

NVIDIA Data Verification Testing

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Rhyland Klein

Matthew Pedro

Thomas Rybka

Date: 2 March 2006

Sponsor: NVIDIA, corp.
Liaison: Allen Martin

Professor David Finkel, Advisor

 i

Abstract

The aim of the NVIDIA Data Verification project was to develop a testing utility

that would stress the drivers of NVIDIA’s hard drive controllers. The tool created,

nVerify, does so using highly configurable methods of interaction with the drivers. This

creates a breadth as well as a depth of stress on the drivers. The tool is designed to be

extensible and scriptable for automation making it easily introduced into NVIDIA’s

testing cycle.

 ii

Executive Summary

As computing technology continues to grow, the amount of data in the world is

expanding at an even quicker pace. With this surge in data, storage solutions play a very

large role in the progression of computing technology. Present storage solutions, such as

hard disk drives, adapt to meet the needs of the computing world. These adaptations lead

to more complexity in the disks themselves and the controllers that operate them.

NVIDIA is a growing developer of such hard drive controllers. The drivers that

interface the controller in their chipsets and the operating system also play a very

important role. Not only do they provide a layer of abstraction from the machine-level

commands that are interpreted by the controller, but in some cases, the driver software

can also be responsible for some of the features of the NVIDIA products.

This project was to design and implement a tool for testing NVIDIA’s storage

software. Our tool, nVerify, had to stress the drivers in many ways to expose errors in the

software before being released. nVerify is a highly configurable tool capable of creating

conditions that will attempt to stress the operation of hard drive device drivers. It has

been designed to be extensible and modular so that it can be ported to other operating

systems.

 nVerify is capable of providing multithreaded operation and creating many

outstanding requests for disk access. By configuring the number of threads and the

number and type of I/O requests, a user can specify the various types of strain that it

wants to place on the driver. The tool will output a detailed analysis of the failure

including a data dump and the various parameters of the I/O request. This information is

used to diagnose and fix problems in the driver software.

 iii

By performing data verification testing, drivers for hard drive controllers can be

verified to perform the proper functionality in many different situations. Using nVerify to

stress the drivers, developers and consumers can have greater confidence in the drivers

running their hardware. Such confidence is necessary to be established with each change

in the hardware itself or the software interface, as developers attempt to increase

reliability and performance.

 iv

TABLE OF CONTENTS

ABSTRACT ... I
EXECUTIVE SUMMARY ... II
1 INTRODUCTION... 1
2 BACKGROUND ... 3

2.1 PHYSICAL DISKS ... 3
2.1.1 Drive Geometry .. 3

2.2 DISK ACCESS .. 5
2.2.1 Raw disk access through Operating System API .. 6

2.3 THREADS .. 7
2.3.1 Threading in Windows 32-bit ... 8
2.3.2 Mutex .. 9

2.4 XML... 11
2.5 CURRENT TOOLS AND THEIR DRAWBACKS... 12

2.5.1 Hazard .. 13
2.5.2 WinThrax .. 13
2.5.3 IOmeter... 14

3 FEATURES ... 15
3.1 EXHAUSTIVE FEATURES.. 15
3.2 MQP SCOPE.. 16

3.2.1 Alpha... 16
3.2.2 Beta... 16
3.2.3 Final Release .. 17

4 PROCESS.. 18
4.1 DESIGN ... 18

4.1.1 Major Data Structures.. 18
4.1.2 Description of Modules... 21

4.2 FLOW CHART... 26
4.3 IMPLEMENTATION... 29

4.3.1 Incremental Development... 29
4.3.2 Managing the Workload ... 30
4.3.3 Testing .. 31

5 RESULTS .. 35
5.1 TESTS.. 35
5.2 SAMPLE OUTPUT... 36

5.2.1 Screen Output ... 37
5.2.2 Log Output.. 37
5.2.3 Debugger Output .. 39

5.3 PERFORMANCE.. 39
5.3.1 Memory Usage.. 39
5.3.2 Speed / Number of I/O’s Performed ... 42

5.4 BUG DETECTION ... 42
5.4.1 Generated Bugs .. 42
5.4.2 Unexpected Bugs .. 43

6 CONCLUSIONS AND FUTURE WORK .. 46
6.1 GOALS SET AND ACCOMPLISHED.. 46
6.2 POSSIBLE IMPROVEMENTS/ FOLLOW-UP WORK .. 47

APPENDIX A: FEATURE DOCUMENT.. 51

 v

INTRODUCTION... 51
EXHAUSTIVE FEATURE LIST ... 51
SCOPE OF WPI PROJECT ... 52

Alpha... 53
Beta ... 53

APPENDIX B: API... 54
IOCONTROL (USER APPLICATION) .. 54
DEVICE I/O... 54

APPENDIX C : NVERIFY USER'S GUIDE ... 57
SETUP... 57

The Configuration File ... 57
The Pattern File .. 60

EXECUTION .. 61
Running a Test .. 61
Incorrect Parameters .. 62
Log File... 62

APPENDIX D – NVERIFY DEVELOPER’S GUIDE .. 65
BRUTE THREAD .. 65
CATCHER.. 67
CONFIG PARSER ... 68
DEVICEIO... 70
DPHANDLER .. 72
ERROR GENERATOR ... 73
INTEGRITY TESTER... 75
IOCONTROL ... 76
IT MODULE .. 78
NALLOGATOR... 79
PATTERN .. 80
SCRIBE ... 81
THREADMANAGER... 83
THREADWRAP.. 84
TRIAGENURSE .. 85

TABLE OF FIGURES

Figure 2.1 Moving-head disk mechanism [1, pg. 37] ... 4
Figure 5.1: High Thread Count Stress Test .. 36
Figure 5.2: Sample Output.. 37
Figure 5.3: Sample Log File ... 38
Figure 5.4: Memory Usage and Disk Queue During Execution....................................... 40
Figure 5.5: Release Memory Usage.. 41
Figure 5.6: busTRACE Showing Driver Bug... 44
Figure 6.1: A Sample Request .. 58
Figure 6.2: An Example Job ... 59
Figure 6.3: An Example Configuration File ... 60
Figure 6.4: An Example Pattern File .. 61
Figure 6.5: Log Entry on Failure .. 63
Figure 6.6 : Log of Succesful Run.. 64

 1

1 Introduction

As computing technology continues to grow, the amount of data in the world

expands with an even quicker pace. With this surge in data, storage solutions play a very

large role in the progression of computing technology. Present storage solutions, such as

hard disk drives, adapt to meet the needs of the computing world. These adaptations lead

to more complexity in the disks themselves and the controllers which operate them, and a

greater chance for something to go wrong.

A device driver forms the layer in which the operating system interacts with such

hardware. It is the middle-man, so to speak. Developing device drivers requires an

exhaustive knowledge of a given platform's hardware and software. A fault in a driver,

operating at such a low level in a system, most often leads to system-wide failure. It is

imperative to remove these errors prior to the driver software ever being used in a

production environment. In the development phase of the drivers, testing is an integral

step to increase the likelihood that the latest versions of their software have no bugs at all.

By performing data verification testing, drivers for hard drive controllers can be

verified to perform the proper functionality in many different situations. By thoroughly

exploring various command paths, and input/output operations, driver errors can be

exposed and rectified. Confidence must be established with each change in the hardware

itself or the software interface, as developers attempt to increase reliability and

performance.

Our project was created to develop a new tool that NVIDIA’s software storage team

could use to stress test their nForce drivers to check for errors. It will perform large

 2

amounts of I/O operations on a hard disk and will be highly configurable to allow for the

developers to customize runs to test certain parts of the driver.

 3

2 Background

This section covers the material that we had to research to understand different

aspects of our project. The topics include physical disk knowledge so we understood how

the hard drive worked and was structured. We also had to learn some of the Win32 API

calls that we would use in our project to do low level disk access and synchronization.

2.1 Physical Disks

We had to learn how a physical disk is organized so that when we did raw disk I/O

(Input/Output) we would understand what the values we had to use meant and how they

related to the physical disk itself.

2.1.1 Drive Geometry

Disk drives consist of a relatively simple mechanism. A read-write head moves

across the surface of platters which are covered in a magnetic material. Generally there

exist two heads per platter, one on each side. A disk arm moves all of these heads

simultaneously over the platters of the disk. The geometry of a platter is what defines

how the data is stored in a magnetic disk such as a hard disk drive. Conceptually, the

difference between a hard disk drive and a floppy disk is the actual consistency of the

platter used. [1, pg. 491]

The platters are divided into cylinders, which is the area of each platter which can

be accessed without moving the heads. A cylinder is a cross section of a disk, consisting

of a circular strip from each side of each platter. If you position the heads at a single

radius from the center of the disk, they can access one cylinder by rotating the platters.

 4

The circular strip on a single platter is the area which one head can access, and is called a

track. Tracks are divided into a number of slices called sectors, which are the smallest

parts of the disk which can be read or written at one time. [2] See Figure 2.1 for a visual

representation.

Figure 2.1 Moving-head disk mechanism [1, pg. 37]

Therefore, the geometry of the disk is specified as:

• The number of cylinders that the disk contains;
• The number of tracks per cylinder (same as the number of heads, or twice the

number of platters);
• The number of sectors per track; and,
• The size of each sector (in bytes), usually 512 bytes. [2]

For an example, one of the test drives that we used reported the following information:

• Cylinders: 19458
• TracksPerCylinder: 255
• SectorsPerTrack: 63
• BytesPerSector: 512

Multiplying these out, 512 bytes/sector * 63 sectors/track * 255 tracks/cylinder * 19458

cylinders equals ~149.01 Gigabytes – the exact capacity of the disk. Please note that the

 5

number of tracks per cylinder would imply approximately 128 platters in the disk drive.

This is a logical geometry which most motherboards’ BIOS can understand. There are

usually only 3-4 platters in a disk drive, but the disk’s controller does a translation to

overcome limitations such as the numbers of sectors per track so that the BIOS can

understand.

2.2 Disk Access

Disk drives can be abstracted as large one-dimensional arrays of logical blocks, the

smallest unit of transfer. The size of such a block is usually the size of one sector on a

disk, which is usually 512 bytes, and the array is mapped to sectors sequentially (i.e. the

first item in this array is sector 0, the first sector on the first track on the outermost

cylinder). [1, pg. 491-492]

 A disk is generally low-level formatted at the factory, and the sector size can be

chosen here, but some operating systems can only deal in sector sizes of 512 bytes, so

that is the usual convention. To use a disk to hold files, the operating system must

implement its own data structures on the disk. First, it partitions a disk into one or more

groups of cylinders. As far as an OS is concerned, each group of cylinders can be treated

as one disk. The next step is the creation of a file system, known as logical formatting.

Here, the OS stores the file system data structures it will use, such as map of free and

allocated spaces and an empty directory. The OS provides methods and APIs for creating

files and reading, writing, and seeking within them. A file system may provide special

services such as buffer cache, file locking, pre-fetching, space allocation, file names, and

directories. These services can prove to be cumbersome for some applications, and the

 6

ability to use the disk as the large sequential array that it inherently is can be more useful.

