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ABSTRACT 

This project utilized Building Information Modeling to produce a 5-dimensional model of the 

WPI Sports and Recreation Center. The model was used to perform a construction schedule 

performance analysis of major work packages.  In addition, alternative analysis and design was 

performed on the structural, geotechnical and functional aspects of the connection between 

Harrington Auditorium and the Recreation Center. 
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CAPSTONE DESIGN STATEMENT 
 

The design capstone requirement of this Major Qualifying Project was met through the 

exploration of structural, geotechnical and functional design aspects related to the physical 

connection of the new Sports & Recreation Center and Harrington Auditorium buildings at the 

WPI campus.  We also used Building Information Modeling methods and to review the design 

constructability of the new Recreation Center and developed a 5D model of for the foundation, 

structure and façade.  

 The new Recreation Center is being constructed in close proximity to the pre-existing 

Harrington Auditorium, therefore there were inherent design considerations relating to this 

relationship during the design phase.  Our analysis addresses   three design factors involving the 

two structures: geotechnical design for excavated soil and underpinning of existing foundations, 

framing design for the tie-in between the buildings, and space reconfiguration design of the 

trainer‟s room which will be directly impacted by the tie-in.  We analyzed and designed for each 

aspect individually and then developed a proposal for the interaction between the buildings based 

on our findings. 

The first feature we explored was the geotechnical design of the foundation along the 

west side of Harrington Auditorium, which was subjected to a loading condition caused by the 

loss of support from surrounding soil during excavation.  We proposed the use of micropiles as 

the primary foundation stabilization support during excavation, a type of underpinning that uses 

grout and steel to support compressive loads.  The underpinning layout was designed to produce 

the most economical solution possible. We tested eight different designs configurations and 

chose the design that reduces the amount of required material for installation, while maintaining 

structural stability.  

The second aspect we investigated was the connection, or “tie-in” between the Recreation 

Center and Harrington Auditorium.  From the beginning of the design phase of the Recreation 

Center, it was decided upon to connect the two buildings to provide space for robots to be stored 

and operated on during robotics competitions held at Harrington.  The connection will be on the 

gymnasium floor level of Harrington Auditorium and on the Robotics Pits level of the Recreation 

Center, acting as a pathway between the two for Robotics Competitions and for simple 

circulation purposes.  The design would require a portion of the Harrington exterior brick-CMU 
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wall to be removed, so we developed a framing support for the new opening.  We decided to use 

lintels as the primary load support, as oppose to a two-column/beam system.  The decision to use 

lintels would minimize the cost of the tie-in since it uses substantially less material that the 

alternative design proposal.  

The final characteristic of the interaction between the buildings that we studied was the 

effect the tie-in would have on the trainer‟s room in Harrington Auditorium.  The connection 

between the buildings runs directly through the trainer‟s room of Harrington, which will remain 

fully-operational in the future, despite the addition of a new training area in the Recreation 

Center.  Therefore, the room would need to be reconfigured to allow for the tie-in and the 

resulting hallway that would run through it to the gymnasium floor.  We took into consideration 

the functional, social, economical and constructible aspects when designing a reconfiguration of 

the room.  We designed a hallway that would function as the primary route for robots during 

competitions by making it wide enough to support traffic in opposite directions simultaneously.  

Our design also limits the interference between the hallway and the trainer‟s room by 

maximizing the space of the trainer‟s room given the dimensional constraints.  By addressing 

both the trainer‟s and robotics team‟s design recommendations we were able to design a socially 

accommodating layout.  We addressed the economic and constructability aspects by developing 

a design that reduces amount of exploratory work and demolition/reconstruction needed to 

perform.  This reduces both the cost and the time it takes to reconfigure the area.   

In addition to the design considerations pertaining to the two buildings tie-in, we also 

reviewed constructability aspects of the design of the Recreation Center.  We used existing 3D 

models of the Recreation Center, developed by Cannon Design, and linked them to construction 

schedules generated by Gilbane, the construction manager.  This allowed us to visually display 

the construction of the Recreation Center design as it progressed over time, commonly referred 

to as a four-dimensional model.  We developed two separate 4D simulations; the first showed the 

planned schedule developed prior to construction, and the other of the actual progress of the 

construction project.  We tracked the progress of the actual construction by attending project 

owner meetings, reviewing web-cam time-lapsed footage, and by studying various project-

related documentation.  By comparing the two models, we were able to determine the schedule 

performance index (SPI), as well as determine the cost effectiveness of the construction process 



 

v 
 

based on the success of specific trades. By developing this methodology, we were able to 

conduct an overall five-dimensional review and analysis of the Sports & Recreation Center. 

 The construction of the Sports & Recreation Center also had various social implications, 

most prevalent amongst the student body was the campus disruption and coordination required 

because of the construction site.  As with any construction project, the surrounding area will be 

affected and in the case of the Recreation Center, the quad was reduced in size, haul 

roads/parking areas reconfigured, and Harrington Auditorium trainer‟s area reconfigured.  We 

took these aspects into consideration while developing our project. What‟s more though, is the 

lasting impact the Sports & Recreation Center will provide for the WPI Community. Prior to 

construction WPI did not have a facility that allowed for students, faculty, varsity athletes, 

robotics competitions, and meeting spaces to all coexist in one facility. The creation of the new 

building on campus will reshape the physical layout of our campus, but it will also force the WPI 

Community to rethink the way we view our facilities. While this project is but a small part in the 

development of this change, we are proud to have served our University in this capacity. 
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1.0 INTRODUCTION 

In May of 2010 construction of a fully operational, state-of-the-art recreational facility 

began on Worcester Polytechnic Institute‟s campus in Worcester, MA.  The $53 Million building 

features a 29,000 square foot gymnasium, a natatorium containing a 25-meter competition 

swimming pool, rowing tanks, squash courts, robotics pits, 11,000 square feet of fitness space, 

and an additional 5,000 square feet of multipurpose rooms (WPI Press Release, 2010).   Despite 

the massive size of the structure and the complexities of the construction site, the project will be 

completed within two years.  The ability for projects, such as the recreation center, to be 

completed in such a short amount of time is due to a large extent to changes in the construction 

industry over the years, including the addition of powerful modeling computer software. 

The construction industry is constantly shifting in an effort to streamline the construction 

process, minimize material waste, decrease overall cost, accelerate project completion, and 

improve communication between all parties involved.  The implementation of Building 

Information Modeling (BIM) related software, such as Autodesk‟s Revit and Nemetschek, into 

construction projects contributes to making these changes in the industry possible.  Although 

BIM-related software has been around since the 1980‟s, it has only recently found acceptance in 

the AEC industry, but experts estimate that within a few years BIM will be a standard tool 

utilized on most projects (Reinhardt, 2010).  A Building Information Model is a computer-

generated 3D model that allows the user to visualize the project beyond just three dimensions by 

incorporating time and money.  By introducing time, the BIM model becomes “4D” and can be 

used to track the progress of the project during construction from inception to completion.  With 

the 4D model, project teams can view the proposed structure throughout its different phases of 

construction and organize the building process before construction even begins.  This can help 

reduce the timeline of the project by creating a better understanding to those parties involved in 

the construction process as well as by detecting issues before they occur, such as spatial 

interferences.  It also helps in anticipating the difficulty of changes in design as the project 

progresses.  Building Information Models can also include money tracking throughout the course 

of the project by applying costs to the different elements of the building, thus creating a 5D 

model.  This helps the owner or project manager understand how the money is being spent over 

the course of the project and recognize how to allocate the funds during different stages of 

construction.  .            
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Although Building Information Modeling has provided evidence of its capability to 

significantly improve the efficiency of construction projects, it has still not been adopted 

throughout the entire industry.  Most projects are driven primarily by budget (money) and 

schedule (time).  The 4D-5D capabilities of BIM allows for both the budget and schedule to be 

visually linked to the 3-dimensional model of the project itself.  These models also make it easier 

to perform Earned Value Analysis, which is a method of assessing how well a project is being 

managed.   

During the design and construction of the Recreation Center, BIM was employed in a 

limited fashion; during the design phase by creating a 3D model that helped in producing 

construction documents, and during the construction phase for coordinating M/E/P and Fire 

Protection. The focus of our Major Qualifying Project explores the extension of BIM modeling 

by developing 4D and 5D models of the WPI Recreation Center.  This was accomplished by 

tracking the progress of the WPI Recreation Center construction from when concrete was first 

poured on August 7
th

, 2010 to when the façade reached substantial completion in March of 2012. 

BIM modeling and scheduling software was used to evaluate the overall progress of four of the 

primary construction phases: concrete, steel, roof, and façade.  We were able to obtain Revit 

models and construction schedules of the Recreation Center, which we used as the foundation of 

our 4D-5D model development.  However, these were not sufficient enough to accurately track 

the project, so we also performed interviews with project staff, studied webcam footage of the 

construction site and attended weekly Owner‟s Meetings which gave us greater insight into the 

week-to-week project decisions over the course of construction.  Once the model was complete 

an Earned Value Analysis was conducted to determine how well the project was managed. From 

what was learned suggestions were provided as to how using BIM models throughout the 

construction process could have positively impacted the project, in terms of its ability to improve 

communications between parties, potentially reduce project costs, and increase the efficiency of 

the project processes. 

An interesting aspect of the construction of the Recreation Center is its connection with 

Harrington Auditorium, which will be used as the main passageway between these two 

buildings, and in particular for robotics competitions.  In this regard, this study also includes a 

structural-geotechnical as well as a functional design review of the connection between these 

buildings.  The foundation  underpinning and soil nailing is reviewed in detail as well as 
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functional and operational aspects involved in changing the current use of the space currently 

dedicated to the trainer‟s room in Harrington,  

In its essence, the results obtained from this Major Qualifying Project show the potential 

benefits of using five-dimensional modeling with regards to time and cost management.  Also, 

the results we obtained regarding Harrington Auditorium‟s interaction with the Recreation 

Center outline the necessary procedure and the key aspects that need to be considered when 

planning and designing the construction of a building near a pre-existing structure.   
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2.0 BACKGROUND 

2.1 WPI Recreation Center 

A large construction project is currently taking place at Worcester Polytechnic Institute 

that will be yet another display of excellence in engineering and design on the WPI campus.  The 

project is the development of a brand new, state-of-the-art Sports and Recreation Center that will 

promote student and faculty involvement in athletics and fitness.  The facility is a 5-level, 

140,000 square foot structure located at the west end of the campus quadrangle overlooking 

Alumni Field.  The Recreation Center will feature a natatorium, a fitness center, a four-court 

gymnasium, a suspended indoor running track, rowing tanks, racquetball courts, dance studios, 

and office and meeting spaces for the coaches and staff of the Department of Physical Education, 

Recreation, and Athletics (Mell, 2009).  In addition to the athletic features that the building 

provides, it will also include space for robotics competitions, career fairs, admissions open 

houses, and alumni events; utilizing the buildings capability for all students, faculty, and alumni 

to enjoy. A rendering of the WPI Recreation Center provided by Cannon Design can be seen 

below in Figure 1. 

 

Figure 1:  WPI Recreation Center Rendering (View from Quadrangle) 
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In addition to the many functions that the building will offer, it will also be an excellent 

display of modern architecture and environmentally friendly design.  The majority of the 

building‟s exterior will consist of glass curtain walls that will provide excellent views from 

inside and an aesthetically-pleasing structure on the outside.  Also, the building aims to become 

LEED-certified when complete, meaning that it will meet the highest standard of 

environmentally-friendly performance (Mell, 2009).  WPI plans to achieve a high level of 

sustainability in the new facility through the use of a Building Management System that will 

integrate all mechanical and electrical systems in the building. This includes the abilities to 

balance building-wide power consumption with available renewable, natural power production 

from both a large array of solar panels and the extensive network of power-generating fitness 

equipment. Once complete, the new Recreation Center will undoubtedly become a staple of the 

WPI campus and be treasured by the WPI community for many years.   

2.2 Recreation Center Project History 

The idea to build a new recreation facility on the WPI campus has been around for years 

amongst the Institute‟s community. The combination of a recent growth in student body 

population and the outdated athletic facilities currently offered at WPI made it apparent that a 

new, state-of-the art recreational facility would be required on campus to accommodate these 

needs.  In the spring of 2009, construction was scheduled to begin on the project; however it was 

deferred due to economic conditions (Mell, 2009).  Then, on October 30, 2009, the Board of 

Trustees met at its annual fall meeting and unanimously voted to proceed toward construction of 

the facility, setting May of 2010 for ground-breaking.  The decision to commence with 

construction was made after reviewing the Institute‟s continuing financial, academic, and 

enrollment strength.  The building is set to be complete and fully-operational by the start of the 

2012-2013 academic year.     

2.3 Recreation Center Project Team and Organization 

Most projects and contractual agreements consist of three main teams working together: 

the owner, the designer and the contracting teams.  However, there can also be additional parties; 

such is the case in the WPI Recreation Center, as Cardinal Construction acts as WPI‟s 

representative party.   Members of the owner‟s team must provide the project‟s needs, the level 
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of quality expected, a permissible budget, and the required schedule.  They must also provide the 

overall direction of the project.  The design team, chosen to be Cannon Design for the Recreation 

Center project, generally develops a set of contract documents that meets the owner‟s needs, 

budget, required level of quality, and schedule.  In addition, the work specified in the contract 

documents must be constructible by the contractor.  The contractor‟s team, Gilbane Construction 

in the Recreation Center project, must efficiently manage the physical work required to build the 

project in accordance with the contract document (Oberlender, 2000). The success of a 

construction project is often dictated by the ability of the three principal contracting parties to 

work effectively together.   

Before construction began on the Recreation Center, WPI had to choose design and 

management teams and determine which type of contractual agreement would best suit the 

project.  Determining the contractual agreements provides a blueprint for the hierarchy during 

construction and to a large extent influences the harmony of the relationships among participants.  

This choice is based on how well defined the project is before construction begins, as well as the 

owner‟s experience in the industry.  

     

2.3.1 Project Manager – Construction Manager at Risk – Gilbane Construction 

Project management is “the art and science of coordinating workers, equipment, 

materials, money, and a project schedule, in order to successfully complete a project on time and 

within budget” (Oberlender, 2000). An effective project manager must be able to organize 

people to focus on the goal of the project at hand, in addition to efficiently communicating and 

motivating their workers. Every project is different due to its location and magnitude, therefore 

as a project manager it is important to be educated about various aspects of each project. The 

project manager is typically assigned to a project at its start, and will work closely with the 

owner until completion (Oberlender, 2000). 

Project Managers are utilized on all construction projects regardless of size and the 

capacity in which they perform is dictated by the contractual agreement of the specific project.  

There are many different contract arrangements for construction projects but WPI chose to 

implement a Construction Management (CM) at Risk arrangement for the Recreation Center 
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project, with Gilbane Building Co. (Gilbane)  performing the role as Project Manager or CM.   A 

Construction Management (CM) at Risk arrangement is a four-party arrangement involving the 

owner, designer, CM firm, and contractor.  On a CM project, a construction management firm 

coordinates with a design firm, although they are under separate contracts, and they report to the 

owner throughout the progress of the project. The basic CM concept is that the owner assigns a 

contract to a firm that is knowledgeable and capable of coordinating all aspects of construction to 

meet the intended use of the project by the owner. (Oberlender, 2000)   The construction 

management team is usually responsible for determining and hiring out all of the work to 

subcontractors.  Figure 2 below shows a CM @ Risk contract:   

 

Figure 2:  Construction Management at Risk Arrangement 

 

Gilbane is based out of Providence, Rhode Island, and is one of the largest privately held 

family-owned real estate development and construction firms in the industry.  Gilbane has well-

established history with WPI, having led the construction of several WPI facilities in the past 

including East Hall and Bartlett Center.  WPI‟s CM at Risk agreement on the Recreation Center 

project includes cost-plus compensation with a Guaranteed Maximum Price.  As part of 

Gilbane‟s role as CM at Risk, they hire and manage the majority of sub-contractors throughout 

the project, besides several specialty packages which WPI takes direct responsibility.  Since they 

hire the sub-contractors and set the GMP, they are essentially the party taking the greatest 

financial risk in project if it is to exceed the GMP. 
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The Guaranteed Maximum Price (GMP) within a CM at Risk contract is beneficial to the 

owner because it allows them to establish their budget, and hold the CM accountable for any 

money spent beyond that limit.  This is one of the valuable characteristics of a CM at Risk 

contract and likely the main reason WPI chose it for the Recreation Center project.  The WPI 

Recreation Center agreement holds Gilbane liable for completing all work outlined in the 

provided plans within the Guaranteed Maximum Price, and it is understood that any change 

orders can either increase or decrease the overall cost, as they are considered work that is out of 

the original scope of the project.  Although Gilbane was brought onto the project during pre-

construction, they didn‟t officially submit the finalized GMP until late 2010.  WPI decided to 

postpone the submittal of the GMP until after all bidding was completed, including certain 

specialty items within the facility that delayed bidding.  By waiting until all bidding was 

complete, Gilbane was able to provide a more accurate GMP with fewer contingencies, and 

ultimately less risk to the owner.  The finalized GMP was set at $53M and that includes all work 

as well as a built-in construction fee to Gilbane. 

 

2.3.2 Designer – Cannon Design 
 

The design team was chosen early on in the project to be Cannon Design.  As lead 

designer, Cannon Design works through a contract directly with WPI, as is the general 

contractual arrangement in a CM @ Risk project. As part of their contract, Cannon Design 

remains in direct contact with WPI from inception to completion of the entire project.  They 

coordinated with Gilbane during the design phase however they were under separate contracts 

with WPI.  They also continue to collaborate with the management teams throughout the project, 

since the work that is performed day-to-day depends solely on the design from Cannon.   

 

2.3.3 Owner’s Agent – Cardinal Construction 

 WPI also chose to hire Cardinal Construction to represent them throughout the 

construction process through a contract arrangement commonly known as Owner/Agent, which 

is often implemented not only CM @ Risk projects but many different types of projects.  This 

type of contractual agreement gives Cardinal Construction the authority to perform as the 
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owner‟s representative for the entire project, and as such, act as the voice of the University in all 

settings related to the design and construction of the project to ensure that WPI‟s best interests 

are always represented.  Cardinal Construction has worked for WPI and alongside Gilbane on 

several previous WPI construction projects and WPI certainly felt comfortable hiring them again 

based on their experience.  Cardinal is not contractually attached to Gilbane or Cannon, however 

they work very closely to ensure that WPI is being effectively represented.  

The organizational breakdown of the Recreation Center project can be seen in Figure 3 

below. 

 

Figure 3:  WPI Recreation Center Organizational Breakdown 

 

2.4 Owner’s Meetings 

Representatives of each of the major participants of this project meet weekly with WPI in 

the form of an Owner‟s meeting where they update the owner and other WPI representatives of 

all progress and potential changes of that week.  Each meeting is discussion-based, and serves as 

an opportunity for all parties involved in given decisions to fully discuss the changes before 

appropriate action can be taken.  The weekly owner‟s meetings for the WPI Recreation Center 

project are attended by a number of individuals and organizations whom have their own 

individual objectives and goals. WPI is represented weekly by Janet Richardson, the VP of 
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Student Affairs; Dana Harmon, Director of Physical Education, Recreation, and Athletics; 

Jeffery Solomon, Chief Financial Officer; Alfredo DiMauro, Assistant VP of Facilities; Shawn 

McAvey, Physical Education Facilities Manager; Anne McCarron, Associate Athletic Director; 

and Sean O‟Connor, Assistant Chief Information Officer.  Gilbane is represented by Neil 

Benner, the lead project manager, Bill Kearney, the project executive, and Melissa Hinton, a 

project engineer.  While Neil organizes and facilitates each weekly meeting, Bill Kearney is still 

ultimately responsible for all of Gilbane‟s involvement in the construction of WPI‟s new 

Recreation Center.  Cannon Design is regularly represented by architects Lynne Deninger and 

Dominic Vecchione.  Cardinal Construction, the construction firm representing WPI is typically 

represented by Brent Arthaud and Michael Andrews.    

 Neil Benner prepares the agenda and chairs each meeting, while Project Engineer Melissa 

Hinton takes notes on updates and changes.  An agenda and lately weekly change orders are 

provided to each attendee, however progress updates are given verbally.  Computer generated 

models or other visual aids are not used during these meetings.  In the meetings all parties must 

work together to achieve a completed project that is under budget and on time, based on the 

schedule. Although WPI has hired a construction representative, they remain highly involved in 

the weekly tasks, the schedule and the budget of the project. 

