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ABSTRACT 

 

An effective antibody response is essential for immunity against influenza virus 

infection and is the primary goal for vaccine development.   In this study, codon 

optimized and wild type DNA vaccines expressing hemagglutinin (HA) antigens of 

human flu viruses A/H1N1/NewCal/20/99 (H1 serotype) were compared to test the 

antigenic differences of the constructs in mammalian systems.  Furthermore, to determine 

if a prime-boost immunization strategy was more effective in eliciting a greater immune 

response, a codon optimized HA vaccine was administered as a prime in conjunction with 

the trivalent inactivated vaccine (TIV), Fluzone, as a boost and immune responses were 

measured.  We found that protein expression and antibody response levels of HA 

antigens were increased with the codon optimized construct when compared to the wild 

type HA gene construct.  Prime-boost vaccination of NZW rabbits was able to elicit a 

greater immune response when compared to TIV alone as measured by enzyme-linked 

immunosorbent assay (ELISA), hemagglutinin inhibition (HI) and neutralizing antibody 

(NAb) assays. Together, these studies indicate that optimal HA DNA vaccine 

formulations should be codon optimized and can be used as part of a prime-boost 

vaccination strategy.
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BACKGROUND 

 

Influenza related sicknesses have become a global commonality during the winter 

months.  The influenza virus is highly contagious, attacks the upper respiratory tract, and 

has plagued the world since nearly the beginning of written history.  The �flu,� as it is 

commonly known, primarily causes achy muscles, fever and digestive system symptoms, 

and can cause death in people with weakened immune systems (Langley and Faughnan, 

2004).  Some strains, however, cause global pandemics of catastrophic proportions such 

as the Spanish influenza of 1918-1919 during which up to 50 million people were killed 

worldwide, regardless of the status of their immune system (Palese and Garcia-Sastre, 

2002).  According to the World Health Organization (WHO), we are due for another 

pandemic with a human adapted form of the avian flu as the leading potential strain.  

Global pandemics of the past have reached all continents within 6-9 months but with 

easier travel, the next pandemic could infect all continents in less than 3 months (WHO, 

2005). 

 

Virological Features of Influenza Virus 

Types of Influenza Virus 

 The influenza virus belongs to the family Orthomyxoviridae which are enveloped 

viruses with a segmented single-stranded RNA genome (Palese and Garcia-Sastre, 2002). 

There are three types of influenza currently in existence, influenza A, B and C.  Influenza 

A and B are morphologically indistinguishable, while influenza C is differentiated by its 

glycoprotein spikes.  Influenza A can spread among both humans and animals, influenza 
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B affects only humans, and while influenza C affects predominantly humans it recently 

has infected swine in China (Lamb and Krug, 1996).  The influenza A virion is 

characterized by the 16 subtypes of hemagglutinin (HA protein) and by the 9 subtypes of 

neuraminidase (NA protein) both of which are protein spikes on the surface of the virus 

(Lamb and Krug, 1996; Murphy and Webster, 1996).  Strains are named based on these 

two proteins. For example, the current avian flu strain designated H5N1, which currently 

has not established human-to-human transmission, is an influenza A virus with a subtype 

5 HA protein and a subtype 1 NA protein.  New influenza virus strains result primarily 

from antigenic changes of the hemagglutinin and neuraminidase proteins.   Antigenic 

drift results from point mutations that occur during viral replication within a major 

serotype, while antigenic shift occurs when genes from animal influenza viruses are 

captured by the human virus via reassortment usually resulting in high mortality (Palese 

and Garcia-Sastrem, 2002).   

 

Morphology of Influenza Viruses  

The important features of the influenza virion are the mushroom-shaped 

neuraminidase proteins and rod-shaped hemagglutinin proteins (Figure 1).  The NA and 

HA proteins extend inward through the lipid bilayer and into the matrix protein (M1).  

Influenza A, B and C also encode transmembrane proteins M2, NB and CM2, 

respectively.  These proteins are used as ion channels.  The outermost layer of the virus is 

a lipid bilayer under which M1 is located.  The matrix protein is thought to interact with 

the ribonucleoproteins (RNPs) in the nucleus of the virus (Lamb and Krug, 1996).   
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Figure 1: Morphology of the influenza virus.  Note the Neuraminidase (black) and rod-like 
Hemagglutinin (gray) proteins, the primary antigenic components of the virus.  (Lamb and Krug, 1996) 

 

The number of RNA segments in the types of virions differ; influenza A and B 

have eight strands, while influenza C has only seven strands.  Influenza C lacks an RNA 

segment for NA, although the glycoprotein HEF mimics some of the missing NA 

function in this type.  Each of the eight strands has an associated transcriptase complex 

containing proteins PB1, PB2 and PA.  Strand number one is the longest, while strand 

number eight is the shortest in length.  The RNP is formed from the interaction of the 

nucleocapsid protein and an RNA strand (Lamb and Krug, 1996).   

 

Protective Antigens  

The hemagglutinin protein appears to be the most important surface protein.  Its 

rod-shape (in trimeric form) makes it ideal for penetration of the virus into the cytoplasm 

of the cell it is trying to infect (Figure 2).   
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Figure 2:  Trimeric HA structure 
Three HA monomers converge to form a trimeric structure with hydrophobic fusion peptides hidden within 
the protein.  Once the HA1 portion of the protein has bound to sialic acid of the host cell, it is taken up into 
an endosome in which the pH causes the protein to become unstable and fusion peptides are exposed to 
cleavage enzymes breaking the protein into HA1 and HA2 subunits still attached via disulfide bonds.  
(Protein Database)     
 
The penetration allows for the eventual release of the viral nucleocapsids into the cell 

(Lamb and Krug, 1996).  Hemagglutinin is also the primary protein against which 

antibody responses are mounted.  The HA protein is expressed in the whole unit form, 

HA0, which is proteolytically cleaved into two subunits, HA1 and HA2, held together by 

a single disulfide bond.  The HA1 subunit forms the orbicular head of the molecule, 

comprised of the receptor binding site and conformationally dependent epitopes against 

which neutralizing antibodies are primarily mounted (Dowdle et al., 1974; Webster et al., 

1975; Koopmans et al., 2004).  The HA2 subunit anchors the molecule into the lipid 
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membrane and is highly conserved among various influenza virus strains.  Cleavage into 

HA1 and HA2 is required for the virus to become infectious making it a critical 

determinant in the ability of the virus to spread (Lamb and Krug, 1996). 

Neuraminidase is a mushroom-shaped surface protein and is dispersed throughout 

the membrane (Hay, 1974). This protein permits the transport of the virus through the 

mucus membrane of the respiratory tract allowing the virus to find its target epithelial 

cells.  It is known that the NA polypeptide is not present in influenza type C viruses.  

Some less common avian neuraminidases have a receptor binding site that causes 

hemagglutination (Murphy and Webster, 1996).   