[1, pg. 499]

Raw I/O is the ability to access the raw disk as the sequential array of sectors that

it is comprised of. The block-device interface captures all the aspects necessary for

accessing disk drives. The devices understand commands such as read(), write(), and if it

is random-access, seek(), to specify which block to transfer next. Applications normally

access such a device through the file-system interface. The OS itself, and special resource

intensive applications, like database management systems, may prefer to access a drive as

a simple linear array of blocks, and therefore perform direct disk access, or raw I/O. [1,

pg. 469].

2.2.1 Raw disk access through Operating System API

Most modern operating systems provide some API or manner of accessing disks

in a system via raw I/O. Different operating systems provide different abstractions and

methods for accessing raw drives, and you must be familiar with their APIs in order to

correctly store and retrieve data. The Windows XP operating system and other NT

variants provide a layer of abstraction over the raw disk and its sequential array of blocks

to make it appear as though it were one single file. With one file, a program can access

any block on the disk by seeking to a position in the disk, and reading from or writing to

it. This provides the same functionality as if you accessed the blocks on the disk by using

an array with an index. [3]

Windows NT provides an API for accessing block-devices. It uses the

CreateFile() function to provide a handle for any kind of block-device, in this case, a

physical drive. With a file handle, the API provides the ReadFile() and WriteFile()

 7

functions for reading and writing to a specific location. SetFilePointer() is then used to

seek to a different location to perform I/O. The seek capability allows you to choose any

particular byte to begin reading or writing to, however this can be problematic. When

performing direct drive access, or raw I/O, you must be careful to seek, read, and write in

multiples of the sector size supported by the drive, and the OS. The API provides the

DeviceIOControl() function to query a drive and determine the number of bytes per

sector, number of sectors, sectors per track, and so forth, so that you can compute the

right location to seek to, as well as allocate a buffer which is a multiple of the sector size.

[3]

2.3 Threads

A thread is defined as a “lightweight process, [it] is a basic unit of CPU utilization;

it comprises a thread ID, a program counter, a register set, and a stack.”[1, pg 129] A

single process can spawn multiple threads associated with it and many processes do. A

process, by comparison is “a program in execution.” [1, pg 93] A thread does not

maintain a large amount of resources like a process does and shares its memory locations

with other threads created from the same process and running on the same sections of

code, data sections as well as other resources like open files and sockets. This sharing of

resources and the low overhead of creating threads is one of many benefits of using them

over multiple processes.

 8

2.3.1 Threading in Windows 32-bit

This section outlines the use of threading in 32-bit Windows that was specific to our

project. We discuss how we created threads and what calls we used to do so.

Understanding how threads are created and used is integral to understanding our project.

Including the windows.h header file in a project, one will have access to the

Windows 32-bit functions that are used to create and manage threads. It is possibly to use

a function in this library called CreateThread() to create a thread as many times as one

may need. This function makes it possible to pass in a pointer to a data structure that the

thread will use. Once some threads have been created it is possible to wait until they

complete. The operations to do the previous are described below.

In Windows 32-bit, the function call to make a thread is called CreateThread().

When you create a thread with this function a handle is returned which can be used to

check on the status of the thread. You can pass in NULL for

LPSECURITY_ATTRIBUTES to use default security, and 0 for the stack size and

creation flags specify the default. The thread method that is actually created and used is

the “lpStartAddress” which is cast to (LPTHREAD_START_ROUTINE). The LPVOID

lpParameter is the pointer to the data structure that you want the thread to have access to.

HANDLE CreateThread(

 LPSECURITY_ATTRIBUTES lpsa,

 SIZE_T cbStack,
 LPTHREAD_START_ROUTINE lpStartAddr,

 LPVOID lpvThreadParam,

 DWORD fdwCreate,

 LPDWORD lpIDThread

); [4]

 9

The data structure that the thread accesses is usually created with HeapAlloc(). It is

important to remember when you use HeapAlloc() to make sure that it is deallocated with

HeapFree(). If you do not do this there will be memory leaks.

An important aspect of threads is that you can wait for them to be completed. This

is done using the WaitForSingleObject() function and WaitForMultipleObjects(). These

two functions take in similar arguments. The WaitForSingleObject() is also used with

mutex, for more information refer to section 2.3.2 Mutex.

DWORD WaitForSingleObject(

 HANDLE hHandle,

 DWORD dwMilliseconds

); [4]

WaitForSingleObject() and WaitForMultipleObjects() both signal when their

respective handle(s) signal that they are completed. Both functions have a great feature in

that you can specify the wait timeout. If you specify “INFINITE” it will block until the

thread(s) are complete. If you specify a number say 500, it will wait 500 milliseconds

then timeout, should you need to do any type of polling.

2.3.2 Mutex

Mutex is short for mutual exclusion which is a type of protection used on code that

is responsible for modifying data that will be shared between different threads or

processes. Mutex allows only a single process or thread to enter the code and perform its

operations to avoid conditions when a value might change when a thread time-slices in

the middle of a segment of code. Unexpected changes, due to concurrent threads both

modifying the same shared data structure, can cause unpredictable errors which are hard

to catch.

 10

Mutex works by setting a status value in a variable. Each thread or process that

wants to access a mutexed segment of code has to first check the value of the mutex to

see if it is already been changed. If it has, then that process/thread has to wait until the

mutex is reset to the “free” value. When it is changed, all waiting threads/processes are

signaled and then the first one to change it back to “busy” is then inside and the others

have to continue waiting.

In Windows the call to create a mutex instance is:

HANDLE CreateMutex(

 LPSECURITY_ATTRIBUTES lpMutexAttributes,

 BOOL bInitialOwner,

 LPCTSTR lpName

); [4]

The parameter of type LPSecurity_Attributes is a structure passed in to specify the

permissions of the mutex, if NULL is passed in, then the default parameters are used. If

the calling thread/process wishes to take ownership of the Mutex after creating it, then

the bInitialOwner parameter should be true. Lastly, when creating a mutex, you give it a

name so that it can be differentiated, no name is necessary and NULL is a valid

parameter. CreateMutex() returns a handle to the mutex created.

WaitForSingleObject() is used when using a mutex to check if it is free and then

reserving it if it is. When using this function, a timeout of INFINITE should be used to

block all but 1 thread/process from accessing the mutex. For more information about

WaitForSingleObject() refer to section 2.3.1 Threading in Windows 32-bit.

The function used to signal a mutex that a process/thread is finished with it is the:

BOOL ReleaseMutex(

 HANDLE hMutex

); [4]

 11

This function takes in the handle of a mutex and sends a signal to all

processes/threads waiting on this handle that it is ready to be re-allocated.

The final function used, when all of the threads/processes are finished accessing a

mutex, is the CloseHandle() method. This function takes in the handle to a mutex and

closes it preventing any further access to it.

HRESULT CloseHandle(

 HANDLE hObject

); [4]

2.4 XML

XML was created by the W3C. The W3C define XML as “Extensible Markup

Language, abbreviated XML, [which] describes a class of data objects called XML

documents and partially describes the behavior of computer programs which process

them.”[5] XML is similar in form to HTML because both use tags but each serves a

different purpose. XML uses tags like HTML, but the tags are used to describe what the

data contained in the file is, not how it should be presented. XML files must be written so

that they are well-formed. Well-formed means that for every opening tag, there is a

matching closing tag. XML tags are defined by the designer in a file called the XML

Schema. The schema defines the tags used in XML documents and defines how they can

relate to each other, such as which tags can contain other tags of a certain type, and how

many of these tags it may contain. The classic XML example is the book example, which

defines what a book might look like in XML tags.

 12

One of the key features of XML is that it is used in applications to store data in a

format that other programs can easily decipher and use. Since XML is a structured

language with all tags defined in a separate XML Schema file, the XML files using that

schema can be read in through an interpreter, parsed, and loaded into a program with

relative ease.

2.5 Current Tools and Their Drawbacks

There are two primary tools NVIDIA currently uses for data verification testing of

their hard drive controller drivers, and one tool they use for performance testing

measurements. Hazard is one of the tools used for data verification, which is a proprietary

tool created by Hewlett-Packard. WinThrax is another tool used for data verification. The

performance tool used is called IOmeter and was developed by Intel. The purpose of our

project was to replace these tools with a much more comprehensive tool, specialized to

meet the needs of the developers who write and design the nForce chipset drivers.

<?xml version="1.0" encoding="UTF-8"?>
<book isbn="0836217462">
 <title>
 Being a Dog Is a Full-Time Job
 </title>
 <author>Charles M. Schulz</author>
 <character>
 <name>Snoopy</name>
 <friend-of>Peppermint Patty</friend-of>
 <since>1950-10-04</since>
 <qualification>
 extroverted beagle
 </qualification>
 </character>
 <character>
 <name>Peppermint Patty</name>
 <since>1966-08-22</since>
 <qualification>bold, brash and
tomboyish</qualification>
 </character>
</book>

Figure 2.2 : Example XML Schema
(from http://www.xml.com/pub/a/2000/11/29/schemas/part1.html)

 13

2.5.1 Hazard

Hazard is a tool created by HP, and licensed under very strict terms. Allen Martin,

in the nForce chipset division, described the terms of use as “temporary licensing for a

small number of copies only after which HP found a problem with our chipsets.” Under

these terms, Hazard is a tool which is ineffective for use for NVIDIA. Without knowing

about the specific capabilities, the Hazard tools major drawback is its unavailability for

testing while developing the drivers.

2.5.2 WinThrax

WinThrax was created by AT&T in 1992. It is a 16-bit Windows application which

does not take advantage of current-day 32-bit standards, and by no means advanced

technology such as 64-bit processors. In fact, the 16-bit technology that it was written for

is a hindrance, because it must run in some degree of emulation in a Windows

environment. WinThrax performs a basic copy and read test between two hard drives

which the user specifies. Unfortunately, it provides no room for customization of the

tests, nor does it describe what tests it does run. WinThrax provides a very minimal

graphical interface which renders it simple and easy to use. Use entails merely selecting a

drive to write data from and a drive to write data to. Selecting the Start menu item will

begin the tests. In our test use of the program, we did not discover errors, and cannot

speak of the error reporting it does. WinThrax has negligible error reporting. Allen

Martin stated that he wanted extensive information gathered on a failure so it can be used

to troubleshoot what went wrong. It grossly under-reports the free/total size in megabytes

of the disks. During the test phase, it reports the elapsed time in days, hours and minutes.

It also reports the number of units copied, and compared, and the status (working, paused,

 14

etc.). While this tool provides a means for data verification, it is easy to see why it may

not provide the stresses of the system, as well as the configuration capabilities to be able

to fully test the nForce chipset drivers being developed.

2.5.3 IOmeter

IOmeter is actually two programs, one called IOmeter and the other dynamo.

IOmeter is the graphical interface used to make the settings for dynamo which does all

the performance work. The combined program performs tests to write to specific drive(s)

and then reports on the performance statistics. It is interfaced so you can perform disk,

network, and CPU performance tests. The major drawback of this program is it reports

how good your driver speed is but you have no idea if it was writing the correct

information. IOmeter is therefore useless as a data verification tool. It was useful to the

project team because it is under the open source license and provided similar

functionality and processes as to what we needed for our project. It was explained to us

that a later version of our project may include performance statistics as well as the data

verification.

 15

3 Features

This section describes all the features of the data verification program we wrote and

includes the features that NVIDIA would like to eventually see implemented in their

finished tool. Keeping all these features in mind throughout the design helped keep the

structure extensible. The features are broken up into an exhaustive feature list and two

subsets of that list, the features of our Alpha release and the features of our Beta release.

