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Abstract

The advances in hardware, software, and networks have enabled applications

from business enterprises, scientific and engineering disciplines, to social net-

works, to generate data at unprecedented volume, variety, velocity, and var-

sity not possible before. Innovation in these domains is thus now hindered

by their ability to analyze and discover knowledge from the collected data in

a timely and scalable fashion. To facilitate such large-scale big data analyt-

ics, the MapReduce computing paradigm and its open-source implementation

Hadoop is one of the most popular and widely used technologies. Hadoop’s

success as a competitor to traditional parallel database systems lies in its sim-

plicity, ease-of-use, flexibility, automatic fault tolerance, superior scalability,

and cost effectiveness due to its use of inexpensive commodity hardware that

can scale petabytes of data over thousands of machines. Recurring queries,

repeatedly being executed for long periods of time on rapidly evolving high-

volume data, have become a bedrock component in most of these analytic

applications. Efficient execution and optimization techniques must be de-

signed to assure the responsiveness and scalability of these recurring queries.

In this dissertation, we thoroughly investigate topics in the area of recurring

query processing on big data.

In this dissertation, we first propose a novel scalable infrastructure called

Redoop that treats recurring query over big evolving data as first class citi-

zens during query processing. This is in contrast to state-of-the-art MapRe-



duce/Hadoop system experiencing significant challenges when faced with re-

curring queries including redundant computations, significant latencies, and

huge application development efforts. Redoop offers innovative window-

aware optimization techniques for recurring query execution including adap-

tive window-aware data partitioning, window-aware task scheduling, and inter-

window caching mechanisms. Redoop retains the fault-tolerance of MapRe-

duce via automatic cache recovery and task re-execution support as well.

Second, we address the crucial need to accommodate hundreds or even thou-

sands of recurring analytics queries that periodically execute over frequently

updated data sets, e.g., latest stock transactions, new log files, or recent

news feeds. For many applications, such recurring queries come with user-

specified service-level agreements (SLAs), commonly expressed as the max-

imum allowed latency for producing results before their merits decay. On

top of Redoop, we built a scalable multi-query sharing engine tailored for re-

curring workloads in the MapReduce infrastructure, called Helix. Helix de-

ploys new sliced window-alignment techniques to create sharing opportuni-

ties among recurring queries without introducing additional I/O overheads or

unnecessary data scans. Furthermore, Helix introduces a cost/benefit model

for creating a sharing plan among the recurring queries, and a scheduling

strategy for executing them to maximize the SLA satisfaction.

Third, recurring analytics queries tend to be expensive, especially when query

processing consumes data sets in the hundreds of terabytes or more. Time

sensitive recurring queries, such as fraud detection, often come with tight

response time constraints as query deadlines. Data sampling is a popular

technique for computing approximate results with an acceptable error bound

while reducing high-demand resource consumption and thus improving query



turnaround times. In this dissertation, we propose the first fast approximate

query engine for recurring workloads in the MapReduce infrastructure, called

Faro. Faro introduces two key innovations: (1) a deadline-aware sampling

strategy that builds samples from the original data with reduced sample sizes

compared to uniform sampling, and (2) adaptive resource allocation strategies

that maximally improve the approximate results while assuring to still meet

the response time requirements specified in recurring queries.

In our comprehensive experimental study of each part of this dissertation, we

demonstrate the superiority of the proposed strategies over state-of-the-art

techniques in scalability, effectiveness, as well as robustness.
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1

Introduction

1.1 Background

The advances in hardware, software, and networks have enabled applications from busi-

ness, government, to science to generate data at unprecedented volume, variety, velocity,

and varsity—aka so called ‘big data’. Some innovations in these domains are poised to be

unleashed if only truly effective methods were available to analyze and discover knowl-

edge from the collected data in a timely fashion. To keep pace, major research and de-

velopment efforts are now being devoted to facilitate such big data analytics. This ranges

from designing new processing infrastructures [1, 2, 3, 4], query languages [5, 6], query

optimization algorithms [7, 8, 9], and workflow management systems [10, 11, 12, 13, 14],

to scalable data mining tools [15, 16, 17, 18, 19, 20]. Among the proposed infrastruc-

tures, the MapReduce computing paradigm [1, 21] and its open-source implementation

Hadoop [2, 22] have emerged as popular, widely used technologies for cloud-scale data

analytics [23, 24, 25, 26, 27]. Hadoop’s success as a competitor to traditional parallel

database systems [28, 29] lies in its simplicity, flexibility, automatic fault tolerance, supe-

rior scalability, and cost effectiveness due to its use of inexpensive commodity hardware
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1.1 BACKGROUND

that can scale to petabytes of data over thousands of machines—while being open-source

and thus inexpensive.

Existing techniques for big data analytics target batch processing of data [30, 31, 32,

33, 34, 35, 36, 37]. However, with the increasing variety of applications generating big

data at an unprecedented velocity others aim to consume such data in a near instantaneous

fashion to gain their competitive advantage. The required analytical needs far outpace this

traditional offline batch processing mode. To achieve high responsiveness yet handle big

data, we require technology that is highly optimized for these new demanding workloads.

In particular, we now introduce a critical class of queries, called “recurring queries”,

prevalent in most cloud-based large-scale applications. Yet these queries are not naturally

supported by state-of-the-art systems [38, 39, 40].

Recurring queries are common in applications from log processing [41], news feed

updates [42], to social networks [42]. Such queries collect huge volumes of fresh data (in

TBs per hour or day) to be continuously integrated into deep data analytics. As a result,

these applications tend to re-execute over and over similar or even identical analytical

queries on regularly refreshed subsets of a big data feed, e.g., the last 24-hour window of

a click stream. Even more challenging, complex analytics warrant analyzing the data at

different time granularities ranging from offline batch-processing jobs, recurring jobs that

repeat periodically consuming the last n hours, days, or even a month’s worth of data, to

responsive ad-hoc jobs that rely on the delivery of faster results at the expense of accuracy

and completeness.

As we will highlight in the motivating examples below, recurring queries are not only

extremely commonplace across applications critical to our modern economic landscape,

but they also form huge workloads characterized by combined characteristics from both

real-time continuous queries and offline ad-hoc queries. These recurring workloads de-

mand tremendous resources in terms of CPU processing time, responsiveness, and mem-
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1.2 MOTIVATION

ory utilization, putting an unsustainable strain on modern infrastructures and computing

costs of a company’s budget. This warrants the need for the development of customized

solutions that uncover and then leverage unique optimization opportunities tuned to re-

curring query models, as we explore in this dissertation.

1.2 Motivation

Example 1.1 (Clickstream Analytics For Online Advertisement) One of the core ap-

plications of Internet-based companies is clickstream analysis, where companies (acting

as brokers) build models, e.g., statistical linear regression or decision trees, that capture

the relationship between companies hosting websites (called publishers), companies ad-

vertising and selling products on the publishers’ websites (called advertisers), and the

end-users visiting the websites and buying products. These predictive models are used for

deciding, within a few milliseconds, which advertisement to display on a website upon

observing a user’s browsing history. The up-to-date maintenance of these models is typ-

ically achieved by recurring queries, e.g., a query executes every day to process the last

week or two of data (in order of 100s of TBs) to update the predictive model within a

user specified time. Companies like Amazon and eBay rely on the speed in which they can

produce and apply the refreshed models to their product recommendations.

In this dissertation, we set out to develop an infrastructure that supports recurring

queries as first-class citizens in Hadoop without sacrificing any of its core processing

paradigms.

Example 1.2 (LinkedIn’s News Feed Updates) On modern consumer websites, news feed

generation is nowadays driven by online systems. In spite of the complexity of the involved

analytical processing, it is still far from optimized due to the lack of superior technology.

Online news services may be generated on a per-member basis based on the member’s

3



1.2 MOTIVATION

Figure 1.1: LinkedIn inMap

interactions with other components in the system. For example, a LinkedIn member may

receive periodic updates on their connection changes (as depicted in Figure 1.1). Com-

puting these updates involves deep analytical processing of large-scale data sets across

multiple sources. To generate an update highlighting the company in which most of a

member’s connections have worked in the past month requires joining the companys data

of various profiles. The update is often delivered to the members by the end of each day

or each week. Such updates could clearly be expressed by recurring queries running over

evolving data sources. Freshness of results dictated by frequency of updating is to a large

degree limited by the processing speeds and resource availability to churn through the

data. Hundreds or even thousands of similar and possibly sharable recurring queries

may be executed over evolving data on a multi-tenant system every day. Consider the

following three recurring queries.

• Q1: A company recruiter attempts to find candidates that she may know based on

her connections for job references. She wants to be updated about new potential

candidates having sufficiently strong connections made in the past week (window
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w). The query will be issued every morning (slide s), and the results will have the

highest utility if returned within 5 minutes (Service Level Agreement constraint,

SLA in short) such that she can refine her search and quickly identify potential

candidates before moving on to other tasks.

• Q2: A LinkedIn member is searching for openings from companies at which his

connections work. He subscribes to a daily service from LinkedIn indicating that

he wants to be alerted about attractive new positions shortly after they appear on

the job market (say within 1 hour or latest by end of day).

• Q3: LinkedIn data scientists design a mining application that detects emerging pat-

terns from online discussion groups over the last 10 days (window w). They would

like to find out the most sought-after skills required by mining job openings at the

big data companies. The identified skills should be updated on a daily basis (slide

s), and the results should be produced within 2 hours (SLA constraint) such that

other predictive models can consume these results and decide on the recommenda-

tions to provide to LinkedIn service subscribers.

The above queries differ in their requirements and constraints, e.g., the SLA require-

ments vary significantly. In this dissertation, we tackle the problem of handling recurring

queries with diverse window constraints and SLA requirements.

Example 1.3 (Social Media Log Processing) As a third example, consider analytics on

social media ranging from discovering emerging topics of interest, unusual events related

to political unrest or other dangerous indicators, new trends in customers’ behaviors, or

geographical interest in a certain subject or product. Scalable log processing is critical

for running large-scale web sites and offering advanced services. With the current log

generation rates in the order of 1-10MB/s per machine, a single data center may col-

lect 10s of TBs of log data per day [41]. For example, social-media networks such as

5
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Facebook and Twitter process several TBs of log data per day by pulling continuously

generated data from hundreds to thousands of machines, loading them into HDFS, and

then running a large variety of data-intensive jobs on a large Hadoop cluster [43]. A

representative recurring query that may be run periodically, e.g., every 12 hours or once

a day, is to aggregate the log data from the recent past, e.g., last few days, over different

dimensions, e.g., age, gender, or country to detect emerging patterns as illustrated in Q4.

Such query may involve expensive join and grouping operations repeatedly applied over

high-volume evolving and overlapping data sets.

Q4: SELECT COUNT(connections)

FROM Users

WHERE graduation = ’2008’

GROUP BY location

WINDOW = 6 DAYS, SLIDE = 12 HOURS

WITHIN = 5 MINUTES

Computing the exact results for the above query consumes substantial computational

resources over large-scale data sets. However, the relative popularity and overall trend

(i.e., profile views rising) are often more important than the exact connection count. Thus,

generating approximated results while saving resources and/or budgets paid to service

providers is often a desirable goal. In this dissertation, we tackle the problem of strategi-

cally choosing an appropriate set of samples to maximize the accuracy of the result within

a specified time deadline of the recurring query.

1.3 State-Of-The-Art Techniques

We briefly discuss the state-of-the-art and its respective shortcomings in meeting the re-

quirements identified in Chapter 1.4, while a detailed discussion of related work is pre-
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sented in Chapters 8, 12, and 17.

1.3.1 Recurring Query Support on MapReduce

Recently, extensions to Hadoop have been proposed, most notably, Nova [44] and Apache

Oozie [45], to address some of the requirements of the above applications. However, they

remain far from providing an end-to-end optimized system for supporting multi-granular

recurring workloads. Apache Oozie [45] is a workflow scheduler that provides partial

support by enabling developers to write scripts for automatic scheduling of jobs. Using

this, end-users would no longer need to re-issue the recurring query over and over man-

ually, but instead have it kicked off in an automated fashion. However, Apache Oozie

does not provide any system-level optimizations for the executing queries. The Nova [44]

system is one step closer to our objective as it offers incremental processing over new

batches of data. However, Nova uses the Hadoop platform as a black-box system. It thus

falls short in providing any critical system-level optimizations, from offering caching of

intermediate data for reuse, cache-aware task scheduling, to adaptive or proactive pro-

cessing needed to support variations in data selectivities or in input data rates.

Several recent systems have also been proposed to support in-memory processing on

top of Hadoop including the M3R [46], SOPA [47], C-MR [48], and In-situ (iMR) [41]

systems. In general, these systems focus on changing the disk-based processing inher-

ent in Hadoop into memory-based real-time processing. However, they could fall short

to the disk-based recurring queries due to the huge volume of the data source. In this

dissertation, we first aim to provide support for recurring queries as first-class citizen in

Hadoop.

7
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1.3.2 Multi-Query Optimization on MapReduce

Quite often multiple recurring queries are initiated at overlapping time intervals and need

to be processed over the same sub-stream of data. In such cases, it is possible that two

or more queries need to perform the same processing over the same data. In MapReduce,

such queries would be processed as independent jobs, thus resulting in redundant process-

ing. As an example, consider two queries that need to scan the same query log, one trying

to identify frequently accessed pages and another performing data mining on the activity

of specific IP addresses. To alleviate this shortcoming, queries with similar tasks should

be identified and processed together in a batch. In addition to sharing common process-

ing, result sharing is a well-known technique that can be employed to eliminate wasteful

processing over the same data. This problem of sharing the queries’ execution has been

recognized in the context of Hadoop in the recent literature [38, 40, 49]. However, these

techniques neither consider the recurring query spectrum, multiple time horizons, nor

proactive time slicing to address SLA concerns.

On the other hand, recent efforts in SLA-aware MapReduce techniques [50, 51, 52]

either dynamically adjust resource allocation or exploit profiling to help jobs provision

resources statically at startup. However, none of these efforts consider sharing among

multiple map-reduce jobs. Moreover, they do not address challenges specific to recurring

queries, e.g., understanding window semantics, incremental processing, and intermediate

data reuse across the consecutive execution of a recurring query. All of these issues will

be at the core of the dissertation.

1.3.3 Approximate Query Processing on MapReduce

Recurring queries are a typical requirement of applications that involve analysis of mas-

sive data sets, as in the case of scientific data. Instead of issuing recurring queries on the

8
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complete data set that would entail long waiting times and potentially non-useful results,

it would be useful to execute such queries on small representative parts of the data set

and return approximate results fast. However, MapReduce does not provide an explicit

way to support quick retrieval of indicative results by processing on representative input

samples.

Recent extensions to Hadoop, e.g., MapReduce Online [53], EARL [54] and Ap-

proxHadoop [55], have been proposed to provide approximate results for these analytical

applications on massive data sets to satisfy the time and resource constraints. EARL [54],

utilizing uniform sampling, computes samples until a given level of accuracy is reached.

ApproxHadoop [55] exploits input data sampling and task dropping for MapReduce jobs.

MapReduce Online [53] focused on implementing online aggregation in MapReduce by

producing aggregated results with its corresponding error bound and confidence.

However, none of these efforts target recurring queries. Thus they do not leverage the

recurring query semantics to optimize the execution of this important class of queries, e.g.,

understanding window semantics, incremental sample updates, and progressive result re-

finement across consecutive executions of a recurring query. This may lead to inefficient

sampling, wasting precious computational resources, and poor result accuracy. Hence,

we address the imperative need of seamlessly integrating approximate query processing

with recurring query execution in this dissertation.

1.4 Research Challenges Addressed in This Dissertation

Various challenges exist in improving the performance of recurring queries on MapRe-

duce as illustrated in Figure 1.2. These challenges include how the evolving data sources

are accessed by the recurring query processing system, how does the system effectively

avoid redundant processing, does the system provide a way to terminate the execution
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Figure 1.2: Challenges of MapReduce Improvements for Recurring Query Processing

early when certain criteria are met, how efficiently the system makes its resource alloca-

tion decision at runtime, is the system capable of supporting interactive real-time process-

ing, and more. My dissertation mostly focus on tackling these three big challenges. In

this dissertation, we tackle several key challenges in addressing the three research topics.

We highlight these challenges as follows.

Supporting Recurring Queries over Evolving Data Sources. Recurring queries

pose unique challenges because they inherit properties from both continuous queries (in

stream processing systems) and ad-hoc queries (in batch processing systems). As mo-

tivated by the examples in Chapter 1.2 and in Figure 1.3, recurring queries are similar

to continuous queries in that both are long-lived, re-execute periodically over the in-

coming data, have the notion of sliding windows, and process (possibly) large segments

of overlapping data. On the other side of the spectrum, batch-processing systems, e.g.,

Hadoop [2], are well-designed for scalability and disk-based processing, both are com-

mon properties for recurring and ad-hoc batch queries.

However, recurring queries do not always mandate real-time millisecond processing

which is the main focus of continuous query processing [56, 57]. Instead, they tend to

have a larger granularity of execution, e.g., they may execute once every hour or every

day. Also, they may return the results within a certain period of time, e.g., few minutes

to a couple of hours. Hence, a query may remain idle for longer periods of time. Batch-
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processing systems, on the other hand often lack the notion of recurring execution, sliding

windows, and overlapping data sets. Hence, they fall short in providing dedicated support

that takes advantage of the unique properties from incremental to overlapped processing.

It is apparent that unique optimization opportunities abound, ranging from detecting

overlapping computations across consecutive executions to deploying caching techniques.

Taking on such opportunities in a single system could reap huge benefits with respect to

performance, cost, and computing resources, bringing challenging workloads into the

realm of feasibility.

Sharing the Processing of Multiple Recurring Queries. Multi-recurring query shar-

ing in MapReduce has been established as an NP-hard problem [40]. Our problem is more

challenging due to the following combined characteristics:

• Unmatched Scope of Interest. The scope of interest (window w) and execution

frequency (slide s) of recurring queries may not be well aligned. Hence sharing recurring

queries involving identical (or similar) map-reduce jobs may not always be beneficial due

to their differences in time and scope granularities.

• Variation in SLA Requirements. Each query has its own SLA parameter. This

may prevent queries from fully sharing their execution with others−even if the other

constraints are matching. That is, grouping queries without differentiating their SLAs

may contradict their respective high-responsiveness requirements.

11
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• Processing Evolving Data Sets. Existing shared execution techniques in MapRe-

duce [38, 40] assume that the inputs to their map-reduce jobs are static. In contrast,

recurring queries consume evolving data sets and do not exhibit this convenient property

of static inputs. Since the volume of the newly arriving data for a given query can have

significant fluctuations, the optimization and sharing techniques are further complicated

by having to adapt over time.

Approximate Recurring Query Processing. As motivated in Chapter 1.2, there are

two main challenges that must be overcome for efficient approximate recurring query

processing as summarized below:

• Variances in Recurring Workloads. Under the recurring query model, the underly-

ing data source is continuously evolving with new batches. Thus the sample should be

maintained up-to-date with continuous refinement. However, rebuilding a new sample

from scratch upon the evolving data would incur significant and at times unacceptable

overhead, especially when the query recurrence is frequent. A common approach to cir-

cumvent this overhead is to incrementally update the current sample. However, variances

of the input data sources over time can result in temporary load spikes. Hence it may not

always be possible to update samples by the previously used sampling strategy within the

query deadline.

• Resource Allocation for Different Sampling Purposes. Given recurring queries have

deadlines by which to deliver the results, their approximate executions require a resource

allocation strategy to decide how many resources to assign to each execution depending

on the query deadline and the evolving data set. These executions may serve different

purposes, such as sampling newly arriving data to update the existing samples or sampling

certain portion of the existing data sets not yet sampled to refine the existing samples.

Decisions in favor of one goal have ramification on the other, potentially forcing us to

reconsider execution decisions for the rest of the to-be scheduled executions. As we
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will show, the resource allocation problem in this recurring context is NP-complete and

requires efficient heuristics to make appropriate decisions adaptively at run-time.

1.5 Proposed Solutions

In this dissertation, we thoroughly investigate solutions to address the challenges listed in

Chapter 1.4 in the context of recurring query processing. We extend the state-of-the-art

infrastructure to meet the needs derived from our motivating examples. As depicted in

Figure 1.4, our main focus lies on the recurring query optimization and runtime within

the recurring query processing architecture. The main contributions of this dissertation

include the following.

Supporting Recurring Queries in Hadoop. We propose a new system called Redoop

that is designed to support recurring queries. Redoop extends the Hadoop platform to

exploit the optimization opportunities from recurring queries. This part of the dissertation
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work contributes to research in the recurring query processing in the following ways:

1. We establish the recurring query model to cover a wide spectrum of execution gran-

ularities. In particular, it is specified by a window size and execution frequency. Re-

doop is designed to efficiently handle recurring queries through a best-effort proac-

tive execution mechanism, where it adaptively detects fluctuations in the data rate

between different executions and proactively starts performing partial processing to

deliver results.

2. We design adaptive window-aware partitioning techniques for splitting the input

data into fine-grained data units (called panes) customized for effective window-

centric data consumption. The adaptive partitioning reduces or even eliminates

costs of the repeated reading and loading of partially overlapping panes across win-

dows.

3. We provide techniques to cache the intermediate data at different stages of a MapRe-

duce job and to create re-use opportunities across the subsequent execution of recur-

ring queries. The caching mechanism significantly reduces I/O costs by avoiding

unnecessary re-loading, re-shuffling, and re-computation of the overlapping data.

4. We propose an advanced window-aware task scheduler that exploits cache locality

and resource usage in the system. This scheduler is tuned to maximize the utiliza-

tion of the available caches and to balance the workload on each node to boost the

system’s performance.

5. Experimental Evaluation: We evaluate Redoop using real-world data sets on a va-

riety of recurring workloads. Redoop outperforms Hadoop in all cases by a factor

of up to 9 on average.
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Shared Execution of Recurring Workloads. We propose a new system called He-

lix, the first MapReduce-based infrastructure for shared execution of recurring workloads

under SLA-constraints. Given a workload composed of recurring queries and their asso-

ciated window and SLA constraints, Helix constructs a global shared execution plan over

the evolving data sources. Helix first deploys sliced window-alignment techniques to dis-

cover sharing opportunities among the recurring queries. It then models the problem as

the stochastic knapsack problem with uncertain weights. Helix divides the optimization

problem into two interleaved phases: (1) Creating a potential sharing plan that divides

the queries into groups, and (2) Computing an execution scheduling for the groups within

the given sharing plan. Helix iterates over these two phases and prunes the sub-optimal

solutions as early as possible until it reaches an optimized shared execution plan for all

recurring queries in one pass. This approach enables Helix to maximize the overall SLA

satisfaction of the given recurring queries, while concurrently reducing the resources con-

sumed due to shared execution. Our contributions in the area of multi-recurring query

optimization thus are:

1. We formulate the problem of optimizing multiple recurring queries in MapRe-

duce. We incorporate the queries’ properties, e.g., window semantics, and SLA

constraints, into the interleaved sharing and scheduling algorithms.

2. We propose techniques for solving the unmatched scope of interest problem over

evolving data sources. We introduce the sliced window alignment strategy for pre-

processing and partitioning the data into smaller segments. These techniques not

only align queries for better sharing, but also reduce costs associated with the re-

peated loading costs among overlapping windows.

3. We develop an SLA-driven optimizer that generates an execution plan for a given

set of recurring queries which maximizes the overall SLA satisfaction. The opti-
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mizer exploits a Branch-and-Bound search strategy with various pruning strategies

that effectively prune sub-optimal solutions as early as possible from the exponen-

tial search space, rendering the search tractable in practice.

4. We build the Helix prototype engine on top of the open-source Hadoop platform.

Our experimental study using real-world datasets demonstrates that Helix consis-

tently outperforms state-of-the-art techniques. In many cases, Helix achieves an

order of magnitude improvement in satisfying the SLAs by leveraging recurrence

specific sharing decisions.

Approximate Recurring Queries Processing. We propose a new system called Faro

to provide fast approximate recurring query processing. Given a workload composed of

recurring queries and their associated window constraints, Faro maximizes query preci-

sion by dynamically and adaptively making the best use of available resources within

the given deadline specification. Faro collects offline execution statistics about the input

data by piggybacking their computation with other tasks. Based on the statistics, Faro’s

deadline-bound sampling strategy aims to maximize result accuracy for query executions

while best meeting the deadline requirements of recurring queries. Faro further adap-

tively allocates resources to approximation-based tasks to update existing samples and to

progressively refine the result accuracy. Our key contributions include:

1. We formulate the problem of optimizing approximate recurring query processing

in MapReduce. We incorporate the queries’ properties, e.g., window semantics and

time-based deadlines, into the adaptive approximation problem formulation.

2. We propose a deadline-bound sampling strategy for approximate recurring query

processing. The proposed technique integrates equi-depth partitioning and multi-

stage sampling to compute approximate results with error bounds. It not only pro-
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vides maximum result accuracy for each individual recurring query execution, but

also reduces the repeated sampling costs incurred by overlapping windows.

3. We develop new adaptive resource allocation mechanisms that progressively im-

prove the existing samples when recurring queries have overlaps of inputs between

consecutive executions. These mechanisms offer remarkable flexibility for choos-

ing appropriate executions to refinement query results while saving computation

resources for rebuilding samples without sacrificing result accuracy.