 

Replication 

 Entry of the virion into the target host cell is facilitated by the binding of the 

hemagglutinin spikes to the sialic acid of the target cell (Skehel and Wiley, 2000) (Figure 

3).  This binding can be reversed by polysaccharide cleavage by neuraminidase spikes.  It 

is advantageous for the virus to do this because it prevents virus from being concealed by 

inappropriate cell types or in mucus.  Sialic acid is common on cell surfaces in mucus 

and would neutralize the virus, rendering it useless.  After binding, the cell engulfs the 

virus by endocytosis via endosomes.  The vesicle is then acidified by the cell which 

allows for trypsin-like enzymes to cleave the HA monomers.  This process activates the 

membrane-fusion function, and since the virus envelope and the endosome�s membrane 

are so close to each other, they fuse together to form one membrane (Lamb and Krug, 

1996).  It has been shown that the H5 subtype of the influenza virus is not cleaved by 

trypsin which is available in the upper respiratory tract, but rather by furin which is 
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available in the lower respiratory tract (Walker et al., 1994).  This may provide a possible 

reason for the current relatively low level of H5 viral spreading human-to-human via 

coughing or sneezing from the upper tract, and the current lack of an avian influenza 

pandemic.  

 

Figure 3: Influenza virus replication.  The virus attaches itself to the outside of a host cell (upper part of 
diagram) and it enters the cell as a vesicle.  The viral genes are transcribed and translated by the cell's 
enzymes and ribosomes.  Instead of producing only new cellular material, the cell produces many new 
virus particles. The new virus particles are eventually released via budding (diagram right side), and infect 
their own host cells. (Lamb and Krug, 1996) 

 

Next, a target sequence is cleaved in the nucleocapsid protein that results in 

passage of the nucleocapsid into the nucleus.  When the virus first infects the cell, 

replication cannot occur because active host cell DNA synthesis is required, and virus 

replication is blocked by antibiotics like mitomycin C.  Later, a protein is cleaved off of 

the RNA strand and a cap is exposed that acts as a primer.  PB1 and PA complete the 

synthesis of the (+) sense strand.  There are two types of (+) sense RNA formed, 

incomplete which serve as mRNA, and cRNA which serve as templates for the synthesis 
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of daughter (-) sense vRNAs.  Most of the proteins created stay in the cytoplasm but the 

nucleoprotein drifts back to the nucleus where it interacts with the new vRNAs to form 

new nucleocapsids.  Finally, the HA and NA proteins in the cytoplasm attach to a newly 

formed cell membrane which is exported from the host cell via budding (Murphy and 

Bang, 1952; Murphy and Webster, 1996).   

 

Transmission and Prevention 

 Influenza virus is easily spread through the air when an infected person coughs or 

sneezes.  The virus enters the body through the mucosal cells of the mouth or nose.  It 

generally takes one to four days for a person to exhibit symptoms and the person is 

infectious for up to seven days following the first signs of symptoms.  The virus survives 

most easily in cold and dry weather, which is also the greatest time of indoor person-to-

person contact, making the population most susceptible during the winter months (Center 

for Disease Control, 2006).   

 Prevention techniques which include frequent hand washing, limited contact with 

eyes, nose and mouth, and coughing and sneezing into a tissue that is promptly thrown 

away do not always prevent the spread of the flu virus among the population.  Therefore, 

antiviral drugs and flu vaccines must be developed.  There are currently three antiviral 

drugs on the market (amantadine, rimantadine, and oseltamivir) that are approved for flu 

treatment and prevention.  However, resistance to some antivirals has been found among 

circulating seasonal flu strains (Englund et al., 1998) underscoring the need for 

efficacious vaccines.   
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The foremost prevention measure against influenza infection is vaccination. 

Currently, there are two different forms of the flu vaccine which have different routes of 

administration.  The most common form is made of a combination of three types of 

inactive flu viruses, and is administered via intramuscular injection.  The newest vaccine 

is composed of a mixture of three live attenuated influenza viruses (LAIV) and is 

administered through a nasal spray.  Each year, a new vaccine is produced that contains a 

mixture of three virus strains, two A strains and one B strain.  It is these strains that are 

predicted to reach the United States during the next winter�s flu season.  Since the live 

attenuated version of the vaccine is still capable of replication and, therefore, possible 

infection, it is only recommended for healthy people ages five to forty-nine, while the 

inactivated virus vaccine can be given to anyone over the age of six months (CDC, 2006).   

 
 
Current Influenza Vaccines  

   The flu vaccines used in the United States are trivalent, i.e., consisting of three 

different strains of influenza that are forecasted, by the World Health Organization, to 

arrive in the U.S. during any given flu season.   The strains present in the United States 

for the 2006-2007 flu season are two type A viruses H3N2 and H1N1, and a type B virus 

(CDC, 2006).  The inactivated vaccines are grown in eggs, purified and inactivated with 

chemicals to make them non-infectious.  The effectiveness of the vaccine depends on the 

levels of similarity between the virus strains present in the population, the strains present 

in the vaccine, the strength of a person�s immune system and their age (Palese and 

Garcia-Sastre, 2002).  The live attenuated vaccines are created from the same three 

strains predicted by the WHO that are included in the inactive vaccine.  This type of live 
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vaccine is based upon a master strain which is grown in eggs at low temperature and over 

many growth cycles as a way to increase the antigen variability.  The vaccine is 

administered via a nasal spray instead of a needle injection, and is only recommended for 

healthy people between the ages of 5-49 years old.  The age restrictions are in place 

because the vaccine consists of a weakened form of the actual virus and people with 

compromised immune systems due to age and/or disease can be susceptible to influenza 

viral replication and sickness (CDC, 2006).  Currently, there are more vaccines in 

development including a universal flu vaccine based upon the antigenicity of the M2 

protein (Fan et al., 2004; Neirynck et al., 1999) and reverse genetics of the flu genome 

(Palese and Garcia-Sastre, 2002).   

 
DNA Vaccines 

 Recently, DNA vaccines have been developed as another method to combat the 

flu virus.  DNA vaccines are based upon the premise that only a portion of a virus� 

antigens delivered in the form of DNA is needed to elicit a sufficient immune response to 

combat infection.  For DNA vaccines, naked DNA is transfected into target cells and the 

cells produce the encoded proteins.  DNA vaccines are an effective way to create 

immunity because the antigens are produced within host cells and therefore, are presented 

via both Major Histocompatibility Complex I and II (MHC-I and MHC-II) pathways, so 

they can elicit strong T cell immune responses.  A strong CD4+ T cell response is critical 

for the induction of therapeutically useful antibody responses.  Another critical advantage 

of DNA vaccines is that the antigenic proteins are produced endogenously creating a 

native, tertiary structure compared to the chemically treated virions that are used in 

current flu vaccines which can incur changes in folding subsequently reducing the 
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immunogenicity of the vaccine.   In addition, DNA vaccines elicit a response in both the 

humoral (antibodies) and cellular (cell-mediated) arms of the immune system (Lu et al., 

1996; Lu et al., 1998; Robinson et al., 1999).  Inactivated vaccines are not effective in 

generating strong immune responses, in particular, they produce poor cell-mediated 

immune responses (Johnson et al., 1999).  Live attenuated vaccines are more effective in 

eliciting immune responses, however, as previously mentioned, there are significant 

safety concerns for people with a compromised immune system. 

 The amount of DNA required to mount a sufficient immune response varies 

between inoculation methods; however, in general very small amounts of DNA are 

needed.  There are three common methods of inoculation: particle bombardment (gene 

gun), intramuscular injection (i.m.) and intradermal injection (i.d.).  There are advantages 

and disadvantages to all inoculation methods.  Less DNA is required for gene gun 

inoculation than is needed for i.m. or i.d. injections, and i.m and i.d. may require more 

immunizations (Bohm et al., 1996; Hartikka et al., 1996). The transfection efficiency of 

target cells is higher when using the gene gun, since the DNA is bombarded into the cells. 

The DNA dose required to elicit a good immune response in mice via i.m. injection 

ranges from 50 to 100 µg, while gene gun inoculation requires only approximately 6 µg 

at each immunization.  The biggest drawback to using a gene gun for immunization is 

that it has not been approved for human use yet, whereas intramuscular injections are 

commonly used. 

DNA vaccine plasmids are easy to engineer allowing for specific sequences to be 

designed as a way to increase immunogen variability.  The addition of different leader 

sequences, promoters and other subunits and codon optimization can be utilized to 
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maximize the translational process.  For example, the addition of a human tissue 

plasminogen activator (tPA) leader sequence can accelerate the humoral antibody 

responses in rabbits against spike protein which is the protective antigen against the 

SARS associated coronavirus (Wang et al., 2005a).  Since only portions of viral DNA are 

used, there is no chance for subsequent infection after vaccination as there is when using 

live attenuated vaccines.  Vaccines based on retroviral vectors always present the risk of 

becoming pathogenic or integrating into the host cell�s genome with the possibility of 

carcinogenesis.  However, adenoviral vectors are not pathogenic and are not integrative, 

therefore, they cause a strong immune response against the vector, hindering its 

effectiveness.  

 

Influenza DNA Vaccines 

 Past DNA vaccines against the flu have yielded both positive and negative results.  

In a Phase I clinical trial, scientists at Merck developed a DNA flu vaccine and assayed 

for cell-mediated immunity.  Researchers hoped that cell-mediated immunity (CMI) 

would be the most effective way to combat influenza (Donnelly et al., 1995) but the 

Merck trial failed to yield a detectable target result for possibly two reasons: either their 

assays were not effective enough at measuring CMI levels, or their DNA vaccine was not 

fully optimized (i.e. through codon optimization).  On the other hand, in another study it 

was demonstrated that there were excellent humoral responses, and complete protection 

from a lethal dose of influenza virus from as little as 1 µg DNA given in two doses in a 

mouse model (Deck et al., 1997).  
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Prime-Boost Vaccine Strategy 

 A DNA vaccine can be paired with other combinations of flu vaccines to create an 

increased immune response.  It has been shown that a prime-boost method of 

immunization elicits a greater immune response against HIV antigens as opposed to using 

one or the other modality alone (Richmond et al., 1998).  Following these results, for this 

thesis it was reasoned that a DNA flu vaccine used as an immune primer followed by 

inoculation with an inactivated flu vaccine could boost immunity.  If the flu DNA 

vaccine is administered first then boosted with the inactivated vaccine, a smaller dose of 

the inactivated vaccine will be needed, which in a future outbreak could help prevent 

dose shortages, as was seen in the 2004 flu season.   

 

Codon Optimization 

 Codon optimization is performed as a way to increase protein expression in a 

particular cell line or organism by changing specific codons to those preferred by that 

species.  In the case of DNA vaccines expressing viral proteins, the codons are switched 

to those preferred by the vaccinated species, especially to those genes that are highly 

expressed.  The amino acid sequence of the viral vaccine protein remains the same, while 

the triplet of base pairs (codon) is altered to match the codon preferences in the 

vaccinated organism.  Codons of low frequency in the original DNA are altered to codons 

of high frequency in the organism the DNA is being introduced to.  It has been 

determined that there is a direct correlation between translational efficiency, which leads 

to high expression levels, and immunogenicity in host species.  Nagata et al. (1999) 
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showed that the amount of codon optimization of a gene directly correlated with the 

translational efficiency in mammalian cells.    

 The influenza A genome is codon-biased meaning that some codons for specific 

amino acids are more common than others and/or that natural selection can distinguish 

between synonymous codons (Plotkin and Doshoff, 2003).  The most commonly 

accepted explanation of codon bias is that codon appearance is optimized to match the 

amount of isoaccepting tRNAs available, allowing for an increased translational 

efficiency (Zuckerkandl and Pauling, 1965; Ikemura, 1981).  Other theories include the 

ideas that codon bias is a result of selection for regulatory function mediated by ribosome 

pausing (Lawrence and Hartl, 1991) or selection against stop codons that lead to early 

termination (Fitch, 1980; Modiano et al., 1981).  Whichever the explanation may be, the 

determination of which codons occur most frequently can be used to increase the 

efficiently of mRNA translation, and thus boost the overall immunogenicity of a specific 

viral protein in a vaccine.  The codon usage varies in different viral strains because of 

mutations at the epitopic regions of the HA1 antigen which has more frequent mutations 

than others (Plotkin and Doshoff, 2003).  

 Codon optimized DNA vaccines have been developed for other infectious 

diseases, including HIV.  André et al. (1998) created a HIV gp120 codon optimized DNA 

vaccine, syngp120, and performed cellular transfections and BALB/c mice studies.  All 

wild type codons were replaced by codons found in human genes that are most highly 

expressed.  The group found that codon optimized expression levels were significantly 

higher than WT levels among various assays.  In 293T cells, expression levels increased 

10-50 fold using the optimized sequence, in BALB/c mice, the optimized synthetic 
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sequence produced greatly higher antibody titers as measured by ELISA showing an 

increased humoral response.   
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Project Purpose 
  

The purpose of this project was two fold.  The first was to determine the 

immunogenic and expression differences of wild type and codon optimized H1 influenza 

DNA vaccines using enzyme-linked immunosorbent assays (ELISA) and Western blots.  

Second, we wanted to compare the effect of a prime-boost immunization schedule on 

protective antibody responses against the influenza virus compared to DNA vaccination 

alone.  Mice, rabbits and 293T cells were used as model systems to more fully understand 

the ability of this type of immunization strategy to improve immunogenicity under a 

variety of conditions.  This research will provide useful information and lay groundwork 

for future experiments involving other influenza DNA vaccines. 
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Materials and Methods 

 

DNA Sequences 

 The influenza H1 strain A/H1N1/NewCal/20/99, GenBank accession number AJ 

344014, and the influenza H3 strain A/H3N2/Panama/2007/1999 accession number 

DQ865956 were used as backbones for construct design for each strain of influenza.  

Codon optimized constructs were created by Geneart (Regensburg, Germany) from the 

wt sequence into a G + C rich content found in humans.  The gene inserts were ligated 

into vector pSW3891. 

 

Recombinant DNA Techniques 

Agarose Gel Electrophoresis 
 

Agarose was dissolved in 1x TAE buffer to a 1% (w/v) concentration.  The 

mixture was then heated in a microwave oven until the agarose was completely dissolved.  

A Bio-Rad agarose gel casting system was used to pour the gel.  After the agarose cooled, 

samples were loaded with 6X loading buffer.  The gel was run in a Bio-Rad gel box at 

approximately 50-70 Volts for 1 1/2 to 2 hours.  The gel was then stained in an Ethidium 

Bromide solution (25 ng/ml in TAE buffer) for 20-30 min.  The stained gel was then 

photographed using an Olympus COMEDIA Master System 4.1TM digital camera under 

UV light. 