3.1 Exhaustive Features

The WPI team project was a subset of a larger verification tool. NVIDIA had asked

the team to come up with a complete feature list for the final program. The final program

would support multiple OS’s. The WPI Team only worked on one particular part of the

final programs goal. NVIDIA thought it would a good idea to keep a feature list with the

end-goal of their final program in mind. This feature list was to include support for many

different operating systems as well as performance measuring. The Team was not

expected to support all of the list. The complete list of features can be found in Appendix

A. Some functionality that the final product could have that was out of scope of this

project is:

• Collection of performance statistics

• GUI user interface

• Arbitrary commands

• CPU affinity

 16

3.2 MQP Scope

The scope of the WPI’s team project was less than that of the final program goal.

The WPI team had to implement the program the most common operating system,

Windows. To accomplish this goal we had three separate releases that are mentioned

below. For a complete list of the exhaustive features, refer to Appendix A in the

exhaustive feature list section.

3.2.1 Alpha

The features for the alpha-level release were minimal at best. The alpha version just

had the structure and flow of control of the main program. It created and passed the

necessary structures and data it needed between the different modules of the program.

This provided for a solid framework to work off of later. For a list of complete

functionality of the alpha version refer to the Appendix A in the Alpha section. A basic

summarization of the key points of our alpha version is:

• Single OS support, win32

• Basic functionality with program flow

• Control and configurable data patterns

• Logging of results

3.2.2 Beta

The beta-level release was “close to final release except that the bugs may not be

worked out.” The beta level release had full functionality but some things were not

working at the time. For a list of complete functionality of the beta version refer to

 17

Appendix A in the Beta section.

• Multi-threaded

• Ranges of where it wrote on disk

• Randomness of requests and IO locations

3.2.3 Final Release

After the beta version was complete, there was two weeks left for debugging the

beta to make it into the final release. The final release included an XML log file, the

ability to specify different patterns (user-made or pre-canned), and the ability to set

different configurations.

 18

4 Process

The goal of our design was to make a modular, extensible system for nVerify that

abstracts the system level and OS specific functionality. The modular design of our

project made the code organized and structured in a meaningful way. This modular

design also made the project easily extensible by modifying the internal pieces without

having to modify the other modules. The abstraction was achieved by using replaceable

wrapper classes and defining our own variable types to mimic OS-specific variable types

that we needed. This abstraction is essential for porting nVerify to different operating

systems, because all of the functionality and program flow will work flawlessly with the

program interface of the replaced modules.

4.1 Design

One of the most important parts in the development of our project was the design.

We had to do a lot of thinking, discussing and testing to determine what would be a good

design and as with most software development, our design changed rapidly and

consistently.

4.1.1 Major Data Structures

Our project uses data structures to pass relevant information between different

objects. Each of these objects has a specific purpose and is used in specific places. These

data structures range in use from storing the data pattern information to storing the results

of a read/write pair.

 19

4.1.1.1 Pattern

 The pattern structure is used to store pattern information that is obtained from either

a pattern file (.ptn) or a pre-made pattern that is specified by the user. This structure

contains both the data for the pattern itself, the size of the pattern, and the name of the

pattern. The data stored in a pattern is repeated as many times as needed to fill a given

size buffer when an I/O is performed. This structure will be used everywhere except for

the interface module, catcher module, and the device I/O. This structure will be created in

the Data Pattern Handling module, and passed to the main DataVerification module. One

pattern will exist in each Job structure.

4.1.1.2 Job

The job structure is used for storing the separate test information that the threads

will use. There can be multiple jobs per test and all of the multiple jobs are stored

together inside the test structure. Each thread is run using only one job, and each job

contains a list of references to the requests it would like to use in its operation. With only

one thread per job it is the threads responsibility to handle the requests inside the job. The

job structure is used primarily in the Brute thread module, where the relevant information

needed later for verification and analysis is stored into the result data structure. The job

structures are created in the ConfigParser module when the data is read in from the

configuration file.

4.1.1.3 Request

 The result structure is used to specify specific I/O operations in different test

configurations. A request specifies the range to write data to, the size of the buffer to

 20

write, and the randomness of the addresses chosen to write to. They also specify if there

is an address increment between writes. Each job will have one or more request

associated with it.

4.1.1.4 Test

 The test structure is used to encompass the entire configuration file, as well as

command line options. There is only one test structure per execution of nVerify, with

references to it being passed to the various modules for control flow. The test structure

holds all of the job and request information, the runtime of the test, the log filename, the

seed for random number generation, and the other command line options that are stored.

4.1.1.5 Result

 The result data structure is used to store the outcome of a specific I/O operation.

They are created in the Brute thread module and then sent to the Integrity Tester where it

is copied. There is one result structure for each write and its associated reads. When the

read(s) is/are completed for a write the result structure is filled with the I/O information

as well as other statistics such as runtime and the number of I/O’s completed at that time.

4.1.1.6 Log Entry

 The log entry is used for storing the information that will be sent to the log for

output to file. This structure is used in Integrity Testing and Triage mode and passed to

the logging module to be logged to the xml file. There is one log entry for each

job/thread.

 21

4.1.1.7 Summary

The summary structure is used for storing the end results from the entire test. It is

passed from the main module to the log file. It stores information about the test as a

whole such as the runtime of the entire test, the files used for the log and the

configuration. It also outputs information like the overall result of the test, whether it was

a success or not, and the date at which the test was initiated.

4.1.2 Description of Modules

Each of the modules in our program performs a certain task. The modules range in

purpose from getting input from the user to performing the disk I/O operations and

sending the results to another module. Our modules were designed so that if a

programmer wanted to change the functionality of a single part, the change can be

consolidated into one module.

4.1.2.1 Main (DataVerification)

This controls the main functionality and program flow of nVerify. It is responsible

for getting the parameters from the user and initiating the configuration file parser,

loading the data patterns, initializing the catcher module, and starting the thread manager.

4.1.2.2 Interface (IOControl)

This provides operations for getting command parameters from the user and

displaying information about the progress and results of nVerify. It is currently a

Command Line Interface. This allows shell scripting in the primary Operating Systems it

 22

will be running on. Later plans may include an extensive GUI, but this module presents

the ability to display and receive the same information, regardless of implementation.

4.1.2.3 Configuration File Parser (ConfigParser)

This module reads in a configuration file and creates a test structure which

encapsulates all of the information. The pattern structure inside each job structure

returned from the ConfigParser contains only a message in which the name/filename, of

the pattern to be used, is stored. This will tell the DPHandler which pattern to use to

correctly fill in the information. The ConfigParser also contains helper functions for

conversions, such as converting a string to an integer and converting a string into its

hexadecimal value.

4.1.2.4 Data Pattern Handler (DPHandler)

The Data Pattern Handler is responsible for the data patterns used in data

verification. It has the ability to generate patterns, such as a ramping pattern which

contains 256 bytes where each byte is a number from 0x00 to 0xFF and is incremented by

1 each location. It also has some hard coded patterns in it, such as a pattern where the

bytes are all 0xFF, or 0xAA, chosen for their bit representations. It also supports

inputting custom data patterns external to the utility, stored in pattern files with an

extension of .ptn.

An example could look like this:

size:16
00 01 02 04 08 10 20 40 80 40 20 10 08 04 02 01

 23

The primary information is the size of the data chunk to be repeated, and the actual

data. The DPHandler is responsible for creating a buffer in memory on request. It stores

one iteration the generated pattern inside the pattern’s data member.

4.1.2.5 Thread Manager

This module spawns new worker threads, and sends them off to perform the I/O.

Each thread is given job-related information such as the I/O queue depth and which

request(s) to use. It is also given information about which pattern to use and what size

IOs to do.

4.1.2.6 Operating System Thread Support (ThreadWrap)

The ThreadWrapper module is an OS specific thread implementation code. It

handles the OS specific code for spawning threads and makes calls to the actual worker

thread code which does the brunt of the work of nVerify. Thread implementation is OS

specific and therefore this module will need to be replaced and recompiled with a

different source code file for each operating system.

4.1.2.7 Worker Thread (BruteThread)

The worker thread is responsible for executing specific I/O operations on the disk.

It contains most of the logic and code for the threaded operation inside our program. It

issues calls to through the Device I/O layer to the disk. All information is sent to the

Integrity Tester module after a write/read combination has completed from the queue.

The worker thread is responsible for maintaining the queue depth and choosing the

amount of data to be written and the address to be written to based on the job and request

 24

structures passed in. It handles the logic of splitting the read operation into smaller

chunked reads based on parameters from the configuration file. See our Features section

for more information on chunk reads.

4.1.2.8 Device I/O

This wraps the OS-specific I/O API calls within generic method calls. This allows a

new Device I/O module to be written for a different operating system, and recompiled

without modification to any other components of nVerify. This module also includes

helper functionality to query information about the disk drive that nVerify is operating

on.

4.1.2.9 Integrity Tester

This is the first module which performs data verification. Integrity tester operates as

its own thread performing data verification. Integrity Tester objects exist on a one-to-one

basis with the worker threads – for each worker thread performing I/O, there exists one

Integrity Tester verifying the information. It maintains a queue where it stores results

from the I/O operations to be verified. It compares the data read in to the data written,

and on the first indication of error it goes into Triage mode where further error analysis

takes place. In the case of failure it flags the global status as failure, and finishes.

4.1.2.10 Triage

In the case of an error, the triage module performs error analysis. It begins to re-

read the data from the disk where an error occurred, and calculates and logs the error

information, such as the offset into the file, or logical block address of the disk, and the

 25

difference between the expected pattern and given pattern. It also logs extra information

such as elapsed time, and the number of I/Os which have occurred currently. It creates a

hex dump of the expected and actual data, which goes into the log file, and in debug

mode, is printed to an external debugger. All of the information that is logged is done so

through the Scribe module.

4.1.2.11 Scribe

This module converts the information that it receives into the correct format and

logs it into the file. Currently, this means writing the information passed in into an XML

file. The XML log file can then be parsed by an external tool to be developed in the

future which can present the data to a user of nVerify in a clean way with no need for

prior experience reading XML.

4.1.2.12 Dictionary

The dictionary defines all the structures used within the program including all the

data structures for patterns, tests, jobs, and requests as well as some enumerated type

definitions. Refer to the section on Data Structures in our design for more information.

4.1.2.13 Error Generator

This module is responsible for injecting errors into our program. This error

generator will be a separate layer residing between the worker thread and the device IO

layer. It performs many different types of error generation including changing the address

to write data or read data from, changing the data written and read, and modifying the

size of the data.

 26

4.1.2.14 Disk Address Allocation (nAllogator)

This module is responsible for managing the allocation of blocks of a hard drive,

and abstract offsets into a file to the separate worker threads. It maintains a list of the

known used blocks and provides the address generation for the worker threads to find

which blocks within the given range are free to be used by that thread.

4.1.2.15 Catcher

This module is responsible for wrapping some OS specific calls in an abstract way

to be used by the application at a much higher level than the disk IO. This module defines

the actions to be taken in the case of specific keyboard events. The code that handles this

event is windows specific so this module will need to be replaced when compiling for a

different operating system.

4.2 Flow chart

To understand the flow of execution in our program, it is best to refer to a diagram,

such as Figure 4.1. The program starts out in the DataVerification module, as is specified

by the color coded blue box in the top middle of the diagram.