4. We build the Faro system on top of the open-source Hadoop platform. Our exper-

imental evaluation using real-world data sets demonstrates that Faro consistently

outperforms the state-of-the-art techniques by 14 fold. In many cases, Faro not

only speeds up the execution, but also improves the results’ accuracy due to the

efficient utilization of resources.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 first provides the back-

ground and preliminary materials needed for this dissertation. We then discuss in de-

tail the three research topics of this dissertation, namely supporting recurring queries in

Hadoop, shared execution of recurring workloads, and processing of approximate recur-

ring queries, in Part I (Chapters 3-8), Part II (Chapters 9-12), and Part III (Chapters 13-17)

respectively. The discussion of each of the three research topics includes the problem for-

mulation and analysis, description of the proposed solution, experimental evaluation, and

lastly a discussion of related work. Chapter 18 concludes this dissertation and Chapter 19

discusses possible future work.
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2

Preliminary

2.1 MapReduce Basics

MapReduce [1] is a framework for parallel processing of massive data sets. A job to

be performed using the MapReduce framework has to be specified as two phases: the

map phase as specified by a Map function (also called mapper) takes key/value pairs

as input, possibly performs some computation on this input, and produces intermediate

results in the form of key/value pairs; and the reduce phase which processes these results

as specified by a Reduce function (also called reducer). The data from the map phase are

shuffled, i.e., exchanged and merge-sorted, to the machines performing the reduce phase.

It should be noted that the shuffle phase can itself be more time-consuming than the two

others depending on network bandwidth availability and other resources.

In more detail, the data are processed through the following 6 steps as illustrated in

Figure 2.1:

1. Input reader: The input reader in the basic form takes input from files (large blocks)

and converts them to key/value pairs. It is possible to add support for other input

types, so that input data can be retrieved from a database or even from main mem-
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Figure 2.1: MapReduce Dataflow

ory. The data are divided into splits, which are the unit of data processed by a map

task. A typical split size is the size of a block, which for example in HDFS is 64

MB by default, but this is configurable.

2. Map function: A map task takes as input a key/value pair from the input reader, per-

forms the logic of the Map function on it, and outputs the result as a new key/value

pair. The results from a map task are initially output to a main memory buffer, and

when almost full spill to disk. The spill files are in the end merged into one sorted

file.

3. Combiner function: This optional function is provided for the common case when

there is (a) significant repetition in the intermediate keys produced by each map

task, and (b) the user-specified Reduce function is commutative and associative.

In this case, a Combiner function will perform partial reduction so that pairs with

same key will be processed as one group by a reduce task.

4. Partition function: As default, a hashing function is used to partition the intermedi-

ate keys output from the map tasks to reduce tasks. While this in general provides

good balancing, in some cases it is still useful to employ other partitioning func-

tions, and this can be done by providing a user-defined Partition function.

5. Reduce function: The Reduce function is invoked once for each distinct key and
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is applied on the set of associated values for that key, i.e., the pairs with same

key will be processed as one group. The input to each reduce task is guaranteed

to be processed in increasing key order. It is possible to provide a user-specified

comparison function to be used during the sort process.

6. Output writer: The output writer is responsible for writing the output to stable

storage. In the basic case, this is to a file, however, the function can be modified so

that data can be stored in, e.g., a database.

As can be noted, for a particular job, only a Map function is strictly needed, although

for most jobs a Reduce function is also used. The need for providing an Input reader and

Output writer depends on data source and destination, while the need for Combiner and

Partition functions depends on data distribution.

Hadoop [2] is an open-source implementation of MapReduce, and without doubt, the

most popular MapReduce variant currently in use in an increasing number of prominent

companies with large user bases, including companies such as Yahoo! and Facebook.

Hadoop consists of two main parts: the Hadoop distributed file system (HDFS) and

MapReduce for distributed processing. As illustrated in Figure 2.2, Hadoop consists of a

number of different daemons/servers: NameNode, DataNode, and Secondary NameNode

for managing HDFS, and JobTracker and TaskTracker for performing MapReduce.

HDFS is designed and optimized for storing very large files and with a streaming

access pattern. Since it is expected to run on commodity hardware, it is designed to

take into account and handle failures on individual machines. HDFS is normally not the

primary storage of the data. Rather, in a typical workflow, data are copied over to HDFS

for the purpose of performing MapReduce, and the results then copied out from HDFS.

Since HDFS is optimized for streaming access of large files, random access to parts of

files is significantly more expensive than sequential access, and there is also no support
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Figure 2.2: Hadoop Architecture

for updating files, only append is possible. The typical scenario of applications using

HDFS follows a write-once read-many access model.

Files in HDFS are split into a number of large blocks (usually a multiple of 64 MB)

which are stored on DataNodes. A file is typically distributed over a number of DataN-

odes in order to facilitate high bandwidth and parallel processing. In order to improve

reliability, data blocks in HDFS are replicated and stored on three machines, with one of

the replicas in a different rack for increasing availability further. The maintenance of file

metadata is handled by a separate NameNode. Such metadata includes mapping from file

to block, and location (DataNode) of block. The NameNode periodically communicates

its metadata to a Secondary NameNode which can be configured to do the task of the

NameNode in case of the latter’s failure.

MapReduce Engine. In Hadoop, the JobTracker is the access point for clients. The

duty of the JobTracker is to ensure fair and efficient scheduling of incoming MapReduce

jobs, and assign the tasks to the TaskTrackers which are responsible for execution. A

TaskTracker can run a number of tasks depending on available resources (for example

two map tasks and two reduce tasks) and will be allocated a new task by the JobTracker

when ready. The relatively small size of each task compared to the large number of tasks

in total helps to ensure load balancing among the machines. It should be noted that while
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the number of map tasks to be performed is based on the input size (number of splits), the

number of reduce tasks for a particular job is user-specified.

In a large cluster, machine failures are expected to occur frequently, and in order

to handle this, regular heartbeat messages are sent from TaskTrackers to the JobTracker

periodically, and from the map and reduce tasks to the TaskTracker. In this way, failures

can be detected, and the JobTracker can reschedule the failed task to another TaskTracker.

Hadoop follows a speculative execution model for handling failures. Instead of fixing a

failed or slow-running task, it executes a new equivalent task as backup. Failure of the

JobTracker itself cannot be handled automatically, but the probability of failure of one

particular machine is low so that this should not present a problem in general.

The Hadoop Ecosystem. In addition to the main components of Hadoop, the Hadoop

ecosystem also contains other libraries and systems. The most important in our context

are HBase, Hive, and Pig. HBase [58] is a distributed column-oriented store, inspired by

Google’s Bigtable [59] that runs on top of HDFS. Tables in HBase can be used as input

or output for MapReduce jobs, which is especially useful for random read/write access.

Hive [60, 61] is a data warehousing infrastructure built on top of Hadoop. Queries are

expressed in an SQL-like language called HiveQL, and the queries are translated and

executed as MapReduce jobs. Pig [5] is a framework consisting of the Pig Latin language

and its execution environment. Pig Latin is a procedural scripting language making it

possible to express data workflows on a higher level than a MapReduce job.

2.2 MapReduce Sharing Techniques

We now briefly review sharing techniques among ad-hoc queries in MapReduce and dis-

cuss the associated key observations [38, 40]. For simplicity, we limit our example below

to two jobs J1 and J2. However, the sharing principles are generally applicable across n
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queries. In Chapter 10, we will explain why these techniques are not directly applicable

to recurring workloads without customized optimizations.

Sharing Map Input Scans. For two jobs J1 and J2 to share their map input scan,

typically the input files, the input key, and the value types of J1 and J2 must all be the

same in MapReduce settings. This allows J1 and J2 to be combined into one integrated job

that shares the map input scan for the two jobs. To distinguish between the map outputs

for such two jobs, we attach tags to the map outputs M1 and M2 respectively. In the

reduce phase, the key/value pairs are pushed to appropriate reduce functions according

to their attached tags. When all values associated with a key have been consumed, we

generate the results for the jobs associated with that key. In this scenario, the savings

result from scanning and parsing the map input only once.
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Figure 2.3: Share Input Scan

Example 2.1 Consider an input table T (a, b, c), and the following queries:

J1: SELECT T.a, sum(T.b)

FROM T

WHERE T.c > 10
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GROUP BY T.a

J2: SELECT T.c, avg(T.b)

FROM T

WHERE T.a = 100

GROUP BY T.c

The shared scan conditions are met. In this scenario, the savings result from scanning

and parsing the input only once. Clearly, this sharing scheme can be easily extended

to multiple jobs. Note that there is no sharing at the reduce stage. After grouping at

the reduce side, each tuple is pushed to the appropriate reduce function. The size of the

intermediate data processed is the same as in the case of two different jobs, with a minor

overhead that comes from the tags.

Sharing Map Outputs. Assume that in addition to sharing map input scans, the map

output keys K1 and K2 are the same for both jobs J1 and J2. In that case, the map outputs

for J1 and J2 can also be shared. Here map functions map1 and map2 are applied to

each input tuple. Then the map output tuples produced by map1 are tagged with tag(1)

only. If a map output tuple was produced from an input tuple by both map1 and map1,

it is tagged by tag(1, 2). In the reduce phase, tuples in each group are distributed to the

appropriate reduce function according to their tags. For example, if the tag of the value is

tag(1, 2), we distribute the same value to both reduce functions of J1 and J2 separately.

In this scenario, sharing map outputs reduces the total size of the map outputs and hence

the I/O sorting costs and communication costs. At the reduce side, each group contains

tuples belonging to both jobs, with each tuple possibly belonging to one or both jobs.

The reduce stage needs to dispatch the tuples and push them to the appropriate reduce

function, based on tag.

Example 2.2 Consider an input table T (a, b, c), and the following queries:
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Figure 2.4: Share Map Output

J1: SELECT T.a, sum(T.b)

FROM T

WHERE T.a > 10 AND T.a < 20

GROUP BY T.a

J2: SELECT T.a, avg(T.b)

FROM T

WHERE T.b > 10 AND T.c < 100

GROUP BY T.a

The map functions are not the same. However, the filtering can produce overlapping

sets of tuples. The map output key (T.a) and value (T.b) types are the same. Hence, we

can share the overlapping parts of map output. Producing a smaller map output results

to savings on sorting and copying intermediate data over the network. This mechanism

can be easily generalized to more than two jobs.

Sharing Map Functions. Sometimes the map functions are identical and thus the

map function can be executed only once. At the end of the map stage two streams are

produced, each tagged with its job tag. If the map output is shared, then only one stream
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2.2 MAPREDUCE SHARING TECHNIQUES

needs to be generated. Even if only some filters are common across both jobs, then it

is possible to share parts of the map functions. Sharing parts of map functions involves

identifying common subexpressions and filter reordering, both known to be hard prob-

lems.
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Figure 2.5: Share Map Function

Example 2.3 (Aggregation) Consider an input table T (a, b, c), and the following queries:

J1: SELECT T.c, sum(T.b)

FROM T

WHERE T.c > 10

GROUP BY T.c

J2: SELECT T.a, avg(T.b)

FROM T

WHERE T.c > 10

GROUP BY T.a

The map pipelines are identical. Note that in this case, by identical map pipelines we

mean the parsing and the set of filers/transformations in the map function - the map output
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key and value types are not necessarily the same. If, additionally, the map output key and

value types are the same, we can apply map output sharing as well. In our example,

assuming that the second query groups by T.c instead of T.a, we would have the reducing

pipeline similar to the previous example.

Example 2.4 (Partial Map - Aggregation) Consider an input table T (a, b, c), and the

following queries:

J1: SELECT T.a, sum(T.b)

FROM T

WHERE T.c > 10 AND T.a < 20

GROUP BY T.a

J2: SELECT T.a, avg(T.b)

FROM T

WHERE T.c > 10 AND T.c < 100

GROUP BY T.a

In this case, the map pipelines are not the same. However, some of their filters overlap.

Also in this case, the key and value types of map output tuples are the same, and we can

apply map output sharing. We remark that sharing parts of map functions has many

implications. It involves identifying common subexpressions and filter reordering, which

are hard problems.

Sharing Reduce Inputs. This technique requires that the map output keys K1 and

K2 are identical for both jobs J1 and J2. The key idea is to materialize the reduce input

in the reduce phase of a job J1 so that subsequently it can be reused also by the reduce

phase of J2. In this way, the sorting and communication costs required for processing

the reduce input are eliminated when processing J2. Reduce inputs can be shared by a
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sequence of executions of one single recurring query. In this case, the amount of savings

is determined by the overlapping data across multiple consecutive executions.

Input 
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Reduce Input Mapper Reducer R1 

Input 
Scan (F2) 

Reduce Input Mapper Reducer R2 

J1!

J2!

Reuse reduce input from J1!

Figure 2.6: Share Reduce Inputs

2.3 MapReduce Sampling Techniques

Next, we review the two commonly used sampling techniques in MapReduce, namely

pre-map and post-map sampling [54]. Each of these techniques has its own strengths and

weaknesses as discussed next.
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Figure 2.7: Sampling Approaches

In HDFS, an input file is divided into a set of blocks with each block being 64MB

by default. When running a MapReduce job, these blocks can be further subdivided into

Input Splits used as input to the mappers. Given such an architecture, sampling can be

done before or after sending the input to the Mapper, referred to as pre-map and post-map

sampling, respectively.
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Pre-map sampling (i.e., block-level) works by sampling a subset of blocks from the

initial input file and then passing these blocks into the mappers. Because sampling is

done prior to the data loading stage, the response time is greatly improved, with the po-

tential downside of a slightly less accurate result. The reason for this is that tuples within

one block may at times exhibit a correlation if data is clustered by the sampling attribute.

However, it has been shown that block-level sampling may produce more accurate es-

timates than tuple-level sampling with the same costs [62]. In practice, the estimate of

the number of the key value 〈k, v〉 pairs produced by the pre-map sampling approach is

acceptable. Nevertheless, as explained below, the user has the flexibility to use post-map

sampling if a more accurate final result is desired and a longer query execution can be

tolerated by the query deadline. Algorithm 1 presents the HDFS sampling algorithm used

in pre-map sampling.

Algorithm 1 Pre-map Sampling
Input: start, end, sample

1: start← split.getStart()
2: end← start+ split.getLength()
3: sample← φ
4: while |sample| < n do
5: start← pick a random start position
6: if start! = beginning of a line then
7: skipF irstLine← true
8: fileIn.seek(start)
9: in = new LineReader(fileIn, job)

10: if skipF irstLine then
11: start+ = in.readLine(end− start)
12: sample← includeLineInSample()
13: skipF irstLine← false

Post-map sampling (i.e., tuple-level) works by reading and parsing the data file and

then sending the selected 〈k, v〉 pairs to reducers. Each 〈k, v〉 pair is selected using ran-

dom hashing that generates a pre-determined set of keys. All 〈k, v〉 pairs are stored on

the mappers locally. When all data has been received, a subset of 〈k, v〉 pairs are ran-
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domly picked that satisfy the sample size and are sent to the reducer. Post-map sampling

provides random access to the data in the original input file. This is beneficial because

the majority of statistical estimates are based on the uniform random sample of tuples in

the data. However, post-map sampling is not efficient since data is organized in blocks

on HDFS. Retrieving a simple random sample of size s for one mapper would cause the

transmission of s blocks in the network in the worst case. Namely, one tuple is sampled

out of each block and none of s blocks is stored locally on this particular mapper. Hence,

post-map sampling is useful for application relying on an accurate estimate of the total

〈k, v〉 pairs at the expense of the increased execution costs. Post-map sampling is shown

in Algorithm 2.

Algorithm 2 Post-map Sampling
Input: hash, timestamp

1: hash← initialize the hash
2: timestamp← initialize the timestamp
3: while input! = null do
4: key ← random key for input
5: value← value for input
6: hash[key]← value
7: sendSample(hash(rand()%hash.size))
8: while true do
9: if get new error avg(timestamp) > required then

10: sendSample(hash(rand()% hash.size))
11: else
12: return

In summary, both sampling techniques have their respective advantages in MapRe-

duce. We thus propose to exploit both techniques for approximate recurring query pro-

cessing using a cost-driven approach (see Chapter 14).

2.4 Recurring Query Model

Query Parameters. Recurring queries [63, 64] execute periodically over evolving disk-
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resident data sets, i.e., data sets stored in HDFS. In each execution, a recurring query

Q(W, S,D) applies its computations over a bounded subset of evolving data sets as de-

termined by three configuration parameters window W, slide S, and deadline D. The

window W specifies the scope of data to process, while the slide S specifies the frequency

of execution. For example, Q (W = 12 hours, S = 1 hour) specifies a recurring query

that executes every hour and each time processes all data within the last 12 hours. The

deadline D specifies a time limit for a query’s execution to complete. Deadline-bound

recurring queries are common in advertisement systems and web search engines [65, 66],

where the query is spawned on a large data set and accuracy is proportional to the fraction

of data processed [67, 68, 69]. Often an SLA parameter is associated with the deadline

D as a time-based function ϑ(t). The SLA parameter indicates the merit of the query’s

results (a utility score) if delivered after the deadline. Figure 2.8 shows two sample SLAs.

The function in Figure 2.8(a) indicates that the results produced after the deadline Td are

useless to the application, i.e., its utility becomes zero. Figure 2.8(b) shows an SLA func-

tion that decreases the result’s utility monotonically as the query execution exceeds Td

= 10 minutes. In general, we support any non-increasing utility function as an SLA for

recurring queries.

1"

0"
$me"

U$lity"Score"

Td"="10"mins"

(a) SLA Function 1

1"

0"
$me"

U$lity"Score"

Td"="10"mins"

(b) SLA Function 2

Figure 2.8: SLA Function

Input Timestamps. Recurring queries process data that is updated in batches over
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time. Thus the timestamps associated with the data are important in our model. A data

batch fi received at time Ti is annotated by the time Ti. Time ranges covered by different

batch files do not overlap. That is, the time ranges covered by the tuples in files f1, f2, ...,

fn, are in the range of [T0, T1), [T1, T2), ... , [Tn−1, Tn) with Ti < Ti+1. Therefore, there is

an order among the files, but no order constraints among the tuples within each file must

hold. The above model is common in data analytics applications. For example, in log

processing, the system may collect the log files every other hour from multiple machines,

merge them without sorting, and upload the file into HDFS as a new batch. Between two

consecutive executions Ei and Ej at times Ti and Tj , where Ti < Tj , the system may

receive multiple batches of data in the form of HDFS files, say f1, f2, ..., fn at times T1,

T2, ..., Tn, where Ti < T1 < T2 < ... < Tn < Tj .

Execution Model. The Redoop system [64] is proposed to treat recurring queries as

first-class citizen in the MapReduce infrastructure. A recurring query Q(W, S,D) is reg-

istered in Redoop, where the W and S properties are defined as configuration parameters.

Once registered, Redoop periodically triggers the execution of Q according to its W and

S parameters. The evolving inputs of Q are consumed from a specific HDFS directory,

while the outputs are also periodically produced to another HDFS directory. Given a

recurring query Q(W, S,D), Redoop pre-processes the input data and subdivides the in-

put files into smaller segments, called panes, with a refined granularity. The goal is that

when the window of interest W slides by S, any overlapping data segments between the

two consecutive executions do not need to be processed again. Therefore, the pane-based

partitioning divides a single query execution into a sequence of map-reduce jobs over

non-overlapping pane inputs, each producing partial results. These partial results are then

combined—using a user-defined function—to generate the final desired results. In order

to do so, we assume that such recurring queries (e.g., aggregation and SPJ queries) are

composable and can be incrementally computed. This execution strategy reduces the un-
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necessary I/O and CPU costs otherwise associated with repeated work across overlapping

windows. Redoop also offers inter-window caching mechanisms that cache reduce input

and output data for subsequent reuse. The cached data reduces redundant disk I/O oper-

ations. Although Redoop enables several unique optimizations to recurring queries, it is

limited to processing the recurring queries in isolation, i.e., no sharing, and it also does

not support SLA specifications. Our proposed Helix system further overcomes the limita-

tions of Redoop by enabling the sharing among multiple recurring queries and specifying

the queries’ SLAs.

Both Redoop and Helix are limited to consuming all date tuples in the current win-

dow for each execution, i.e., no approximate results are produced based on sampled data,

which may cause delay problems for many applications. Our proposed Faro system over-

comes these limitations by enabling approximate processing over sampled data to satisfy

the queries’ deadline D. Namely, the query execution in Faro should strive to maximize

the accuracy of its result within a specified time of each execution.
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3

Redoop System Overview

Figure 3.1 illustrates the proposed architecture of Redoop as an extension of Hadoop.

The sliding window semantics embedded in recurring queries can result in a significant

overlap of data between consecutive windows [70, 71, 72]. Thus, we have designed an

advanced task execution manager for Redoop to cache input data on local file systems of

task nodes. The cached data is efficiently utilized to reduce redundant disk I/O operations

at run-time. Redoop introduces an incremental processing model to allow task nodes to

asynchronously execute any map or reduce task with incrementally evolving data between

two query recurrences. Beyond the map/reduce task structure of Hadoop, Redoop adds

four new components (depicted by the white boxes) along with adopting and extending

several existing components from Hadoop (the light-gray boxes) in Figure 3.1.

1. Window Semantic Analyzer is the optimizer that, given the window constraints

embedded in recurring queries, produces a data partition plan. That is, it produces a

plan of subdividing input data sources into panes (i.e., separate HDFS files) with opti-

mized granularity that can be most efficiently processed by map and reduce tasks. Such

plan can also eliminate any unnecessary data re-processing caused by recurring queries

(Chapter 4.1).
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Figure 3.1: Redoop System Architecture

2. Dynamic Data Packer is the partition executor that implements the instructions

encoded in the partition plan produced by the above optimizer. That is, it dynamically

splits very large input data partitions into smaller panes (Chapter 4.2). The data packer

piggybacks the pane creation step with the loading step, i.e., while a given input file is

being loaded into HDFS, the data packer partitions the records to the corresponding panes.

3. Execution Profiler collects the statistics after the completion of each query recur-

rence, i.e., execution times of previous query recurrences. The profiler then transmits the

statistics to the Window Semantic Analyzer such that the pane size can be adjusted in a

timely manner during the subsequent input partitioning. The Window Semantic Analyzer,

Dynamic Data Packer, and Execution Profiler together also determine Redoop’s execution

modes to tackle data fluctuations (Chapter 4.3).

4. Local Cache Manager, installed on each task node in Redoop, maintains the

Redoop caches on the node’s respective local file system. The Local Cache Manager
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sends its cache meta-data to the Window-Aware Cache Controller described below along

with its heartbeat for global synchronization. The cache manager allows users to provide a

purge policy and is responsible for purging the expired caches according to the prescribed

policy and the purge notification received from the master node (Chapter 5.1).

5. Window-Aware Cache Controller is a new module housed on the Redoop master

node that maintains window-aware meta-data of reduce input and output data cached on

any of the task nodes’ local file systems. This controller helps optimize query execution

by providing information of window-dependent cache usage for run-time task scheduling

decisions (Chapter 5.2).

6. Window-Aware Task Scheduler, an extension of the default Hadoop TaskSched-

uler, fully exploits the intermediate caches that reside on the local file system for incre-

mental window-centric processing of input data. It also balances the workloads on each

node based on the locality of prior caches. Exploiting existing caches and keeping the

load balanced further improve the query processing performance (Chapter 5.3).
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Redoop Input Partitioning

Supporting recurring queries requires Redoop to understand the general notion of window

semantics in recurring queries. This section first introduces the Window Semantic Ana-

lyzer for recurring queries used in Redoop, and then illustrates Redoop’s dynamic data

packer for input data pre-processing. Furthermore, load variances in evolving data over

time require Redoop to adapt to these changes. Variance of the input data sources (in rate

and/or in values) can at times result in temporary load spikes, with the data processing

time significantly affected by the duration of the spikes. Worse yet, the cluster resources

may not be efficiently utilized and the delayed query results may further slowdown other

data analytics jobs that depend on the current query execution. To tackle such temporary

load variances, an adaptive strategy is devised during the input partitioning.

4.1 Window Semantic Analyzer

The Window Semantic Analyzer takes as input a sequence of recurring queries with dif-

ferent window constraints. Its goal is to find an efficient strategy for partitioning the input

data in a window-aware fashion to enhance the overall system’s performance and to mini-
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mize any redundant processing or I/O operations. The partitioning strategy created by the

Window Semantic Analyzer will be executed by the Dynamic Data Packer component.

The advantage of partitioning the data into smaller panes [70] is that it gives the system

the flexibility to create optimization opportunities between the overlapping data across

consecutive windows, e.g., Redoop processes and shuffles each pane only once, caches

the results on the local disks of the data nodes, and re-uses them repeatedly as needed

based on the window semantics.

Next, we highlight the key challenges related to data partitioning.

1. Overlapping Data Re-computation. For consecutive executions of a recurring

query, the plain Hadoop would re-load the overlapping data partitions from HDFS multi-

ple times. And it is not only about re-loading, but the processing, shuffling, and sorting

phases will be all repeated. These operations are very expensive and would consume

significant system’s resources.

2. Redundant Data Loading. Although smart caching would solve the problem

highlighted above, it may not be sufficient if the cached data are large and not well-aligned

with the window boundaries. In this case, unnecessary I/O operations may be inevitable.

For example, assume a recurring query with win = 4 hours and slide = 3 hours, and the

partitioning of data is performed based on its slide size, i.e., 3 hours chunks, and these

partitions are cached on the local file system for future use. Then, in order to produce a

correct output, the system has to retrieve the cached partition and then combine it with the

newly arrived batch (which is 6-hour data in total). This is inefficient because only 1/3

of the cached partition is necessary in the second window. Therefore, partitioning based

on the slide size is not always the best choice, and more dynamic partitioning is needed

based on the available queries in the system.

Next, we discuss the Window Semantics Analyzer that tackles the second challenge,

while Chapter 5 discusses our solution to the first challenge. The Window Analyzer takes
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the queries, the execution statistics from the Execution Profiler, and the HDFS block size

(default 64MB) in the Hadoop configuration as input, and produces a partition strategy

as its output, also called the partition plan. Algorithm 8 illustrates the strategy that we

use to generate the partition plan. The key idea of the algorithm is to slice the window

states into fine-grained disjoint panes based on the window constraints of individual data

sources. This way the Redoop system executes window-centric operations over those

panes in a finer-grained fashion.

In the algorithm, we use the greatest common divider (GCD) function to determine the

logical data unit, which is henceforth referred to as pane (Line 1). Given the logical pane,

fileSize is the expected size of the physical file that is to store the pane, incorporating

the actual arrival rate of the corresponding data source (Line 2). Lines 3-8 choose the

more effective method of representing the pane, considering the following two cases.

