity of the synthesized transaction data and original 

transaction data. We abstract these two dataset into two matrices with the same dimension and 
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compare the covariance matrix of the datasets to check whether they have similar behavior or not. 

 

To validate synthesized data 

If we want to know how similar the generated data and original data are, we can use the class 

MatrixSimilarity. First let us create two example matrices(In actual validation, they will be 

replaced by two matrices of real data): 

RealMatrix m1 = new Array2DRowRealMatrix(new double[][]{ 

{1,2,3}, 

{4,5,6}, 

{7,8,9} 

}); 

RealMatrix m2 = new Array2DRowRealMatrix(new double[][]{ 

{1,2,3}, 

{4,5,6}, 

{7,8,9} 

}); 

  

Then create a MatrixSimilarity instance with these two matrices. Now we can get a similarity 

value by using an instance of the similarity method: 

 

                     double similarity = new MatrixSimilarity(m1,m2).similarity(); 

  

Detailed Implementation Example: 

1. Before embedding IngestionEngine to project, make sure you have HBase database address 

and set up Phoenix properly on HBase 

2. Insert into your main function these lines of code: 

Connecton connection = DriverManager.getConnection(“jdbc:phoenic:xxxx”); [1] 

FittedMultivariateGaussian fit = new FittedMultivariateGaussian(); 

String[] discreteCols = {“name1”,”name2”}; [2] 

String[] continuousCols = {“name3”,”name4”}; [2] 

fit.sparkGen(connection, discreteCols, continuesCols); [3] 
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Comment: 

1. xxxx is your hbase database address 

2. name1, name2, name3, name4 are column names in -the transaction dataset, such as 

“MCC_CODE”, and “CARD_BIN”. If the column is discrete, it belongs to the discreteCols 

variable; If the column is continuous, it belongs to the continuousCols variable. 

3. Call sparkGen() with the Phoenix connection to Hbase, an array of the names of the discrete 

columns, and an array of the names of the continuous columns. 

APPENDIX B: Detailed Project Pipeline 

 

Figure 3.3.  Complete Project outline. 

 