Then nVerify goes into the configParser module on the right side of the diagram

and reads in the specified configuration file. Then the main uses the DPHandler module

to create the pattern identified in the configuration file in each job. The DPHandler will

either generate the pattern specified or read it in from a pattern file and store it in a

pattern file, returning the pattern structure to DataVerification. After the DataVerification

module is done, it sends the created Test structure it received from the configParser with

the Patterns generated by the DPHandler to the ThreadManager.

 27

The ThreadManager reads in the Test structure and separates each Job into a

separate thread. Then the ThreadManager waits for all the threads to complete and when

they all return, it signals the DataVerification module. ThreadManager uses the

ThreadWrap module to create threads and ThreadWrap makes a call to the BruteThread

module for each thread.

The BruteThread module takes care of whether or not to use ErrorGenerator

modules or DeviceIO modules depending on whether or not errors are supposed to be

generated. The ErrorGenerator modules each use DeviceIO modules to manage the IO.

The BruteThread uses the nAllogator module to identify and allocate disk memory

locations for reads and writes. The BruteThread passes Result structures to the

IntegrityTester when a read returns to have its data verified.

The IntegrityTester checks the data read back to see if it is what was expected. If it

is not correct, then the IntegrityTester sends the Result structure to the TriageNurse to

analyize the results. Otherwise it deletes the structure and moves onto the next result to

check.

The TriageNurse analyzes the data and logs the error to the log file using the Scribe

module. The Scribe module creates the XML log of the test results.

When all the threads are complete, from either running past the run time specified,

or from stopping on the event of an error, the threads return to the ThreadManager and

that returns the DataVerification module.

The DataVerification module then logs the global status whether it is a success or a

failure and notifies the user of the end result. Then the program exits.

 28

ThreadWrapper

ThreadManager

Catcher IOControl

DPHandler DataVerification

Pattern

configParser

BruteThread

Dictionary

nAllogator

ErrorGenerator
ITModule

Scribe

Config.
File

XML Log

Data
Patterns

Device I/O
IntegrityTester

TriageNurse

XML Parser

Log
(Human-
Readable)

Not In Project Scope: Suggested Addition

A Class Object Module

Main/Base/Entrace Module

Thread

Defines Structures/ Used in
Most/All Modules

OS Specific Class/Module

Figure 4.1: Modular Flow Chart of nVerify

 29

4.3 Implementation

This section is going to describe the process by which we developed our project.

We first used an incremental development strategy, assisted by our liaison Allen Martin.

We also divided up the workload so that the whole group could simultaneously work on

the project.

4.3.1 Incremental Development

The project was developed in a series of phases. The project had several phases

consisting of an alpha phase, a beta phase, and a release phase. In each of the phases

more functionality and features were added and the complexity of the overall program

rose. The incremental development allowed a deadline to be established for each phase

forcing a reasonable version to be completed at that time.

4.3.1.1 Alpha Version

 The alpha phase consisted of having a program that had all of the data structures

needed by the program defined and passed correctly between modules. It outlined the

basic flow of the program. Not all functionality was included in the alpha version. Basic

program functionality of a write and a read was performed as a proof of concept. Our

alpha version was single threaded and performed synchronous un-buffered I/O.

4.3.1.2 Beta Version

 The beta version had some major differences from the alpha. The beta was designed

to be a complete version of the program with all functionality included but not working.

 30

This means that all features were supposed to be present just not fully tested for this

iteration. The notion of supporting different I/O request types was added to the beta

version. It was multi-threaded and performed asynchronous I/O. The features that did not

make it into the beta were chunk reads, triage mode, external debugger hooks, and error

generation.

4.3.1.3 Release Version

 The release version is a complete working version of the program. All features are

included and it is fully functional within the scope of this project. In this version there are

no memory leaks, and it is a stable build. There was time left after the release version’s

presentation to clean up the code and debug any issues that were left.

4.3.2 Managing the Workload

For our project we made extensive use of Perforce, a source and version control, to

help us parallelize the workload of our project. Perforce is a tool used by developers for

backing up code as well as sharing it between multiple people here at NVIDIA. The tool

is run off a server and keeps a copy of all prior versions of the code. As a developer

modifies a file, he or she updates the version on the server and then everyone can

download it to stay up to date.

We used Perforce as a means to easily divide the parts of the project that we all

worked on. While one person was working on one module, the other two were working

on two separate modules and when someone finished a change, they updated it on the

Perforce server. This allowed us to maintain a fast pace because we rarely encountered a

situation when one person had to wait until someone else was done to progress.

 31

4.3.3 Testing

Testing is an integral part of the development process. Unless a piece of software or

utility is proven to work, it cannot be trusted to perform its purpose. With our liaison, we

developed a thorough test plan with which to test our software at key points in the

development process, as well as with each modification to the project. The test plan is

meant to provide not only exhaustive testing of new features, but to provide regression

testing to prove that our utility does not have new bugs introduced as others are tackled.

Our testing was used to stress nVerify to attempt to utilize all the control paths, and

unearth any bugs that normal use might miss. We attempt to stress our utility in many

ways in order to seek out unexpected behavior, such as a memory leak. Memory leaks

happen when programmers do not free memory that they have allocated for use. Any

users of this program need to have an output for any likely or even somewhat unlikely

combinations of inputs that nVerify receives so that they do not need to be exposed to the

inner workings of technical nuisances of the program. This makes testing a very high

priority.

There were very strict requirements on the behavior of nVerify which we had to

guarantee. We have to ensure that every test runs to completion. If it is configured to exit

on an error which it detects, it has to do so cleanly, and report its findings first. We have

to ensure that we catch errors which could occur which are out of our control. Some of

these include checking that certain OS operations return successfully, and handling the

error codes that they return to us. For example, an asynchronous I/O operation always

returns a specific error reporting that it is in progress; however it does not affect the

operation of our utility, so we may discard it. If an error occurs which is linked to data

 32

verification, we must set the global status of the program execution to failure, and log all

relevant data.

Another aspect was the ability to run nVerify for long periods of time. We wanted

to ensure that nVerify did not have any memory leaks which would lead to degradation of

performance over time. We must therefore guarantee that we do not leak or keep

consuming new memory. We also had to handle bad inputs such as data patterns and

configuration files. Our program output in the form of a log file must also be well

formed, and match the XML standards.

Our utility, nVerify, has to be able to detect errors and inconsistencies in the

operation of hard drive storage drivers. To do so, it must stress the drivers to a great

degree. To make sure that nVerify catches errors of many different types, we have to test

our program by programmatically causing errors to occur. In essence, we must test our

testing tool. There are two good ways to test a testing tool. The first is to make sure that

when no errors exist, that it does not find any, and the second is to introduce errors and

make sure the tool finds them. We ran many tests to stress the program flow of nVerify

under many configurations and settings. See Appendix B for a listing of the test

configurations which nVerify had to be able to run to meet most of our expectations. All

of these configurations acted as the inputs to our program, which we then checked the

output of. Usually, if the program exited normally, and generated a log-file, we could be

confident that the test completed. We ran batch scripts with the various configuration

files to ensure in all iterations that the program would run to completion with no crashes,

and would output successfully.

 33

Since nVerify is multi-threaded, an important part of the testing was to ensure that it

behaved the same way whether we configured it for multiple threads, or a single-thread.

We also utilized third party software which aided in detecting our memory leaks during

testing and development. In addition to this, a built-in utility for Windows, called

perfmon was used to monitor many statistics of our program. It allowed us to visually see

the behavior of our program, such as the disk I/O queue being filled. We used this to also

show our memory usage over time, by comparing the starting memory with the memory

in use right before close, and at the termination of the program.

The second main testing included error injection. Since using known buggy drivers

was not in the scope of our project, we had to assume that we would not find bugs in the

drivers on our own. Therefore, to stress the parts of our program that handled finding

errors, we had to inject them on our own. For this, we developed a transparent error

generation layer. We designed it using a popular object-oriented design pattern known as

delegation. If you enable error injection, the utility creates an Error Injection module

which processes all the data which a Device I/O module might otherwise process. It

injects errors by corrupting the data which it receives to process, and then delegates the

processing back to an internal Device I/O module. It acts as the sole interface to this

module, and can therefore peek and fiddle with the data which goes through it. Error

injection was designed to inject a multitude of errors, which we then tested, and tried to

detect failure. If it detected a failure, then the test passed, if it did not, then it failed, or if

it crashed the program, it failed. The types of errors which we injected were data

corruption, address corruption, and size corruption. The first, and most complex was

designed to force a lack of data integrity by changing either the data written to disk, or

 34

the data read back from disk. The data is corrupted in many ways. Some examples

include swapping one or many bytes, words, or double-words, flipping one or many bits,

shifting the whole buffer left or right by some number of bytes, or writing random data

into the buffer. In the case of a write you can increase the size to be written, and it can

write extra data to the disk, or you can decrease, and only write some of the buffer to

disk. Also, you can change the logical block address, LBA to write somewhere else.

These are all errors which the driver could conceivably be guilty of itself, and therefore

we wanted to ensure that if any of these things happen, that we detect a lack of data

integrity.

For each of the major iterations, we ran many of these tests with and without error

injection. We were able to find some bugs and holes in our code for situations that we did

not account for. For the more minor code changes we tried to run tests which were

geared towards what we changed. For example, if we fixed bugs in the Triage error

analysis, we would primarily test with the error injection turned on. This greatly helped

improve our coverage of various situational inputs and outcomes.

 35

5 Results

This section discusses the results of our project. The final release of our program

has all of the required features and more. This section also shows some of the sample

input and output from our program and also discusses the errors generated and found in

our program.

5.1 Tests

To test our final version, we designed many different configuration files, each

stressing a certain aspect of our design. We also used the error generating layer in our

code to simulate driver errors that might occur. Aside from the test configurations we

created, Allen also created several more for us. The simplest test to run is a test with a

single thread performing disk I/O and using a single request structure while the most

complicated test is a multithreaded test using multiple requests with some of the tests

being clones.

 36

Figure 5.1: High Thread Count Stress Test

The most stressful tests are tests that have extremely large queue depths and ones

that use an extremely large number of either threads or read splits where the number of

individual I/O calls are very large. Error! Reference source not found. shows an

example of a test running 256 clones of a single thread, all using a single request. This

test stresses the overlapping and allocation of memory addresses because all the threads

share the same range and therefore attempt to obtain and use the same memory addresses.

5.2 Sample Output

This section describes what the user to our program might expect to see. It covers

what is displayed on the screen as well as what is printed to both the log file and the

debugger.

 37

5.2.1 Screen Output

During the run of our program there is very little outputted to the console for the

user. Only the most basic and important information is displayed to the user. This

information includes the requesting of certain required values that were not specified on

the command line and outputting the results of the complete test. If all parameters that are

needed are passed into the program via the command line, then there are no prompts to

the user and the program simply tells the user that the test has been initiated. Figure 5.2

shows an example of the output that might occur when a user runs the program using

some regular command line options.

Figure 5.2: Sample Output

5.2.2 Log Output

The log file is generated and filled during the execution of the program. If there are

no errors detected, the log file looks much like the output on the screen does; it simply

outputs the overall results of the test. In the event of an error, the log file becomes a

valuable resource. When nVerify detects an error, it will output all possible relevant

 38

information about the error from the Triage module. The information that is outputted

includes the information about which thread was responsible for the I/O, the request it

was using at the time, and a hex dump of the bytes in error. This hex dump is valuable

because it allows developers to see the entire range of bytes that were in error, the 16

bytes before and after the error, as well as the bytes that they should have been. This

information helps enormously when attempting to debug an error. Figure 5.3 shows an

example of what a log file with an error might look like.

Figure 5.3: Sample Log File

 39

5.2.3 Debugger Output

One of the command line options is ‘-debug.’ This option enables the program to

output everything it writes to the log file, to the debugger as well, and break into the

debugger when an error is found. This enables developers to use remote debuggers to

monitor the application. The kernel debugger will allow the developers to see what the

state of the program was when the error occurred and therefore easily find the error. The

output to the debugger looks much like the above output (Figure 5.3), with only the XML

tags removed.

5.3 Performance

This section talks about how well our program performs, from its memory

consumption to how well it keeps the disk’s outstanding IO queue full. This section also

discusses the speed and number of I/O’s that our program can perform in a given time

period.

5.3.1 Memory Usage

After the Beta release of our program, we realized, through the use of Perfmon, that

our program was allocating large amounts of memory and not deallocating it, so as the

program ran, it kept using up more and more memory. Figure 4 shows what the output of

this monitoring program looked like. The dark blue line is the memory consumption and

the red line is the current physical disk I/O queue depth. The blue line climbed fast when

running our older program on a RAW disk with error generating on.

 40

Figure 5.4: Memory Usage and Disk Queue During Execution

When we saw how bad our memory management was, we realized it was time to

start freeing up unused memory. During our work, we managed to find all the places

where we could minimize the amount of memory currently allocated and when possible

free it up so that other processes could use it. After a few days of aggressive memory

management and several dozen runs later, we finally got our memory management under

control. The graph of our current memory usage is shown in Figure 5.5.

 41

Figure 5.5: Release Memory Usage

Through use of the libraries that Allen pointed us to, we are able to monitor the

number of memory leaks and after thorough testing, we finally got this number down to

zero. This is why you can see the blue line level off as the program runs.

Also you can see in both graphs that the red line, the current disk I/O queue, is

being emptied and refilled during the course of operation of our program. The spikes

represent calls to perform I/O operations by our program while the dips represent the

driver completing these requests and reporting back that they are complete.

 42

5.3.2 Speed / Number of I/O’s Performed

One of the other problems we encountered is that while we were debugging, we

were doing several things that greatly slowed down the processor and limited the number

of I/O’s each thread could perform.

The first limiting factor was the number of print out statements we had. Print out

statements slow the processor greatly, changing the number of possible I/O’s performed

from somewhere like 600 to approximately 340.

The next limiting factor which we encountered was the way we were checking and

handling errors. First, in order to find the problem, we were searching through the array

of data byte by byte and comparing it to the expected value. We did this same operation

again inside the Triage module when trying to find out what parts of the data were

different. We instead now use memcmp() to compare the data in 16 byte chunks, saving

the number of comparisons we have to perform and thus speeding up the process.

The last limitation was the file system itself. We found that when performing writes

on a RAW disk, our program could perform up to 100 times the number of I/O’s per

minute than the same test run on a disk with a file system.

5.4 Bug Detection

This section describes our use of generated bugs to test our software and also

unexpected bugs that arose during development that we were forced to handle.

5.4.1 Generated Bugs

Our program was required to generate many different types of errors on both read

and write commands. While developing, these introduced errors were crucial in the

 43

design and implementation of our system. Using the string generated we were able to test

our integrity testing and triage handling modules. Having run them against these known

errors of all types, it increases the likelihood that nVerify will catch similar errors that

might actually occur.

5.4.2 Unexpected Bugs

During the course of developing our program, we ran into several difficult

problems. The first was when we were freeing up memory before it was done being used,

causing somewhat random memory errors where pointers would be deleted while they

were still be accessed. This error took a while to track down because we had to backtrack

through our code to find the deallocate statement, which was often in an entirely different

module, that was causing the bad pointer.

The other problem we were finding is that while performing thousands of I/O

operations on a RAW disk, every now and then a comparison would fail. The results of

this comparison showed that where one data pattern was expected to be written, the read

call returned the data from another data pattern. After meticulously going over the code,

we came to an interesting conclusion, with the help of our liaison. We found, using

busTRACE, that the read operations were being completed before the corresponding

writes were, a clear violation of what the driver was supposed to be guaranteeing.

busTRACE is a program that will monitor all the activity of a drive or drives and reports

what is done to it. Below is a screenshot of busTRACE showing the order of the write

and read and the order that they finished in.

 44

Figure 5.6: busTRACE Showing Driver Bug

In the top right pane of the screen shot above, there are 4 lines that have arrows and

icons of hard drives in them. The first two of these lines are a write and a read command

being issued. If you follow the arrows in the “Interleave” column, you can see that the

read’s arrow ends before the write’s arrow ends. By looking at the “Start Time” and “Exe

Time” columns, you can verify that the read was started after the write and the read

executed before the write. Therefore, the data read back by the read is stale data from the

previous write command which could be from an entirely different data pattern. We only

found this problem when the program was operating on a RAW disk and performing

 45

many thousands of operations. This shows that while our tool was only recently

developed, it has already caught a bug in their drivers that their previous tools have not.

This bug is common in different versions of the driver meaning that it is common code to

all of them.

 46

6 Conclusions and Future work

The following discusses the goals that our project was set to accomplish and which

ones we accomplished. It discusses who will use our software. It also discusses what we

accomplished for the sponsor as well as what improvements could be made in the future

with our software, that section also includes improvements that were outside of the scope

of the project.

6.1 Goals Set and Accomplished

The data verification project had many important goals which it needed to

accomplish. The most important goal of the project was to stress NVIDIA’s hard disk

device drivers. We successfully created a tool which stresses the drivers. Our tool creates

many threads and many I/O’s which place a great deal of stress on the drivers. The stress

we placed on the drivers was demonstrated through our finding of an unknown bug in

their current drivers.

Another important goal of our project was to make sure that our program would be

easily portable to other operating systems. This was important because NVIDIA produces

drivers for multiple operating systems and having a tool that can test their all their drivers

is important. Our project was designed to be easily portable through the use of modules

abstracting and wrapping the OS specific calls. This way our project is able to be ported

by replacing the few classes that are OS specific.

The ability of our program to be highly configurable was another goal that we

achieved. This is done through the command line parameters and the highly customizable

configuration files. The command line parameters allow a user to specify which drive

 47

they want to test, which configuration file to use, the name of the file the log should be

stored in, and whether they want to stop or continue on errors. Having these options for

the command line allows a user to create batch files that are specific to their needs.

Having all these customizable features allows the user to create test cases which will suite

their needs and hopefully diagnose problems with the drivers.

An important goal for our sponsors was to find bugs in their driver software

because having bug-free drivers is important for a large well-known company like

NVIDIA. Our program met this goal by finding a previously unknown bug in the current

drivers. By using our software in the future we believe that it will assist NVIDIA to

diagnose problems earlier in the development cycle to ensure that their drivers are stable.

An exciting accomplishment is that the Quality Assurance (QA) team at NVIDIA

will be using our tool in their test plans for checking for bugs in their drivers in the

future. With this new tool it may be possible to catch errors and bugs that the other

testing tools can not. Once an error is detected by QA, the engineers would then use our

tool to try to narrow down what the bug could be.

6.2 Possible Improvements/ Follow-up Work

While many of the goals of nVerify were met, there were other goals outside the

scope of this project. NVIDIA’s storage software group and quality assurance group has

plans for future development of nVerify. They plan to not only extend nVerify in usage in

the company, but also to extend the functionality and features of the tool beyond what we

were able to do in 9 weeks.

 The major add-on to the project at NVIDIA is a version of the tool which will run

on Linux. One of our goals was to make our program modular in part for this future goal.

 48

In theory, only changes to specifically the Device I/O modules as well as the threaded

modules will need to be made. Practically speaking, there are always other hurdles. The

specific behavior of supported function calls can differ between Operating Systems, but

we accounted for these as best as possible.

 One area of testing the functionality of our tool that was deemed future work was

running our tool against drivers with known issues, and seeing if it could expose them.

This is planned to be done by NVIDIA at some time. This kind of testing would be

crucial to increasing trust and reliability in nVerify.

 Since this tool is going to be rolled out by QA into their testing cycle, there are

some improvements which would aid them in their work. Automation is a big part of the

future of nVerify. The command line interface of nVerify makes it easily scriptable in

any OS which supports such scripting. This way one script could run a multitude of test

configurations on various drives and for a large number of times. Another component of

the automation of nVerify is drive detection. Currently, a user specifies which drive to

have nVerify operate on. They plan to have a small program that can detect which hard

drives to run nVerify on, and delegate the commands to nVerify by creating a new

instance of it with the specified hard drive parameter.

 The user interface has a lot of room for improvement. While the command line

interface provides for easy scripting, some less experienced users will find it cumbersome

to use. A GUI has been planned further down the road, which would also eliminate the

need for a configuration file, as parameters could be easily specified at runtime. We tried

to design the Command Line interface with an API which would make the core program

require no modification if they wanted to replace it with a Graphical UI.

 49

 One feature requested by the software group at NVIDIA was the ability to call

arbitrary commands to a hard drive via the controller chip, and therefore via their driver.

This type of testing was not in the scope of our project. The major modifications which

would be needed would be additions to the Device I/O module API, as well as additions

to the core functionality of the program – deciding where you would call various

commands, and how you would verify the results.

 More major modification suggested was performance statistics gathering. We

currently only gather information on the elapsed time a given I/O might take. NVIDIA

thought it might be useful to have more statistics gathered such as time spent at various

points on the stack, and so on. This may be added at a later time. More configuration

modifications were also suggested. In the future, the group might want to be able to

specify CPU affinity – meaning being able to specify which processor a given thread

should run on. This would be useful on multi-processor systems to balance the load

manually to attempt to reproduce an error. Also, they suggested changing the

configuration to specify the range of addresses in which to perform I/O to be a part of the

job, and therefore specific to thread, as opposed to specific per I/O request. The last

addition in the foreseeable future of nVerify is an external tool. Since we output all of our

information to an XML log, an XML log parser utility may be of use to be able to present

the relevant data to a user who does not wish to sift through XML tags.

 50

References

1.) Abraham Silberschatz, Peter Baer Galvin & Greg Gagne, Operating Systems

Concepts, 6th Edition. John Wiley & Sons, Inc: New York, NY. 2003.

2.) Welsh, Matt. Hard Drive Geometry.

http://grouchy.cs.indiana.edu/usr/local/www/linux/gs/subsection2.6.5.1.html,

Last Accessed: February 7th, 2006.

3.) Microsoft Knowledge Base. INFO: Direct Drive Access Under Win32.

http://support.microsoft.com/kb/q100027/, Last Modified: May 6th, 2003.

4.) MSDN Microsoft Corporation 2005.

5.) W3C : Extensible Markup Language (XML) 1.0 (Third Edition),

Recommendation 04 February 2004, http://www.w3.org/TR/REC-xml/ , Last

Accessed: February 9, 2006.

 51

Appendix A: Feature Document

This document describes in detail the different features that NVIDIA wanted from

our project. The first section is a complete list of all the functionality that NVIDIA said

they would want from a final finished version. The sections after that describe what

features they thought we could accomplish in our time period.

Introduction

The Data Verification Tool will provide developers with an easy to use tool that can

stress the NVIDIA nForce hard disk controller drivers. The tool will execute reads and

writes to a single disk or disks in a RAID configuration and will perform verification to

make sure that the data written is the correct test data and that it is in the expected

location on disk. The tool will be modular so that its functionality can be extended in the

future. This tool will ultimately provide many customizable features to allow developers

and testers alike to create unique tests to fit their needs and desires.

Exhaustive Feature List

• Perform I/O reads and writes on a hard disk via a file system, or as a raw device
• Will not differentiate between single disk or RAID configuration
• Will be able to control the following:

o Size of data or range of sizes of data
o Number of worker threads performing I/O
o Randomness of I/O location
o Writing to streams or across surfaces of disk
o Range of addresses
o Devices it operates on
o Arbitrary commands
o CPU affinity
o I/O queue depth per thread
o Splitting Reads into multiple smaller reads
o Stacked I/O’s (multiple writes/reads to same location in 1 thread in a row)

 52

• Triage mode
• Collect performance statistics (e.g. time spent in various times at stack.)
• Control and configure data patterns

o Use pre-configured data patterns (e.g. subsequent blocks being different to
detect “off-by-one”)

o Allow user to provide custom data patterns
• Error injection
• Logging

o Start time
o End time
o # of I/Os
o Breakdown of reads/writes
o Provide one end status (Pass/Fail) for QA

• Logging on failure – detailed analysis
o Disk address of current write
o I/O pattern size
o Memory address
o Previous I/O pattern
o Offset into I/O
o Expected result
o Difference between the expected, and obtained result

• Hooks
o Programmatic hook to stop the test

 Break into the debugger on stop
• Modular design to allow for further extension
• API documentation
• Plug-in to allow integration with other tools
• Log – XML format
• User interface

o GUI
o Command-line

 Allow shell scripting
• Performance mode

o Allows IO’s without data integrity testing
• Inline integrity testing

o Allow for integrity testing in separate thread or inline.

Scope of WPI Project

As our project was only going to span approximately 9 weeks, NVIDIA felt that the

scope of our project could not be the entire list of features that they would want because

it would take too much time to develop them. They instead decided to give us a large

 53

subset of features that would create the design and layout of the program leaving it open

to add the last remaining features. Our features we broken into 3 groups based on the

phases of our project.

Alpha
• Perform I/O reads and writes on a hard disk via a file system, or as a raw device
• Will not differentiate between single disk or RAID configuration
• Size of I/O or range of sizes (for alpha two sizes: small, large)
• Arbitrary commands
• Control device operated on
• Control and configure data patterns
• Repeatable patterns (plus some pre-canned) (Alpha only one or two pre-canned)
• Logging

o Start time
o End time
o # of I/Os
o Breakdown of reads/writes
o One status for QA at end of run

• Modular

Beta
• Multiple threads with ability to specify the # of threads
• Randomness of I/O (location of where) streams or across surfaces of disk
• Range of addresses
• Splitting Reads into multiple smaller reads
• Stacked I/O’s (multiple writes/reads to same location in 1 thread in a row)
• Triage mode
• Error injection (testing)
• Log may be in XML
• Logging on failure

o Disk address
o I/O size
o Memory address
o Previous I/O
o Miscompare
o Offset into I/O
o Expected result

• Hooks
o Hook to stop the test (break in debugger)

• API document

 54

Appendix B: API

This is the API (Application Programming Interface) for our software. It describes

how input is read into the program as well as how it is outputted from the program.

Output comes in two ways from the program, messages intent to be sent to the log file

and messages intent to be sent to the user.

IOControl (User Application)

Output:
• nPuts(Char *)
• nPuts(Pattern *)
• nPuts(Result *)
• nPuts(Request *)
• nPuts(Job *)
• nPuts(Test *)
• nPuts(LogEntry *)

These functions are to map the particular structure specified from the application to

the user with the specified parameters. They take as parameters char *, pattern *, result *,

job *, test *, logentry *.

Input:

• Char * nGets(FILE)

This is the function that is used to get the information from the user. The file

descriptor could be used for stdin/stdout, socket, or file descriptor.

Device I/O

Write:
• bool nWrite(char* dataBuffer, DWORD bufSize, BIG_INT lba);

 55

This function will take in a data buffer of bytes to write. It also takes as its

parameters the size of said buffer, and an lba to define the address. It performs the I/O

unbuffered, and asynchronously. Returns true immediately if there were no errors.

Read:

• bool nRead(char* dataBuffer, DWORD bufSize, DWORD *readBytes, BIG_INT

lba);

This function will take in a data buffer to fill with read bytes. It also takes as its

parameters the size of said buffer, an lba to define the address, and a pointer to provide

the number of bytes that were actually read, as well. It performs the I/O unbuffered, and

asynchronously. Returns true immediately if there were no errors.

Get Result:

• bool GetResult();

This function will return the status of the DeviceIO object. If the I/O performed

with the object has completed, then it will return true, else it will return false.

Get Bytes Transferred:

• bool GetBytesWritten(DWORD* size);

• bool GetBytesRead(DWORD* size);

This function will set the number of bytes either written or read into the passed in

double-word variable. It will return true if the query succeeded, else it will return false.

Get Sector Size:

• static long GetSectorSize(string device);

This function will return the number of bytes in a logical sector for the device

represented b y the string parameter.

 56

Get Last Address:

• static BIG_INT GetLastAddress(string device, bool isRaw);

This function will return the LBA of the last address of the disk. It takes a Boolean

which determines if the device we are dealing with is raw or contains a file system. It

then calculates the last address either using the free space on a file system, or the total

disk capacity on a raw disk.

 57

Appendix C : nVerify User's Guide

This document is meant to give the reader knowledge of how nVerify is configured,

how to run the program, and how to make sense of the data after a test is complete.

Setup

This section will go through the setup of a test. It will take you through an example

configuration file and a pattern file. This program can be run from either a command

prompt with arguments passed in which specify all the parameters for the test or it can be

run in an interactive mode where it will prompt you for the parameters it requires.

The Configuration File

The configuration file defines a test the program will perform. The main components

of a test file are the Requests and the Jobs. Comments inside a configuration file are

specified using ‘<--’at the beginning of the line.

Request

Each Request has several fields which can be specified for it. A Request contains the

following fields:

Member Name What is Means Type Example Required
name Name Word R1 Yes
RAND Percent of I/O’s random Number 80% Yes
startAddr Starting Address Number 0x1000 No
endAddr Ending Address Number 10345 No
addrIncrement Address Increment Number 0x10 No
IOsize IO size Number 32K Yes

 58

The Request’s name is supplied right after the word ‘Request’ separated by a space.

The values for startAddr, endAddr and addrIncrement can all be inputted as either

hexadecimal values, by preceding the value with ‘0x’, or decimal values. The IO size in

bytes is specified with a decimal value followed by an optional size indicator. There are

three valid size indicators recognized by the current version of nVerify. The first is K

which signifies kilobytes, M for megabytes, and G for gigabytes. All the numbers entered

for a request are entered as whole numbers. Here is an example of a Request as it would

look in a configuration file:

Figure 1: A Sample Request

Job

The next major element of the configuration file is a Job. A Job represents a single

thread of execution in the program. A single thread (Job) can be configured to use up to

100 different requests each with its own parameters. A Job has the following parameters:

Member Name What is Means Type Example Required
Request The Requests to use Request Figure 1 Yes
QueueDepth # of outstanding writes Number 20 No
Pattern Pattern to write Word 0xFFpattern Yes
ChunkReads # of chunks to split read into Number 2 No

Request R1{
 _RAND : 50%
 _startAddr : 0x0
 _endAddr : 0x1000
 _IOsize : 2K
 _Increment : 10
}

 59

The Request field is defined in two parts. The first is the number of requests the job is

going to use and the second part consists of defining how often to use each of the

Requests for the Job. An example is shown below. The QueueDepth is the amount of

outstanding concurrent writes that are going to be performed. The Pattern is the data that

is going to be written to the hard drive and the ChunkReads is the number of times to split

up each read. Both the QueueDepth and ChunkReads are entered as whole numbers.

Figure 2: An Example Job

Outside of the Requests and the Jobs, there are only two other fields that can be set.

The first is the most important, the Time. The Time specifies the runtime for the entire

test. After the amount of time passed in, nVerify will stop issuing new reads or writes.

There are several indicators that can be used to show units of time. The first is ‘sec’

which means the number passed in is in seconds; then there is ‘min’ for minutes and ‘hrs’

for hours. The last field that can be entered by is not required, is the RANDseed value.

RANDseed specifies the number you can use to seed the random number generator used

in nVerify. If not specified, the current time in seconds will be used. Only one indentifier

should be used in a test, so a valid use is “90sec” not “1min30sec.”

Below is an example of a simple configuration file:

Job {
 _Requests : 3

 : R1 = 30%
 : R2 = 35%
 : R3 = 35%

 _QueueDepth : 15
 _Pattern : 0xAApattern
}

 60

Figure 3: An Example Configuration File

The Pattern File

There are two different types of patterns, the generated ones, and the ones loaded

from pattern files. Generated ones include: pattern255, 0xAApattern, 0xFFpattern,

Fibonaccipattern, and LBAPattern. Pattern files are defined as hex files ending in ‘.ptn’.

The first line of the file consists of ‘size:X’ where X is the size in bytes of the pattern.

After that the hex file is arranged in rows of 16 pairs of hexadecimal digits separated by a

space. Figure 4 is an example pattern file.

<-- Test Configuration File

Test {
 _Time : 15sec
 _RANDseed : 15454552
 Request R2{
 _RAND : 20%
 _startAddr : 0x20000
 _endAddr : 0x30100
 _IOsize : 32K
 _Increment : 0x10
 }
 Request R3{
 _RAND : 100%
 _startAddr : 0x1000
 _endAddr : 0x1AB80
 _IOsize : 64K
 _Increment : 100
 }
 Job {
 _Requests : 2
 : R3 = 50%
 : R2 = 50%
 _QueueDepth : 10
 _Pattern : walkingOnes.ptn
 _ChunkReads : 4
 }
}

 61

Figure 4: An Example Pattern File

Execution

Running a Test

There are two different modes that nVerify can run in. The first method is by

passing all the parameters for the test in the command line to the program. The program

requires 3 parameters and has several other optional ones. The three required parameters

are:

Parameter Example:
Name of the configuration file -c job3req3.nvc
Name of the log file -l output.xml
Device to operate on -d PhysicalDrive1

In order for the program to know which field is being specified, the field is

preceded by an identifier. The configuration file identifier is ‘-c’, the log file identifier is

‘-l’, and the device identifier is ‘-d’.

There are several option commands that can be passed in from the command line.

The first is ‘-help’ which if passed in will force the program to output a help screen that

lists all the possible command line arguments and their identifiers. The next optional

command line argument is ‘-p’ which lets the program know that when it encounters and

error, it should stop processing new commands and exit after it has completed analyzing

and logging the error. The last option command line argument is ‘-debug’ which tells the

program that you are going to be monitoring the program from an external debugger and

size:16
00 01 02 04 08 10 20 40 80 40 20 10 08 04 02 01

 62

signifies that you want it to output all its information on errors to the debugger and to

pause and break into the debugger after an error occurs.

The second way of running nVerify is through an interactive approach. To run it in

this mode, simply start nVerify with no command line arguments passed in. It will

prompt for the 3 required fields and then run the test. If nVerify is run in an interactive

mode and you wish to specify to either pause or break into the debugger, then pass the

optional command line arguments in through the command line anyway.

If any of the required command line arguments is not passed in nVerify will prompt

the user interactively for the required field again.

Incorrect Parameters

If an incorrect parameter is passed into the command line, such as ‘c;’ instead of

‘c:’ the program will terminate outputting a message indicating the error. The only

exception is if you specify a configuration file that does not exist or is not found. nVerify

will prompt for file name to be reentered. In the case of a malformed configuration file,

the program will output an error message indicating the type of error and then terminate.

Log File

The log file generated by nVerify is very small in the case of a success. In the case

of a success the log file contains only the most basic information about the test including

the runtime, the information about which test was used, what device it operated on, and

how many I/O operations were performed. This information along with the overall test

result, a success or failure, is logged regardless of the status of the test.

 63

In the case of a failure, the log file also logs all information it knows about the error

to the log file. It logs which thread was responsible, where the write/read was being done,

the data pattern used, the request structure being used, and the mismatched data. The

mismatched data is represented in the form of a hex dump. This hex dump shows the data

that was expected to be there, and then it prints out the data that was read back from

there.

Figure 5: Log Entry on Failure

 64

The first information logged on an error is all the relevant information about the test

configuration at the time that the I/O was issued. This includes the job information, the

information about the request used, and the elapsed time at the time of the error. The next

section is one of the most important sections, it is the hex dump. The hex dump starts 16

bytes before and goes to 16 bytes after the broken section. NVerify prints out the hex

dump line by line with the starting offset of the line from the address the read was

performed on and then prints out the 16 bytes of data in hex values.

The log file on a success is much shorter. It displays only the overall test results.

This information includes the elapsed time, the number of disk I/O’s performed,

configuration file used, and the global result of success. Figure 6 shows a log file of a

successful run.

Figure 6 : Log of Succesful Run

 65

Appendix D – nVerify Developer’s Guide

This Manual is for the nVerify tool created in March 2006.

Brute Thread

void Go(Job *theJob, long Seed, nAllogator* DiskAllocator)
This function is the main worker of the program, it keeps the queue filled and determines
randomly which request to use and issues the writes and reads.

double * Requestparse(string RequestPercentages, int NumRequests)
This function takes in a string that has the request percentages stored in it and parses
them into an array of doubles. The input string will be of the format “30:35:35” then the
output of the function would be the numbers stored.

ReqSize *RequestSeperation(double *percentVals, int NumRequests,
Request **myReqs)
This function makes an associated array with the request percentages. For example if you
the two requests split evenly like 50:50 it would get turned into an associated array like
(50->R1, 100->R2)

ReqSize * makeRequest(string RequestPercentages, int NumRequests,
Request **myReqs)
This function calls RequestParse() then RequestSeperation() which creates the
associated array of requests with their percentages.

char *getDeviceName(bool isRaw, const char* Device)
This function creates the device name whether for filesystem (c:\\filename.txt) or raw
(\\\\.\\PhysicalDrive1)

bool randLocation(double randNum)
This function chooses to see based on a percentage passed in whether or not the write
should be to a random location.

ULONGLONG *getChunkReads(long IOSize, ULONGLONG srtaddr, long Chunks,
string device)
This function decides upon the random addresses to where the reads should happen in a
split read.

ULONGLONG *DupCheckChunk(ULONGLONG *allChunks, long IOSize, ULONGLONG
srtaddr, long Chunks)
This function ensures that when performing a split read that it does not try to read from
the same location.

ULONGLONG *SortChunks(ULONGLONG* TheChunks, long Chunks)
This function sorts the addresses where the splits should occur with regards to the split
reads.

 66

long GetBegOfReadChunk(long RPI, long QD, long numChunks)
This function returns the index of the read split that is supposed to be next, meaning if
there are three split reads and they start at 1,4,7 and the index passed in is 2 then it will
return the index 4 as the next read to check.

 67

Catcher

int closeNhandle(nHANDLE thehandle)
This is a wrapper function that will close the windows specific file handle.

nHANDLE nMutex(bool acquire,char *name)
This is a wrapper function that creates a mutex and returns the handle to it.

DWORD WaitFSO(nHANDLE hObject,DWORD timeOut)
This is a wrapper function that waits for a single handle and for specified timeout.

bool nRelease(nHANDLE hObject)
This is a wrapper function used to release the mutex.

static void PrintDebug(const char *)
This is a wrapper function ensuring that printing is done to the debugger.

static void BreakDebug(void)
This is a wrapper function ensuring that the program will break into the debugger when
called.

 68

Config Parser

Test Parse(string filename, string device)
This function opens the configuration file and parses all the data in it and puts the data
into their appropriate structures. This then returns the Test structure that holds all the
information

static long getValueNumber(string str, size_t a, size_t z)
This function takes a string and converts the string to the corresponding number returning
a long.

static double StringToDouble(string str)
This function takes a string and converts it to a double which it then returns.

static int StringToHex(const char *str, int len)
This function takes a char * and a length which are in hexadecimal and returns the integer
value of it.

static string LongToString(long num)
This function takes a long and converts it into a string which is returned.

static string nLargeIntToString(BIG_INT li)
This function converts a BIG_INT’s high part and low part into a string.

static string nLargeIntToString(ULONGLONG li)
This function converts a Ulonglong into a string.

static ULONGLONG StringToHexLL(const char *str, int len)
This function takes in a length and a char* in hexadecimal format and converts it into an
Ulonglong.

static string HexToString(ULONGLONG hex)
This function takes in a Ulonglong and converts it into a hexadecimal number contained
in a string.

static string ULLToBinary(ULONGLONG bin)
This function takes a Ulonglong and converts it to a binary string.

static char *BinaryToHex(string bin)
This function takes a string of binary numbers and converts it to hexadecimal contained
in a char *.

static string DecimalToBinary(string dec)
This takes a string of decimal numbers and converts it to a string of binary numbers.

static string IncrementDecString(string dec,long amount)

 69

This function takes in a string and adds the corresponding long and then returns the new
string created.

static ULONGLONG StringToULLDec(string num)
This function takes in a string and converts it to decimal and stores it in an Ulonglong.

void ZeroOutTest(Test *t)
This function resets the Test that is passed in to default values.

void ZeroOutJob(Job *j)
This function resets the Job that is passed in to default values.

void ZeroOutRequest(Request *r)
This function resets the Request that is passed in to default values.

 70

DeviceIO

DeviceIO(bool isRaw, char* device)
This constructor takes two arguments. The Boolean, isRaw, determines whether this
Device I/O object is going to perform requests on a raw drive or file system drive. The
string is the name of the drive / file to read from or write to.

bool nWrite(char* dataBuffer, DWORD bufSize, BIG_INT lba)
This method takes in a data buffer to write to disk, the size of the buffer, and the lba for
raw I/O and offset for file system. It returns true if there were no errors, and false if there
was an error. If DEBUG_PRINT is set, then it will print out the error code if there was an
error.

bool nRead(char* dataBuffer, DWORD bufSize, DWORD *readBytes, BIG_INT
lba)
This method takes in a data buffer to read data from disk into, the size of the buffer, and
the lba for raw I/O and offset for file system to read from. It returns true if there were no
errors, and false if there was an error. If DEBUG_PRINT is set, then it will print out the
error code if there was an error.

nHANDLE GetEventHandle()
This method returns the Event Handle which when used in Windows will signal when the
I/O has completed.

static unsigned char *AllocateBuffer(string device, long size)
This allocates a sector-aligned buffer of length size. It also takes the device so it can
determine what the proper size of a sector is on the given system.

bool GetResult()
This returns true if the I/O has completed.

bool GetBytesRead(DWORD* size)
This returns true if the method succeeds. It fills the size variable with the number of bytes
read, assuming the I/O completed.

bool GetBytesWritten(DWORD* size)
This returns true if the method succeeds. It fills the size variable with the number of bytes
write, assuming the I/O completed.

static long GetSectorSize(string device)
Returns the sector size of the drive named in the string device.

static BIG_INT GetLastAddress(string device, bool isRaw)
Returns the last possible LBA or file offset, based on whether it is raw I/O or not, and
some information queried from the disk.

HANDLE access

 71

Internal file handle used for Windows API calls ReadFile and WriteFile.

OVERLAPPED *overlap
Internal overlap data structure used for Windows API calls ReadFile and WriteFile.

 72

DPHandler

static Pattern getPattern(string name, string device)
This function creates the pattern either from a pre-specified pattern that is generated at
runtime or from a pattern file. The pattern is then returned.

static Pattern inputFilePatt(string fileName)
This function inputs the pattern from the filename that is specified.

static Pattern inputFilePattHex(string fileName, string dev)
This function inputs the pattern from the filename that is specified in the proper
hexadecimal format.

 73

Error Generator

ErrorGenerator(bool isRaw, char* device)
This constructor takes two arguments. The Boolean, isRaw, determines whether this
Device I/O object is going to perform requests on a raw drive or file system drive. The
string is the name of the drive / file to read from or write to.

void Seed(long threadID, long NumIO)
This method sets the seed for randomly choosing error generation types.

bool nWrite(char* dataBuffer, DWORD bufSize, BIG_INT lba)
This method takes in a data buffer to write to disk, the size of the buffer, and the lba for
raw I/O and offset for file system. Internally, it calls CorruptData with the size and buffer
parameter, and may randomly choose to perform address or I/O size errors. See
ERRORTYPE thisErrorGen member for more info. It then delegates the nWrite call with
the potentially modified buffer to the internal DeviceIO member. It returns true if there
were no errors, and false if there was an error. If DEBUG_PRINT is set, then it will print
out the error code if there was an error.

bool nRead(char* dataBuffer, DWORD bufSize, DWORD *readBytes, BIG_INT
lba)
This method takes in a data buffer to read data from disk into, the size of the buffer, and
the LBA for raw I/O and offset for file system to read from. Internally, it delegates the
nRead call with the unmodified buffer and may randomly choose to perform address or
I/O size errors. See ERRORTYPE thisErrorGen member for more info. It calls
CorruptData with the size and buffer parameter when the read has returned. It returns true
if there were no errors, and false if there was an error. If DEBUG_PRINT is set, then it
will print out the error code if there was an error.

void CorruptData(char* dataBuffer, DWORD bufSize)
This method takes in a data buffer, and the size of the buffer. It then randomly selects a
type of data corruption to perform (see DATACORRUPT thisDataCor member). It then
corrupts the data (assuming that NOERR was not selected), and returns.

DeviceIO* delegate
This member is the delegate DeviceIO which handles all of the underlying I/O
functionality of the Error Generation module.

ERRORTYPE thisErrorGen
This could be one of:

• ADDRESSERR
o This will create an error in the Address to transfer data to/from. It will

modify the LBA/Offset in some way similar to the errors caused in the
actual data.

• IOSIZE

 74

o This will create an error in the Size parameter for data to transfer. It will
decrease read size, or increase/decrease write size. For an increased write
size, will zero fill the increase of the buffer to allow more to be
transferred.

• RDATA
o This will create an error in the data buffer after being read. See the

DATACORRUPT thisDataCor member for more information.
• WDATA

o This will create an error in the data buffer before being written. See the
DATACORRUPT thisDataCor member for more information.

• NOERRGEN
o As its name implies, this will cause no error generation to occur.

DATACORRUPT thisDataCor
This could be one of:

• NOERR
o As its name implies, this will cause no data corruption to occur.

• GARBAGE
o This will replace the entire buffer with garbage characters that have no

relation to the prior contents.
• FLIPBITS

o This will flip the bits entirely (0x00 becomes 0xFF, etc.) of one randomly
selected byte.

• SWAP2BYTE
o This will swap two randomly chosen bytes.

• SWAP2WORD
o This will swap two randomly chosen words.

• SWAP2DWRD
o This will swap two randomly chosen double-words.

• SHLBYTE
o This will shift the entire buffer left by some number of bytes.

• SHLWORD
o This will shift the entire buffer left by some number of words.

• SHLDWRD
o This will shift the entire buffer left by some number of double-words.

• SHRBYTE
o This will shift the entire buffer right by some number of bytes.

• SHRWORD
o This will shift the entire buffer right by some number of words.

• SHRDWRD
o This will shift the entire buffer right by some number of double-words.

 75

Integrity Tester

nHANDLE ITGo(ITModule* itMod)
This returns a handle to the new IntegrityTester thread that is spawned. It is passed an
ITModule which is the queue of items to be verified which Integrity Tester pulls from,
and from which the BruteThread adds results to.

static void Test(Result *r)
The Integrity Tester thread will constantly take items from the ITModule queue, and call
Test() on them. This will do minor data verification, and on error, it will change the
Outcome to FAILURE and call the Triage Mode.

static TYPE FinalOutcome()
This returns the FinalOutcome shared among all the Integrity Testers. If one finds a
failure, the whole test is a failure.

static TYPE Outcome
The internal data member that stores the final Outcome of the test – Success or Failure.

 76

IOControl

static void nPuts(string str)
This function outputs a string with a newline.

static void nPuts(Pattern *p)
This function outputs the Pattern structure in the form of:
Pattern : DATA
Message : DATA

static void nPuts(Result *r)
This function outputs the Result structure in the form of:
THE REQUEST:
THE PATTERN:
Result: DATA
Device: DATA
ID: DATA
NumIO: DATA
QueueDepth: DATA
TimeElapsed: DATA

static void nPuts(LogEntry *le)
This function outputs the LogEntry structure in the form of:
ERROR
ID = DATA
Address = DATA
Device = DATA
NumIO = DATA
PatternName = DATA
PatternSize = DATA
THE REQUEST:
ElapsedTime = DATA

static void nPuts(Summary *s)
This function outputs the Summary structure in the form of:
Results
Overall result was a DATA
The test was performed on DATA
The test ran for DATA
The test performed DATA
The test used DATA
The test wrote log to DATA
The test used DATA as the Random Number Seed.
Test performed on DATA

 77

static void nPuts(Test *t)
This function outputs the Test structure in the form of:
RunTime : DATA
LogFile : DATA
JOB DATA…

static void nPuts(Job *j)
This function outputs the Job structure in the form of:
PATTERN DATA
REQUEST DATA
Device : DATA
NumRequests : DATA
Runtime : DATA
QueueDepth : DATA
ID : DATA
ReqPercentages : DATA
Repetitions : DATA
isRaw : DATA

static void nPuts(Request *r)
This function outputs the Request structure in the form of:
name : DATA
startAddr : 0x DATA
endAddr : 0xDATA
RAND : DATA
Add Increment : 0x DATA
IOsize : DATA

static string nGets()
This function inputs a string with cin and returns it.

 78

IT Module

ITModule(int)
Proper constructor. Parameter is the depth of the queue of Result structures to verify.

int getQueueSize()
Returns the size of the queue.

bool addQueueItem(Result *x)
Adds an item to the queue to be verified. Increments the curDepth member. The queue is
implemented as a linked list.

Result* getNextQueueItem()
This removes an item from the queue and returns it, decrementing the curDepth member.

bool getStatus()
Returns the status of whether or not the queue should be quitting. This is set from
BruteThread when it wants to communicate to Integrity Tester to stop.

void setFlag(bool status)
BruteThread uses this to inform Integrity Tester to stop.

Node* head
The head of the linked list used for the queue.

Node* tail
The tail of the linked list used for the queue.

int queueDepth
The max size of the queue.

int curDepth
The current size of the queue.

bool dontQuit
The current status as to whether or not Integrity Tester should quit. It checks this status
while removing items from the queue.

 79

Nallogator

nAllogator(int size)
This is the constructor of nAllogator that takes in the number of Jobs (the number of
threads) in the Test and creates the nAllogator object.

ULONGLONG nAlloc(ULONGLONG begin,ULONGLONG limit, ULONGLONG length,
long threadID, long serial, bool isRAND, ULONGLONG lastLocation,
ULONGLONG AddIncrement)
This function returns start the address of allocated section with < 0 indicating an error.

int deNAlloc(ULONGLONG start, ULONGLONG length, long threadID, long
serial)
This function will de-allocate the space that was allocated to that particular request. It
returns 0 on success, -1 on not found, and -2 if there is an unknown error.

void PrintOut()
This function prints out the hash table of all the used blocks.

void RemoveThread(long threadID)
This function effectively removes a thread from the hash.

void ResetHighLow(long threadID)
This function resets the entries highest and lowest variables for the particular thread ID.

ULONGLONG FindChunk(long threadID,ULONGLONG start,ULONGLONG end)
This function checks if the memory group chosen is free to be used.

void DestroyLL(node *n)
This function destroys the hash table that is passed in.

HKey **hash
This is the member variable that contains the hash table.

int numThreads
This is the member variable that contains how many threads there currently is.

nHANDLE m
This is the member variable of the file handle to the mutex.

catcher mut
This is the mutex object that is used to lock the nAllogator class.

 80

Pattern

Pattern(string dev)
This is the constructor that takes in the device name and sets up all the appropriate default
values for the pattern class.

void setSize(long size)
This function sets the size of the private data member mySize.

long getSize()
This function returns the value of the mySize private data member.

char *getNextSegment(long size)
This function returns the next segment of pattern with the given length passed in as the
parameter.

char *getNextSegment(int start,long size)
This function returns the next segment of pattern with the given length passed in and the
start location of the pattern as the parameters.

char *getLBASegment(string start,long IOsize,long serial,string device)
This function generates an LBA pattern with the iosize and serial number specified.

char *makeLBAPattern(string lba,long serial, long offset)
This function makes the LBA pattern with the specified parameters.

int getIndex()
This function returns the value of the private data member lastLocation.

int lastLocation
This private data member stores the last location in the pattern that was generated.

int mySize
This private data member stores the size of the pattern that is to be generated.

string device
This private data member stores the device to operate on.

 81

Scribe

Scribe(string filename)
This function calls PrepareLog and creates the scribe mutex object.

void Log(LogEntry *le)
This function locks the mutex then outputs the log entry to the log which includes the
invalid tag and all information included (request, runtime, pattern information, device,
address, ID, etc.) with an invalid tag and it also outputs to the debugger if that option is
specified.

void PrepareLog(string filename)
This function adds the opening XML tags needed to the log file.

void Log(Test *t)
This function locks the mutex then outputs the Test tag and all appropriate information
with that (all the jobs, runtime, logfile). It also outputs this same information to the
debugger.

void Log(Summary *s)
This function locks the mutex then outputs the success attributes and information to the
log (overall results, device, elapsed time, total number of IOs, configuration, log-file,
seeed, and date). It also outputs this same information to the debugger.

void Log(const char *str, long length)
This function locks the mutex then outputs char by char to the log-file the distance
specified by the length that is passed in as an argument.

void Close()
This function adds the closing </log> tag and close the log-file. It also closes the mutex
as well.

void Log(Pattern *p)
This function locks the mutex then outputs the pattern tag and the pattern message. It also
outputs this same information to the debugger.

void Log(Result *r)
This function locks the mutex then outputs the result tag and all appropriate information
with that (address, time elapsed, total number of IOs, device, ID, and queue depth). It
also outputs this same information to the debugger.

void Log(Job *j)
This function locks the mutex then outputs the Job tag and all appropriate information
with that (the requests, device, number of requests, runtime, queue depth, ID, request
percentages, and repetitions). It also outputs this same information to the debugger.

void Log(Request *q)

 82

This function locks the mutex then outputs the Request tag and all appropriate
information with that (name, randomness of addresses, start address, end address, address
increment, and IO size). It also outputs this same information to the debugger.

nHANDLE m
This is the private data member that is the handle to the mutex object.
catcher mut
This is the private data member that holds the mutex object.

 83

ThreadManager

void SetTest(Test *t)
This function sets the Test passed in for the ThreadManager to use.

nHANDLE Go()
This function launches the thread for the ThreadManager and returns the handle to it.

void Stop()
This function sets the global kill status for ThreadManager to TRUE.

string GetLogFile()
This function returns the name of the log-file that is to be written to.

static bool Kill_Status
This member variable holds the global kill status for all the threads under the
ThreadManager.

static long Finished_Threads
This member variable is a counter that stores all the threads that have finished.

static long TotalIOs
This member variable is a counter that stores the total number of I/Os that were done.

static long RSeed
This member variable stores the random seed value.

static bool PauseTest
This member variable stores whether the program should stop on errors or continue.

static bool Debug
This member variable stores whether the debugger option is on or off.

static Test myTest
This member variable holds the Test structure that is used by the ThreadManager class.

 84

ThreadWrap

nHANDLE managerGo(Test *t)
This is a win32 specific function that sends the Test structure to the ManagerThread. A
handle is returned that is the handle to thread that is the ManagerThread.

static long WINAPI wrkThread(LPVOID lParam)
This win32 function calls the BruteThread and will perform the main work of the
program.

static long WINAPI ManagerThread(LPVOID lParam)
This is the win32 thread declaration for the ManagerThread. This thread breaks the jobs
up and sends them to their own wrkThreads.

 85

TriageNurse

TriageNurse(string log)
This is the constructor that sets the private data member logFile.

void Admit(Result *r,char* testPatt)
This function is where the actual error analysis is done when there is a mis-compare. The
data that is passed in through the result structure is re-read a number of times to
determine what has gone wrong. This function calls the Compare2 function.

void ZeroOutLogEntry(LogEntry *l)
This function clears the LogEntry data structure that is passed in.

static void ConvertTime(double dtime, char *time)
This function converts the time into an output that is of the following format:
Hrs:mins:secs

void LogMisCompare(Result *r, char *dataRead, char* testPatt, long
mis_start, long mis_end)
This function is the function that outputs to the log on a mis-compare, it stores the
pertinent information about the mismatched data into a string and then sends that to be
logged. The expected data and the actual data is logged here.

bool Compare2(bool logIt,Result *r, char *latest, char* testPatt, DWORD
BytesRead)
This function checks to see if the # of bytes read is equal to what is written then it outputs
what extra it has read. It also calls the function LogMisCompare.

string logFile
This is the private data member that stores the name of the log-file.