1. Oversize Case: One pane corresponds to exactly one physical file (Line 4). And

this file may have one or more splits (i.e., 64 MB chunks) on HDFS.

2. Undersized Case: Multiple panes together correspond to one file (Line 7). Namely,

one file contains multiple logical panes when the input data rate is not intensive.

Having such optimization on mapping logical data units to physical files, the Dynamic

Data Packer can avoid creating many small files in Hadoop.

Algorithm 3 Input Data Source Partitioning Algorithm
Input: Query Q, Data Source Statistics S, blockSize
Output: Partition Plan PP

1: pane← GCD(Q.win,Q.slide)
2: fileSize← S.rate× pane
3: if fileSize ≥ blockSize then
4: PP ← (pane, 1, 1) // one file for one pane
5: else
6: paneNum← bblockSize/fileSizec
7: PP ← (pane, 1, paneNum) // one file for multiple panes
8: return PP
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For example, a recurring query with its window constraints win = 6 minutes and

slide = 2 minutes. Then the logical pane size is 2 minutes as a result of GCD (6, 2). Now

consider the input rate of data source News is 16MB/minute and the HDFS block size

is default 64MB. In this case, the partition plan for News is depicted in Figure 4.1, with

each file denoted by the same color.

News

t t+2 t+4Time 
(s)

t+6 t+8 t+10 t+12

......

... ...

Pane i Pane i + 1 Pane i + 2 Pane i + 3 Pane i + 4 Pane i + 5

File j File j + 1 File j + 2

Figure 4.1: A Partition Example

4.2 Dynamic Data Packer

Given the above partition strategy, we describe how to encode the output panes to as-

sure subsequent effective window-centric file access and processing. The Dynamic Data

Packer takes as input: 1) the pane-based partitioning plan generated by the Window Se-

mantic Analyzer, and 2) the external input data sources to be consumed. The main task

of the dynamic data packer is to exploit the partitioning plan at run-time to pack the input

data into panes and store them as physical files in HDFS. Note that the complexity of the

pre-processing of the input files to create the panes would depend on the properties of the

input files, e.g., sorted or unsorted, and the granularity of the pane sizes to create. For

example, if the pane sizes are larger than the input files or the input files are sorted based

on the records’ timestamps, then the pre-processing involves only scanning the files to

create the panes. Otherwise, it will involve a time-based partitioning to divide the records
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into the appropriate panes. The dynamic packing uses the following naming convention

to distinguish between the two cases in Algorithm 8:

1. In the oversize case, one pane corresponds to exactly one file. The file name

follows the format S#P#, where S stands for the data source and P for the pane identifier.

For example, S1P1 corresponds to the first pane in data source 1.

2. In the undersized case, multiple panes correspond to one file. Here the name

follows the format S#P# #, where # # denotes the range of logical panes contained in a

file. For example, S1P1 4 indicates that this file contains the first 4 panes (i.e., panes 1,

2, 3, and 4) from data source 1.

We also introduce a special file header to boost performance for locating selected

panes in case 2. Specifically, when a single file contains multiple logical panes, the en-

tire file is not always required by an operation. Thus, a special header to such a file is

designed to reduce the latency of finding the required logical panes. This is particularly

effective when a file contains a large number of panes caused by a relatively low input

rate over a given time period. In the cases where the number of data sources is very

large, the Dynamic Data Packer could easily be de-centralized to a distributed design

by adopting existing techniques, e.g., [73, 74, 75]. For example, a parallel data source

splitting operator could be introduced that splits input data sources of high volume into

massively parallel subdivided sources. For simplicity, we assume a centralized Dynamic

Data Packer for the remainder of this manuscript.

4.3 Adaptivity in Input Data Partitioning

As described above, the Window Semantic Analyzer and Dynamic Data Packer together

increase cache utilization and minimize the query processing time for a recurring query.

However, the fluctuation in the data rate may cause a query execution to take much longer
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than expected and may not finish before the next execution (if started on the scheduled

next slice). In this case, Redoop switches to a proactive processing mode, in which it will

start processing the available data and creating partial results as soon as sufficient input

data is available. This proactive approach does not guarantee the completion before the

next execution, but it is a best-effort approach that can be very effective especially for

fine-grained recurring queries with small slide parameters.

We propose an adaptive pane-based partitioning technique to adaptively partition a

pane into sub-panes when faced with workload spikes. Clearly, a larger amount of input

data will tend to increase the execution time. The core idea is to exploit the statistics

collected from the Execution Profiler, i.e., the execution times and the amount of data

processed in the previous executions, to adjust the pane size during the subsequent input

data partitioning process. It has been shown that the input data size is one of the dominant

factors determining the execution time of a MapReduce job [47]. Thus, the pane size in

Redoop is determined by a series of observations of the job execution over time and the

corresponding pane sizes. Our solution is to estimate the future behavior of input data

sources based on these observations and then produce the pane-based partitioning plan

accordingly.

We now describe the estimation model. The Execution Profiler, running as a separate

thread, collects the statistics from previous executions and transmits them to the Window

Semantic Analyzer. These statistics are a series of observations of the job execution time,

denoted by Xi for the i-th query recurrence. We utilize double exponential smoothing of

previous recurrences to estimate the execution time of i+ k-th query recurrence, denoted

by X̂i+k. As statistics are collected, the value for the local mean level Li and trend Ti of

the execution time is periodically updated as follows:

Li = α ·Xi + (1− α)(Li−1 + Ti−1) (4.1)
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Ti = γ · (Li − Li−1) + (1− γ) · Ti−1 (4.2)

The smoothing parameters α and γ can be selected by fitting historical data (for details

please refer to [76]).

Using the updated values of level Li and trend Ti, the execution time of i+k-th query

recurrence is computed as:

X̂t+k = Lt + k · Tt (4.3)

If the Window Semantic Analyzer detects a potential execution time change by us-

ing the above equations, then the current pane size will need to change. Therefore, the

Window Semantic Analyzer applies the scale factor (i.e., the ratio between the expected

execution time and the previous one) to generate a new pane size for the input data parti-

tioning. The new plan accommodating the data variation is then dynamically adopted by

the data packer. If the new plan encodes a finer-granular data unit compared to the original

partition plan, then Redoop system will automatically switch to the proactive processing

mode for that query, i.e., the Window Semantic Analyzer will trigger the query execution

as soon as the first data partition with the new pane size becomes available rather than

waiting for the data of a complete window to become available. This separation of con-

cern between the optimizer (Window Semantic Analyzer) that determines the partition

plan and the executor (Dynamic Data Packer) that implements the chosen partition plan

makes the input data partitioning adaptivity extremely light-weight. Namely, the system

can simply plug in a new plan selected by the Window Semantic Analyzer in constant

time.

Note that this proactive approach offers several advantages compared to using a fixed

partitioning plan: 1) the granularity of job executions is decreased as sub-panes will be
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populated faster than entire panes or windows, 2) multiple sub-panes can be processed

concurrently at arbitrary computing nodes to further distribute and parallelize the reduce

computations, and 3) the overhead, namely, in maintaining statistics for average pane

sizes over the recent data source history, is relatively small. As will be illustrated in the

experimental section, the adaptivity mechanism can achieve up to 3x speedup compared

to the base Redoop system without adaptivity.
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Redoop Window-Aware Caching

To reduce the unnecessary I/O costs resulting from the overlapping windows, Redoop’s

task nodes cache the input data partitions on their local file systems for subsequent reuse.

Our Redoop maintains caches at two stages of a MapReduce job, reduce input and out-

put. Both cached data need not to be loaded, processed or shuffled again with the same

mapper across windows. Hence this reduces the processing time for recurring queries. To

facilitate caching on local nodes, Redoop maintains additional data structures associated

with these caches. Due to data sources being updated periodically, the local file system

on task nodes cannot accommodate an unbounded number of historical caches. Thus, it is

imperative to purge the expired caches in a timely manner without introducing additional

overhead to the Redoop system.

5.1 Local Cache Registry

Given the above goals, we now present the meta-data structure (meta-data) on task nodes,

which allows Redoop to maintain and use caches on each node. The cache data structure,

called local cache registry, consists of three parts, namely, a pane id (pid) indicating
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pid type expiration
S1P3 1 1
S2P4 2 0

Table 5.1: Examples of a Local Cache Registry

which pane is cached on the node, a cache type (type) indicating whether the cached

pane is a reduce input cache or a reduce output cache, and a flag (expiration) showing

whether that the cached pane is still going to be needed by any window operations in the

Redoop system. This data structure provides location mapping so that a task node can

extract a cache specific to a certain window range from its local file system and process it

with respect to the corresponding reduce or finalize operation written by the application

programmer. Table 1 shows the local cache registry containing two cache entries. S1P3

indicates that the pane is expired as a reduce output cache, and S2P4, on the other hand,

is still being used as a reduce input cache by a recurring query.

Next, we characterize how the local cache registry is maintained under different oper-

ations during query processing.

Adding New Entry. When a new cache with pane id (pid) is created on a node, its

expiration flag is set to 0 (i.e., not expired) and its type is set to 1 (2) if the cache

is a reduce input (output) cache. The new entry is simply appended to the local cache

registry on the node. The records for existing caches do not need to be changed. After

adding a new cache entry into the registry, the node synchronizes and sends the local

cache registry to the window-aware cache controller where local cache registries from all

task nodes are consolidated. At this point, the TaskScheduler will consult the window-

aware cache controller in order to use the newly registered cache in future map or reduce

tasks.

Our design is compliant with the Hadoop framework in that the window-aware cache

controller (Section 5.2) is responsible for deciding which map or reduce tasks to execute
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on which node based on the local cache registry information. This grants Redoop the

ability to asynchronously extract data partitions (i.e., panes) from any cache and to exe-

cute the corresponding task. As consequence, task nodes are flexible to process any task

as long as the data or cache is available, rather than waiting for slower nodes to finish a

corresponding set of tasks.

Updating Existing Entry. When a cache is currently being used by a recurring query,

the associated local cache entry needs not to be updated immediately. This avoids com-

munication costs within the cluster. In contrast, the local cache registry is updated only

when the task node receives a notification from the window-aware cache controller, which

indicates the caches that have expired. Once received a notification, the local cache reg-

istry finds the matching cache entries and sets their expiration flags to 1.

Updating existing entries in a local cache registry is designed to handle cache purg-

ing. Due to the periodic updates on data sources, the local file system on task nodes

cannot accommodate an unbounded number of historical caches. Thus, it is imperative

to purge the expired caches in a timely manner. However, continuously scanning the lo-

cal cache registry would introduce additional overhead to the Redoop system. Thus, we

propose two light-weight yet efficient mechanisms to purge expired caches on task nodes,

namely, periodic and on-demand purging. Periodic purging scans the local cache reg-

istry periodically based on a adjustable period threshold PurgeCycle controlled by the

Redoop administrator. During this scan, all caches with their expiration flag on will

be purged during this scan. On-demand purging instead is designed for an emergency.

If the local file system is at risk of running out of space before the system begins the next

periodic purging scan, then a on-demand purging will be initiated, which deletes any

expired caches from the file system instantaneously.
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5.2 Window-Aware Cache Controller

To reduce I/O costs, Redoop caches the panes on the task node’s local file system for

subsequent reuse. To further accelerate processing, we introduce a dedicated component

of the window-aware cache controller on the master node that is responsible for main-

taining the cache information from all task nodes. Below we now describe how Redoop

maintains and exploits these caches.

Global Cache Management. The window-aware cache controller maintains a sum-

mary of all local cache registries under its control. We now design a data structure called

cache signature that consists of four parts, a cache id (pid), a node id (nid), a type bit

(type), a ready bit (ready), and a per-cache bit-mask (doneQueryMask). Similar to

the local cache registry, the type has a domain of 3 possible values: 0 (not available),

1 (reduce input cache), and 2 (reduce output cache). The ready column has a domain

of 3 possible values: 0 (not available), 1 (HDFS available), and 2 (cache available). The

doneQueryMask indicates which queries have finished their utilization of this cache.

These signatures are very compact and easy to manipulate inside the cache controller.

Table 2 shows an example of the cache signature with four cache entries.

Each bit in the doneQueryMask is associated with one distinct query. Whenever a

cache being associated with a query but no longer utilized at that time, the corresponding

bit is updated to 1. For ease of processing, the number of bits in the doneQueryMask

indicator for each cache is identical. If the cache is not used by a given query at all,

the corresponding bit is set to 1 automatically at initialization time. Once all bits in the

doneQueryMask have been flipped to 1, this indicates that the cache will no longer be

needed by any of the queries. Consequently, the master node sends a purge notification

to the corresponding task nodes storing the cache. This node can be easily identified by

the nid field. After receiving the notification, the local cache registry on the task node
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pid nid type ready doneQueryMask
S1P3 1 1 2 10011
S1P3 1 2 2 10011
S2P4 0 0 1 10111

. . . . . . . . . . . . . . .
S1P7 1 1 2 10011

Table 5.2: Example of Window-aware Cache Controller

S1P0 S1P1 S1P2 S1P3
S2P0 1 1 0 0
S2P1 1 1 0 0
S2P2 0 0 0 0
S2P3 0 0 0 0

Table 5.3: Example of Cache Status Matrix

updates the expiration field to value 1. Thereafter, the task node purges the cache

using either its periodic or on-demand purging policy so as to free the space on its local

file system.

Next, we show how each bit of the doneQueryMask is updated according to cache

status matrix (Status), a dynamically updated data structure. In addition, we also in-

troduce the cache status matrix associated with each query that models their respective

window constraints. Thus, there are up to n cache status matrices, one for each of the n

registered queries. The cache status matrix is a multi-dimensional boolean array. Each

dimension (column or row) refers to a series of panes within one data source. Each entry

in the array is a boolean flag indicating whether the respective query operation has or has

not been completed with the corresponding panes of the other dimensions. Querying and

updating the matrix for a given cache signature is a very efficient lookup operation. Table

3 depicts an example of a cache status matrix for a binary join query. The extension to

higher dimensions is straightforward.

Next we describe operations designed on this status matrix.

50



5.2 WINDOW-AWARE CACHE CONTROLLER

Initialization. The Status matrix is initialized when its associated query is added

to the Redoop system. The number of dimensions of the Status matrix is determined

by the number of data sources involved in this query. The entries for each dimension are

directly derived from the window constraints on each source. For example, if the window

size of input data sources S1 and S2 are both 4 hours and the pane size of these two data

sources is 1 hour, then the Status is initialized with a 4 by 4 matrix, as shown in Table

3. All elements in status are initialized with zeros.

Update. Whenever a reduce task is completed, the element in status is located by

the indices of the panes involved in the task. The value of the element is updated from 0

to 1, indicating this particular task is done. For example, as shown in Table 3, assuming

that the reduce task joining S1P3 with S2P2 is completed, then the JobTracker triggers

the update of the status matrix. In the matrix, the indices of S1 and S2 are 3 and 2

respectively. Then the value of the element status[3][2] is updated to 1.

Expiration. As described in Section 5.1, the Redoop system purges caches after their

expiration. Checking whether or not a pane can be safely purged is not straightforward,

as the expiration is determined by the panes in all other sources involved in the operation.

For example, as shown in Figure 5.1, the query associated with this matrix is a binary join

of S1 and S2. The pane S1P1 expires once it completes joining with its corresponding

pane partners from the matching data source S2. In this case, those range from S2P1 to

S2P3.

To efficiently detect the expired panes that can be safely purged from the system,

Redoop computes a lifeSpan for each pane that indicates the range of panes from the

other data sources with which each pane should be processed. Thus, a set of lifeSpan

values is associated with a given pane, namely, one per matching join partner. Thus the

cardinality of the lifeSpan set is m, where m is the number of join partners in the

operation. For a given pane SiPx, its lifeSpan on data source Sj is computed as
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follows:

lifeSpanij = winj + slidei · bslidei/slidejc (5.1)

lifeSpanij = slidej · bslidei · dwini/slideie/slidejc (5.2)

where wini (winj) and sldi (sldj) are the window and slide sizes of data source Si (Sj),

respectively. We distinguish between two different cases, namely, when the pane is not

within the overlapping part of consecutive windows (Equation 5.1), and when it is one of

the overlapping panes of consecutive windows (Equation 5.2).

Given the lifeSpan of a pane, we propose an optimized approach to determine

whether or not the pane is expired. Specifically, whenever an entry in status is updated

to 1, we check if the corresponding pane of each data source is still being used by the

operation on the window that the pane belongs to. If the pane does not belong to the

current window of its data source, then we check whether or not all elements within its

lifeSpan correspond to the value 1. Once all the elements within a pane’s lifeSpan

are set to value 1 (done), then the corresponding bit of doneQueryMask in the global

cache registry can be updated accordingly, i.e., it also is set to 1. Namely, the pane is

marked as expired with respect to its corresponding query.

In Figure 5.1(b), we show how this expiration mechanism applies to the Status

matrix for a binary join query. If the current window of S1 consists of panes from S1P5

to S1P7, then S1P4 is considered expired for two reasons. First, it is no longer part of

the current window of S1. Second, all panes of S2 within S1P4’s lifeSpan (panes

S2P3, S2P4, and S2P5) have a value of 1. Thus, we can safely set the corresponding bit

in doneQueryMask to 1.

Purging Expired Elements. To avoid an infinite growth of the status matrix,
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Redoop periodically purges the meta description about the expired panes to accommodate

for new ones. Logically, purging is accomplished by shifting the array in each dimension

from the high-index to the low-index side. The purging task is triggered periodically

based on a configurable parameter PurgeCycle, a user-defined configuration parameter

in Redoop. Its default value is the slide size Slide of the data source in each dimension.

During the shifting, we scan each element in each dimension in ascending order by pane

id until an element indicates that the task has not yet been done. Thereafter, we can safely

remove the consecutive “done” panes and in their place insert the same number of new

panes into the matrix with an initialized value zero.

Figures 5.1(b) and (c) illustrate this shifting process using an example. Assuming

that the window constraints on S1 and S2 are the same (win = 3 mins and slide = 2

mins). Then the default shifting period is 2 minutes (i.e., PurgeCycle = slide). Thus, the

Status matrix purges expired elements every 2 minutes. In Figure 5.1(b), we start scan-

ning the matrix from S2P1 horizontally. The first four elements in row 1 indicate that the

corresponding pairs of panes have been processed with respect to their lifeSpan. For

example, the lifeSpan of S2P2 and S2P3 are 3 and 5 panes, respectively. Elements

corresponding to their lifeSpan have value 1. Thus, we can safely shift up the first

4 rows in the matrix and insert 4 new panes in S2’s dimension, namely, from S2P8 to

S2P11. The same process applies to S1 dimension as well. As a result, 4 new columns,

from S1P8 to S1P11, are inserted into S1’s dimension. Note that, the element of (S1P5,

S2P5) is not removed even though its value is 1, because neither S1P5 nor S2P5 have

completely exhausted their set of tasks with other panes within their lifeSpan, respec-

tively. For example, as indicated in Figure 5.1(b), the elements of (S1P5,S2P6) and

(S1P5,S2P7) are both still 0. Therefore, the shifted matrix status is updated only

as depicted in Figure 5.1(c).

The design of the cache status matrix is compact, as the system only keeps one such
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data structure for each query. Moreover, all operations on this status matrix introduce

minimum overhead to the window-aware cache controller. Specifically, the costs of ma-

trix initialization, update, and expiration are linear in the size of matrix. The shifting

operation’s costs are identical to those of the matrix initialization costs in the worst case.

Also, shifting is only triggered periodically. Thus, the maintenance of this cache status

matrix is negligible.

5.3 Cache-Aware Task Scheduling

The goal of the Redoop’s scheduler is to schedule tasks that exploit the window-centric

cached partitions as much as possible, reducing redundant work across window panes.

For example, Figure 5.2 is a sample schedule for a query joining data sources S1 and

S2. To improve performance, window-centric partitions from S1 and S2 are cached and

reused in the recurring query processing.

Two task nodes are involved in this job. The scheduling of window 1 in Redoop is

no different than in Hadoop: the map tasks are arbitrarily distributed across the two task

nodes as are the reduce tasks. In the join step of window 1, the input states are S1P1 and

S2P1. Two map tasks are executed, each of which loads appropriate window partitions

from input files into the local file system. As in the original Hadoop architecture, the

map and reduce tasks are executed with each processing the input data according to hash

values on the join attribute.

The scheduling of the join step of window 2 of data source S1 can take advantage

of the cache on data source S2 produced by window 1: the map task that processes the

specific data partition S2P1 is thus scheduled on the task node where that data partition

was processed for window 1. That is when its cache already resides as determined by

previous task scheduling decisions.
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(a) Initial Status at 5 s

(b) Update Status

(c) Shift Status at 7 s

Figure 5.1: Operations on Cache Status Matrix
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(a) Window 1

(b) Window 2

Figure 5.2: Cache-Aware Task Scheduling

The schedule in Figure 5.2 provides the ability to reuse historical data cached on the

local file system. There is no need to re-compute these map outputs nor to communicate

them to the reducers. In window 1, if the reducer input partitions 0 and 1 are stored on

nodes n1 and n2, respectively, then in window 2, these partitions need not be loaded,

processed, nor shuffled again. In that case, in window 2, only the new data partitions need

S1P2 to be processed. With this strategy, the reducer input now physically comes from

two different sources: the output from the mappers (i.e., for the new input data) and the

local file system (i.e., for the caches of previous panes).

In order to maximize the cache utilization in Redoop, we assume that the number of

reducers in a given job does not change over time. Moreover, the partitioning functions
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used between mappers and reducers are fixed. Two separate lists, mapTaskList and

reduceTaskList, are introduced for each type of tasks. This separation into two lists

helps the scheduler find the appropriate task to schedule, depending on the type of the

available task slot on the task nodes. Both map and reduce task lists are associated with

the window-aware cache controller. Specifically, whenever a ready bit of a data partition

in the window-aware cache controller turns to 1 (available in HDFS), then the task using

this data partition is added to the map task list. This new entry indicates that a map task

can now be scheduled because its data partition has newly arrived. If the ready bit of a

data partition turns to 2 (cache available 1), then it will be matched up with the other panes

(which also have cache available) based on its lifeSpan with respect to the other data

sources. Then, the cache pairs are added to the reduce task list. For example, whenever

S2P4’s ready bit in Table 2 becomes 2, it will be paired with S1P3. As a result, the

cache pair (S1P3, S2P4) is inserted into the reduce task list. However, S2P4 would not

be paired with S1P7 since S1P7 is beyond S2P4’s life span, assuming the window and

slide sizes of S1 are 3 minutes and 2 minutes (i.e., pane size is gcd(3, 2) = 1 minute),

respectively.

The cache-aware task scheduler also tries to balance the workloads on each node when

it decides on the task assignment. That is, if the scheduler assigns the map or reduce

tasks only based on the locality of prior caches, the nodes storing these caches could

be overloaded quickly. Thus, our scheduler combines two metrics to improve Redoop’s

performance: the load in each node and the affinity between the newly arrival data and

the cached data on each node. The first metric is used to assign a task to the node with

more resources available, and the second one tries to additionally exploit the locality of

cache. The combined metric for task assignment is shown below:

node = arg min
i∈N

[Loadi + Ctask,i] (5.3)
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where Loadi indicates the current load on the ith node, and Ctask,i denotes the I/O cost for

a given task. We plug in the cost model proposed by Li et al. in SOPA [47] to calculate

Ctask,i, as the I/O cost is shown to be the dominant cost. Given a task task to schedule,

Ctask,i is lower for the nodes where the required data is cached, and it is higher for the

rest of the nodes. The node with the minimal value from Equation 5.3 is selected. For

example, if all task slots of a node have been taken by map or reduce tasks, the scheduler

assigns the new task to a different node even if a fully loaded node has the desired cache

available. In this case, the cache would not be used for this particular task and the task

execution is identical to a regular map or reduce task.

Algorithm 4 describes our proposed cache-aware task scheduling algorithm. In the

beginning of a recurring job, the tasks are scheduled exactly the same as what would

have been done by Hadoop (Lines 2-5). The master node gets the cache information from

the window-aware cache controller. Thereafter, the scheduler consults the two map and

reduce task lists to assign any map or reduce task to an available node. If the map task list

is not empty (Line 6), the scheduler selects a node to assign the task from this map task

list in FIFO order (Lines 7-9). Then the scheduler updates the associated information of

the data partitions that participated in the scheduled task, such as the local cache registry,

the window-aware cache controller, and the map task list (Lines 10-12). These update

operations follow the logic described in the above subsections.

If the reduce task list is not empty (Line 13), the scheduler selects the appropriate

node by using Equation 5.3 for a reduce task from the reduceTaskList. The selection

takes both workload balancing and cache utilization on a node into account. (Lines 14-

16). Specifically, the scheduler tries to schedule the task in which both data partitions are

available as caches. If not, the scheduler prefers the task containing at least one partition

that is available as cache. Once selected, the scheduler removes the scheduled task from

the list and updates the window-aware cache controller accordingly (Lines 17-18).
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Algorithm 4 Cache-Aware Task Scheduling Algorithm

Input: Node node, Map〈Node, List 〈Partition〉〉 cache
1: boolean start = true
2: if start = true then
3: Partition p = defaultSchedule(node);
4: cache.get(node).add(p);
5: start = false;
6: else if !mapTaskList.isEmpty() then
7: Partition p = mapTaskList.get(0);
8: node = selectNode(M, p); // select a node for a map task
9: schedule(p, node);

10: cache.get(node).add(p);
11: mapTaskList.remove(0);
12: updateCache(p); // update cache associated information
13: else if !reduceTaskList.isEmpty() then
14: Partition p = reduceTaskList.get(0);
15: node = selectNode(R, p); // select a node for a reduce task
16: schedule(p, node);
17: reduceTaskList.remove(index);
18: updateCache(p); // update cache associated information
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Redoop Implementation

This section presents the Redoop implementation details.