 

Restriction Endonuclease Digestion 
 

The final volume for restriction enzyme digestions was 15 µl for single digestions 
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and 20 µl for double digestions.  The appropriate enzyme concentration and buffer, 

bovine serum albumin (BSA), sterile H20, and DNA concentrations were estimated 

according to the New England BioLabs catalog.  DNA was digested at 37ûC for 90 min 

and analyzed on an agarose gel. 

 

In vitro Expression of Influenza H1.HA0 Antigens 
 

The expression of H1 DNA vaccine constructs was examined by transient 

transfection of 293T cells (Pear et al., 1993).  Transfection was performed when cells 

were at approximately 50% confluence on 100mm dishes by calcium phosphate 

coprecipitation, using 20 µg of plasmid DNA per dish.  The supernatants and cell-lysates 

were harvested 72 h after transfection.  The H1 protein expression was confirmed by 

Western blot (see below).  A quantitative enzyme-linked immunosorbent assay (ELISA) 

(see below) was used to measure the amounts of H1 produced from each DNA construct.  

A known amount of recombinant H1 protein was used to establish the standard curve. 

 

DNA Vaccination Techniques 

DNA Tubing Preparation 
 

For all the procedures in this section, a Bio-Rad tubing prep station was used. 

Rislan tubing was dried for 1�2 hr by forcing N2 at ~ 0.2 L/min into the tubing.  The 

ends of the tubing were capped after drying to keep moisture out.  Water was added to 1 

µm gold beads (adjusted for each experiment) to achieve a final concentration of 100 

mg/ml.  The gold beads were centrifuged to the bottom of a microcentrifuge tube for ~10 

sec and the water was removed with a pipette, leaving a small amount of water (~50 
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µl) in the tube.  A 200 µl aliquot of spermidine (100 mg/ml in water) was added to the 

gold bead pellet and the mixture was vortexed thoroughly at high speed until the gold 

was completely re-suspended. Plasmid DNA was added to the beads/spermidine 

suspension.  The mixture was vortexed on high, only briefly, as the DNA can shear 

easily. 400 µl CaCl2 (2.5 M in water) was added drop-by-drop into the mixture while 

vortexing at medium speed.  The mixture sat at room temperature for 3-5 min to allow 

precipitation and was then centrifuged for 8 sec, decanted and the supernatant was 

discarded.  The coated gold beads were washed 5 times with 1ml dehydrated absolute 

ethanol.  Each time, the ethanol-resuspended beads were centrifuged for 8-12 sec and the 

supernatant removed.  The beads were resuspended in the total volume of absolute 

ethanol needed for each preparation in a 20 ml glass scintillation vial and capped tightly.  

A piece of tubing, 2 �3 inches beyond the right end of the tubing prep station, was cut. A 

10 ml syringe was attached to the right end of the cut tubing.  The glass vial of gold beads 

was sonicated briefly to completely suspend the beads and the suspension was drawn into 

the tubing with a syringe.  The gold was allowed to settle out of the suspension in the 

tubing for 10 min.  Then, the ethanol was slowly drawn from the tubing with the syringe 

at a rate of about 2 inches per second.  The tubing was connected to the nitrogen port and 

the prep station was turned on to rotate the tubing and spread the gold over the inside of 

the tubing for 1 min.  The nitrogen flow was turned on to 0.4 L/min to dry the remaining 

ethanol from the tubing for 5 min as it continued to rotate. The tubing was cut into one-

half inch cartridges using the tubing cutter, sealed in a scintillation vial with parafilm and 

stored at �20ûC. 
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Anesthesia and Bleeding 
 
Rabbits 

A portion of skin was cleaned for the injection of anesthetic solution into the right 

hind leg quadriceps or lumbar muscle of each animal.  The anesthetic solution consisted 

of Ketamine (100 mg/ml)/Xylazine (100 mg/ml)/saline (5:1).  The total volume of the 

anesthetic solution each animal received was calculated based on the animal�s weight 

(see Table I).   

 

Dosage Per Animal (mg) 

Rabbit Weight 
(kg) 

Dose of Mixed 
Ket/Xyl (ml) Ketamine (ml) Xylazine (ml) 

2.0-2.5 0.6 50.0 10.0 
2.5-3.0 0.65 54.2 10.8 
3.0-3.5 0.7 58.3 11.7 
3.5-4.0 0.75 62.5 12.5 
4.0-4.5 0.8 66.7 13.3 
4.5-5.0 0.9 75.0 15.0 

5.0 & up 1.00 83.3 16.7 
Table I: Dose and composition of the anesthetic solution injected to the rabbits 

 

Rabbits were then bled from the central ear vein.  The backside of the ear 

was rubbed briskly with an alcohol prep.  Then, using a 23-gauge butterfly needle, blood 

was removed with a syringe until the desired amount was collected.  The blood was then 

transferred to a vacuum tube.   
 
 
Mice 

The abdominal fascia was rubbed with an alcohol prep and 0.5-0.7 µl of 

anesthetic solution (Ketamine (100 mg/ml)/Xylazine (100 mg/ml)/Saline 4:1:10) was 

injected intraperitoneally using a tuberculin syringe.  Once the animals were sedated, a 
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glass capillary tube was used to draw blood from the periorbital cavity.  The abdominal 

area was then shaved and DNA-coated gold beads were inoculated using the gene gun.  

Each animal received 5 doses of 6 shots each according to the schedule in Table III. 

 

DNA Immunization 

Mice 

Female Balb/C mice, 6�8 weeks old, were purchased from Taconic Farms 

(Germantown, NY) and housed in the animal facility managed by the Department of 

Animal Medicine at the University of Massachusetts Medical School in accordance with 

IACUC approved protocol.  Fifty mice were divided into five groups of ten mice each, 

Table II.  Each group received five DNA immunizations by a Bio-Rad Helios gene gun 

(Bio-Rad, Hercules, CA) and were bled according to the schedule in Table III.  The 

original sequence (wt) or codon optimized H1-expressing DNA pSW-3891 plasmids 

were coated onto the 1.0 µm gold beads at 2 µg of DNA/mg of gold.  Each shot delivered 

1 µg of DNA and a total of six non-overlapping shots were delivered to each anesthetized 

mouse at the shaved abdominal skin.  The serum samples were collected immediately 

before and 2 weeks after each immunization. 

 Groups         #  of Mice           DNA Vaccine 
    A                     10                   Saline I.M. (control) 
    B                     10                   wt I.M.   
    C                     10                   opt I.M. 
    D                     10                   wt G.G. 
    E                     10                    opt G.G. 

Table II: Animal groups and immunizations administered for the mouse experiment. The table shows 
the composition of the DNA vaccine used to inoculate the mice in each group.  Each mouse was given 100 
µg of DNA per immunization for I.M. injection while the gene gun mice received 6 µg of DNA per 
immunization.  I.M., intramuscular injection immunization; G.G., gene gun immunization; wt, original 
DNA sequence; opt, codon optimized DNA sequence 
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Immunization I II III IV   V  
Bleed I II III IV V VI VII VIII 

Week # 0 2 4 8 10 11 13 15 
Table III: Immunization and bleeding schedule for the mouse experiment 
Bleedings were taken before immunizations when scheduled on the same day. 