 Among the obvious benefits of the owner‟s meetings is the fact that all stakeholders can 

voice their opinions and stand up for what they see is most important. By hosting a weekly 

meeting, Gilbane can consistently update WPI regarding time and cost, and WPI can be open and 

realistic with their expectations.  Cannon‟s presence at the meeting ensures that the design and 

execution of the agreed upon plans are met appropriately.  

  

2.5 Project Budgeting, Cost Estimating, Payments and Bidding 

Along with determining contractual agreements it is imperative to establish how the 

project will be financed. This includes the budget of the project, as well as the terms of payment 

to the architect, CM, and sub-contractors; therefore it is essential to select the most practical 

method for a project, and the members involved. 
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The bid is created prior to the start of the construction phase, making it crucial for the 

completeness of the design to determine the most sensible way to finance a project (Oberlender, 

2000). If the design is not finalized before the start of construction then it is imperative to finance 

the project using a cost reimbursable method, however if the design is finished before the bid is 

placed then a price fixed method can be used. 

Lump sum and unit price are the two systems used under a price fixed project, because 

they allow for the contractor to price out the project, to completion, before any work is started. A 

lump sum allows for only one price to be quoted to the owner. This price represents the total cost 

of the project including the materials and equipment used, labor, subcontracted work, overhead, 

and profit (Oberlender, 2000). The figure produced will be the exact amount the owner pays, 

unless the owner decided to change the design after the prices has been established. When 

fabricating a lump sum the contracture uses Construction Specification Institutes (CSI) 

MasterFormat (Oberlender, 2000). This format recognizes 16 major divisions within the 

industries standards. These divisions include general requirements, site work, concrete, masonry, 

metals, woods and plastics, thermal and moisture, doors and windows, finishes, specialties, 

equipment, special construction, conveying systems, mechanical, and electrical. Each Division 

will be further broken down using a Work Breakdown Structure, in order to determine the total 

cost of everything within the respective divisions.   

Table 1 is the actual work breakdown structure developed by Gilbane for the WPI 

Recreational Center,  it includes all bid packages and change orders up-to-date.  The first section 

“Packaged Work” includes the cost for all work packages.  The second section includes General 

Conditions and summarizes costs directed toward the CM such as contingencies and overhead.  

The third section contains Change Orders and their respective costs.  The project GMP is showed 

at the bottom and consists of all the above costs summed up; over the course of the project this 

figure changes depending on additional change orders. 
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DESCRIPTION GMP Amount Current Amount 
PACKAGED WORK ITEMS (Includes Owner Allowance Amounts) 

Sitework $3,923,616 $3,923,616 

Landscaping – Owner Allowance $220,550 $220,550 

Concrete Foundations $2,785,421 $2,785,421 

Structural Precast $1,597,000 $1,597,000 

Brick & Precast $1,236,513 $1,236,513 

Structural Steel $3,497,809 $3,497,809 

Misc. Metals $575,319 $575,319 

Millwork $300,000 $300,000 

Spray Fireproofing $224,500 $224,500 

Waterproofing and Caulking $658,081 $658,081 

Roofing $1,602,401 $1,602,401 

Firestopping $123,300 $123,300 

Doors/Frames/Hardware $231,192 $231,192 

OHC Doors/Loading Dock Equipment $39,000 $39,000 

Glass & Glazing $2,985,066 $2,985,066 

Drywall $1,985,500 $1,985,500 

Ceilings $599,500 $599,500 

Painting $284,901 $284,901 

Synthetic Sports Flooring $539,438 $539,438 

Carpet/Floor Tile/Rubber/Linoleum $244,686 $244,686 

Ceramic/Porcelain Tile/Precast Terrazzo $764,760 $764,760 

Wood Athletic Flooring $259,689 $259,689 

General Trades/Specialties $615,000 $615,000 

Interior Scaffolding $193,400 $193,400 

Turnstiles $80,000 $80,000 

Fixed Natatorium Seating $50,000 $50,000 

Sports Equipment $249,715 $249,715 

Pool $2,045,661 $2,045,661 

Indoor Rowing Tank – Owner Allowance $453,000 $453,000 

Squash/Racquetball Courts $181,430 $181,430 

Elevators $262,857 $262,857 

Fire Protection $294,887 $294,887 

Plumbing $1,150,307 $1,150,307 

Mechanical/Controls $5,360,000 $5,360,000 

Electrical & Tel/Data $2,964,677 $2,964,677 

Early Site Electrical $120,275 $120,275 

SUBTOTAL – PACKAGED WORK ITEMS $38,159,401 $38,159,401 

General Conditions 

Original CM Contingency $801,347  

CM Contingency Added from Buyout N/A  

CM Contingency Committed to date N/A $561,373 

CM Contingency Projected to be Spent N/A $239,974 

CM Contingency Remaining N/A $0 

CDI – Subguard $457,913 $457,913 

CM Preconstruction Services $150,000 $150,000 

CM General Conditions $2,527,123 $2,527,123 

CM General requirements $1,160,816 $1,160,816 

Permits $299,151 $299,151 

Liability Insurance $375,470 $375,470 

CM Fee $878,624 $878,624 

APPROVED CHANGE ORDERS 

   

TOTAL APPROVED CHANGE ORDERS:   

Change Order #1  $79,064 

Change Order #2  $55,237 

Change Order #3  $69,580 

Change Order #4  $60,986 

Change Order #5  $139,892 

Change Order #6  $145,522 

Change Order #7  $97,477 

Change Order #8  $137,949 

Change Order #9  $58,894 

Change Order #10  $82,462 

Change Order #11  $172,145 

PROJECTED FINAL GMP w/o Potential Costs $44,809,845 $45,909,053 

Potential Out of Scope Costs N/A $626,267 

PROJECTED FINAL GMP w/ Potential Costs $44,809,845 $46,535,320 

Table 1:  WPI Work Breakdown Structure (2/2/2012) 
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Cost reimbursable agreements, also known as cost plus agreements, are typically used 

when unique features, that could not be easily estimated, are a part of the project, or when the 

construction starts before the design is complete and the owner wants to continue to make small 

changes on the project (Oberlender, 2000). This type of agreement allows for a rough estimate 

for labor, equipment and other services to be determined ahead of time along with the contractors 

commission for the project, in the form of a fixed fee or a percentage of the total price. In order 

to keep the cost of a project down owners will set a Guaranteed Maximum Price (GMP) with 

incentives to push the contractor to the lowest achievable price (Oberlender, 2000). These 

incentives may state that if the price is below the GMP then the owner pays the contracture an 

extra percentage of the difference in the price, and that if the project goes above the GMP then 

the contractor will have to pay a percentage of the extra cost (Oberlender, 2000). WPI chose to 

finance their recreational center using a cost plus agreement with a GMP. This agreement was 

most suitable due to the unique features of the recreational center, including the rowing tank, 

robotics pit, hanging running track, and 25 meter competition length swimming pool.  In order to 

keep the cost of the project down, WPI agreed to a $53M GMP set by Gilbane. 

 

2.6 Project Scheduling 

The project schedule dictates the pace at which construction is performed and sets a 

timeline for project completion.  It is important to have a well-defined schedule so that all parties 

understand the activities that need to be completed as well as those that are most critical to the 

projects on-time completion.  Project schedule is subject to change due to many reasons 

including inclement weather, design change, lack of worker production, poor scheduling, and 

lack of funds among many others.  Since some of these reasons are unpredictable, such as poor 

weather conditions, there is often extra time built into the schedule to account for the potential 

additional setbacks.   

Computer software has transformed the way in which projects are scheduled.  Project 

schedules are vital to the construction process, making massive projects manageable by breaking 

them down into individual parts.  Construction projects consist of thousands of individual 

activities that are to be performed over the course of the construction, all of which are 
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interconnected.  This vast network of activities makes scheduling a very complex and timely 

process.  However, computer programs, such as Primavera, have been created to make the 

process of creating a schedule more efficient.  

Project schedules are comprised of individual activities that are either critical or 

secondary.  Critical activities are those that have no lag time, meaning they must have no extra 

time built in for them to be completed.  These activities need to be completed on time or the 

entire schedule will be forced back.  Non-critical activities do not dictate the schedule as directly 

as critical activities since they have lag time built in, however if they are not completed on time 

they can delay the overall schedule.  A single project can have tens of thousands of activities that 

need to be completed before the project is finished, so it is vital to determine the relationship 

between them and their level of critical completion. 

There are several ways of designing a schedule which include the Critical Path Method, 

Gantt Chart or a combination of the two.  Both methods take the scheduling activities and 

display them in a way that makes it easier to visualize the overall scheduling process. 

 

2.6.1 Critical Path Method 
 

The Critical Path Method (CPM) is a procedure for using network analysis to identify 

those tasks which are on the critical path: where any delay in the completion of these tasks will 

lengthen the project timescale, unless action is taken. (Prensa, 2002).  The CPM identifies which 

tasks can be delayed (those not on the critical path) for a while if resource needs to be reallocated 

to catch up on the other tasks and also identifies the minimum length of time needed to complete 

the project.   

When creating a CPM, all activities must be identified before starting.  Each activity has 

its own properties which include duration and dependency, which tasks must be completed in 

order to proceed with the next task.  Once these characteristics are determined, a CPM network 

can be drawn to illustrate the precedence among the activities.  Figure 4 below shows a CPM 

network diagram with eight activities and includes all necessary information to determine to 

critical activities.   
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Figure 4:  Critical Path Method Network Diagram 

 

Critical Path Analysis is especially effective and powerful in assessing the shortest time 

in which a project can be completed as well as the sequence of activities, scheduling, and timing 

involved in reaching completion. 

2.6.2 Gantt Chart 

A Gantt Chart is a project scheduling model that shows activities in a bar chart.  Much 

like the CPM, a Gantt Chart shows the critical activities and how they are connected but in a 

easier to visualize model.  However, a Gantt chart is more powerful in that you can break 

activities down into subcategories such as masonry, concrete, or steel to help determine when 

and for how long different contractors will be working on the construction site (Hall, 2002).  

This makes cost estimating more accurate since the project manager knows the duration of how 

long they‟ll need to hire certain contractors.  Figure 5 below is a simplified version of Gantt 

Chart. 

 

Figure 5:  Gantt Chart 

 

http://upload.wikimedia.org/wikipedia/commons/c/cd/SimpleAONwDrag3.png
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2.6.3 Primavera 
 

Primavera is a project scheduling software package that is very powerful and has become 

the standard in the construction industry.  Primavera is the primary scheduling software 

implemented by Gilbane for the WPI Recreation Center project.  In addition to its scheduling 

capabilities, Primavera software helps companies propose, prioritize and select project 

investments, and plan, manage and control the most complex projects and project portfolios 

(Penner, 2008).  Primavera allows the project scheduler to submit thousands of activities and link 

them together to create a working schedule.  It has hundreds of features that make organizing and 

visualizing different aspects of the schedule very easy.   For instance, activities can be grouped 

by work breakdown structure so the scheduler can determine when and for how long to contract 

out certain aspects of work, such as concrete and steel erection.  Also, it is very easy make 

adjustments to the schedule over the course of project, allowing the project manager to determine 

how different processes will impact the overall duration of the project. These are only a few of 

the many advantages of using Primavera during a construction project.   

Figure 6 below is a screenshot of Gilbane‟s construction project schedule for the 

Recreation Center using Primavera.  This particular section of the schedule shows several of the 

activities for the Design & Preconstruction of the project.  The columns include pertinent 

scheduling information for each activity such as Activity ID, Activity Description, Duration, 

Early Start/Finish, Bid Package Number, Total Float, and Delay.  These columns can be arranged 

and organized in any fashion that the project scheduler wishes within PRIMAVERA.  On the 

right hand side the activities can be viewed in their relative duration to the calendar, and the 

color of each bar can be used to distinguish critical activities from secondary activities. 

 

Figure 6:  Gilbane Primavera Schedule 

 



 

17 
 

2.6.4 WPI Scheduling Techniques 

The scheduling of the WPI Recreation Center is performed by Gilbane using Primavera.  

During the pre-construction phase of the project, Gilbane developed a schedule for the entire 

construction process that included thousands of individual activities.  Once every month they 

update the schedule by adding any new design or construction changes and removing all 

completed activities.  As the project progresses, the level of detail of certain construction 

activities also increases.  

 Gilbane sometimes changes the organization of activities within Primavera.  Some 

months they will organize activities into Work Breakdown packages, such as sitework, concrete, 

steel, millwork, etc.  This method is helpful in determining the duration of certain package types 

and hiring subcontractors to complete the work package.  Another way they sometimes organize 

the schedule is by building section:  A, B, C, and D.  The Recreation Center is broken down into 

four different sections and when they organize the schedule by these sections it is easier to 

visualize how the construction will progress throughout the building.  Figure 7 shows the four 

sections of the Recreation Center.  

 

Figure 7:  Recreation Center by Sections 
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2.7 Earned Value Analysis (EVA) 

 The Earned Value System tracks the work being done on a project by comparing the 

projected work to the actual work completed. The projected work is found by cost loading the 

CPM diagram to establish the distribution of the projects cost over the course of the project, 

therefore finding the budgeted cost of the work scheduled (BCWS) (Oberlender, 2000). The 

actual cost of the work performed (ACWP) is found by tracking the receipts of the project, to 

determine the money spent on the project at any given time. The percent of the work completed 

at any time can then be multiplied by the budgeted amount for the work to determine the amount 

of money earned at any point. The money earned is known as the budgeted cost of the work 

performed (BCWP) (Oberlender). A lazy S curve can be created by graphing the BCWS, ACWP 

and the BCWP. The BCWS, ACWP and the BCWP can also be used to find the Cost Variance 

(CV), Scheduled Variance (SV), Cost Performance Index (CPI), and the Schedule Performance 

Index (SPI), as shown below: 

 Cost Variance,           –       

 Scheduled Variance,           –       

 Cost Performance Index,                   

 Scheduled Performance Index,                   

 

The Cost Variance shows the actual work paid for versus the actual work completed, 

while the scheduled variance shows the actual work paid versus what was planned to be paid. 

The cost variance explains if a project was overrun or not by the use of a number less the one on 

the cost performance index (CPI).  Overrun projects have more money was paid in a period then 

was budgeted for that period. The scheduled variance shows if the work is ahead or behind 

schedule, by determining if the budgeted work hours are less than the earned work hours, or not. 

If a project is ahead of schedule then the scheduled project index (SPI) will be greater than one, 

however if the project is behind schedule then the SPI will be less than one (Oberlender, 2000). 

 The CPI and the SPI are regularly tracked in order to determine if a project in on target. 

By tracking a project the construction manager can determine where the project fell behind 
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schedule, or is over budget. The construction manager can then use that information to determine 

the best approach to mitigate the problem. Figure 8 below is an example of a SPI and CPI graph. 

 

 

Figure 8:  Typical CPI-SPI Graph 

 

 

2.8 Building Information Modeling 

Usually, drawings and computer-aided design (CAD) files (two-dimensional documents) 

are the primary media for communicating graphic information among project participants. While 

all participants in this process are assumed to be familiar with 2D documents, the use of these 2D 

documents could cause situations in which complex details of a project are often not represented 

accurately causing problems for all parties. Using traditional tools and processes, the complexity 

of a specific situation often is not fully understood until construction has begun and costly 

changes have to be done. (Reinhardt, 2010) 
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A Building Information Model is computer-driven representation of a facility for the 

purpose of design, analysis, construction and operation. A BIM model consists of geometric, 3D 

representations of the building elements plus additional information that needs to be captured 

and transferred in the AEC delivery process and in the operation process of the facility. 

(Reinhardt, 2010) 

 

2.8.1 BIM History 

Even though Building Information Modeling (BIM) has been around since the mid-1980s 

only recently has it risen in popularity within the Architectural, Engineering and Construction 

(AEC) industries. Due to rise in popularity the AEC industry has created a demand for well-

trained individuals capable of implementing BIM technology in the work place.  

Before BIM the use of 2D CAD was used to present information graphically.  The 

program "Sketchpad" was developed by Ivan Sutherland as part of his PhD thesis at MIT in the 

early 1960s. Sketchpad was especially innovative CAD software because the designer was able 

to directly interact with the computer by using a light pen to draw on the computer's monitor. 

First-generation CAD software systems were usually 2D drafting applications developed by a 

manufacturer's internal IT group and primarily intended to make very repetitive drafting tasks 

easier to complete. (CAD Software History, 2004) 

The first 3D solid modeling program was SynthaVision, from MAGI (Mathematics 

Application Group, Inc.), which was released in 1972, not to be used for CAD but for performing 

3D analysis of nuclear radiation exposure. These models were solid models similar to the CSG 

(constructive solid geometry) models used by later 3D CAD software. However, despite steadily 

increasing computer performance, solid modeling was still too computer intensive for 3D 

Modeling use. With the increase in power of computers, and the introduction of lower cost 

minicomputers which had an optimized Fortran compiler and graphics capable terminals, were 

beginning to make 3D CAD software more available to engineers on a wider scale. Throughout 

the 1980s, the new generation of powerful UNIX workstations and emerging 3D rendering was 

inevitably shifting the CAD software use to 3D and solid modeling. (CAD Software History, 

2004) 

http://www.cadazz.com/cad-software-Sketchpad.htm
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The history of BIM dates back to 1982 with Graphisoft‟s development of ArchiCAD, 

virtual building solution for the Apple Macintosh computers. Introduced to the public in 1986, it 

was the first personal computer based product capable of rendering parametric 3D models 

(Darras, 2011). This was important because architects and engineers were then able to store large 

amounts of data sets „within‟ the building model. These data sets include the building geometry 

and spatial data as well as the properties and quantities of the components used in the design. 

The growth of BIM in the AEC Industry has been remarkable one. Since the first use of 

Computers to create isometric models of constructed elements in the 1950s, the subject of BIM 

has intrigued researchers, software developers and visionaries. For a long time BIM found very 

little acceptance in the AEC industry in the United States. However in the last few years, many 

major players in the AEC industry have adopted BIM, and experts estimate that in a few years 

BIM will be a standard tool that will be used on most projects. (Reinhardt, 2010) 

 

2.8.2 BIM Uses in Industry 

BIM has many uses that can be of value for the user. The uses usually vary depending on 

the project delivery method and the timing of the user‟s initial involvement in a project. BIM can 

be a useful tool throughout the entire project. The construction uses includes, but not limited to: 

visualization of design, coordination between trades, visualization of construction sequences and 

extraction on quantity information from models.  

Pertaining to the first use mentioned above, visualization is one of the main construction 

uses of BIM. Unlike the construction documents typically found at the job site, the BIM allows 

every member of the construction team to see the relationship between different elements of 

construction in one place. The BIM Model is extremely helpful for understanding how different 

elements fit together. With this information in one place one is able to visualize each element 

which allows for more efficient communication, construction, and more accurate estimating. 

Another set of uses of BIM is Spatial Coordination, Clash Detection and Collision 

Detection. Early communication and coordination between trades potentially has the greatest 

impact on the project‟s cost and schedule. The ability to visualize the relationships between each 

construction element prior to starting construction allows for early procurement of materials, and 

with this information shop fabrication of equipment and the placement of each trade‟s work one 
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could avoid clashing with that of the other trades and overall reduce cost and increase 

productivity. 

There is also the Scheduling and 4D Modeling use of BIM. The 4D Model is created 

when the element of time is added to the 3D Model by creating a link with the model and the 

critical path method schedule. This can be done using a single application or by combining 

model collaboration software with standard scheduling software. The 4D Model is an essential 

tool to the BIM Process because it identifies collision between construction activities. 4D 

Modeling is used to identify activities that are out of sequence, flow of trade work and 

relationships between construction equipment. The 4D Model can also be useful for analyzing 

different construction scenarios and determining the most efficient sequence of work and with 

this information one can tell whether the work is on time or whether the project is behind. 

NavisWorks is a computer program that supports BIM model and project scheduling 

integration.  It acts as a platform for combining a BIM model with a Primavera schedule and 

creating a 4D model.  The 4D model allows the user to simulate construction schedules and 

logistics to visually communicate and analyze project activities, and help reduce delays and 

sequencing problems. (Walker, 2010).  Although NavisWorks wasn‟t used on the Recreation 

Center project, we utilized its features as part of our project to create a 4D model. 

