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Abstract

Addressing the complex challenge of long-tail recognition (LTR) in image classification, this study introduces
an innovative integrated approach that meticulously combines cross-entropy, contrastive learning, and im-
balanced class loss functions. The prevalence of class imbalances within datasets significantly hampers the
effectiveness of conventional machine learning models by skewing performance toward majority classes and
neglecting the minority ones. To combat this issue, our approach aims to harmonize the learning process
across all classes, ensuring equitable representation and enhancing feature separability.

Our methodology is rooted in a multifaceted strategy where metric learning combined with cross-
entropy fosters an equitable learning environment across diverse classes, ensuring no class is overshadowed
regardless of its frequency within the dataset. This composite loss function is designed to bolster model
robustness and generalization capabilities, addressing the inherent challenges of the LTR problem compre-
hensively.

The validation of our proposed solution was conducted through rigorous experimentation on mod-
ified CIFAR-10/100 datasets and a bespoke custom dataset, showcasing our approach’s adaptability and
effectiveness across varying levels of class imbalance. Utilizing ResNet models of differing depths (ResNet18,
ResNet34, and ResNet50) and experimenting with a range of loss functions—including focal loss and super-
vised contrastive loss—allowed us to assess our methodology’s performance in a broad spectrum of scenarios.
This experimental setup not only facilitated a deep dive into the comparative analysis of model behaviors
but also enabled the identification of optimal configurations for tackling LTR challenges.

Our findings illustrate significant improvements in model performance, particularly in environments
characterized by pronounced class imbalances. By employing our integrated approach, we were able to set
new benchmarks for image classification models, demonstrating superior performance in handling long-
tailed distributions. The study’s implications extend beyond the immediate advancements in LTR; it lays a
foundational framework for future research in machine learning, emphasizing the importance of a balanced
and nuanced approach to model training and development.

Furthermore, our study elucidates the critical role of selecting appropriate loss functions and data
augmentation strategies, tailored to the unique characteristics of each dataset. This insight is instrumental in
advancing the field of machine learning, guiding practitioners in the development of more robust, equitable,
and effective models. Through a comprehensive exploration of the challenges and solutions associated with
LTR, this research contributes to a deeper understanding of class imbalance issues, paving the way for inno-
vative approaches in the domain of imbalanced learning. Please find our project on https://github.com/Bish-
Soli/MQP.git
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1 Introduction

Long-tailed data distributions pose a unique challenge for the field of image classification [2]. This

environment, characterized by significant class imbalance [3][4] raises critical questions about the efficacy

of standard image classification methods. In these scenarios, head classes (with abundant data) tend to

overshadow tail classes (with sparse data); leading to models which often prioritize abundant head classes,

neglecting rare tail classes due to data scarcity. The resulting bias is dangerous in safety-critical environments

and thus hinders real-world applicability. Artificial intelligence has shown remarkable success in image

classification, excelling in identifying and categorizing objects within images [5]. This success is largely due

to advanced neural networks and large, well-balanced training datasets [6]. However, AI’s performance drops

significantly when trained on imbalanced datasets. These systems tend to hold bias toward majority classes,

leading to poor recognition of minority classes seen in Figure1 1 [7][3] . This challenge is particularly evident

in real-world datasets where class imbalance is common.

1.1 Trustworthy AI

Therefore, despite the recent technological advancements, early adopters of AI in safety-critical

environments are cautious - citing concerns about accuracy, bias, and the ability to handle diverse scenarios

[8]. The field of trustworthy AI stands to address these concerns, emphasizing fairness through explainability,

transparency, and robustness. Trustworthy AI is ripe for fields such as medical imaging [9] or wildlife

monitoring, whereby overlooking rare but critical categories could have severely detrimental consequences.

1.1.1 Long-Tailed Recognition

Encompassing robustness and fairness, long-tailed recognition (LTR) is a step in this direction.

While there exist strategies to mitigate class imbalance, such as data resampling [10] and loss re-weight [11],

they often lead to performance trade-offs. