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Abstract 

A heterogeneous, non-overlapping domain decomposition, explicit, finite volume method (HT-

NODDE-FVM) is developed to solve numerically a 3D advection-diffusion process-state hybrid 

estimator. The HT-NODDE-FVM is applied to real-time estimation problems of 3D unsteady 

advection-diffusion plume fields produced by stationary and moving sources. The field 

measurements are taken by a sensor onboard a guided sensing aerial vehicle (SAV). The hybrid 

Luenberger-naive estimator uses those field measurements to compute the plume field in real-

time and guide the SAV to locations that provide optimal information to the hybrid estimator. A 

structured and uniform grid is used to divide the computational domain of interest into multiple 

non-overlapping subdomains. In the subdomain where the SAV resides, a Luenberger estimator 

in the form of a 3D advection-diffusion partial differential equation is used to estimate the plume 

field. In the remainder of the subdomains, a naive observer of a similar form is used. The 

transmission conditions are used on the interfaces between adjacent subdomains for data 

communication. The spatial discretization of the hybrid Luenberger-naive estimator is conducted 

by the HT-NODDE-FVM with Total Variation Diminishing (TVD). Continuity and flux balance 

transmission conditions are enforced at the interfaces of adjacent subdomains when conducting 

the FVM-TVD discretization. The resulting semi-discrete equations are integrated by a 4th order 

Runge-Kutta method. OpenMP parallel paradigm is implemented to parallelize the HT-NODDE-

FVM estimator. The verification and error analysis of the NODDE-FVM are performed with two 

benchmark tests. One is the 3D advection of different initial density distributions, the other is the 

3D advection-diffusion of instantaneous gaseous releases under constant wind speed and eddy 

diffusivities for a range of Peclet numbers. The verification and error analysis of the HT-

NODDE-FVM hybrid estimator are also conducted on an instantaneous release by a stationary 

source in a large domain with constant atmospheric properties. The impact of grid resolution, 

sensor model, estimation gain, and numerical data, on the 𝐿1, 𝐿2, and 𝐿∞ norms of the estimation 
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error are examined by those test cases. Parallelization efficiency analysis of the OpenMP 

implementation of the hybrid estimator is also presented. Finally, the hybrid estimator and the 

HT-NODDE-FVM are applied to estimate the gaseous plumes released from stationary and 

moving sources in a km-scale computational domain under realistic atmospheric conditions and 

SAV parameters. Real-time estimation analysis is also conducted by comparing the wall clock 

time of completing an iteration over all the subdomains with the maximum allowable numerical 

time step for the temporal integration. The simulation results show that the hybrid estimator and 

the HT-NODDE-FVM can achieve real-time estimation of the advection-diffusion field in very 

fine grid settings.  
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Chapter 1 Introduction 

The problem of interest in this work arises from the need to estimate in real-time the 

concentration profile of a plume generated from a stationary or moving aerial source (intruder). 

The estimation is provided by a sensing aerial vehicle (SAV) carrying a concentration sensor. 

The problem is depicted in Figure 1.1 and has a wide range of practical applications. Such 

dynamic sensing platforms with real-time, data-driven, state estimators can provide the spatial 

resolution of systems described by various partial differential equations (PDEs) including the 

unsteady advection-diffusion equation considered in this work. These state estimators use data 

from static or mobile sensors and, in order to be real-time implementable in large-scale 

applications, require fast and robust computational algorithms.  

Credit of background city picture: britannica.com
 

Figure 1.1 An SAV is estimating in real-time the gaseous plume released by an airplane (intruder) and also 

tracking it. 
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The process-state in our case, i.e. the concentration field of the trace gaseous contaminant, is 

modeled by the unsteady advection-diffusion PDE. The hybrid estimator is implemented onboard 

a dynamic sensing platform, a sensing aerial vehicle in our case, which obtains a single 

pointwise concentration measurement in the field and provides in real-time the spatial resolution 

of the field in the entire domain, while repositions the sensing platform to locations that optimize 

the performance of the state estimation. The hybrid process-state estimator is modelled by a 

heterogeneous PDE of similar PDE form, and accounts for different observers in different 

regions of the spatial domain as shown in Figure 1.2.  

Ω

𝐿 

𝐿 

𝐿 

 Ω

𝑋   s 

       
     

      

   

 

Figure 1.2 The physical domain of the hybrid estimator model. The Luenberger estimator applies in the shaded 

region and the naive estimator elsewhere. 

The goal in this work is to develop a numerical method for the hybrid estimator based on a 

heterogeneous domain decomposition method (DDM). The new method must be executable in 

real-time and be applicable to km-scale computational domains with realistic SAV and 

atmospheric conditions.  

1.1 Background and Literature Review 

Previous work at WPI addresses various aspects of the real-time estimation problem. Demetriou 

et al. [2013 and references therein] modeled the process (plume) by a 2D advection-diffusion 

PDE. The process-state estimator is based on a Luenberger observer and its numerical solution is 

based on an adaptive, multigrid, Finite Volume Method (FVM) with upwinding. The SAV 
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dynamics is modeled in 2D and the guidance is derived with a Lyapunov redesign method which 

provides the control inputs (torques) to the SAV. Egorova et al. [2016 and references therein] 

modeled the process-state (plume) with the 3D advection-diffusion PDE and the process-state 

estimator is based on a Luenberger observer. The numerical solution of the 3D estimator is based 

on a FVM with TVD using locally adapted grids centered at the location of the SAV. The SAV 

is modeled as a point mass with a sixth degree of freedom nonlinear dynamic model. The 

Lyapunov-redesign method provides the control signal (velocities) to the SAV. Hu and 

Demetriou [2019] presented a hybrid process-state estimator for the 2D advection-diffusion 

equation along with a guidance law of a point-mass moving sensor. The 2D hybrid estimator 

applies a Luenberger model in the subdomain where the SAV resides and a naive estimator in the 

remainder of the subdomains. Gatsonis et al. [2020] expanded the process model and the 

process-state hybrid estimator from 2D to 3D. The numerical solution of the hybrid estimator is 

accomplished by a new heterogeneous non-overlapping domain decomposition explicit (HT-

NODDE) method in order to achieve real-time computation.   

Domain decomposition methods (DDMs) are used to solve linear or nonlinear systems of 

equations arising from the discretization of partial differential equations (PDEs). By 

decomposing the domain (or a data structure) into subdomains (or into data pieces) and sending 

them to different CPUs or threads, DDMs accomplish fast computation and ability to handle 

large scale problems. DDMs can also be used as preconditioners for Krylov subspace method 

based linear system solvers [Smith et al., 2004]. In homogenous DDMs the entire domain and its 

subdomains are modeled by one type of PDE; in heterogeneous DDMs different PDEs apply to 

parts of the domain. DDMs are also characterized on whether the adjacent subdomains are 

overlapping (ODDM) or non-overlapping (NODDM). In the former case, the overlapped region 

is used to transfer data between the adjacent subdomains. Common ODDMs are classical 

Schwarz methods and multilevel Schwarz methods [Smith et al., 2004]. In NODDMs, the data 

transfer or communication between the adjacent subdomains involves proper transmission 

conditions at the interface, which can be of Dirichlet-Neumann (D-N), Neumann-Neumann (N-

N), and the Robin-Robin (R-R) type [Rivera et al., 2003]. 

For homogeneous DDMs, one PDE is solved for all subdomains and most implementations are 

of the NODDM type [Lube et al., 1998; Achdou and Nataf, 1997; Rivera et al., 2003; Wang et 
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al., 2005; Zheng et al., 2008; Acebron et al., 2009; Stolk, 2013; Kumar and Kumar, 2017]. In 

heterogeneous DDMs, which is of interest in this work, different PDEs apply to various regions 

of the domain and their subdomains. The most common heterogeneous problems involve an 

advection-dominated region coupled with an advection-diffusion dominated region. Gastaldi et 

al. [1990] developed a NODDM for a steady advection and advection-diffusion coupled 

problem. Their iterative algorithm uses spectral Chebyshev collocation discretization. The 

transmission conditions enforce continuity on the inflow interface pointing to the advection 

subdomain and enforce flux balance on the entire interface. Quarteroni et al. [1992] 

implemented the method developed by Gastaldi et al. [1990] on a steady boundary layer 

problem. Quarteroni et al. [1998] developed a NODDM for unsteady inviscid/viscous coupled 

problems based on the Euler/Navier-Stokes equations, using FVM and a standard explicit four-

stage integration scheme. The transmission conditions enforce equality of the inviscid advective 

flux with the combined viscous advective and diffusive fluxes; in addition, they enforce 

continuity of density on the inflow interface pointing to the inviscid subdomain. Quarteroni et al. 

[1998] applied their method to a quasi-one-dimensional nozzle flow, laminar flow over a flat 

plate, compressible flow over an airfoil, and turbulent flow over a RAE 2822 airfoil. Gander et 

al. [2007] developed a NODDM for an unsteady advection/advection-diffusion coupled problem. 

They implemented the same transmission conditions as in Quarteroni et al. [1998]. Their method 

involved a rapidly converging iteration algorithm which lead to an optimized Schwarz waveform 

relaxation method. Halpern et al. [2012] developed a heterogeneous NODDM based on Schwarz 

waveform relaxation algorithm for solving advection-diffusion-reaction problems with strong 

discontinuities. The Ventcell transmission conditions were used to achieve data communication 

between subdomains. Spatial discretization was performed with the generalized mortar finite 

elements and temporal discretization with the discontinuous Galerkin. This method was 

implemented on an advection-diffusion-reaction problem with different diffusivities in two non-

overlapping subdomains and with the advection velocity normal to the interface in one 

subdomain and tangential to the interface in the other subdomain. Li et al. [2015] developed a 

NODDM to solve a coupled kinetic-heat system where a transport equation was solved in the 

kinetic region and a diffusion equation was solved in the fluid region. First the kinetic problem 

was solved with the boundary conditions on the interface given by a half-space problem with the 

Albedo operator. Then the results on the interface were used to solve the diffusion problem. 
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Birgle et al. [2018] developed a NODDM to solve a coupled problem of non-isothermal 

compositional Darcy flow and a RANS gas flow. The Darcy problem was solved by a two-point 

flux approximation scheme and the RANS model was solved by a staggered Marker and Cell 

scheme. Time was advanced by an implicit Euler scheme. The resulting nonlinear systems were 

solved by a Newton algorithm and a Quasi Newton algorithm, respectively. The R-R type 

transmission conditions were used on the interface to transfer data between the free flow and the 

flow in a porous medium. 

In this work we present a new theoretical and numerical framework for the process-state hybrid 

estimator based on domain decomposition to achieve real-time implementation of the algorithms. 

The new theoretical framework involves a formal derivation of the process model equation for 

the contaminant concentration. The new process-state estimator is hybrid and involves a 

Luenberger estimator which applies in a region surrounding the SAV and a naive estimator in the 

rest of the domain. The theoretical issues of such hybrid estimators are addressed in detail by Hu 

et al. [2020] and which examine the sparsity of the filter kernels. Enforcing sparsity of the filter 

kernels ensures the nullity of the filter kernel in the outer subdomain, thus guaranteeing the 

estimator in the outer subdomain is rendered naive. Such manipulation of kernels was examined 

in Akhtar et al. [2015] in the context of sensor selection for the dual problem of control feedback 

kernels. The use of mobile sensors for filtering of partial differential equations is presented by 

Burns and Rautenberg [2015].  

A new numerical framework is also presented in this work, based on a non-overlapping fully 

explicit heterogeneous domain decomposition (HT-NODDE) approach (Gatsonis et al, 2020). 

The spatial discretization in NODDE follows an FVM with TVD approach and the time 

integration of the semi-discrete equations is obtained with a Runge-Kutta algorithm, resulting in 

a method referred here and on as HT-NODDE-FVM. Transmission conditions are enforced 

through a barrier synchronization. The guidance of the SAV which is modeled as a point mass is 

based on a Lyapunov redesign and the control inputs to the SAV are based following recent work 

by Tian et al. [2020]. The resulting HT-NODDE-FVM is implemented using Open MP to allow 

use of readily available multi-core systems. An extensive set of validation and verification 

benchmark tests of the HT-NODDE-FVM and hybrid estimator are presented. Simulations using 

km-scale domains, SAVs with parameters from existing UAVs, and realistic ambient 
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atmospheric wind conditions demonstrate that the HT-NODDE-FVM estimator achieves real-

time computation of the plume. The method can be applied to any application requiring 

heterogeneous domain decomposition.    

1.2 Research Goals, Objectives, and Approach 

The primary goal of this work is to estimate in real-time the concentration profile of a stationary 

or moving gas source by using a hybrid estimator with the heterogeneous non-overlapping 

domain decomposition explicit finite volume method (HT-NODDE-FVM). To achieve this goal, 

mathematical models and numerical models need to be derived and the developed method needs 

to be implemented on realistic problems.  

The objectives and approaches used to accomplish the goal are as follows: 

1. Derive the process model, the hybrid estimator model, and the sensor model. 

a. Describe the atmosphere and the released gas with the Navier-Stokes equations of 

a multi-component system together with the continuity equation of single species; 

use the Boussinesq approximation for the lower atmospheric layer, use the 

Reynolds-averaged equations to account for turbulent effects, assume the released 

species is a single trace species and is in the diffusion regime, assume the 

molecular diffusion fluxes and their gradients are negligible compared with the 

turbulent ones, and assume the principal axes of eddy diffusivity tensor coincide 

with the coordinate axes, then we arrive at the 3D advection-diffusion equation of 

a single released trace species in the atmosphere. 

b. The hybrid estimator uses a Luenberger observer in the domain where the SAV 

resides and a naive observer in the region outside. 

c. Use a sensor model which is based on Lagrangian sensing technique. 

d. Use two different approaches to guide the SAV. One is the modified Lyapunov 

guidance law and the other is the Lyapunov guidance law with six degree-of-

freedom fixed-wing aircraft dynamical model. 

2. Develop the HT-NODDE-FVM with TVD and Runge-Kutta (RK) method for the hybrid 

estimator model. 
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a. Discretize the computational domain with a structured grid and divide the entire 

domain into multiple subdomains with each subdomain having same number of 

cells for optimal load balancing. The Luenberger estimator model is solved in the 

subdomain where the sensor resides while the naive estimator model is solved in 

the rest of subdomains. 

b. For each subdomain, use a second order FVM with TVD scheme for the spatial 

discretization. 

c.  Impose transmission conditions on the interfaces between adjacent subdomains 

using second order discretization that results in a non-overlapping explicit DDM.  

d. Use an explicit 4th order Runge-Kutta method for temporal integration of the 

semi-discrete equations.  

e. Allocate each subdomain to a distinct CPU thread.  

f. Solve the estimator model equations in all the subdomains using an OpenMP 

parallel implementation. 

3. Verification and error analysis of the NODDE-FVM with TVD-RK algorithm. 

a. Apply the method on homogeneous non-dimensional 3D advection and 

advection-diffusion equations and compare the numerical solution with  analytical 

solutions. Evaluate the order of accuracy by performing grid sensitivity analysis. 

For the non-dimensional 3D advection equation, four initial density 

configurations are used for the simulations including a continuous Gaussian 

density distribution, two piecewise Gaussian distributions, and a cubical density 

distribution. The order of accuracy is calculated by using the 𝐿1 norm of the error 

between numerical and analytical solutions for each initial density distribution 

case. For the non-dimensional 3D advection-diffusion equation, three different 

Peclet numbers are used and cover diffusion dominated to advection dominated 

flows. The initial density distribution used in the simulations follows the 

analytical solution at certain time instance. The 𝐿1 norm of the error between 

numerical and analytical solutions for each Peclet number case is used to calculate 

the order of accuracy.  

b. Apply the method on the heterogenous hybrid estimator to study the effects of 

estimation gain and grid resolution on estimation results. The 𝐿2 norm of the 
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estimation error as functions of estimation gain and grid resolution is plotted to 

study those effects.  

4. Perform parallelization efficiency analysis for the OpenMP implementation of the 

NODDE-FVM with TVD-RK method. 

a. Study the speedup and efficiency by recording the average elapsed wall-clock 

time of completing one single time level for different tests with different number 

of threads. 

5. Implement the HT-NODDE-FVM with TVD-RK method on realistic estimation 

problems. 

a. Use city-scale domains of km-size and realistic atmospheric conditions for the 

ambient wind profiles and diffusivities.  

b. Generate sensor data by solving the process model in the same domain size used 

for the hybrid estimator. 

c. Use conditions for SAVs that correspond to existing UAVs and aerial intruders. 

d. Perform simulations for cases of instantaneous gaseous release and long-pulse 

gaseous release. Compare the estimated concentration profile with the process 

model concentration profile and track the source. 

e. Evaluate the real-time computational ability of the HT-NODDE-FVM with TVD-

RK method. The study of real-time computation or estimation is conducted by 

comparing the wall clock time of completing an iteration over all the subdomains 

∆𝑡𝑒𝑠𝑡 with the maximum numerical time step Δ𝑡𝑚𝑎𝑥 used for the temporal 

integration. To achieve real-time estimation, it is required that the ratio of 

∆𝑡𝑒𝑠𝑡/Δ𝑡𝑚𝑎𝑥 must be less than one. The real-time estimation analysis is 

conducted by varying the grid resolution as well as the number of subdomains (or 

threads) for both the process model and the hybrid estimator. The performance of 

the HT-NODDE-FVM with TVD-RK method is shown by plotting the ratio of 

∆𝑡𝑒𝑠𝑡/Δ𝑡𝑚𝑎𝑥 as functions of the number of threads (or subdomains) and number 

of cells.  

This thesis is organized as follows: Chapter 2 presents the mathematical models for process 

model, hybrid estimator model, SAV guidance model, and sensor model. Chapter 3 addresses the 

development of the HT-NODDE-FVM with TVD-RK algorithm including the computational 
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domain decomposition and parallelization, the HT-NODDE-FVM discretization for the hybrid 

estimator, the Runge-Kutta temporal integration, numerical stability analysis, verification and 

error analysis for the HT-NODDE-FVM, and the parallelization efficiency analysis. Chapter 4 

shows the implementation of the hybrid estimator and the HT-NODDE-FVM method on realistic 

simulations and demonstrates the capability of achieving real-time estimation of the developed 

method. Finally, Chapter 5 presents the conclusion and recommendations for future work.  
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Chapter 2 Process Model, Process-State Hybrid 

Estimator, and Sensing Aerial Vehicle Dynamics and 

Guidance Model 

This chapter presents the mathematical model for the process of a gas released by a stationary or 

moving point source at the lower atmosphere and the mathematical model for a 3D process-state 

hybrid estimator. It also briefly introduces the SAV guidance and dynamical model, as well as 

the sensor model.  

2.1 Process Model 

The process model used in this work is based on the unsteady advection-diffusion equation of a 

trace species in the atmosphere with source terms. It provides the basis for the estimator model 

as well as the numerical data used by the estimator model in simulations. In a real application 

these numerical data will be replaced by measurements. The detailed derivation of the unsteady 

advection-diffusion equation is provided here for completeness and follows Bird et al. [2006], 

Seinfeld and Pandis [2016], Kundu et al. [2015], and Arya [1999]. 

Assume there are s species in the atmosphere, the global continuity equation is 

  𝜌

 𝑡
= −𝛁 ⋅ (𝜌𝐯) (2.1) 

where 𝜌(𝐫 𝑡) is the mass density of the multi-component system, kg/m3. It is a function of 

position and time,  
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𝜌 =∑𝜌𝑠

𝑁

𝑠=1

 (2.2) 

In the above, 𝜌𝑠(𝐫 𝑡) is the mass density of a single species 𝑠, kg/m3. It is also a function of 

position and time; 𝐫 = 𝑋𝐢 +  𝐣 +  𝐤 is the position vector in Cartesian coordinates; 𝐯 is the mass 

averaged velocity of the multi-component system, m/s 

 
𝐯 =

𝜌1𝐯1 + 𝜌2𝐯2 +⋯+ 𝜌𝑁𝐯𝑁
𝜌1 + 𝜌2 +⋯+ 𝜌𝑁

=
∑ 𝜌𝑠𝐯𝑠
𝑁
𝑠=1

𝜌
 (2.3) 

where 𝐯𝑠 is the flow velocity of a single species 𝑠, which is the average velocity of all the 

particles in the single species 𝑠, m/s. 

The global momentum equation is 

  

 𝑡
(𝜌𝐯) = −𝛁 ⋅ (𝜌𝐯𝐯) − 𝛁𝑝 − 𝛁 ⋅ �̿� + 𝜌𝐠 (2.4) 

where 𝑝 is the pressure on the multi-component system when the fluid is at rest,  /m2; 𝐠 is the 

gravitational acceleration, m/s2; �̿� is the stress tensor due to the viscosity when the fluid is 

moving,  /m2. It has the form of  

 
𝜏𝑖𝑗 = −𝜇 (

 𝑣𝑗

 𝑋𝑖
+
 𝑣𝑖
 𝑋𝑗

) + (
2

3
𝜇 − 𝜇𝑣) (𝛁 ⋅ 𝐯)𝛿𝑖𝑗 (2.5) 

where 𝑖 𝑗 = 𝑋    ; 𝛿𝑖𝑗 is the Kronecker delta, 𝛿𝑖𝑗 = 0 when 𝑖 ≠ 𝑗, 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗; 𝜇 is the 

dynamic viscosity,  ⋅ s/m2; 𝜇𝑣 is the dilatational viscosity,  ⋅ s/m2, it is known from the 

kinetic theory that 𝜇𝑣 is zero for monatomic gases at low density and also the Stokes assumption 

(𝜇𝑣 = 0) is found to be accurate in many situations because either the fluid’s 𝜇𝑣 or the fluid’s 

dilatation rate is small [Bird et al., 2006], so Eq. (2.5) becomes 

 
𝜏𝑖𝑗 = −𝜇 (

 𝑣𝑗

 𝑋𝑖
+
 𝑣𝑖
 𝑋𝑗

) +
2

3
𝜇(𝛁 ⋅ 𝐯)𝛿𝑖𝑗 (2.6) 

The global energy equation is 
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 𝑡
[𝜌 (�̂� +

1

2
|𝐯|2)]

= −𝛁 ⋅ [𝜌 (�̂� +
1

2
|𝐯|2) 𝐯] − 𝛁 ⋅ 𝐪 − 𝛁 ⋅ (𝑝𝐯) − 𝛁 ⋅ (�̿� ⋅ 𝐯) + 𝜌𝐯 ⋅ 𝐠 

(2.7) 

where �̂� is the internal energy per unit mass, J/kg; 𝜌�̂� is the internal energy per unit volume; 

1

2
𝜌|𝐯|2 is the kinetic energy per unit volume; 𝐪 is the heat flux vector, J/(m2 ⋅ s).  