Window Controller and API. As Figure 3.1 depicts, Redoop’s window-aware cache

controller is added as a new component to the Hadoop architecture. For this, the task

scheduler is modified from Hadoop’s classes JobInProgress and TaskScheduler, respec-

tively. Specifically, the cache-oriented TaskScheduler fully exploits the cache information

to schedule when and which task to assign to the available task slot.

Additionally, Redoop extends the Hadoop API to facilitate client programming. Con-

cretely, the programmer specifies a recurring query by providing:

1. The computation performed by each map and reduce in the recurring query’s body.

These functions have exactly the same interfaces as they do in Hadoop.

2. The window constraints of win and slide associated with data sources. The con-

straints are used to initialize the window-aware cache controller and to associate the input

files with each pane.

3. To specify the inputs and output of each execution, the programmer implements

two functions: GetInputPaths(int recurrence, int win, int slide) and GetOutputPaths(int

recurrence, int win, int slide), where recurrence indicates the number of times that a
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window has slided. Specifically, the returned input file paths consists of two kinds of input

data, newly arrival data, and cached input data from prior query recurrences. The returned

output file path is expected to have a unique output path for future query executions.

4. The application-specific incremental computation function finalization(int[] re-

currences) (discussed in Chapter 4.1) expresses different patterns of processing, such as

stateless or stateful incremental. Our Redoop returns the required intermediate data files

according to the recurrence numbers.

Caching. We have implemented Redoop’s caching mechanism by modifying the

classes MapTask, ReduceTask, and TaskTracker. In map or reduce tasks, Redoop cre-

ates a directory in the local file system to store the cached data. The directory, under the

task’s working directory, is tagged with the cache name (following the naming conven-

tion described in Section 4.2). With this approach, a task accessing the cache in the future

can access the data for a specific window and pane as needed. After the recurring query

finishes, all files storing cached data are removed from HDFS.

Purging. Redoop conducts the window and pane purging in a distributed fashion. Af-

ter the reduce phase of the specified window operation, a ReduceTask updates the lineage

(status) of the window/pane cache used by that operation. Then, the host TaskTracker

sends the updated lineage information back to JobInProgress. JobInProgress collects the

updated information of the locally updated lineage of each window/pane cache. If all

boolean bits in one lineage (bitmask) of a window/pane have been marked as 1, then

denotes that the window/pane does not need to further match with other data sources.

Then JobInProgress will raise a ”window/pane expire” event to notify the window/pane

purging. Otherwise, JobInProgress simply keeps the cache for possible utilization in the

operations.

Failure Recovery. Redoop retains the desired fault-tolerance properties of Hadoop

through the following mechanisms:
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1. Redoop inherits Hadoop’s strategy for task failures: a failed task is restarted some

number of times before it causes the job to fail. Intermediate data from unexpired panes

is maintained on local disks to recover from a task failure.

2. In the case of a slave node failure, all work assigned to this node is rescheduled.

Further, any data held on the failed node must be reconstructed. The additional failure

situation is introduced by the caches, since they are written only to local disks rather than

being replicated to the HDFS. However, rebuilding these lost caches on the failed node in

Redoop is naturally achieved by re-executing the tasks hosted by the failed node. During

these task re-executions on other nodes, the caches are re-constructed on their latest hosts

accordingly without incurring any additional costs.

3. In addition to the cache re-construction, a task failure or slave node failure also

triggers rollbacks on the data structures associated with the cache, such as the window-

aware cache controller and the map/reduce task lists. Specifically, if a cache is lost, the

ready bit of the associated pane must be changed to 1 (HDFS-available). The scheduled

tasks, using this cache, must be removed from the ReduceTaskList immediately by the

TaskScheduler. Thereafter, a new task should be inserted into the MapTaskList to

re-construct this cache as in Hadoop failure recovery is completely transparent to user

programs.
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Experimental Evaluation

The goal of this experimental study is to show that the Redoop framework achieves its

goals. Namely, we will show that: (1) Redoop seamlessly supports window-based recur-

ring query processing over data sources, (2) Redoop outperforms Hadoop system signifi-

cantly with caching enabled, and (3) Redoop is effective even under input data fluctuations

due to adaptivity support.

7.1 Experiment Setup & Methodologies

We implemented the Redoop framework as an extension to the open-source Hadoop. We

enriched the Hadoop framework by integrating our techniques for recurring queries. All

the experiments were conducted on a shared-nothing compute cluster of 30 slave nodes

and a single master node. Each server consisted of one quad-core Intel Core Duo 2.6GHz

processors, 8GB RAM, 76GB disk, and interconnected using 1Gbit Ethernet. Each server

ran Linux (kernel version 2.6.18), Java 1.6, Hadoop 0.20.2. Each worker was configured

to run up to 6 map and 2 reduce tasks concurrently. The sort buffer size was set to 512MB,

and speculative execution was turned off so to boost performance. The replication factor
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was set to 3 unless stated otherwise.

Datasets. We use two real datasets. The WorldCup Click (WCC) dataset (236GB) [77]

records all 1.3 billion requests made to the 1998 World Cup Web site. The second dataset

is from high velocity sensor data (FFG) collected from a football field of the Nuremberg

Stadium in Germany [78]. The FFG dataset (26GB) is repeatedly used for each window.

Metrics & Measurements. We measure the most common metric for data manage-

ment systems, namely the processing time. Our results are the average over 10 runs.

While the experiments are reported using time-based sliding windows, count-based win-

dows provide similar results.

Methodology. We evaluate the performance of the Redoop system for two key com-

putational tasks, namely, recurring aggregation and join queries. Both are implemented in

Redoop and in Hadoop (using the traditional driver approach). For each type of query, we

compare the performance of both systems by varying the most important parameters of

the window-based recurring queries. Specifically, our experiments vary the factor called

overlap, which corresponds to the ratio between slide size slide and window size win,

to measure scalability and efficiency of Redoop pane-based caching on high volume data

sources. Moreover, we measure how well the Redoop system copes with the input data

fluctuations. Last but not least, we demonstrate Redoop’s fault tolerance by conducting

experiments with slave node failures.

7.2 Effect of Pane-based Caching

Our incremental processing experiments evaluate the Redoop system’s performance by

varying the factor overlap = win−slide
win

, a ratio between the slide and window size. This

ratio represents the portion of the newly arriving data tuples in the window after the win-

dow slides. Thus, the higher the ratio is, the greater the amount of data shared between
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7.2 EFFECT OF PANE-BASED CACHING

consecutive windows.

7.2.1 Aggregation Query Evaluation

We run an aggregation query over the WCC dataset that ranks the movements of players.

Figure 7.1 shows the results for Redoop and Hadoop. Overall, as the figures show, for

an aggregation job, Redoop significantly improves on the run-time when the cache is

enabled. We now describe these results in more detail.

Overall response time. In this experiment (Figure 7.1), Redoop significantly outper-

forms Hadoop. Redoop’s task scheduling and pane-based caching substantially reduce

aggregation time. The running time depicted in Figures 7.1(a), 7.1(c), and 7.1(e) (left

column) demonstrate the response time of the aggregation query for 10 windows. In all

three figures, for the initial window, both Redoop and Hadoop need to process the whole

window full of tuples and thus they achieve similar performance. Hadoop is slightly faster

because it does not cache the data produced by the mappers. For the subsequent sliding

steps (windows 2-10), Redoop benefits from the pane-based caching, resulting in a sig-

nificant advantage over Hadoop. Reusing the cached results of previously processed data,

Redoop only needs to process the newly arriving tuples after the window slides, and then

merge all intermediate results. Figure 7.1(a) achieves the best improvement (lowering the

response time by a factor of 8 on average) among the three settings, because its overlap

= 90%. Namely, 90% data tuples in each window are cached on the Redoop local file

system from each previous window processing step.

Time distribution. To better understand Redoop’s improvements to each processing

phase, we also compared the cost distribution of the aggregation across the Shuffle and

Reduce phases. Figures 7.1(b), 7.1(d), and 7.1(f) (right column) show the sum of the

cost distribution of the aggregation for 10 windows. The Y axis shows the time spent

on each phase. In both Redoop and Hadoop, reducers start to copy data immediately
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Figure 7.1: Aggregation Query Performance
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after the first mapper completes. “Shuffle time” is normally the time between reducers

starting to copy map output data, and reducers starting to sort copied data; shuffling is

concurrent with the rest of the unfinished mappers. The reduce time in the figures is the

total time a reducer spends after the shuffle phase, including sorting and grouping, as well

as accumulated Reduce function call times. Considering all three charts, we conclude that

Redoop outperforms Hadoop in both phases.

Both the “shuffle” and “reduce” bars of Redoop are shorter compared to Hadoop, be-

cause Redoop takes advantage of the cached data. Also, the aggregation between new

data tuples and cached data is pane-based rather than tuple-based since the data in caches

is already aggregated by previous processing. Thus, the cost becomes negligible in Fig-

ure 7.1(b). By contrast, for Figure 7.1(f), the cache does not help much, because the

overlap (10%) is low. The results in Figure 7.1 clearly demonstrate the effectiveness of

our incremental design gained by using pane-based caching.

7.2.2 Join Query Evaluation

We run a join query on the FFG dataset with the same system settings as above. Overall, as

Figure 7.2 shows, for a join job, Redoop achieves better performance by winning almost

an order of magnitude in the best case scenario with the cache enabled, as described

below.

Overall response time. Redoop’s performance shows a similar pattern with the join

query on the FFG dataset. The running times in Figures 7.2(a), 7.2(c), and 7.2(e) demon-

strate the processing time of the join query for 10 windows. Again, for the initial win-

dow, both Redoop and Hadoop need to process the whole window full of tuples and thus

achieve similar performance. For the subsequent sliding steps (windows 2-10), Redoop

benefits from the pane-based caching, resulting in a significant performance advantage

over Hadoop. Figure 7.2(a) achieves 9 fold performance improvement by taking advan-
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Figure 7.2: Join Query Performance
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tage of reusing a huge portion of its cache data (overlap = 90%).

Time distribution. Similarly, we compared the cost distribution of the join process-

ing across the Shuffle and Reduce phases. Figures 7.2(b), 7.2(d), and 7.2(f) show the sum

of the time distribution of the join for 10 windows corresponding to different overlap set-

tings. As expected, both the “shuffle” and “reduce” bars of Redoop are shorter compared

to Hadoop, because it takes advantage of the cache data. In particular, the reducers in

Redoop only need to process the incremental inputs and produce new results which are

combined with the cached reducer outputs from last occurrence to form the final results.

In contrast to the results of the aggregation query, the time distribution is much differ-

ent. Figure 7.2(b) shows that the reduce phase is the dominant time. The reasons include

the join selectivity, the implementation of the join operation, etc. However, our pane-

based caching is orthogonal to these factors and the possible optimization techniques for

these factors are out of the scope of this paper. What is interesting to observe is that

by exploiting pane-base caching for recurring queries, Redoop achieves an up to 9 times

performance gain compared to the basic Hadoop.

7.2.3 Effect of Adaptive Input Partitioning

In this experiment, we study the effectiveness of our adaptive strategy that handles input

data fluctuations. For comparison, we again use Hadoop as baseline. We measure the pro-

cessing time for 10 windows. The workload used in this experiment varies periodically.

Specifically, windows 1, 4, 7, and 10 have the normal workloads. The workloads of the

rest of the windows are doubled. Figure 7.3(d) shows the processing time for 10 windows

with three different settings (overlap = 90%, 50%, and 10%).

For very large overlaps as shown in Figure 7.3(a), Hadoop is outperformed by the

adaptive Redoop and even Redoop. The reason is that when having workload spikes,

adaptive processing as exploited in Redoop, smooths out the doubled workloads by start-
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Figure 7.3: Adaptive Input Partitioning & Fault Tolerance

ing the query execution earlier with the newly arrival data at a finer granularity (i.e., sub-

panes). Redoop without exploiting such adaptive strategy would waste time on waiting

for more data than what it could possibly handle at a time. Worse yet, Hadoop uses the

default batch processing strategy, which only starts processing data whenever the window

slides. On the other hand, the adaptive strategy avoids creating too many small sub-panes

by exploiting the estimation model discussed in Section 4.3.

However, as the overlaps grow, we observe an interesting behavior by Redoop with-

out adaption. In Figure 7.3(c), we see that Redoop only has slight gain over Hadoop.

This time, the amount of data and thus computation needed become more significant in a

shorter time period. Neither Hadoop nor Redoop without the adaptive strategy can handle

such high workload spikes. On the contrary, we observe that the adaptive Redoop starts
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query execution earlier rather than waiting until all data had been received. This gives

excellent results, even outperforming the basic Redoop by 2.7 times on average during

the workload fluctuations. In summary, the above results demonstrate the effectiveness of

the adaptive input partitioning strategy in Redoop.

7.2.4 Fault Tolerance

Redoop and plain Hadoop will have the same behavior with respect to a slave node failure.

Thus, in this section, we focus on cache failure where the cached data is lost from a

given node. As middle ground, we use a FFG dataset to run an aggregation query with

overlap = 50%. We inject cache removals at the beginning of each window, and plot the

running time in Figure 7.3(d), where Redoop(f) and Hadoop(f) correspond the cases when

task failures happen, and Redoop and Hadoop to the cases without failure. As shown in

Figure 7.3(d), Hadoop(f) has the worst performance as we expected. On the contrary,

the accumulative running time of Redoop(f) is still much shorter than that of Hadoop.

The reason is that Redoop caches the intermediate data in a fine-grained unit (i.e., pane)

rather than at the granularity of the whole window. Thus, even some cached intermediate

data is lost due to failures, Redoop can still exploit the rest of the caches during its task

execution.

Notice that Redoop(f) has a small loss for the first two windows. This is attributed

to the cold start of the query processing on Redoop - similar to Figure 7.1 with the same

trend. What happens is that with more windows, a larger number of panes are cached.

In short, the advantage of pane-base caching remains apparent for Redoop even with task

failures.
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Related Work

Hadoop Extension. MapReduce [1] and its open-source implementation Hadoop [2]

have emerged as a popular model for large-scale distributed data processing in shared-

nothing clusters. However, it has been recognized that Hadoop is not a high performance

system as it lacks critical system-level optimizations [79]. Hence, several extensions have

been proposed to improve Hadoop’s performance for different query types, e.g., SQL-like

queries [5, 60], online processing [80], and iterative queries [81]. However, none of these

systems support or optimize the data-intensive recurring queries addressed in this paper.

While some studies such as HaLoop [81] and Twister [82] have utilized disk-based

caches to improve the performance of Hadoop, their domain of queries, which is the

recursive and iterative queries, is different from ours. These systems identify and then

maintain invariant data during subsequent recursions. HaLoop [81] caches each stage’s

input and output to save I/Os during iterations. The major difference between the afore-

mentioned approach and Redoop is that we use a well-understood set of principles from

window semantics [70, 71, 72] to provide an end-to-end optimization for supporting re-

curring queries. Similar to HaLoop, Twister [82] extends MapReduce to preserve data

across iterations, in which mappers and reducers are long running processes with dis-

72



tributed memory caches. However, Twister’s architecture between mappers and reducers

is sensitive to failures. Also the memory cache suffers from potential scalability issues.

ReStore [49] extends Pig to reuse intermediate results of the MapReduce workflows.

However, ReStore does not directly support recurring queries. It neither understands re-

curring queries nor provides caching options for input data at the infrastructure level.

In contrast, our work focuses on supporting window-based recurring queries by provid-

ing window-aware caching over overlapping data across windows. Moreover, Redoop

enables fine-grained control over these caches by efficiently maintaining and exploiting

their meta-data.

Nova [44] is the closest work to the Redoop system in that Nova supports the conve-

nient specification and processing of incremental workloads on top of Pig/Hadoop. How-

ever, Nova acts as a middle-ware layer on top of Hadoop that is treated as a black-box

system. Thus, Nova can identify which incremental files (deltas) to process in each exe-

cution, but it cannot exploit the optimization opportunities offered by Redoop including

adaptive data partitioning, caching of the intermediate data to avoid redundant shuffling,

cache-aware task scheduling to utilize cache locality, and adaptivity to the data arrival

rate.

In-Memory Hadoop. Several recent systems have been proposed to support in-

memory processing on top of Hadoop including the M3R [46], SOPA [47], C-MR [48],

and In-situ (iMR) [41] systems. In general, these systems focus on changing the disk-

based processing inherent in Hadoop into memory-based real-time processing, and hence

they cannot be applied to the disk-based recurring queries. For example, SOPA [47] re-

places the MapReduce I/O intensive merge sort by hash-based in-memory processing.

However, not being aware of overlapping windows, SOPA does not provide caching

across MapReduce jobs. M3R [83] builds a main-memory implementation of MapRe-

duce and places constraints on the type of supported jobs imposed by available memory
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size. C-MR [48] supports stream processing by eliminating disk buffers. However, C-

MR focuses on aggregation queries over a single stream, rather than providing a general

solution of supporting window-based queries. Worse yet, C-MR keeps all intermediate

workflows in a shared in-memory buffer. Consequently, no fault tolerance is provided by

C-MR. In-situ (iMR) [41] uses the MapReduce programming interface to deploy a sin-

gle MapReduce job onto an existing data stream management system (DSMS) to support

count- or time-based sliding windows. However, iMR only optimizes log processing ap-

plications rather than the more general recurring queries that are our focus. Worse yet,

iMR computing nodes are fixed to specific map or reduce jobs and thus are unable to ben-

efit from any form of load balancing and cannot adapt to workload or resource volatility.

Distributed stream processing systems. Distributed stream processing systems have

been proposed to enable scalable and distributed execution of the continuous queries over

data streams [57, 84, 85, 86]. However, since these systems are optimized for main-

memory processing with real-time response, they are not suitable for the disk-based data-

intensive recurring queries. First, they will not scale well to the sheer volume of data that

must be processed by our target applications. And second, continuously maintaining the

data in memory would waste significant system resources during the inactive periods be-

tween recurring query executions. That is why Redoop addresses several challenges that

do not apply to streaming systems such as disk-based caching and recovery mechanisms

for cache failure, and cache-aware scheduling of tasks.
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Part II

Shared Execution of Recurring

Workloads in MapReduce
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9

Helix Window Alignment for Recurring

Queries

Before introducing the proposed techniques for the shared execution among multiple re-

curring queries, we first formally define our overall problem.

Definition 9.1 Given a workload of recurring queriesQ = {q1, q2, . . . qn}, where each re-

curring query qi(wi, si, ϑi) is defined with the three constraints window size (w), slide (s),

and SLA function (ϑ), the SLA-aware multiple recurring query optimization problem is

to find a shared execution strategy Eshared of the workload that maximizes the cumulative

utility score of the queries in Q. Our goal is to

Maximize :

|Q|∑
i=1

uScore(qi, ϑi(t),Eshared) (9.1)

where uScore is defined as the utility score for qi ∈ Q computed from its SLA function

ϑ(t), assuming that the results are generated at time instant t.

Finding the optimal solution for this problem is prohibitively expensive as discussed

in Chapter 10. Orchestrating a shared execution of recurring queries with different SLAs
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is a stochastic knapsack problem, where the stochasticity comes from the fact that the

utility score of a query is variable and depends on all previous decisions. Any solution to

this problem would need to consider the unique characteristics of recurring queries.

In this chapter, we present a new technique for the shared execution among multi-

ple map-reduce recurring queries, called the Sliced Window Alignment (SWA). The goal

of SWA is to tackle the problem of different window constraints among queries, and thus

create more opportunities for fine-grained sharing among recurring queries. Our approach

first identifies the differences among the scope of interest of each query, and then parti-

tions each of the input data sources into non-overlapping slices. The query processing

over the slices produces partial results that can be used to answer multiple queries with

little overhead. We first analyze the issues caused by the differences among the scope of

interest of query executions (Chapter 9.1). And then, we propose a logical window slic-

ing approach that partitions recurring query windows into aligned slices (Chapter 9.2).

Since in Hadoop’s context the slices will map to HDFS files, then special considerations

needs to be taken into account to avoid creating many small files, which is not optimal for

Hadoop. Therefore, in Chapter 9.3, we present the mapping procedure from the logical

sliced window to physical HDFS files.

9.1 Alignment Problem with Diverse Window Constraints

Given a set of recurring queries with varying window constraints, i.e., window (w),

slide(s), and start time (start), these parameters may not be well aligned. In this case,

sharing work among recurring queries—even if they otherwise have identical tasks (e.g.,

map input scan, map task, etc.)—may not be beneficial due to their different time scope

granularities. Shared query execution without proper data preparation may result in in-

efficiencies caused by problems of redundant data loading and/or repeated partial data
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Figure 9.1: Relation between Windows

re-computation, as illustrated in the following example.

Example 9.1 (Naive Sharing) Assume that two queries q1 and q2 consume the same in-

put data source and have identical map outputs, with q1.w = 20, q2.w = 15, q1.s = 10,

q2.s = 10, q1.start = 0, and q2.start = 10 (Figure 9.1(a)). Assume the input files [0-20]

(F1), and [20-30] (F2) are received in two batches at time T = 20 and T = 30, respec-

tively. Although q2 can share its execution (i.e., partial input scan and the associated

map output) with the first execution of q1 over the input file [0, 20], the remaining data

[20-25] for the execution of q2 would still need the data from [10-20] in order to produce

complete results for q2. In this case, the input file [0-20] has to be loaded and processed

again for q2, causing redundant data loading and repeated computations. Moreover, the

execution of q2 would also need the data from [20-25] in the second input file [20-30],
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incurring unnecessary data loading from [25-30]. These operations are very expensive

and would consume significant system resources.

Example 9.2 (Optimized Sharing) The ideal case would be to partition the received in-

put files into smaller slices [0-10], [10-20], [20-25], and [25-30] (Figure 9.1(b)). The

slice [10-20] serves both queries, while the slice [0-10] and [20-25] only serve q1 and

q2, respectively. In this case, each slice with appropriate time granularity would be pro-

cessed only once - serving both jobs rather than causing unnecessary data loading and

computation.

9.2 Aligning Queries in Sliced Windows

We now explain how to best partition an input data source for evaluating recurring queries

that reduces both the required I/O operations and computation costs. The idea of parti-

tioning a data stream into slices was first introduced by Li et al. [70] in the pane-based

window approach. In this approach, all slices, also called panes, are of equal size. While

this may be appropriate for partitioning the input data source for a single recurring query,

it is not the most effective approach in the multi-query scenario. Instead, we propose

to partition a data source into possibly unequal slices for multiple queries with varying

window constraints. We define the sliced window as follows.

Definition 9.2 A window W of size |W | = w can be decomposed into m slices pi with

p1.start = 0, pi.end = pi+1.start, and pm.end = w. Each slice pi has size ri = (pi.end −

pi.start) ∀ 1 ≤ i ≤ m. The slices of W are denoted as W (r1, . . . , rm), and the ending

position of the i-th slice pi is defined relative to the start of W as pi.end = r1 + . . .+ ri.

We start with Q, a set of n recurring queries that access the same input data sources,

where each query qi in Q has different window sizes w, slides s and logical start times
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start. For simplicity, here we first assume that the start time is the same across all queries.

Later, we will relax this constraint. With varying window sizes and slides, we need to find

a single common window that consists of at least one or multiple consecutive executions

of each query qi. Thus, the period of this common window is the lowest common multiple

(LCM ) of the slide qi.s of each query.

Example 9.3 Given two queries q1 and q2, with q1 (w = 7, s = 4) and q2 (w = 9,

s = 6). We note that q1 and q2 have different slides, namely, 4 and 6. We thus stretch them

respectively by factors of 3 and 2 to produce a common window of period 12.

Knowing the size of the common window, we adopt the paired window approach [87]

to partition it with unequal slice sizes according to the window sizes and slides of qi ∈ Q.

A sliced window of period s is partitioned into a pair of slices, i.e., p1 = w mod s and

p2 = s − p1. Partitioning a window into two slices never creates more slices than the

pane-based window approach. Thus it is always better than, or at least as good as, pane-

based windows in the context of MapReduce systems. The reason is that in general it may

not always be beneficial to execute a job with very small files. The detailed reasons will

be explained in Chapter 9.3.

Example 9.4 Here we continue using Example 9.3 to demonstrate our solution. The

paired windows for q1 and q2 are (3,1) and (3,3), respectively. Then the common window

W = 12 can be partitioned into either (3,1,3,1,3,1) based on q1’s paired window or

(3,3,3,3) based on q2’s paired window. Lastly, we combine these two partition plans

together to produce the sliced window W = (3,1,2,1,1,1,2,1), which can serve as the

common executions of both queries. The thicker bars show the boundaries in the common

sliced window W as shown in Figure 9.2(a).

We now relax the constraint of identical logical start times of queries in Q. Namely,

we allow queries with arbitrary logical start time. First, we sort all queries by their logical
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Figure 9.2: Sliced Window Example

start time in an ascending order. Then we define the time period from the start time of

the first query and the start time of the last query as Wstart. The period Wstart can then

be partitioned based on each query’s qi.start. The remaining part of the window of each

query becomes the new window size w′, i.e., qi.w′ = qi.w + qi.start −Wstart. The new

qi.w
′ with qi.s are used to generate the common sliced window as described above.

Example 9.5 Now assume we have three queries q1, q2, and q3, with q1 (w = 9, s = 4,

start = 0), q2 (w = 9, s = 6, start = 2), and q3 (w = 5, s = 2, start = 1). First,

we have three queries q1, q3, and q2 in an ascending order of their start time. Thus the

period Wstart is 2, and this time period is partitioned into 2 slices due to q3.start = 1.

The remaining part of the window of each query is q1.w
′ = 7, q2.w

′ = 9, and q3.w
′ = 4.

With these new window sizes qi.w′ and slides qi.s, we have a common sliced window as

shown in Figure 9.2(b)
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Algorithm 5 corresponds to the above SWA approach in pseudo-code. In general,

our SWA approach is a combination of building a common sliced window for all queries

and using unequal slide sizes. The solution produced by the SWA algorithm is a set of

boundaries that partition the common window into unequal slices. By processing at the

sliced level of input data, we create more opportunities for fine-grained sharing among

recurring queries. Moreover, having the input data in such fine-granularity can alleviate

or even avoid redundant data loading and repeated partial data re-computation.