The Estimating and 5D Modeling use of BIM entails using the data stored in the BIM to 

extract information and transfer that information into construction estimates. As the design 

progresses or changes occur, these estimates can be quickly updated based on information 

derived from the BIM model. There are many methods to link model quantities to estimating 

systems, but each company determines which methods suits them the best based on its internal 

estimating practices.  (Reinhardt, 2010) 

 

2.8.3 Use of BIM on the Recreation Center 

During the design and construction of the Recreation Center, BIM was employed in 

several different capacities.  During the design phase a 3D Revit model of the Recreation Center 

was produced by Cannon Design.  The model was created to help in producing construction 

documents as well as providing WPI and the Recreation Center management team with a visual 

representation of the structure.  The Revit model (which is a form of Building Information 
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Modeling) consists of two separate, but interlinked, files: an Architectural model and a Structural 

model.  The Architectural model consists of elements related to the architectural design of the 

Recreation Center such as façade, drywall, lighting, flooring, doors, and the location of desks, 

tables, chairs, sporting equipment, etc.  The Structural model is comprised of structural elements 

of the building such as steel beams, columns, girders, concrete footings, foundations, cast-in-

place concrete sections, roofing elements, trusses, etc.  Although Cannon created this very 

detailed Revit model of the proposed structure during pre-construction, no updated versions have 

been completed since.   

Another capacity in which BIM was employed on the Recreation Center project was for 

its clash detection capabilities.  Prior to installing the mechanical, electrical and plumping units 

(MEP), Gilbane used Navisworks to simulate the MEP installation throughout the Recreation 

Center building.  The simulation helped detect clashes between MEP elements before they 

occurred during the actual construction.  This ability to conceptualize the construction and detect 

errors beforehand, reduces time that would be spent on the jobsite developing a new plan and  

saves money that would be required to pay for extra materials to re-route the issue.   

  

2.8.4 Previous MQP BIM Findings 

 As mentioned before, our project is a continuation of a previous MQP (Fournier, 2011) 

which tracked the early stages of the Recreation Center construction, including concrete and steel 

erection.  They produced actual and planned BIM for the construction of the Recreation Center 

from August 15, 2009 to April 15, 2010.  Using the Revit model created by Cannon Design as a 

basis, they created 16 BIM models total (8 actual and 8 proposed), using 30-day phases, starting 

and ending on the 15
th

 of each month.  Figure 9 below shows BIM models produced by the 

previous MQP group of the proposed and actual construction of the Recreation Center that 

occurred during the phase of January 15, 2011 to February 15, 2011. 
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Figure 9:  Comparative BIM Models of the Recreation Center Construction 2011 (Fournier, 2010) 

 

The previous group‟s BIM models and analysis showed that construction was behind 

schedule to varying degrees for nearly every phase, generally due to unpredictable weather 

conditions.  The models created by the previous MQP group are the only visual representations 

of the progress Recreation Center.   

 

2.8.5 BIM Execution Plan 

A BIM Execution Plan should be created towards that start of the project in order to develop 

a closer relationship between the different parties involved in the project. The execution plan 

should outline the various uses of BIM in the project, as well as an extensive plan of the 

interactions between BIM and the project throughout the extent of the project (BIM Execution 

Planning Guide, 2009). Each BIM Execution plan should be catered to the project at hand, and 

therefore should be unique to the project. Throughout the project the execution plan should be 

revised and updated, in order to be deemed successful for the duration of the ever changing 

project. By creating an execution plan the many important principles of the team members can be 

reached. Some of these principles included in the BIM Execution Plan Guide include: 
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 All parties will clearly understand and communicate the strategic goals for implementing 

BIM on the project; 

 

 Organizations will understand their roles and responsibilities in the implementation; 

 

 The team will be able to design an execution process which is well suited for each team 

member‟s business practices and typical organizational workflows; 

 

 The plan will outline additional resources, training, or other competencies necessary to 

successfully implement BIM for the intended uses; 

 

 The plan will provide a benchmark for describing the process to future participants who 

join the project; 

 

 The purchasing divisions will be able to define contract language to ensure that all project 

participants fulfill their obligations; and 

 

 The baseline plan will provide a goal for measuring progress throughout the project 

 

In order to create an effective BIM Execution Plan four stages must be completed. These 

stages are to identify the BIM goals and uses, to design a BIM project execution plan, to develop 

information exchanges and to define supporting infrastructure for BIM implementation (BIM 

Execution Planning Guide, 2009).  When identifying the BIM goals and uses the team must first 

determine different ways BIM can be used within their project. From these they can then create 

goals related to project performance and to expanding the team members‟ skills. Once goals have 

been determined the team members must decide on the different ways BIM can help achieve 

these goals. Next a map of the project must be created in order to show the order of each process 

phase of the project. More detailed maps can be made for each process phase to show the entirety 

of the phases. Upon making a map the phases can be used to determine any information needed 

to be exchanged at each phase to allow the project to run more smoothly. Lastly the 

infrastructure necessary to run this BIM project needs to be fashioned. This includes the 

technology needed, the communication procedures, and the contractual language (BIM 

Execution Planning Guide, 2009). Figure 10 below is a map of the four stages taken from the 

BIM Execution Plan Guide as proposed by the Penn State Research group: 
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Figure 10:  BIM Project Execution Planning Procedure 

  

 

2.9 Harrington Tie-In & Geotechnical Aspects 

As part of our project, our team focused on the connection between the pre-existing 

Harrington Auditorium structure and the construction of the new Recreation Center.  Our review 

includes analysis of the Harrington substructure during the excavation process, the design of 

which consists primarily of underpinning and soil nailing.  We also explored the tie-in between 

the two structures and developed a support system design adequate to support the loading system 

applied to it.  Our analysis considers the constructability of the design, functionality of the 

completed project, and the structural integrity of the total system, as well as a study of the impact 

on the configuration of the trainer‟s room, which will be directly affected by the new tie-in. 

 
2.9.1   Harrington Auditorium 

Harrington Auditorium is the current gym facility at WPI, and was constructed in the 

1960‟s of steel, concrete, and brick.  The building is located on the northwest side of the 

quadrangle, adjacent to Alumni Auditorium and opposite Daniels/Morgan Dormitories.  The new 

Recreation Center is being constructed perpendicular to Harrington Auditorium, within relatively 

close proximity, and will therefore play an integral part in the design and construction of the new 
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facility.  Harrington Auditorium has a regulation size basketball court and stadium seating and is 

used not only for basketball and volleyball games but also for large functions and robotics 

competitions.  Due to the importance of these robotics competitions, the two building will be 

connected, or “tied-in” together on the Harrington gymnasium floor level.  This tie-in will act as 

route between the robotics pits in the Recreation Center to the competition floor in Harrington, as 

well as a general means of circulation between the buildings.  Figure 11 is topographical view of 

the WPI quad developed by Hadrey Aldrich during Subsurface Exploration; the locations of 

Harrington Auditorium and the Recreation Center are outlined. 

 

 

Figure 11:  Topographical View of WPI Quadrangle (provided by Hadrey Aldrich) 
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2.9.2 Geotechnical Aspects of Recreation Center Construction  

During the excavation of the new Recreation Center, the design team had to determine a 

suitable approach to maintain the structural stability of Harrington Auditorium.  Since 

Harrington is in close proximity to the Recreation Center, its structural integrity would be 

jeopardized by the massive amount of excavation.  The large volume of soil removed would 

decrease the lateral support of the soil surrounding Harrington Auditorium, reducing bearing 

capacity of the foundation footings underneath Harrington Auditorium and potentially causing a 

structural failure.  To counteract this loss in support, underpinning was placed beneath the west 

side of Harrington Auditorium, the section most directly affected by the excavation, and also the 

location of the tie-in between the two buildings.   

A considerable amount of soil was excavated along the west side of Harrington 

Auditorium during the construction of the Recreation Center.  To ensure slope stability during 

excavation, engineers designed a soil nailing layout beneath the existing structure.  The soil nails 

were employed to strengthen the soil and eliminate the risk of slipping or settlement of the 

Harrington Auditorium foundation.  There are many configurations that soil nails can be 

constructed and the design usually depends on the specific loading conditions and soil properties 

of the structure. 

Soil nailing is a common technique used in the United States to reinforce a sloped area 

that is subjected to external loading (Zhou, 2009). Soil Nailing is regularly used because it has 

many advantages along the lines of cost, performance, and construction (Elias, 2003). A soil 

nails main use is to resist tensile forces caused by the mobilization of frictional forces along the 

entire soil nail (Cheuk, 2009). These nails are typically steel bars placed in predrilled holes at a 

345 degree angle to the horizontal. Grout is applied around each steel bar to help transfer the 

stress from the ground onto the steel bar (Elias, 2003).  A washer, Hex nut, and barring plate is 

fastened to the head of the steel bar. These components bond the bar to the facing.  Figure 12 is a 

schematic of a soil Nail produced from the Geotechnical Engineering Circular No. 7: Soil Nail 

Walls document: 
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Figure 12:  A Typical Soil Nailing Schematic (Elias, 2003) 

 

Soil nailing was not only used beneath Harrington Auditorium, but also throughout the 

entire face of the hill (East side of the Recreation Center) to support it from failing.  The 

construction team used additional soil nailing beneath Morgan Hall also, to maintain its 

structural integrity.  However our main focus was that of the soil nailing constructed beneath 

Harrington.   

Another feature included in the geotechnical design for Harrington Auditorium was 

structural underpinning.  The main function of the underpinning was to restore load bearing 

capacity and to prevent excessive lateral movements of the foundation footings of Harrington 

Auditorium during excavation and while constructing the soil nail wall.   

Micropiles were used in this project as the underpinning to help support the existing 

structure.  Micropiles have been used mainly for foundation support to resist static and seismic 

loading conditions and less frequently as in-situ reinforcements for slope and excavation stability 

(FHWA, 2000).  A micropile is a small-diameter (typically less than 300 mm), drilled and 

grouted replacement pile that it typically reinforced.  A micropile is constructed by drilling a 

borehole, placing reinforcement, and grouting the hole.  Micropiles can withstand axial and/or 

lateral loads, and may be considered a substitute for conventional piles or as one component in a 

composite soil/pile mass, depending upon the design concept employed.  The installation of 

micropiles only causes minimal disturbance to adjacent structures, soil, and the environment.  
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Micropiles can be installed at any angle below the horizontal using the same type of equipment 

used for ground anchor and grouting projects. 

 Most of the applied load on conventional cast-in-place replacement piles is structurally 

resisted by the reinforced concrete; increased structural capacity is achieved by increased cross 

sectional and surface areas.  Micropile structural capacities, by comparison, rely on the high 

capacity of steel elements to resist most of the applied load.  These steel elements have been 

reported to occupy as much as on-half of the holes volume.  The special drilling and grouting 

methods used in micropile installation enable the development of high grout/ground bond values 

along the grout/ground interface.  The grout transfers the load through friction from the 

reinforcement to the ground in the micropile bond zone in a manner similar to that of ground 

anchors.  Due to the small pile diameter, any end-bearing contribution in micropiles is generally 

neglected.  The grout/ground bond strength achieved is influenced primarily by the ground type 

and grouting method used.   

 The design and construction of underpinning is the primary focus of the design portion of 

our project.  Although soil nailing was also employed as part of the geotechnical design for 

Harrington Auditorium, the underpinning required more focus an intensive design and planning.  

 

2.9.3 WPI’s Harrington Tie-In Proposal 

The Harrington tie-in is designed to connect Harrington Auditorium to the Recreation 

Center.  The connection will be on the basketball court level of Harrington and the second floor 

of the Recreation Center.  The exact location in Harrington is on the west end of the building, 

directly into the wall what is currently occupied as the trainer‟s rooms.  As for the Recreation 

Center, the tie-in will occur on the second floor on the east side of the building in the robotics 

pits area.  The purpose of the tie-in is to create a route between the two buildings for both 

circulation purposes and for ease-of-travel during robotics competitions.  Figure 13 below shows 

the floor plan for the design of the tie-in.  
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Figure 13:  Floor Plan of Harrington Auditorium Tie-In (provided by Cannon Design) 

 

 The current design calls for an approximate 8‟-6”X8‟-0” area of Harrington Auditorium‟s 

wall to be removed and supported by a framing system for a basic double door.  The wall is an 

exterior non-load bearing wall comprised of brick, CMU, and an air gap between the two.  The 

plan is to cut an exploratory hole through the wall to determine the exact make-up of the wall as 

well as its depth.  From there, they will continue removing the wall and providing support 

systems accordingly, noting the location of any support columns.  Once they have the desired 

area removed they will construct a framing system for the doorway, likely a lintel with 

reinforcement.  Figure 14 shows a sketch of the proposed framing system with dimensions.   
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Figure 14:  Simplified Harrington Tie-In Loading Sketch 
 

Figure 15 is a Revit model of the West side of Harrington Auditorium; it shows the 

proposed location and the relative dimension of the tie-in. 

 

Figure 15:  View of the West side of Harrington Auditorium and the Proposed Tie-in 
 

8’ 

8’-6” 
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 Since the tie-in will be obstructing the use of the trainers rooms, the construction is to 

take place during a time of limited student activity, likely the break between C- and D-term of 

2012.  The entire process should take approximately one week, so its interference with the 

trainer‟s room during the construction should be minimal.  However, after the school year is 

complete the trainer‟s room will have to be reconfigured to allow ease of traffic between the two 

buildings, through the tie-in connection.  Figure 16 is an AutoCAD drawing of Harrington 

Auditorium, specifically the southwest corner on the gymnasium level, where the tie-in will be 

located.  Based on the location of the tie-in, the trainer‟s room will clearly require rearrangement.  

The design of the proposed configuration is still under development, however as part of our 

project we proposed our own design for the reconfiguration of the trainer‟s area, as well as the 

expected pathway of traffic from the tie-in to the gymnasium floor.  

 

Figure 16:  An AutoCAD Sketch of the current layout of the Harrington Gym Training Room 
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As the basis of the design capstone of our project, we performed a structural analysis of 

this entire process and determined a framing system design based on our review.  We also 

considered the project management aspect of the tie-in, specifically the interaction with the 

trainer‟s rooms during construction and the constructability of the tie-in.  We outline in greater 

detail the processes we took to obtain the necessary information to conduct the analysis and also 

provide our proposed design further in our report. 
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3.0 PROJECT MANAGEMENT & BUILDING INFORMATION MODELING 

 

We employed various methods to reach our goal of creating a 5D model of the 

Recreation Center and performing an Earned Value Analysis.  As mentioned before, our project 

is to some extent a continuation of a previous Major Qualifying Project (MQP) completed by a 

group of students in 2011 who tracked the Recreation Center during the first 6 months of 

construction and produced a 4D model and Earned Value Analysis (EVA) for this process 

(Fournier et al, 2011).  We used their project as a foundation for ours, using many of the same 

methods they used and expanding upon them.  The previous MQP project tracked the Recreation 

Center construction throughout the entire excavation and concrete foundation phase and into the 

majority of steel erection.  We used this information to help develop the schedule for the steel 

and concrete work performed early on in the project, and continued by tracking the progress of 

the remaining steel and concrete, as well as the façade and roof.  Just as the previous group, we 

used various computer software programs, reviewed old and new schedules, and examined 

photos and time-lapsed videos.  Prior to the initiation of this work we created a BIM Execution 

Plan that outlines in further detail the methods used in the development of this project. 

 

3.1 BIM Execution Plan 
 

 The  methods used in  completing the phasing, scheduling, and EVA analysis of the 

Recreation Center project were outlined in the BIM Execution plan we developed.  The 

Execution Plan identified the major goal of this project as well as the objectives accomplished 

over the course of the project.  It also includes team member responsibilities and distribution of 

work.  The BIM Execution Plan also summarizes the different phases of the project and the 

relationship between each phase.  Creating this network allowed each team member to 

understand how his/her work relates to the others’. This resulted in a better understanding of the 

project. 
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3.1.1 Project Goal   

The ultimate goal of our project was to investigate BIM‟s efficiency and effectiveness in 

determining the work completed on a monthly basis and to demonstrate this usefulness to the 

project owner.  The goals we aimed to achieve and their corresponding potential BIM use can be 

seen in Table 2. 

Goal Description Potential BIM Use 

Tracking progress during construction Visualizing  project performance through  a 4D 

model 

Tracking percent complete in terms of quantities Determine Earned Value of work in progress  

 

Table 2:  BIM Execution Plan Goal Description 

 

3.1.2 Team Member Responsibilities  

In order to reach our goal it was determined  that the team would need to be responsible 

for the entirety of the project; however we also decided to elect different members of our team to 

be in control of different aspects of the project. We created and signed a non-binding contractual 

agreement stating our roles and responsibilities of the project at the start of the project. This 

contractual agreement can be found in Appendix A. Our head of the scheduling department was 

Christopher Baker. He was in charge of creating the projected schedule as well as the actual 

schedule. In order to fulfill his responsibilities Mr. Baker used both Primavera Project 

Management software and NavisWorks.  In charge of the modeling department were Andrew 

Beliveau and Machell Williams. Mr. Beliveau and Mr. Williams were in control of creating three 

dimensional models for the provided schedules, as well as performing a quantity comparison of 

these models.  They used the Revit and NavisWorks software to complete their tasks. Nica 

Sylvia was in charge of the analysis between the scheduling and the modeling, and therefore 

helped Mr. Baker, Mr. Beliveau and Mr. Williams. Ms. Sylvia was also in charge of using the 

quantities found of materials to create the cost analysis. To complete her tasks Ms. Sylvia used 7 

Zip, Primavera, NavisWorks, Revit, and Microsoft Excel software. 
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3.1.3 Project Phasing Network 

To determine the necessary steps to reach our goal we broke the project down into six 

different phases and found the important details of each phase. These phases included 

scheduling, three dimensional modeling, four dimensional modeling, tracking and monitoring, 

material quantities, and Earned value analysis. Table 3 below is a chart explaining the details of 

each project phase: 

 

 

 

 

FIGURE TOO LARGE FOR SPACE: SEE NEXT PAGE 
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Project Phase Phase Details 

Scheduling 

Identified work packages to be tracked and included into the 4D model 

Condensed Gilbane’s Primavera file activities to a manageable number 

of activities 

Retained all critical activities to determine time constraints   

Created Activity ID’s using a coding system developed through the use 

of the CSI MasterFormat.  

Separated schedule into monthly phases starting on the first day of the 

month, and ending on the last day of the month 

Made sure that each activity ID correspond to an ID element within the 

Revit model 

3D Modeling 

Created a model which represents the activities chosen in our schedule 

Formatted each of these activities in the model so that they have the 

matching activity ID’s 

Determined the total quantities of materials (part of 5D) 

4D Modeling 

Displayed the 3D Model in progressive monthly increments 

Showed quantities (5D) of each material that accrued each month 

Displayed both the total percent of material used since tracking began, 

and the total percent of material used in each one-month period 

Tracking and Monitoring 

Determined the actual timeline of the project using photographic 

evidence, time-lapse videos and  information gained from owners 

meetings. 

Determined the actual quantities of materials 

Quantities Calculated quantities used in each monthly phase 

Earned Value Analysis 

Determined the cost of each material from Gilbanes work breakdown 

structure 

Determined the expected cost of each material and activity at given time 

periods 

Generated graphical analysis to display our results 

Compared the actual cost and actual work done, to the expected cost 

and expected work done 

Determined the project’s progress and overall value 

 

Table 3:  Project Phasing Network 
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From these detailed phases we created a map, which links each phase to show the overall 

flow of the project, as well as showing the necessary information needed to complete the phase. 

Figure 17 below is our project map: 

 

 

Figure 17:  BIM Project Map 

 

 
 

 

 

 



 

40 
 

3.1.4 Software for Each Phase 

Next we determined the software necessary to complete each project phase.  To do this 

we created a chart of the phases and the relative software.  Table 4 shows the software used for 

each project phase. 