The energy equation (2.7) contains both the mechanical and thermal energy terms [Bird et al., 

2006]. A separate equation for mechanical energy can be obtained from taking dot product of 

velocity vector 𝐯 with the momentum equation (2.4) and using continuity equation (2.1), 

  

 𝑡
(
1

2
𝜌|𝐯|2) = −𝛁 ⋅ (

1

2
𝜌|𝐯|2 𝐯) + 𝜌𝐯 ⋅ 𝐠 − 𝛁 ⋅ (𝑝𝐯) − 𝑝(−𝛁 ⋅ 𝐯) − 𝛁 ⋅ (�̿� ⋅ 𝐯)

− (−�̿� ∶ 𝛁𝐯) 
(2.8) 

where the symbol “∶” denotes the double dot product between tensors. Subtracting Eq. (2.8) from 

Eq. (2.7) yields the equation for thermal energy, 

  

 𝑡
(𝜌�̂�) = −𝛁 ⋅ (𝜌�̂� 𝐯) − 𝛁 ⋅ 𝐪 − 𝑝𝛁 ⋅ 𝐯 − �̿� ∶ 𝛁𝐯 (2.9) 

For the internal energy per unit mass, �̂�, it is a function of pressure 𝑝 and temperature 𝑇. If 

assume ideal gas, then �̂� is a function of temperature 𝑇 only and has the form of �̂� = �̂�𝑉𝑇, 

where �̂�𝑉 is the specific heat capacity at constant volume, J/(kg ⋅ K). We use Fourier’s law for 

the heat flux, 𝐪 = −𝑘𝛁𝑇, where 𝑘 is the thermal conductivity, J/(s ⋅ m ⋅ K). Then Eq. (2.9) 

becomes, for real gas, 

  

 𝑡
(𝜌�̂�) = −𝛁 ⋅ (𝜌�̂� 𝐯) + 𝑘𝛁2𝑇 − 𝑝𝛁 ⋅ 𝐯 − �̿� ∶ 𝛁𝐯 (2.10) 

and for ideal gas, 

  

 𝑡
(𝜌�̂�𝑉𝑇) = −𝛁 ⋅ (𝜌�̂�𝑉𝑇 𝐯) + 𝑘𝛁2𝑇 − 𝑝𝛁 ⋅ 𝐯 − �̿� ∶ 𝛁𝐯 (2.11) 
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The term 𝑝𝛁 ⋅ 𝐯 is the heating due to the volume expansion. The term �̿� ∶ 𝛁𝐯 is the heating due to 

the viscous dissipation of energy, it has the form of 

 
�̿� ∶ 𝛁𝐯 = −𝜇 [

 𝑣𝑖
 𝑋𝑗

+
 𝑣𝑗

 𝑋𝑖
−
1

3
(𝛁 ⋅ 𝐯)𝛿𝑖𝑗]

2

− 𝜇𝑣(𝛁 ⋅ 𝐯)
2 (2.12) 

If the Stokes assumption (𝜇𝑣 = 0) applies, then Eq. (2.12) becomes 

 
�̿� ∶ 𝛁𝐯 = −𝜇 [

 𝑣𝑖
 𝑋𝑗

+
 𝑣𝑗

 𝑋𝑖
−
1

3
(𝛁 ⋅ 𝐯)𝛿𝑖𝑗]

2

 (2.13) 

Equations (2.1), (2.4), and (2.10) are the global continuity equation, global momentum equation, 

and global energy equation, respectively. They represent five equations for the six unknowns 𝑣 , 

𝑣 , 𝑣 , 𝑝, 𝜌, and 𝑇. One more equation is needed for the closure of the system of equations. For 

ideal gas, the ideal-gas law can be used for the closure.  

 𝑝𝑀 = 𝜌𝑅𝑇 (2.14) 

where 𝑅 = 8.3144598 J/(K ⋅ m l) is the gas constant; 𝑀 is the molar mean molecular weight of 

the multi-component system, kg/m l 

 
𝑀 =

𝜌

𝑐
=
∑ 𝜌𝑠
𝑁
𝑠=1

∑ 𝑐𝑠
𝑁
𝑠=1

=
∑ 𝜌𝑠
𝑁
𝑠=1

∑
𝜌𝑠
𝑀𝑠

𝑁
𝑠=1

 (2.15) 

where 𝑐 is the molar density of the multi-component system, m l/m3; 𝑐𝑠 and 𝑀𝑠 are the molar 

density and molar weight of a single species, respectively. Then equations (2.1), (2.4), (2.11), 

and (2.14) can be solved for velocity, pressure, density, and temperature for the multi-component 

system with proper boundary conditions and initial conditions. 

For each single species, they must satisfy the continuity equation over a control volume at each 

instant 

  𝜌𝑠
 𝑡

= −𝛁 ⋅ (𝜌𝑠𝐯𝑠) + 𝑆𝑠 + 𝑅𝑠 (2.16) 
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where 𝑠 = 1 2 ⋯  𝑁 is the number of species; 𝑆𝑠(Θ𝑐 𝑡) is the rate of addition of species 𝑠 at 

location Θ𝑐 = (𝑋𝑐(𝑡)  𝑐(𝑡)  𝑐(𝑡)) and time 𝑡, kg/(m3 ⋅ s); Θ𝑐 = (𝑋𝑐(𝑡)  𝑐(𝑡)  𝑐(𝑡)) is the 

centroid of the source; 𝑅𝑠(𝜌1 ⋯  𝜌𝑁  𝑇) is the rate of generation of species 𝑠 by chemical 

reaction, kg/(m3 ⋅ s). Equation (2.16) can be rewritten as 

  𝜌𝑠
 𝑡

= −𝛁 ⋅ [𝜌𝑠(𝐯𝑠 − 𝐯 + 𝐯)] + 𝑆𝑠 + 𝑅𝑠 = −𝛁 ⋅ [𝜌𝑠(𝐯𝑠 − 𝐯)] − 𝛁 ⋅ (𝜌𝑠𝐯) + 𝑆𝑠 + 𝑅𝑠 (2.17) 

where 𝐯𝑠 − 𝐯 is the flow velocity of species 𝑠 relative to the mass averaged velocity of the multi-

component system, which is also called the diffusive velocity of species 𝑠 in the multi-

component system [Bird et al., 2006]; 𝜌𝑠𝐯 is the advective flux of species 𝑠 due to the flow of 

the multi-component system, kg/(m2 ⋅ s). 

Define 

 𝐣𝑠 = 𝜌𝑠(𝐯𝑠 − 𝐯) (2.18) 

as the diffusive flux of species 𝑠 in the multi-component flow due to the molecular diffusion 

[Bird et al., 2006], kg/(m2 ⋅ s). Then Eq. (2.17) becomes  

  𝜌𝑠
 𝑡

= −𝛁 ⋅ 𝐣𝑠 − 𝛁 ⋅ (𝜌𝑠𝐯) + 𝑆𝑠 + 𝑅𝑠 (2.19) 

Fick’s law can be applied to calculate the diffusive flux due to the molecular diffusion, 

 𝐣𝑠 = −𝐷𝑠 𝛁𝜌𝑠 (2.20) 

where 𝐷𝑠 is the molecular diffusivity of species 𝑠 in the carrier fluid namely the atmosphere, 

m2/s. Substitute Eq. (2.20) into Eq. (2.19), yields 

  𝜌𝑠
 𝑡

= 𝛁 ⋅ (𝐷𝑠 𝛁𝜌𝑠) − 𝛁 ⋅ (𝜌𝑠𝐯) + 𝑆𝑠 + 𝑅𝑠 (2.21) 

which is the advection-diffusion equation of a single species generated by a point gas source in 

the atmosphere. With equations (2.1), (2.4), (2.11), (2.14), and (2.21), we can obtain the density 

or concentration distributions of each species releasing by point sources in the atmosphere.  
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Because we concentrate on solving the advection-diffusion problem in the lower atmosphere 

layer, equations (2.1), (2.4), and (2.11) can be simplified using the Boussinesq approximation 

[Seinfeld and Pandis, 2016]. The validity of such simplification has been proved by Spiegel and 

Veronis [1960]. The Boussinesq approximation suggests that the density changes in the fluid can 

be neglected except where the density 𝜌 is multiplied by gravitational acceleration 𝑔. The other 

properties of the fluid such as dynamic viscosity 𝜇, thermal conductivity 𝑘, specific heat capacity 

at constant volume �̂�𝑉, and specific heat capacity at constant pressure �̂�𝑝 are also constants in 

Boussinesq approximation. The Boussinesq approximation applies if the Mach number of the 

flow is small, propagation of sound or shock waves is not considered, the vertical scale of the 

flow is not too large, and the temperature differences in the fluid are small. It is commonly useful 

for analyzing oceanic and atmospheric flows [Seinfeld and Pandis, 2016].  

Under the Boussinesq approximation, for perfect gases, equations (2.1), (2.4), and (2.11) become 

 𝛁 ⋅ 𝐯 = 0 (2.22) 

  𝐯

 𝑡
= −𝛁 ⋅ (𝐯𝐯) −

1

𝜌0
𝛁𝑝 +

𝜇

𝜌0
𝛁2𝐯 + [1 − 𝛼(𝑇 − 𝑇0)]𝐠 (2.23) 

 
𝜌0�̂�𝑝

 𝑇

 𝑡
= −𝜌0�̂�𝑝𝛁 ⋅ (𝐯𝑇) + 𝑘𝛁2𝑇 (2.24) 

where 𝜌0 is a reference density corresponding to a reference temperature 𝑇0, which can be taken 

to be the mean temperature in the flow or the temperature at an appropriate boundary; 𝛼 =

−
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑝
 is the thermal expansion coefficient, 𝐾−1, and 𝛼 =

1

𝑇
 for ideal gas; �̂�𝑝 is the specific 

heat capacity at constant pressure, J/(kg ⋅ K). 

For the derivation of Eq. (2.23) from Eq. (2.4) underlying Boussinesq approximation, the density 

𝜌 multiplied by gravitational acceleration 𝐠 was replaced by 𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)]. For the 

derivation of Eq. (2.24) from Eq. (2.11) underlying Boussinesq approximation, we assumed ideal 

gas, so that the ideal-gas law and other expressions related to ideal gas can be used. Also, the 

heating due to viscous dissipation of energy is negligible under Boussinesq approximation i.e. �̿� ∶

𝛁𝐯 = 0, because it is important only in flows with enormous velocity gradients.  
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The Boussinesq approximation was not applied to the single species continuity equation (2.21). 

When we focus on the system of multiple species mixing with the lower atmosphere, the changes 

of the density of the system can be neglected because the amounts of the atmospheric trace 

species are so small (in ppm) that they cannot affect the meteorology significantly [Seinfeld and 

Pandis, 2016]. But when we just focus on single species, the changes of density of a single 

species with location and time cannot be neglected anymore.  

Equations (2.22), (2.23), (2.24), and (2.21) can be solved for the fluid velocities, pressure, and 

temperature at lower atmosphere and the density or concentration distributions of each species 

releasing by point sources in the lower atmosphere. But the flows of interest are always turbulent 

at the lower atmosphere [Seinfeld and Pandis, 2016]. Turbulent flows are random, so the 

variables in these equations are random functions. Thus, solving any of these equations exactly is 

impossible, we must resort to some statistical properties of the variables.  

In particular, a turbulent field quantity, 𝜙, is commonly separated into its first moment and its 

fluctuations, 𝜙 = 𝜙 + 𝜙′, which is known as the Reynolds decomposition [Kundu et al., 2015]. 

The 𝑚th-moment or the 𝑚th ensemble average is defined as 

 

𝜙𝑚(𝐫 𝑡) ≡
1

ℕ
∑[𝜙(𝐫 𝑡 ∶ 𝑛)]𝑚
ℕ

𝑛=1

 (2.25) 

where ℕ is the number of realizations of random variable 𝜙 in the ensemble. A collection of 

independent realization of a random variable, which is obtained under identical conditions, is 

called an ensemble. An ensemble average is the ordinary arithmetic average over the collection 

and is denoted by an over bar.  

The first moment is obtained when 𝑚 = 1, which is the simplest statistical property of a random 

variable, 

 

𝜙(𝐫 𝑡) ≡
1

ℕ
∑𝜙(𝐫 𝑡 ∶ 𝑛)

ℕ

𝑛=1

 (2.26) 
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For oceanic and atmosphere field measurements, it is impossible to realize the identical 

conditions for each measurement. Thus, the ensemble average of the flow variable at 𝐫 is usually 

replaced by the time average of the flow variable at 𝐫 [Kundu et al., 2015], which is defined as 

 

𝜙𝑚(𝐫) =
1

Δ𝑡
∫ 𝜙𝑚(𝐫 𝑡)

𝑡0+
Δ𝑡
2

𝑡0−
Δ𝑡
2

 d𝑡 (2.27) 

when Δ𝑡 is large enough. Note that theoretically Eq. (2.27) is only valid for the case when the 

flow is stationary in time, which means its statistics are not dependent on time, but it is still 

accurate enough to use a finite-duration time average of a single realization to approximate the 

ensemble average of many realizations even when the flow changes with time [Kundu et al., 

2015]. In this case, Eq. (2.27) may be rewritten as 

 

𝜙𝑚(𝐫 𝑡′)(𝑡) =
1

Δ𝑡
∫ 𝜙𝑚(𝐫 𝑡′)

𝑡+
Δ𝑡
2

𝑡−
Δ𝑡
2

 d𝑡′ (2.28) 

Using Reynolds decomposition, the averaged equations of global continuity, global momentum, 

global energy, and single species continuity with random flow variables can be derived. The 

starting point is the Boussinesq equation set (2.22), (2.23), and (2.24), and the single species 

continuity equation (2.21). It is convenient to rewrite these equations in summation convention 

for deriving the averaged equations 

  𝑣𝑖
 𝑋𝑖

= 0 (2.29) 

  𝑣𝑖
 𝑡

+
 

 𝑋𝑗
(𝑣𝑗𝑣𝑖) = −

1

𝜌0

 𝑝

 𝑋𝑖
− 𝑔[1 − 𝛼(𝑇 − 𝑇0)]𝛿𝑖3 +

𝜇

𝜌0

 2𝑣𝑖

 𝑋𝑗
2  (2.30) 

 
𝜌0�̂�𝑝 [

 𝑇

 𝑡
+

 

 𝑋𝑖
(𝑣𝑖𝑇)] = 𝑘

 2𝑇

 𝑋𝑖
2 (2.31) 

  𝜌𝑠
 𝑡

=
 

 𝑋𝑖
(𝐷𝑠

 𝜌𝑠
 𝑋𝑖

) −
 

 𝑋𝑖
(𝜌𝑠𝑣𝑖) + 𝑆𝑠 + 𝑅𝑠 (2.32) 
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Under Reynolds decomposition, the random flow variables can be written as 

 𝑣𝑖 = 𝑣𝑖 + 𝑣𝑖
′ ,  𝑝 = 𝑝 + 𝑝′ ,  𝑇 = 𝑇 + 𝑇′ ,  𝜌𝑠 = 𝜌𝑠 + 𝜌𝑠

′  (2.33) 

Substitute Eq. (2.33) into equations (2.29), (2.30), (2.31), and (2.32) accordingly, average each 

term, and use the fact that the average of variable fluctuation is zero, 𝜙′ = 0, yields 

  𝑣𝑖
 𝑋𝑖

= 0 (2.34) 

  𝑣𝑖
 𝑡

+
 

 𝑋𝑗
(𝑣𝑗  𝑣𝑖) +

 

 𝑋𝑗
(𝑣𝑗

′𝑣𝑖
′) = −

1

𝜌0

 𝑝

 𝑋𝑖
− 𝑔[1 − 𝛼(𝑇 − 𝑇0)]𝛿𝑖3 +

𝜇

𝜌0

 2𝑣𝑖

 𝑋𝑗
2  (2.35) 

 
𝜌0�̂�𝑝 [

 𝑇

 𝑡
+ 𝑣𝑖

 𝑇

 𝑋𝑖
+

 

 𝑋𝑖
(𝑣𝑖

′𝑇′)] = 𝑘
 2𝑇

 𝑋𝑖
2 (2.36) 

  𝜌𝑠
 𝑡

=
 

 𝑋𝑖
(𝐷𝑠

 𝜌𝑠
 𝑋𝑖

) −
 

 𝑋𝑖
(𝜌𝑠 𝑣𝑖) −

 

 𝑋𝑖
(𝜌𝑠′𝑣𝑖

′) + 𝑆𝑠

+ 𝑅𝑠(𝜌1 + 𝜌1
′  ⋯   𝜌𝑁 + 𝜌𝑁

′  𝑇 + 𝑇′) 

(2.37) 

Equations (2.34), (2.35), and (2.36) are the Reynolds averaged global continuity, momentum, 

and energy equations, while Eq. (2.37) is the Reynolds averaged single species continuity 

equation. This system of equations is not closed, since new unknowns of 𝜌0𝑣𝑗
′𝑣𝑖

′ (when multiply 

both sides of Eq. (2.35) by 𝜌0), 𝜌0�̂�𝑝𝑣𝑖
′𝑇′, and 𝜌𝑠′𝑣𝑖

′ are introduced. The terms 𝜌0𝑣𝑗
′𝑣𝑖

′ are the 

Reynolds stresses (turbulent momentum fluxes), the terms 𝜌0�̂�𝑝𝑣𝑖
′𝑇′ are turbulent heat fluxes, 

and the terms 𝜌𝑠′𝑣𝑖
′ are turbulent mass fluxes of single species [Kundu et al., 2015]. More 

equations regarding these new unknowns are needed to close the system of equations, but 

unfortunately even more new unknowns will be introduced if we do so, which means the 

Reynolds averaged system of equations is a closure problem. Thus, empirical models are 

preferred for the turbulent momentum, energy, and mass fluxes to close the system of equations. 

The most popular and widely used models for turbulent transport are the mixing-length models 

[Arya, 1999],  
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𝑣𝑗
′𝑣𝑖

′ = −𝐾𝑀 𝑗𝑖
 𝑣𝑗

 𝑋𝑖
 (2.38) 

 
𝑣𝑖
′𝑇′ = −𝐾𝑇 𝑖𝑘

 𝑇

 𝑋𝑖
 (2.39) 

 
𝜌𝑠′𝑣𝑖

′ = −𝐾𝑖𝑘
 𝜌𝑠
 𝑋𝑖

 (2.40) 

where 𝐾𝑀 𝑗𝑖 is the eddy viscosity or turbulent momentum diffusivity, m2/s; 𝐾𝑇 𝑖𝑘 is the eddy 

viscosity for heat transfer, m2/s; 𝐾𝑖𝑘 is the eddy diffusivity, m2/s. In general, they are functions 

of location and direction, and their values or functional forms are usually determined empirically 

or experimentally. 

Substitute equations (2.38), (2.39), and (2.40) into equations (2.35), (2.36), and (2.37), 

respectively, yields 

  𝑣𝑖
 𝑡

+
 

 𝑋𝑗
(𝑣𝑗  𝑣𝑖) −

 

 𝑋𝑗
(𝐾𝑀 𝑗𝑖

 𝑣𝑗

 𝑋𝑖
) = −

1

𝜌0

 𝑝

 𝑋𝑖
− 𝑔[1 − 𝛼(𝑇 − 𝑇0)]𝛿𝑖3 +

𝜇

𝜌0

 2𝑣𝑖

 𝑋𝑗
2  (2.41) 

 
𝜌0�̂�𝑝 [

 𝑇

 𝑡
+ 𝑣𝑖

 𝑇

 𝑋𝑖
−

 

 𝑋𝑖
(𝐾𝑇 𝑖𝑘

 𝑇

 𝑋𝑖
)] = 𝑘

 2𝑇

 𝑋𝑖
2 (2.42) 

  𝜌𝑠
 𝑡

=
 

 𝑋𝑖
(𝐷𝑠

 𝜌𝑠
 𝑋𝑖

) −
 

 𝑋𝑖
(𝜌𝑠 𝑣𝑖) +

 

 𝑋𝑖
(𝐾𝑖𝑘

 𝜌𝑠
 𝑋𝑖

) + 𝑆𝑠

+ 𝑅𝑠(𝜌1 + 𝜌1
′  ⋯   𝜌𝑁 + 𝜌𝑁

′  𝑇 + 𝑇′) 

(2.43) 

Equations (2.34), (2.41), (2.42), and (2.43) can be solved for averaged global velocities, 

averaged global pressure, averaged global temperature, and averaged density or concentration 

distributions of species releasing by point sources in the atmosphere, with proper boundary 

conditions, initial conditions, values or functional forms of the diffusivity terms, and functional 

forms of the reaction term. In general, the coupled equations (2.34), (2.41), (2.42), and (2.43) 

need to be solved simultaneously to obtain the changes in velocities 𝐯, temperature 𝑇, and 

species concentration 𝜌𝑠 and the effects of these changes on each other. As mentioned before, the 

amounts of the atmospheric trace species are so small (in ppm) that they cannot affect the 

meteorology significantly, thus the species continuity equation (2.43) can be solved 
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independently of the global equations (2.34), (2.41), and (2.42), which means the global 

equations can be dropped. With such assumption, the complete description of the behavior of the 

releasing species in the lower atmosphere can be obtained by Eq. (2.43) only.  

Suppose there is only one chemically inert species (so that the reaction term in Eq. (2.43) can be 

dropped) releasing in the lower atmosphere, so the system fluid has two components – releasing 

gas species and atmosphere. Denote the density or mass concentration of the releasing gas and 

atmosphere as 𝜌𝑟 and 𝜌𝑎, respectively. Then Eq. (2.43) becomes 

  𝜌𝑟
 𝑡

=
 

 𝑋𝑖
(𝐷𝑟

 𝜌𝑟
 𝑋𝑖

) −
 

 𝑋𝑖
(𝜌𝑟 𝑣𝑖) +

 

 𝑋𝑖
(𝐾𝑖𝑘

 𝜌𝑟
 𝑋𝑖

) + 𝑆𝑟 (2.44) 

Rewrite Eq. (2.44) in vector form as 

  𝜌𝑟
 𝑡

= 𝛁 ⋅ (𝐷𝑟 𝛁 𝜌𝑟) − 𝛁 ⋅ (𝜌𝑟 𝐯) + 𝛁 ⋅ (�̿� ⋅  𝛁 𝜌𝑟) + 𝑆𝑟 (2.45) 

where �̿� is the eddy diffusivity tensor. From Eq. (2.3), the mass averaged velocity of such binary 

mixture of a releasing gas and the atmosphere, 𝐯 is 

 
𝐯 =

𝜌𝑟𝐯𝑟 + 𝜌𝑎𝐯𝑎
𝜌𝑟 + 𝜌𝑎

 (2.46) 

where 𝐯𝑟 is the velocity of the releasing gas; 𝐯𝑎 is the velocity of the atmosphere namely the 

wind velocity. Since the amount of the trace gas is so small, we can assume 𝜌𝑟 ≪ 𝜌𝑎. Then Eq. 

(2.46) becomes 

 𝐯 ≈
𝜌𝑟
𝜌𝑎
𝐯𝑟 + 𝐯𝑎 (2.47) 

Assume the transport and dilution of the releasing gas are controlled by the atmosphere i.e. at the 

diffusion regime [Court, 2012], then we have 𝐯𝑟 ≪ 𝐯𝑎, so Eq. (2.47) becomes 

 𝐯 ≈ 𝐯𝑎 (2.48) 

which means the mass averaged velocity of the mixture of a releasing gas and the atmosphere 

can be approximated by the atmosphere velocity itself with the assumptions mentioned above. 

Substitute Eq. (2.48) into Eq. (2.45), yields 
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  𝜌𝑟
 𝑡

= 𝛁 ⋅ (𝐷𝑟 𝛁 𝜌𝑟) − 𝛁 ⋅ (𝜌𝑟 𝐯𝑎) + 𝛁 ⋅ (�̿� ⋅  𝛁 𝜌𝑟) + 𝑆𝑟 (2.49) 

where 𝐯𝑎 is the averaged atmosphere velocity or the averaged wind velocity. In general, it is a 

function of position and time.  

The eddy diffusivities are of order 1 to 100 m2/s for different atmospheric conditions of stable, 

neutral, and unstable [Arya, 1999; Seinfeld and Pandis, 2016], while the typical value of the 

molecular diffusivity of air is 1.5 × 10−5 m2/s [Arya, 1999]. So, we can assume the diffusive 

fluxes due to the molecular diffusion is negligible compared with the turbulent fluxes due to the 

turbulent atmospheric flow, 

 𝛁 ⋅ (𝐷𝑟 𝛁 𝜌𝑟) ≪ 𝛁 ⋅ (�̿� ⋅  𝛁 𝜌𝑟) (2.50) 

Denoting 𝜌𝑟 as 𝐶 and with the assumption of Eq. (2.50), Eq. (2.49) becomes 

  𝐶

 𝑡
= −𝛁 ⋅ (𝐶 𝐯𝑎) + 𝛁 ⋅ (�̿� ⋅  𝛁 𝐶) + 𝑆𝑟 (2.51) 

For the eddy diffusivity tensor �̿�, its principal axes coincide with the coordinate axes, so only 

three diagonal elements 𝐾  , 𝐾  , and 𝐾   are nonzero [Seinfeld and Pandis, 2016]. Then Eq. 