Algorithm 5 Sliced Window Alignment Algorithm
Input: A set of recurring queries Q
Output: A set of ending positions pos

1: tLast← max(qi.start)
2: for qi ∈ Q do
3: pos.add(qi.tstr)
4: qi.w

′ ← qi.w + qi.start− tLast
5: CommonWin← LCM(qi.s)
6: for qi ∈ Q do
7: qi.bList← slice(qi, CommonWin)
8: for b ∈ qi.bList do
9: if b /∈ pos then

10: pos.add(b)
11: return pos

9.3 From Slices to Physical Files

After computing the optimal slicing boundaries for input pre-processing, we need to store

the data within each slice into physical HDFS files. However, this mapping is not straight-

forward because the size of each slice varies depending on the actual arrival rate of the

corresponding data source. And thus, slices may generate many small HDFS files, which

is not optimal for Hadoop’s execution. The reason is that HDFS is optimized for process-

ing large data files [64]. Therefore, reading through small files may cause lots of seeks

and communications from datanode to datanode to retrieve each small file. If the file is
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very small and there are many such files, then each map task processes very little input

yet imposes extra bookkeeping overhead. Such overhead may offset the potential com-

putational savings from our sliced window alignment solution. To avoid such scenario,

we propose a strategy that maps a common sliced window plan to physical files in HDFS.

The decision chooses the most effective method of representing the slices according to

a predefined minimal granularity. The following two cases show the options that Helix

adaptively chooses from.

Note that the complexity of the pre-processing of the input files to create the panes

would depend on the properties of the input files, e.g., sorted or unsorted, and the granu-

larity of the pane sizes to create. For example, if the pane sizes are larger than the input

files or the input files are sorted based on the records’ timestamps, then the pre-processing

involves only scanning the files to create the panes. Otherwise, it will involve a time-based

partitioning to divide the records into the appropriate panes.

First, one slice corresponds to exactly one physical file (depicted in Figure 9.3(a)).

Depending on the chunk size on HDFS (e.g., default size 64MB), this file may have one

or more chunks. On the other hand, multiple slices together may correspond to one physi-

cal file (show in Figure 9.3(b). Namely, when the input data rate is not intensive, multiple

logical slices are mapped to one physical file by a partition executor that implements the

instructions encoded in the common sliced window produced by the SWA approach. The

data records are hashed to their corresponding slices based on their timestamps during

the loading time. The partition executor piggybacks the slice creation step with the load-

ing step, i.e., while a given input file is being loaded into HDFS, the partition executor

partitions the records on-the-fly to the corresponding slices.

We also introduce a special file header to boost performance for locating selected

slices in the second case. Specifically, when a single file contains multiple logical slices,

the entire file is not always required by an operation. Thus, a special header for such a file
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Figure 9.3: Mapping Slice Decision to Physical Files

is designed to reduce the latency of finding the required logical slices. This is particularly

effective when a file contains a large number of slices caused by a relatively low input

rate over a given time period. Having such optimization on mapping logical data units to

physical files, Helix avoids creating excessively small files in Hadoop.

84



10

Helix Shared Recurring Query

Optimization

In this chapter, we describe how to find a shared execution plan for a given set of recur-

ring queries Q. Each of these queries retrieves its inputs in the form of sliced windows

described in Chapter 9.3. The shared execution plan should maximally satisfy the SLA

associated with each query qi ∈ Q, i.e., maximizing the sum of the utility score of Q.

The problem has two dimensions: (1) identifying the sharing groups, i.e., the queries that

will be grouped together to share their executions, and (2) identifying the execution order

among these groups. What makes our optimization problem challenging is not only that

the solution to each of these sub-problems is NP-hard, but also that they are interdepen-

dent, as illustrated in the following example.

Example 10.1 Assume that the utility score for all three queries q1, q2, and q3 follows a

SLA function, the score is 1 if the queries finish before time Td, and 0 otherwise. Assume

that {{q1, q3},{q2}} is the best grouping solution with respect to computational savings,

e.g., q1 and q3 share a lot of their computations. However, sharing q1 and q3 would result

in missing q1’s deadline due to the data-intensive tasks involved in q3. The estimated
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utility score of group {q1, q3} in turn would be 1. Therefore, q2 would be scheduled ahead

of {q1, q3} because it has shorter execution time compared to group {q1, q3}. This way

only q1’s deadline will be missed and hence the total utility score of executing all three

queries would be 2. On the contrary, if we choose to share q1 and q2 together (although

their amount of sharing can be small), then the utility score of this group will be 2 since

the execution time can meet the SLA functions from both queries. In this case, {q1, q2} is

scheduled ahead of q3, since q3 has a relatively loose deadline. Therefore, the total utility

score would be 3 in total.

In brief, we may need to change the execution order of query groups according to

different grouping decisions in order to achieve a better shared execution plan. In the

following, we define the concepts of shared grouping and execution ordering.

Definition 10.1 (Shared Grouping) Given a set of recurring queriesQ= {q1, q2, . . . , qn},

a set of query groups G = {G1, G2, . . . , Gk}, where each Gi is a subset of Q, is called a

shared grouping solution GS, if it satisfies the following two conditions:

(1) Gi

⋂
Gj = ∅, ∀i, j : 1 ≤ i, j ≤ k, i 6= j;

(2)
⋃
Gi = Q, namely, the union of all Gi forms the entire set of recurring queries Q.

For example, the grouping {{q1, q3}, {q2}} in Example 10.1 is a valid shared group-

ing, while the grouping {{q1, q3}, {q2, q3}} is invalid due to the overlapping q3 between

the two query groups. The shared grouping does not yet specify the order of execution

among its groups, which will be defined next.

Definition 10.2 (Execution Order) In a shared grouping solution GS, the start execu-

tion time of Gi is denoted by tstarti , and its end execution time is denoted by tfinishi . We

assume that each query group will use all of the available resources to finish as early as

possible. Therefore, a valid execution order, denoted as EO = 〈Gi → Gj → . . .→ Gx〉,

is a sequential ordering for Gi ∈ GS.
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For example, 〈{q1, q3} → {q2}〉 or 〈{q2} → {q1, q3}〉 are both valid execution order-

ings.

Problem Complexity. Sharing among n map-reduce jobs without taking into account

the recurring query constraints has been shown to be an NP-hard problem [38, 40].

Adding the execution ordering problem of the shared query groups to the optimization

problem introduces a second dimension, which turns the shared execution of recurring

workloads into a bilinear optimization problem. As we illustrated in Example 10.1, if

we change which queries to share, then this also affects the overall ordering of shared

query execution, and vice versa. The bilinear nature of the problem renders exhaustive

techniques, like brute-force and greedy optimization, infeasible. Solving the ordering

problem independently of the sharing problem will result in sub-optimal solutions for

this bilinear problem. In essence, the shared execution of recurring workloads problem

is equivalent to the stochastic knapsack problem [88] with uncertain weights, where the

stochasticity comes from the fact that the utility score of a query is variable and depends

on all previous decisions.

Worse yet, in order to decide on the best execution ordering within a shared grouping

solution, accurate progress estimations for map-reduce jobs are required to estimate when

each group ends, and thus compute its expected utility score. Progress estimation in

MapReduce is in itself a challenging task due to the factors of distributed processing,

concurrency, failures, data skew, and other issues. This problem has received relatively

limited attention, e.g., ParaTimer [89], which attempted to estimate the progress of ad-hoc

map-reduce jobs.

In the proposed technique, we will explore a branch-and-bound (B&B) optimiza-

tion strategy that solves a wide variety of combinatorial problems. Conceptually, B&B

systematically enumerates a lattice-shaped search space, where each node represents a

possible shared grouping. In each node, all possible execution orderings are consid-
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Figure 10.1: Lattice-Shaped Search Space

ered. Figure 10.1 demonstrates a lattice-shaped search space for a set of queries of size

n = 4. Node “1/2/34” corresponds to a shared grouping that consists of three query

groups {{1}, {2}, {3, 4}}. This particular shared grouping is associated with a list of 6

execution orderings, in which 〈{1}, {2}, {3, 4}〉 is assumed to achieve the highest utility

score among 6 different orderings. This score, 2.6 in this case, is attached to the node

“1/2/34”. Clearly, a brute-force searching algorithm for the entire space is prohibitively

expensive. Our proposed B&B algorithm efficiently traverses this search space using two

strategies as pruning functions to effectively discard the sub-optimal candidates at the

sharing group level and the execution order level, respectively.

10.1 Optimization Strategies

In the following subsections, we present two strategies that help pruning the exponential

search space and reaching a solution in a practical way.

88



10.1 OPTIMIZATION STRATEGIES

10.1.1 Sharing Strategy

The goal of the proposed sharing strategy is to efficiently produce a good shared grouping

solution SG. This solution can then be used as a bound to evaluate how good other

candidates are and to prune sub-optimal candidates as early as possible.

The sharing strategy first identifies all query groups from the given set of recurring

queries Q. Each group is associated with a weight which represents the benefit of exploit-

ing the sharing techniques described in Chapter 2.2 versus not exploiting them w.r.t the

utility score gain. The benefit value bV al is obtained as follows:

bV al =
ϑ(tshared)

Costshared(Gi)
−

∑|Gi|
j=1 ϑ(tj)∑|Gi|

j=1Cost(qj)
(10.1)

where Costshared(Gi) and
∑|Gi|

j=1Cost(qj) denote the estimated costs of executing shared

query group Gi and the total costs of executing each query in Gi in isolation, respectively.

ϑ(tshared) and
∑|Gi|

j=1 ϑ(tj) denote the utility score of the shared execution of Gi, i.e., all

queries in Gi end at time tshared and the total utility score by running these queries in

a non-shared fashion. The intuition behind Equation 10.1 is to show the utility benefit

per unit of cost between the shared and non-shared executions. A higher bV al indicates

that the sharing in Gi is rewarding and should be given a higher priority. To avoid re-

inventing the wheel, we exploit the cost model established in [40] to obtain the costs of

shared execution of Gi. This cost model takes into consideration all MapReduce sharing

techniques to estimate the costs.

Conceptually, the next step is to form all possible shared groupings based on the

identified query groups, calculate the total bV al of each query group, until we select the

shared grouping with the largest total bV al as the final solution. Given Definition 10.1,

and the benefit model of each candidate, our shared grouping problem can be mapped to

a well-known graph problem, i.e., finding the Maximum Independent Set.
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Definition 10.3 (Problem Mapping) Given a set of all possible query groups, we define

an undirected graph G = (V,E), where vi denotes a query group, and an edge e(vi, vj)

denotes that vi and vj do not meet Definition 10.1. Now, our goal is to find a maxi-

mum independent vertex set Vi, among all possible Vi ⊂ V , where no vertices in Vi are

connected, with the largest overall bV al, i.e., maxV i(
∑

vi∈Vi bV al(vi)) with
⋃
Vi = Q.

The maximum independent set is known to be a NP-hard problem [90]. Clearly, it is

prohibitively expensive to create all possible shared groupings and to select the one with

largest total bV al. Therefore, we now propose a greedy search strategy to find a good

shared grouping solution (shown in Algorithm 6).

Algorithm 6 SharedGrouping() Algorithm
Input: A set of query groups G
Output: A shared grouping solution sol

1: for Gi:G do
2: if Gi.bV al < 0 then
3: G.remove(Gi) // remove groups with negative benefits
4: sort(G) // sort groups by Gi.bV al
5: sol← φ
6: for Gi:G do
7: if !isOverlapping(Gi, sol) then
8: sol.add(Gi) // add query group Gi to the solution
9: return sol

The time complexity of Algorithm 6 depends on the number of query groups |G|.

Suppose there are n candidates, the sorting function can finish in O(nlogn) time. The

time complexity of conflict check depends on the size of sol set, which is at most n.

Thus, the upper bound complexity of conflict check for n candidates is O(n2). However,

the solution set sol would not be large in practical due to the sharing conflict check as

discussed above. Thus the worst case time complexity of our greedy algorithm is O(n2).

The solution produced by Algorithm 6 serves as an initial and reasonable guideline

about which queries should be shared. The overall SLA satisfaction of such shared group-

ing solution serves as a bound for B&B algorithm as well. More specifically, any other
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shared grouping solutions should have better or at least identical SLA satisfaction in order

to be considered as a final solution for our shared execution problem. In Chapter 11.3,

our experimental results illustrate that this strategy effectively helps the B&B algorithm

find the optimized shared execution plan for given recurring workloads.

10.1.2 Ordering Strategy

In addition to the sharing strategy, our Helix optimizer also uses the ordering strategy.

Based on the shared grouping (e.g., Node {{1},{2},{3,4}} in Figure 10.1) produced by

Algorithm 6, we make a decision on the global execution ordering EO of its groups (e.g.,

〈{q1} → {q2} → {q3, q4}〉 in Figure 10.1). If the global execution ordering EO based on

the given shared groups is found to be sub-optimal (described in Section 10.1.4), then the

Helix’s optimizer will repeatedly request other shared groupings. The ordering solution

for a given shared grouping can be easily computed, provided that the utility scores of all

recurring queries are known at given time t. This is a big advantage of recurring queries

that Helix will make use of. In the recurring workload context, all queries periodically

execute over the same evolving data sources. Thus, Helix deploys a monitoring and pro-

filing techniques that tracks the consecutive execution of each recurring query, and builds

a profile for each query. The profile contains statistics for each execution, e.g., the ex-

ecution time, the amount of data processed, the number of mapper and reducers used.

According to these statistics, the estimation accuracy of the current execution as well as

the associated utility score can be gradually improved.

The ordering strategy exploits the observation that if a sequence of recurring queries

or query groups are to be executed, executing the one with the higher utility score first

and also the lower execution costs first likely results in higher global utility scores. The

benefits come mainly from the fact that choosing such query can return a higher utility

score per unit of cost, ϑi(t0)/Cost(qi), in which ϑi(t0) is the initial utility score of qi. In
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order to efficiently produce the solution, we exploit greedy approximation algorithm to

solve the relaxed problem of stochastic knapsack problem [88]. In this case, all queries

and query groups are sorted in decreasing order of utility score per unit of cost ratio. The

ordering strategy then computes the total utility score achieved by this order. For instance,

if q1, q2, and q3 have exactly the same costs, but their utility scores at a given time t are 1,

0.2, and 0.6, respectively, then the ordering should be q1, and then q3 followed by q2.

The ordering strategy is not reducing the solution space by omitting sub-optimal de-

cisions, but instead it gives us a greedy direction on how to start exploring the solution

space.

10.1.3 Helix Algorithm

Now we present our Helix optimization algorithm. The goal is to produce a globally

efficient shared execution plan, given a recurring workload Q with resources R. Before

presenting the algorithm, we will discuss how to use the solution produced from the above

two strategies as bounds to safely prune the sub-optimal candidates.

10.1.4 Pruning in B&B

As already explained in the previous two strategies, we have two initial bounds for the B

& B method, a bound for sharing groups and a bound for execution ordering. Given that

both bounds can be produced by fast run-time algorithms, they can be used as effective

approximations towards the final solution. The key idea of the proposed B&B algorithm

is that if the initial bounds are better than the upper bound (optimistic bound) for the

current candidate under consideration, then this candidate—and all its sub-solutions—can

be safely discarded from the search. If a candidate has a higher utility score compared

to the initial bounds, then they will be replaced by this new candidate. Hence, these two
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bounds record the minimum upper bound seen among all candidates examined so far.

Next, we introduce two lemmas that guarantee the safe pruning for the B&B method.

Thus the B&B method is guaranteed to find the optimal solution of shared execution of

recurring workloads.

Lemma 10.1 Given an execution ordering of a subset of query groups Gi ∈ SG and

the utility score associated with this ordering (denoted as uScoreGi
), and the rest query

groups Gj ∈ SG, if the highest utility score of Gj (denoted as uScoreGj
) plus uScoreGi

is less than the utility score of the ordering bound uScoreOB, then the candidates con-

structed by combining the existing ordering of Gi and all permutations of the execution

ordering of Gj can be pruned safely.

Proof: Due to the monotonic decreasing property of SLA functions, for any recur-

ring query, we have

ϑ(ti) ≥ ϑ(tj), (ti < tj) (10.2)

where ti and tj are two time points. Hence the highest utility score of a query qi that starts

its execution at time t can be:

uScoreH(qx, ϑ) = ϑ(t+ e) (10.3)

where e is the estimated execution time of qi. Therefore, uScoreGj
at time t is

uScoreGj
=

|Gj |∑
x

uScoreH(qx, ϑ) (10.4)

where |Gj| is the number of remaining query groups not yet inserted into order. Here

we assume that all remaining query groups can be executed concurrently at time t. Any

other execution orderings of the remaining query groups delays the execution of at least
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one query group, which in turn reduces the total utility score. Finally, if uScoreGi
+

uScoreGj
≤ uScoreOB, all possible execution orderings formed by the remaining query

groups can be safely pruned.

Example 10.2 Assume that we have 5 recurring queries and the query groups are {q1,

q2}, {q3}, {q4}, and {q5}. We further assume that the highest utility score seen so far is

4.2 (i.e., the ordering bound). Assume that the utility score of the execution ordering of

〈{q3} → {q4}〉 is 1, and the highest utility score of the other two query groups, i.e., as-

suming they will execute at the same time, is 3. Then the highest utility score achievable

(1+3=4) is still less than the ordering bound (4.2). In this case, we do not need to exam-

ine the detailed execution ordering among {q1, q2} and {q5}, and all shared groupings

resulted from their different execution ordering, i.e., 〈{q3} → {q4} → {q1, q2} → {q5}〉

and 〈{q3} → {q4} → {q5} → {q1, q2}〉, can be pruned safely.

Lemma 10.2 Given a shared query group, if the utility score of this query group at time

t is less than the one of executing all queries in this group in a sequential order, all

candidates that contain this query group can be safely pruned.

Proof: The Lemma 10.2 is self-explanatory. Let uScoreshareGi
denote the utility

score of the shared query group. Let uScorenshareGi
denote the utility score of all queries

running separately in a sequential order. Let uScoreQ−Gi
denote the utility score that

could possibly be achieved from the remaining queries. If uScoreshareGi
< uScorenshareGi

,

we have

uScoreshareGi
+ uScoreQ−Gi

< uScorenshareGi
+ uScoreQ−Gi

(10.5)

Thus the query grouping candidates consisting of this shared query group can never

achieve higher utility score than the ones without it. Thus, the candidates that contain

this shared query group can be safely pruned.
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Example 10.3 Assume that we have 4 recurring queries q1, q2, q3, and q4. If the utility

score of a shared query group {q1, q2} is less than executing q1 and q2 in a sequential

order, grouping q1 and q2 together is not beneficial with respect to the utility score, even

they may have significant computational savings. Any solution candidates with group

{q1, q2} should be pruned from consideration.

10.1.5 Branch and Bound Algorithm

Now we present our B&B method for determining shared execution plans of recurring

workloads. The algorithm uses “nodes” to keep intermediate states. There are three types

of nodes: the solution node, the live nodes and the dead nodes. A solution node contains

a solution to the problem with highest utility score seen so far. The score assigned to a

solution node is computed directly from the SLA functions. The algorithm may change

the solution node as it explores the solution space. The solution with the highest score is

the output of the algorithm.

Live nodes contain possible solution candidates to our problem and they are connected

with other nodes. Once visited without being changed into a solution node, a live node

is turned into a dead node, meaning that we do not have to visit it again. In order to

calculate the utility score of a live node, we plug in the estimated execution time into

the SLA functions associated with the queries in this node, and the above two bounds to

estimate the remaining part of the solution. A feature of Branch and Bound is that once

we have reached a solution node, we can prune all live nodes that have a score lower than

the score of the solution node. Recall that a live node has an estimated utility score (an

upper bound score). Therefore, pruning these live nodes does not affect the optimality

of the algorithm because the score of a live node means that as we explore this node and

fully traverse all children, we will never reach a solution with a higher utility score. In

other words, the score of a live node is the theoretical bound of the sub-tree of nodes.
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The algorithm, described in Algorithm 7, uses a heap to maintain the set of live nodes

sorted by their scores. The first node that enters the heap is the root node, a node that

contains the solution produced based on our two strategies described in Section 10.1. The

algorithm proceeds by removing the first node of the heap, and testing if it is a better

solution or not. In case it is a solution that has a higher utility score than any solution

we have seen before, we keep it. In the case that the active node is not a solution, all its

child nodes are inserted into the heap. As already explained, we can prune a node and its

corresponding sub-tree if it meets the pruning conditions we introduced in Section 10.1.4.

Algorithm 7 Helix Optimizer Algorithm
Input: Query Set Q, Heap heap, Node root, Node tmp
Output: Node solution

1: solution← SharedGrouping(Q) // call sharing algorithm
2: solution.score← order(solution) // call ordering algorithm
3: Push(heap, root)
4: while !isEmpty(heap) do
5: tmp← Pop(heap)
6: tmp.score← order(tmp)
7: if tmp.score > solution.score then
8: solution← tmp
9: Node[] children← childrenOf(tmp)

10: for Node c ∈ children do
11: c.score← order(c)
12: Push(heap, c)
13: else if !groupPrune(tmp.score) then
14: Node[] children← childrenOf(tmp)
15: for Node c ∈ children do
16: c.score← order(c)
17: Push(heap, c)
18: return solution

Figure 10.1 shows an example of how Algorithm 3 explores the search space by

traversing nodes. The root node at the bottom of the lattice-shape space holds a set of re-

curring queries with their optimal execution ordering (i.e., 〈{1} → {2} → {3} → {4}〉).

The value of the node is its estimated utility score. In the example of Figure 10.1, the root
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node has six child nodes. These child nodes have their query grouping fixed, meaning

that this part of the solution will remain constant in their child nodes. For instance, a

group of queries {3,4} is part of the query groups {{1,2},{3,4}} and {{{1},{2},{3,4}}}.

During node traversal all possible sets of groups must be taken into account. In our ex-

ample the child node of the root with highest utility score is traversed in the decreasing

order of their utility scores. Finally, at this point we should notice the importance of the

sharing and ordering strategies. Without these two strategies, node {{1},{2},{3,4}} has

three child nodes that contains all possible groupings having {3,4} in the same group.

The optimizer would have had to consider them all and their child nodes as well, for all

possible execution orders of a total of 4 nodes (6+2+2+2+1 = 13 in this case). Given the

node {{1},{2},{3,4}} fails to meet our grouping bound, it can be safely pruned so that

only its siblings and their child nodes will be traversed.
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Experimental Evaluation

In this chapter, we describe the experimental study we conducted to evaluate Helix. We

will show that: (1) Helix effectively supports shared execution of recurring queries by

employing sliced window alignment techniques, (2) Helix maximally satisfies the SLA

requirements specified in recurring queries, and (3) the effectiveness of Helix’s optimiza-

tion algorithm of finding the best shared execution plan for a given set of recurring queries.

11.1 Experimental Setup & Methodology

Experiment Infrastructure. All experiments are conducted on a shared-nothing cluster

with one master node and 40 slave nodes. Each node consists of 16 core AMD 3.0GHz

processors, 32GB RAM, 250GB disk, and nodes are interconnected with 1Gbps Ethernet.

Each server runs CentOS Linux (kernel version 2.6.32), Java 1.6, Hadoop 0.20.1. Each

node is configured to run up to 8 map and 8 reduce tasks concurrently. The sort buffer

size was set to 512MB, and speculative execution was disabled to boost performance. The

replication factor is set to 3 unless stated otherwise.

Datasets and Queries. We use two real-life datasets for our experiments. The World
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Cup Click dataset [77] (256GB) contains records of more than 1.35 billion web requests

made to 1998 World Cup Website. Another dataset is the latest high volume Wikipedia

database [78] (400GB) being modified and updated continuously.

We focus on queries that involve join, project, and aggregate operations, which are

fundamental operations not only in relational databases, but also in the emerging data

analytics tasks described in Chapter 1.2. These queries were generated from the following

query template: select S1.T, sum(value) from S1, S2 where S1.a = S2.b group by S1.T,

where T is a randomly selected list of dimensional attributes. The default number of

queries in a query batch was 20 unless otherwise stated. Each query is also assigned a

query deadline that ranges from [0.3 - 1] of the query’s window size w. These 20 queries’

deadlines are uniformly distributed within this range. We execute each experiment three

times. In the charts, we report their average results.

Metrics & Measurements. Given a set of recurring queries, we measure the utility

score of each query, and the average execution time for the recurrences of each query.

The execution time of recurring queries is a common metric in data management systems,

while the utility score is defined in Chapter 2.4. We do not include the data pre-processing

time, since it is performed on-the-fly during the loading time. It is hence negligible com-

pared to the disk-based query processing in Hadoop. We verify Helix’s effectiveness

under different time-based utility functions. Table 11.1 summarizes the utility functions

used in this study, which are also commonly used to specify SLA requirements [91].

We also evaluate the optimization overhead incurred by our optimizer with respect to its

optimization time.

Methodology. We adopted the state-of-the-art method [64] to support single recurring

query processing, and implemented the proposed Helix techniques for sharing execution

of recurring workloads on top of the extended open-source Apache Hadoop. We compare

three algorithms denoted Redoop, GGTMT, and Helix, respectively. Redoop [64] is the
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11.2 HELIX RUNTIME PERFORMANCE

# Utility Functions

F1 θF1(t) =
{

1 for t ≤ td
0 for t > td

F2 θF2(t) = 1/log(t)

F3 θF3(t) =
{

1 for t ≤ td
1/(t− td) for t > td

Table 11.1: Utility Functions Used in the Experimental Study

state-or-the-art approach for evaluating a recurring query in MapReduce. GGTMT [40]

only maximizes computational saving by combining both GGT (general grouping tech-

nique) and MT (materialization technique), without taking into consideration the SLA

satisfactions. Regarding the efficiency of the Helix optimization algorithm, we compare

it with the exhaustive (EXH) and random search (i.e., simulated annealing) algorithms

(RAND).