Project Phase Relative Software 

Scheduling Primavera 

3D Modeling Revit Architecture 

Revit Structures 

4D Modeling 

Revit Architecture 

Revit Structures 

NavisWorks 

Primavera 

Tracking and Monitoring 
7 Zip 

Primavera 

NavisWorks 

Quantities 
Revit Architecture 

Revit Structures 

Microsoft Excel 

Earned Value Analysis Primavera 

Microsoft Excel 

 

Table 4:  Project Phase-Software Relationship 

 

There are several software tools that can be utilized in the process of creating and 

tracking construction projects. The software we used to track the WPI Recreational Center 

building included Primavera, Revit Architecture, Revit Structure, NavisWorks, Microsoft Excel, 

and 7 Zip. Primavera is used for tracking the progress of the project and for contrasting the 

planned schedule of construction against the actual schedule of activities completed.  The Revit 

programs are modeling software tools that enable designers and construction managers to 

visually conceptualize the project in three-dimensions.  The model can then be employed to find 

quantities of different materials. Also each part of the model can hold information stating not 
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only size and type of material but also an activity ID, which can be linked to the activities in the 

Primavera schedule.  NavisWorks has the ability to integrate both a Revit model and a Primavera 

schedule, and can be used to track the scheduled activities from the Primavera schedule within 

the Revit model, thus showing how a building is built in time.   Microsoft Excel is a simple tool 

we used to analyze information and display our findings graphically.  7 Zip is a utility that allows 

us to transfer large files, and is particularly useful when working with BIM.   These files when 

used in conjunction allowed us to create an accurate and effective BIM model. 

 

3.1.5 Detailed Project Phase Procedures 

Our last step to completing the BIM Execution Plan was to create in-depth explanations 

of the project phase procedures. We created both a readable explanation of each phase procedure, 

found below, as well as step by step directions, which can be found in Appendices B-G.   

We followed methodical approaches to create the planned schedule and the actual 

progress of constructions.  We used previous schedules generated by Gilbane to determine the 

planned schedule and a combination of photographs, information received from the owners 

meetings, and webcam footage of construction to determine the actual progress of construction.  

We also used excel to organize and consolidate the activities into packages that were easier to 

manage.  Then using Primavera we imported the activities and created the schedules.  

We focused on four different major work packages for the construction and tracked their 

progress: steel, concrete, roofing, and façade.  These four work packages make up approximately 

30% of the total cost of work package items for this project.  We chose these work packages 

since they would be occurring during the time that we spent on the project and would be easier to 

track and also because of their structural importance to the building.  We began by reviewing old 

schedules created by Gilbane and choosing the activities that related to the work packages we 

would be modeling and tracking.  We created an excel file with individual sheets for each work 

package, and imported all of the activities from the Gilbane schedule into the excel sheets for 

organization.  This excel file included a description of the activity, the Gilbane ID code, the work 

package, the planned start and finish date, our MQP ID code, as well as other relevant 
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information.  The dates we received from the previous Gilbane schedule would become the 

foundation for our planned schedule.   

We used the same activities from the planned schedule, but a slightly different approach 

to create the actual schedule.  We studied photographs of construction, time-lapsed video and 

attended weekly owners meetings to determine the actual start and finish dates of each activity.  

This process was far more in-depth comprehensive and required greater attention to detail.  Once 

we had all of the dates secured we exported the excel file into Primavera.  We ran into some 

troubles while exporting the excel file and had to troubleshoot as we proceeded.  The dates did 

not transfer correctly so we had to input each date into Primavera individually, as well as 

organize each activity into its respective work package.  The step-by-step process we followed to 

import the Excel schedule into Primavera is outlined in Appendix C.  Once we had the dates in 

Primavera we were able to visualize the activities and the flow of the project progress using the 

powerful software.   

For every activity in our schedule an ID was created in order to easily identify the activity 

without reading its description. Each ID was made using an activity coding system made up of a 

sequence of thirteen numbers and letters. This sequence first identifies the project phase, then 

one of the sixteen trades found in the CSI MasterFormat, the level of the building, next area of 

the building in which the activity exists, and lastly the type of structural element. For example if 

one were to identify the activity “concrete slab third floor area A” he or she would first chose the 

project phase, for this activity the project phase would be under construction, so the letters “CO” 

would start the ID. Next he or she would determine under which division of the CSI 

MasterFormat concrete is, which is under concrete, so he or she would add the numbers “03” to 

the ID. Since the activity exists on the third floor the next set of numbers added to the ID would 

be “03”, followed by an “A” because the activity is in area A.  Lastly “00100” would be added to 

the end of the ID because the activity is a slab. Therefore the whole ID for this activity would be 

“CO0303A00100”.  Once every ID had been created they were used within the Revit Structural 

model, in order to identify the object linked to the scheduled activity.  The Activity Identification 

Coding System is outlined entirely in Appendix B. 

Once every activity had been identified the ID was used in the Cannon 3D Revit Model 

in order to link the corresponding objects to the activities found in the Primavera Schedules. To 

identify these objects we created a Parameter to hold the information for the ID. To do this we 
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went to the Project Parameters and created a parameter labeled “Activity ID” whose future use 

was to contain the text data of the code for each activity.  

Once the Activity ID Parameter had been defined we went into the 3D Model and 

highlight the different objects corresponding to the same activities in the Primavera Schedule. 

With all the objects highlighted we inputted the ID code pertaining to that specific activity. This 

was done to each object in the model which pertained to the activities in the Primavera Schedule. 

Once completed, we were able to show the progress of the construction of our four chosen work 

packages using the 3D Model on a daily, weekly, or monthly basis.  We used two different Revit 

models – Structural and Architectural – because all elements are not included in one centralized 

model, however we used the same exact process for each.  The Structural model contained the 

concrete, steel, and roof elements, while the Architectural model contained the façade elements.  

This entire Revit Identification Process is clearly outlined in Appendix D. 

 Once both the structural and architectural models identification process had been 

completed we conducted a materials quantity takeoff. This takeoff gave us the needed quantities 

(in both square and cubic meters) of each material identified by its activity ID. To learn the step 

by step Revit process used to complete a material quantity takeoff turn to Appendix E The 

information we received from the quantity takeoff we later used to establish our earned value 

analysis.  

Successive to the completion of the Primavera schedule and the object identification in 

the Revit Structural and Architectural Models both the Revit models and the Primavera schedule 

were exported in a manner which would allow them to import into NavisWorks.  Upon the 

exportation of the schedule and models, each model was opened in NavisWorks. From there we 

imported the schedule and created a rule which we labeled “LinkElemementToSchedule”. This 

rule allowed NavisWorks to link that object ID from the Revit model to the matching activity ID 

in the schedule. Once the rule was created we went to the simulation tab in NavisWorks and 

clicked “construct” on each activity. Lastly we ran the simulation and reviewed it for any 

potential identification errors. We created different simulations for both the planned schedule 

and the actual schedule so that a viewer could watch the two simulations simultaneously. The 

detailed directions on how to export both Revit and Primavera files into Navisworks and running 

the subsequent simulation can be found in Appendix F. 
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Once the simulation was created we were able to pause the simulation on the last day of 

each month in order to obtain the month-by-month pictures. These pictures would be used in the 

future for our quantity takes-off and ultimately for our earned value analysis.   

NavisWorks can not only run simulations to construct models, but the program also has 

many other useful features. One of these features includes color coding or transparency coding 

object in the simulations. We chose to change the color of each work breakdown structure so that 

each when constructed different activities would show up in different colors. We chose to have 

all concrete activities show up in yellow, steel in blue, façade in red, and the roofing to be green. 

We also created a transparency change so that when an activity‟s construction started the its 

object would show  up in the model with 60% transparency and when the construction on that 

activity was completed the object would become opaque, allowing the viewer to acknowledge 

that construction was finished without looking at the schedule.  The step-by-step directions on 

how to change activities color and transparency is outlined in Appendix G.  

Our last step to creating our five dimensional model was to create an earned value 

analysis. To do this we first exported both the planned and actual schedule from Primavera to 

Microsoft Excel. We made two separate tables, one for the planned schedule and one for the 

actual schedule. In both schedule we matched each activity ID to their respective quantities, 

which we had found during the material quantity takeoff. We then created a month-to-month 

schedule breaking down the quantities of each activity into the months associated with that 

activity. For example in the actual schedule activity ID CO0507D02001 “Erect Area D Steel & 

Deck” started on January 10
th

, 2011 and ended on May 7
th

, 2011. This activity spanned over 85 

workdays, 16 of them in January, 20 in February, 23 in March, 21 in April, and 5 in May. For 

each of these five months we multiplied the material quantity by the number of workdays in that 

month over the total number of workdays. Using this equation we found the amount of material 

that was used for that activity each month. Once we had completed this process with all the 

activities we calculated the total material quantity per month of each of our different material 

types. We then found the work packages from Gilbane‟s work breakdown structure that was 

associated with the different materials that we were monitoring. We multiplied the percent of 

material used each month by its work package to determine the total cost of the materials and 

work associated with those materials each month. From there we created bar charts representing 
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the planned vs. actual cost each material and work per month. As well as the planned and actual 

total cost of the project on a month-to-month basis of the steel, concrete, façade, and roofing. 

Through the use of our goals, project phases, including their phase detail and related 

software, and our project map we will have determined the necessary components of the project. 

With the use of the responsibilities assigned we were able to utilize the components of the 

project and transform them into a finished 4D design with a cost and material quantity analysis. 

 

3.2 Four Dimensional Analysis (4D) 

The four dimensional analysis of the Recreation Center considers the 3D model that 

graphically displays all of the building‟s information, and the time that construction took and 

was planned to take to complete the project. When compared, there is much that can be learned 

from examining the planned build of the project to the actual construction schedule. Nowhere in 

the project is the comparison more clear than in the Navisworks models that were assembled to 

display the 3D models building themselves over the time periods that the scheduled. In order to 

most effectively show the progress of the building, images were taken from both models at the 

conclusion of each month. More than just determining if the building was on or behind schedule, 

the 4D model allows for an understanding of the difference in materials based on schedule or 

construction changes.  

In order to build the 4D model, and to integrate all models and schedules in Navisworks, 

we developed a link between each aspect of the project. By adding data to the schedule, and then 

having that data be tied to each model, we could coordinate changes across all platforms without 

any loss of data. Below in Figure 18 you can see part of the project schedule, complete with the 

additional data column, “Activity ID.” 
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Figure 18:  Primavera Schedule with Activity ID link 

 

When compared side by side, the differences between the actual construction of the 

project and the planned schedule of construction can be seen easily. During the beginning of the 

project, Gilbane was ahead of schedule, and the pouring of the concrete footings were moving 

much faster than expected. Unfortunately this progress and good fortune only lasted a few 

months. Figures 19 shows models of the planned progress and the actual progress in August 

2010.  
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Figure 19:  Planned vs. Actual Construction Progress – August 2010 

 

 Further, in September 2010, the schedule becomes even further ahead.  This can be seen 

below in Figure 20. 

 

Figure 20:  Planned vs. Actual Construction Progress – September 2010 
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 As you can clearly see in these pictures, a significant amount of work was completed on 

the cast-in-place foundations and footings before it was expected to have occurred. In each of 

these cases additional materials had to be ordered to meet the faster-than expected pace of the 

project. This impacts not only the way in which Gilbane can procure materials, but also to the 

overall cost per time of the project that WPI budgeted for when the project was proposed. 

Interestingly though, while the concrete roared ahead of schedule, the erection of the steel 

significantly stalled progress on the building.  

 The steel structure in area A of the building was the first steel to be built. While the steel 

started construction on schedule, it immediately fell behind schedule. In Figures 21 and 22, you 

can see the differences between the planned schedule and the actual construction of the building, 

and how the two schedules began to deviate significantly. At first, we notice that the steel in area 

A wasn‟t completed on time, but then we realize that the construction of precast concrete in area 

B and the steel in area D are behind schedule and out of the scheduled order. 

 

Figure 21:  Planned vs. Actual Construction Progress – October 2010 
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Figure 22:  Planned vs. Actual Construction Progress – January 2011 

 

As you can see, the steel slowed the progress of the project, and forced a reevaluation of 

the schedule. Since work cannot cease, other activities that were planned for later construction 

began much earlier, while at the same time, work on the steel areas was pressured to continue. 

Unfortunately the slow steel process only worsened, and looking at the comparison between 

planned and scheduled events in April 2011 (Figures 23) definitively shows how far behind 

schedule the project had fallen. Notice that the planned schedule called for completion of the 

steel trusses, the completion of the roof structure, most major work on steel was to have been 

already completed, and that brick veneer was expected to be appearing on the façade. In the 

actual progress, you can see that the trusses are still under construction, that the roof hadn‟t 

begun work yet, and that the steel in area A, the first area to receive steel, was still under 
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construction. In the actual progress data, the façade didn‟t receive brick veneer until August 

2011, a considerable four months behind schedule. 

 

 

Figure 23:  Planned vs. Actual Construction Progress – April 2011 

 

Ultimately the result of the four dimensional model that we developed was a greater 

understanding of the progress of the project, and how that impacts the parties involved in the 

construction process. By linking the project schedules to a visual model of what is actually 

happening, it becomes exponentially more imaginable what the issues may be, and what 

solutions we may use to solve them. By understanding the progress, we can also begin to predict 

other resultants from altered schedules. More than just the erection of the building, the schedule 

depicts the timing of the cost of labor, the timing of the cost of materials, and it lays the 
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foundation for determining the earned value as the project progresses.  The difference between 

the actual and planned schedules can be seen easily in the four dimensional model, and the 

scheduled variance (SV) can be determined by comparing the models. Ultimately the four 

dimensional model proved to be an easy method of estimating the schedule performance index 

(SPI) of the specific trades that were modeled.  Appendix I and K show the all of the monthly 

phases of progress (actual and planned) and their corresponding percent complete. 

 

3.3 Five Dimensional Analysis (5D) 

In order to advance our project from a four dimensional model to a five dimensional 

model, we took the existing visual model paired with the project schedule and integrated the cost 

impacts of the changing schedule. In order to fully examine the cost distribution of the project 

and to determine the value of the service WPI had received, we conducted an Earned Value 

Analysis. By extracting the quantities of materials for trades we examined directly from Revit, 

we were able to accurately determine the percent completeness of each trade per month. This 

information then allowed us to determine the percent cost that had been spent in comparison to 

the amount of work that had been completed. We then also compared the amount spent to the 

amount expected to be spent for the work performed. In general, our EVA for the Recreation 

Center compared the Budgeted Cost of Work Scheduled (BCWS) to the Budgeted Cost of Work 

Performed (BCWP), which yielded an accurate estimation of the cost performance index (CPI) 

for the trades modeled in our project. 

The first major result that our EVA produced was the evaluation of the SPI. The schedule 

performance index determines if the work performed on the project is over or under valued based 

on the money that they project has cost the owner to date. In our project we compared the 

amount of work performed to the expected amount of work performed. In this project, an SPI 

value of greater than 1.0 meant that the project was under-valued for the amount of work 

performed. More commonly though, if the value was less than 1.0, than less work than expected 

had been completely. Since the cost of the project did not vary based on man-hours or work 

packages, it can be argued that being behind schedule is also a sign of being over-budget for the 



 

52 
 

amount of work performed. A display of the Recreation Center‟s SPI can be seen below in 

Figure 24. 

 

Figure 24:  Schedule Performance Index (SPI) of WPI Recreation Center Project 

The second result from the project‟s EVA was a direct comparison from month to month 

of the expected cost to the actual spent cost of the project. This information is based on the 

expected cost of the work package as provided by Gilbane Co. Based on the percent complete of 

each schedule activity at the end day of each month, we calculated the percent of the total cost 

that was spent. As the schedule changed, so did the value of work that was completed. As you 

can clearly see in Figure 25, the façade was behind scheduled for the entirety of its construction. 

What‟s more, is that time allotted for assembling the façade was shortened drastically, but that 

the materials purchased and the cost of the work increased.  
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Figure 25:  Monthly Brick and Precast (Façade) Concrete Quantities 

 

Most importantly though, is the impact the schedule has on the cost distribution on a 

project. In the case of the Recreation Center, Figure 31 shows just how offset the project 

schedule became. Figure 26 also shows the effects on the project‟s total cost that they 

construction delays had. Looking closer, you can easily see that the final cost of the project 

increased by a significant amount simply by extending the number of months that construction 

took place. Originally the schedule called for the completion of certain trades by September 

2011, and in this model, the actual work performed for those same trades extends to May 2012.  

 

Figure 26:  Total Monthly Project Cost 
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By extending the working months, WPI was then liable for payments they could not have 

previously anticipated. Further, when shown side by side linearly, you can easily see how the 

delays from the beginning of the project compounded and created a consistent delay in 

construction. Figure 27 clearly compares the expected construction performance to the actual 

construction performance.  A more extensive version of this information is displayed in 

Appendix K, which outlines the cost computations used to derive this graph. 

 

Figure 27:  Project Performance Comparison 

Potentially the most useful part of any five dimensional analyses is the ability to 

appropriately budget for and correct budgets of construction projects. By tracking the progress of 

a project via its performance to its schedule and understanding that performance‟s impact on the 

budget, smarter financial decisions can be made regarding project scope, project changes, and 

any additional work necessary to complete the project.   Appendix J includes all of the quantity 

takeoffs for each trade and is organized by each month for the duration of tracking 
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3.4 BIM’s Potential Uses in Communication - Owner’s Meetings  

Our group attended the weekly WPI Recreational Center Owner‟s meetings for first-hand 

insight into the progress of construction, as well as to determine if the implementation of 

Building Information Modeling (BIM) during meeting could improve communication between 

the parties. To gain a better understanding about how BIM could advance meetings we found 

that it was important to actively participate in the meetings. Therefore we took detailed notes, 

obtained and studied the weekly agenda, engaged in discussions where we felt we could provide 

useful input, and spoke directly with representatives after meetings on issues that were relevant 

at that time.     

Through our experience attending the Owner‟s Meeting, we were able to see firsthand the 

potential usefulness of BIM in a meeting setting.  We recognized several instances where BIM 

could have been used during the meetings to help solve misunderstandings about the 

construction.  Although the Recreation Center can be seen from the meeting room, it is often 

difficult to visualize certain locations of the building during discussions, sometimes resulting in 

parties being confused. Due to lack of visualization it was apparent that not every person was 

always aware of what was being discussed or decided upon. This confusion often led to a longer 

than expected debate with parties typically going in circles trying to explain their best solution to 

a problem. Many times the discussion had no clear outcome and failed to produce a decision, 

requiring the project manager to wait longer to take action and raising the cost of construction. 

With a few simple clicks BIM would be able to show any aspect of the construction project, 

which would allow for all interested parties to have a better understanding of what is being 

discussed, all available options, and the costs associated with each option. BIM would therefore 

allow for shorter discussions that ultimately result in more effective and logical solutions.  

During the owners meeting we attended, we noticed many instances where confusion 

could have been alleviated with the use of BIM.  One specific example was during a discussion 

in early October when Gilbane was explaining an issue with the framing system on the roof 

designed to block the mechanical systems from view on the quad.  The problem was that one of 

the crossbars in the frame was designed too low, resulting in limited access to a door on one of 

the mechanical systems, requiring a change order.  This dilemma was presented to the group at 

the owners meeting, however there was immediately confusion as to the location of this issue 



 

56 
 

and an overall misunderstanding of the problem altogether.  It took nearly 15 minutes for the 

issue to be further described but there were still some members whom remained unsure and a 

solution was still not obtained.  If a model were available in the meeting, the problem would 

have been clarified almost immediately, allowing the group substantial time to focus on a proper 

solution as oppose to wasting time trying to figure out the nature of the issue. 

Another example we recognized was during a discussion about the location of the bathing 

suit dryers.  The locker-room with pool access will include bathing suit dryers, which require 

drainage below them. This requirement was not shown in the drawing, and therefore became a 

change order. The change order became a discussion spanning several owners meetings.  They 

considered alternative locations from the original design; however there was confusion as to 

where they were talking about and whether drainage could be provided that these new locations.  

Excessive time was spent on this issue, especially considering that it was discussed several times.  

If a computer model was implemented at the meeting, they could have clearly identified the 

locations they were considering as well as examine the potential availability for drainage and 

provide information about the dimensions and area of each potential location.  This could have 

greatly reduced time spent on this issue and allowed the group to continue onto other pressing 

matters. 

As the construction of the recreation center got closer to its completion dates it became 

apparent that there was less time to discuss change orders. During the meetings both Cannon and 

Gilbane started bringing in visual representations of necessary information regarding the change 

orders to help explain exactly what needed to be adjusted to the project. One example of this was 

during a discussion regarding the drainage issue of the canopies.  Scott Lindberg, a Construction 

Administrator for Cannon Design created a Google Sketch Up representation to help show a 

possible solution to the proposed drainage problems. Figure 28 shows two photos from the 

Owner‟s Meeting when Scott was demonstrating the Google Sketch Up model.  The photo on the 

left shows Scott using the mouse to manipulate the drawing and show it from different angles.  