Rabbits 

Female New Zealand White rabbits weighing 2 kg were purchased from 

Millbrook Breeding Lab (Amherst, MA).  Animals were housed in the facility managed 

by the Department of Animal Medicine at the University of Massachusetts Medical 

School following IACUC-approved protocols.  Rabbits received DNA immunizations by 

a Helios gene gun (Bio-Rad, Hercules, CA).  A H1 or H3 DNA vaccine plasmid was 

coated onto the 1.0-µm gold beads at 2 µg of DNA/mg of gold so that each shot delivered 

1 µg of DNA.  At each immunization, the rabbits were anesthetized, and a total of 36 

non-overlapping shots were delivered to the shaved abdomen.   

 

Codon Optimization Study 

 Two groups of two rabbits each were used in a pilot study.  Each group was 

immunized with either wild type or codon optimized H1 HA DNA vaccines (Table IV).  

The immunization and bleeding schedules are shown in Table V.   

Group               Rabbit #                          DNA Vaccine 
    1                     316-317                   codon optimized H1 HA 
    2                     381-382                  wt A/H1N1/NewCal/20/99 

Table IV: Animal groups and immunizations administered for the rabbit 
experiment. The table shows the composition of the DNA vaccine used to 

inoculate the rabbits in each group. 
 

Immunization I II III  IV   

Bleed I II III IV V VI VII

Week # 0 2 4 6 8 10 12 

Table V: Immunization and bleeding schedule for the codon optimization rabbit experiments 
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Prime-Boost Study 
 
 Four groups of five rabbits each were immunized with different priming and 

boosting vaccinations using various immunization schedules.  Rabbits were given either 

the TIV Fluzone alone, or a combination of DNA and Fluzone in a prime boost schedule 

(Figure 4). 

 
Fluzone Alone 

 
     Weeks 

H1/H3 + Fluzone 

 

     Weeks 

H1/H3 x2 + Fluzone 

 

     Weeks 

H1/H3/Fluzone x2 

 
     Weeks 
 
Figure 4:  Immunization schedule for prime-boost rabbit experiment.  Bleedings were taken at weeks 
0,2,4,6,8,10,12,16.  Black arrows indicate immunization with H1/H3 DNA vaccine and blue arrows 
indicate a boosting immunization with Fluzone TIV. 
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Immunological Techniques 
 
ELISA 
 
Concanavalin A (ConA) Antigen Capture ELISA for Detection of Antibody 
 

96-well flat bottom plates were coated with 100 µl/well of Concanavalin A 

(ConA) at a concentration of 50 µg/ml in PBS, pH 7.4 and incubated for 1 hr at room 

temperature (RT).  For all washes, the plates were rinsed 5 times with wash buffer (1x 

PBS plus tween-20) 3 times for 1 min, one time for 15 min, and one time quickly.  100 

µl/well of PBS diluted H1.HA0.dTM, H3.HA0.dTM or Fluzone antigen at a 1:10 or 1:5 

dilution were added to the plates and allowed to incubate for 1 hr at RT.  The plates were 

washed, free ConA binding sites were blocked with 200 µl/well of blocking buffer (5% 

non-fat dry milk in whey dilution buffer), and plates were incubated overnight at 4ûC.  

After a series of washes, the plates were incubated in either 100 µl of anti- H1 rabbit sera 

at 1:5000 dilution or mouse sera at 1:1000 dilution in whey dilution buffer for 1 hr at RT.  

After a series of washes, plates were incubated in either 100 µl of biotinylated anti-rabbit 

IgG at 1:5000 or anti-mouse at 1:1000 in whey dilution buffer for 1 hour at RT.  Plates 

were washed and incubated in 100 µl of streptavidin-conjugated horseradish peroxidase 

(HRPstreptavidin) at 1:10000 in whey dilution buffer for 1 hr at RT.  The assay was 

developed using 3, 3�, 5, 5�-tetramethylbenzidine (TMB) (1 TMB tablet/10 mL 0.05 M 

phosphate/citrate buffer/0.006% H2O2). 100 µl of TMB was added to each well allowing 

3.5 min incubation time at RT.  The reaction was stopped by adding 25 µl of 2N H2SO4 

to each well and the OD was read at 450 nm using a Dynex Opsys MRTM plate reader. 
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SDS PAGE and Western Blot 
 

A 10 % acrylamide/bis-acrylamide minigel in a tris-glycine buffer system was run 

with the supernatant and/or slysate obtained from harvesting the transfected 293T cells, 

for approximately 1.5 hr at 50 mA.  Before loading into the minigel, samples were mixed 

with loading buffer and boiled for 3-5 min.  Using a semi-dry blotting apparatus, the 

protein was transferred to a PVDF membrane for 1.5 to 2 hr at approximately 80 mA per 

gel.  The cut piece(s) of membrane were pre-treated by submerging them into methanol 

for 2 min, then transferred to ddH2O and washed. Finally, the membrane(s) were soaked 

in transfer buffer.  A cut piece of 3MM WhatmanTM paper (soaked in transfer buffer) was 

placed on the anode of the blotting apparatus followed by the membrane, the gel, and 

finally another piece of WhatmanTM paper.  After the transfer was done, the membrane 

was incubated overnight in 10 ml of blocking solution (PBS, Tween-20 0.1-0.2% v/v, I-

BlockTM 0.1% w/v) at  4ºC. 

Antibody stocks were diluted to the desired concentration (1:200 for rabbit sera) 

with blocking solution.  5 ml of the diluted antibody were added to each membrane and 

were allowed to incubate on the rotator at low speed for 1 hr.  The membrane was then 

washed 4 X 20 min, with 20 ml of blocking solution, on the rotator at high speed.  The 

membrane was then incubated on the rotator at low speed with the secondary antibody 

solution (diluted 1:5000 in blocking solution) for 1 hr.  The membrane was then washed 

with 20 ml of blocking solution four times, for a total of 1.5 hr, on the rotator at high 

speed. 

Chemiluminescence was performed using the Tropix Western LightTM protein 

detection kit.  Two pieces of thin, transparent plastic, big enough to cover the membrane 
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were cut. 1.5 ml of substrate was added per membrane.  The �sandwich� was allowed to 

incubate for 5 min.  The membrane was dried on a paper towel and transferred to a new 

dry sandwich.  This was exposed to x-ray film in the darkroom for variable times. 
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RESULTS 
 

Codon Optimization 

Codon Usage 

 Two different hemagglutinin based DNA vaccines were created to test variability 

in vitro in 293T cells and in vivo in rabbit and mouse animal models.  Both wild type and 

codon optimized sequences were used.  Gene inserts were ligated into vector plasmid 

pSW3891 at BamHI and PstI restriction enzyme sites.  Table VI shows the codon 

optimization for Leu, Lys, and Pro amino acids.  Each amino acid can be encoded by 

multiple codons.  The wild type HA codons (second column from the right) are shown in 

their wt frequencies.  The optimized codons are shown in the right column with their 

frequencies.  In this study, the wild type sequence was codon optimized to increase the 

level of preferred codon usage in mammalian cells, as indicated by the G + C content.  

The G + C content of the wild type gene was 41.24% while the codon optimized 

sequence was 60.13%.   

 
Table VI:  Example Codon Usage of H1 HA Wild Type and Codon Optimized Genes. 