11.2 Helix Runtime Performance

We evaluate the effectiveness of our Helix solution from three perspectives. First, we

demonstrate the effectiveness of Helix’s sliced window alignment technique by compar-

ing with GGTMT as it only targets on sharing techniques for ad-hoc queries over static

datasets in MapReduce. Second, we demonstrate the sharing benefits gained by our He-

lix optimizer by comparing against Redoop as it aims to optimize for a single recurring

query. Third, we evaluate the scalability of our Helix solution by varying four parameters,

i.e., data size, number of queries, and cluster size.

11.2.1 Effectiveness of Sliced Window Alignment

Figure 11.1 illustrates the improvement of Helix over GGTMT. In this experiment, we fix

the number of queries to 20 and the number of nodes to 40. The size of the dataset is 240
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11.2 HELIX RUNTIME PERFORMANCE

GB for each slide in the common sliced window. We vary a factor, called overlap, which

corresponds to the amount of overlapping data between two consecutive windows of each

query, to measure the effectiveness of Helix sliced window alignment technique.
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Figure 11.1: Effectiveness of Sliced Window Alignment

Helix’s sliced window alignment technique substantially reduces the execution time

while also increasing the SLA satisfaction as illustrated in Figure 11.1(a). Helix benefits

from the sliced window alignment to avoid unnecessary data processing, resulting in a

significant advantage over GGTMT. Helix processes the newly arriving data in a finer

granularity. Moreover, the sliced window opens more sharing opportunities compared to

the GGTMT technique. Thus the execution time can be further reduced by up to 83%
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11.2 HELIX RUNTIME PERFORMANCE

when overlap is 0.9. The result in Figure 11.1(b) show that Helix has a clear advantage

over GGTMT with respect to the SLA satisfaction. Slicing a window into small chunks

breaks the original query into multiple MapReduce jobs, which in turn provides more

flexibility in choosing the appropriate queries to meet SLA requirements. The execu-

tion time and utility score of the join operation demonstrate a similar trend to the above

aggregation operation.

11.2.2 Effectiveness of Shared Execution

In this sharing benefit experiment, we also use 20 queries, 40 nodes, and 240 GB data

sets for each query recurrence. We again vary the overlap to evaluate the effectiveness

of sharing techniques on multiple recurring query processing. Helix’s sharing techniques

significantly improve the performance in both metrics (i.e., the execution time and the

utility score). The execution time of Helix is up to a magnitude faster compared to Redoop

when there is no overlap. The trend changes when the overlap ratio is high (0.9). In this

case, Redoop system can exploit the reduce input cache which is equivalent to our reduce

input sharing in Helix. The savings gained from the reduce input caches contribute to

the total savings more than other sharing opportunities such as map input scan or map

output sharing. However, when overlap ratio decreases, the benefits of the other sharing

techniques become significant. The total savings gained from all sharing techniques make

the performance of our Helix system substantially exceeds that of the Redoop system.

The results in Figure 11.2(b) illustrate the improvement of Helix over Redoop. In all

cases, even when overlap is 0, our Helix system achieves much better SLA satisfaction

compared to Redoop. The reason is that Helix’s shared execution plan is optimized for

maximizing the SLA satisfaction. On the contrary, Redoop system is neither equipped

with as many sharing techniques as Helix nor aware of SLA requirements associated with

recurring queries. As expected, the results of the join operation verify the superiority of
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Figure 11.2: Significance of Sharing Benefits

our Helix solution over Redoop in both metrics.

11.2.3 Putting It All Together

In this set of experiments, we evaluate the effectiveness and scalability of our Helix so-

lution by varying three parameters, i.e., data size, number of queries and cluster size.

Figures 11.3, 11.4, and 11.5 show the experimental results of Helix over GGTMT in-

dicated. Each figure shows the aggregation operations with respect to two metrics (the

execution time and the utility score).
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11.2 HELIX RUNTIME PERFORMANCE

Effect of number of queries. Figure 11.3 compares the performance as the size of

a query batch is increased. We observe that our algorithm significantly outperforms

GGTMT. For example, Helix outperforms GGTMT by 178% on average and up to 204%

with respect to the execution time when the number queries is 30. Further more, as

the number of queries increases, the winning margin of our solution over GGTMT also

increases. This is expected as the conflicts between sharing opportunities and SLA re-

quirements across queries also increase with the number of queries.

Regarding the utility score, the advantage of Helix is more obvious compared to

GGTMT. In Figure 11.3(b), The total utility score achieved by Helix is up to 1089%

more than the one achieved by GGTMT. The winning margin is similar to the observa-

tion in Figures 11.3(a). The reason is that Helix optimization is SLA-oriented. When the

number of queries is small, Helix and GGTMT may happen to produce an identical shared

execution plan for given queries due to the relatively small search space. However, when

the number of queries increases, the solution produced by Helix is optimal with respect

to the SLA requirements whereas GGTMT tries to maximize computational savings only.

Effect of cluster size. Figure 11.4 compares the scalability of all methods by varying

the number of nodes in the cluster used. Here again our Helix solution significantly

outperforms GGTMT in the execution time. For example, Helix outperforms GGTMT by

202% when the number of nodes is 10. Helix outperforms GGTMT by 232% when the

number of nodes is 40. Moreover, the improvement factor of Helix over GGTMT does

not show significant differences for both aggregation and join operations.

Furthermore, as the cluster size increases, the running time for both approaches de-

creases. In particular, the running time of Helix decreases much faster than the one of

GGTMT solution which therefore enlarges the winning margin as cluster size increases.

Thus, the performance improvement from the increased parallelism using a larger cluster

benefits Helix more than the GGTMT technique. The reason is that Helix system’s sliced
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Figure 11.3: Varying Number of Queries

window alignment technique provides appropriate sized inputs. That enables Helix to

make full use of the parallelism with more nodes are available.

In Figure 11.4(b), the utility score results confirm the superiority of our Helix ap-

proach over GGTMT as well. Helix is able to win in all cases. The winning margin

becomes more substantial when the number of nodes increases.

Effect of data size. Figure 11.5(a) examine the execution times of Helix with dif-

ferent data sizes per job ranging from 80GB to 400GB. Helix significantly outperforms

GGTMT again. For example, Helix outperforms GGTMT by up to 128% when the data

size is 400GB for aggregation queries. This is verified by the increase of the execution
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Figure 11.4: Varying Number of Nodes

time for both approaches as the data size increases. In particular, the running time of

GGTMT increases much faster than for the Helix approach. This shows that the robust-

ness of our Helix approach against varying data size. The reason behind this is that by

exploiting the sliced window alignment technique and the sequential sharing method, the

Helix approach can significantly reduce or even eliminate the unnecessary data recompu-

tations.

The results in utility score metric, as depicted in Figure 11.5(b), prove the success

of Helix approach as well. The reason behind this is that the decision of the execution

ordering becomes more critical when the data size increases. Making an inappropriate
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11.2 HELIX RUNTIME PERFORMANCE

ordering decision may significantly reduce the utility scores of other queries as they are

blocked from processing for a long time. The solution produced by Helix can always

guarantee the optimality of the execution order of the shared query groups. In other words,

most useful and urgent queries are processed ahead of other queries in a shared fashion.

This greatly helps the system to maximally satisfy the SLA requirements associated with

the queries.
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Figure 11.5: Varying Size of Dataset
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11.3 Efficiency of Helix Optimizer

In this section, we evaluate the efficiency of our Helix’s B&B algorithm by comparing

against two extreme solutions: a brute-force algorithm that generates the optimal sharing

solution (denoted by EXH) and a random approach using the simulated annealing algo-

rithm (denoted by RAND). We measure the optimization times to evaluate query batches

of different sizes. We choose not to evaluate the quality of solutions produced by all three

methods, because Helix always produces the optimal solution as EXH approach does.

While the RAND methods often chooses a sub-optimal solution because it might be stuck

in a local optima.

Figure 11.6 shows the optimization times of the three methods with varying numbers

of queries. For each query size, our Helix approach outperforms both the exhaustive and

random approaches by up to 7 and 2 times, respectively. When the number of queries

is small (10 and 15), all three methods feature a similar optimization time. As expected,

EXH is not a scalable solution when the number of queries increases. On the contrary,

the Helix method achieves the same quality shared execution plan as EXH but does so

in a much smaller optimization time. The random method RAND does not suffer from a

significant increase of optimization time for large numbers of queries. However, it cannot

guarantee any optimality regarding the produced solution.

In summary, the Helix approach guarantees to produce an optimal solution for shared

execution of recurring workloads with negligible optimization time overhead.
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Related Work

Recurring Query Processing. Recurring query processing systems [63, 64, 92] have been

proposed to support large-scale data analytics applications over evolving data streams.

SCOPE [63, 92] handles recurring queries by instrumenting queries to piggyback statis-

tics collection with its normal execution. Collecting such statistics makes it possible to

create a statistical profile that can be fed to the optimizer on a future invocation of the

same job. Redoop [64] employs window-aware optimization techniques for recurring

query execution including adaptive data partitioning, window-aware task scheduling and

inter-window caching. However, none of the above systems support the optimization of

multiple recurring queries.

Multi-Query Optimization (MQO): MQO is known to be an efficient method for han-

dling large query workloads in traditional database systems [93, 94, 95]. Techniques have

been proposed for tackling MQO problems in relational database systems, in particular,

materialized views [93, 94] and common sub-expression sharing [95]. In [94], material-

ized views are effective techniques for implementing common sharable processing across

queries. Chaudhuri et al. [93] proposed to pre-compute views over static data to be used

by other subsequent queries. In the Cache-on-Demand (CoD) system [95], the interme-

110



diate and final results from existing queries are treated as caches that are usable by future

queries. Such principles of keeping data generated from one query in views (i.e., caches)

more recently have been leveraged in MapReduce as well as explained below.

Multi-Query Optimization in Data Stream System: Continuous query processing

perspective has also given considerable attention to multiple query optimization [96, 97,

98]. Krishnamurthy el at. [97] have explored run-time aggregation sharing with varying

periodic windows and arbitrary selection predicates. However, our Helix system aims to

support more operations (e.g., join) other than the aggregation operator. Song et al. [98]

proposed to slice the results of a binary join operation into a chain of fine-grained window

instances to allow reusing of results across multiple queries. Nevertheless, it does not

consider deadline parameters of each query which may prevent the query from sharing

execution even if its window and slide match up with other queries.

Multi-Query Optimization in MapReduce: Several techniques have been proposed for

sharing or reusing work across multiple queries on MapReduce. MRShare [38] aims to

partition a batch of jobs into disjoint sharing groups. Specifically, MRShare combines

queries that share similar MapReduce jobs into a group and processes such group as a

single MapReduce job. However, MRShare does not support general jobs that use mul-

tiple inputs (e.g., joins) nor sharing parts of the map functions. Also MRShare does not

support window constraints and SLA requirements specified in recurring queries. Thus

the sharing groups produced by MRShare would not provide any guarantee of exploiting

unique sharing opportunities in recurring queries and thus satisfying the associated SLA

requirements.

The ReStore [49] system manages the storage and reuse of intermediate results pro-

duced by MapReduce workflows. ReStore materializes map and/or reduce output of

MapReduce jobs to identify reuse opportunities by future jobs, therefore avoiding re-

dundant work. The storage space in ReStore maintains the materialized results according
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to their use frequency. Our work differs from ReStore in both the problem focus and the

developed techniques. The sharing decisions made by our technique are SLA-targeted

and thus guarantee immediate reuse of materialized results whereas the materialized out-

put produced by ReStore might not be reused at all. Moreover, our Helix system exploits

sharing opportunities by executing a group of queries together as one MapReduce job. In

contrast, ReStore does not support such shared query executions.

Wang el at. [40] propose two sharing techniques, the generalized grouping technique

(GGT) and the materialization technique (MT), to refine multi-query optimization in

MapReduce. Multiple jobs could share the scan of the input file as well as the map

output. They also design a cost-based two-phase approach to find shared execution plans.

Compared with [40], our work focuses on the unique challenges of shared execution of

recurring queries and not just ad-hoc jobs on static datasets. Moreover, our work is more

comprehensive by targeting additional optimization objectives such as maximizing SLA.

This leads to a more complex optimization problem. We propose a novel SLA-driven ap-

proach with effective pruning heuristics that exploit the characteristics from both MapRe-

duce jobs and recurring queries to find optimal shared execution plans, which better meet

SLA requirements in recurring queries.

Service Level Agreement: Meeting certain SLA constraints has been addressed in the

context of stream processing systems [99, 100]. Prior work [99] has leveraged specific

workload characteristics to meet SLAs without losing efficiency or utilization. To pro-

vide real-time responses, [99] enable the user to specify a contract in terms of latency,

data freshness, CPU and memory usage. Its main method is to shed data from incoming

streams to handle load and meet the desired QoS. Our aim is not load shedding but in-

stead sharing of workloads. The second solution in [100] employs scheduling technique

to leverage small, uniform task durations to trade short-term SLA violations for efficiency.

However, these workload characteristics are not universal. In contrast, our Helix solution
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is independent of workload characteristics. Moreover, the scheduling technique in Helix

captures not only SLA requirements but also computational savings from shared query

executions.

Several techniques [50, 51, 52] have been proposed for achieving SLAs of MapRe-

duce jobs. These methods either dynamically adjust resource allocation or they exploit

profiling to help jobs provision resources statically at startup. However, none of these

efforts consider sharing such as merging similar jobs into one MapReduce job. Moreover,

they do not address any unique challenges derived from targeting recurring queries as

done in our work.
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Part III

Fast Approximate Recurring Queries in

MapReduce
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Faro System Overview

Figure 13.1 depicts the Faro architecture as an extension to the Apache Hadoop frame-

work. The window constraints specified in recurring queries can result in data overlaps

between consecutive windows. Therefore, we propose a Sample Repository to cache the

sampled data from previous executions on HDFS. The validity and quality of the cached

sample data are maintained by the Sample Meta-data component. Such meta-data is uti-

lized to make decisions for subsequent approximate executions. The deadline parameter

combined with the run-time data arrival rate require Faro to provide dynamic strategies

for approximate executions.

Beyond the map/reduce task structure of Hadoop, Faro adds several new components

to Hadoop (illustrated by the white boxes in Figure 13.1), which are:

1. Pre-Map and Post-Map Adaptive Samplers are introduced in Faro to support

approximate query execution. As described in Chapter 2.3, during the sampling phase,

either or both sampling components could be used to select a subset of data blocks on

HDFS for the approximate execution. All sample data are stored in a sample repository

on HDFS for subsequent executions.

2. Sample Repository stores sample data produced to support previous approximate
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query executions. A subsequent execution at a later time can potentially reuse the sample

data in the sample repository, further improving the accuracy of the query results within

a shorter time.

3. Sample Meta-Data contains: (1) the location of the pre-map and post-map sample

data, (2) statistics about the approximate executions that exploit the sample data, including

result accuracy and sample rate, and (3) the validity of the sample data with respect to the

given query’s window constraints.

4. Deadline-Aware Sample Module housed on Hadoop master node determines the

best sampling strategy for each approximate recurring query execution. Depending on

the available resource and the input data distribution, a choice of pre-map or post-map

sampling and their respective sampling rate will be made accordingly. Once this choice

is made, we rely on pre-map or post-map sampling techniques to select uniform samples

for the approximate query execution (Chapter 14).

5. Dynamic Resource Allocator fully exploits the sample repository that resides

on HDFS for approximate query executions. It employs a variety of mechanisms to dy-

namically allocate resources to the approximate query executions depending on the query

deadline. The resource assignment makes a trade-off between sampling new arrival data
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and refining existing result progressively, with a goal to maximize the result accuracy

within the query’s deadline (Chapter 15).

6. Execution Profiler collects the statistics after the completion of each query re-

currence, i.e., execution times of previous query recurrences. The profiler then transmits

the statistics to the Dynamic Resource Allocator such that the allocation decision can be

made on-the-fly.
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Faro Deadline-Bound Sampling

Before introducing the proposed techniques for the approximate recurring query process-

ing, we first formally define our problem.

Definition 14.1 Given a cluster configuration cc that represents the available resources,

and given a recurring query Q defined by three constraints: window size W, slide S,

and deadline D, the approximate recurring query optimization problem is to find an

execution strategy Eapprox that maximizes the average accuracy Accu over the last E

consecutive executions. That is:

Maximize :

∑E
i=1 Accu(Q, cc,Eiapprox)

E
(14.1)

Maximizing the average accuracy over E executions opens more opportunities for the

system to optimize the workload from a more global perspective than locally focusing on

each single execution, i.e., one on the very best executions. This average accuracy metric

is commonly used in the service level agreement from Amazon AWS, Microsoft Azure,

etc. The term “accuracy” here refers to the multi-stage sampling theory [68] that com-

putes confidence intervals for each single execution of the recurring query Q. The sam-
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pling techniques in [68] are suitable for aggregation queries. For other types of queries,

application developers need to plug-in their customized technique into Faro.

Faro creates and maintains a set of samples to accurately and quickly answer queries.

In this chapter, we describe the sample creation process in detail. First, we present a

cost model to estimate the cost of the execution of an approximate job in the MapRe-

duce framework using the proposed pre-map and post-map sampling techniques (Chap-

ter 14.1). Second, we propose a deadline-aware partition strategy that allows an ap-

proximate execution to have maximized result accuracy with reduced sample size (Chap-

ter 14.2). Lastly, we utilize statistical sampling theory to compute error bounds for the

Faro approximate executions (Chapter 14.3).

14.1 Cost Model

Now we present a cost model to estimate the evaluation cost of a recurring query Q in

the MapReduce framework using the proposed sampling techniques. Similar to other

MapReduce work [38, 40], we model only the disk and network I/O costs as these are

the dominant cost components. However, our cost model can be extended to include the

CPU processing resources as well. Table 14.1 presents the system parameters used in our

model, where the disk and network I/O costs are in units of seconds to process an HDFS

block.

We assume each recurring query execution Qi is processed by m map tasks and r

reduce tasks on the input file F . We use |F | to denote the size of F in terms of number

of HDFS blocks. For a map output Mi, we use pmMi
= dlogDd |Mi|

mBm
ee to denote the number

of sorting passes of its map tasks where |Mi|/m denotes the average size of a map task.

We use prMi
= dlogDd |Mi|

rBm
ee− 1 to denote the number of sorting passes of its reduce tasks

where |Mi|/r denotes the average size of a reduce task. We use pMi
to denote the sum of
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14.1 COST MODEL

Parameter Description
Clr cost of reading a data block from local disk
Clw cost of writing a data block to local disk
Cl sum of Clr and Clw
Cdr cost of reading a data block from HDFS
Cdw cost of writing a data block from HDFS
Cd sum of Cdr and Cdw
D merge order for external sorting
Bm buffer size for external sorting at mapper nodes
Br buffer size for external sorting at reducer nodes

Table 14.1: Cost Model Parameters

pmMi
and prMi

.

Given a recurring query Qi, its total cost (denoted as Cji) consists of its map and

reduce costs (denoted as CMi
and CRi

respectively). The map costs are given by:

CMi
= Cdr|F |+ Clw|Mi|+ Clp

m
Mi
|Mi| (14.2)

where Cdr|F | denotes the cost to read the input file, Clw|Mi| denotes the cost to write

the initial runs of the map output, while the cost to sort the initial runs is denoted by

Cl|Mi|pmMi
. The reduce costs are given by:

CRi
= Clr|Mi|+ Clp

r
Mi
|Mi| (14.3)

where Clr|Mi| denotes the reading cost for the final merge pass, and Cl|Mi|prMi
denotes

the sorting cost of the map output.

Therefore, the total costs can be expressed as follows:

CQi
= Cdr|F |+ (Cl + ClpMi

)|Mi| (14.4)
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Now we describe the costs of the pre-map and post-map sampling techniques based

on the above cost model. The pre-map selects a subset of blocks from the input file F for

the mappers to process, and the post-map writes a subset of tuples as the map output to

HDFS. Thus, the cost of these two techniques is given by:

CQi
= Cdr|F |λ1 + (Cl + ClpMi

)|Mi|λ1λ2 (14.5)

where λ1 denotes the pre-map sampling rate and λ2 denotes the post-map sampling rate.

Equation 14.5 is consistent with the observation described in Chapter 2.3. Namely, the

pre-map sampling (λ1) technique can reduce the cost faster compared to the post-map

sampling (λ2) technique.

Based on the cost model in Equation 14.5 and the deadline specified by the recurring

query, Faro determines the sample size (i.e., the maximum number of tuples) denoted by

N that a query can process without exceeding its deadline constraint. The value of N

depends on the factors of distributed processing, concurrency, failures, data skew, and

other issues. As a simplification, Faro estimates N by assuming that the latency scales

linearly with input size, as is commonly observed with a majority of I/O bounded queries

in parallel distributed execution environments [89, 101, 102]. To avoid non-linearities

that may arise at runtime, Faro’s Execution Profiler collects latency statistics from query

executions and sends them back to the Deadline-Aware Sample Module so to proactively

correct the estimation.

14.2 Equi-depth Partitioning

It has been shown that a static sampling scheme cannot maintain a uniform sample in a

bounded space in the context of time-based sliding window [103]. The reason is that the

number of sampled tuples may exceed the bounded space with a fixed sample rate when
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14.2 EQUI-DEPTH PARTITIONING

the arrival rate of the data source suddenly increases. Our solution to this problem is based

on the insight that we can reduce the sample size as well as minimize the error bound by

partitioning the window into disjoint time intervals (buckets) and reducing sampling rates

of individual buckets with huge amount of data tuples.

The main challenge in window partitioning is the placement of partition boundaries

because they have a significant impact on the quality of the sample. A simple partition

scheme is to divide a window into partitions of equal width (time intervals) and then to

sample data tuples from each bucket such that the estimated error bound (described in

Chapter 14.3) is identical among all the bucktes. As depicted in Figure 14.1(a), we refer

to this strategy as equi-width partitioning. The data in black is sampled while the white

colored are skipped. While this simple partition strategy would reduce the sample size

and support incremental sample updates, it ignores the data distribution in each bucket

and may not lead to a minimal sample size. Equi-width partitioning means that every

bucket is sampled in the same way. Thus, the error bounds are the same across all buckets.

However, buckets do not necessarily have to be under the same error bound, as long as the

global error bound is minimized. Intuitively, some buckets are more important than others

in affecting the global estimation and the error bound. For example, we can partition a

skewed data set shown in Figure 14.1(b) into two buckets rather than equally partitioning

it into four. More data are sampled from the second bucket with a small range. Hence,

the global error bound is minimized with the same sample size of 4.

In general, dense buckets are underrepresented by an equi-width partitioning, while

sparse buckets are overrepresented. This insight allows us to relax the error bounds for

less critical buckets by sampling less data and in turn to tighten the error bounds for the

more critical ones with higher sample rates.

Based on the above observations, we propose an alternative strategy, called equi-depth

partitioning, where the window is partitioned into buckets of equal size (amount of data),

122



14.2 EQUI-DEPTH PARTITIONING
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Figure 14.1: Equi-width (a) & Equi-depth (b) Partitioning

as shown in Figure 14.1(b). Equi-depth partitioning outperforms equi-width partitioning

when the arrival rate of the data stream varies inside a window. Specifically, we (logically)

partition the evolving input data file in a window W into disjoint unequal buckets. For

each bucket we maintain a random sample using the uniform sampling. We need an

algorithm to find an optimal equi-depth partitioning solution that minimizes the error

bound, while satisfying the query’s deadline.

Given a window size of W, assume it contains data tuples D = d1, . . . , dN , di, where

D is sorted based on the tuples’ timestamp. A partition solution partitions W into k

disjoint buckets, pi = [ai, bi], i = 1, . . . k, where ai and bi are the time boundaries of a

bucket. Each bucket pi contains Ni values. Let X̂i be the estimation using ni tuples in

pi, and let εi be the corresponding estimation error. A special case is when εi = 0, ni =

Ni, i.e. all data in the i-th bucket is kept. The detail of error estimation will be discussed

in Section 14.3. The global estimation X̂ and the error bound ε as well as those from

individual buckets satisfy the following equations:

N = N1 + . . .+Nk (14.6)

X̂ =
N1 · X̂1 + . . .+Nk · X̂k

N
(14.7)
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14.2 EQUI-DEPTH PARTITIONING

ε =
N1 · ε1 + . . .+Nk · εk

N
(14.8)

Given a window W, our goal is to find a partitioning solution such that ε is minimized

and n1 + . . . + nk < N , where N denotes the maximum number of tuples can be pro-

cessed without exceeding the query’s deadline constraint. Note that there is no specific

number of buckets k that the solution should aim for, instead the objective is to search the

space for partitions that minimize the error bound ε. This enumeration has an extremely

high complexity, as all combinations of partitioning boundaries have to be considered as

a potential optimal solution. Thus we present a heuristic algorithm in Algorithm 8 that

exploits a local optimum search heuristic to reduce the complexity instead of exhaus-

tively seeking the global optimum. We show that while the algorithm may not lead to the

minimal error bound, the derived partitioning solution cannot be worse than conventional

uniform sampling and most importantly often lead to significant improvements as proven

in our experimental study (see Chapter 16).

Given a window size of W, the algorithm iteratively decreases ε from 100% to 0%.