(2.51) can be rewritten in summation convention as  

  𝐶

 𝑡
= −

 

 𝑋𝑖
(𝐶 𝑣𝑎𝑖) +

 

 𝑋𝑖
(𝐾𝑖𝑖

 𝐶

 𝑋𝑖
) + 𝑆𝑟 (2.52) 

Expanding either Eq. (2.51) or Eq. (2.52) yields  

  𝐶

 𝑡
= −

 

 𝑋
(𝐶 𝑣𝑎 ) −

 

  
(𝐶 𝑣𝑎 ) −

 

  
(𝐶 𝑣𝑎 ) +

 

 𝑋
(𝐾  

 𝐶

 𝑋
) +

 

  
(𝐾  

 𝐶

  
)

+
 

  
(𝐾  

 𝐶

  
) + 𝑆𝑟 

(2.53) 

Denoting the averaged wind speed in 𝑋,  , and   directions 𝑣𝑎 , 𝑣𝑎 , and 𝑣𝑎  as 𝑈, 𝑉, and 𝑊, 

Eq. (2.53) can be rewritten as 
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  𝐶

 𝑡
= −

 

 𝑋
(𝐶𝑈) −

 

  
(𝐶𝑉) −

 

  
(𝐶𝑊) +

 

 𝑋
(𝐾  

 𝐶

 𝑋
) +

 

  
(𝐾  

 𝐶

  
)

+
 

  
(𝐾  

 𝐶

  
) + 𝑆𝑟 

(2.54) 

If the atmosphere is incompressible, 𝛁 ⋅ 𝐯𝑎 = 0, then equations (2.51), (2.52), and (2.54) become 

  𝐶

 𝑡
= − 𝐯𝑎 ⋅ 𝛁𝐶 + 𝛁 ⋅ (�̿� ⋅  𝛁 𝐶) + 𝑆𝑟 (2.55) 

  𝐶

 𝑡
= − 𝑣𝑎𝑖

 𝐶

 𝑋𝑖
+

 

 𝑋𝑖
(𝐾𝑖𝑖

 𝐶

 𝑋𝑖
) + 𝑆𝑟 (2.56) 

  𝐶

 𝑡
= −𝑈

 𝐶

 𝑋
− 𝑉

 𝐶

  
−𝑊

 𝐶

  
+

 

 𝑋
(𝐾  

 𝐶

 𝑋
) +

 

  
(𝐾  

 𝐶

  
) +

 

  
(𝐾  

 𝐶

  
) + 𝑆𝑟 (2.57) 

Equation (2.54) or (2.57) can be solved with proper boundary conditions, initial conditions, wind 

speed profiles, and values or functional forms of eddy diffusivities for the density or 

concentration distribution of a chemically inert gas species releasing in the lower atmosphere.  

In summary, the constitution equation of the process model for the plume concentration in the 

domain depicted in Figure 2.1 is the well-known advection-diffusion equation 

  𝐶(𝐫  𝑡)

 𝑡
= ℒ𝐶(𝐫  𝑡) + 𝑆(Θ𝑐(𝑡)  𝑡) ∀𝐫 ∈ Ω ⊂ ℝ3 (2.58) 

where ℒ is the advection-diffusion operator,  

 
ℒ𝜑 = −

 

 𝑋
(𝑈𝜑) −

 

  
(𝑉𝜑) −

 

  
(𝑊𝜑) +

 

 𝑋
(𝐾  

 𝜑

 𝑋
) +

 

  
(𝐾  

 𝜑

  
)

+
 

  
(𝐾  

 𝜑

  
) 

(2.59) 

𝜑 is an arbitrary physical variable; 𝑆(Θ𝑐(𝑡)  𝑡) is the moving (or stationary) source; Θ𝑐(𝑡) =

(𝑋𝑐(𝑡)   𝑐(𝑡)   𝑐(𝑡)) is the source location at time 𝑡. Equation (2.58) is supplemented with 

boundary conditions depending on the type of the physical boundary (i.e. absorbing, reflecting) 

such as Dirichlet 

 𝐶(𝐫  𝑡) = 0 ∀𝐫 ∈  ΩD (2.60) 
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or Neumann 

  𝐶(𝐫  𝑡)

 𝐧
= 0 ∀𝐫 ∈  ΩN (2.61) 

where 𝐧 is the outward normal on boundaries, together with the initial conditions 

 𝐶(𝐫  0) = 0 ∀𝐫 ∈ Ω ⊂ ℝ3 (2.62) 

The process model Eq. (2.58) can be rewritten in state-space form as 

 𝐶𝑡 = ℒ𝐶 + 𝑆(Θ𝑐(𝑡)  𝑡) (2.63) 

where the subscript 𝑡 means the partial derivative with respect to time 𝑡.  

Ω

𝐿 

𝐿 

𝐿 
𝑡 = 𝑡0

      

𝑡 = 𝑡1

 Ω

𝑋   s 

       
     

 

Figure 2.1 The process model describing a moving source releasing trace species with rate 𝑢 (kg/s) in the lower 

atmosphere. 

In Figure 2.1 Ω designates the entire domain of interest,  Ω the boundary of domain Ω and 𝐿 , 

𝐿 , and 𝐿  the domain lengths in 𝑋-,  -, and  -direction, respectively. The process model 

equations (2.58) – (2.62) can be solved numerically in domain Ω to provide the numerical data 

used by the estimator model in simulations.  

2.2 Process-State Hybrid Estimator 

The domain of interest is decomposed into 𝑁𝑠𝑑 non-overlapping subdomains with each 

designated by Ω(𝑚), 𝑚 = 1 2 ⋯  𝑁𝑠𝑑 as shown in Figure 1.2. At time 𝑡, the SAV is at Θ𝑠(𝑡) =
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(𝑋𝑠(𝑡)   𝑠(𝑡)   𝑠(𝑡)) in subdomain 𝑚𝐿, positioned there by the guidance model discussed in the 

next subsection 2.3. Figure 1.2 also shows the location of the source at time 𝑡. Our real-time 

estimator is hybrid and is based on a Luenberger estimator in the subdomain 𝑚𝐿 where the SAV 

resides and a naive estimator in the rest of the subdomains, 𝑚 = 1 2 ⋅⋅⋅ 𝑁𝑠𝑑  (𝑚 ≠ 𝑚𝐿), as 

indicated in Figure 1.2 [Hu and Demetriou, 2019]. The hybrid estimator uses a point 

measurement of the concentration 𝐶(𝑚𝐿)
(𝐫  𝑡) taken at the location of the SAV and provides 

(once executed on the SAV’s computer), in real-time, at time 𝑡 the estimated concentration 

�̂�(𝑚)(𝐫  𝑡) at all locations 𝐫 in the domain of interest shown in Figure 1.2. The hybrid estimator 

[Hu and Demetriou, 2019] consists of the Luenberger estimator with the source term of the 

advection-diffusion equation replaced by an output injection term which depends on the sensor 

location,  

  �̂�(𝑚)(𝐫  𝑡)

 𝑡
= ℒ�̂�(𝑚)(𝐫  𝑡) + 𝑅(Θ𝑠(𝑡)  𝑡) f   𝑚 = 𝑚𝐿  ∀𝐫 ∈ Ω(𝑚) ⊂ Ω ⊂ ℝ3 (2.64) 

and a naive observer 

  �̂�(𝑚)(𝐫  𝑡)

 𝑡
= ℒ�̂�(𝑚)(𝐫  𝑡) 

f   𝑚 = 1  2 ⋅⋅⋅ 𝑁𝑠𝑑  (𝑚 ≠ 𝑚𝐿) ∀𝐫 ∈ Ω(𝑚) ⊂ Ω ⊂ ℝ3 

(2.65) 

The above equations (2.64) and (2.65) are subject to transmission conditions that enforce 

continuity of concentration and conservation of fluxes on interfaces between subdomains [Blayo 

et al., 2007],  

 �̂�(𝑝)Γ(𝐫  𝑡) = �̂�(𝑞)Γ(𝐫  𝑡) 

∀𝐫 ∈ Γ; Γ =  Ω(𝑝) ∩  Ω(𝑞); 𝑝  𝑞 = 1  2 ⋅⋅⋅  𝑁𝑠𝑑   nd 𝑝 ≠ 𝑞 
(2.66) 

and  

 𝐯(𝑝) ⋅ 𝐧(𝑝)�̂�(𝑝)Γ(𝐫  𝑡) − 𝐾(𝑝)𝛁�̂�(𝑝)Γ(𝐫  𝑡) ⋅ 𝐧(𝑝)

= 𝐯(𝑞) ⋅ 𝐧(𝑞)�̂�(𝑞)Γ(𝐫  𝑡) − 𝐾(𝑞)𝛁�̂�(𝑞)Γ(𝐫  𝑡) ⋅ 𝐧(𝑞) 

∀𝐫 ∈ Γ;  Γ =  Ω(𝑝) ∩  Ω(𝑞); 𝑝  𝑞 = 1  2 ⋅⋅⋅  𝑁𝑠𝑑   nd 𝑝 ≠ 𝑞 

(2.67) 
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where 𝐯(𝑝) and 𝐯(𝑞) are the velocity fields, 𝐾(𝑝) and 𝐾(𝑞) are the eddy diffusivities, and 𝐧(𝑝) and 

𝐧(𝑞) are the outward normal on the interface Γ of two adjacent subdomains 𝑝 and 𝑞, respectively. 

The transmission conditions also serve as the consensus protocol between the Luenberger and 

naive observers and ensure that the naive observer receives process information [Hu and 

Demetriou, 2019]. 

The estimators are also supplemented with Dirichlet boundary conditions 

 �̂�(𝑚)(𝐫  𝑡) = 0 ∀𝐫 ∈  Ω(𝑚) ∩  ΩD (2.68) 

or Neumann boundary conditions 

  �̂�(𝑚)(𝐫  𝑡)

 𝐧
= 0 ∀𝐫 ∈  Ω(𝑚) ∩  ΩN (2.69) 

together with the initial conditions 

 �̂�(𝑚)(𝐫  0) = 0 ∀𝐫 ∈ Ω(𝑚) ⊂ Ω ⊂ ℝ3 (2.70) 

The output injection term in Eq. (2.64) is 

 𝑅(Θ𝑠(𝑡)  𝑡) = Λ ⋅ 𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( −  𝑠(𝑡))

⋅ [𝐶(Θ𝑠(𝑡)  𝑡) − �̂�(Θ𝑠(𝑡)  𝑡)] 
(2.71) 

where Λ > 0 is the user-defined estimation gain; 𝛿(⋅)𝛿(⋅)𝛿(⋅) is the 3D Dirac delta function with 

the property of ∫ ∫ ∫ 𝑓(𝑋    )𝛿(𝑋 − 𝑋0)𝛿( −  0)𝛿( −  0) d𝑋d d 
+∞

−∞

+∞

−∞

+∞

−∞
=

𝑓(𝑋0  0  0); 𝐶(Θ𝑠(𝑡)  𝑡) is the sensor measurement model which is based on the Lagrangian 

sensing technique [Bennett, 2006; Fiorelli et al., 2006],  

 
𝐶(Θ𝑠(𝑡)  𝑡) = ∫ ∫ ∫ 𝐶(𝑋     𝑡)𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( 

𝐿𝑍

0

𝐿𝑌

0

𝐿𝑋

0

−  𝑠(𝑡)) d d d𝑋 

(2.72) 

�̂�(Θ𝑠(𝑡)  𝑡) is the estimated concentration at the sensor location, 
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�̂�(Θ𝑠(𝑡)  𝑡) = ∫ ∫ ∫ �̂�(𝑋        𝑡)𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( 

𝐿𝑍

0

𝐿𝑌

0

𝐿𝑋

0

−  𝑠(𝑡)) d d d𝑋 

(2.73) 

If we denote the observation operator as 

 
𝒞𝜑(𝑋     𝑡) = ∫ ∫ ∫ 𝜑(𝑋     𝑡)𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( 

𝐿𝑍

0

𝐿𝑌

0

𝐿𝑋

0

−  𝑠(𝑡)) d d d𝑋 = 𝜑(𝑋𝑠(𝑡)  𝑠(𝑡)  𝑠(𝑡)  𝑡) = 𝜑(Θ𝑠(𝑡)  𝑡) 

(2.74) 

and its adjoint operator as 

 𝒞∗ = 𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( −  𝑠(𝑡)) (2.75) 

then the Luenberger estimator model can be written in state-space form as  

 �̂�𝑡 = ℒ�̂� + 𝒞∗Λ𝒞(𝐶 − �̂�) (2.76) 

and the naive estimator model can be written in state-space form as well 

 �̂�𝑡 = ℒ�̂� (2.77) 

2.3 SAV Guidance Model and Sensor Model 

Two different approaches are used to guide the SAV. One is the modified Lyapunov guidance 

law and the other is the Lyapunov guidance law with six degree-of-freedom fixed-wing aircraft 

dynamical model. Sensor model is also briefly introduced at the end of this subsection.  

2.3.1 Modified Lyapunov Guidance Law 

The SAV is approximated in this approach as a point mass and the guidance model is based on 

the modified Lyapunov guidance law proposed by Hu and Demetriou [2019]. The desired 

Cartesian velocity components of the SAV are given by 
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 𝑈𝑠
𝑑 ≡ �̇�𝑠

𝑑 = 𝑘 ⋅ sign(휀(𝑡)) ⋅ sign(휀 (𝑡)) 

𝑉𝑠
𝑑 ≡  ̇𝑠

𝑑 = 𝑘 ⋅ sign(휀(𝑡)) ⋅ sign(휀 (𝑡)) 

𝑊𝑠
𝑑 ≡  ̇𝑠

𝑑 = 𝑘 ⋅ sign(휀(𝑡)) ⋅ sign(휀 (𝑡)) 

(2.78) 

where 𝑈𝑠
𝑑 or �̇�𝑠

𝑑 is the desired velocity in 𝑋-direction; 𝑉𝑠
𝑑 or  ̇𝑠

𝑑 is the desired velocity in  -

direction; 𝑊𝑠
𝑑 or  ̇𝑠

𝑑 is the desired velocity in  -direction; 𝑘 > 0, 𝑘 > 0, and 𝑘 > 0 are user-

defined constant guidance gains; 휀(𝑡) is the state-estimation error at the sensor location,  

 휀(𝑡) ≡ 𝑒(Θ𝑠(𝑡) 𝑡) = 𝐶(Θ𝑠(𝑡) 𝑡) − �̂�(Θ𝑠(𝑡) 𝑡) (2.79) 

and 휀𝑖(𝑡) is the gradient of the state-estimation error at the sensor location, 

 
휀𝑖(𝑡) ≡

 𝑒(Θ𝑠(𝑡)  𝑡)

 𝑖
 𝑖 = 𝑋     (2.80) 

Integrating Eq. (2.78) the desired Cartesian velocities of the SAV with respect to time results in 

the desired location of the SAV, 

 
𝑋𝑠
𝑑 = ∫ 𝑈𝑠

𝑑
𝑡2

𝑡1

d𝑡  𝑠
𝑑 = ∫ 𝑉𝑠

𝑑
𝑡2

𝑡1

d𝑡  𝑠
𝑑 = ∫ 𝑊𝑠

𝑑
𝑡2

𝑡1

d𝑡 (2.81) 

2.3.2 Lyapunov Guidance Law with SAV Dynamical Model 

In this approach we follow Egorova et al. [2016]. The SAV is considered as a fixed-wing aircraft 

with a point-mass 𝑀 subjected. The thrust 𝑇, drag 𝐷, and lift force 𝐿 are shown in Figure 2.2 

[Beard and McLain, 2012]. The SAV is climbing at flight path angle 𝛾 and bank angle 𝜙. 𝜒 is 

the course angle in an inertial reference frame with 𝑋,  , and   pointing to north, east, and the 

center of the earth, respectively.  
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Figure 2.2 Free-body diagram of the forces acting on the SAV in the climbing coordinate turn.  

The equations of motion of the SAV are 

 �̇�𝑠 = 𝑉g 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜒 

 ̇𝑠 = 𝑉g   s 𝛾 sin 𝜒 

 ̇𝑠 = −𝑉g sin 𝛾 

𝑉ġ =
1

𝑀
(𝑇 − 𝐷 −𝑀𝑔 sin 𝛾) 

�̇� =
1

𝑀𝑉g
(𝐿   s𝜙 −𝑀𝑔   s 𝛾) 

�̇� =
𝐿 sin 𝜙   s(𝜒 − 𝜓)

𝑀𝑉g   s 𝛾
 

(2.82) 

where �̇�𝑠,  ̇𝑠, and  ̇𝑠 are the velocity components of the SAV relative to the inertial reference 

frame in 𝑋-,  -, and  -direction, respectively; 𝜓 is the heading angle of the SAV; 𝑉g is the 

magnitude of the ground velocity 𝐕g which is the SAV’s velocity relative to the inertial reference 

frame. The ground velocity is related with the wind velocity 𝐕w which is relative to the inertial 

reference frame and the air velocity 𝐕a which is the SAV velocity relative to the wind velocity 

by the wind triangle defined as 

 𝐕g = 𝐕a + 𝐕w (2.83) 
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The components of the wind velocity 𝐕w are 𝑈, 𝑉, and 𝑊 used in Eq. (2.59). 

In Eq. (2.82) the drag and lift forces are expressed as 

 
𝐷 =

1

2
𝜌𝑉a

2𝑆𝐶𝐷 (2.84) 

 
𝐿 =

1

2
𝜌𝑉a

2𝑆𝐶𝐿 
(2.85) 

where 𝜌 is the air density, 𝑉a is the airspeed with is the magnitude of the air velocity 𝐕a, 𝑆 is the 

planform area of the SAV wings. The relation between the drag coefficient 𝐶𝐷 and the lift 

coefficient 𝐶𝐿 is 

 
𝐶𝐷 = 𝐶𝐷p +

𝐶𝐿
2

𝜋𝑒𝐴𝑅
 (2.86) 

where 𝐶𝐷p is the parasitic drag caused by the shear stress, 𝐴𝑅 ≡ 𝑏2/𝑆 is the aspect ratio of the 

wing, 𝑏 is the wing span of the SAV, 𝑒 is the Oswald efficiency factor [Beard and McLain, 

2012; Anderson, 2005]. 

The control inputs to the SAV dynamical model Eq. (2.82) are the thrust 𝑇, bank angle 𝜙, and 

the lift coefficient 𝐶𝐿. The SAV is guided by a Lyapunov redesign method based guidance law 

[Egorova et al., 2016],  

 𝑈𝑠
𝑑 ≡ �̇�𝑠

𝑑 = −𝑘 ⋅ 휀(𝑡) ⋅ 휀 (𝑡) 

𝑉𝑠
𝑑 ≡  ̇𝑠

𝑑 = −𝑘 ⋅ 휀(𝑡) ⋅ 휀 (𝑡) 

𝑊𝑠
𝑑 ≡  ̇𝑠

𝑑 = −𝑘 ⋅ 휀(𝑡) ⋅ 휀 (𝑡) 

(2.87) 

where 𝑈𝑠
𝑑 or �̇�𝑠

𝑑, 𝑉𝑠
𝑑 or  ̇𝑠

𝑑, 𝑊𝑠
𝑑 or  ̇𝑠

𝑑, 𝑘 , 𝑘 , 𝑘 , 휀(𝑡), 휀 (𝑡), 휀 (𝑡), and 휀 (𝑡) are the same as 

in Eq. (2.78).  

The control inputs are calculated starting from the desired Cartesian velocities as shown in Eq. 

(2.87). First, with the desired Cartesian velocities, the desired ground speed 𝑉g
𝑑, desired flight 

path angle 𝛾𝑑, and the desired course angle 𝜒𝑑 are calculated using the first three equations of 

Eq. (2.82) 



40 

 

 
𝑉g
𝑑 = √(𝑈𝑠

𝑑)
2
+ (𝑉𝑠

𝑑)
2
+ (𝑊𝑠

𝑑)
2
 

𝛾𝑑 =    sin (−
𝑊𝑠

𝑑

𝑉g
𝑑 ) 

𝜒𝑑 =    n2(𝑉𝑠
𝑑 𝑈𝑠

𝑑) 

(2.88) 

Then the corresponding accelerations are obtained by the first-order model from Beard and 

McLain [2012]  

 �̇�g
𝑑 = 𝑏𝑉g(𝑉g

𝑑 − 𝑉g) 

�̇�𝑑 = 𝑏𝛾(𝛾
𝑑 − 𝛾) 

�̇�𝑑 = 𝑏𝜒(𝜒
𝑑 − 𝜒) 

(2.89) 

where 𝑏𝑉g, 𝑏𝛾, and 𝑏𝜒 are user-defined positive constants. Lastly, combining equations (2.82), 

(2.84), (2.85), (2.86), (2.88) and (2.89) yields the control inputs for the SAV  

 
𝜙 =      n2 [�̇�𝑑   s 𝛾𝑑  (�̇�𝑑 +

𝑔   s 𝛾𝑑

𝑉g
𝑑 )   s(𝜒𝑑 − 𝜓)] 

𝐶𝐿 =

𝑀𝑉g
𝑑 (�̇�𝑑 +

𝑔   s 𝛾𝑑

𝑉g
𝑑 )

1
2𝜌𝑉a

2𝑆   s𝜙
 

𝑇 = 𝑀�̇�g
𝑑 +

1

2
𝜌𝑉a

2𝑆 (𝐶𝐷p +
𝐶𝐿
2

𝜋𝑒𝐴𝑅
) +𝑀𝑔 sin 𝛾𝑑 

(2.90) 

In the above, the control inputs are assumed to stay within certain rages  

 0 ≤ 𝑇 ≤ 𝑇max    |𝜙| ≤ 𝜙max    �̇� = 𝑏𝜙(𝜙 − 𝜙previous) ≤ �̇�max    0 ≤ 𝐶𝐿 ≤ 𝐶𝐿 max  (2.91) 

where 𝑇max, 𝜙max, and 𝐶𝐿 max are constants depending on a specific SAV. 𝑇max is usually found 

in the engine specifications. 𝐶𝐿 max is the lift coefficient when the airplane is in the stall 

condition. 𝜙max depends on the load factor defined by 𝑛 ≡
𝐿

𝑀𝑔
. The maximum allowable load 
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factor 𝑛max is typically equal to 1.5 [Anderson, 2005]. Then 𝜙max is determined when 𝛾 = �̇� =

0 in the fifth equation of Eq. (2.82) 

 1

  s𝜙max
=

𝐿

𝑀𝑔
≤ 𝑛max (2.92) 

In Eq. (2.91) the rate of change of the bank angle is also constrained to ensure reasonable poses 

of the SAV. 𝜙 is the bank angle at the current time instance, 𝜙previous is the bank angle at the 

previous time instance, 𝑏𝜙 is a user-defined positive constant which is defined from Beard and 

McLain [2012], �̇�max is the maximum rate of change of the bank angle.  

2.3.3 Sensor Model 

The sensor model in this work is assumed to be ideal and provides instantaneous readings (no 

delays) without errors [Demetriou et al., 2013]. The spatial distribution of the sensor is modeled 

as a 3D spatial Dirac delta function  

 
𝑦(Θ𝑠(𝑡)  𝑡) = ∫ ∫ ∫ 𝐶(𝑋     𝑡)𝛿(𝑋 − 𝑋𝑠(𝑡))𝛿( −  𝑠(𝑡))𝛿( 

𝐿𝑍

0

𝐿𝑌

0

𝐿𝑋

0

−  𝑠(𝑡)) d d d𝑋 

(2.93) 

The sensor response is modeled as 

 

𝑦(Θ𝑠(𝑡)  𝑡) = {

0 𝐶(Θ𝑠(𝑡)  𝑡) < 𝐶min

𝐶(Θ𝑠(𝑡)  𝑡) 𝐶min ≤ 𝐶(Θ𝑠(𝑡)  𝑡) ≤ 𝐶max

𝐶max 𝐶(Θ𝑠(𝑡)  𝑡) > 𝐶max

 (2.94) 

where 𝐶min is the sensor working threshold, 𝐶max is the sensor saturation.  
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Chapter 3 Heterogeneous Non-Overlapping Domain 

Decomposition Explicit Finite Volume Method, 

Verification and Error Analysis, Parallelization 

Efficiency 

In this chapter, a heterogeneous non-overlapping domain decomposition explicit finite volume 

method (HT-NODDE-FVM) is developed to solve in parallel the hybrid estimator described in 

Chapter 2. This chapter presents the detailed algorithmic steps of the computational domain 

decomposition and parallelization, the detailed FVM-TVD spatial discretization in one of the 

subdomains, and the 4th order Runge-Kutta temporal integration. It also presents the numerical 

stability analysis. The verification and error analysis for the HT-NODDE-FVM with TVD-RK 

method and hybrid estimator is also presented. At the end of this chapter, the parallelization 

efficiency analysis of the NODDE-FVM-TVD-RK method is conducted. Results have been 

presented in Gatsonis et al. [2020] and Tian et al. [2020].  

3.1 Computational Domain Decomposition and Parallelization 

The hybrid estimator equations (2.64) and (2.65), transmission conditions equations (2.66) and 

(2.67), and the guidance model equations (2.78) – (2.81) and (2.82) – (2.92) for the SAV are 

solved numerically with the HT-NODDE-FVM. The overall computational procedure is shown 

in Figure 3.1. 
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Figure 3.1 A flow chart showing the major elements of the HT-NODDE-FVM scheme. 

Also, the overall computational cycle is implemented using OpenMP parallel paradigm 

[Chandra et al., 2001] and is listed as follows: 

S-1. Generate a grid for entire domain based on the inputs 𝐿  𝐿  𝐿  𝑁  𝑁  𝑁  with cell 

sizes Δ𝑋 = 𝐿 /𝑁 , Δ = 𝐿 /𝑁 , and Δ = 𝐿 /𝑁 . 

S-2. Divide the entire domain into 𝑁𝐷𝐷 ×𝑁𝐷𝐷 ×𝑁𝐷𝐷  subdomains with each subdomain 

having the same number of cells. 

S-3. Obtain a distinct thread ID for each subdomain using the OpenMP runtime routine 

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 = OMP_G  _ HR  D_ UM(). 

S-4. Set up the loop indices in each subdomain. 

S-5. Apply initial conditions Eq. (2.70) in each subdomain in parallel. 

S-6. For 𝑡𝑛 = 𝑛∆𝑡 < total simulation time, 

S-7. SAV patrols the domain and sensor reads concentration data from the process model 

where the measured concentration is 𝐶𝑠
𝑛(Θ𝑠

𝑛 𝑡𝑛). 
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S-8. If 𝐶𝑠
𝑛(Θ𝑠

𝑛 𝑡𝑛) > sensor threshold, then go to steps S-9 – S-16, otherwise the SAV keeps 

its initial patrolling trajectory and go to step S-6.  

S-9. Calculate the error between measured concentration 𝐶𝑠
𝑛(Θ𝑠

𝑛 𝑡𝑛) and estimated 

concentration �̂�𝑠
𝑛(Θ𝑠

𝑛 𝑡𝑛) using Eq. (2.79) and the error gradients at the sensor location 

using Eq. (2.80), then reposition the sensor to Θ𝑠
𝑛+1 using Eq. (2.81) or equations (2.82) 

– (2.92). 

S-10. Activate the Luenberger estimator model Eq. (2.64) for the subdomain where the SAV 

resides and activate the naive estimator model Eq. (2.65) for the remainder of the 

subdomains. 

S-11. In each subdomain Ω(𝑚), loop for 𝑘(𝑚), 𝑗(𝑚), and 𝑖(𝑚), 

S-12. Use the FVM-TVD (Total Variation Diminishing) scheme for spatial discretization and 

to evaluate the fluxes on interfaces between adjacent subdomains and satisfy the 

transmission conditions equations (2.66) and (2.67). 

S-13. Go to step S-11 until all the temporal iterations are completed. 

S-14. A barrier-type synchronization point ensures all the FVM-TVD related calculations are 

finished in each subdomain within current time level. 

S-15. Integrate the semi-discrete equations with respect to time by using 4th order Runge-

Kutta method to get �̂�(𝑚)
𝑛+1. 

S-16. Go to step S-6. 

A structured grid is generated for the entire computational domain having lengths 𝐿 , 𝐿 , and 𝐿  

by using 𝑁 , 𝑁 , and 𝑁  number of finite volumes (or cells) in each direction. The resulting cell 

sizes are Δ𝑋 = 𝐿 /𝑁 , Δ = 𝐿 /𝑁 , and Δ = 𝐿 /𝑁 . Then the entire domain is discretized 

using 𝑁𝐷𝐷 ×𝑁𝐷𝐷 × 𝑁𝐷𝐷  cuboidal subdomains with each subdomain having the same number 

of cells 
𝑁𝑋

𝑁𝐷𝐷𝑋
×

𝑁𝑌

𝑁𝐷𝐷𝑌
×

𝑁𝑍

𝑁𝐷𝐷𝑍
. We use the same number of cells in each subdomain to assist in 

load balancing [Chandra et al., 2001]. An example is shown in Figure 3.2 (a). Each subdomain 

is assigned to a distinct CPU thread with a distinct thread identity number obtained by using the 
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OpenMP runtime function OMP_G  _ HR  D_ UM(). Then the loop indices in each 

subdomain are set up using the algorithm shown as follows 

 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 = OMP_G  _ HR  D_ UM() 

{
 

 𝑘𝑠𝑡𝑎𝑟𝑡 = I  (
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷
𝑁𝐷𝐷 ⋅ 𝑁𝐷𝐷 

) ⋅
𝑁 
𝑁𝐷𝐷 

+ 1

𝑘𝑒𝑛𝑑 = [I  (
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷
𝑁𝐷𝐷 ⋅ 𝑁𝐷𝐷 

) + 1] ⋅
𝑁 
𝑁𝐷𝐷 

 

{
 

 𝑗𝑠𝑡𝑎𝑟𝑡 = MOD [I  (
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷
𝑁𝐷𝐷 

)  𝑁𝐷𝐷 ] ⋅
𝑁 
𝑁𝐷𝐷 

+ 1

𝑗𝑒𝑛𝑑 = {MOD[I  (
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷
𝑁𝐷𝐷 

)  𝑁𝐷𝐷 ] + 1} ⋅
𝑁 
𝑁𝐷𝐷 

 

{
 

 𝑖𝑠𝑡𝑎𝑟𝑡 = MOD(𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷  𝑁𝐷𝐷 ) ⋅
𝑁 
𝑁𝐷𝐷 

+ 1

𝑖𝑒𝑛𝑑 = [MOD(𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷  𝑁𝐷𝐷 ) + 1] ⋅
𝑁 
𝑁𝐷𝐷 

 

(3.1) 

The initial conditions Eq. (2.70) are applied in each subdomain in parallel and then the 

computation follows the steps as mentioned above. All the calculations in the FVM-TVD 

implementation are conducted in parallel. A barrier-type synchronization point is used to make 

sure all the iterations in all the threads have completed before moving to the next time level. 

After the NODDE-FVM-TVD spatial discretization is performed, the semi-discrete equations are 

integrated over time by using 4th order Runge-Kutta method [Hirsh, 2007]. Then the output data 

for estimated concentrations are generated and the iteration continues until the final simulation 

time is reached. During the parallel implementation, to satisfy the transmission conditions 

equations (2.66) and (2.67) the data of the outermost two layers of cells in each subdomain (the 

region with solid gray hatched lines shown in Figure 3.2 (b)) are needed by the adjacent 

subdomains to calculate the fluxes on the subdomain interfaces when using the FVM-TVD 

scheme. Since OpenMP is a type of shared-memory parallel implementation, the whole memory 

can be accessed by each thread, no extra coding is needed to handle the data communication 

between different threads. 
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(a) (b) 

Figure 3.2 (a) An example of the domain decomposition discretization (bold black lines indicate the locations of 

the subdomain interfaces). The Luenberger estimator models the subdomain with blue boundary lines where the 

SAV resides. All the remainder subdomains are modeled by the naive estimator. (b) The cells are shown in 2D 

for better visualization. The shaded cells are needed to calculate fluxes on subdomain interfaces when applying 

transmission conditions by using FVM-TVD scheme. 

3.2 The HT-NODDE-FVM for the Hybrid Estimator 

3.2.1 FVM-TVD Spatial Discretization 

The hybrid estimator equations (2.64) and (2.65) along with the transmission conditions 

equations (2.66) and (2.67) applied to a subdomain in Figure 1.2 can be expanded as 

  �̂�(𝑚)

 𝑡
= −

 (�̂�(𝑚)𝑈)

 𝑋
−
 (�̂�(𝑚)𝑉)

  
−
 (�̂�(𝑚)𝑊)

  
+

 

 𝑋
(𝐾  

 �̂�(𝑚)

 𝑋
)

+
 

  
(𝐾  

 �̂�(𝑚)

  
) +

 

  
(𝐾  

 �̂�(𝑚)

  
)

+ {
𝑅(𝑚𝐿)

(Θ𝑠(𝑡)  𝑡) f   L  nb  g    s im    

0 f   n iv   s im    
 

(3.2) 

Integration of Eq. (3.2) follows the FVM implementation with TVD and Runge-Kutta Integration 

[Egorova et al., 2016]. Integrating over a finite volume Ω𝑖𝑗𝑘(𝑚) as shown in Figure 3.3 and using 

the Gauss theorem  
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∭𝛁 ⋅ 𝐅 dΩ

Ω

=∯𝐅 ⋅ �̂� d𝐴

𝐴

 (3.3) 

yields 

  

 𝑡
∭ �̂�𝑖𝑗𝑘(𝑚)

Ω𝑖𝑗𝑘(𝑚)

dΩ + ∯ �̂�𝑖𝑗𝑘(𝑚) ⋅ d𝐀

𝐴𝑖𝑗𝑘(𝑚)

= {
∭ 𝑅𝑖𝑗𝑘(𝑚𝐿)

Ω𝑖𝑗𝑘(𝑚𝐿)

dΩ f   L  nb  g    s im    

0 f   n iv   s im    

 

(3.4) 

where the indices 𝑖 𝑗 𝑘 in each subdomain 𝑚 follow the global ordering. 

 

Figure 3.3 An arbitrary finite volume Ω𝑖𝑗𝑘(𝑚) in subdomain 𝑚 used in evaluation of advective and diffusive 

fluxes. 

Apply the finite volume discretization to Eq. (3.4), the volume integrals will be expressed as the 

averaged values of the physical quantities over the finite volume and the surface integrals will be 

expressed as the sum of the physical quantities over all the boundary surfaces of the finite 

volume 
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Ω𝑖𝑗𝑘(𝑚)

 �̂�𝑖𝑗𝑘(𝑚)

 𝑡
+∑(�̂�𝑖𝑗𝑘(𝑚) ⋅ 𝐧)𝐴𝑖𝑗𝑘(𝑚) 𝑙

6

𝑙=1

= {
Ω𝑖𝑗𝑘(𝑚𝐿)𝑅𝑖𝑗𝑘(𝑚𝐿) f   L  nb  g    s im    

0 f   n iv   s im    
 

(3.5) 

In Eq. (3.5), �̂�𝑖𝑗𝑘(𝑚) is the flux vector, 

 �̂�𝑖𝑗𝑘(𝑚) = �̂�   𝑖𝑗𝑘(𝑚)𝐢 + �̂�  𝑖𝑗𝑘(𝑚)𝐣 + �̂�  𝑖𝑗𝑘(𝑚)𝐤

= (𝑓  𝑖𝑗𝑘(𝑚)
𝐴 + 𝑓  𝑖𝑗𝑘(𝑚)

𝐷 )𝐢 + (𝑓  𝑖𝑗𝑘(𝑚)
𝐴 + 𝑓  𝑖𝑗𝑘(𝑚)

𝐷 )𝐣

+ (𝑓  𝑖𝑗𝑘(𝑚)
𝐴 + 𝑓  𝑖𝑗𝑘(𝑚)

𝐷 )𝐤 

(3.6) 

where the superscripts 𝐴 and 𝐷 mean the advective and diffusive fluxes, respectively. The 

advective flux components are 

 𝑓  𝑖𝑗𝑘(𝑚)
𝐴 = �̂�𝑖𝑗𝑘(𝑚)𝑈 𝑓  𝑖𝑗𝑘(𝑚)

𝐴 = �̂�𝑖𝑗𝑘(𝑚)𝑉 𝑓  𝑖𝑗𝑘(𝑚)
𝐴 = �̂�𝑖𝑗𝑘(𝑚)𝑊 (3.7) 

and the diffusive flux components are 

 
𝑓  𝑖𝑗𝑘(𝑚)
𝐷 = −𝐾  

 �̂�𝑖𝑗𝑘(𝑚)

 𝑋
 𝑓  𝑖𝑗𝑘(𝑚)

𝐷 = −𝐾  
 �̂�𝑖𝑗𝑘(𝑚)

  
 

𝑓  𝑖𝑗𝑘(𝑚)
𝐷 = −𝐾  

 �̂�𝑖𝑗𝑘(𝑚)

  
 

(3.8) 

Substitute Eq. (3.6) into Eq. (3.5), yields 

  �̂�𝑖𝑗𝑘(𝑚)

 𝑡
= −

1

Ω𝑖𝑗𝑘(𝑚)
(�̂�𝑖𝑗𝑘(𝑚)

𝐸 𝐴𝑖𝑗𝑘(𝑚)
𝐸 − �̂�𝑖𝑗𝑘(𝑚)

𝑊 𝐴𝑖𝑗𝑘(𝑚)
𝑊 + �̂�𝑖𝑗𝑘(𝑚)

𝑁 𝐴𝑖𝑗𝑘(𝑚)
𝑁

− �̂�𝑖𝑗𝑘(𝑚)
𝑆 𝐴𝑖𝑗𝑘(𝑚)

𝑆 + �̂�𝑖𝑗𝑘(𝑚)
𝑇 𝐴𝑖𝑗𝑘(𝑚)

𝑇 − �̂�𝑖𝑗𝑘(𝑚)
𝐵 𝐴𝑖𝑗𝑘(𝑚)

𝐵 )

+ {
𝑅𝑖𝑗𝑘(𝑚𝐿) f   L  nb  g    s im    

0 f   n iv   s im    
 

(3.9) 

where �̂�𝑖𝑗𝑘(𝑚)
𝐸  is the total flux on the east surface of the control volume Ω𝑖𝑗𝑘(𝑚), and similarly 

�̂�𝑖𝑗𝑘(𝑚)
𝑊  is for the west surface, �̂�𝑖𝑗𝑘(𝑚)

𝑁  is for the north surface, �̂�𝑖𝑗𝑘(𝑚)
𝑆  is for the south surface, 

�̂�𝑖𝑗𝑘(𝑚)
𝑇  is for the top surface, and �̂�𝑖𝑗𝑘(𝑚)

𝐵  is for the bottom surfaces 
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 �̂�𝑖𝑗𝑘(𝑚)
𝑙 = 𝑓 

𝐴|𝑖𝑗𝑘(𝑚)
𝑙 + 𝑓 

𝐷|𝑖𝑗𝑘(𝑚)
𝑙  𝑙 = 𝐸 𝑊 𝑁 𝑆 𝑇 𝐵 (3.10) 

𝐴𝑖𝑗𝑘(𝑚)
𝐸  is the area of the east surface of the control volume Ω𝑖𝑗𝑘(𝑚), and similarly for 𝐴𝑖𝑗𝑘(𝑚)

𝑊 , 

𝐴𝑖𝑗𝑘(𝑚)
𝑁 , 𝐴𝑖𝑗𝑘(𝑚)

𝑆 , 𝐴𝑖𝑗𝑘(𝑚)
𝑇 , and 𝐴𝑖𝑗𝑘(𝑚)

𝐵 ; 𝑅𝑖𝑗𝑘(𝑚𝐿) is the output injection term Eq. (2.71) in 

discretized form 

 
𝑅𝑖𝑗𝑘(𝑚𝐿) = {

0 Θ𝑠(𝑡) ∉ (𝑖 𝑗 𝑘)

Ω𝑖𝑗𝑘(𝑚𝐿)Λ[𝐶(Θ𝑠(𝑡)  𝑡) − �̂�(Θ𝑠(𝑡)  𝑡)] Θ𝑠(𝑡) ∈ (𝑖 𝑗 𝑘)
 (3.11) 

The advective flux on a finite volume surface and on an interface between two subdomains is 

approximated using the total variation diminishing (TVD) scheme [Thuburn, 1997]. For a finite 

volume which is not located at any of the computational domain boundaries, the advective fluxes 

are approximated as follows: 

In 𝑋-direction, if 𝑈 > 0, then  

 
𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
= �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝐸

+)(�̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚)) 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
= �̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚)

+
1

2
𝜉(𝑟𝑊

+)(�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚)) 

(3.12) 

and if 𝑈 < 0, then 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
= �̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚)

+
1

2
𝜉(𝑟𝐸

−)(�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) − �̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚)) 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
= �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝑊

−)(�̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚)) 

(3.13) 

In equations (3.12) and (3.13), 𝑟 is the ratio of local upstream concentration gradient to the local 

downstream concentration gradient, and the superscripts “+” and “−” denote the positive and 

negative wind speed directions respectively, while the subscripts “𝐸” and “𝑊” denote the wind 

speed across the east surface and west surface of the finite volume Ω𝑖𝑗𝑘(𝑚) respectively. 
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𝑟𝐸
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

 𝑟𝑊
+ =

�̂�𝑖−1 𝑗 𝑘(𝑚) − �̂�𝑖−2 𝑗 𝑘(𝑚)

𝑋𝑖−1 𝑗 𝑘(𝑚) − 𝑋𝑖−2 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

 

𝑟𝐸
− =

�̂�𝑖+2 𝑗 𝑘(𝑚) − �̂�𝑖+1 𝑗 𝑘(𝑚)

𝑋𝑖+2 𝑗 𝑘(𝑚) − 𝑋𝑖+1 𝑗 𝑘(𝑚)

�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

 𝑟𝑊
− =

�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

 

(3.14) 

0 ≤ 𝜉(𝑟) ≤ 1 is the limiter function of the ratio 𝑟 associated with the TVD scheme. When 

𝜉(𝑟) = 0,  

 
𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
= {

�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) 𝑈 > 0

�̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚) 𝑈 < 0
 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
= {

�̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚) 𝑈 > 0

�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) 𝑈 < 0
 

(3.15) 

which is the first order upwind scheme. The first order scheme has the dissipation effect at 

discontinuities, which will deviate the numerical solution from the analytical solution. When 

𝜉(𝑟) = 1, 

 
𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
=
1

2
(�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚) + �̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚)) 𝑈 > 0    𝑈 < 0 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
=
1

2
(�̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚) + �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚)) 𝑈 > 0    𝑈 < 0 

(3.16) 

which is the second order central difference scheme. The second order scheme has the dispersion 

effect which will cause ripples at discontinuities. This will reduce the accuracy of the numerical 

solution. So, there could exist discontinuities in the numerical solutions obtained from the TVD 

scheme. To mitigate the negative effects of the dissipation stemming from the first order scheme 

and the dispersion stemming from the second order scheme, the limiter function 𝜉(𝑟) is 

employed. For the numerical implementation in this thesis, the limiter function is chosen as the 

Min-Mod [Kurganov and Tadmor, 2000] 
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𝜉(𝑟) = {

min(𝑟 1)  𝑟 > 0
0 𝑟 ≤ 0

 (3.17) 

Similarly, in  -direction, if 𝑉 > 0, then 

 
𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑁
= �̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝑁

+)(�̂�𝑖 𝑗+1 𝑘(𝑚)𝑉𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚)) 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑆
= �̂�𝑖 𝑗−1 𝑘(𝑚)𝑉𝑖 𝑗−1 𝑘(𝑚)

+
1

2
𝜉(𝑟𝑆

+)(�̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)𝑉𝑖 𝑗−1 𝑘(𝑚)) 

(3.18) 

and if 𝑉 < 0, then 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑁
= �̂�𝑖 𝑗+1 𝑘(𝑚)𝑉𝑖 𝑗+1 𝑘(𝑚)

+
1

2
𝜉(𝑟𝑁

−)(�̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗+1 𝑘(𝑚)𝑉𝑖 𝑗+1 𝑘(𝑚)) 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑆
= �̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝑆

−)(�̂�𝑖 𝑗−1 𝑘(𝑚)𝑉𝑖 𝑗−1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚)) 

(3.19) 

where 

 

𝑟𝑁
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖−1 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑟𝑆
+ =

�̂�𝑖 𝑗−1 𝑘(𝑚) − �̂�𝑖 𝑗−2 𝑘(𝑚)

 𝑖 𝑗−1 𝑘(𝑚) −  𝑖 𝑗−2 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)

 

𝑟𝑁
− =

�̂�𝑖 𝑗+2 𝑘(𝑚) − �̂�𝑖 𝑗+1 𝑘(𝑚)

 𝑖 𝑗+2 𝑘(𝑚) −  𝑖 𝑗+1 𝑘(𝑚)

�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑟𝑆
− =

�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)

 

(3.20) 

The limiter function is the same as Eq. (3.17). 

In  -direction, if 𝑊 > 0, then 

 
𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑇
= �̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝑇

+)(�̂�𝑖 𝑗 𝑘+1(𝑚)𝑊𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚)) (3.21) 
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𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐵
= �̂�𝑖 𝑗 𝑘−1(𝑚)𝑊𝑖 𝑗 𝑘−1(𝑚)

+
1

2
𝜉(𝑟𝐵

+)(�̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)𝑊𝑖 𝑗 𝑘−1(𝑚)) 

and if 𝑊 < 0, then 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑇
= �̂�𝑖 𝑗 𝑘+1(𝑚)𝑊𝑖 𝑗 𝑘+1(𝑚)

+
1

2
𝜉(𝑟𝑇

−)(�̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘+1(𝑚)𝑊𝑖 𝑗 𝑘+1(𝑚)) 

𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐵
= �̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚) +

1

2
𝜉(𝑟𝐵

−)(�̂�𝑖 𝑗 𝑘−1(𝑚)𝑊𝑖 𝑗 𝑘−1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚)) 

(3.22) 

where 

 

𝑟𝑇
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘+1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘+1(𝑚)

 𝑟𝐵
+ =

�̂�𝑖 𝑗 𝑘−1(𝑚) − �̂�𝑖 𝑗 𝑘−2(𝑚)

 𝑖 𝑗 𝑘−1(𝑚) −  𝑖 𝑗 𝑘−2(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

 

𝑟𝑇
− =

�̂�𝑖 𝑗 𝑘+2(𝑚) − �̂�𝑖 𝑗 𝑘+1(𝑚)

 𝑖 𝑗 𝑘+2(𝑚) −  𝑖 𝑗 𝑘+1(𝑚)

�̂�𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑟𝐵
− =

�̂�𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

 

(3.23) 

The limiter function is also the same as Eq. (3.17). 

The diffusive flux on a finite volume surface and on an interface between two subdomains is 

approximated using the central differencing scheme. For a finite volume which is not located at 

any of the computational domain boundaries, the diffusive fluxes are approximated as follows: 

In 𝑋-direction, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐸
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐸
�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
 

𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑊
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑊
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
 

(3.24) 
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where 𝐾  |𝑖𝑗𝑘(𝑚)
𝐸  and 𝐾  |𝑖𝑗𝑘(𝑚)

𝑊  are the eddy diffusivities on the east and west surfaces of the 

finite volume, respectively. They are approximated by 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝐸 =
𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋surf 𝑖+1 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚)

+
𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖+1 𝑗 𝑘(𝑚) 

𝐾  |𝑖𝑗𝑘(𝑚)
𝑊 =

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
𝐾   𝑖−1 𝑗 𝑘(𝑚)

+
𝑋surf 𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚) 

(3.25) 

where the subscript “s  f” means the coordinate of the finite volume surfaces.  

In  -direction, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑁
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑁
�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 

𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑆
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑆
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
 

(3.26) 

where 𝐾  |𝑖𝑗𝑘(𝑚)
𝑁  and 𝐾  |𝑖𝑗𝑘(𝑚)

𝑆  are the eddy diffusivities on the north and south surfaces of the 

finite volume, respectively. They are approximated by 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝑁 =
 𝑖 𝑗+1 𝑘(𝑚) −  surf 𝑖 𝑗+1 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚)

+
 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗+1 𝑘(𝑚) 

𝐾  |𝑖𝑗𝑘(𝑚)
𝑆 =

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
𝐾   𝑖 𝑗−1 𝑘(𝑚)

+
 surf 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚) 

(3.27) 

In  -direction, 
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𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑇
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑇
�̂�𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 

𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐵
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐵
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
 

(3.28) 

where 𝐾  |𝑖𝑗𝑘(𝑚)
𝑇  and 𝐾  |𝑖𝑗𝑘(𝑚)

𝐵  are the eddy diffusivities on the top and bottom surfaces of the 

finite volume, respectively. They are approximated by 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝑇 =
 𝑖 𝑗 𝑘+1(𝑚) −  surf 𝑖 𝑗 𝑘+1(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚)

+
 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
𝐾   𝑖 𝑗 𝑘+1(𝑚) 

𝐾  |𝑖𝑗𝑘(𝑚)
𝐵 =

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
𝐾   𝑖 𝑗 𝑘−1(𝑚)

+
 surf 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
𝐾   𝑖 𝑗 𝑘(𝑚) 

(3.29) 

Substitute equations (3.10) – (3.29) into Eq. (3.9), yields 

  �̂�𝑖𝑗𝑘(𝑚)

 𝑡
= −

1

Ω𝑖𝑗𝑘(𝑚)
(𝑎𝑖𝑗𝑘(𝑚)

𝐸 �̂�𝑖+1 𝑗 𝑘(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)
𝑊 �̂�𝑖−1 𝑗 𝑘(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)

𝑁 �̂�𝑖 𝑗+1 𝑘(𝑚)

+ 𝑎𝑖𝑗𝑘(𝑚)
𝑆 �̂�𝑖 𝑗−1 𝑘(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)

𝑇 �̂�𝑖 𝑗 𝑘+1(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)
𝐵 �̂�𝑖 𝑗 𝑘−1(𝑚)

+ 𝑎𝑖𝑗𝑘(𝑚)
𝐶 �̂�𝑖 𝑗 𝑘(𝑚)) + 𝑆𝑖𝑗𝑘(𝑚)

𝐷𝐶

+ {
𝑅𝑖𝑗𝑘(𝑚𝐿) f   L  nb  g    s im    

0 f   n iv   s im    
 

(3.30) 

where 𝑎𝑖𝑗𝑘(𝑚)
𝐸 , 𝑎𝑖𝑗𝑘(𝑚)

𝑊 , 𝑎𝑖𝑗𝑘(𝑚)
𝑁 , 𝑎𝑖𝑗𝑘(𝑚)

𝑆 , 𝑎𝑖𝑗𝑘(𝑚)
𝑇 , 𝑎𝑖𝑗𝑘(𝑚)

𝐵 , and 𝑎𝑖𝑗𝑘(𝑚)
𝐶  are the weights generated 

from the FVM discretization, 

 
𝑎𝑖𝑗𝑘(𝑚)
𝐸 = [min(𝑈𝑖+1 𝑗 𝑘(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝐸

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝐸  (3.31) 
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𝑎𝑖𝑗𝑘(𝑚)
𝑊 = [−m x(𝑈𝑖−1 𝑗 𝑘(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑊

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝑊  

 
𝑎𝑖𝑗𝑘(𝑚)
𝑁 = [min(𝑉𝑖 𝑗+1 𝑘(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑁

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝑁  

𝑎𝑖𝑗𝑘(𝑚)
𝑆 = [−m x(𝑉𝑖 𝑗−1 𝑘(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑆

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝑆  

(3.32) 

 
𝑎𝑖𝑗𝑘(𝑚)
𝑇 = [min(𝑊𝑖 𝑗 𝑘+1(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑇

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝑇  

𝑎𝑖𝑗𝑘(𝑚)
𝐵 = [−m x(𝑊𝑖 𝑗 𝑘−1(𝑚) 0) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝐵

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
] 𝐴𝑖𝑗𝑘(𝑚)

𝐵  

(3.33) 

 𝑎𝑖𝑗𝑘(𝑚)
𝐶 = −𝑎𝑖𝑗𝑘(𝑚)

𝐸 − 𝑎𝑖𝑗𝑘(𝑚)
𝑊 − 𝑎𝑖𝑗𝑘(𝑚)

𝑁 − 𝑎𝑖𝑗𝑘(𝑚)
𝑆 − 𝑎𝑖𝑗𝑘(𝑚)

𝑇 − 𝑎𝑖𝑗𝑘(𝑚)
𝐵

+ [m x(𝑈𝑖 𝑗 𝑘(𝑚) 0) + min(𝑈𝑖+1 𝑗 𝑘(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝐸

− [m x(𝑈𝑖−1 𝑗 𝑘(𝑚) 0) + min(𝑈𝑖 𝑗 𝑘(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝑊

+ [m x(𝑉𝑖 𝑗 𝑘(𝑚) 0) + min(𝑉𝑖 𝑗+1 𝑘(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝑁

− [m x(𝑉𝑖 𝑗−1 𝑘(𝑚) 0) + min(𝑉𝑖 𝑗 𝑘(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝑆

+ [m x(𝑊𝑖 𝑗 𝑘(𝑚) 0) + min(𝑊𝑖 𝑗 𝑘+1(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝑇

− [m x(𝑊𝑖 𝑗 𝑘−1(𝑚) 0) + min(𝑊𝑖 𝑗 𝑘(𝑚) 0)]𝐴𝑖𝑗𝑘(𝑚)
𝐵  

(3.34) 

𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the deferred correction source term generated by the TVD scheme, 
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𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
{
1

2
[𝛼𝐸𝜉(𝑟𝐸

+) − (1 − 𝛼𝐸)𝜉(𝑟𝐸
−)](�̂�𝑖+1 𝑗 𝑘(𝑚)𝑈𝑖+1 𝑗 𝑘(𝑚)

− �̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝐸

−
1

2
[𝛼𝑊𝜉(𝑟𝑊

+) − (1 − 𝛼𝑊)𝜉(𝑟𝑊
−)](�̂�𝑖 𝑗 𝑘(𝑚)𝑈𝑖 𝑗 𝑘(𝑚)

− �̂�𝑖−1 𝑗 𝑘(𝑚)𝑈𝑖−1 𝑗 𝑘(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝑊

+
1

2
[𝛼𝑁𝜉(𝑟𝑁

+) − (1 − 𝛼𝑁)𝜉(𝑟𝑁
−)](�̂�𝑖 𝑗+1 𝑘(𝑚)𝑉𝑖 𝑗+1 𝑘(𝑚)

− �̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝑁

−
1

2
[𝛼𝑆𝜉(𝑟𝑆

+) − (1 − 𝛼𝑆)𝜉(𝑟𝑆
−)](�̂�𝑖 𝑗 𝑘(𝑚)𝑉𝑖 𝑗 𝑘(𝑚)

− �̂�𝑖 𝑗−1 𝑘(𝑚)𝑉𝑖 𝑗−1 𝑘(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝑆

+
1

2
[𝛼𝑇𝜉(𝑟𝑇

+) − (1 − 𝛼𝑇)𝜉(𝑟𝑇
−)](�̂�𝑖 𝑗 𝑘+1(𝑚)𝑊𝑖 𝑗 𝑘+1(𝑚)

− �̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝑇

−
1

2
[𝛼𝐵𝜉(𝑟𝐵

+) − (1 − 𝛼𝐵)𝜉(𝑟𝐵
−)](�̂�𝑖 𝑗 𝑘(𝑚)𝑊𝑖 𝑗 𝑘(𝑚)

− �̂�𝑖 𝑗 𝑘−1(𝑚)𝑊𝑖 𝑗 𝑘−1(𝑚))𝐴𝑖𝑗𝑘(𝑚)
𝐵 } 

(3.35) 

where  

 
𝛼𝐸 = {

1 𝑈𝑖+1 𝑗 𝑘(𝑚) > 0 

0 𝑈𝑖+1 𝑗 𝑘(𝑚) < 0
;     𝛼𝑊 = {

1 𝑈𝑖−1 𝑗 𝑘(𝑚) > 0 

0 𝑈𝑖−1 𝑗 𝑘(𝑚) < 0
 

𝛼𝑁 = {
1 𝑉𝑖 𝑗+1 𝑘(𝑚) > 0 

0 𝑉𝑖 𝑗+1 𝑘(𝑚) < 0
;     𝛼𝑆 = {

1 𝑉𝑖 𝑗−1 𝑘(𝑚) > 0 

0 𝑉𝑖 𝑗−1 𝑘(𝑚) < 0
 

𝛼𝑇 = {
1 𝑊𝑖 𝑗 𝑘+1(𝑚) > 0 

0 𝑊𝑖 𝑗 𝑘+1(𝑚) < 0
;     𝛼𝐵 = {

1 𝑊𝑖 𝑗 𝑘−1(𝑚) > 0 

0 𝑊𝑖 𝑗 𝑘−1(𝑚) < 0
 

(3.36) 

For a finite volume which is located at one of the computational domain boundaries, the 

boundaries are treated by using Leonard mirror node extrapolation [Versteeg and Malalasekera, 

2007]. For a finite volume which is located on the west boundary of the computational domain, 
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the advective fluxes on the west surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.12) and 

(3.13) become, for Dirichlet boundary conditions as shown in Figure 3.4 (a), 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
= 𝑈𝑊𝐵 𝑗 𝑘(𝑚)�̂�𝑊𝐵 wi   𝑖 = 1 (3.37) 

And for Neumann boundary conditions as shown in Figure 3.4 (b), �̂�𝑊𝐵 is not given directly. 

Instead, �̂�𝑊𝐵 is approximated from the given Neumann boundary condition as follows, 

  �̂�

 𝑋
|
𝑊𝐵

=
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑊𝐵

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)
= 𝑁𝑊𝐵 wi   𝑖 = 1 (3.38) 

Equation (3.38) can be rewritten as 

 �̂�𝑊𝐵 = �̂�𝑖 𝑗 𝑘(𝑚) − 𝑁𝑊𝐵(𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)) wi   𝑖 = 1 (3.39) 

Substitute Eq. (3.39) into Eq. (3.37), yields 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑊
= 𝑈𝑊𝐵 𝑗 𝑘(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) − 𝑁𝑊𝐵(𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚))] wi   𝑖 = 1 (3.40) 

The wind speed at the west boundary 𝑈𝑊𝐵 𝑗 𝑘(𝑚) in equations (3.37) and (3.40) is approximated 

by 

 
𝑈𝑊𝐵 𝑗 𝑘(𝑚) = 𝑈𝑖 𝑗 𝑘(𝑚) −

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
(𝑈𝑖+1 𝑗 𝑘(𝑚) − 𝑈𝑖 𝑗 𝑘(𝑚)) 

wi   𝑖 = 1 

(3.41) 

The ratio 𝑟𝐸
+ in Eq. (3.14) becomes, for Dirichlet boundary conditions,  

 

𝑟𝐸
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑊𝐵

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)

�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

 wi   𝑖 = 1 (3.42) 

and for Neumann boundary conditions,  
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𝑟𝐸
+ =

𝑁𝑊𝐵

�̂�𝑖+1 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

 wi   𝑖 = 1 
(3.43) 

𝑟𝐸
− keeps the same equation but with 𝑖 = 1. The 𝑟𝑊

+ and 𝑟𝑊
− are no longer needed because the 

advective fluxes on the west surface have been approximated by Eq. (3.37) or Eq. (3.40). 

 
 

(a) (b) 

Figure 3.4 Finite volumes at west boundary with (a) Dirichlet boundary condition and  (b) Neumann boundary 

condition (shown in 2D). 

The diffusive flux on the west surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.24) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑊
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑊
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑊𝐵

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑖 = 1 (3.44) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑊
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑊 𝑁𝑊𝐵 wi   𝑖 = 1 (3.45) 

The 𝐾  |𝑖𝑗𝑘(𝑚)
𝑊  in Eq. (3.25) becomes 
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𝐾  |𝑖𝑗𝑘(𝑚)

𝑊 = 𝐾   𝑖 𝑗 𝑘(𝑚) −
𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)

𝑋𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
(𝐾   𝑖+1 𝑗 𝑘(𝑚) − 𝐾   𝑖 𝑗 𝑘(𝑚)) 

wi   𝑖 = 1 

(3.46) 

Then the corresponding results for the finite volumes on west boundary are the same as Eq. 

(3.30) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0 and a new term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-hand side of the 

equation, 

  �̂�𝑖𝑗𝑘(𝑚)

 𝑡
= −

1

Ω𝑖𝑗𝑘(𝑚)
(𝑎𝑖𝑗𝑘(𝑚)

𝐸 �̂�𝑖+1 𝑗 𝑘(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)
𝑁 �̂�𝑖 𝑗+1 𝑘(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)

𝑆 �̂�𝑖 𝑗−1 𝑘(𝑚)

+ 𝑎𝑖𝑗𝑘(𝑚)
𝑇 �̂�𝑖 𝑗 𝑘+1(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)

𝐵 �̂�𝑖 𝑗 𝑘−1(𝑚) + 𝑎𝑖𝑗𝑘(𝑚)
𝐶 �̂�𝑖 𝑗 𝑘(𝑚)) + 𝑆𝑖𝑗𝑘(𝑚)

𝐷𝐶

+ 𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 + {

𝑅𝑖𝑗𝑘(𝑚𝐿) f   L  nb  g    s im    

0 f   n iv   s im    
 

(3.47) 

where 𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶  is the boundary condition source term resulting from the treatment for the 

boundary finite volumes, for Dirichlet boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[−(𝑈𝑊𝐵 𝑗 𝑘(𝑚) +

𝐾  |𝑖𝑗𝑘(𝑚)
𝑊

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝑊 �̂�𝑊𝐵]  

wi   𝑖 = 1 

(3.48) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑈𝑊𝐵 𝑗 𝑘(𝑚)(𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)) + 𝐾  |𝑖𝑗𝑘(𝑚)

𝑊 ]𝐴𝑖𝑗𝑘(𝑚)
𝑊 𝑁𝑊𝐵 

wi   𝑖 = 1 

(3.49) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝑊

+) = 0 and 𝜉(𝑟𝑊
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝑊  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝑊

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑖 = 1 (3.50) 
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and for Neumann boundary conditions, by 

 −𝑈𝑊𝐵 𝑗 𝑘(𝑚) (3.51) 

Similarly, we can derive the equations for the finite volumes located at east, north, south, top, 

and bottom boundaries and at the corners formed by south-west, north-west, north-east, south-

east, south-top, north-top, north-bottom, south-bottom, south-west-top, north-west-top, north-

east-top, south-east-top, south-west-bottom, north-west-bottom, north-east-bottom, and south-

east-bottom surfaces after proper boundary treatments. 

For a finite volume at the east boundary of the computational domain, the advective fluxes on the 

east surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.12) and (3.13) become, for Dirichlet 

boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
= 𝑈𝐸𝐵 𝑗 𝑘(𝑚)�̂�𝐸𝐵 wi   𝑖 = 𝑁  (3.52) 

And for Neumann boundary conditions, �̂�𝐸𝐵 is not given directly. Instead, �̂�𝐸𝐵 is approximated 

from the given Neumann boundary condition as follows, 

  �̂�

 𝑋
|
𝐸𝐵

=
�̂�𝐸𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
= 𝑁𝐸𝐵  wi   𝑖 = 𝑁  (3.53) 

Equation (3.53) can be rewritten as 

 �̂�𝐸𝐵 = �̂�𝑖 𝑗 𝑘(𝑚) + 𝑁𝐸𝐵(𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)) wi   𝑖 = 𝑁  (3.54) 

Substitute Eq. (3.54) into Eq. (3.52), yields 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐸
= 𝑈𝐸𝐵 𝑗 𝑘(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) + 𝑁𝐸𝐵(𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚))] wi   𝑖 = 𝑁  (3.55) 

The wind speed at the east boundary 𝑈𝐸𝐵 𝑗 𝑘(𝑚) in equations (3.52) and (3.55) is approximated by 

 
𝑈𝐸𝐵 𝑗 𝑘(𝑚) = 𝑈𝑖 𝑗 𝑘(𝑚) +

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
(𝑈𝑖 𝑗 𝑘(𝑚) − 𝑈𝑖−1 𝑗 𝑘(𝑚)) 

wi   𝑖 = 𝑁  

(3.56) 
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The ratio 𝑟𝑊
− in Eq. (3.14) becomes, for Dirichlet boundary conditions, 

 

𝑟𝑊
− =

�̂�𝐸𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

 wi   𝑖 = 𝑁  (3.57) 

and for Neumann boundary conditions, 

 
𝑟𝑊
− =

𝑁𝐸𝐵

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)

 wi   𝑖 = 𝑁  
(3.58) 

𝑟𝑊
+ keeps the same equation but with 𝑖 = 𝑁 . The 𝑟𝐸

+ and 𝑟𝐸
− are no longer needed because the 

advective fluxes on the east surface have been approximated by Eq. (3.52) or Eq. (3.55). 

The diffusive flux on the east surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.24) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐸
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐸
�̂�𝐸𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
 wi   𝑖 = 𝑁  (3.59) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐸
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐸 𝑁𝐸𝐵 wi   𝑖 = 𝑁  (3.60) 

The 𝐾  |𝑖𝑗𝑘(𝑚)
𝐸  in Eq. (3.25) becomes 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝐸 = 𝐾   𝑖 𝑗 𝑘(𝑚) +
𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)

𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚)
(𝐾   𝑖 𝑗 𝑘(𝑚) − 𝐾   𝑖−1 𝑗 𝑘(𝑚)) 

wi   𝑖 = 𝑁  

(3.61) 

Then the corresponding result for the finite volumes on east boundary is the same as Eq. (3.30) 

except that 𝑎𝑖𝑗𝑘(𝑚)
𝐸 = 0 and a boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-hand 

side of the equation, for Dirichlet boundary conditions, 
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𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[(𝑈𝐸𝐵 𝑗 𝑘(𝑚) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝐸

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝐸 �̂�𝐸𝐵]  

wi   𝑖 = 𝑁  

(3.62) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑈𝐸𝐵 𝑗 𝑘(𝑚)(𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)) − 𝐾  |𝑖𝑗𝑘(𝑚)

𝐸 ]𝐴𝑖𝑗𝑘(𝑚)
𝐸 𝑁𝐸𝐵 

wi   𝑖 = 𝑁  

(3.63) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝐸

+) = 0 and 𝜉(𝑟𝐸
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝐸 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝐸  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝐸

𝑋surf 𝑖+1 𝑗 𝑘(𝑚) − 𝑋𝑖 𝑗 𝑘(𝑚)
 wi   𝑖 = 𝑁  (3.64) 

and for Neumann boundary conditions, by 

 𝑈𝐸𝐵 𝑗 𝑘(𝑚) (3.65) 

For a finite volume at the south boundary of the computational domain, the advective fluxes on 

the south surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.18) and (3.19) become, for 

Dirichlet boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑆
= 𝑉𝑖 𝑆𝐵 𝑘(𝑚)�̂�𝑆𝐵 wi   𝑗 = 1 (3.66) 

and for Neumann boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑆
= 𝑉𝑖 𝑆𝐵 𝑘(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) − 𝑁𝑆𝐵( 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚))] wi   𝑗 = 1 (3.67) 

The wind speed at the west boundary 𝑉𝑖 𝑆𝐵 𝑘(𝑚) in equations (3.66) and (3.67) is approximated by 
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𝑉𝑖 𝑆𝐵 𝑘(𝑚) = 𝑉𝑖 𝑗 𝑘(𝑚) −

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
(𝑉𝑖 𝑗+1 𝑘(𝑚) − 𝑉𝑖 𝑗 𝑘(𝑚)) 

wi   𝑗 = 1 

(3.68) 

The ratio 𝑟𝑁
+ in Eq. (3.20) becomes, for Dirichlet boundary conditions, 

 

𝑟𝑁
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑆𝐵
 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 wi   𝑗 = 1 (3.69) 

and for Neumann boundary conditions, 

 
𝑟𝑁
+ =

𝑁𝑆𝐵

�̂�𝑖 𝑗+1 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 wi   𝑗 = 1 
(3.70) 

𝑟𝑁
− keeps the same equation but with 𝑗 = 1. The 𝑟𝑆

+ and 𝑟𝑆
− are no longer needed because the 

advective fluxes on the west surface have been approximated by Eq. (3.66) or Eq. (3.67). 

The diffusive flux on the south surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.26) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑆
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑆
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑆𝐵

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑗 = 1 (3.71) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑆
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑆 𝑁𝑆𝐵 wi   𝑗 = 1 (3.72) 

The 𝐾  |𝑖𝑗𝑘(𝑚)
𝑆  in Eq. (3.27) becomes 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝑆 = 𝐾   𝑖 𝑗 𝑘(𝑚) −
 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
(𝐾   𝑖 𝑗+1 𝑘(𝑚) − 𝐾   𝑖 𝑗 𝑘(𝑚)) 

wi   𝑗 = 1 

(3.73) 
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Then the corresponding result for the finite volumes on south boundary is the same as Eq. (3.30) 

except that 𝑎𝑖𝑗𝑘(𝑚)
𝑆 = 0 and a boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-hand 

side of the equation, for Dirichlet boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[−(𝑉𝑖 𝑆𝐵 𝑘(𝑚) +

𝐾  |𝑖𝑗𝑘(𝑚)
𝑆

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝑆 �̂�𝑆𝐵]  

wi   𝑗 = 1 

(3.74) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑉𝑖 𝑆𝐵 𝑘(𝑚)( 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)) + 𝐾  |𝑖𝑗𝑘(𝑚)

𝑆 ]𝐴𝑖𝑗𝑘(𝑚)
𝑆 𝑁𝑆𝐵 

wi   𝑗 = 1 

(3.75) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝑆

+) = 0 and 𝜉(𝑟𝑆
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑆 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝑆  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝑆

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑗 = 1 (3.76) 

and for Neumann boundary conditions, by 

 −𝑉𝑖 𝑆𝐵 𝑘(𝑚) (3.77) 

For a finite volume at the north boundary of the computational domain, the advective fluxes on 

the north surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.18) and (3.19) become, for 

Dirichlet boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑁
= 𝑉𝑖 𝑁𝐵 𝑘(𝑚)�̂�𝑁𝐵 wi   𝑗 = 𝑁  (3.78) 

and for Neumann boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑁
= 𝑉𝑖 𝑁𝐵 𝑘(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) +𝑁𝑁𝐵( surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚))] wi   𝑗 = 𝑁  (3.79) 



65 

 

The wind speed at the north boundary 𝑉𝑖 𝑁𝐵 𝑘(𝑚) in equations (3.78) and (3.79) is approximated 

by 

 
𝑉𝑖 𝑁𝐵 𝑘(𝑚) = 𝑉𝑖 𝑗 𝑘(𝑚) +

 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
(𝑉𝑖 𝑗 𝑘(𝑚) − 𝑉𝑖 𝑗−1 𝑘(𝑚)) 

wi   𝑗 = 𝑁  

(3.80) 

The ratio 𝑟𝑆
− in Eq. (3.20) becomes, for Dirichlet boundary conditions, 

 

𝑟𝑆
− =

�̂�𝑁𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)

 wi   𝑗 = 𝑁  (3.81) 

and for Neumann boundary conditions, 

 
𝑟𝑆
− =

𝑁𝑁𝐵

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗−1 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)

 wi   𝑗 = 𝑁  
(3.82) 

𝑟𝑆
+ keeps the same equation but with 𝑗 = 𝑁 . The 𝑟𝑁

+ and 𝑟𝑁
− are no longer needed because the 

advective fluxes on the north surface have been approximated by Eq. (3.78) or Eq. (3.79). 

The diffusive flux on the north surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.26) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑁
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑁
�̂�𝑁𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 wi   𝑗 = 𝑁  (3.83) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑁
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑁 𝑁𝑁𝐵 wi   𝑗 = 𝑁  (3.84) 

The 𝐾  |𝑖𝑗𝑘(𝑚)
𝑁  in Eq. (3.27) becomes 
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𝐾  |𝑖𝑗𝑘(𝑚)

𝑁 = 𝐾   𝑖 𝑗 𝑘(𝑚) +
 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚)
(𝐾   𝑖 𝑗 𝑘(𝑚) − 𝐾   𝑖 𝑗−1 𝑘(𝑚)) 

wi   𝑗 = 𝑁  

(3.85) 

Then the corresponding result for the finite volumes on north boundary is the same as Eq. (3.30) 

except that 𝑎𝑖𝑗𝑘(𝑚)
𝑁 = 0 and a boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-hand 

side of the equation, for Dirichlet boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[(𝑉𝑖 𝑁𝐵 𝑘(𝑚) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑁

 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝑁 �̂�𝑁𝐵]  

wi   𝑗 = 𝑁  

(3.86) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑉𝑖 𝑁𝐵 𝑘(𝑚)( surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)) − 𝐾  |𝑖𝑗𝑘(𝑚)

𝑁 ]𝐴𝑖𝑗𝑘(𝑚)
𝑁 𝑁𝑁𝐵 

wi   𝑗 = 𝑁  

(3.87) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝑁

+) = 0 and 𝜉(𝑟𝑁
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑁 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝑁  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝑁

 surf 𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 wi   𝑗 = 𝑁  (3.88) 

and for Neumann boundary conditions, by 

 𝑉𝑖 𝑁𝐵 𝑘(𝑚) (3.89) 

For a finite volume at the bottom boundary of the computational domain, the advective fluxes on 

the bottom surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.21) and (3.22) become, for 

Dirichlet boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐵
= 𝑊𝑖 𝑗 𝐵𝐵(𝑚)�̂�𝐵𝐵 wi   𝑘 = 1 (3.90) 
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and for Neumann boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝐵
= 𝑊𝑖 𝑗 𝐵𝐵(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) − 𝑁𝐵𝐵( 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚))] wi   𝑘 = 1 (3.91) 

The wind speed at the bottom boundary 𝑊𝑖 𝑗 𝐵𝐵(𝑚) in equations (3.90) and (3.91) is approximated 

by 

 
𝑊𝑖 𝑗 𝐵𝐵(𝑚) = 𝑊𝑖 𝑗 𝑘(𝑚) −

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
(𝑊𝑖 𝑗 𝑘+1(𝑚) −𝑊𝑖 𝑗 𝑘(𝑚)) 

wi   𝑘 = 1 

(3.92) 

The ratio 𝑟𝑇
+ in Eq. (3.23) becomes, for Dirichlet boundary conditions, 

 

𝑟𝑇
+ =

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝐵𝐵
 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 wi   𝑘 = 1 (3.93) 

and for Neumann boundary conditions, 

 
𝑟𝑇
+ =

𝑁𝐵𝐵

�̂�𝑖 𝑗 𝑘+1(𝑚) − �̂�𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 wi   𝑘 = 1 
(3.94) 

𝑟𝑇
− keeps the same equation but with 𝑘 = 1. The 𝑟𝐵

+ and 𝑟𝐵
− are no longer needed because the 

advective fluxes on the west surface have been approximated by Eq. (3.90) or Eq. (3.91). 

The diffusive flux on the bottom surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.28) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐵
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐵
�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝐵𝐵

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑘 = 1 (3.95) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝐵
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝐵 𝑁𝐵𝐵 wi   𝑘 = 1 (3.96) 

The 𝐾  |𝑖𝑗𝑘(𝑚)
𝐵  in Eq. (3.29) becomes 
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𝐾  |𝑖𝑗𝑘(𝑚)

𝐵 = 𝐾   𝑖 𝑗 𝑘(𝑚) −
 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
(𝐾   𝑖 𝑗 𝑘+1(𝑚) − 𝐾   𝑖 𝑗 𝑘(𝑚)) 

wi   𝑘 = 1 

(3.97) 

Then the corresponding result for the finite volumes on bottom boundary is the same as Eq. 

(3.30) except that 𝑎𝑖𝑗𝑘(𝑚)
𝐵 = 0 and a boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-

hand side of the equation, for Dirichlet boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[− (𝑊𝑖 𝑗 𝐵𝐵(𝑚) +

𝐾  |𝑖𝑗𝑘(𝑚)
𝐵

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝐵 �̂�𝐵𝐵]  

wi   𝑘 = 1 

(3.98) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑊𝑖 𝑗 𝐵𝐵(𝑚)( 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)) + 𝐾  |𝑖𝑗𝑘(𝑚)

𝐵 ]𝐴𝑖𝑗𝑘(𝑚)
𝐵 𝑁𝐵𝐵 

wi   𝑘 = 1 

(3.99) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝐵

+) = 0 and 𝜉(𝑟𝐵
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝐵 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝐵  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝐵

 𝑖 𝑗 𝑘(𝑚) −  surf 𝑖 𝑗 𝑘(𝑚)
 wi   𝑘 = 1 (3.100) 

and for Neumann boundary conditions, by 

 −𝑊𝑖 𝑗 𝐵𝐵(𝑚) (3.101) 

For a finite volume at the top boundary of the computational domain, the advective fluxes on the 

top surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in equations (3.21) and (3.22) become, for Dirichlet 

boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑇
= 𝑊𝑖 𝑗 𝑇𝐵(𝑚)�̂�𝑇𝐵 wi   𝑘 = 𝑁  (3.102) 
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and for Neumann boundary conditions, 

 𝑓 
𝐴|
𝑖𝑗𝑘(𝑚)

𝑇
= 𝑊𝑖 𝑗 𝑇𝐵(𝑚)[�̂�𝑖 𝑗 𝑘(𝑚) + 𝑁𝑇𝐵( surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚))] 

wi   𝑘 = 𝑁  
(3.103) 

The wind speed at the north boundary 𝑊𝑖 𝑗 𝑇𝐵(𝑚) in equations (3.102) and (3.103) is 

approximated by 

 
𝑊𝑖 𝑗 𝑇𝐵(𝑚) = 𝑊𝑖 𝑗 𝑘(𝑚) +

 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
(𝑊𝑖 𝑗 𝑘(𝑚) −𝑊𝑖 𝑗 𝑘−1(𝑚)) 

wi   𝑘 = 𝑁  

(3.104) 

The ratio 𝑟𝐵
− in Eq. (3.23) becomes, for Dirichlet boundary conditions, 

 

𝑟𝐵
− =

�̂�𝑇𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

 wi   𝑘 = 𝑁  (3.105) 

and for Neumann boundary conditions, 

 
𝑟𝐵
− =

𝑁𝑇𝐵

�̂�𝑖 𝑗 𝑘(𝑚) − �̂�𝑖 𝑗 𝑘−1(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)

 wi   𝑘 = 𝑁  
(3.106) 

𝑟𝐵
+ keeps the same equation but with 𝑘 = 𝑁 . The 𝑟𝑇

+ and 𝑟𝑇
− are no longer needed because the 

advective fluxes on the top surface have been approximated by Eq. (3.102) or Eq. (3.103). 

The diffusive flux on the top surface of the finite volume Ω𝑖𝑗𝑘(𝑚) in Eq. (3.28) becomes, for 

Dirichlet boundary conditions, 

 
𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑇
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑇
�̂�𝑇𝐵 − �̂�𝑖 𝑗 𝑘(𝑚)

 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 wi   𝑘 = 𝑁  (3.107) 

and for Neumann boundary conditions, 

 𝑓 
𝐷|

𝑖𝑗𝑘(𝑚)

𝑇
= −𝐾  |𝑖𝑗𝑘(𝑚)

𝑇 𝑁𝑇𝐵 wi   𝑘 = 𝑁  (3.108) 
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The 𝐾  |𝑖𝑗𝑘(𝑚)
𝑇  in Eq. (3.29) becomes 

 
𝐾  |𝑖𝑗𝑘(𝑚)

𝑇 = 𝐾   𝑖 𝑗 𝑘(𝑚) +
 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)

 𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚)
(𝐾   𝑖 𝑗 𝑘(𝑚) − 𝐾   𝑖 𝑗 𝑘−1(𝑚)) 

wi   𝑘 = 𝑁  

(3.109) 

Then the corresponding result for the finite volumes on top boundary is the same as Eq. (3.30) 

except that 𝑎𝑖𝑗𝑘(𝑚)
𝑇 = 0 and a boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  appears on the right-hand 

side of the equation, for Dirichlet boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[(𝑊𝑖 𝑗 𝑇𝐵(𝑚) −

𝐾  |𝑖𝑗𝑘(𝑚)
𝑇

 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
)𝐴𝑖𝑗𝑘(𝑚)

𝑇 �̂�𝑇𝐵]  

wi   𝑘 = 𝑁  

(3.110) 

and for Neumann boundary conditions, 

 
𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶 = −

1

Ω𝑖𝑗𝑘(𝑚)
[𝑊𝑖 𝑗 𝑇𝐵(𝑚)( surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚))

− 𝐾  |𝑖𝑗𝑘(𝑚)
𝑇 ]𝐴𝑖𝑗𝑘(𝑚)

𝑇 𝑁𝑇𝐵 wi   𝑘 = 𝑁  

(3.111) 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝑇

+) = 0 and 𝜉(𝑟𝑇
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same 

as Eq. (3.34) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑇 = 0 and the term multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝑇  is replaced, for  

Dirichlet boundary conditions, by 

 𝐾  |𝑖𝑗𝑘(𝑚)
𝑇

 surf 𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚)
 wi   𝑘 = 𝑁  (3.112) 

and for Neumann boundary conditions, by 

 𝑊𝑖 𝑗 𝑇𝐵(𝑚) (3.113) 

For the finite volumes located at the corners of the computational domain, the results are the 

same as Eq. (3.30) except that the weights are zeros on the corresponding boundary surfaces. The 

additional boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶  on the right-hand side of the equation is the 

combination of two or three of equations (3.48), (3.62), (3.74), (3.86), (3.98), and (3.110) for 
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Dirichlet boundary conditions, or equations (3.49), (3.63), (3.75), (3.87), (3.99), and (3.111) for 

Neumann boundary conditions, according to which boundaries the control volume is located on. 

The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with zero limiter functions on the domain boundary 

surfaces where the finite volume resides. The weight 𝑎𝑖𝑗𝑘(𝑚)
𝐶  is the same as Eq. (3.34) except that 

the weights are zeros on the corresponding boundary surfaces and the terms multiplied by the 

areas of the finite volume surfaces that are on the domain boundaries are replaced by equations 

(3.50), (3.64), (3.76), (3.88), (3.100), or (3.112) for Dirichlet boundary conditions, or equations 

(3.51), (3.65), (3.77), (3.89), (3.101), or (3.113) for Neumann boundary conditions, accordingly. 

For example, if a finite volume is located at the corner formed by south-west boundaries, the 

result is the same as Eq. (3.30) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0 and 𝑎𝑖𝑗𝑘(𝑚)

𝑆 = 0, and the additional 

boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)
𝐵𝐶  on the right-hand side of the equation is the combination 

of Eq. (3.48) and Eq. (3.74) for Dirichlet boundary conditions, or the combination of Eq. (3.49) 

and Eq. (3.75) for Neumann boundary conditions. The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 

𝜉(𝑟𝑊
+) = 0, 𝜉(𝑟𝑊

−) = 0, 𝜉(𝑟𝑆
+) = 0, and 𝜉(𝑟𝑆

−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)
𝐶  is the same as Eq. (3.34) except 

that 𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0 and 𝑎𝑖𝑗𝑘(𝑚)

𝑆 = 0 and the terms multiplied by 𝐴𝑖𝑗𝑘(𝑚)
𝑊  and 𝐴𝑖𝑗𝑘(𝑚)

𝑆  are replaced by 

Eq. (3.50) and Eq. (3.76) respectively for Dirichlet boundary conditions, or replaced by Eq. 

(3.51) and Eq. (3.77) respectively for Neumann boundary conditions. 

Another example, if a finite volume is located at the corner formed by south-west-top 

boundaries, the result is the same as Eq. (3.30) except that 𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0, 𝑎𝑖𝑗𝑘(𝑚)

𝑆 = 0, and 

𝑎𝑖𝑗𝑘(𝑚)
𝑇 = 0 and the additional boundary condition source term 𝑆𝑖𝑗𝑘(𝑚)

𝐵𝐶  on the right-hand side of 

the equation is the combination of equations (3.48), (3.74), and (3.110) for Dirichlet boundary 

conditions, or the combination of equations (3.49), (3.75), and (3.111) for Neumann boundary 

conditions. The 𝑆𝑖𝑗𝑘(𝑚)
𝐷𝐶  is the same as Eq. (3.35) but with 𝜉(𝑟𝑊

+) = 0, 𝜉(𝑟𝑊
−) = 0, 𝜉(𝑟𝑆

+) = 0, 

𝜉(𝑟𝑆
−) = 0, (𝑟𝑇

+) = 0, and 𝜉(𝑟𝑇
−) = 0. The 𝑎𝑖𝑗𝑘(𝑚)

𝐶  is the same as Eq. (3.34) except that 

𝑎𝑖𝑗𝑘(𝑚)
𝑊 = 0, 𝑎𝑖𝑗𝑘(𝑚)

𝑆 = 0, and 𝑎𝑖𝑗𝑘(𝑚)
𝑇 = 0 and the terms multiplied by 𝐴𝑖𝑗𝑘(𝑚)

𝑊 , 𝐴𝑖𝑗𝑘(𝑚)
𝑆 , and 

𝑎𝑖𝑗𝑘(𝑚)
𝑇  are replaced by Eq. (3.50), Eq. (3.76), and Eq. (3.112) respectively for Dirichlet 

boundary conditions, or replaced by Eq. (3.51), Eq. (3.77), and Eq. (3.113) respectively for 

Neumann boundary conditions. 
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The transmission conditions equations (2.66) and (2.67) are satisfied explicitly when conducting 

the FVM-TVD spatial discretization. As an example, consider the east, north, and top finite 

volume surfaces as shown in Figure 3.3 are the interfaces between adjacent subdomains, assume 

positive wind speeds in each direction and diffusion out from the finite volume Ω𝑖𝑗𝑘(𝑚). The 

transmission conditions are satisfied on the interfaces on volume Ω𝑖𝑗𝑘(𝑚), 

 𝑓 
𝐴|𝑖𝑗𝑘(𝑚)
𝐸 + 𝑓 

𝐷|𝑖𝑗𝑘(𝑚)
𝐸 = −𝑓 

𝐴|
𝑖+1  𝑗  𝑘 (𝑚𝐸)
𝑊 − 𝑓 

𝐷|
𝑖+1  𝑗  𝑘 (𝑚𝐸)
𝑊  

𝑓 
𝐴|𝑖𝑗𝑘(𝑚)
𝑁 + 𝑓 

𝐷|𝑖𝑗𝑘(𝑚)
𝑁 = −𝑓 

𝐴|
𝑖  𝑗+1  𝑘 (𝑚𝑁)
𝑆 − 𝑓 

𝐷|
𝑖  𝑗+1  𝑘 (𝑚𝑁)
𝑆  

𝑓 
𝐴|𝑖𝑗𝑘(𝑚)
𝑇 + 𝑓 

𝐷|𝑖𝑗𝑘(𝑚)
𝑇 = −𝑓 

𝐴|
𝑖  𝑗  𝑘+1 (𝑚𝑇)
𝐵 − 𝑓 

𝐷|
𝑖  𝑗  𝑘+1 (𝑚𝑇)
𝐵  

(3.114) 

where 𝑚𝐸, 𝑚𝑁, and 𝑚𝑇 are the subdomain numbers which are adjacent to the east, north, and top 

of the interfaces on finite volume Ω𝑖𝑗𝑘(𝑚). 

The entire set of 𝑁 (𝑚) × 𝑁 (𝑚) ×𝑁 (𝑚) finite volumes in each subdomain 𝑖  𝑗  𝑘 ∈ Ω(𝑚) are 

mapped to a 1D vector as follows, 

 𝑛𝑝(𝑚) = 𝑛𝑝(𝑚)(𝑖  𝑗  𝑘) = 𝑖 + (𝑗 − 1)𝑁 (𝑚) + (𝑘 − 1)𝑁 (𝑚)𝑁 (𝑚) 

𝑖 = 1  2  ⋅⋅⋅  𝑁 (𝑚);    𝑗 = 1  2  ⋅⋅⋅  𝑁 (𝑚);    𝑘 = 1  2  ⋅⋅⋅  𝑁 (𝑚) 
(3.115) 

The estimated concentration in a finite volume is �̂�𝑖𝑗𝑘(𝑚) ≡ �̂�𝑛𝑝(𝑚) and the semi-discrete Eq. 

(3.9) can be written in state space form as 

 �̇̂�(𝑚)(𝑡)

= 𝑃𝐹𝑉𝑀(𝑚)�̂�(𝑚)(𝑡) + 𝐒𝐵𝐶 + 𝑃𝑇𝑉𝐷(𝑚)�̂�(𝑚)(𝑡)

+ {
𝐐(𝑚𝐿)

(𝑡)Λ[𝐶(Θ𝑠(𝑡)  𝑡) − �̂�(Θ𝑠(𝑡)  𝑡)] f   L  nb  g    s im    

0 f   n iv   s im    

= 𝐏𝑅𝐻𝑆(𝑚)(𝑡) 

(3.116) 

where �̂�(𝑚)(𝑡) = �̂�(𝑚)(𝑋     𝑡) is the estimated concentration state, 

 
�̂�(𝑚) = [�̂�1(𝑚)

 �̂�2(𝑚)
 ⋯  �̂�𝑛𝑝(𝑚)

 ⋯  �̂�𝑁(𝑚)
]
T

 𝑁(𝑚) = 𝑁 (𝑚) × 𝑁 (𝑚) × 𝑁 (𝑚) (3.117) 
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𝑃𝐹𝑉𝑀(𝑚) is a 7-diagonal sparse matrix resulting from the FVM-TVD spatial discretization of the 

advection-diffusion operator; 𝐒𝐵𝐶 is an 𝑁(𝑚) × 1 vector arising from the boundary conditions; 

𝑃𝑇𝑉𝐷(𝑚) is a 7-diagonal sparse matrix resulting from the multiplication by the limiter functions 

of TVD scheme. The output injection term of the Luenberger estimator model is expressed as 

𝐐(𝑚𝐿)
(𝑡)Λ[𝐶(Θ𝑠(𝑡)  𝑡) − �̂�(Θ𝑠(𝑡)  𝑡)] which is the product of sensor location vector 𝐐(𝑚𝐿)

(𝑡), 

the user-defined estimation gain Λ, and the state-estimation error at the sensor location, 

𝐶(Θ𝑠(𝑡)  𝑡) − �̂�(Θ𝑠(𝑡)  𝑡). The elements 𝑞𝑛𝑝(𝑚𝐿) 
(𝑡) of sensor location vector 𝐐(𝑚𝐿)

(𝑡) is, 

𝑞𝑛𝑝(𝑚𝐿) 
(𝑡) = {

Ω𝑛𝑝(𝑚𝐿)
 Θ𝑠(𝑡) ∈ 𝑛𝑝(𝑚𝐿)

0 Θ𝑠(𝑡) ∉ 𝑛𝑝(𝑚𝐿) 

 where Ω𝑛𝑝(𝑚𝐿)
 is the volume of the finite volume (or 

cell) where the sensor resides.  

3.2.2 Runge-Kutta Temporal Integration 

The state-space form Eq. (3.116) is integrated with respect to time by using 4th order Runge-

Kutta method [Hirsh, 2007] as follows,  

 

�̂�(𝑚)
𝑛+1 = �̂�(𝑚)

𝑛 + 𝛼4Δ𝑡∑𝛼𝑙𝐏𝑅𝐻𝑆(𝑚)
𝑙

3

𝑙=0

 (3.118) 

where 𝑛 is the time level, 𝐏𝑅𝐻𝑆(𝑚) is the right hand side of Eq. (3.116), and the coefficients are 

𝛼0 = 1 𝛼1 = 2 𝛼2 = 2 𝛼3 = 1 𝛼4 =
1

6
.  

For the modified Lyapunov guidance law, Eq. (2.81) is also implemented by using the 4th order 

Runge-Kutta method, 

 

𝐫𝑠
𝑛+1 = 𝐫𝑠

𝑛 + 𝛼4Δ𝑡𝑠∑𝛼𝑙𝐍𝑅𝐻𝑆
𝑙

3

𝑙=0

 (3.119) 

where 𝐫𝑠(𝑡) = [𝑋𝑠
𝑑  𝑠

𝑑  𝑠
𝑑]T, Δ𝑡𝑠 is the integration time step of the SAV and in most cases 

∆𝑡𝑠 ≥ ∆𝑡, 𝐍𝑅𝐻𝑆 = [𝑈𝑠
𝑑 𝑉𝑠

𝑑 𝑊𝑠
𝑑]T is the right hand side of Eq. (2.81), and the coefficients 𝛼𝑖 

are the same as appearing in Eq. (3.118).  
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For the Lyapunov guidance law with SAV dynamical model, Eq. (2.82) is also integrated by 

using the 4th order Runge-Kutta method, 

 

𝐍𝑛+1 = 𝐍𝑛 + 𝛼4Δ𝑡𝑠∑𝛼𝑙𝐑𝑅𝐻𝑆
𝑙

3

𝑙=0

 (3.120) 

where 𝐍 = [𝑋𝑠  𝑠  𝑠 𝑉g 𝛾 𝜒]T, 𝐑𝑅𝐻𝑆 = [𝑋�̇�  �̇�  �̇� 𝑉ġ �̇� �̇�]
T
 is the right hand 

side of Eq. (2.82), Δ𝑡𝑠 and 𝛼𝑖 keep the same values as in Eq. (3.119). 

3.2.3 Numerical Stability 

The time step Δ𝑡 in Eq. (3.118) must be smaller than the maximum allowable time step Δ𝑡𝑚𝑎𝑥 

that satisfies the numerical stability condition. The Δ𝑡𝑚𝑎𝑥 can be determined by Von Neumann 

method for stability analysis [Hirsh, 2007]. 

Substitute equations (3.31) – (3.36) into (3.30), assume constant wind speeds 𝑈, 𝑉, and 𝑊 and 

constant eddy diffusivities 𝐾  , 𝐾  , and 𝐾  , assume uniform grid such that 𝑋𝑖+1 𝑗 𝑘(𝑚) −

𝑋𝑖 𝑗 𝑘(𝑚) = 𝑋𝑖 𝑗 𝑘(𝑚) − 𝑋𝑖−1 𝑗 𝑘(𝑚) = Δ𝑋(𝑚),  𝑖 𝑗+1 𝑘(𝑚) −  𝑖 𝑗 𝑘(𝑚) =  𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗−1 𝑘(𝑚) =

Δ (𝑚),  𝑖 𝑗 𝑘+1(𝑚) −  𝑖 𝑗 𝑘(𝑚) =  𝑖 𝑗 𝑘(𝑚) −  𝑖 𝑗 𝑘−1(𝑚) = Δ (𝑚), and Ω𝑖𝑗𝑘(𝑚) =

Δ𝑋(𝑚)Δ (𝑚)Δ (𝑚), 𝐴𝑖𝑗𝑘(𝑚)
𝐸 = 𝐴𝑖𝑗𝑘(𝑚)

𝑊 = Δ (𝑚)Δ (𝑚), 𝐴𝑖𝑗𝑘(𝑚)
𝑁 = 𝐴𝑖𝑗𝑘(𝑚)

𝑆 = Δ𝑋(𝑚)Δ (𝑚), 

𝐴𝑖𝑗𝑘(𝑚)
𝑇 = 𝐴𝑖𝑗𝑘(𝑚)

𝐵 = Δ𝑋(𝑚)Δ (𝑚), ignore the output injection term for the purpose of numerical 

stability analysis, and use the first order differencing for the temporal derivative 
𝜕�̂�𝑖𝑗𝑘(𝑚)

𝜕𝑡
=

�̂�𝑖𝑗𝑘(𝑚)
𝑛+1 −�̂�𝑖𝑗𝑘(𝑚)

𝑛

Δ𝑡
. For limiter function 𝜉(𝑟) = 0, which is the first order upwind scheme for advective 

flux, if 𝑈 > 0, 𝑉 > 0, and 𝑊 > 0, then yields 
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 �̂�𝑖𝑗𝑘(𝑚)
𝑛+1 = �̂�𝑖𝑗𝑘(𝑚)

𝑛 − 𝜎 (𝑚)(�̂�𝑖 𝑗 𝑘(𝑚)
𝑛 − �̂�𝑖−1 𝑗 𝑘(𝑚)

𝑛 ) − 𝜎 (𝑚)(�̂�𝑖 𝑗 𝑘(𝑚)
𝑛 − �̂�𝑖 𝑗−1 𝑘(𝑚)

𝑛 )

− 𝜎 (𝑚)(�̂�𝑖 𝑗 𝑘(𝑚)
𝑛 − �̂�𝑖 𝑗 𝑘−1(𝑚)

𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖+1 𝑗 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖−1 𝑗 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗+1 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗−1 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗 𝑘+1(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗 𝑘−1(𝑚)
𝑛 ) 

(3.121) 

where 𝜎 (𝑚) =
𝑈Δ𝑡

Δ (𝑚)
, 𝜎 (𝑚) =

𝑉Δ𝑡

Δ (𝑚)
, 𝜎 (𝑚) =

𝑊Δ𝑡

Δ (𝑚)
, 𝛽 (𝑚) =

𝐾𝑋𝑋Δ𝑡

(Δ (𝑚))
2, 𝛽 (𝑚) =

𝐾𝑌𝑌Δ𝑡

(Δ (𝑚))
2, and 

𝛽 (𝑚) =
𝐾𝑍𝑍Δ𝑡

(Δ (𝑚))
2. 

Substitute into Eq. (3.121) a Fourier mode in the form of �̂�𝑖𝑗𝑘(𝑚)
𝑛 = 𝕍𝑛𝑒𝐼𝑖𝜑𝑒𝐼𝑗𝜓𝑒𝐼𝑘𝜃 where 𝜑, 𝜓, 

and 𝜃 are phase angles and use 𝑒𝐼𝛼 =   s 𝛼 + 𝐼 sin 𝛼 and 𝑒−𝐼𝛼 =   s 𝛼 − 𝐼 sin 𝛼, then the 

amplification factor is 

 
𝐺 =

𝕍𝑛+1

𝕍𝑛
= 1 − 𝜎 (𝑚)(1 −   s𝜑 + 𝐼 sin𝜑) − 𝜎 (𝑚)(1 −   s𝜓 + 𝐼 sin𝜓)

− 𝜎 (𝑚)(1 −   s 𝜃 + 𝐼 sin 𝜃) + 2𝛽 (𝑚)   s𝜑 + 2𝛽 (𝑚)   s𝜓

+ 2𝛽 (𝑚)   s 𝜃 − 2(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) 

(3.122) 

The Von Neumann stability condition is  

 |𝐺| ≤ 1 (3.123) 

For 𝜑 = 𝜓 = 𝜃 = 𝜋,  

 𝐺 = 1 − 2(𝜎 (𝑚) + 𝜎 (𝑚) + 𝜎 (𝑚)) − 4(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) (3.124) 

Substitute Eq. (3.124) into Eq. (3.123), yields 

 
Δ𝑡1 ≤

1

𝑈
Δ𝑋(𝑚)

+
𝑉

Δ (𝑚)
+

𝑊
Δ (𝑚)

+ 2 [
𝐾  

(Δ𝑋(𝑚))
2 +

𝐾  

(Δ (𝑚))
2 +

𝐾  

(Δ (𝑚))
2]

 
(3.125) 

For 𝜑 = 𝜓 = 𝜃 = 0, the Von Neumann stability condition Eq. (3.123) is satisfied automatically. 
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If 𝑈 < 0, 𝑉 < 0, and 𝑊 < 0, then we have 

 �̂�𝑖𝑗𝑘(𝑚)
𝑛+1 = �̂�𝑖𝑗𝑘(𝑚)

𝑛 − 𝜎 (𝑚)(�̂�𝑖+1 𝑗 𝑘(𝑚)
𝑛 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑛 ) − 𝜎 (𝑚)(�̂�𝑖 𝑗+1 𝑘(𝑚)
𝑛 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑛 )

− 𝜎 (𝑚)(�̂�𝑖 𝑗 𝑘+1(𝑚)
𝑛 − �̂�𝑖 𝑗 𝑘(𝑚)

𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖+1 𝑗 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖−1 𝑗 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗+1 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗−1 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗 𝑘+1(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗 𝑘−1(𝑚)
𝑛 ) 

(3.126) 

then the amplification factor is 

 
𝐺 =

𝕍𝑛+1

𝕍𝑛
= 1 − 𝜎 (𝑚)(  s𝜑 + 𝐼 sin𝜑 − 1) − 𝜎 (𝑚)(  s𝜓 + 𝐼 sin𝜓 − 1)

− 𝜎 (𝑚)(  s𝜃 + 𝐼 sin 𝜃 − 1) + 2𝛽 (𝑚)   s𝜑 + 2𝛽 (𝑚)   s𝜓

+ 2𝛽 (𝑚)   s 𝜃 − 2(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) 

(3.127) 

For 𝜑 = 𝜓 = 𝜃 = 𝜋, substitute Eq. (3.127) into Eq. (3.123), we have the same time step 

condition as Eq. (3.125) where the 𝑈, 𝑉, and 𝑊 are all absolute values for the case of 𝑈 < 0, 

𝑉 < 0, and 𝑊 < 0. For 𝜑 = 𝜓 = 𝜃 = 𝜋, we have 𝐺 = 1 which satisfies the Von Neumann 

stability condition Eq. (3.123) automatically. 

For limiter function 𝜉(𝑟) = 1, which is the second order central difference scheme for advective 

flux, if 𝑈 > 0, 𝑉 > 0, and 𝑊 > 0, then we have 

 �̂�𝑖𝑗𝑘(𝑚)
𝑛+1 = �̂�𝑖𝑗𝑘(𝑚)

𝑛 −
𝜎 (𝑚)

2
(�̂�𝑖+1 𝑗 𝑘(𝑚)

𝑛 − �̂�𝑖−1 𝑗 𝑘(𝑚)
𝑛 )

−
𝜎 (𝑚)

2
(�̂�𝑖 𝑗+1 𝑘(𝑚)

𝑛 − �̂�𝑖 𝑗−1 𝑘(𝑚)
𝑛 ) −

𝜎 (𝑚)

2
(�̂�𝑖 𝑗 𝑘+1(𝑚)

𝑛 − �̂�𝑖 𝑗 𝑘−1(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖+1 𝑗 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖−1 𝑗 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗+1 𝑘(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗−1 𝑘(𝑚)
𝑛 )

+ 𝛽 (𝑚)(�̂�𝑖 𝑗 𝑘+1(𝑚)
𝑛 − 2�̂�𝑖 𝑗 𝑘(𝑚)

𝑛 + �̂�𝑖 𝑗 𝑘−1(𝑚)
𝑛 ) 

(3.128) 

The amplification factor is 
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𝐺 =

𝕍𝑛+1

𝕍𝑛
= 1 − 𝜎 (𝑚) 𝐼 sin𝜑 − 𝜎 (𝑚) 𝐼 sin 𝜓 − 𝜎 (𝑚) 𝐼 sin 𝜃 + 2𝛽 (𝑚)   s𝜑

+ 2𝛽 (𝑚)   s𝜓 + 2𝛽 (𝑚)   s 𝜃 − 2(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) 

(3.129) 

For 𝜑 = 𝜓 = 𝜃 = 𝜋, 

 𝐺 = 1 − 4(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) (3.130) 

Substitute Eq. (3.130) into Eq. (3.123) and use 2(𝛽 (𝑚) + 𝛽 (𝑚) + 𝛽 (𝑚)) − 𝜎 (𝑚)
2 − 𝜎 (𝑚)

2 −

𝜎 (𝑚)
2 ≥ 0 [Hirsh, 2007], yields 

 
Δ𝑡2 ≤

1

2 [
𝐾  

(Δ𝑋(𝑚))
2 +

𝐾  

(Δ (𝑚))
2 +

𝐾  

(Δ (𝑚))
2]

 
(3.131) 

and  

 

Δ𝑡3 ≤

2 [
𝐾  

(Δ𝑋(𝑚))
2 +

𝐾  

(Δ (𝑚))
2 +

𝐾  

(Δ (𝑚))
2]

𝑈2

(Δ𝑋(𝑚))
2 +

𝑉2

(Δ (𝑚))
2 +

𝑊2

(Δ (𝑚))
2

 (3.132) 

For 𝜑 = 𝜓 = 𝜃 = 0, we have 𝐺 = 1 which satisfies the Von Neumann stability condition Eq. 

(3.123) automatically. 

If 𝑈 < 0, 𝑉 < 0, and 𝑊 < 0, we have exactly the same results as those for the case of 𝑈 > 0, 

𝑉 > 0, and 𝑊 > 0. 

In summary, the time step Δ𝑡 in Eq. (3.118) must satisfy 

 Δ𝑡 ≤ Δ𝑡𝑚𝑎𝑥 = min(m xΔ𝑡1  m x Δ𝑡2  m x Δ𝑡3) (3.133) 
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3.3 Verification and Error Analysis for the HT-NODDE-FVM 

3.3.1 Non-Dimensional 3D Advection Equation 

The first test provides the verification of the NODDE-FVM with TVD-RK applied to the 3D 

pure advection equation. Equation (2.58) with zero diffusivities and zero source term is non-

dimensionalized using 𝐶 = 𝐶∗𝐶0, 𝑡 = 𝑡∗𝐿0/𝑉0 , 𝑈 = 𝑈∗𝑉0, 𝑉 = 𝑉∗𝑉0, 𝑊 = 𝑊∗𝑉0, 𝑋 = 𝑋∗𝐿0, 

 =  ∗𝐿0, and  =  ∗𝐿0, where 𝐶0, 𝐿0, and 𝑉0 are reference concentration, length, and wind 

speed, respectively, and becomes 

  𝐶∗

 𝑡∗
+ 𝑈∗

 𝐶∗

 𝑋∗
+ 𝑉∗

 𝐶∗

  ∗
+𝑊∗

 𝐶∗

  ∗
= 0 (3.134) 

Four initial density configurations are used for the simulations. Case 1a corresponds to a 

continuous Gaussian density distribution with 𝐶∗ =  x (−
𝑟∗2

𝑅∗2
), 𝑟∗2 = (𝑋∗ − 𝑋𝑟

∗)2 +

( ∗ −  𝑟
∗)2 + ( ∗ −  𝑟

∗)2 where 𝑋𝑟
∗,  𝑟

∗, and  𝑟
∗ are the coordinates of the center, and 𝑅 = 𝑅∗𝐿0. 

Cases 1b and 1c correspond to a piecewise Gaussian distribution 𝐶∗ =  x (−
𝑟∗2

𝑅∗2
) for 𝑟∗2 ≤ 𝑅∗2 

and 𝐶∗ =
1

𝑒
 for 𝑟∗2 > 𝑅∗2. Case 1d corresponds to a cubical density distribution 𝐶∗ = 1 for 

𝑟 
∗2 ≤ 𝑅∗2 and 𝑟 

∗2 ≤ 𝑅∗2 and 𝑟 
∗2 ≤ 𝑅∗2, and 𝐶∗ = 0 for 𝑟 

∗2 > 𝑅∗2 and 𝑟 
∗2 > 𝑅∗2 and 𝑟 

∗2 >

𝑅∗2, where 𝑟 
∗2 = (𝑋∗ − 𝑋𝑟

∗)2, 𝑟 
∗2 = ( ∗ −  𝑟

∗)2, and 𝑟 
∗2 = ( ∗ −  𝑟

∗)2. The widths of the 

distributions are shown in Table 3.1. 

Table 3.1 3D pure advection cases and results 

Case Initial Condition 
Order 𝒑 

𝑳𝟏 from Eq. (3.135) 

Order 𝒑 

𝑳𝟏 form Eq. (3.136) 

1a Gaussian, 𝑅∗2 = 0.005 1.5340 1.5284 

1b Piecewise Gaussian, 𝑅∗2 = 0.005 1.1515 1.1374 

1c Piecewise Gaussian, 𝑅∗2 = 0.04 1.2930 1.2914 

1d Cubical, 𝑅∗2 = 0.005 0.7886 0.7886 
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For the simulations, we use a domain with 𝐿 
∗ = 𝐿 

∗ = 𝐿 
∗ = 1, 𝑈∗ = 1, 𝑉∗ = 𝑊∗ = 0, 𝑋𝑟

∗ =

0.25,  𝑟
∗ =  𝑟

∗ = 0.5. Dirichlet boundary conditions are enforced with 𝐶∗ = 0 for Case 1a and 

1d, and 𝐶∗ = 1/𝑒 for Case 1b and 1c. The computational domain is divided into 40 subdomains 

with 𝑁𝐷𝐷 = 𝑁𝐷𝐷 = 2 and 𝑁𝐷𝐷 = 10. The simulations were run with grid resolutions between 

50 × 50 × 50 ≤
𝐿𝑋
∗

Δ ∗
×

𝐿𝑌
∗

Δ ∗
×

𝐿𝑍
∗

Δ ∗
≤ 400 × 400 × 400 and a constant Δ𝑡∗ = 0.002 for up to 𝑡∗ =

0.5. Results are used to evaluate the 𝐿1 norm of the error following LeVeque [2007]. For uniform 

finite volumes and using the cell-centered values for both the numerical and the analytical 

solutions the 𝑞-norm is 

 

𝐿𝑞(𝐶∗) = (Δ𝑋∗Δ ∗Δ ∗ ∑ |𝐶𝑛𝑝numerical

∗ − 𝐶𝑛𝑝analytical
∗ |

𝑁

𝑛𝑝=1

𝑞

)

1
𝑞

 (3.135) 

Using the continuous function for the analytical solution within each finite volume 𝑛𝑝, the 𝑞-

norm becomes 

 

𝐿𝑞(𝐶∗) = [∑ |(Δ𝑋∗Δ ∗Δ ∗)
1
𝑞𝐶𝑛𝑝numerical

∗

𝑁

𝑛𝑝=1

− (Δ𝑋∗Δ ∗Δ ∗)
1−𝑞
𝑞 ∭𝐶𝑛𝑝analytical

∗  dΩ

Ω𝑛𝑝

|

𝑞

]

1
𝑞

 

(3.136) 

The order of accuracy is evaluated by 

 
𝑝 =

l g[𝐿𝑞(𝐶Δ1∗
∗ )] − l g[𝐿𝑞(𝐶Δ2∗

∗ )]

l g(Δ1
∗) − l g(Δ2

∗ )
 (3.137) 

The 𝐿1 norm of the error is shown in Figure 3.5 and the order of accuracy is shown in Table 3.1 

for all the cases considered. The results show that for smoothly varying functions the NODDE-

FVM becomes between order 1 and 2, which is consistent with the results of single-domain 

FVM-TVD method [Prabhakaran and Doss, 2015]. 
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(a) (b) 

Figure 3.5 𝐿1 norm of the error between NODDE-FVM and analytical solutions of the advection PDE as a 

function of grid resolution for conditions shown in Table 3.1. (a) 𝐿1 norm calculated by Eq. (3.135); (b) 𝐿1 norm 

calculated by Eq. (3.136). 

3.3.2 Non-Dimensional 3D Advection-Diffusion Equation 

The second test provides the verification of the NODDE-FVM with TVD-RK applied to the 3D 

advection-diffusion equation. The process model Eq. (2.58) assuming constant winds and 

uniform diffusivities, is non-dimensionalized using 𝐶 = 𝐶∗𝐶0, 𝑡 = 𝑡∗ 𝐿0 𝑉0⁄ , 𝑈 = 𝑈∗𝑉0, 𝑉 =

𝑉∗𝑉0, 𝑊 = 𝑊∗𝑉0, 𝑋 = 𝑋∗𝐿0,  =  ∗𝐿0,  =  ∗𝐿0, 𝐾  = 𝐾  
∗ 𝐾0, 𝐾  = 𝐾  

∗ 𝐾0, 𝐾  = 𝐾  
∗ 𝐾0, 

and 𝑃𝑒 =
𝑉0𝐿0

𝐾0
. The non-dimensional advection-diffusion equation becomes 

  𝐶∗

 𝑡∗
+ 𝑈∗

 𝐶∗

 𝑋∗
+ 𝑉∗

 𝐶∗

  ∗
+𝑊∗

 𝐶∗

  ∗
−

1

𝑃𝑒
𝐾  
∗
 2𝐶∗

 𝑋∗2
−

1

𝑃𝑒
𝐾  
∗
 2𝐶∗

  ∗2
−

1

𝑃𝑒
𝐾  
∗
 2𝐶∗

  ∗2

= 0 

(3.138) 

An analytical solution of Eq. (2.58) for an instantaneous point gas release at location 𝑋𝑟,  𝑟,  𝑟 

and time 𝑡𝑟 with wind speeds 𝑈 ≠ 0 and 𝑉 = 𝑊 = 0, and boundary conditions 𝐶(𝑋     𝑡) = 0 

for 𝑋    → ±∞ is given as [Arya, 1999] 
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𝐶(𝑋     𝑡) =

𝑄

(2𝜋)
3
2𝜎 𝜎 𝜎 

⋅  x {−
{𝑋 − [𝑋𝑟 + 𝑈(𝑡 − 𝑡𝑟)]}

2

2𝜎 
2 −

( −  𝑟)
2

2𝜎 
2 −

( −  𝑟)
2

2𝜎 
2 } 

(3.139) 

In the above 𝜎 = √2𝐾  (𝑡 − 𝑡𝑟), 𝜎 = √2𝐾  (𝑡 − 𝑡𝑟), and 𝜎 = √2𝐾  (𝑡 − 𝑡𝑟); 𝑄 is the 

released mass in kg. The non-dimensional analytical solution Eq. (3.139) for 𝐾  = 𝐾  =

𝐾  = 𝐾 can be written as 

 
𝐶∗(𝑟∗ 𝑡∗) =

𝐴∗

(𝜋𝑅∗2)
3
2

 x (−
𝑟∗2

𝑅∗2
) (3.140) 

where 𝐴∗ =
𝑄∗𝑄0

𝐶0(
𝐾0𝐿0
𝑉0

)

3
2

 x (
𝑉0𝐿0

𝐾0
), 𝑟∗2 = {𝑋∗ − [𝑋𝑟

∗ + 𝑈∗(𝑡∗ − 𝑡𝑟
∗)]}2 + ( ∗ −  𝑟

∗)2 + ( ∗ −  𝑟
∗)2, 

𝑅∗2 = 4𝐾∗(𝑡∗ − 𝑡𝑟
∗), and 𝑡𝑟

∗ = 0. For the simulations, we use 𝐴∗ = 10−9, 𝐿 
∗ = 𝐿 

∗ = 𝐿 
∗ = 1, 

𝑈∗ = 1, 𝑉∗ = 𝑊∗ = 0, 𝑋𝑟
∗ = 0.1,  𝑟

∗ =  𝑟
∗ = 0.5, and 𝐾∗ = 0.0025. The initial density used in 

the simulations follows Eq. (3.140) with 𝑡∗ = 0.1. Three different Peclet numbers are used and 

cover diffusion dominated (Case 2a) to advection dominated flow (Case 2c) as shown in Table 

3.2. Dirichlet boundary conditions with 𝐶∗ = 0 are applied to all boundaries. The simulations 

were run with grid resolutions between 50 × 50 × 50 ≤
𝐿𝑋
∗

Δ ∗
×

𝐿𝑌
∗

Δ ∗
×

𝐿𝑍
∗

Δ ∗
≤ 400 × 400 × 400 

and times steps are shown in Table 3.2. The simulations were run for up to 𝑡∗ = 0.6. Results are 

used to evaluate the 𝐿1 norm of the error defined by Eq. (3.136) and the order of accuracy 

defined by Eq. (3.137). Figure 3.6 shows the 𝐿1 norm of the error as a function of grid resolution. 

Table 3.2 shows that the NODDE-FVM with TVD achieves near second order of accuracy for all 

the cases considered.  
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Table 3.2 3D advection and diffusion cases and results 

Case Peclet Number Time Step 
Order 𝒑 

𝑳𝟏 form Eq. (3.136) 

2a 𝑃𝑒 = 0.5 Δ𝑡∗ = 0.00016 1.9850 

2b 𝑃𝑒 = 1 Δ𝑡∗ = 0.00025 1.8475 

2c 𝑃𝑒 = 2 Δ𝑡∗ = 0.000625 1.5993 
 

 

 

Figure 3.6 𝐿1 norm of the error between NODDE-FVM and analytical solutions of the advection-diffusion PDE 

as a function of grid resolution and Peclet number shown in Table 3.2. 

3.3.3 Verification of the Hybrid Estimator with HT-NODDE-FVM 

The third benchmark test provides verification of the HT-NODDE-FVM estimator equations 

(2.64) – (2.67) and examines the impact of grid resolution, sensor model, and estimation gain Λ 

in Eq. (2.71) on the 𝐿2 norm of the estimation error evaluated from Eq. (3.136). The case 

involves an instantaneous release by a stationary source in a large domain with constant 

atmospheric properties, which is depicted in Figure 3.7 and has an analytical solution given by 

Eq. (3.139). 
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𝑋  

 

Source

20 km

5 km

2 km

SAV

 

Figure 3.7 Benchmark case used for verification and error analysis of the HT-NODDE-FVM estimator. A 

stationary source releases instantaneously a gas in a domain with uniform atmospheric parameters and constant 

wind in the 𝑋-direction. The SAV performs real-time estimation of the plume concentration. 

The computational inputs are listed in Table 3.3. The SAV parameters and estimator inputs are 

listed in Table 3.4. The SAV starts patrolling from its initial location on a helical trajectory. 

When the SAV sensor detects a concentration above the threshold, the HT-NODDE-FVM 

estimator equations (2.64) – (2.67) provides the estimated concentration and control inputs to the 

guidance law equations (2.78) – (2.81) which reposition the SAV. Two different approaches are 

used to generate the numerical sensor data at the location of the SAV. In the first approach, the 

cell value of the concentration is calculated by the analytical solution Eq. (3.139) at the cell 

center and assigned to the SAV location. In the second approach, the concentration at the SAV 

location is calculated directly from the analytical solution Eq. (3.139). A coarse and fine grid 

resolution is used with 𝑁 = 300, 𝑁 = 75, 𝑁 = 30 cells and 𝑁 = 600, 𝑁 = 150, 𝑁 = 60 

cells respectively. The total number of subdomains is 27 with 𝑁𝐷𝐷 = 𝑁𝐷𝐷 = 𝑁𝐷𝐷 = 3 for 

both grid resolutions. A series of simulations were carried out by varying the estimation gain Λ. 

The time step used for both grid resolutions is 1 s which satisfies the numerical stability 

condition Eq. (3.133). The simulation time is 1300 s. 
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Table 3.3 Computational inputs for benchmark tests of the estimator 

Parameter Value 

Domain length (𝐿  𝐿  𝐿 ), km 20 5 2 

Wind speed (𝑈 𝑉 𝑊), m/s 10 0 0 

Eddy diffusivity (𝐾   𝐾   𝐾  ), m2/s 100 100 40 

Mass of release at initial time (𝑄), kg 100 

Location of the initial release (𝑋0  0  0), km 4.1 2.5 1 
 

 

Table 3.4 SAV parameters and estimator inputs 

Parameter Value 

SAV initial location (𝑋𝑠0  𝑠0  𝑠0), km 10.4 2.5 0.55 

SAV patrolling linear velocity (𝑣𝑠), m/s 70 [Writer, 2019] 

Helix center of SAV patrolling (𝑋𝑠𝑐𝑐   𝑠𝑐𝑐   𝑠𝑐𝑐), km 8 2.5 0.55 

Helix radius of SAV patrolling (𝑟), km 2.4 

Pitch of the helix,   d 120𝜋 

Sensor threshold (𝐶min ), kg/m
3 (or   b) 1 × 10−9 (or 1   m) 

Guidance gains (𝑘  𝑘  𝑘 ) 50 50 4 
 

Figure 3.8 plots the 𝐿2 norm of the estimation error evaluated from Eq. (3.136) at 𝑡 = 1300 s as 

a function of the estimation gain Λ. It is shown that for both the coarse and fine grid resolutions 

there is an optimum gain that minimizes the estimation error. Figure 3.8 shows that the 

numerical sensor data approach does not impact the estimation error. Figure 3.8 also shows that 

the coarse grid has better estimation error than the fine grid due to the larger sensor volume of 

the former. 



85 

 

 

Figure 3.8 Verification of the HT-NODDE-FVM estimator. 𝐿2 norm of the estimation error from Eq. (3.136) 

as a function of estimation gain for a coarse and fine grid. Sensor data are taken form the analytical solution Eq. 

(3.139). 

3.3.4 Error Analysis of the Hybrid Estimator with HT-NODDE-FVM 

The fourth benchmark test provides further error analysis of the HT-NODDE-FVM estimator 

equations (2.64) – (2.67) and examines the impact of grid resolution, estimation gain and 

numerical data. All the input simulation conditions for the gas release and ambient conditions are 

the same as the third benchmark case as shown in Table 3.3 and Table 3.4. The grid resolutions 

and optimal estimation gains used in the simulations are listed in Table 3.5. The estimator error 

norms 𝐿1, 𝐿2, and 𝐿∞ are evaluated using Eq. (3.136) and plotted in Figure 3.9 and Figure 3.10. 

In Figure 3.9 the errors are evaluated between estimated concentration and numerical sensor data 

obtained from the NODDE-FVM of the process model Eq. (2.58). In Figure 3.10 the errors are 

evaluated between estimated concentration and the analytical solution Eq. (3.139). 
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Table 3.5 Grid resolutions and corresponding optimal gains used for error analysis for the estimator model in 

benchmark cases 

Number of cells in each 

direction (𝑵𝑿 𝑵𝒀 𝑵𝒁) 

Total number 

of cells 

Cell size 

(𝚫𝑿 = 𝚫𝒀 = 𝚫𝒁 𝐦) 

Optimal estimation 

gain (𝚲) 

600 150 60 5.4 × 106 33.33 4 × 10−5 

300 75 30 6.75 × 105 66.67 5 × 10−6 

240 60 24 3.456 × 105 83.33 3 × 10−6 

180 45 18 1.458 × 105 111.11 1 × 10−6 

120 30 12 4.32 × 104 166.67 4 × 10−7 

60 15 6 5.4 × 103 333.33 4 × 10−9 
 

Figure 3.9 shows that as grid resolution coarsens the process state knowledge increases due to 

the increase in sensor volume and as a result the estimator error decreases. In the limit of a 

single-cell domain the error would be identically zero because the sensor would have knowledge 

of the entire state. Figure 3.10 shows that the errors decrease with increasing grid size, reach a 

minimum and then increase in contrast with the monotonic behavior of Figure 3.9. This behavior 

is due to the compound effects of increased state knowledge and reduced numerical fidelity as 

cell size increases. This benchmark test, therefore, decouples the impact of these two competing 

effects. 

   

(a) (b) (c) 

Figure 3.9 Error analysis of the HT-NODDE-FVM estimator model. (a) 𝐿1, (b) 𝐿2, (c) 𝐿∞ norm of error 

evaluated between estimated concentration and numerical sensor data (process-model concentration obtained 

with HT-NODDE-FVM). 
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(a) (b) (c) 

Figure 3.10 Error analysis of the HT-NODDE-FVM estimator model. (a) 𝐿1, (b) 𝐿2, (c) 𝐿∞ norm of the error 

evaluated between estimated concentration and true sensor data (analytical concentration). 

3.4 Parallelization Efficiency Analysis 

In this section the parallelization efficiency analysis of the OpenMP implementation of NODDE-

FVM method is performed. The NODDE-FVM simulations were performed for an instantaneous 

gas release described in Eq. (2.58). The input conditions are domain lengths 𝐿 = 𝐿 = 𝐿 =

30 m, wind speeds 𝑈 = 1 m/s and 𝑉 = 𝑊 = 0, eddy diffusivities 𝐾  = 𝐾  = 𝐾  =

0.5 m2/s, and an instantaneous gaseous release of 1 kg at time 𝑡 = 0 s and at location 𝑋0 = 6 m, 

 0 =  0 = 15 m. The domain was divided with 𝑁 = 𝑁 = 𝑁 = 240 for a total of 1.3824 ×

107 cells. The number of subdomains in 𝑋- and  -direction was fixed as 𝑁𝐷𝐷 = 𝑁𝐷𝐷 = 2, and 

the number of subdomains in  -direction was varied from 1 to 10, 𝑁𝐷𝐷 = 1 2 ⋅⋅⋅ 10. The time 

step was set Δ𝑡 = 0.001 s. The simulations were run on a dual socket node with two Intel Xeon 

Silver 4114 CPUs with total number of 20 physical cores (10 cores per CPU). The hyper-

threading, a technology that allows two streams of operations to be executed on the same core, 

was enabled so that there are 40 threads (logical cores) in total. The NODDE-FVM was 

compiled using the Intel Fortran Compiler 11.1 on Red Hat Enterprise Linux Server release 7.6 

(Maipo). The average elapsed wall-clock time of completing one single time level were recorded 

for all the tests with different number of threads. We use two metrics to evaluate parallel 

performance as number of threads increases: first is the speedup, defined as the ratio of the 

average elapsed wall-clock time of completing one single time level for one thread test to that for 

multiple threads test; second is the parallel efficiency, defined as the ratio of the actual speedup 

to the theoretical speedup. Figure 3.11 shows the speedup and parallel efficiency as a function of 
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the number of OpenMP threads. The theoretical speedup is a linear function of the number of 

threads as shown in Figure 3.11(a). 

  

(a) (b) 

Figure 3.11 Speedup (a) and parallel efficiency (b) of the NODDE-FVM-TVD-RK simulation of the 

instantaneous gas release in the atmosphere as a function of the number of OpenMP threads. 

As the number of threads increases to 20, the speedup keeps increasing but not as greatly as the 

theoretical speedup and the speedup keeps getting away from the line of the theoretical speedup. 

This could be due to the non-uniform memory access (NUMA) architecture in which the 

operation system must coordinate the accesses to the memory from different CPUs. Such 

coordination workload keeps increasing as the number of threads increases, which causes the 

slowdown of the speedup and the decreasing of the parallel efficiency. When the number of 

threads is greater than 20, the hyper-threading is activated resulting in some of the cores 

executing two streams of operations which leads to the drop of the speedup and parallel 

efficiency as shown in Figure 3.11. As the number of threads keeps increasing to the fully loaded 

case of 40 threads, the increasing of the speedup shows up again and the maximum speedup 

happens when the node is fully loaded because all the resources are used for computing and the 

full load on all cores eliminates the negative effects of the NUMA architecture. 
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Chapter 4 Applications of the HT-NODDE-FVM to 

Large Scale Simulations 

This chapter presents the applications of the hybrid estimator and HT-NODDE-FVM on real-

time estimations of the advection-diffusion fields in a city-scale domain with realistic 

atmospheric conditions and SAV parameters. Instantaneous and long-pulse gas release cases are 

considered to demonstrate the capability of the hybrid estimator and HT-NODDE-FVM for real-

time estimations. In these simulations, we also study the effects of different guidance laws and 

different SAVs on the estimation results. We also conduct the real-time estimation analysis at the 

end of this chapter. Results have been presented in Gatsonis et al. [2020] and Tian et al. [2020].  

The hybrid estimator and the developed HT-NODDE-FVM method are used for simulations in a 

domain that is city-scale as shown in Figure 3.7. The computational domain has 𝐿 = 20 km, 

𝐿 = 5 km, 𝐿 = 2 km and is discretized with 𝑁 = 300, 𝑁 = 75, 𝑁 = 30 finite volumes. 

The number of subdomains is 27 with 𝑁𝐷𝐷 = 3, 𝑁𝐷𝐷 = 3, and 𝑁𝐷𝐷 = 3 in 𝑋-,  -, and  -

direction respectively. The wind speed model in 𝑋-direction follows the power-law profile 

[Seinfeld and Pandis, 2016] 

 

𝑈 = {
𝑈𝑟 (

 

 𝑟
)
𝑝

  <  𝑟

𝑈𝑟   ≥  𝑟

 (4.1) 

where  𝑟 is the reference height,  𝑟 = 500 m, and 𝑈𝑟 is the corresponding reference wind speed, 

𝑈𝑟 = 10 m/s or 5 m/s for different simulations; the exponent 𝑝 depends on the surface 

roughness and stability conditions, and for well-developed urban areas, 𝑝 = 0.4. The eddy 

diffusivities with the assumption of unstable atmospheric condition are 𝐾  = 𝐾  = 100 m2/s, 

𝐾  = 40 m2/s. Numerical sensor data are generated by solving the process model Eq. (2.58) 



90 

 

with the NODDE-FVM using a grid 𝑁 = 300, 𝑁 = 75, and 𝑁 = 30. The aerial intruder is 

releasing a contaminant gas and is assumed to represent a helicopter or a light aircraft. The SAV 

parameters are representative of the Aerosonde UAV (slow) and Sky Warrior UAV (fast). The 

SAV is positioned at 𝑡 = 0 at 𝑋𝑠0 = 10.4 km,  𝑠0 = 2.5 km,  𝑠0 = 0.55 km, and is patrolling on 

a helical trajectory along the  -direction with center 𝑋𝑠𝑐𝑐 = 8 km,  𝑠𝑐𝑐 = 2.5 km,  𝑠𝑐𝑐 =

0.55 km, radius 𝑟 = 2.4 km, and pitch 120𝜋. The SAV’s patrolling linear velocity 

(counterclockwise) is 𝑣𝑠 = 30 m/s for Aerosonde [Maurer, 2002] and 70 m/s for Sky Warrior 

[Writer, 2019]. The sensor threshold is set to 1 × 10−9 kg/m3 (1   b). The estimation gain is 

Λ = 5 × 10−6 and the guidance gains are 𝑘 = 𝑘 = 21, 𝑘𝑧 = 4 for Aerosonde and 𝑘 = 𝑘 =

50, 𝑘𝑧 = 4 for Sky Warrior. The time step used in all the simulations is 1 s. 

4.1 Instantaneous Gas Release 

4.1.1 Modified Lyapunov Guidance Law Without SAV Dynamical Model, 

Slow and Fast SAVs 

We consider first an instantaneous gas release from an intruder in a city-scale domain and 

examine the effects of fast and slow SAVs when using modified Lyapunov guidance law without 

SAV dynamical model in a configuration depicted in Figure 3.7. The intruder releases 100 kg of 

contaminants at 𝑡 = 0 s and at 𝑋𝑐 = 4.1 km,  𝑐 = 2.5 km,  𝑐 = 1 km, then it keeps hovering. 

The reference wind speed is 𝑈𝑟 = 10 m/s. The simulation time is 480 s. 

The simulation results at the final simulation time are shown in Figure 4.1 and Figure 4.2. The 

red and blue dots denote the intruder and SAV, respectively. The blue lines denote the SAV 

trajectory. The intruder (red dot) releases 100 kg of contaminants at 𝑡 = 0 s and keeps hovering 

at its initial location. The SAV keeps patrolling on the helical trajectory until it detects a 

concentration value which is greater than or equal to the sensor threshold, then the hybrid 

estimator starts working to estimate the concentration profile and guide the SAV. The random 

blue line shows the SAV trajectory after it is guided by the hybrid estimator. The SAV trajectory 

(blue line) is also shown in the process model profile to aid in the comparison between the 

process model concentration profile and estimated concentration profile and show where it is in 
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the “true” plume. The results show that the estimation result of the fast SAV is better. Because 

the fast SAV can patrol more region in the plume and get more information about the 

concentration, which is critical to the estimation result. 

 

Figure 4.1 The simulation results of the instantaneous gas release for slow SAV (Aerosonde) guided by the 

modified Lyapunov guidance law without SAV dynamical model at time 480 s. 

 

 

Figure 4.2 The simulation results of the instantaneous gas release for fast SAV (Sky Warrior) guided by the 

modified Lyapunov guidance law without SAV dynamical model at time 480 s. 
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4.1.2 Lyapunov Guidance Law with SAV Dynamical Model, Slow SAV 

Next, we consider using the Lyapunov guidance law with the SAV dynamical model included. 

The simulation conditions are the same as in Section 4.1.1 except for the additional slow SAV 

(Aerosonde) parameters: the mass of the SAV is 13.5 kg, the wing planform area is 0.55 m2, the 

wing span is 2.9 m, the ground speed range is 27-33 m/s, the maximum thrust is 50  , the 

maximum bank angle is 0.5   d, the lift coefficient in stall condition is 1.5, the Oswald 

efficiency factor is 0.9, the parasitic drag coefficient is 0.0437, the initial patrolling flight path 

angle and course angle of the SAV are 𝛾0 = 0.0524   d and 𝜒0 = 1.5708   d. The simulation 

result is shown in Figure 4.3. 

 

Figure 4.3 The simulation results of the instantaneous gas release for slow SAV (Aerosonde) guided by the 

Lyapunov guidance law with SAV dynamical model at time 480 s. 

By comparing Figure 4.3 with Figure 4.1, we can see that the result of the Lyapunov guidance 

law with SAV dynamical model is better than that of the modified Lyapunov guidance law 

without SAV dynamical model, which means with the Lyapunov guidance law and SAV 

dynamical model included even the slow SAV (Aerosonde) can patrol more region in the plume. 

It can also be seen from Figure 4.3 and Figure 4.2 that the result is very close to the result of fast 

SAV (Sky Warrior) guided by the modified Lyapunov guidance law without SAV dynamical 

model. 
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4.2 Long-Pulse Gas Release 

4.2.1 Modified Lyapunov Guidance Law Without SAV Dynamical Model, 

Slow and Fast SAVs 

Next, we consider a long-pulse gas release and examine the effects of slow and fast SAVs when 

using modified Lyapunov guidance law without SAV dynamical model. This problem is 

depicted in Figure 4.4. The reference wind speed is 𝑈𝑟 = 5 m/s. The intruder starts releasing 

contaminants at the initial location 𝑋𝑐 = 0.1 km,  𝑐 = 2.5 km,  𝑐 = 1 km and at time 𝑡 = 80 s 

and lasts for 200 s with a release rate of 0.5 kg/s. The intruder has velocity components of 𝑣 =

50 m/s, 𝑣 = 0 m/s, 𝑣 = 0 m/s. The simulation time is 1300 s. 

20 km

5 km

2 km

Intruder

SAV

𝑋  

 

 

Figure 4.4 An intruder is releasing contaminants over a city and an SAV is estimating the concentration of the 

contaminants and tracking the intruder. 

The simulation results at the final time are shown in Figure 4.5 and Figure 4.6. In this simulation 

the intruder (red dot) starts the release at 𝑡 = 80 s and then keeps moving until it reaches the 

boundary of the domain. The gas release forms a cylindrical plume. The SAV keeps the initial 

helical patrolling trajectory and starts activating the hybrid estimator until it detects a 

concentration value greater than or equal to the sensor threshold. Then the hybrid estimator starts 

estimating the concentrations of the plume and the SAV is guided by the modified Lyapunov 
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guidance law. The comparison between Figure 4.5 and Figure 4.6 shows clearly that the fast 

SAV has the better estimation results. This is due to the fact that the faster SAV catches up the 

region with large concentration values and performs a better estimation. 

 

Figure 4.5 The simulation results of the long-pulse gas release for slow SAV (Aerosonde) guided by the 

modified Lyapunov guidance law without SAV dynamical model at time 1300 s. 

 

 

Figure 4.6 The simulation results of the long-pulse gas release for fast SAV (Sky Warrior) guided by the 

modified Lyapunov guidance law without SAV dynamical model at time 1300 s. 
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4.2.2 Lyapunov Guidance Law with SAV Dynamical Model, Slow SAV 

Finally, we consider using the Lyapunov guidance law with the SAV dynamical model included 

for the long-pulse gas release case. The simulation conditions are the same as in Section 4.2.1 

and the SAV parameters are the same as in Section 4.1.2. The simulation results at the final time 

𝑡 = 600 s are shown in Figure 4.7. In this simulation, the SAV is guided by the Lyapunov 

guidance law with SAV dynamical model. We can see from Figure 4.7 that the SAV can track 

the plume well and the hybrid estimator is trying to reproduce the shape of the cylindrical plume. 

 

Figure 4.7 The simulation results of the long-pulse gas release for slow SAV (Aerosonde) guided by the 

Lyapunov guidance law with SAV dynamical model at time 600 s. 

4.3 Real-Time Estimation Analysis 

To achieve real-time estimation by the SAV using the HT-NODDE-FVM hybrid estimator, it is 

required that the wall clock time of completing an iteration over the entire domain (all 

subdomains) ∆𝑡𝑒𝑠𝑡 is smaller than the maximum numerical time step ∆𝑡𝑚𝑎𝑥 calculated by Eq. 

(3.133). A series of simulations are conducted using the scenario of instantaneous gas release 

with the wind profile and the computational conditions and guidance law as in Section 4.1.1. 

Real-time estimation analysis is conducted by varying the grid resolution as well as the number 

of subdomains (or threads) for both the process model and the hybrid estimator model. The 

results in Figure 4.8 show the performance of the HT-NODDE-FVM hybrid estimator by 
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plotting the ratio of ∆𝑡𝑒𝑠𝑡/∆𝑡 𝑚𝑎𝑥 as a function of the number of subdomains (or threads) and 

number of finite volumes. To achieve real-time estimation the ratio of ∆𝑡𝑒𝑠𝑡/∆𝑡 𝑚𝑎𝑥 must be less 

than 1. Figure 4.8 shows that even with 6 threads the HT-NODDE-FVM can accomplish real-

time implementation for all discretization cases considered. The real-time hybrid estimator has 

been implemented without sensor delays and SAV dynamics. Inclusion of these processes will 

provide additional time margins (longer time scales) that can improve the real-time estimation 

performance and allow use of even more refined grids for improved accuracy. 

 

Figure 4.8 Real-time estimation analysis as functions of number of subdomains (threads) and number of finite 

volumes (resolution). 
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Chapter 5 Summary, Conclusions, and 

Recommendations 

5.1 Summary and Conclusions 

This work is devoted in the development of a hybrid estimator and its numerical solutions via a 

new heterogeneous nonoverlapping domain decomposition explicit finite volume method with 

total variation diminishing (TVD) and a Runge-Kutta integrator (HT-NODDE-FVM).   The HT-

NODDE-FVM for a is developed to perform real-time estimation of a contaminant plume 

released by a stationary or moving gaseous source in three-dimensional domains under 

prescribed atmospheric conditions and guides a sensing aerial vehicle (SAV) to positions in the 

plume that optimize the performance of the estimator. 

The process model was derived starting from the Navier-Stokes equations of multi-component 

system together with the continuity equation of single species. By using the Boussinesq 

approximation for the lower atmosphere layer, using the Reynolds averaged equations to account 

for turbulent effects, assuming the released species is a single trace species and is in the diffusion 

regime, assuming the molecular diffusion fluxes and their gradients are negligible compared with 

the turbulent ones, and assuming the principal axes of eddy diffusivity tensor coincide with the 

coordinate axes, the process model arrived at the well-known advection-diffusion equation of a 

single species in the atmosphere 
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The estimator model used in this work is hybrid, it is based on the advection-diffusion equation 

and involves a Luenberger observer in the vicinity of the SAV and a naive observer in the rest of 

the region, resulting in a hybrid advection-diffusion type of particle differential equation with 

transmission conditions between the two regions.  

The spatial distribution of the sensor is modeled as a 3D spatial Dirac delta function based on 

Lagrangian sensing technique. The sensor is assumed to be ideal and provides instantaneous 

readings (no delays) without errors.  

Two different guidance methods for the SAV were implemented. One is the modified Lyapunov 

guidance law without SAV dynamical model, the other is the Lyapunov guidance law with six 

degree of freedom fixed wing aircraft dynamical model. It was assumed that the SAV has the 

knowledge of concentration and the concentration gradient at its location and it moves following 

the guidance law to minimize the estimation error. 

In this work we developed a new HT-NODDE-FVM for the numerical solution of the hybrid 

estimator and was implemented with total variation diminishing (TVD) filter and a Runge-Kutta 

integrator, in parallel. The entire computational domain is discretized with a structured grid and 

is divided into multiple subdomains with each subdomain having the same number of finite 

volume cells. The transmission conditions are imposed explicitly when performing the FVM-

TVD spatial discretization without the need for iterations as common in implicit domain 

decomposition methods. The HT-NODDE-FVM is parallelized by using the OpenMP paradigm 

such that each subdomain is handled by a distinct CPU thread. All estimator model equations in 

all the subdomains are solved in parallel. A barrier-type synchronization point is applied to 

ensure all the FVM-TVD related calculations are finished in each subdomain within current time 

level before moving to the next time level. 

The verification and error analysis of the NODDE-FVM were conducted by solving non-

dimensional 3D advection and advection-diffusion equations. The numerical solutions were 

compared with the corresponding analytical solutions. When applied to advection or advection-

diffusion equations, the method becomes homogenous non-overlapping domain decomposition 

method. For the non-dimensional 3D advection equation, four initial density configurations were 

used for the simulations including a continuous Gaussian density distribution, two piecewise 
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Gaussian distributions, and a cubical density distribution. The order of accuracy was calculated 

by using the 𝐿1 norm of the error between numerical and analytical solutions for each initial 

density distribution case. The results showed that for smoothly varying functions the NODDE-

FVM becomes between order 1 and 2, which is consistent with the results of single-domain 

FVM-TVD method. For the non-dimensional 3D advection-diffusion equation, three different 

Peclet numbers were used and covered diffusion dominated to advection dominated flows. The 

initial density distribution used in the simulations followed the analytical solution at certain time 

instance. The 𝐿1 norm of the error between numerical and analytical solutions for each Peclet 

number case was used to calculate the order of accuracy. The results showed that the NODDE-

FVM with TVD achieves near second order of accuracy for all the cases considered. 

The method was also applied on the hybrid estimator to study the effects of estimation gain, grid 

resolution, and sensor model on estimation results by studying the 𝐿2 norm of the estimation 

error. This case involved an instantaneous release by a stationary source in a large domain with 

constant atmospheric properties. Two different grid resolutions were used for the simulations. 

Results showed that for both the coarse and fine grid resolutions there is an optimum gain that 

minimizes the estimation error. Results also showed that the coarse grid has better estimation 

error than the fine grid due to the larger sensor volume of the former. Another simulation was 

conducted to study further the impact of grid resolution, estimation gain, and numerical data on 

the estimation error. Different grid resolutions and different optimal estimation gains were used 

for this simulation. The estimator error norms 𝐿1, 𝐿2, and 𝐿∞ were evaluated and plotted. The 

estimation error was evaluated in two ways – one was evaluated between estimated 

concentration and numerical sensor data obtained from the NODDE-FVM of the process model, 

the other was evaluated between estimated concentration and the analytical solution. Results of 

the first way showed that as grid resolution coarsens the process state knowledge increases due 

to the increase in sensor volume and as a result the estimator error decreases. In the limit of a 

single-cell domain the error would be identically zero because the sensor would have knowledge 

of the entire state. Results of the second way showed that the errors decrease with increasing grid 

size, reach a minimum and then increase. This behavior is due to the compound effects of 

increased state knowledge and reduced numerical fidelity as cell size increases. 
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Parallelization efficiency analysis for the OpenMP implementation of the NODDE-FVM-TVD-

RK method was conducted to study the speedup and efficiency of the parallelization by 

recording the average elapsed wall-clock time of completing one single time iteration for 

different tests with different number of threads. Results show the expected behaviors of the non-

uniform memory access (NUMA) architecture and the full load of all the logical computer 

threads. 

The HT-NODDE-FVM with TVD-RK method was implemented on realistic estimation 

problems for instantaneous and long-pulse gaseous release cases in a km-scale domain with 

realistic atmospheric conditions and SAV parameters. These simulations were used to study the 

impacts of different guidance methods and different SAVs on the estimation results. Results 

show that fast SAV can provide better estimation results than slow SAV because the fast SAV 

can patrol more plume region. Both of the two guidance methods can provide good estimation 

and tracking results, although the Lyapunov guidance law with SAV dynamical model shows 

better estimation results in the instantaneous gaseous release case. 

The real-time estimation analysis was conducted by comparing the wall-clock time of 

completing a single time iteration over all the subdomains (∆𝑡𝑒𝑠𝑡) with the maximum allowable 

time step derived from the numerical stability analysis (∆𝑡𝑚𝑎𝑥). The relation between the ratio of 

∆𝑡𝑒𝑠𝑡/∆𝑡 𝑚𝑎𝑥 and the number of subdomains (or threads) for different grid resolutions for both 

the process model and the hybrid estimator model was used to evaluate the capability of the real-

time estimation. All the simulations using km-scale domain under realistic ambient atmospheric 

conditions demonstrate that the hybrid estimator with the HT-NODDE-FVM method achieves 

real-time computation of the advection-diffusion field. 

5.2 Recommendations for Future Work 

The focus of this work was on the development of the HT-NODDE-FVM with TVD-RK method 

to solve the hybrid estimator to achieve real-time estimation of the advection-diffusion fields. In 

the future, the estimation results could be improved, and the experimental work may be needed 

to validate the numerical results. 
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• In this work, we used one single sensor to measure the concentration. Using multiple 

sensors on board multiple SAVs with a fixed flying formation to measure the 

concentrations and evaluate the concentration gradients could improve the estimation 

results and relax the assumption of gradient knowledge imposed in the current derivation. 

• Another way to improve the concentration gradient evaluations could be to implement a 

grid adaptation algorithm such that the subdomain where the sensor resides has higher 

grid resolution than the other subdomains. Such grid adaptation algorithms have been 

developed and implemented in a 2D hybrid estimator simulation [Hu et al., 2021] and in 

3D homogenous estimators [Egorova et al, 2016]. 

• In order to improve the accuracy of the Luenberger-naïve estimator, a more 

computationally expensive estimator based on the Riccati equations can be used in the 

subdomain where the sensor resides. 

• To validate the hybrid estimator and the HT-NODDE-FVM, set up of experiments is 

needed. One example can employ a sensing ground vehicle and execute the estimator on 

a computer that communicates with it. The set up requires a harmless gaseous source 

which can be stationary or mobile. Such setups have been under construction [Barney 

and Rivard, 2016; McGrath et al., 2018]. These ground tests can be expanded using small 

UAVs.  
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