Numbers indicate percentage of codon usage for each codon of various amino acids in the influenza 
virus genome 
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A MacVector computer program was used to analyze the influenza HA gene 

(Figure 5A).  A codon preference value of 1 indicates the same frequency of human 

preferred codons was used in this particular gene as would be expected from a human 

gene sequence.  A value below 1 indicates a lower frequency usage of human preferred, 

G + C rich, codons.  When a value greater than 1 is observed, it indicates a higher 

frequency of human preferred codons usage.  As seen in Figure 5A, the WT gene 

sequence (left plot) contains a sequence at or below a value of 1 for the full length of the 

protein, whereas the codon optimized sequence (right plot) is well maintained over a 

value of 1 throughout the entire length of the protein making it more suited for expression 

in a human cellular environment. 

 
Protein Expression 

Hypothesis-1 of this thesis is that codon optimization of influenza H1 HA protein 

will increase its expression in vitro.  In order to test expression levels of the optimized 

and wild type constructs, transient transfections and subsequent Western blots were 

performed (Figure 5B and C).  293T cells, a human embryonic kidney cell line, were 

inoculated with one of the wild type or codon optimized DNA and cell lysates and 

supernatants were collected.  The cell lysates were used for Western blot analysis.  

Antibody detection was performed using rabbit sera inoculated with DNA encoding H1-

HA0.tPA.dTM.  The nomenclature for the rabbits inoculated with this optimized 

construct stands for H1 subtype, whole HA subunit HA0 with the construct containing a 

tPA leader sequence and the subsequent protein with the deletion of the transmembrane 

domain.  As seen in the Western blot in Figure 4B, the codon optimized DNA sequence 

was expressed at a higher level than the wild type sequence.  The protein bands on the 
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blots were then quantitatively measured using a densitometric approach (Figure 5C).  

Thus, this data support hypothesis-1 of this thesis that codon optimization of influenza 

H1 HA increases its expression in vitro.  

 
 

 

Figure 5:  Influenza A H1 hemagglutinin (HA) gene codon preference and expression.  

(A) Schematic diagram of influenza  type A H1 HA.HA0 gene with HA1 and HA2 domains. The coding 
preferences of wild type (H1-HA.wt) and codon optimized (H1-HA.opt) H1 HA genes were analyzed using 
the computer software MacVector. Plots with values above 1.0 indicate bias toward codons more 
frequently used in mammalian systems, whereas plots below 1.0 indicate less preferred codons in 
mammalian systems. 
(B) Western blot analysis of HA expression from either wild type (wt) or codon optimized (opt) H1-HA 
DNA vaccines in lysates of transiently transfected 293T cells. Lysates from cells transfected with empty 
DNA vector pSW3891 without HA antigen insert were included as a negative control.  
(C) Quantification of HA expression from either wild type (wt) or codon optimized (opt) H1-HA DNA 
vaccines by densitometry. The relative amounts of HA antigens were measured by scanning HA-specific 
bands on Western blots by using an image processing system (Fujix Pictrography 3000, Science Lab 2003, 
Image Gauge 4.22). The measured AU showed the geometric means of four independent assays. Error bars 
indicate standard deviations. 
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Immunogenicity  

Animal Studies 

 Hypothesis-2 of this thesis is that codon optimized H1 HA DNA vaccines will 

produce a stronger immune response than non-codon optimized vaccines.  Two animal 

models (mice and rabbits) were chosen to test the immune responses.  The mouse model 

was used because it is more standardized and mice genetically homogenous unlike 

rabbits.  Rabbits, on the other hand, allow for a greater volume of sera to be harvested 

and their immune response more closely parallels a human response.  These two specific 

animal models, Balb/c mice and White New Zealand rabbits, are commonly used in 

vaccine studies and are highly documented in literature. 

The relative immunogenicity between the wild type and codon optimized H1 HA 

DNA vaccines was studied in rabbit and mouse models.  In a pilot rabbit experiment, the 

codon optimized H1 HA DNA vaccine was able to elicit high level anti-HA antibody 

responses after only two DNA immunizations whereas three to four immunizations were 

required to elicit good but still lower levels of anti-HA antibody response for the wild 

type H1 HA DNA vaccine (Fig. 6A).  For the wild type HA DNA vaccine, even after 

multiple DNA-boosting immunizations, the peak level anti-HA antibody response 

expressed as antibody titer was still lower than that observed for the codon optimized HA 

DNA vaccine (Fig. 6B).   

A similar study was conducted in mice, but with an increased group size (10 

animals per group).  The geometric mean end titer for the codon optimized HA DNA 

vaccine group was significantly higher than that of the wild type HA DNA vaccine group 
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(P< 0.001) (Fig. 6C).  Thus this data supports hypothesis-2, and has shown that codon 

optimization is effective for improving the immunogenicity of the flu H1 HA DNA 

vaccine.  
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Figure 6:  Relative immunogenicity of H1 HA wild type and codon optimized vaccines in rabbit and 
mouse models 
Serum anti-HA IgG antibody responses induced with the vaccinations with either H1-HA.wt or H1-HA.opt 
DNA vaccines in NZW rabbits (A and B) and BALB/c mice (C) as measured by ELISA. 
(A) Temporal anti-HA IgG responses in rabbits measured at a 1:5,000 serum dilution. The arrows indicate 
the time of gene gun-mediated DNA immunizations. Animals R#316 and R#317 received H1-HA.wt DNA 
vaccine, while R#381 and R#382 received H1-HA.opt DNA vaccine. OD450, optical density at 450 nm. 
(B) End titers of serum anti-HA IgG responses at 2 weeks after the fourth DNA immunization from the 
same rabbits as shown in panel A.  End titers were defined as the dilution at which the absorbance reading 
was 2X negative control background values. 
(C) End titers of serum anti-HA IgG responses in BALB/c mice at 2 weeks after the fourth DNA 
immunization. Animals received either H1-HA.wt or H1-HA.opt DNA vaccines by intramuscular 
inoculation. Data shown are the geometric mean titers of 10 mice in each group with standard deviations 
(error bars).  P values calculated using a student t-test. 
 

Prime-Boost 

One of the previous challenges seen in the science of DNA vaccines was the 

inability of immunization with DNA alone to elicit effective antibody responses in 

humans.  As a way to resolve this issue, the prime-boost immunization schedule was 

developed as described in the background.  The concept and effect of priming with a 

DNA vaccine and boosting with protein immunization was shown in a HIV system by 

our lab previously (Wang et al., 2005a).  Based on that data, hypothesis-3 of this thesis is 

that a prime-boost strategy will produce a stronger HA immune response than DNA 
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vaccination alone.  We set out to determine the effect of prime-boost immunization on 

influenza HA DNA vaccines.  Rabbits were immunized as previously described (Wang et 

al., 2006) with combinations of subtype H1/H3 DNA vaccines, and boosted with the 

commercial trivalent inactivated vaccine (TIV) Fluzone.  Four different immunization 

schedules were tested in four groups of five rabbits each as shown in Materials and 

Methods (Figure 4): 1. Fluzone prime immunization with Fluzone Boost, 2. H1/H3 DNA 

prime with Fluzone boost, 3. two H1/H3 DNA primes with one Fluzone boost, and 4. 

H1/H3 DNA and Fluzone given at the same time twice.  Temporal ELISAs were 

performed to look for trends in the anti-HA antibody response over time.  Plates were 

coated with either H1.HA, H3.HA or Fluzone to look for antigen specific IgG responses 

(Figure 7).  Similar trends were seen against H1 and H3 HA coating antigens in which 

any combination of DNA alone or prime-boost method elicited stronger antibody 

responses than the TIV alone (Figure 7A and B).  When referring to immunization with 

DNA alone, we truncated the graph of the group receiving two DNA immunization plus a 

TIV boost before it received its TIV boost.  The data indicates that immunization with 

TIV alone was significantly less effective at eliciting optimal immune responses as 

compared to immunization with either DNA alone (p<0.05) or multiple prime-boost 

strategies (p<0.05) (Figure 7).   