At each iteration, the algorithm scans the window sequentially. For each new value (i.e.,

discrete time unit) encountered, the algorithm tries to merge it into the current partition

(Line 7). Given the updated partition, Faro determines the minimal sample size by grad-

ually increases two sample rates (i.e., λ1 and λ2) until the desired error bound is satisfied

(Line 8). This sub-procedure has a polynomial time complexity. If the merging extends

the partition’s value range and increases the number of values to be sampled under the

error bound ε, a new partition is created (Lines 12-14). Otherwise, the value is merged

into the current partition and the partition’s range is updated (Line 10). The algorithm

makes sure that the total sample size of all buckets does not exceed N at the end of each

iteration (Line 18). If not, the existing partitioning soution is replaced by the new one

with lower ε value (Line 19). The algorithm’s complexity in worst case is O(W).
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14.2 EQUI-DEPTH PARTITIONING

Algorithm 8 Equi-depth Partitioning Algorithm
Input: A window size W, Maximum sample size N
Output: A set of partitions Pm = p1, . . . pk

1: ε = 1, step = 0.05, Pm = φ
2: while ε ≥ 0 do
3: pc = [d1, d1], pc.size = 1
4: P = pc
5: i← 2
6: while i ≤ W do
7: pt = [pc.lower, di]
8: pt.size = computeSize(pt)
9: if pc.size+ 1 ≤ pt.size then

10: pc = pt
11: else
12: pn = [di, di], pn.size = 1
13: P = p

⋃
{pn}

14: pc = pn
15: i++
16: if P.size <= N then
17: Pm = P
18: ε = ε− step
19: return p
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14.2 EQUI-DEPTH PARTITIONING

Theorem 14.1 Given a bounded sample size N , the estimated error bound ε achieved

by the equi-depth partitioning strategy given by Algorithm 8 is no more than uniform

sampling.

Proof: We prove Theorem 14.1 by showing the equi-depth partitioning strategy

samples no more data than uniform sampling given a error bound ε. If the algorithm

returns one bucket, the equi-depth partitioning sampling is equivalent to uniform sam-

pling. Next, we prove that stratified sampling with two buckets samples no more data

than uniform sampling.

Let [v1, vN ] be the value range, and [v1, vc] and [vc+1, vN ] be the two buckets’ ranges.

From the Hoeffding equation, we have:

ln
2

1− δ
· (vN − v1)2

2ε2

≥ ln
2

1− δ

[
(vN − vc+1)2

2ε2
+

(vc+1 − v1)2

2ε2

]

By case analysis, we can also prove the following inequality: min {x + y, N} ≥min

{x, N1} + min {y, N2} where N = N1 + N2. Then, we have:

min

{
ln

2

1− δ
· (vN − v1)2

2ε2
, N

}
≥ min

{
ln

2

1− δ
· (vN − vc+1)2

2ε2
, N1

}
+

min

{
ln

2

1− δ
· (vc+1 − v1)2

2ε2
, N2

}

The left hand of the inequality is the sample size when applying uniform sampling.

The right hand is the total sample size when using uniform sampling for two buckets. For

equi-depth samplings with more than two buckets, we can prove by induction: let [vj , vN ]

be the rightmost bucket and [v1, vj−1] be the remaining range. We first show that using
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two or more buckets for [v1, vj−1] is no worse than using one bucket. Then we show that

combining [v1, vj1] and [vj , vN ] is no worse than uniform sampling over [v1, vN ].

14.3 Error Estimation

To execute an approximate recurring query based on the sample, we show how statistical

sampling theory can be used to compute error bounds (i.e., confidence intervals). Specif-

ically, we apply the multi-stage sampling theory [68] to develop a unified approach for

computing error bounds. As a proof of concept, we augment Faro with an algorithm for

error-bound estimation for the most common operations in MapReduce, namely, aggrega-

tion operations. In general, Faro can execute arbitrary recurring queries with approxima-

tion, e.g., mining task, or even black-box analytical operations, as long as an appropriate

algorithm for error-bound estimation is provided to the system.

We now introduce statistical estimation for recurring queries with aggregations. While

providing statistical estimations for a wider range of operations provides an exciting re-

search direction for future work, it is beyond the scope of this thesis. Note that we describe

the approximation of sum aggregation here; approximations for the other operations are

similar. Suppose we have a file on HDFS consisting of BLK blocks, and each block

contains TPLi tuples so that the total sample size N =
∑BLK

i=1 TPLi. Suppose further

that each tuple j in block i has a value vij . Then we want to compute the sum of these

values across the file, i.e.,
∑BLK

i=1

∑TPLi

j=1 vij .

To compute an approximate sum, Faro creates a sample by randomly choosing blk

blocks (i.e., pre-map sample rate λ1 = blk
BLK

), and then randomly choosing tpli tuples

from each chosen block i (i.e., post-map sample rate λ2 = tpli
TPLi

). Thus the sample size

is |λ1 · λ2 ·N |. Two-stage sampling then allows us to estimate the results for aggregation

functions including sum, count, average, and ratio. For example, the estimated sum from
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the sample would be:

τ̂ = λ1

blk∑
i=1

(λ2

tpli∑
j=1

vij)± ε (14.9)

where the error bound ε is defined as:

ε = tn−1,1−α/2

√
V̂ ar(τ̂) (14.10)

V̂ ar(τ̂) = (BLK − blk)
s2
u

λ1

+
1

λ1

blk∑
i=1

(TPLi − tpli)
s2
i

λ2

(14.11)

where s2
u is the inter-unit variance (computed using the sum and average of the values

associated with tuples from each unit in the sample), s2
i is the intra-unit variance for unit

i, and tn−1,1−α/2 is the value of the t-distribution with n - 1 degrees of freedom at the

desired confidence 1−α. Thus, to compute the error bound with 95% confidence, we use

the value tn−1,0.975.
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Faro Adaptive Resource Allocation

In this section, we present Faro’s resource allocation strategies which aim to maximize

the average accuracy1 of a recurring query. As discussed in Chapter 14, the accuracy

refers to the distance to the true answer (e.g., the approximate results are within 5% of the

true answer). Maximizing the average accuracy is challenging because of the fluctuating

nature of evolving data sources. Variance of the input data sources can at times result in

temporary load spikes, consequently resulting in failures to meet the query deadline.

Since a recurring query imposes deadlines to deliver the results, its approximate exe-

cution will require judicious resource allocation strategy to achieve high result accuracy.

As described in Section 14.1, Faro exploits its Execution Profiler to determine the maxi-

mum number of tuples N that can be processed given a query’s deadline and the available

resource. Hence, the resource is referred to as the bounded sample size in the rest of this

section. The deadline-bound sampling strategies for approximate executions described in

Chapter 14.2 is at the file granularity. However, the scope of data to process in a win-

dow W can contain multiple files, consequently multiple approximate executions. This

requires Faro to determine where the resources should be used in approximate executions

1The average accuracy is computed over the last E consecutive executions.
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of a recurring query at the window granularity. Namely, the resource allocation strategy

in Faro decides the bounded sample size for each approximate execution in the current

window so to maximize the result accuracy of this window.

Given that multiple files belong to a window W, including both new arrival and exist-

ing files, a unique opportunity of re-sampling to improve the result accuracy can be ex-

ploited on these existing files that have been previously executed. This extra option means

that a prioritization must carefully weigh the gains from sampling on existing data versus

new arrival data while still meeting the deadline constraint. However, decisions in favor

of one purpose may affect another purpose instead, which might require to recompute the

gains of the rest of the executions. The resource allocation problem is NP-complete [104]

and requires efficient heuristics to make appropriate decisions adaptively at run-time as

illustrated in the following example.

Example 15.1 Given a recurring query Q with W = 6 and S = 2. As depicted in

Figure 15.1, the file F3 is included in three windows, and thus it will participate in three

consecutive executions. However, due to Q’s deadline, the available resources, and the

size of new arrival file F4, the second execution E2 over w2 may not be able to sample all

three files. In fact, E2 has to decide among the following options: (1) sampling data from

the new file F4, (2) sampling data from one or more of the existing files F2 or F3, where

data blocks that have not been sampled in previous executions can now be sampled, and

(3) sampling data from either a combination of F2 and F4, or F3 and F4. If E2 chooses

not to sample F3 for its own sake, then the potential benefit of sampling F3 decreases as it

can only contributed to the third execution E3. Consequently, it will be less likely that we

select F3 for E3. On the contrary, if E2 chooses F3 rather than F4, then the decision of

E3 could be different, selecting F3 for re-sampling to further increase the result accuracy.

In brief, we may need to make the resource allocation decision dynamically based

on not only the current situation but also the decisions made previously. This problem
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Figure 15.1: Sampling on New and Existing Data

is, unfortunately, NP-complete in general [105] and devising good heuristics is critical to

maximizing the average accuracy of approximate query executions. In the following, we

first define the concept of lifespan of each file (informally introduced in Chapter 5) and

then introduce our Greedy Resource Allocation (GRA) mechanism and Accuracy-Aware

Resource Allocation (AARA) mechanism in Chapters 15.1 and 15.2, respectively.

Definition 15.1 (Lifespan of File) A file Fi in the current window may serve also execu-

tions over future windows. The number of windows in which a file can survive is termed

the lifespan of file.

In the recurring query scenario, the lifespan of a file Fi can be determined as follows.

Lemma 15.1 Given the slide size S of a query Q and the starting time of the current

window Wc.Tstart, the lifespan of Fi.life of a data block Fi in Wc with timestamp Fi.ts

is calculated by Fi.life =
⌈
Fi.ts−Wc.Tstart

S

⌉
, indicating that Fi will participate in window

Wc to Wc+Fi.life−1.

Therefore, the longer a file’s lifespan is, the more future approximate executions the

file can participate in. Naturally, the file with the largest lifespan could be a good can-

didate to get substantial resources for its approximate execution. Henceforth, quickly

updating the lifespan of each file is critical for deriving resource allocation decision and

in turn maximizing result accuracy.
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15.1 Greedy Resource Allocation

Greedy Resource Allocation (GRA) is an algorithm that greedily picks the files with the

longest lifespan to execute next. Specifically, only the new arrival files would be con-

sidered for the resource allocation since they have the longest lifespan. Each file will be

assigned resources in proportion to the file’s respective size. Given the available resources

associated to each file, the sampling technique described in Chapter 14.2 can be applied.

Such greedy allocation strategy may often waste resources when the size of new arrival

file is relatively small compared to existing ones. In an extreme case, if the available

resource is sufficient for a full execution on the new file, then the error estimation of the

result for such execution would be 0%. However, it would be more beneficial to divide

the resource among both new arrival and existing files, such that the result accuracy for

the existing files can be much increased with a slight decrease in the result accuray for

the new file. Hence the global result accuracy can be improved.

If one extends this idea to the case where re-sampling on existing files is considered,

then a natural approach is to first group all files according to their lifespans. Each group

will be assigned resources in proportion to their respective lifespan. Within each group,

the assigned resources will be further allocated to each file with respect to their respective

file size. We term this the Greedy Resource Allocation (GRA) policy (see Algorithm 9).

The following example illustrates GRA policy in detail.

Example 15.2 Given a query Q with W = 5 and S = 2 as depicted in Figure 15.2, to de-

cide the resource allocation for the second execution over the window w2, we first group

the input files contained in w2 into three groups (i.e., {F3, F4}, {F5, F6}, and {F7})

according to their lifespans. F3 and F4 will only be valid for w2 and thus F3.life =

F4.life = 1. According to Lemma 15.1, F6.life = 2, even though it is just newly arrived.

Assume that the total number of sample data that can be processed by the available re-
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Algorithm 9 Greedy Resource Allocation
Input: A set of files F in Wc, Available resource R
Output: A resource allocation plan p

1: LS = φ
2: for each Fi in F do
3: Fi.lifespan = computeLS(Fi)
4: if !LS.containsKey(Fi.lifespan) then
5: LS.put(Fi.lifespan, new List(Fi))
6: else
7: LS.get(Fi.lifespan).add(Fi)
8: totalLS = sum(LS.keySet)
9: for each element ls in LS do

10: weight = ls.key/totalLS
11: totalSize = sum(ls.values)
12: for each Fi in ls.values do
13: Fi.resource = weight× Fi/totalSize
14: p.add(Fi)
15: return p

sources R is 12 million, three groups will get 2 million, 4 million, and 6 million as their

bounded sample size respectively. We further assume that all files have identical size, then

the resource assigned to these files (from F3 to F7) would be 1, 1, 2, 2, and 6 (million).
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Figure 15.2: Greedy Resource Allocation

The greedy mechanism works well when an evolving data source has relatively stable

arrival rates (i.e., relatively identical file size). In this case, the accumulative resources
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allocated to each file are the same. Hence, the average result accuracy for the executions

on each file is the same as well. Since the result accuracy for each execution is maximized

using the deadline-aware sampling strategy proposed in Chapter 14.2, the overall accu-

racy is thus maximized. However, when data sources exhibit load variances, the GRA

mechanism may fail to maximize the average result accuracy by wasting resources on

files showing load spikes, as explained in the following example.

Example 15.3 Continuing with Example 15.2, assume that w1 has a load spike in which

the size of the file F5 is three times larger than the other files. As before, the policy

generated by GRA would allocate a bounded sample size of 4 million to the group {F5,

F6}. Given that |F5| = 3|F6|, the resource assigned to the file F5 would be 3 million (25%

of the total resource). By re-sampling F5 to increase the sample size, certainly the more

accurately the sample will reflect the population in F5 it was drawn from. However, the

accuracy gain from re-sampling is less significant compared to re-sampling on the other

files with identical resources due to the file size of F5. Hence the resource allocation

mechanism should take the accuracy gain into consideration as well. In this case, a

better resource allocation plan would assign 25% of the total resource to the other files

in proportion to their lifespans.

15.2 Accuracy-Aware Resource Allocation

The opportunity cost of re-sampling on existing files is an important factor to consider,

and leads to a refined policy called the Accuracy-Aware Resource Allocation (AARA)

mechanism.

Definition 15.2 (Accuracy Gain) If a file Fi is valid for both windows wj and wj+1, the

result accuracy of two consecutive query executions over Fi are εj and εj+1, respectively.
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Then the accuracy difference is defined as ε∆ = εj − εj+1. The resource assigned to Fi

in execution Ej+1 is Ri,j+1. The accuracy gain on Fi is defined as a ratio between the

accuracy difference and the assigned resource, namely ε∆
Ri,j+1

.

Therefore, the larger a file’s accuracy gain is, the more cost effective the file is. If

the accuracy gain between two consecutive executions over a file is low, it would be

more beneficial to dedicate the resource to other files with higher potential of increasing

the global result accuracy. Naturally the file with largest accuracy gain could be a good

candidate for the next approximate execution. Henceforth the accuracy gain of each file

has to be updated after each execution in order to derive resource allocation decision and

in turn maximizing result accuracy.

We now design a resource allocation mechanism that favors files based on both their

lifespan and accuracy gain. While the lifespan of a file is determined by the window

constraints from the query, while the accuracy gain is determined by a ratio between error

estimation and cost. Our Accuracy-Aware Resource Allocation (AARA) assigns a weight

(weight(Fi)) to each file Fi that incorporates the above two concepts:

weight(Fi) = Fi.life×
ε∆

Ri,j+1

(15.1)

The special case of Equation 15.1 is when a file is brand new. Since the file has not

been processed yet, the error bound from previous execution is not available. Conse-

quently, the accuracy gain cannot be computed. Therefore, we set the default weight of

a new arrival file to be its lifespan. This makes sure that the file does not suffer from

starvation. After assigning weights to the files, the files are sorted by their weights in

descending order. The available resources are allocated to each file in proportion to the

file’s respective weight, rather than being allocated to different group of files solely based

on their respective life spans.
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Figure 15.3: Accuracy-aware Resource Allocation

Our AARA mechanism can dynamically allocate the available resources to the files

with maximal potential accuracy gain. However it still suffer from two issues. First, the

weight of a file continuously changes, as we can see from Equation 15.1. As a conse-

quence, the file with the highest weight varies over time. On the one hand, this dynamic

ordering is a key to the good result accuracy of Faro. It imposes a time complexity of

Ω(|F |) for updating the |F | files waiting to be processed in the current window. Second,

the files with relatively lower scores may get limited to no resources. In this case, the file

cannot be sampled effectively due to the MapReduce job starting and ending overhead.

To handle these two issues, a natural variant is to select top k files as an input for the

AARA mechanism. To determine the initial value of k, we again use the accuracy gain as

a threshold. Namely, only the ones with their accuracy gains above the average accuracy

gain of all files are considered for the accuracy-aware resource allocation. Furthermore, k

is periodically adjusted based on the latest average accuracy gain of all files from previous

executions at runtime. Monitoring top-k input files in sliding windows is a well-studied

problem [106], which only takes logarithmic time in the size of O(log(k)) in the average

case. Algorithm 10 describes the details of revised AARA mechanism.
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Algorithm 10 Accuracy-Aware Resource Allocation
Input: A set of files F in Wc, Available resource R
Output: A resource allocation plan p

1: for each Fi in F do
2: Fi.weight = computeWeight(Fi)
3: F = topK(F )
4: sumWeight = 0
5: for each Fi in F do
6: sumWeight += Fi.weight
7: for each Fi in F do
8: Fi.resource = R× Fi.weight/sumWeight
9: p.add(Fi)

10: return p
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Experimental Evaluation

In this chapter, we describe the experimental study we conducted to evaluate Faro. First,

we compare Faro to recurring query execution on full-sized data sets to demonstrate how

even a small trade-off in the accuracy of final answers can result in orders of magni-

tude improvements in query execution times. We also demonstrate Faro’s ability to scale

gracefully with increasing cluster size and input data size. Second, we evaluate the accu-

racy of our deadline-aware sampling approach against random sampling approach given

identical resources. Third, we evaluate the effectiveness of our dynamic resource allo-

cation mechanisms in meeting the query’s deadline requirements while maximizing the

result accuracy. Finally, we demonstrate Faro’s efficiency and robustness with a com-

monly used data mining algorithm.

16.1 Experimental Setup & Methodology

Experiment Infrastructure. All experiments are conducted on a shared-nothing cluster

with one master node and 40 slave nodes. Each node consists of 16 core AMD 3.0GHz

processors, 32GB RAM, 250GB disk, and nodes are interconnected with 1Gbps Ethernet.
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Each server runs CentOS Linux (kernel version 2.6.32), Java 1.6, Hadoop 0.20.1. Each

node is configured to run up to 8 map and 8 reduce tasks concurrently. The sort buffer

size was set to 512MB, and speculative execution was disabled to boost performance. The

replication factor is set to 3 unless stated otherwise.

Datasets and Queries. We use two real-life datasets for our experiments. The World

Cup Click dataset [77] (256GB) contains records of more than 1.35 billion web requests

made to 1998 World Cup Website. Another dataset is the latest high volume Wikipedia

database [78] (400GB) being modified and updated continuously.

We first focus on aggregation queries which are fundamental operations not only in

relational databases, but also in the emerging data analytics tasks described in Chapter 1.2.

These aggregation queries were generated from the following query template:

SELECT S1.T, AggFunc(A1) FROM S1

WHERE Predicates GROUP BY S1.T

[WINDOW, SLIDE, WITHIN]

where T is a randomly selected list of dimensional attributes. The aggregation operators

are SUM, COUNT and AVG. Each query is also assigned a query deadline that ranges

from [0.05 - 0.2] of the query’s window size W. Faro can also be used to provide ap-

proximation results for advanced mining algorithms such as parallel k-means clustering

on MapReduce [54]. Faro can seamlessly integrate their techniques to speed up k-means

without changing the underlying algorithm. We execute each experiment three times. In

the charts we report their average results.

Metrics & Measurements. Given a recurring query, we measure the average accuracy

of each query, and the average execution time for the recurrences of each query. The exe-

cution time of recurring queries is a common metric in data management systems, while

the average accuracy is defined in Chapter 2.4. We do not include the data pre-processing
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16.2 FARO VS. FULL EXECUTION

time since it is performed on-the-fly during the loading time. It is hence negligible com-

pared to the disk-based query processing in Hadoop.

Methodology. We implemented the proposed Faro techniques for approximate exe-

cution of recurring workloads on top of the extended open-source Apache Hadoop. We

evaluate Faro’s effectiveness under different parameter settings, including varying the

deadline of the query, input data volume, cluster size, and the overlap (i.e., the ratio be-

tween slide size and window size). We compare three systems denoted Faro, Redoop, and

Hadoop, respectively. Redoop [64] is the state-or-the-art approach for evaluating a recur-

ring query in MapReduce. It minimizes recurring query execution time by caching reduce

inputs, without taking into consideration approximation. Regarding the efficiency of the

Faro deadline-aware sampling strategy, we compare our equi-depth partitioning strategy

to the equi-width partitioning strategy. We also compare Faro’s greedy and accuracy-

aware resource allocation mechanisms against a baseline approach that always dedicates

all resources to the new arrival files.

16.2 Faro vs. Full Execution

We first compare the performance of Faro versus Redoop and stock Hadoop that executes

queries on complete data in each window. In this experiment, we ran on both data sets. To

demonstrate the significance of sampling even for the simplest analytical queries, we ran a

simple aggregation query that computed sum count. We compared the processing time of

the full (accurate) execution of this query on Hadoop against its (approximate) execution

on Faro with deadline constraints. Figure 16.1 shows the results of processing time. As

depicted in Figure 16.1, Faro significantly reduces the processing time by a factor of 8 -

14 folds compared to Hadoop with both data sets. This is because Faro is able to read far

less data to compute a fairly accurate answer. It also achieves 4 - 6 times performance
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16.2 FARO VS. FULL EXECUTION

gain compared to Redoop system. Regarding the statistical error, Faro returns the results

with 3% and 5% error bound at 95% confidence with both data sets, respectively.exp1
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Figure 16.1: Faro vs. Full Execution

Now we closely study the scalability of our Faro solution by varying two parameters,

i.e., data size and and cluster size. We show the experimental results of Faro over Redoop

indicated in Figures 16.2 and 16.3. We omit the comparison against Hadoop as Redoop

system consistently outperforms it in most cases [64].

Effect of data size. Figure 16.2 examine the execution times of Faro using two data

sets. We vary the data sizes per job ranging from 5GB to 160 GB for WCC data set

and 40GB to 400GB for Wiki Dump data set. The setting for the other parameters is:

overlap = 0.9, N = 10, and D = 1 and 4 minutes. Faro substantially reduced the

processing time compared to Redoop again. For example, the average processing time of

Redoop for each execution is 5 times longer than Faro for aggregation query when the data

size is 400GB. In particular, the running time of Redoop increases substantially when the

size of data size increases. On the contrary, Faro is able to meet the deadline constraints

without sacrificing much result accuracy, with 5% error bound with 95% confidence in

worst case (see Figure 16.2(b)). This shows that the robustness of our Faro approach

against varying data size. The reason behind this is that by exploiting the deadline-aware
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16.2 FARO VS. FULL EXECUTION

sampling technique and the accuracy-aware resource allocation mechanism, the Faro ap-

proach can effectively sample data in a progressive manner while meeting the specified

deadline of query executions.
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Figure 16.2: Varying Size of Data Set

Effect of cluster size. Figure 16.3 compares the scalability of both systems by varying

the number of nodes in the cluster used. Each query execute on 10n GB of data (where

n is the cluster size). So for a 10 node cluster, each execution consumes 100 GB of data

and for a 40 node cluster each query operates on around 400 GB of data. As expected,

our Faro solution consistently outperforms Redoop in the execution time as shown in

Figure 16.3(a). Regarding the statistical error, the Faro system shows its robustness as

plotted in Figure 16.3(b). The corresponding results for Hadoop system are omitted since

it operates on the full data sets. Thus, the error is always 0%. In the worst case scenario

(the number of nodes is 10), the statistical error of Faro system is still below 8% with 95%

confidence. This verifies the design goal of our Faro system, trading off between query

accuracy and execution time.
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Figure 16.3: Varying Number of Nodes

16.3 Deadline-Aware Sampling

In this section, we evaluate the effectiveness of Faro’s deadline-aware sampling technique.

We compare our equi-depth partitioning strategy (denoted by EDP ) to the equi-width

partitioning strategy (denoted by EWP ) with different error bounds, using both data sets.

Results here are averaged among all executions. The confidence is set to 95%. The sizes

of the samples produced by the two approaches are shown in Figure 16.4. As we can see,

when the error bound increases, the sample size of the EDP decreases dramatically. The

EWP approach is able to produce a small number of samples with different error bound

constraints. It is much more robust against the change of error bounds.

16.4 Adaptive Resource Allocation

We next evaluate Faro’s runtime resource allocation mechanisms by varying three pa-

rameters, the overlap (i.e., the ratio between slide size and window size) and the query’s

deadline (D).We compare Faro’s greedy and accuracy-aware resource allocation mech-

anisms (denoted by GRA and AARA respectively) against the baseline approach INC
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Figure 16.4: Deadline-Aware Sampling Technique

that always dedicates all resources to the new arrival files. We omit the comparison to the

approach that samples the data over the current window from scratch as it is been proven

to be inefficient in Chapter 14.

Effect of overlap. The factor overlap = (W − S)/W represents a ratio between the

slide and window size. This ratio represents the portion of the newly arriving data tuples

in the window after the window slides. Thus, the higher the ratio is, the greater the amount

of data shared between consecutive windows. We vary the overlap from 0.1 to 0.9 which

shows how these mechanisms behave under different scenarios. Figure 16.5 shows the

results where AARA clearly outperforms the other two mechanisms. We now describe

these results in detail.

AARA on average improves the accuracy of deadline-bound jobs by 216% and 324%

compared to GRA and INC respectively. Gains in both data sets are similar. The gains

compared to INC as baseline are consistently higher than GRA. Also, the gains with

large overlap are pronounced compared to small and medium overlap because the rela-

tively longer lifespan of each file provides plenty of potential for AARA to improve the

result accuracy over several consecutive executions.

Effect of deadline. For experiments on deadline, we first calibrate and obtain the
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Figure 16.5: Varying Overlap

processing time of a full execution by submitting the query to stock Hadoop. We then set

deadlines to be an factor (between 5% to 20%) of this full duration. Figure 16.6 shows

the statistical error over 10 consecutive windows over Wiki Dump data set. Figure 16.6

shows the results where AARA consistently outperforms the other two mechanisms for

10 windows. We now describe these results in detail.

As plotted in Figure 16.6, for the initial window, all three mechanisms need to sample

the whole window full of tuples and thusAARA andGRA achieve slightly more accurate

results (i.e., statistical error). For the subsequent sliding steps (windows 2-10), AARA

andGRA benefits from the sample refinement over existing files, resulting in a substantial

improvement of estimated error compared to INC. Specifically, AARA gains 6 fold
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Figure 16.6: Varying Deadline

improvements over INC when the deadline is 20% of the duration of a full execution

(shown in Figure 16.6(c)).
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Figure 16.7: Faro vs. Hadoop with k-means
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16.5 DATA MINING TASK

16.5 Data Mining Task

In this section, we conduct a performance study when using Faro to approximate the exe-

cution of a commonly used data mining algorithm, k-means. There are various techniques

used to speed up k-means, including parallel processing based on MapReduce [54]. Faro

plugged in their techniques as a black box to speed up k-means. In this experiment, we

use a synthetic data set so that we can validate that Faro finds the actual centroids. Fig-

ure 16.7 shows the results of running k-means with Faro and stock Hadoop. The query

deadline is configured from 1 to 5 minutes corresponding to different data size from 40 to

200GB. As expected, our approach significantly outperforms Hadoop by approximately

10x with only 7% of the optimal when the data size is 200GB. The reasons are twofold:

(1) k-means is executed over a small sample of the original data and (2) k-means con-

verges more quickly for smaller data-sets.
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Related Work

Approximate Query Processing (AQP). Sampling has been applied for providing approx-

imate answers to relational database systems [65, 67, 107, 108] and data stream sys-

tems [109, 110, 111]. Most works use statistical inequalities and the central limit theorem

to model the confidence interval or variance of the approximate answers. For example,

online aggregation by Hellerstein et al. [67] focuses on grouped aggregation with sta-

tistically robust confidence intervals based on random sampling. This was extended to

handle join queries using the ripple join family of operators in [112]. BlinkDB [65] con-

structs a large number of multi-dimensional samples from a static data set using stratified

sampling. During query processing, it then chooses samples based on the accuracy and

response time requirements of an aggregation query. Other works focused on specific

types of queries. For example, Acharya et al. [113] study approximation for join queries

using samples from the base relations. Joshi and Jermaine [108] propose an EM algorithm

to execute aggregate queries with subset testing.

Instead of the system taking responsibility for result accuracy which may not be possi-

ble in general, our Faro follows a different approach. Faro provides an interface for users

to plug-in their own one-pass sampling technique. Faro supports a variety of user-defined
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sampling techniques; we view prior work described above as part of a layer between

the user and our generic approximate processing framework, that helps with the resource

allocation of given recurring queries in a deadline-aware manner.

AQP in MapReduce. Recent extensions to Hadoop, e.g., MapReduce Online (MRO) [80],

EARL [54] and ApproxHadoop [55], focus on approximate results for analytics on mas-

sive data sets. MapReduce Online (MRO) [80] supports progressive output by adding

pipelining to MapReduce. Early result snapshots are produced by reducers, each anno-

tated with a rough progress estimate based on averaging progress scores from different

map tasks. Early termination of map tasks is addressed in [114] by producing a fixed-size

sample of a massive data set using MapReduce. However, unlike Faro, neither system at-

tempts to provide any error estimation. Neither guarantees uniform samples. EARL [54]

utilizes uniform sampling and works iteratively to compute larger samples on a static

data set, until a given accuracy level is reached. ApproxHadoop [55] leverages statis-

tical theories to compute error bounds for MapReduce jobs when approximating with

input data sampling and/or task dropping. However, none of these efforts identified and

leveraged optimization opportunities unique to recurring queries, e.g., understanding win-

dow semantics, incremental sample updates, and progressive result refinement across the

consecutive execution of a recurring query. This leads to inefficient sampling, wasting

precious computational resources, and possibly poor result accuracy. The proposed Faro

system seamlessly integrates approximate query processing with recurring query execu-

tion. For that, it provides progressive result refinement by leveraging the recurring nature

of the queries.

Recurring Query Processing. Recurring query processing systems [63, 64, 92, 115]

have been proposed to support large-scale data analytics applications over evolving data

streams. SCOPE [63, 92] handles recurring queries by instrumenting queries to piggy-

back statistics collection with their normal execution. Collecting such statistics makes
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it possible to create a statistical profile that can be fed to the optimizer on a future in-

vocation of the same job. Redoop [64] employs window-aware optimization techniques

for recurring query executions, including adaptive data partitioning, window-aware task

scheduling, and inter-window caching. Helix [115] supports the optimization of multiple

recurring queries with service level agreements (SLAs). It explores the sharing opportuni-

ties among the queries to maximize the satisfaction of SLA requirements. However, none

of these works considers approximate query processing as an option. If data arrival rate

is high and SLA requirements (i.e., deadlines) are tight, these full execution approaches

would fail. In contrast, our Faro solution aims to provide the best quality results within

the given time constraints.

Service Level Agreement: Meeting SLA constraints has been addressed in the con-

text of stream processing systems [57, 84, 99, 100]. Prior work [99] leveraged specific

workload characteristics to meet SLAs without losing efficiency or utilization. To pro-

vide real-time responses, [99] enables the user to specify a contract in terms of latency,

data freshness, CPU and memory usage. Its main method is to shed data from incoming

streams to handle load and meet the desired QoS. Our aim is not load shedding but in-

stead to provide appropriate sampling strategies with error bounds. The second solution

in [100] employs scheduling techniques that rely on small, uniform task durations to trade

short-term SLA violations for efficiency. However, these workload characteristics are not

universal. In contrast, our Faro solution is independent of workload characteristics. More-

over, the resource allocation mechanisms in Faro not only meet SLA requirements (i.e.,

deadlines) but also maximize the accuracy of approximated results with best efforts.

Several techniques [50, 51, 52] have been proposed for achieving SLAs of MapRe-

duce jobs. These methods either dynamically adjust resource allocation or they exploit

profiling to help jobs provision resources statically at startup. However, none of these

efforts consider approximate query processing as an approach to tackling the problem.

150



Moreover, they do not address any unique challenges derived from targeting recurring

queries as done in our work.
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Conclusion and Future Work
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Conclusions of This Dissertation

The goal of this dissertation is to break fundamentally new ground in big data process-

ing by supporting a wide spectrum of data-intensive recurring queriesoverlooked by cur-

rent systems. This dissertation proposes a new comprehensive data and query model for

big data analytical workloads, and offers end-to-end optimizations ranging from query

sharing, approximate evaluation, and SLA guarantees, to adaptive processing. This will

impact applications in domains from business, scientific to Internet-scale disciplines that

require recurring big data processing. The three highlights of this dissertation can be

summarized as follows.

First, we focus on the problem of the efficient execution of the recurring query. We

achieve this by presenting the design, implementation, and evaluation of the Redoop

technology, a novel distributed system that optimizes the recurring query processing as

MapReduce jobs on big data. Redoop offers 3 key innovations: (1) adaptive incremental

data processing to reduce resource utilization and to reduce query processing time; (2)

window-aware caching to avoid repeated work and disk access; and (3) window-aware

cache-oriented scheduling to improve the cached data utilization and to improve the query

processing performance. Our experiments show that the Redoop system achieves an up
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to 9 times performance gain compared to the standard Hadoop.

Second, we target the optimization for shared execution of recurring workloads on

MapReduce. Our Helix system offers 3 key innovations. (1) The recurring query model

established for Helix integrates the multiple recurring query optimization problem in

MapReduce with the SLA satisfaction. (2) The sliced window alignment technique opens

new sharing opportunities by partitioning the data sources into sharing-appropriate gran-

ularities. (3) Two novel strategies, sharing and ordering methods, effectively prune sub-

optimal solutions from the search space. They guide the Helix optimizer to explore the

more promising part of the search space first, thus succeeding to efficiently produce the

optimal global shared execution plan. Our experimental results on a rich variety of work-

loads show that our proposed techniques outperform the state-of-the-art approaches con-

sistently by up to an order of magnitude.

Lastly, we address the problem of approximate recurring query processing on MapRe-

duce. Our Faro system offers two key innovations. (1) a deadline-aware sampling strat-

egy that builds samples from original data with reduced sample size compared to uniform

sampling, and (2) adaptive resource allocation strategies that maximally improve the ap-

proximate results while assuring to still meet the queries’ response time requirements.

Our experimental results on a rich variety of workloads show that our proposed tech-

niques achieve 14x faster performance than the state-of-the-art approaches with an esti-

mated error of 2-5%. A direction for the future is to investigate other sampling methods

that although are not as general as uniform sampling can still provide better performance

in specific analytics applications.
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Future Work

19.1 Integration of Proposed Techniques

The obvious directions for future research based on the proposed techniques in this disser-

tation are to consider the inter-relationships among them. Namely, the potential benefits

to the recurring query processing can be achieved by exploiting the proposed techniques

in an integrated manner.

We first analyze the interrelationship between Redoop and Helix, and discuss the in-

tegration of these two techniques. Recall that Redoop is optimized for single recurring

query execution and Helix is designed for sharing similar recurring workloads. Essen-

tially, both techniques aim to avoid redundant I/Os and computations at different stages

in MapReduce. To reduce the unnecessary I/O costs resulting from the overlapping win-

dows, Redoop’s task nodes cache the input data partitions on their local file systems for

subsequent reuse. Redoop system maintains caches at two stages of a MapReduce job,

reduce input and output. Both cached data need not to be loaded, processed or shuffled

again with the same mapper across windows. On the other hand, Helix system avoid re-

dundant I/Os and computations by sharing map input scan, map function, and map outs.
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Hence, the proposed techniques in Redoop and Helix are naturally fit together without

any change at all to process recurring workloads. In summary, our Redoop and Helix

techniques can co-exist in our recurring query processing architecture without further ex-

tension.

Next we analyze the scenario of integrating Redoop with Faro. In this scenario, Faro’s

pre-map and post-map sampling techniques can substantially reduce the amount of data

to be processed by the reducers. Therefore, the amount of data can be cached and then be

reused by Redoop system can be much less or even negligible. Consequently, the I/O and

computational savings gained from Faro’s sampling technique are the dominant factor

compared to the one from reduce input cache and reduce output cache in Redoop system.

In the worst case scenario, the overheads of caching and maintaining the reduce input and

output data could offset the benefits of I/O and computational savings due to the relatively

small file sizes. Apparently, future research is needed to tackle this issue. Specifically,

an adaptive optimizer should be plugged in to make decision on whether enabling or

disabling the Redoop caching mechanisms depending on the statistics collected from the

actual executions.

Now we analyze the scenario of integrating three systems as a whole infrastructure. As

mentioned in Chapter 3, Redoop serves as a bedrock for recurring query processing. Built

upon Redoop, Helix and Faro are designed for sharing similar workloads and providing

approximate results for tight time constraints, respectively. The new challenge is basically

to make a resource allocation decision depending on different purposes, including cache

usability, sharing benefits, and result accuracy gain. As described in both Chapters 10 and

15, the resource allocation/scheduling is in general a hard problem. This is clearly one of

the directions to explore in future work.

Further, the approximate techniques in Faro are optimized for the single recurring

query processing. Extending it to support approximate processing for multiple queries is
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obviously a future direction. Similar to BlinkDB, we need to optimize a set of samples for

all queries sharing common MapReduce tasks. Recall that the number of samples we read

to satisfy a query will vary according to user-specified time bounds. So in general we want

access to a family of samples, one for each possible value of number of samples. We can

organize queries into a dissemination graph to exploit the dependencies across queries. In

this way, recurring queries closer to the root (source of data flow) can potentially be used

to provide sample data of descendant/dependent queries. We can exploit some statistical

approach to combine answers from ancestor nodes to generate the results for a node.

To further seamlessly integrate three proposed techniques, a high-level interface and

query optimization is needed on top of these techniques. For example, Hadoop has several

high-level interfaces, e.g., Pig [5], Hive [60], and Jaql [116] that enable end-users to

express their queries and workflows abstractly using high-level constructs. Ideally, we

should adopt one existing interface and then extend its language to accommodate our

proposed extensions in the recurring query model. These include binding the inputs and

outputs to data locations, defining execution specification parameters, defining properties

that can be utilized in optimizations. We also need to extend the compiler/optimizer

components for the language to: (1) generate the low-level map-reduce-finalize functions,

(2) based on the parameters specific to recurring queries, the optimizer may decide to

trigger appropriate optimization techniques.

19.2 Velocity and Variety in Recurring Query Processing

A major part of the challenge in data analytics today comes from the sheer volume of data

available for processing. Data volumes that many companies want to process in timely

and cost-efficient ways have grown steadily from the multi-gigabyte range to terabytes

and now to many petabytes. A major part of the recurring query processing techniques
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that we presented in this dissertation were aimed at handling such large data sets. This

challenge of dealing with very large data sets has been termed the volume challenge.

There are two other related challenges, namely, those of velocity and variety.

The velocity challenge refers to the short response-time requirements for collecting,

storing, and processing data. Though the fundamental system that we proposed in this

dissertation is a batch system, we are aware of its insufficiency for latency sensitive ap-

plications, such as identifying potential fraud and recommending personalized content,

batch data processing is insufficient. We proposed approximate processing techniques to

tackle the velocity challenge from one aspect. However, there is an increasing appetite

towards getting query results faster when the data streams into the system. A mixed- or

memory-based system is clearly future directions in the area of velocity. In the following

section, we highlight the details of these directions.

The variety challenge refers to the growing list of data types—relational, time series,

text, graphs, audio, video, images, genetic codes—as well as the growing list of analysis

techniques on such data. New insights are found while analyzing more than one of these

data types together. The recurring query processing techniques that we have proposed in

this dissertation are predominantly aimed at handling data that can be represented using

a relational model (rows and columns) and processed by query plan operators like filters,

joins, and aggregation. However, the new and emerging data types cannot be captured

easily in a relational data model, or analyzed easily by software that depends on run-

ning operators like filters, joins, and aggregation. Instead, the new and emerging data

types need a variety of analytical techniques such as linear algebra, statistical machine

learning, text search, signal processing, natural language processing, and iterative graph

processing.
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19.2.1 Handling Velocity

Memory-based Hadoop. Given the steadily increasing memory sizes in commodity

servers, a memory-based solution should be considered as an alternative to disk-based

Hadoop system. All data should be kept in main memory as long as there is enough space

available. All data structures should be optimized for cache-efficiency instead of being

optimized for organization in traditional disck blocks. Furthermore, the memory-based

system should compress the data using a variety of compression schemes. When the limit

of available main memory is reached, entire data objects, e.g., tables or partitions, are un-

loaded from main memory under the control of application semantics and reloaded into

main memory when they are required again. While virtually all data is kept in main mem-

ory by the processing engines for performance reasons, data is stored by the persistence

layer for backup and recovery in case of a system restart after a shutdown or a failure.

Memory-based extensions and improvements on Hadoop system have also been pro-

posed. M3R (Main Memory MapReduce) [46] is a framework that extends Hadoop for

running MapReduce jobs in memory. M3R caches input and output data in memory,

performs in-memory shuffling, and always maps the same partition to the same location

across all jobs in a sequence in order to allow for the re-use of already built memory

structures. PowerDrill [117] is a column-oriented datastore similar to Dremel, but it re-

lies on having as much data in memory as possible. PowerDrill uses two dictionaries as

basic data structures for representing a data column and employs several optimizations

for keeping the memory footprint of these structures small.

Stream Processing Systems. As motivated in Chapter 1.2, timely analysis of activity

and operational data is critical for companies to stay competitive. Activity data from a

company’s Web-site contains page and content views, searches, as well as advertisements

shown and clicked. This data is analyzed for purposes like behavioral targeting, where

personalized content is shown based on a user’s past activity, and showing advertisements
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or recommendations based on the activity of her social friends. Operational data includes

monitoring data collected from Web applications (e.g., request latency) and cluster re-

sources (e.g., CPU usage). Proactive analysis of operational data is used to ensure that

Web applications continue to meet all service-level requirements.

The vast majority of analysis over activity and operational data involves continuous

queries over a data source that is constantly updated. Continuous queries arise naturally

over activity and operational data because of two reasons: (1) the data is generated con-

tinuously in the form of append-only streams; (2) the data has a time component such

that recent data is usually more relevant than older data. The growing interest in contin-

uous queries is reflected by the engineering resources that companies have recently been

investing in building continuous query execution platforms. Yahoo! released S4 [118]

in 2010, Twitter released Storm [119] in 2011, and Walmart Labs released Muppet [120]

in 2012. Also prominent are recent efforts to add continuous querying capabilities to

the popular Hadoop platform for batch analytics. Examples include the Oozie workflow

manager [45], MapReduce Online [53], and Facebooks real-time analytics system [43].

Hybrid Systems. All the above techniques, however, are imperfect solutions for a few

reasons: it still requires the developer to build and maintain code that binds to different

execution frameworks. In many cases, two sets of aggregation logic must be created due

to the inherent differences between batch and online processing. Moreover, when writing

code that is supposedly agnostic to the processing model, it is easy to forget the constraints

of the execution environment. For example, scaling out in Hadoop is often as simple as

increasing the number of reducers, but the ability to scale out in an online environment by

splitting streams is more restrictive. Thus, it is not uncommon to prototype a particular

feature in Hadoop and then discover that the implementation is too slow to run in an

online production setting. As another example: in batch processing, it is possible to

take advantage of disk storage if in-memory data structures grow too large, but in online
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processing this is usually not possible due to latency requirements. Managing memory

limitations is particularly important when trying to track large event spaces.

In reality, the biggest challenge is developer productivity, not runtime performance,

since ultimately, what runs is either a “vanilla” Hadoop job or Storm topology. Thus,

the contributions of the language lie in the abstractions it introduces and its balance be-

tween simplicity and expressiveness with respect to a broad range of analytical queries.

The ability to integrate batch and offline analytics should be supported by a hybrid pro-

cessing model [121] where we are able to efficiently and seamlessly provide access to

aggregations across long time spans while maintaining up-to-date values with minimal

latency.

The key insight is that certain algebraic structures provide the theoretical foundation

for seamlessly integrating batch and online processing. From this starting point, we need

a data processing framework that supports both batch and online computations formulated

in terms of these algebraic structures. Such framework should provide a domain-specific

language for expressing analytical queries that transparently generates either Hadoop jobs

(batch computations) or Storm topologies (online computations) without requiring any

changes to the program logic. Furthermore, such system should be able to operate in

a hybrid processing mode that transparently integrates batch and online results to effi-

ciently generate up-to-date views over long time spans. The desired language should be

sufficiently expressive to capture large classes of analytical queries in a production envi-

ronment.

The basic idea behind hybrid processing is to periodically “roll up” aggregates using

Hadoop and to “fill in” results from real-time data using Storm. The desired architecture

should integrate batch and online results while transparently preserving correctness with

two key features.

1. Hybrid processing should not require changing the logic of programs the same
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exact pro- gram runs in either batch or online mode. The only additional requirements

from the developers perspective are a few metadata extractors to define how inputs are

grouped in batches and a modest number of hooks into other parts of Twitters infrastruc-

ture. Any additional bookkeeping is performed behind the scenes without the developers

knowledge.

2. Downstream clients are completely shielded from the details of the hybrid process-

ing. Integration of results from Hadoop and Storm are transparently handled by the client

library, which presents a simple key/value interface.

The complete architecture of such system running in hybrid mode is shown in Fig-

ure 19.1.

Hybrid System 

Storm 

Hadoop 

HDFS 

Client 

Message  
Queue 

Online 
Results 

Batch 
Results 

online 

batch 

read write 

query 

query 

read/write 

Figure 19.1: System Architecture for Hybrid Processing

The hybrid system requires integration with other infrastructure. On the source end,

we assume the existence of message queues that deliver event data in real-time and that

the same data are also deposited onto HDFS. On the store end, we assume the existence

of two separate key/value stores: one for the batch results, and the other for the online

results (although the client library transparently handles results merging).
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Periodically, a users job on the Hadoop platform is triggered to compute aggregates

on the next incremental source batch that has been deposited in HDFS. The process of

physically launching these jobs is accomplished through resource allocator. The mapping

from batch ids to physical HDFS paths can be deterministically computed since data are

structured according to a certain physical layout. The data import pipeline is engineered

so that a directory does not appear until all the files contained in that directory have

arrived, so it is not possible to process partially-imported results.

The batch results key/value store polls HDFS periodically for the appearance of

newly-created stores, and when one appears, the contents are ingested. Since the key/value

pairs on HDFS capture results for only that source batch, the ingestion process requires

applying the semi-group associative operator to aggregate those key/value pairs with the

current contents of the batch results store. However, instead of storing (K,V) pairs di-

rectly, the contents are transformed into (K, (batchId, V)) pairs and this data structure

captures the value of a particular key up to and including the specified batch id. This

transformation should be performed “behind the scenes” without the developers knowl-

edge.

In parallel with the batch jobs, the same user’s program is continuously executed in a

Storm topology, and the results are deposited in an online results key/value store. Instead

of aggregating by key K, however, the system automatically builds a compound key (K,

batchId) for performing the grouping. These represent the online partial results for each

batch.

The client side maintains connections to both the online and batch results store. All

queries first go to the batch results store: by comparing the wall clock time and the batch

id from the result, the system knows how “far behind” the value is. Based on this, the

client can figure out how many values need to be “filled in” from the online store, which

is keyed by (K, batchId). It can then issue appropriate requests to the online results store.
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The final, up-to-date value is arrived at by aggregating all the partial values once again,

the validity of these operations is licensed by the fact that the values are (at least) semi-

groups.

Typically, the batch results key/value store is much larger and backed by durable

storage, whereas the online results are kept in memory-resident key/value stores (e.g.,

memcached). To prevent memory overflow, keys are pruned based on a time-to-live (TTL)

setting. The TTL is tuned such that, under normal operating circumstances (and within

a “margin of safety”), there will be no “gap” between the batch and online results. That

is, largest batch id in the batch results store will be greater than the smallest batch id in

the online results store. However, during times of excessive load on the Hadoop cluster

or outages, gaps may appear when the online results coverage is not sufficient to fill in

where the batch results end. In this case, a client lookup will fail.

19.2.2 Handling Variety (Graph Processing)

For a growing number of applications, the data takes the form of graphs that connect

many millions of nodes. The growing need for managing graph-shaped data comes from

applications such as: (1) identifying influential people and trends propagating through

a social-networking community, (2) tracking patterns of how diseases spread, and (3)

finding and fixing bottlenecks in computer networks.

The analysis needs of such applications not only include processing the attribute val-

ues of the nodes in the graph, but also analyzing the way in which these nodes are con-

nected. The relational data model can be a hindrance in representing graph data as well

as expressing analysis tasks over this data especially when the data is distributed and

has some complex structure. Graph databases—which use graph structures with nodes,

edges, and their properties to represent and store data—are being developed to support

such applications.
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There are many techniques for how to store and process graphs. The effectiveness of

these techniques depend on the amount of data—the number of nodes, edges, along with

the size of data associated with them—and the types of analysis tasks, e.g., search and

pattern matching versus more complex analytics tasks such as finding strongly connected

components, maximal independent sets, and shortest paths.

Many graph databases such as Pregel [34] use the Bulk Synchronous Parallel (BSP)

computing model. Like the map and reduce functions in MapReduce, Pregel has primi-

tives that let neighboring nodes send and receive messages to one another, or change the

state of a node (based on the state of neighboring nodes). Graph algorithms are specified

as a sequence of iterations built from such primitives. GraphLab uses similar primitives

(called PowerGraph) but allows for asynchronous iterative computations [122]. GraphX

runs on Spark and introduces a new abstraction called Resilient Distributed Graph (RDG).

Graph algorithms are specified as a sequence of transformations on RDGs, where a trans-

formation can affect nodes, edges, or both, and yields a new RDG [123].

Techniques have also been proposed to support the iterative and recursive compu-

tational needs of graph analysis in the categories of systems that we have considered

in this monograph. For example, HaLoop and Twister are designed to support iterative

algorithms in MapReduce systems [81, 82]. HaLoop employs specialized scheduling

techniques and the use of caching between each iteration, whereas Twister relies on a

publish/subscribe mechanism to handle all communication and data transfers. Efficient

techniques to run recursive algorithms needed in machine-learning tasks are supported by

the Hyracks dataflow system [124].

A natural idea is to reconsider the nature of graph analytics and resort to recurring

query processing for performance boosting. Namely, we wish to improve the efficiency

of the graph processing with the power of recurring query processing model and opti-

mization techniques. Specifically, we expect to peruse the following directions.
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1. Incremental algorithms compute changes to the matches in response to updates,

to minimize unnecessary re-computation. We plan to investigate incremental algorithms

for graph patter matching, a routine process in emerging applications such as social net-

works. For certain graph patterns, the algorithms should be in linear time in the size of

the changes in the input and output, which characterized the cost that is inherent to the

problem itself. For general patterns, the incremental matching problem is unbounded,

i.e., its cost is not determined by the size of the changes alone. Hence we may consider

exploiting weighted landmark vectors, an extension of landmarks [125], to help us find

shortest paths between node pairs in a graph. Further, we can provide a lazy incremental

algorithm that updates the landmarks only when necessary.

2. Approximate algorithms give users some answers with reasonable accuracy and

high efficiency for a wide spectrum of graph analytics tasks. The approach should be

orthogonal to the approaches that design an approximation algorithm for a specific graph

problem. The proposed algorithms should be seamlessly integrated with the proposed

optimization techniques for recurring query processing. Hence it can be benefited from

all performance improvements from the underlying system.

3. Asynchronous parallel execution can be explored to alleviate the overheads of the

bulk synchronous parallel model used by synchronous graph processing systems, includ-

ing stale messages and frequent global synchronization barriers. Existing asynchronous

systems have limited scalability or retain frequent global barriers, and do not always sup-

port graph mutations or algorithms with multiple computation phases. Our goal is to

design barrierless asynchronous processing model that reduces both message staleness

and global synchronization. This enables our system to overcome the limitations of ex-

isting asynchronous models while retaining support for graph mutations and algorithms

with multiple computation phases.

In summary, it would be interesting and promising to explore these three directions.
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We hope the experimental evaluation can confirm the superiority of the designs/models

above. Eventually, future work in this direction will expand the applicability of the recur-

ring query processing system to a wider spectrum.
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