The photo on the left shows the television screen that the image was projected on.  This visual 

representation provided equal awareness to everyone in the meeting and expedited the decision-

making process. Seeing the benefits of BIM in this specific setting through this example made it 

apparent just how much more could have been accomplished at each owners meeting if every 

person in the room could easily understand the issue being discussed.   
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Figure 28:  Owner’s Meeting with Google Sketch Up Representation 

 

Through attending the owners meetings we also noted that the meeting updates were 

delivered only verbally and in the form of change orders.  A BIM model could allow for the 

project manager to give the updates visually as well as verbally. This would provide the 

attendees at the meeting a more accurate understanding of the progress and in turn allow them to 

participate more actively during the meetings. 

 

3.5 Summary of BIM Findings: 4D, EVA, & Communication 

Throughout the process of creating a schedule, tracking the construction, identifying the 

model and running a cost analysis we learned about the efficiency of BIM for both tracking a 

project and problem solving at an owners meeting.  Through the use of our schedules, models 

and quantity takes offs we determined that while the WPI Sports & Recreation Center‟s 

construction started by pouring the concrete ahead of schedule it quickly fell behind schedule 

when erecting the steel. After construction fell behind schedule Gilbane had to move around 

their schedule, overlapping some activities and completely switching the order of other activities 

in order to complete the project on time. Due to the scheduling changes the cost of the work 

groups was not necessarily distributed as planned, causing the earned value analysis to show as 

behind schedule or over budget.  



 

58 
 

Sitting in on owners meetings gave us firsthand knowledge into the construction of the 

project. This helped us gain a better feel for the target completion dates of different activities. It 

also allowed us to get to know the key members involved in the project and to determine 

possible uses for BIM in owners meetings. From these meetings we learned that incorporating 

BIM into an owners meeting could be a very useful tool for explaining to current construction 

phases of the project as well as for explaining issues within the project and for exploring the best 

possible solutions to solve those issues. Sitting through meetings we saw exactly how 

implementing visual models can substantially decrease the time it took to establish and agree 

upon a solution for a construction problem rather than verbally explaining the issues and possible 

solutions.   

From this project we determined that BIM may be a key aspect in the future for tracking 

construction projects and relating construction knowledge to an owner in a simple way.  
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4.0 RECREATION CENTER & HARRINGTON AUDITORIUM CONNECTION 

For the design portion of our project, we analyzed the geotechnical, structural and 

functional aspects relating to the connection between Harrington Auditorium and the new 

Recreation Center.  Our analysis included a review of the geotechnical design beneath 

Harrington necessitated by the excavation at the adjacent Recreation Center construction site.  

Based on our review, we developed an alternative underpinning design to address the issues 

induced by excavation and the building connection.  Another focus of our analysis was the tie-in 

between the two buildings, in which we explored both the structural components and the inherent 

functional implications of connecting the building directly into a fully-operational trainer‟s room.  

We employed multiple methods to address each issue effectively.  The procedures we followed 

and the results we obtained are outlined in the following sections.   

 

4.1 Underpinning Design: Methodology & Results 

The first thing we examined when beginning the design portion of our project was the 

geotechnical design beneath Harrington Auditorium.  Due to the massive amount of excavation 

that occurred during the construction of the Recreation Center, part of the original foundation of 

Harrington Auditorium will experience a reduction in loading capacity.  Thus, geotechnical 

engineers had to devise a plan to ensure the stability of Harrington Auditorium.  Gilbane hired 

GZA GeoEnvironmental, a geotechnical engineering firm, to perform the soil analysis and 

develop a stabilization design for Harrington.  We reviewed both their design and other related, 

well-established sources and established a potential alternative. 

We began by contacting Gilbane directly and they provided us with the documentation 

we needed to perform effective and accurate analysis.  The documents included GZA 

GeoEnvironmental design specifications as well as correspondence documents between the two 

firms that occurred during the planning stage.  The correspondence documents tracked how the 

design changed and developed over time as new pertinent information became available.  By 

examining the changes that were made before a final design was agreed upon we were able to 

understand the exact needs of the design given the conditions of the site.  We used the documents 
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primarily to understand pre-existing conditions and dimensions of the area.  The GZA design 

documents provided data pertaining to loading conditions and dimensions of the foundation wall 

and footing, information we would not have been able to determine elsewhere.  However, when 

creating our own alternative design we performed calculations independently from the GZA 

design.  Instead, we based our design on underpinning design procedures developed by the 

Federal Highway Administration and other related sources (FHWA Pub. RD-75-129). 

 

4.1.1 Loading Conditions & Dimensions 

The first step of designing the underpinning was verifying the loading conditions applied 

to the footing of Harrington.  The loading conditions consist of the weight of the roof which is 

comprised of a waffle slab, T&G roof, and snow load, as well as the weight of the wall resting on 

the footing.  The roof load has a tributary width of 8 feet and the wall has a height of 14 feet.  

Figure 29 shows the basic dimensions of the structure that will be underpinned.  We used the 

same quantities used by GZA to determine a distributed load of 3.9 kips per linear foot of 

footing.  The calculations for determining the load as well as all calculations steps that follow in 

this methodology section can be found in Appendix L. 

 

Figure 29:  Dimensions of the Harrington Auditorium Section Used for Designing Underpinning 
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4.1.2 Pile Size/Surface Area Calculations 

Micropiles were chosen as the type of underpinning to be used for the geotechnical 

design of the Recreation Center.  We also used micropiles as the primary geotechnical 

component of our design.  There are several essential design aspects of underpinning micropiles 

to prevent all possible failures, including axial loading capacity, allowable maximum 

compression stress, contact bonding between the micropile and the existing footing.  Axial 

loading capacity deals with the resistance of the soil against the micropile and failure occurs 

when the soil does not properly support the micropile and slipping occurs.  Compression stress 

failure occurs when the compressive strength of the materials within the micropile cross section 

cannot support the applied compressive load and usually results in the fibers/materials breaking 

down.  Contact bonding failure occurs when the contact surface between the micropile and 

existing footing does not remain static and slips.  We addressed each of these failure modes 

when developing our micropile design to ensure that it is structurally sound.   

After determining the loading conditions, the next step was calculating the minimum pile 

sizes required to support the distributed load of 3.9 kips per linear foot (klf) along the footing.  

The maximum allowable spacing of piles for Harrington is 8‟, so we calculated the total load per 

pile to be 31.2 kips (8‟ x 3.9 klf).  In essence, each pile would experience a maximum load of 

31.2 kips individually and would need to be designed with a loading capacity greater than this.  

The available capacity of a pile is predominantly dictated by its surface area and structural 

capacity of both the steel and grout combined.  Safety factors require the allowable stresses of 

steel piles to be no more than 40% of its yield strength (0.4Fy) and for concrete piles no more 

than 33% of its compressive strength (0.33f
‟
c), (FHWA, 1983).   Once factored, the strength of 

both steel and concrete (typically in ksi or psi) are multiplied by each respective area and added 

together to get the overall allowable capacity.  

We considered several different configurations for micropiles with different grout-to-

steel cross sections and calculated their available capacity.  For example, one configuration we 

considered was a 6” diameter pile size comprised of 5000 psi grout, a #8 steel reinforcement bar 

(Grade 75ksi), and a 3” diameter steel pipe.  A cross section of this particular micropile 

configuration is shown in Figure 30. 
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Figure 30:  Cross Section of Underpinning Used Beneath Harrington Auditorium 
 

Based on the area and structural capacity of both the steel and grout combined (steel pipe 

is not considered since it is only installed for construction purposes), we determined the overall 

capacity of the micropile.  These calculations are organized within Table 5.  Based on this 

specific design, the micropile has a compressive failure loading limit of 68.9 kips, which is 

greater that the applied load of 31.2 kips (calculated previously), ensuring that it is structurally 

sound under the compressive load of 31.2 kips.   

 AREA (IN2) 
REDUCTION 

FACTOR 
STRENGTH CAPACITY (kips) 

STEEL 0.79 in2 0.4 Fy = 75 ksi 23.7 k 

GROUT 27.4 in2 0.33 f’c= 5000psi (5 ksi) 45.2 k 

COMPRESSIVE LOAD LIMIT FOR 6” PILE w/ 5000 PSI GROUT & #8 STEEL REINFORCEMENT: 68.9 KIPS 

Table 5:  Compressive Load Limit Calculations for 6” Diameter Micropile w/5000psi Grout & #8 Rebar 

 

The configuration previously discussed was the actual design used for the Harrington 

Auditorium underpinning.  Although this design met structural requirements, we tested several 

other designs to determine if there were other configurations that could have been applied that 

would reduce material but also be structurally sound.  We tested the structural capacity for 

preventing compressive failure of several different grout-to-steel combinations and determined if 

they would withstand the actual compressive loading forces applied to (31.2kips).  We organized 

them and performed our calculations within an Excel spreadsheet and created a table which can 

be seen in Table 6. 
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 MATERIAL AREA (sq. 
inches) 

SAFETY 
FACTOR 

STRENGTH CAPACITY 
(kips) 

DESIGN 1:  
5" DIAMETER; 
#8 STEEL 

STEEL 0.79 0.40 75 23.7 

GROUT 18.84 0.33 5.0 31.09 

Maximum Compression Load: 54.79 kips 

DESIGN 2:  
6" DIAMETER;  
#8 STEEL 

STEEL 0.79 0.40 75 23.7 

GROUT 27.4 0.33 5.0 45.21 

Maximum Compression Load: 68.91kips 

DESIGN 3:   
7" DIAMETER;  
#8 STEEL 

STEEL 0.79 0.40 75 23.70 

GROUT 37.69 0.33 5.0 62.19 

Maximum Compression Load: 85.89 kips 

DESIGN 4:   
5" DIAMETER; 
#7 STEEL 

STEEL 0.60 0.40 75 18.00 

GROUT 19.03 0.33 5.0 31.40 

Maximum Compression Load: 49.40 kips 

DESIGN 5:   
6" DIAMETER; 
#7 STEEL 

STEEL 0.60 0.40 75 18.00 

GROUT 27.67 0.33 5.0 45.66 

Maximum Compression Load: 63.66 kips 

DESIGN 6:  
7" DIAMETER; 
#7 STEEL 

STEEL 0.60 0.40 75 18.00 

GROUT 37.88 0.33 5.0 62.50 

Maximum Compression Load: 80.50 kips 

DESIGN 7:  
5" DIAMETER;  
#6 STEEL 

STEEL 0.44 0.40 75 13.20 

GROUT 19.19 0.33 5.0 31.66 

Maximum Compression Load: 44.86 kips 

DESIGN 8: 
6" DIAMETER;  
#6 STEEL 

STEEL 0.44 0.40 75 13.20 

GROUT 27.83 0.33 5.0 45.92 

Maximum Compression Load: 59.12 kips 

DESIGN 9:  
7" DIAMETER;  
#6 STEEL 

STEEL 0.44 0.40 75 13.20 

GROUT 38.04 0.33 5.0 62.77 

Maximum Compression Load: 75.97 kips 

Table 6:  Structural Compressive Failure Capacity for Potential Design Configurations 
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4.1.3 Axial Loading Capacity Calculations: Design Bond Length & Embedment Depth 

Next, we determined the minimum bond length using the FHWA chart of Allowable 

Bond Values seen in Figure 31 (NHI/FHWA, 2006).  Based on the “Compact Sand” soil 

parameter, the range of bond values is 5-10 k/ft.  The calculation for bond length is determined 

by dividing the actual load by these bond values (both 5k/ft and 10k/ft) in two separate 

calculations.  Whichever produces the largest value for bond length will be used as the minimum 

bond length.  In the case used by GZA this was the 5k/ft value which produced a minimum 

length of 6.24 feet when using the actual load value of 31.2 kips.   

 

Figure 31:  Average Bond Values for Various Soil Parameters (NHI/FHWA, 2006) 

 
The next step in designing the underpinning was determining the necessary depth that it 

needs to be embedded into the soil, which is based primarily on the soil properties and the design 

load to be resisted.  The soil underlying Harrington Auditorium is composed primarily of very 

dense cemented glacial till which has a unit weight of 125 pcf (GZA, 2009).  We used several 

different well published sources, mainly the Federal Highway Administration, to determine 

embedment depth requirements and calculations.  The sources as well as calculation procedures 

we used to determine the embedment depth can be seen in Appendix L.   

The first step of determining embedment depth is choosing an anchor length and finding 

the corresponding ultimate load.  Figure 32 shows a chart of Ultimate Load (kips) vs. Length of 

Anchor (ft) with varying soil parameters (Goldberg/FHWA, 1976).  The soil underlying 
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Harrington Auditorium falls under the “Sandy Gravel” consistency, as shown in the Figure.  By 

choosing a test anchor length you can plot what the estimated Ultimate Load will be.  We used 

the minimum design length of 6.25 feet which we calculated earlier as a starting point and then 

tested other designs with greater lengths and found their corresponding ultimate loads.  The 

Ultimate Load factor is then used to calculate the Safety Factor (Ultimate Load divided by 

Actual Load).  According to the FHWA, the ultimate load should be at least 150% of the actual 

load, which is also a factor of safety greater than or equal to 1.5     

 

Figure 32:  Ultimate Load vs. Length of Anchor for Various Soil Parameters (FHWA) 
 

We organized and performed our calculations within an Excel spreadsheet.  Table 7 

shows the design calculations for different embedment depths of the underpinning corresponding 

to different FS values.  We examined seven different embedment depths to determine the 

minimum depth necessary to properly secure the footing while minimizing the amount of 

material.  We chose a design depth of 9‟ for our underpinning design because it easily meets 

safety design requirements but also reduces material compared to longer designs.  Our design 

recommendations are discussed in further detail later in this section.   
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Table 7:  Alternative Design Depths and Their Corresponding Safety Factor 
 

 

4.1.4 Grout-to-Concrete Connection Calculations 

The final step is checking the grout-to-concrete connection and assuring its contact 

bonding strength will not result in failure.  The grout-to-concrete connection is the product of 

surface contact area between the grout and the footing and the bond strength between them.   

 

Bond Strength  

We began by finding the ultimate bond value, which is the strength between two surfaces 

in pounds per square inch and depends on the type of materials in contact.  Table 8 contains 

ultimate bond values between grout and various types of rock.  Using this table of rock/grout 

bond values from the PCI publication “Foundations in Tension” we obtained the ultimate bond 

value for “Weathered Granite” which is in the range of 217-365psi.  The reason we used 

Weathered Granite is because it is very similar concrete in bond value, which is 200-400psi 

(Williams, 2011).   
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Table 8:  Rock/grout Bond Values for Calculating Grout-to-Concrete Connection (PCI) 
 

Factor of Safety & Ultimate Capacity 

Next, we determined ultimate capacity of the anchor which is a function of the allowable 

capacity and the Factor of Safety.  According to the FHWA, the minimum safety factor for a 

rock-grout bond should be no less than 2.0.  Using a factor of safety of 2.0 and the already know 

allowable capacity of 31.2 kips we calculated ultimate capacity to be greater than or equal to 

62.4 kips.  The following calculations show this procedure quantitatively: 

 Pu = F.S. x Pa = 2.0 x 31.2 kips = 62.4 kips = 62,400 lbs 

Where: 

Pu = ultimate capacity 

Pa = allowable capacity 

F.S. = Factor of Safety 

 

Contact Area 

Next, we calculated the contact area between the grout and concrete footing.  Figure 33 

shows a schematic of a micropile/footing connection.  Since micropiles are installed at an angle, 

the contact area between the pile and the footing is a function of the angle at which the pile is 

installed: 

 Contact area = (π x Dp x Lf ) / cosϕ  

  Where: 

  Dp = diameter of pile hole (in) 

  Lf = length/thickness of footing (in) 

  ϕ = Effective pile angle 
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Figure 33:  Simple Schematic of a Footing with an Angled Micropile 

 

If you think of this calculation conceptually, when the angle is increased, the contact 

between the pile and footing is also increased, thus increasing the overall surface area.  Also, 

when the diameter is increased, the surface area is also increased.  The issue when developing 

our design was that we had to find both a diameter and angle that would satisfy the grout-to-

concrete connection.  Since these factors were unknown (or undecided) we had to develop a 

calculation where we had the angle as a function of the diameter.  We did this by reorganizing 

the ultimate capacity equation, which can be seen below. 

 Pu = [π x Dp x Lf x δ ] / cos ϕ 

  Where: 

  Dp = diameter of pile hole (in) 

  Lf = length/thickness of footing (in) 

  δ = Bond strength (psi) 

  ϕ = Effective pile angle 

 In terms of Effective Angle, ϕ=  cos
-1

[(π x Dp x Lf x δ) / Pu] 

After plugging in all of the known factors (Lf = 12”; δ = 200psi; Pu = 62,400 lbs), we were able 

to develop a simple relationship between the diameter and the angle: ϕ= cos
-1

(0.1208Dp).  With 

this relationship, when testing different micropile designs, we could find the necessary minimum 

embedment angle necessary for any diameter micropile.  Figure 34 shows this relationship 

graphically given the constant, known factors of the Harrington footing.   
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Figure 34:  Effective Angle vs. Diameter of Micropile Hole 

 

 

We used this graph to develop the optimum diameter/angle combination.  According to 

FHWA, the effective angle should not exceed 45
o
 and it general designs are within the range of 

20
o
 to 40

o
.  By simply looking at the graph you can see that all diameter sizes before 5.75 in 

require an angle greater than 45
o
, so any size larger would be suitable at its given angle.  Figure 

35 better shows this point.   
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Figure 35:  Minimum Diameter and Angle Requirements 

 

4.1.5 Final Underpinning Design Recommendations 

Based on all of the design criteria that we determined, we developed a design for the 

underpinning that would be both structurally sound and have a relatively minimal material 

requirement.  Since the minimum diameter hole is 6” we decided to use a 6” cross area micropile 

which creates a 7” hole during drilling, so it is on a conservative measure by one inch.  We 

didn‟t want to go much larger than this in an effort to minimize material.  We also chose a 

5000psi grout cross section reinforced with #7 steel rebar (Grade 75 ksi), which can be seen in 

Figure 37.  This design results in a compressive capacity of 63.6 kips, which is over twice the 

required capacity of 31.2 kips.  Also, the axial loading strength we determined was based on a 9 

foot pile embedment which results in a 105 kips capacity.  Although this is a very conservative 

measure, we couldn‟t really reduce size since it was constrained by the required diameter.  Also, 

the available capacity would have reduced significantly if we chose a rebar size any smaller.  

Lastly, when choosing the effective angle we wanted to use a conservative approach that would 

meet the grout-to-concrete requirements but also supply lateral support to the structure.  

Therefore we chose an effective angle of 40
o
, which met the required angle of at least 30

o
 for a 

7” drilling hole.   



 

71 
 

In addition to the cross section and effective angle we proposed, we also designed for 

micropile spacing and bond length.  Since the max pile spacing is 8 feet and the total length of 

footing is 52 feet, the resulting minimum number of piles is 6.5, which rounded up is 7.  After 

viewing the layout of the footing, we decided to have 8 piles total: one at each end of the footing 

(2), one at each indent for the doorway (2), and four more evenly dispersed between.  Figure 36 

shows this layout schematically in a plan view.  As for the length of the piles, we chose 9‟ which 

meets the minimum requirement of 6.25‟.  

 

 

Figure 36:  Plan View of Location of Underpinning at Harrington Footing 

 

 Our design meets all design specifications and also reduces material while maintaining 

structural stability.  Our final design can be seen in Figure 37.  Compared to the design used by 

WPI, our design uses one less foot of material per footing and 0.19 in
2
 less steel (#7 bar vs. #8), 

reducing the amount of steel necessary by 31.6%.  All results and calculations are outlined in 

Appendix L. 
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Figure 37:  Final Proposed Underpinning Design 
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4.2 Structural Interaction – Tie-In Framing Design 

In addition to analyzing the geotechnical design beneath Harrington Auditorium, we also 

examined the connection between Harrington and the Recreation Center and developed a 

framing system design for the tie-in.  We designed the system to adequately support the loading 

system applied to it and to minimize lateral deflection.  Figure 38 shows a plan view of the 

proposed connection between the Recreation Center and Harrington Auditorium. 