The TIV Fluzone is chemically deactivated virions, meaning that unlike our DNA 

vaccines, it contains numerous proteins such as NA, M and M2 to which immune 

responses can also be mounted in addition to HA.  Since this is the case, when coating 

ELISA plates with Fluzone, we see a different temporal pattern because all of the extra 

antibodies induced by the boosting immunization are also being captured (Figure 7C).  
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It�s because of this non-HA specific antibody response that only this Fluzone coating 

ELISA is being shown since it�s not within the breath of this project�s anti-HA focus. 

A. 
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Figure 7:  Time course of specific antibody responses measured by ELISA 
Temporal anti-HA IgG antibody responses were measure by ELISA and captured by H1.dTM (A), H3.dTM 
(B), and Fluzone (C).  Arrows indicate time of DNA or Fluzone immunization (see methods for specific 
schedule).  The H1/H3 x2 + Fluzone group curve was truncated before its boost at week 8 to show the 
effect of immunization with DNA alone.  Serum dilutions of 1:5000 were used and measure by OD 450nm 
and curves are an average of 5 rabbits.  Error bars indicate standard error of the mean.   
 
 

Peak IgG responses were reached at week 6, as shown by the temporal curve 

(Figure 7).  In order to more accurately quantify the effect of prime-boost, end titers at 

peak levels of the anti-HA antibody response were determined (Figure 8).  End titers 

were determined as the highest dilution at which antibody levels were 2x the negative 

control.  All combinations of DNA prime and TIV boost elicited greater immune 

response as compared to TIV alone when tested against H1 HA dTM or H3 HAdTM.  

This data supports thesis hypothesis-3, and this assay alone can begin to show how 

effective our DNA vaccine is and how poor the current TIV given seasonally is.   
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B. 

 

 

 

 

 

 

 

 

Figure 8: Peak anti-HA IgG antibody response in prime-boost model 
Peak-level serum anti-HA IgG antibody responses in NZW rabbits at two weeks after second immunization 
induced by different H1/H3 HA DNA and Fluzone TIV vaccines as measured by ELISA.  Antibodies were 
captured by H1.dTM (A) and H3.dTM (B).  Data shown are the geometric mean titers of each group (five 
rabbits per group), with standard error (error bars).  * p<0.05 compared to Fluzone alone as determined by 
the student t-test. 
 
 
One Versus Two DNA Primes 
 

In a separate part of the study, we wanted to look at the effect of priming the 

immune system with either one or two DNA immunizations on the immune response.  An 

ELISA was performed to measure both the anti-HA IgG antibody response over time as 

well as peak antibody titers.  Against H1.HA antigen, the DNA prime group, which 

received the boost on the same day that the second DNA was given to the 2x DNA group, 

was able to reach peak levels quicker than the two DNA alone groups (Figure 9A).  

However, once the 2x DNA prime group received the TIV boost, the peak antibody level 

in this group was significantly higher than the peak level of the 1x DNA prime group 

(p<0.05) (Figure 9B).  However, at week 6, against the H3.HA antigen, the 2x DNA 

prime group after receiving only two DNA immunizations (i.e. this group had not yet 
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received the boost) had similar titers to the prime-boosted 1x DNA group (Figure 9C).  

After boosting, the 2x DNA prime group reached a peak titer which was significantly 

greater than the 1x DNA group (p<0.05) (Figure 9D). 
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Figure 9:  Prime-boost time course specific and peak anti-HA IgG antibody response 
NZW rabbits were immunized with either one or two DNA vaccines and boosted once with Fluzone TIV. 
(A) and (D): H1.dTM (B) and (D): H3.dTM coated ELISA following temporal HA antibody response with 
peak responses measured as end titers.  Peak titer bleeds taken at weeks 6 and 10 for one and two DNA 
prime groups respectively.  Black arrows indicate DNA prime, blue arrows TIV boost.  Arrows above the 
curves in parts A and B indicate immunization points for the one DNA prime group and arrows below the 
curves are for the two DNA prime group  Data points are geometric mean of 5 rabbits with standard error 
(error bars).  * indicates p<0.05, compared to one DNA + Fluzone. 
 
 
Hemagglutinin Inhibition (HI) Assay  

The functional activities of the anti-HA rabbit immune sera were investigated by 

determining the hemagglutinin inhibition (HI) antibody titers against H1 or H3 influenza 

viruses.  The HI assay measures the ability of a particular antibody in a serum to bind 

virus and thus alter red blood cell (rbc) agglutination.  The assay is performed by 

combining influenza virus and antibody containing serum in a V-bottomed 96-well plate.  

After 30 minutes of incubation, chicken rbc�s are added to the mixture and then kept at 

4ûC to allow potential cell agglutination.  Antibodies that bind with high affinity to the 

virion hemagglutinin may prevent the virus from attaching to rbc's.  Without the virus 

attached to rbc�s the cells do not form a lattice matrix evenly coating the bottom of the 

well, but rather the non-viral bound rbc�s simply settle to the bottom of a conical well 

(Figure 10).  In an HI titration experiment, the relative affinities of different antisera for 

virus can be compared. 
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Figure 10:  Example Hemagglutination Assay of Red Blood Cells 
(A) HI antibodies against influenza HA are able to bind the influenza virus preventing the virus from 
attaching to rbc's.  The non-viral bound rbc's then simply settle to the center of a conical well.  (B)  A 
negative control lacking HI antibodies.  The influenza virus binds rbc's causing the rbc's to agglutinate and 
form a lattice matrix that more evenly coats the entire bottom of the well. (Kendall et. al, 1999) 

 

After only one immunization, no vaccine combination was able to elicit a 

significant HI titer.  However, after receiving a boost, HI titers for the 1x DNA plus TIV 

(boost) and the DNA/TIV together groups were significantly higher than DNA (2x DNA 

plus TIV group pre boost) (p<0.05) or TIV alone (p<0.05).  However, after receiving the 

boost, the HI titer was increased in the 2x DNA plus TIV group to a level much higher 

than any of the other three groups, especially when compared to the group which had 

received the TIV alone. This observed increase in the HI titer in the 2x DNA plus TIV 

group remained high throughout the remainder of the study (i.e., through Week 16) 

(Figure 11). 
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Figure 11:  The HI antibody response in NZW rabbit sera 
The HI antibody titers are shown as the geometric means for each group (three rabbits per group), with 
standard error (error bars), against (A) H1N1(A/New Caledonia/20/99) and (B) H3N2 (A/Panama/2007/99) 
viruses.  * p<0.05 compared to Fluzone alone calculated by the student t-test 
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Neutralizing Antibody (NAb) Assay 

Although HI titers are an effective way to measure a protective response, the 

assay itself only measures the ability of anti-HA antibodies in sera to bind influenza 

virus.  The virus neutralization assay was created as a more effective way to relate to 

what takes place in vivo by measuring the blockage of viral entrance into host cells.  