 

Figure 38:  Recreation Center/Harrington Auditorium Tie-In Plan View 

 

Before we began the design of the framing system for the tie-in, we studied structural 

models of both Harrington and the Recreation Center to gain a better understanding of how the 

two buildings will interact with each other.  There was limited information on the structural 

components of Harrington since it was built in 1960, however Cannon developed a Revit model 
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of Harrington based on observation.  The model was not in-depth but it did allow us to view the 

floor plans and gain a better understanding of the dimensions and location of the tie-in.  Cardinal 

Construction also supplied us with AutoCAD files of Harrington that were used by SMMA, the 

subcontractor hired to perform the construction of the tie-in.   We used the AutoCAD file in 

conjunction with the Revit model to improve our overall comprehension of the proposed tie-in.   

As for the Recreation Center, we reviewed their structural Revit model which was 

incredibly detailed, providing us with elevations, dimensions, areas, and location of the tie-in.  

We originally thought that the connection was to occur at the foundation wall, which would have 

a large structural impact on the underlying footing and geotechnical structures.  However 

through reviewing the models and speaking with construction representatives, we discovered that 

the wall was simply an exterior wall, with basic loading properties, and with little impact on the 

underlying structure.  Although this reduced the level of structural analysis we had to perform, 

we still had to design the framing system to withstand the distributed load and meet all safety 

criteria.   

4.2.1 Determining Tie-In Dimensions 

We began our design by first determining the dimensions of the tie-in.  We used several 

methods to estimate the height and width of the connection.  First, we examined the area while 

taking a tour of the Recreation Center during construction with Michael Andrews of Cardinal 

Construction, prior to breaking through the wall.  We didn‟t take any measurements but instead 

just made visual observations.  We observed that the right wall (south side of the connection) 

runs parallel to an entrenchment for a mechanical unit attached to the exterior wall of the 

trainer‟s room.  We used this information when viewing Revit models later on in the project.  We 

also observed that the concrete slab in the Recreation Center was within 2 inches of the exterior 

wall of Harrington, which we expected would be sealed when the connection was made.  Also 

during our tour, Mr. Andrews explained how the width of the wall would be restricted by an 

interior column within the Harrington Auditorium wall on the left side of the connection.  

Therefore, our tour made us aware of the confinements of the connection: the interior column 

and the entrenchment.  The location of both the column and entrenchment are identified in 

Figure 39. 
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Figure 39:  Trainer’s Room w/ Location of Column and Entrenchment 

 

We then studied the AutoCAD floor plans of the gymnasium level of Harrington 

Auditorium, the floor in which the tie-in will be taking place.  The drawings showed the location 

of the column that restricts the width of the tie-in, however the dimensions were not specified, 

and we could not make exact measurements because we didn‟t know the accuracy of the drawing 

since it was developed many years ago and then put into CAD format.  However, we found it 

safe to assume that the location of the beam and estimate it within 2feet of its location. 

The final step we took in estimating the dimensions of the tie-in was taking 

measurements of the trainer‟s room in the area of the proposed tie-in.  We were able to locate the 

entrenchment since it was also the same location of a window in the trainer‟s room.  We also 

spoke with the Assistant Athletic Trainer Aimee Sevigny who was working in the trainer‟s room 

when we visited.  She explained how construction workers had performed an exploratory drill 

hole in the wall in her office recently and showed us the location.  The hole had been covered up, 

but we used that as an assumed location of the column and measured the distance between that 

and the entrenchment.  We found the width to be approximately 10 feet and estimated that the 
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tie-in width would be about 8 feet which is the width of a large double door with a few extra 

inches to spare.     

As for determining the height of the tie-in, we spoke with construction representative of 

Cardinal Construction and Cannon Design and they said the height would be 8‟-6” (102”).   We 

also measured the height of the ceiling within the trainer‟s room to be 93”.  The difference 

between the height of the tie-in and the height of the trainer‟s room ceiling would then be 11”, 

which we were told would be evened out using drywall.    The final dimensions we settled on for 

the tie-in was 8‟-6” x 8‟-0”, which is shown in Figure 40. 

 

 

Figure 40:  Tie-In Dimensions 

 

4.2.2 Calculating Loading Conditions 

After establishing the dimensions of the tie-in, we had to determine the loading system 

that would be applied to it.  Through speaking with Michael Andrews during our tour of the 

Recreation Center, we found that the wall is a simple exterior wall composed of brick and 

concrete masonry units (CMU) with an air gap of approximately 9” between.   The brick portion 

of the wall runs the entire height of the building, while the CMU units run from floor to floor.  

Therefore, we would have to provide separate calculations and designs for the brick and CMU. 
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The fact that the wall is an exterior wall means that the tie-in would only have to resist forces 

caused by the weight of the materials (dead load) as opposed to a load-bearing wall which resists 

structural loads of the building.  Once we knew this we researched the average weight of both 

bricks and CMU‟s per square footage according to industry standards.   Table 8 shows different 

types of masonry sizes and their corresponding weights (Muller, 1995).   

Masonry Walls Load (psf) 

4” Brick 42 

8” Concrete Block 55 

12” Concrete Block 80 

Table 9:  Masonry Units and Weights 

 

 Once we knew the composition of the wall and its corresponding weight, we were able to 

determine the distributed load across the horizontal span of the tie-in.  When analyzing the 

distributed load above an opening, the span experiences a triangular load acting at 45
o
 angles 

from both ends from the above material as shown in Figure 41 (Stuart, 2009).   The maximum 

concentrated load, which acts at the center of the span, is the product of weight of material per 

square foot (psf) and the tributary height triangle (L/2).  Since the length of the span is 8‟, the 

corresponding height of the triangular load is 4‟.  Therefore, the peak load is 168plf, or the height 

(4‟) times the weight per square footage of the brick (42 psf).   

 

Figure 41:  Triangular Load Distribution Acting on an Exterior Wall Opening 

 



 

78 
 

 When designing a support system it is essential to know the internal forces that will be 

acting upon it, which is a direct result of the loading system that is supporting.  We developed 

shear-moment diagrams based on the distributed load and span, following the standard statics 

model for triangular distributed loads in Figure 42.  The resulting maximum shear and maximum 

moment experienced over the span are 336 lb and 816 lb-ft, respectively. 

 

 

Figure 42:  Shear-Moment Diagrams for Distributed Triangular Loads (Mathalino, 2021) 
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4.2.3 Lintel Size Calculations 

After determining the dimensions and loading conditions of the tie-in we were able to 

design a lintel size to support the brick exterior wall.  The primary design parameter for lintels is 

to minimize deflection.  The maximum allowed deflection for any steel lintel, per the Brick 

Industry Association (Technical Notes 31B, 5/87), is L/600, where “L” is the span of the lintel in 

inches.  Therefore, we knew we had to minimize the deflection to 0.16 in., calculated from the 8 

foot (96 inches) span divided by 600.      

We used RISA 2D, a structural analysis computer program, to perform deflection 

calculations.  This program generates minimum and maximum values of moment, shear, 

displacement, and deflection based on the load, boundary conditions, moment of inertia, and 

steel area.   We recreated the lintel and loading conditions of the tie-in to find the maximum 

deflection.  We tested several different lintel sizes by plugging in their respective moment of 

inertia and area, and checked deflection of each to ensure it meets the design requirement of 0.16 

in maximum deflection.  When plugging in the values for different lintel sizes, we also had to 

consider its own dead weight, which is considered a distributed load across the span.  Figure 43 

is a screenshot of RISA 2D that shows the loading conditions and span of the tie-in, and the 

corresponding deflection for an L - 4x4x    steel lintel.  This lintel size, given its specific area, 

dead weight, and moment of inertia, will undergo a deflection of 0.015 inches.  The technical 

step-by-step approach of creating such a beam and loading conditions in RISA 2D is outlined in 

Appendix M. 

 

Figure 43:  RISA 2D Screenshot for the Tie-In Loading Conditions on an L- 4x4x1/2 Steel Lintel 
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We followed these steps for several different lintel sizes, using a trial-and-error approach 

in attempt to find the most economical size that could also meet the deflection requirement of 

0.16 inches.  Table 10 shows a variety of different size lintels that we tested and their 

corresponding properties and deflection. 

Designation Depth Width Thickness Sectional Area Weight Moment of Inertia - I Deflection 

 
in in in in2 lb/ft in4 in 

L8 x 8 x 1  8 8 1 15 51 89 0.001 

L8 x 8 x 3/4 8 8 0.75 11.4 38.9 69.7 0.002 

L8 x 8 x 1/2 8 8 0.5 7.75 26.4 48.6 0.003 

L6 x 6 x 1 6 6 1 11 37.4 35.5 0.003 

L6 x 6 x 3/4 6 6 0.75 8.44 28.7 28.2 0.004 

L6 x 6 x 1/2 6 6 0.5 5.75 19.6 19.9 0.005 

L5 x 5 x 3/4 5 5 0.75 6.94 23.6 15.7 0.007 

L5 x 5 x 1/2 5 5 0.5 4.75 16.2 11.3 0.009 

L4 x 4 x 3/4 4 4 0.75 5.44 18.5 7.67 0.013 

L4 x 4 x 1/2 4 4 0.5 3.75 12.8 5.56 0.015 

L4 x 4 x 1/4 4 4 0.25 1.94 6.6 3.04 0.033 

L3 x 3 x 1/2 3 3 0.5 2.75 9.4 2.22 0.045 

L3 x 3 x 1/4 3 3 0.25 1.44 4.9 1.24 0.081 

L2 x 2 x 1/4 2 2 0.25 0.938 3.2 0.348 0.222 

 

Table 10:  Lintel Sizes, Properties & Deflections (Size Information from Engineering Toolbox) 
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4.2.4 Tie-In Design Results & Recommendations 

Since the brick veneer and CMU interior wall were essentially two separate entities, we 

developed different design proposals for each.  For the brick veneer exterior wall, we chose to 

use a lintel to span the 8-foot tie-in and support the overlying load.  Based on the loading 

conditions and the Building Code Requirements for maximum deflection in lintels, we chose to 

support the brick veneer with an L- 4x4x1/2 lintel.  We tested over ten different lintel sizes and 

calculated if they could effectively withstand the applied loading conditions (weight of the brick 

above the opening).  Nearly all of them passed, however we chose a size that would also be 

economical and practical.  The 4x4x1/2 lintel would easily support the load above the span and it 

was also a size that was not too small or too large, making it the most practical choice.   

 As for the CMU, we decided to completely eliminate all of the units up to the height of 

the ceiling.  The CMU units in Harrington Auditorium are stacked from floor-to-floor, as oppose 

to the brick which runs the height of the building.  So instead of installing a lintel to support only 

one CMU unit, we decided to demolish all CMU units from the width of the tie-in up to the 

height of the ceiling.  This approach requires far less construction efforts and material than 

installing a lintel for the CMU.  The difference of heights between the brick lintel and the ceiling 

of the trainer‟s room could then be transitioned using drywall.  This design would result in a 

smooth transition from the brick veneer facing the Recreation Center to the CMU wall on the 

interior of Harrington Auditorium.  Also, this approach would be economical and reduce the 

amount construction necessary.   
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4.3 Functional Design – Trainer’s Room Reconfiguration 

In addition to the structural analysis we performed on the Harrington tie-in, we also 

considered how the new connection would interact with the spacing and function of the trainer‟s 

room in Harrington Auditorium, which will be directly affected by this construction.  The space 

occupied by the trainer‟s room will require a reconfiguration to allow for a hallway to run 

through, starting at the location of the tie-in.  The hallway will function as a route between the 

gymnasium floor and the Recreation Center robotics pits, and must include design considerations 

for the size and traffic of the robots during competitions.  We used several different methods to 

gain a better understanding of the trainer‟s room area and develop a plan of reconfiguration of 

the space.  

 

4.3.1 Current Trainer’s Room Layout & Proposed Tie-In Location 

We began the process of designing a reconfiguration for the location directly affected by 

the tie-in in Harrington Auditorium by studying the layout of the trainer‟s room.   As mentioned 

before, Cardinal Construction provided us with AutoCAD files of Harrington Auditorium 

blueprints.  These blueprints were very helpful in showing the scale of the trainer‟s room in 

relation to the gymnasium and also in locating walls, elevator shafts, columns and doorways.  

However this file was based on the blueprints that were developed when the building was 

constructed in 1968 and the building has undergone changes since then.  The room now used as 

trainer‟s room was originally used as a Food Service Area during sporting events.  So not only 

has the space changed, but its function has also changed.  Also, the drawings showed no 

indications of dimensions.  Figure 44 shows the trainer‟s room as represented in the AutoCAD 

file based on original as-built drawings. 
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Figure 44:  AutoCAD Drawing of Trainer’s Room as Originally Constructed 

  

Although the drawing didn‟t portray the up-to-date layout of the trainer‟s area, we used it 

as a foundation for creating a new version that accurately represents the current conditions.  We 

visited the trainer‟s room and took measurements throughout the entire area and applied the 

dimensions to an updated AutoCAD drawing of the room.  We also took note of type of 

materials used for each wall (CMU or drywall) as well as the location of fixtures (lighting, 

electrical, and plumbing).  We used this information when considering different reconfiguration 

designs for the trainer‟s room/robotics hallway.  Figure 45 shows the updated AutoCAD drawing 

of the current trainer‟s room layout.  The blue lines in the drawing indicate walls we drew into 

the file which were constructed after the original construction (drywall), and the white walls are 
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CMU walls constructed during initial construction of the building.  Dimension lines are also 

included and are measured in “inches.”  The tie-in is also located on the left side of the drawing. 

 

Figure 45:  Current Layout of Trainer’s Room w/ Dimensions 

 

 

Tie-In 
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We also developed a drawing with labels to provide a qualitative representation of the 

trainer‟s room layout, as well as show the location of the tie-in and the location of the trainer‟s 

room in context of the entire gymnasium floor; this drawing can be seen in Figure 46. 

 

Figure 46:  Trainer’s Area with Labels 

 

4.3.2 Design Requirements – Trainer’s Room/Robotics Hallway  

Before beginning our design for the reconfiguration of the trainer‟s room, we had to 

consider the design requirements of the hallway to support traffic during robotics competitions.  

We gathered all necessary information related to the robotics hallway by interviewing Professor 

Kenneth Stafford, Director of the Robotics Resource Center and also an Architectural Advisor 

for the Robotics Pits in the new Recreation Center, appointed directly by WPI President Berkey.  

Notes from the interview with Professor Stafford can be found in Appendix N.  In summary, the 
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ideal design parameters for the robots hallway are a width of 8 feet and a height of 8 feet 

throughout the length of the hallway.  This would allow traffic in both directions between the 

robotics pits in the Recreation Center and the competition floor in Harrington Auditorium and 

also allow for easy clearance.  This was a critical design requirement and dictated our design 

suggestion for the reconfiguration of the hallway through the Harrington trainer‟s room. 

 Another consideration we examined was the needs of the trainer‟s room.  We spoke in an 

informal conversation with the Assistant Athletic Trainer Aimee Sevigny to determine the 

requirements for the trainer‟s room after reconfiguration.  The trainer‟s room will remain fully 

operational in the future despite the fact that the new Recreation Center includes a newer, larger 

training area.  The reason it will remain open is to offer training room assistance to athletes 

playing in sports that will continue competing in Harrington Gymnasium, including basketball, 

volleyball, and wrestling.  On the other hand, the trainer‟s room in the new Recreation Center 

will be utilized to support athletes who compete on the field levels such as football, field hockey, 

baseball, softball, track and field, etc.  So the occupancy of the Harrington trainer‟s rooms will 

be drastically reduced since the majority of sports will now report to the Recreation Center 

instead.  However, it will still need to support all of the basic functions of a standard trainer‟s 

room.   

 

4.3.3 Proposed Reconfigurations – Trainer’s Area/Robotics Hallway 

Using the dimensions of the trainer‟s room that we determined in conjunction with the 

location of the tie-in and the necessities of both the trainer‟s area and the robotics hallway, we 

devised several potential reconfigurations of the space, and chose one that would best optimize 

the area.  We drew the potential designs within AutoCAD and compared them.  We based our 

comparison on functionality, constructability, and how well they met the requirements of both 

the trainer‟s and robotics users.   

Within each drawing the proposed Robotics Hallway is designated by the red lines; and 

yellow lines represent pre-existing walls that would have to be demolished in order to either 

accommodate for the new hallway or to connect separate areas to make one primary trainer‟s 
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room.  Also, all Robotics Hallways were designed to have a minimum width of 8feet and this 

design criteria is reflected in each drawing. 

Option #1:  Our first design configuration, Option #1, consists of having the Robotics 

Hallway enter the trainer‟s area and turn northward through the pre-existing hallway.  This 

hallway would exit into a lobby behind the bleachers, where the robotics competitors would then 

have to navigate around to reach the gymnasium floor.  The design drawing can be seen in 

Figure 47.  The advantage of this design is that it would allow competitors to choose which side 

of the bleachers they‟d like to enter onto the gymnasium floor at from the lobby area.  Another 

advantage is that the trainer‟s room would still have a relatively large area.  The disadvantages 

are that both storage areas would be demolished or at the very least, greatly reduced in size.  The 

trainer‟s office would also have to be demolished, however regardless of configuration this room 

will have to be removed so we did not consider this while factoring in each options potential.  

Also, the bathroom wall would potentially have to be reconstructed which is a more major issue 

than other walls since it contains plumbing utilities.  Another disadvantage, from the robotic 

standpoint, is that this option would require some maneuvering of the robots since it contains a 

nearly 90
0
 turn.  And finally, although the trainer‟s area would remain quite large, it would 

require a wall to either be demolished to connect the two areas or a door frame to be installed.  

Also, it would have an awkward layout which could impact its overall function.  Overall, this 

option has its pros and cons from each viewpoint: trainers, robotics, and construction. 
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Figure 47:  Reconfiguration Option#1 

 

Option #2:  The second reconfiguration layout we considered, Option #2, consists of the 

Robotics Hallway running straight through the trainer‟s room, perpendicular to the east wall of 

the room.  This proposed layout can be seen in Figure 48.  The advantages of this design are that 

it would minimize the distance that the robots would have to travel and would completely 

eliminate any complicated maneuvering since there are no turns or curves.  The disadvantages 

are that the hallway would completely dissect the trainer‟s room, leaving two open spaces on 

both sides, and interfering greatly with the function of the trainer‟s area.  Also the wall that the 

hallway would break through would require exploratory work and may potentially contain 

columns or plumbing utilities running through it.  Overall this option is highly favorable from the 

robotics standpoint, but unfavorable from both a trainer‟s and a constructability point-of-view.    
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Figure 48:  Reconfiguration Option #2 
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Option 3:  The third and final configuration we considered, Option #3, includes the Robotics 

Hallway running flush with the west and south walls of the trainer‟s room and exiting out of the 

pre-existing doorway onto the gymnasium floor.  This layout can be seen in Figure 49.  The 

advantages of this design are that it would utilize a pre-existing exit and would require only 

demolition of drywalls which contain only electrical utilities (no plumbing).  Also, the trainer‟s 

areas would be combined leaving a large open space, easily large enough to support the expected 

activity within the room.  Also, the two storage areas and bathroom would remain untouched.  

Another advantage, from the robotics standpoint, is that the hallway would exit directly onto the 

gymnasium floor/competition area.  The disadvantages are that the hallway contains a turn, 

which would require some maneuvering of the robots, although minimally.  Also, although the 

hallway will be utilizing a pre-existing exit, the doorframe would need to be extended an extra 

two feet from its original size to accommodate for the robotics traffic.  Overall, this option is 

highly favorable for the trainers, relatively favorable for robotics, and evenly favorable from a 

constructability point-of-view.   

 

 

FIGURE TOO LARGE FOR SPACE: SEE NEXT PAGE 
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Figure 49:  Reconfiguration Option #3 

 

 

4.3.4 Recommendations for Trainer’s Area/Robotics Hallway 

After developing the three different potential reconfiguration designs, we analyzed the 

advantages and disadvantages of each to determine which would be the best design overall.  We 

performed our analysis from a completely unbiased point-of-view and took into consideration the 

necessities of each individual party, weighing them equally.  We organized our information with 

a table that shows the pros and cons of each design and from the standpoint of the robotics 

people, the trainers, and constructability, which can be seen in Table 11.  This made it easier for 

us to compare and contrast each design, and inevitably develop a more accurate and well-thought 

recommendation.   
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Option #1 Option #2 Option#3 

Trainer’s  

Area 

 

PROS:  Sufficient 

Space 

 

CONS: Awkward 

Setup; Demolition of 

both storage areas 

PROS:  Storage & 

Bathrooms Unaffected 

 

CONS: Dissects 

Trainers Area 

 

PROS:  Large, Open, 

Sufficient Size Room; 

Storage & Bathrooms 

Unaffected 

 

 

Robotics  

Hallway 

PROS:  Exits into 

lobby 

 

CONS: Long, Curved 

Route 

 

PROS:  Minimizes 

Travel Distance; No 

Curves/Turns; Smooth 

Transition 

 

 

PROS:  Exits Directly 

To Gym Floor/ 

Competition Area 

 

CONS: Includes a Turn 

Construct- 

ability 

CONS:  Clashes with 

a lot of drywall; 

interferes w/ CMU 

wall containing 

plumbing 

CONS: Exploratory 

Work Required; Wall 

May Contain Plumbing 

or Column 

PROS:  Pre-existing 

Exit 

 

CONS: Doorframe Must 

Be Extended 2' 

 

Table 11:  Pros & Cons of Each Reconfiguration Design 

 

After carefully considering each design proposal, we determined that Design Option #3 

provided the best overall layout.  The final design can be seen in Figure 50 with dimensions and 

approximate square footage of both the Robotics Hallway and Trainer‟s Area.  The major 

advantages we found when looking at this design is that it maximizes the space for the trainer‟s 

room while meeting all the design criteria of the Robotics Hallway.  The Robotics Hallway will 

be a minimum of 9 feet which is at least 1 foot wider than the design standard of 8 feet, resulting 

in a smooth, uninhibited transition between the Robotics Pits and the Harrington Gymnasium 

floor.  This design also minimizes the interference that the construction would have on the 
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trainer‟s room considering both storage areas and the bathroom would remain untouched, and the 

trainer‟s room would undergo only minimal reduction in size.  Also, this design provided 

benefits from the constructability standpoint in that it would take advantage of a pre-existing 

doorway and no exploratory work would be required.  In general, this design offers favorable 

advantages from all points of view and minimizes negative aspects.   

 

Figure 50:  Final Design Configuration for Robotics Hallway & Trainer’s Room 
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5.0 CONCLUSIONS & RECOMMENDATIONS: 

This section includes a summary of the results we obtained from the BIM portion of our 

project, as well as the results of design we developed for the different aspects of the Harrington 

Auditorium and Recreation Center connection.  Also, we provide final conclusions and 

recommendations for both aspects of the project. 

 

 5.1 BIM/4D/5D Conclusions & Recommendations 

This major qualifying project used a variety of methods to examine the effectiveness of 

Building Information Modeling as a tool in Construction Management. A key development that 

came as a result of the project was the creation of a methodology for linking multiple BIM 

models and schedules together. By combining multiple modeling tools we were able to show the 

usefulness of a complete BIM model to all parties involved in a construction project. As an 

architect, BIM provides others with a better understanding of your building design, and a better 

final product can be produced with a clearer understanding of the project and all its implications. 

For a construction manager, BIM provides a better visualization of the project, a more accurate 

depiction of the materials needed, and provides an integrated method to show how the project 

will be built and where construction issues could be expected. As a tool for a building owner, 

BIM can be used to communicate needs to the architect, to understand the construction 

managers‟ schedule, to understand the progress of the project more fully, and to prepare budgets 

far more accurately. Building Information Modeling has great potential, and our project tapped 

into just some of the features offered by the system.  

 

5.1.1 BIM as a Project-Tracking Tool 

A major conclusion of this project was the establishment of BIM as a project-tracking 

tool. Due to the linking of the schedule and multiple 3D models, we were able to visually model 

the progress of the construction project. Further, with the addition of the material takeoffs, we 

were able to clearly model the cost of the project as it was constructed. In essence, we 

demonstrated the procedures that a project owner could follow to visually track the progress of a 
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project in terms of schedule, materials, and cost. Understanding that this information provides 

the user with an accurate idea of schedule and cost performances, this tool can be used to 

evaluate contractors, construction managers, and owners‟ representatives. 

 

5.1.2 BIM’s Increasing in Necessity 

It is also important to highlight the increasing necessity of BIM, and its overall cost-

effectiveness. When it comes to the decision-making process, no tool outperforms BIM in clarity 

of purpose and scope. Each week in the owner‟s meeting, we observed a communication process 

that was primarily dependent on oral exchange among meeting participants supported by 2D text 

and graphics.  When the digital drawings are brought out though, a decision is often made in 

only minutes. As projects become increasingly complex, BIM becomes more and more necessary 

for all participants to understand what is taking place. It could also be argued that the financial 

savings of efficient decision-making and fewer project changes will cover the cost of 

maintaining an accurate model. It is likely that complete BIM services will pay for itself over the 

life of a project. It is for these reasons that this major qualifying project recommends a gradual 

investment in BIM technology for all applications in Construction Project Management.  

 

5.1.3 Future BIM Research 

As this project was completed we recognized one area that further research can be 

focused on. We suggest that further research be conducted on determining BIM‟s cost 

effectiveness as a construction management tool. We found that there was no simple method to 

measure the potential cost savings that could be realized over the life of a construction project 

that used BIM versus a project that did not. Although these savings were not readily quantifiable, 

it was clear that when the 3D model was used (like in the case of verification of floor-to-ceiling 

height in the Robotic pits area) potentially costly modifications during construction were 

avoided.  The 3D MEP coordination process was another example of how BIM tools improved 

communication and understanding of complex spatially related issues.  Further consideration 

should be provided here to determine the exact cost benefits of the use of BIM in these cases, 
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because this argument is essential in convincing Construction Management firms the financial 

and scheduling advantages of incorporating BIM into their projects.    

 

5.2 Harrington Auditorium Connection: Conclusions & Recommendations 

Based on our review and analysis of the connection between Harrington Auditorium and 

the new Sports & Recreation Center, we were able to offer alternative design recommendations 

for the three main components of the connection: geotechnical, structural, and 

architectural/functional.  The benefits of our proposed solution cannot be verified or properly 

assessed until the actual work takes place (beside the underpinning design which has already 

occurred) however we made educated assumptions to determine a design that we found most 

appropriate given the constraints and conditions of the entire connection.   

 

5.2.1 Geotechnical Design 

The geotechnical component of our design consisted of analyzing the underpinning 

layout beneath the foundation of the west side of Harrington Auditorium and developing an 

alternative design.  This location was directly impacted by the excavation during construction 

and required geotechnical support to ensure its continuous stability.  We created a layout that met 

all safety requirements to properly secure the footing.  The design consisted of eight micropiles 

evenly spaced over the length of the footing, embedded nine feet into the soil at a 40
o
 effective 

angle, and a 6” cross-sectional surface diameter reinforced with a #7 Grade 75 steel core bar.  

Our final design recommendation can be seen in Figure 51. 
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Figure 51:  Geotechnical Design Proposal (Plan View Above, Cross-Section Below) 

 

 Our design reduced the amount of steel by 31.6% when compared to the actual design 

used on the Recreation Center.  We found other potential design sizes that could have reduced 

the quantity of steel even more and still meet safety criteria.  However, structural capacity is 

greatly lessened with the reduction of steel, so we settled on our design because it had over twice 

the necessary capacity while still reducing the quantity of steel by 31.6%.  In conclusion, there 

were many alternatives that could have been used for underpinning, but we created design that 

satisfied the safety requirements while remaining economical. 

 If a group were to expand upon our work, we would suggest trying different types of 

materials.  We explored only 5000 psi grout and simple 75000psi steel rebar, since they are the 

standard used in the industry, however there are many different steel and grout property 

variations available in the world.  An exploration of underpinning using steel and grout with 
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different properties, or even completely different materials altogether such as composite 

materials, could be interesting and potentially produce a design that is more cost-effective. 

 

5.2.2 Structural Tie-In Design 

 The structural aspect of our design included developing a support system for the 

connection between the Sports & Recreation Center with Harrington Auditorium while 

considering the constructability and practicality of the design.  The two buildings will be “tied-

in” through the exterior wall of the trainer‟s room in Harrington Auditorium, which is comprised 

of brick and CMU.  We devised a simple but practical approach that would address the brick and 

CMU separately, and then combine the individual designs into a smooth transition between the 

buildings.   

 We chose to support the brick veneer with an L-4x4x1/2 lintel.  We tested over ten 

different lintel sizes and calculated if they could effectively withstand the applied loading 

conditions (weight of the brick above the opening).  Nearly all of them passed, however we 

chose a size that would also be economical and practical.  The 4x4x1/2 lintel would easily 

support the load above the span and it was also a size that was not too small or too large, making 

it the most practical choice.   

 As for the CMU, we decided to completely eliminate all of the units up to the height of 

the ceiling.  The CMU units in Harrington Auditorium are stacked from floor-to-floor, as 

opposed to the brick which runs the height of the building.  So instead of installing a lintel to 

support only one CMU unit, we decided to demolish all CMU units from the width of the tie-in 

up to the height of the ceiling.  This approach requires far less construction efforts and material 

than installing a lintel for the CMU.   

 If a group were to expand upon our design, we would recommend they research the cost 

difference of construction between using lintels to support the CMU instead of complete 

demolition.  Also, they could explore different types of supports, more specifically one that 

would span the brick veneer and CMU simultaneously.  From there they could compare the cost 

and constructability of that type of design with ours to see which would be most feasible. 
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5.2.3 Functional/Architectural Design 

In addition to the geotechnical and structural design we developed, we also explored 

design solutions for the reconfiguration of the trainer‟s room in Harrington Auditorium.  The 

trainer‟s room will have to be reconfigured to accommodate the tie-in and resulting hallway that 

will be used for travel between the buildings during robotics competitions.  We developed three 

potential configurations of the room and hallway and chose one as the best possible solution 

based on the dimensional requirements of the hallway, the maximization of the trainer‟s space, 

and the constructability of the design.  Figure 52 shows a 2D plan view of the design we 

proposed (the yellow arrows indicate the flow of traffic). 

 

Figure 52:  Plan View of Proposed Configuration of the Trainer’s Room 
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We suggest for future research to determine the cost estimate of each design.  Although 

we determined which design appeared to have the easiest constructability, which can also be an 

indication of cost, we did not perform actual quantity and cost estimates.  If each design had a 

corresponding overall cost, it would likely play a very large role in choosing which design to use.  

Another way to expand on this portion of our project would be to develop 3D models of each 

design in Revit.  This would allow the user to better analyze the functionality of the design and 

predict any issues or flaws that would otherwise be difficult to assume from a 2D drawing.  

5.3 Overall Conclusion from Project Work 
 

Through this project we have used Building Information Modeling to transform a 3D 

model of WPI‟s new Sports and Recreation Center into a 4D model, tracking the concrete, 

façade, roofing and steel packages. We then used these models to do an earned value analysis of 

the Recreation Center‟s construction; finding planned and projected cost of the project in 

monthly increments. This project also looked at the social impacts of BIM, particularly the 

implementation of BIM introduced into owners meetings. From this we determined that using 

visualizations in meetings diminishes confusion between parties, thus speeding up the decision 

making process. 

 This project also addressed the geotechnical, structural, and architectural designs of the 

Recreation Center and Harrington Auditorium connection. We performed the necessary 

calculations to determine an alternative geotechnical design which consisted of micropiles and a 

total steel quantity reduction of 31.6%.  For the structural aspect of the connection we 

determined a lintel that could be used to carry the load of the brick veneer, and decided that the 

CMU wall be completely removed. Finally for the architectural aspect of the connection we 

determined a suitable reconfiguration of the trainer‟s room in Harrington Auditorium that would 

minimize construction necessary and meet the design requirements for a Robotics Hallway. 

 This project would not have been possible to accomplish without the 3D models that we 

received from Cannon Design, and schedules, work packages, geotechnical documents and 

various other information that we receive from Gilbane, and the help of numerous others. We 

would like to thank everybody involved in this project, its completion would not have been 

possible without them.   
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APPENDIX A:  Project Group Contractual Agreement 
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APPENDIX B:  Activity Identification Coding System 
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APPENDIX C:  Primavera-and Excel Scheduling Process 

 Create the Columns  

o Activities Tab – Click the “Activities Tab” on the left side of the screen.  This will 

bring you to the page where you can view/adjust all information related to 

individual activities (Activity ID, Actual and Planned Start/Finish, Duration, Float, 

WBS, etc.).  

o Columns Button – To adjust the scheduling information that will appear when 

viewing activities, click the “Columns Button” which is located at the top, center 

of the page.   A “Columns” interface will then appear. 

o Columns – Within the “Columns” interface you can choose all of the information 

you wish to include to describe each activity from a large variety of available 

options.  You can arrange them in whichever order you prefer.  NOTE:  For 

options not included in the “Available Options” then select “user_text” which 

you can adjust later to the preferred name. 

 

 
 
 

  Example of Activity Heading after choosing Columns 
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 Export Primavera Columns into Excel 

o Click the “File” tab at the top 

left of the screen.   

o Under the drop down menu, 

choose “Export” and the 

“Export Format” menu will 

appear.  Choose the 

“Spreadsheet – (XLS)” option, 

then click “Next.” 

 
 
 
 
 

 

 An “Export Type” menu will appear.  

Choose the “Activities” option, then 

click “Next.” 

 
 
 
 
 
 

 

 

 

 A “Projects To Export” menu will 

appear.  Choose the Primavera 

project that you would like to export.  

Click the empty box under the 

“Export” heading.  A check mark 

should appear.  Click “Next”.    

o NOTE:  You can only 

export projects that were 

already open when 

starting the export 

process.  
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 An “Excel Export” menu will 

appear.  It will contain templates 

from previous projects, however, 

if you are creating a new 

template, click “Add”  

 

 

 

 

 

 A “Modify Template” 

menu will appear.  

Within this menu you 

can rename the 

template and 

customize the column 

settings that will 

appear when exported 

to Excel.  Using the 

arrows (circled in red 

on the image below) 

you can choose which 

options to 

include/exclude and 

rearrange them into 

whichever order 

preferred.  Once you 

have organized the 

“Selected Options”, 

click “OK” at the top 

right of the screen. 
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 This will bring you back to the “Excel 

Export” screen.  Click “Next” 

 A “Select XLS File” menu will appear.  

Select the Excel file (.xls) you will be 

exporting the column selection into.  

Click on the box with three dots (see 

image) to find and select the Excel file 

you will be using.  Once you have 

chosen the file, click “Next”. 

o NOTE:  If you didn’t create the 

.xls file previous to this step, 

simple open a new excel sheet 

and save it. 

 
 
 
 
 

 A “Summary” menu will appear.  This 

menu displays the actions of the export 

about to take place.  After reviewing the 

information, click “Finish” 

 
 
 
 
 
 
 

 The “The export was successful.” box should appear after this process, in which case you 

are finished.  If an “Error” box appears then retry the process. 
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 Fill in the Excel sheet 

o Open the Excel file that you chose to export the Primavera file into.  It should 

now contain the column headings. 

 

 Fill in the sheet with all activity information.  Make sure that you use a uniform 

format for dates and remain consistent on Identifying activities. 

 Format the Excel sheet as wanted (change names of column headings, create 

filters, color code, etc.)  See example below. 

 Save the file once you have the completed filling it in. 
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 Import the Excel file into Primavera 

o Open Primavera and click the 

“File” tab at the top left of the 

screen. 

o Under the drop down menu, 

choose “Import” and the 

“Import Format” menu will 

appear.  Choose the 

“Spreadsheet – (XLS)” option, 

then click “Next.” 

 
 

 

 

 A “Select Excel File” menu will appear.  

Choose the excel file you will be 

importing by clicking box with 3 dots 

(see image below).  Then click “Next” 

 
 

 
 
 
 

 

 

 

 An “Import Type” menu should 

appear.  Click the box next to 

“Activities”.  A check should appear.  

Click “Next” 
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 An “Import Project Options” 

menu should appear.  Select 

the Primavera file that you will 

be importing the Excel file into 

by clicking on the “Import To” 

button.  Once chosen, click 

“Next” 

 

 

 

 

 

 

 

 

 A “Summary” menu should 

appear.  Review the import 

information and click “Finish” 

 A box that says “The 

import was successful” 

should appear.  If so, then 

the import is complete. 
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APPENDIX D:  Revit Element Identification Process 
The following steps teach you how to attach and activity ID to each object in the Revit model 

To Add an Activity ID to different objects in the Revit model you must make a Project Parameter to store 

the information for the ID. 

 Select the “Manage” Tab 

o Select the “Project Parameters” Tab 

 

 

 
 

 

 Select “Add…”  

 

 

 

 

 

 

 

 Under “Parameter Type” 

select “Project parameter” 
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 Under “Parameter Data”  

o In the “Name” field enter 

“Activity ID” 

o In the “Type of 

Parameter:” menu select 

“Text” 

o In the “Group Parameter 

under:” menu select 

“Text” 

 All other defaults can be left in 

place. 

 Click “OK” 

 

 

 

 Click “OK” 

 

 

 

 

 

 

 

 

Now the Activity ID Parameter has been 

created to accept the data to ID the objects 

in the Model. The new Parameter can be 

found in the “Properties” sidebar to the left 

of the screen as shown to the right 
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In order to ID the objects one needs to select the objects pertaining to the ID needed and enter the ID. 

 
 
 
 
 
 
 

 Highlight the Objects to be 

identified 

 

 

 

 

 

 

 

 
 
 
 

 Input the Activity ID corresponding with the 

objects selected in the “Activity ID” field under 

the “Text” section. 

 Click “Apply” 

 

 

 

 

 

Once this is completed for each object in the model based on their corresponding Activity ID you are able 

to import the model with the Activity ID’s into Navisworks.  
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APPENDIX E:  Material Quantity Takeoff Process 
Following this process outlines the necessary steps to take when creating a materials quantity take off in 

Revit. 

First, open the Autodesk Revit file that you wish to examine. Be sure that this file is saved somewhere 

that you can access – not all steps in this tutorial will work if the file is not saved prior to conducting the 

material takeoff. 

 

In the lower left of the 

main screen in Revit, 

notice the Project 

Browser. All views and 

sheets can be sorted in 

the Project Browser. For 

a Material Takeoff, 

expand the 

Schedules/Quantities 

menu.  

 

 

 

 

 

Once expanded, right-click on the Schedules/Quantities header in 

the Project Browser. In this right-click menu, choose “New Material 

Takeoff”. 
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Next, you will be prompted with the New 

Material Takeoff dialog box. 

 

 

 

 

 

 

 

Now you must name the Material Takeoff – 

create a name you will remember and that 

makes sense. 

 

 

 

 

 

 

Next, ensure that the “Category” is set to 

“Multi-Category”. This will ensure that you can 

run one takeoff and receive data about more 

than one type of materials.  

Now, move to the next step by selecting OK. 
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You will now be prompted with the 

Material Takeoff Properties dialog 

box. This dialog box will establish 

what you want information for in 

the project, and how to display that 

information. 

 

 

 
 

 

 

The first thing to take care of is to 

establish the scheduled fields you 

wish to have displayed in the 

takeoff. Browse through the 

options seen in the “Available 

Fields” menu on the left of the 

dialog box. When you are 

prepared to add a field, highlight 

the field, then click the “Add” 

button. This will populate the 

“Scheduled Fields” menu. Note 

that the Schedule Fields will 

appear in order from left to right, 

starting with the top in this menu, 

and ending with the bottom. This 

order can be changed by using the 

Move Up/Move Down options. 
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Next, move the dialog box tab over to “Filter”. 

 

 

 

 

 

 

 

If you would like to restrict which elements 

are displayed, for instance if you wish to only 

see materials from particular trades that you 

have previously identified, you can do so by 

filtering the display. In this example, we 

choose to filter by a data set called “Activity 

ID”, sorting by ID’s that begin with “CO”. This 

process is similar to establishing rules for an 

email inbox or other restrictive process.  

 

 

 

 

 

Next, move the dialog box tab to 

“Sorting/Grouping”. 
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Sorting your results will enable you to 

display them graphically in a manner that 

helps you best. In this case, I choose to 

display this material takeoff with a sort by 

Activity ID, but a Family/Type sort is very 

common as well. Be sure to select the 

“Header”, “Footer”, and “Blank line” option 

boxes. For ease of reading, I suggest leaving 

the “Footer” set to display “Title, Count, and 

totals”. You may also wish to select the 

“Grand totals” option box, as this will total 

all materials for you at the bottom of your 

takeoff. Again, set this to display “Title, 

Count, and totals”. Lastly, I suggest leaving 

the option box titled “Itemized every 

instance” selected.  