When vaccinated, the mammalian immune system creates polyclonal antibodies against 

many epitopes on an antigenic protein and the HI assay measures the binding of all of 

these antibodies.  The neutralizing antibody assay has the ability to measure the subset of 

these antibodies which more directly affect viral spreading, therefore allowing a more 

specific look at protective antibodies present.  An effective antibody prevents the 

spreading of the virion into MDCK cells causing no plaques to be formed (Figure 12) 
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Figure 12:  Virus Neutralization Assay 
The assay is performed by adding influenza virus mixed with antibody containing serum to a 96-well plate 
containing a MDCK cell monolayer.  After 24 hrs, the virus/serum sample is removed and replaced by 
normal growth medium.  The neutralizing titer is defined as the highest dilution of serum that is able to 
neutralize 100 PFU of virus in MDCK cells and prevent plaque formation.  On the right, neutralizing 
antibodies are able to bind the virus in a way that prevents the entrance and spreading of virions into the 
MDCK cell monolayer preventing the formation of plaques.  A polyclonal rabbit antiserum will contain 
both neutralizing and non-neutralizing antibodies, and the neutralization assay will measure only the 
neutralizing antibodies.  Red colored Y�s represent neutralizing antibodies and black colored Y�s represent 
non-neutralizing antibodies. 

 
 

Neutralizing antibody (NAb) titers were found against H1 and H3 influenza 

viruses (Figure 13).  The patterns of neutralizing antibody activities for different prime-

boost schedules of HA DNA vaccines and TIV were similar to the patterns observed in 

the HI assay.  With both assays, peak antibody levels against the H1 virus of the 

DNA/TIV administered together vaccine were less effective than the one DNA prime 

plus subsequent TIV.  At week 6, the 1x DNA followed by TIV and the DNA/TIV 

together groups reached significantly higher NAb titers as compared to DNA alone 

(p<0.05) or TIV alone (p<0.05).  At weeks 10 and 16, after receiving the TIV boost, the 

2x DNA prime group reached NAb titers greater than any other prime-boost combination; 

this high level was against both H1 New Caledonia and H3 Panama virus subtypes 

through 16 weeks (Figure 13).  Thus this data shows that for influenza HA antibodies, the 

DNA prime-boost vaccination strategy is superior to DNA vaccination alone or the TIV 

vaccine alone. 
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Figure 13:  NAb response in NZW rabbit sera 
The NAb antibody titers are shown as the geometric means for each group (three rabbits per group), with 
standard error (error bars), against (A) H1N1(A/New Caledonia/20/99) and (B) H3N2 (A/Panama/2007/99) 
viruses.  * p<0.05 compared to Fluzone alone. 
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DISCUSSION 
  

The data presented in the first part of this thesis provide evidence that codon 

optimization is effective for improving the antigen expression and immunogenicity of 

influenza HA DNA vaccines.  In early flu DNA vaccine studies, only low or undetectable 

levels of HA-specific antibody responses were found after immunization with DNA.  

Recently, the use of codon optimization has been demonstrated to be an effective method 

for enhancing the immunogenicity of DNA vaccines which express HIV antigens (Wang, 

2005a).  In addition, codon optimized DNA vaccines have been used successfully against 

SARS (Wang, 2005b) and other pathogens.   

In the current codon optimization study, we used a H1 subtype HA antigen to test 

the effect of codon optimization on the immunogenicity of an antigen.  We compared the 

levels of HA expression and immunogenicity between wild type and codon optimized 

influenza HA DNA vaccines in rabbit and mouse animal models with two DNA vaccine 

delivery methods (gene gun and intramuscular injection). The data clearly show that the 

codon optimized HA DNA vaccines were able to induce significantly higher levels of HA 

protein levels in vitro, and enhanced HA-specific antibody responses when compared to 

the the wild type construct.  We believe that this is, in part, due to the ability of codon 

optimized HA DNA vaccine to stimulate a quicker immune response and eventually 

increase peak-level anti-HA IgG antibody responses.   

The ability of our H1 HA DNA vaccine to elicit high-titer, anti-HA antibodies, 

prior to exposure to the viral antigenic protein, paved the way for us to expand our study 

to determine the immune response against codon optimized, bivalent H1 and H3 subtype 

DNA vaccines.  When matched with a protein boost, the effect of DNA vaccines are able 



 48

to be further enhanced, and this has been shown by many groups including our lab for 

other viruses.  With a commonly used flu TIV already on the market, we have the unique 

fortune in the influenza DNA vaccine field to already have our boost readily produced.  

The rationale to any vaccine study is to either create a prevention tool for a pathogen to 

which a vaccine has yet to be created or to improve upon an existing one.  We have 

chosen the latter, and have done so quite effectively and efficiently. 

In the current studies, initial immunizations with DNA or TIV failed to elicit any 

significant level of antibody response. However, significant antibody responses were 

observed after the administration of a viral protein boost.  As expected, the peak anti-HA 

IgG levels, at weeks 6 or 10 depending on immunization schedule, were similar against 

both H1 and H3 coated ELISA plates.  We found that any combination of DNA priming 

and protein boosting was able to bind antibody (Figures 7 and 8) and protect against viral 

infection in protection assays (Figures 11 and 13) at higher levels when compared to TIV 

alone.  These results show the increased effectiveness of our DNA vaccine when paired 

with the current TIV.  We have been able to show that not only is immunization with 

DNA, at minimum, equal to the current seasonal vaccine but also that boosting with TIV 

after two DNA immunizations elicits about a 14 fold increase in protection against H1 

and H3 viruses in the protective antibody assays (Figures 11 and 13).   

Although not unexpected, we found that priming the immune system with DNA 

twice as compared to only once elicited a much stronger anti-HA IgG response after the 

boost both temporally and at peak titers (Figure 9).  It is believed that the two DNA 

immunizations allow for a greater build up of B cell memory, so when the organism is 
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subsequently boosted with whole virus particles, the virion inoculation can more 

effectively induce both the cellular and humoral arms of the immune system.   

When designing a vaccine trial study, the types as well as the amount of 

immunizations are very important.  We wanted to examine if giving DNA and TIV 

together made any difference when compared to immunizing with DNA first and then 

boosting with TIV.  In general, no significant differences can be seen in antibody 

response between the two groups, leading to an interesting conclusion.  If the vaccine 

were to move into widespread use, using the DNA and TIV separately approach would be 

more practical from both a logistical and economic standpoint.  This is because giving 

DNA and TIV at the same time, twice comprises twice as many injections, four shots 

total, as one DNA and one TIV given at different times, two shots total.   

Current flu vaccines are effective in preventing infection, and prophylactic drugs 

like Amantadine can actively fight viral replication, however, there are issues with each 

treatment.  Viral strains are being discovered in humans which are resistant to many 

inhibitors, and in 2004, there was a severe vaccine shortage around the world.  Our 

H1/H3 DNA vaccine can not only be created faster than the traditional vaccine once the 

circulating viral strains have been identified, but may be able to fight the virus effectively 

enough that drugs like Amantadine would not be needed as often although that remains to 

be seen.   

Future work remains on our flu vaccine system including the effects of adding the 

avian influenza H5 HA into making a trivalent H1,H3,H5 vaccine formulation.  The 

ultimate goal is to see our vaccine tested in a human trial hoping that the increased 
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effectiveness of our codon optimized prime-boost DNA vaccine over TIV alone 

translates well into a human system.   
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