 

Next, move the dialog box tab to 

“Formatting”. Here you can choose how 

each item will be displayed in your takeoff. 

You may choose to have each value labeled 

with it’s units, or you can have the value 

displayed as a number only. To change this 

setting, select a Field, then choose Field 

Format. 

 

 

 

 

You will then be prompted by the Format 

sub-dialog box. To change these settings, 

deselect Use project settings. 
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Once this is no longer selected, the other 

options will appear editable. Make changes 

as necessary, including the Unit Symbol 

display. Click OK when done. 

Move the dialog box tab to “Appearance”. 

Confirm that the preset settings are correct, 

and make changes as desired.  

Click OK. 

 

 

 

 

 

By clicking OK, you advance to the material 

takeoff report that Revit produces. It appears 

as a new Schedule in the 

Schedule/Quantities menu in the Project 

Browser, and it named what you originally 

named the takeoff. 

 

 

 

 

By clicking OK, you advance to the material 

takeoff report that Revit produces. It appears 

as a new Schedule in the 

Schedule/Quantities menu in the Project 

Browser, and it named what you originally 

named the takeoff.  
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You may also choose to export this material takeoff so that you can manipulate the values in Microsoft 

Excel or other tabulation software. The first step in exporting the data set we just created is to save the 

file. It is essential to exporting that your file is saved.  

 

 

 

Next, to export the material takeoff, click the 

“R” icon, also known as the main menu in 

Revit. Once open, select Export. 

 

 

 

 

 

 

 

 

 

 

 

After selecting Export, choose Reports. From 

reports, click on Schedule. 
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Next, you will be brought to the Export Schedule dialog box. Set the destination and name of your 

exported file. Be sure to leave the file type set as Delimited Text (*txt). 

 

Choose Save. 

 

 

Next, the Export Schedule dialog box 

will reappear. Be sure to leave the 

settings as they are. They should 

appear like this: 

 

You have just exported your Material 

Quantity Takeoff from Revit. 
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To open this file in Excel, first open the Excel application. Next, choose open new file. Navigate to the file 

that you just exported, and click open. (You may need to change the file type settings, as the export was 

a *.txt file) 

 

 

 

 

 

 

 

 

 

The Text Import Wizard will then open. For the 

next steps, change nothing to the settings in 

the wizard, just click Next >. 

 

 

 

 

 

 

 

Next, click on Finish. 

You have just completed the Material Quantity 

Takeoff process from start to finish 
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You may now edit the results however you may need. 
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APPENDIX F:  NavisWorks Simulation Process 
The following process outlines the steps necessary to link Revit and Primavera files within NavisWorks 

and create a 4D simulation. 

Revit Export into NavisWorks: 

In order to have a successful Revit export, make sure that you are in the 3D-view with no elements 

selected and have the entire model displayed. 

 Select the “Add-In’s” tab 

o Select the “External Tools” tab 

 Select “Navisworks 2012” 

 Save the file 

 

 After following these steps the Revit model will export to a NavisWorks file 

 

Primavera: 

Once the Revit model is exported to NavisWorks, the corresponding Primavera schedule should be 

exported next. 

 

 Click “file” 

o Export 

 An export box appear on 

the computer screen 

 Export Format 

o In the export box chose 

Microsoft Project (MPP) 

o Click “Next” 
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 Export Type 

o Select “Project” 

o Click “Next” 

 
 
 
 
 
 
 
 
 
 
 

 Project to Export 

o Check the export box 

o Under “Export File Name” select 

where you would like to export 

the project to 

o Click “Next” 

 
 
 

 

 

 
 

 

 Template 

o Click “Add…” 
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A “Modify Template” box will pop up 

 Create a template name 

 Click the activity tab 

 Under “Export” check the box 

“Export Activity ID to Microsoft 

Project’s Task Field” 

 In the drop down box chose “Text 

5” 

 Click “OK” 

 

 

 
 
 
 
 

 Template 

o Select “Activity ID” (This is 

the Activity Id that has just 

been created in the Modify 

Template) 

o Click “Next” 

 
 
 
 
 
 
 
 
 
 

 Export Confirmation 

o Click Finish 
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NavisWorks: 

Once both the Primavera and Revit files are exported to NavisWorks, open the exported Revit file. 

 Click on the “View” tab 

o Click on the “Windows” tab 

 Select “Timeliner” and “Selection Tree 
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In the “Selection Tree” tab 

o Click the “Properties” tab (on the bottom of the screen) 

 Double Click “Element” to open the element 

 Double Click “Activity ID” to open the Activity ID 
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 In the “TimeLiner” tab 

o Select the “Data Source” tab 

 Click “add” 

 Choose Microsoft Project  

(2003-2007) 
 

 

It will open a browser window. In that window open the file that has just been exported from Primavera. 

 

 A “Field Selector” Window will open 

o Under the “External Field Name” column set 

up the following, using the drop down boxes 

 For “Planned Start Date” chose 

“start”  

 For “Planned End Date” chose 

“Finish” 

 For “Actual Start Date” chose 

“ActualFinish” 

 For “Actual End Date” chose 

“ActualFinish” 

 For “User 1” chose “Text5” 

 This is the text5 that was 

used for exporting your 

activity ID’s during the Primavera export 

 Click “ok”  

 
 

 

Under “name” in the timeline a “New Data Source” tab will 

appear 

 Click the “refresh” tab 

o Select “All Data Sources” 

 



 

132 
 

 
 
 

 A “Refresh for Data Sources” window 

will appear 

o Select “Rebuild Task Herarchy” 

o Select “OK” 

 
 
 
 
 
 
 

 
 
 
 
 

 In the “Timeliner” tab 

 Select the “Tasks” tab 

o Click the “Column Set” tab 

o Chose “Custom” 

 

 
 
 
 
 
 
 
 
 

 Select the “Rules” tab 

 A “TimeLiner Rules” window will 

appear 

o Select “new” 
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 A “Rules Editor” window will appear 
o Under “Name Rule” type in “LinkElementToSchedule” 

o Under “Rule Templates” chose “Attach Items to Task by Category/Property” 

o Under “Rule Description” do the following: 

 Change “Column Name” to “User 1” 

 Change “Category Name” to “Name” 

 Change “<Category>” to “’Element’” 

 Change “Property Name” to “Name” 

 Change “<Property>“ to “’Activity ID’” 

 Change “Ignoring” to “Matching” 

o Select “OK” at the bottom of the box 

 Check the “LinkElementToActivityID” box 

 Click the “Apply Rules” tab 
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 In the “TimeLiner” tab 

o Select the “Tasks” tab 

 Under the “Task Type” column select each box to say “Construction” 

o Select the “Simulate” tabe 

o Press the “Play” button 
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APPENDIX G:  NavisWorks Transparency and Color Change 
The following steps teach you how to change the color and transparency of different activities in your 

NavisWorks simulation. 

Open your NavisWorks model 

 In the  “Timeliner” tab 

o Select Configure 

 

 

 

 

 Click the “Appearance Definitions…” tab on the right 

side 

o A new window will pop up 

 Click “Add” 

 A new bar will pop up 

 

 

 

 In the box the says “New Appearance” change it to say 

“Concrete” 

 Change the color to yellow by double clicking the black 

box 

 Change the transparence to 60% 

 Under the “Default Simulation Start Appearance:” 

select “Hide” 

 Add another box and repeat these steps making the 

“Name Appearance”  “Concrete End” and the 

transparency 0% 

 Create the above following boxed for each section of 

the work breakdown schedule (steel, drywall, façade, 

and roof) selecting a color for each different section 

o Click “OK” 
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 Under “Task Type” click the “Add” tab 

o Under “Name” change from “New Task Type” to “Concrete” 

o Under “Start Appearance” Change the dropdown menu from “None” to 

“Concrete” 

o Under “End Appearance” change the dropdown menu from “None” to “Concrete 

End” 

o  Do this for each of the five sections of the work breakdown schedule 

 

 Select the “Tasks” tab in the Timeliner 

o Under each “Task Type” click each activities drop down menu and select its 

perspective section in the work breakdown structure 

 

Once this process has been complete when you simulate the model it will build with the color 

coordination you chose for each work breakdown section. At the start of construction for each activity 

that activity will show up with a transparency of 60% and when the construction is complete for each 

activity the activities transparency will switch to 0% transparent.  
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APPENDIX H:  Step Solve Shared Project Errors 
 

 

 

 First, open Revit Architecture and 

select the file you wish to open. 

 When your file opens, if it is a former 

Central file from another user that they 

have shared to you, you may see an 

error such as this: 

 

 

 

 If you do see this error, select Close 

and continue with the steps below. 

 The Revit project will now open. 

 After the file loads, you will receive the 

following message: 

 

 This message informs you that the 

Workset that you’ve opened is not 

editable, and therefore can only be 

viewed and not manipulated.  

 Select Close to continue. 

 

 The project will now open in its non-editable form. Note via the box at the bottom of 

the screen (seen below) that the Worksets are not editable. 
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 To fix this issue, first you must select File > Save As > Project. This will save the project as 

a new file, which you will use to make your manipulations. 

 You will then be prompted with the dialog box below. Please name the file and select its 

directory destination at this time. 

 

 

 Prior to selecting Save, choose the “Options…” feature
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 You will then be prompted by the File Save Options dialog box. 

 

 You must select “Make this a Central Model after save” 

 Once this box is checked, please select OK. 
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 Next, select Save in the Save As dialog box.  

 

 Note: This process may take a few minutes depending on file size and processor 

capabilities. 

 Now that ownership of the project has been transferred to you, you can now make all 

worksets editable for your manipulations. 

 Under the Collaborate tab, select Worksets 

 

 

 

 In the Worksets dialog box, change the Editable property for each Workset to Yes using 

the dropdown menu. 
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 Then Select OK 
 

 



 

142 
 

 Note: This process may take a few minutes depending on file size and processor 

capabilities. 

 Note now that all Worksets are editable and can be manipulated as desired. 

 

 Save the file, and you may move on with your work. 
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APPENDIX I:  Monthly Construction Phases with  Corresponding Material 

Quantities 

 

August 31st 2010 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 22.33 17.26 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 0.00 0.00 
 

August 31st 2010 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  0.00 0.00 0.00 0.00 

Concrete 23.20 17.93 646267.38 499398.64 

Precast Concrete 0.00 0.00 0.00 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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September 30th 2010 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 43.89 39.10 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 0.00 0.00 
 

September 30th 2010 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  0.00 0.00 0.00 0.00 

Concrete 45.60 40.63 623970.78 632202.68 

Precast Concrete 0.00 0.00 0.00 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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October 31st 2010 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 46.98 47.59 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 16.82 0.93 
 

October 31st 2010 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  16.82 0.93 588416.47 32689.80 

Concrete 48.81 49.44 89252.37 245634.74 

Precast Concrete 0.00 0.00 0.00 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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November 30th 2010 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 50.95 53.03 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 16.82 5.05 
 

November 30th 2010 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  16.82 5.05 0.00 143835.14 

Concrete 50.25 51.20 40317.88 48869.80 

Precast Concrete 68.75 100.00 1097921.13 1597000.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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December 31st 2010 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 60.01 54.31 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 16.82 9.35 
 

December 31st 2010 

 Percent Planned Cost Planned Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  16.82 9.35 0.00 150373.10 

Concrete 58.46 52.53 228470.76 37138.20 

Precast Concrete 100.00 100.00 499078.87 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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January 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 60.01 54.31 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 23.50 20.22 
 

January 31st 2011 

 
Percent Planned 

Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  23.50 20.22 233623.13 380509.32 

Concrete 58.46 52.53 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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February 28th 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 61.03 54.31 

Façade 0.00 0.00 

Roofing 0.00 0.00 

Steel 55.96 37.62 
 

February 28th 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 0.00 0.00 0.00 0.00 

Steel  55.96 37.62 1135425.85 608466.21 

Concrete 59.51 52.53 29355.30 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 0.00 0.00 0.00 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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APPENDIX J:  Monthly Construction Phases with Percent Complete and 

Cost 

 

March 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 84.20 56.17 

Façade 1.77 0.00 

Roofing 55.38 0.00 

Steel 81.53 75.00 
 

March 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 55.38 0.00 68120.78 0.00 

Steel  81.53 75.00 894393.03 1307592.15 

Concrete 83.59 54.46 670650.08 53716.49 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 2.76 0.00 34094.92 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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April 30th 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 88.16 63.75 

Façade 10.50 0.00 

Roofing 75.37 0.00 

Steel 100.00 96.09 
 

April 30th 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 75.37 0.00 24586.90 0.00 

Steel  100.00 96.09 645950.52 737481.97 

Concrete 87.70 62.33 114555.84 219315.67 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 16.36 0.00 168179.82 0.00 

Glass & Glazing 0.00 0.00 0.00 0.00 
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May 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 73.13 

Façade 25.10 0.52 

Roofing 97.76 0.00 

Steel 100.00 100.00 
 

May 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 0.00 0.00 0.00 0.00 

Roofing 97.76 0.00 27538.47 0.00 

Steel  100.00 100.00 0.00 136861.31 

Concrete 100.00 72.09 342580.62 271704.95 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 38.57 0.00 274605.51 0.00 

Glass & Glazing 3.20 4.76 95385.05 142009.50 
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June 30th 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 83.51 

Façade 47.76 3.33 

Roofing 100.00 0.00 

Steel 100.00 100.00 
 

June 30th 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 37.92 0.00 259824.19 0.00 

Roofing 100.00 0.00 2753.85 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 82.87 0.00 300394.03 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 56.60 3.21 223002.12 39750.17 

Glass & Glazing 18.27 11.62 449863.91 204830.43 
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 July 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 84.37 

Façade 78.81 17.78 

Roofing 100.00 0.00 

Steel 100.00 100.00 
 

July 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 59.58 0.00 148470.97 0.00 

Roofing 100.00 0.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 83.76 0.00 24618.58 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 92.88 24.29 448613.09 260640.73 

Glass & Glazing 39.96 20.04 647724.41 251220.74 
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August 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 84.37 

Façade 93.57 40.09 

Roofing 100.00 0.00 

Steel 100.00 100.00 
 

August 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 74.18 0.00 99998.19 0.00 

Roofing 100.00 0.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 83.76 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 56.85 88017.53 402515.32 

Glass & Glazing 100.00 33.02 1792092.63 387701.47 
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September 30th 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 97.74 

Façade 100.00 69.72 

Roofing 100.00 0.00 

Steel 100.00 100.00 
 

September 30th 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 0.00 176946.65 0.00 

Roofing 100.00 0.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 97.65 0.00 387095.27 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 533606.78 

Glass & Glazing 100.00 50.73 0.00 528452.18 
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October 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 72.05 

Roofing 100.00 55.56 

Steel 100.00 100.00 
 

October 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 0.00 0.00 0.00 

Roofing 100.00 55.56 0.00 68333.42 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 65331.95 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 72.02 0.00 635587.83 
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November 30th 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 75.99 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

November 30th 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 7.31 0.00 50101.43 

Roofing 100.00 100.00 0.00 54666.57 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 91.44 0.00 579679.80 
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December 31st 2011 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 80.45 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

December 31st 2011 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 21.47 0.00 97042.62 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 255584.05 
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January 31st 2012 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 89.78 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

January 31st 2012 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 58.93 0.00 256642.67 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 0.00 
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February 29th 2012 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 93.55 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

February 29th 2012 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 74.10 0.00 103984.80 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 0.00 
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March 31st 2012 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 95.05 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

March 31st 2012 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 80.11 0.00 41194.96 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 0.00 
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April 30th 2012 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 99.21 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

April 30th 2012 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 96.82 0.00 114469.76 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 0.00 
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May 2nd 2012 

 Planned Cumulative 
Percentage 

Actual Cumulative 
Percentage 

Concrete 100.00 100.00 

Façade 100.00 100.00 

Roofing 100.00 100.00 

Steel 100.00 100.00 
 

May 2nd  2012 

 Percent Planned Percent 
Complete 

Monthly Cost 
Planned 

Monthly Cost 
Complete 

Metal Panels 100.00 100.00 0.00 21803.76 

Roofing 100.00 100.00 0.00 0.00 

Steel  100.00 100.00 0.00 0.00 

Concrete 100.00 100.00 0.00 0.00 

Precast Concrete 100.00 100.00 0.00 0.00 

Brick & Precast 100.00 100.00 0.00 0.00 

Glass & Glazing 100.00 100.00 0.00 0.00 
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APPENDIX K:  Planned vs. Actual Material Quantities By Month and Trade 

Metal Panels 
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Roofing 
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Steel  
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Concrete 
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Precast Concrete 
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Brick and Precast 
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Glass and Glazzing 
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Total Cost 
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APPENDIX L:  Underpinning Design Calculations & Related Sources 
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APPENDIX M:  RISA 2D Steps to Create a Beam w/ Loading Conditions 
 

 Define Drawing Grid 

o Click the “Insert” Tab 

o Within this tab choose the 

“Grid”  

o The “Define Drawing Grid” 

screen will appear 

o Define the width (x-axis) and 

the height (y-axis)  

o For example: “30@1” means 

30 units at 1 foot units, so 30 

feet altogether 

o After setting the x- and y-

axis, click “OK” and the 

screen will display the grid 

described 

 
 
 
 
 
 
 

 Define Joint Coordinates 

o Click “Joint Coordinates” 

option in the “Data Entry” 

menu 

o Choose the location (x, y) of 

the joints of the structural 

member (frame, beam, 

truss, etc.) 

o After choosing the location 

of each joint, the 

coordinate will appear on 

the grid  
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 Define Boundary Conditions  

o Click “Boundary 

Conditions” option in the 

“Data Entry” menu 

o Choose the reaction in the 

x- and y-direction for each 

joint 

o Ex. A pin has a fixed x- and 

y-reaction and a free 

rotation  

 
 

 Define Members 

o Choose the parameters 

for each member 

including joints, moment 

of inertia, modulus of 

elasticity and length 

o The member should 

appear on the grid once 

the parameters are 

chosen 

 

 

 Define Loads 

o Determine the loads 

that will applied to the 

structure  

o Choose “Distributed 

Loads” or “Point Loads” 

in the “Data Entry” 

menu 

o Enter in the properties 

of the load (location, 

magnitude, direction) 
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 Solve  

o Click the “Solve” tab at the top of the page 

o This will open up a “Results” menu 

o From here you can solve for Joint Reactions/Deflections and Member Forces/Deflections 

o Follow these same steps for different loads or member properties and solve again 
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APPENDIX N:  Interview with Professor Stafford (Robotics Dept.) 
 

ATTENDEES:  Chris Baker & Prof. Kenneth Stafford 

LOCATION:  Higgins Laboratories, Room 011 

DATE:  February 8, 2012 

 

 Appointed to the architectural advisory staff during conceptual design of the Rec Center 

to provide input on robotics pits and tie-in with Harrington 

 

 Special design for robotics pits included 10‟ ceilings, a ramp instead of stairs, electrical 

drops at each pit 

 

 The ideal transition dimension are 8‟x8‟ 

o Height:  Max height of robot is 5 foot collapsed in a 2foot high wagon = 8 feet 

o Width:  3 feet wide wagons and need to allow room for 2 to pass at a time with a 

buffer:  Approx 8 feet 

 

 Ideally the hall should be designed to accommodate traffic of robotics in separate 

directions simultaneously, to decrease time spent in transition and make it a smoother 

path 

 

 They would prefer a hallway that accommodates this even if it requires twists and turns 

and is a longer path 

 

 The robotics can increase in size during conditions to due mechanical failures and loss of 

ability to collapse so a buffer would be preferred  

 

 Since this is going to be considered a top-notch  facility for robotics competitions he 

believes it should have an adequate transition hallway 

 

 The new robotics pits will allow for WPI to host larger robotics competitions since the 

pits will be located at a separate location, opening up more room on the competition floor 

 

 The two largest competitions they host will grow from 34 to 52 to teams and 48 to 64 

teams respectively 

 

 A typical robot weighs 150 pounds and travels on a 4 wheeled wagon to-and from the 

competition floor (for maintenance in between rounds) 

 

 Typical robotics pits fixes take 15 to 45 minutes, however when the competitors start to 

dwindle down, they may not even have time to visit the pits 

 


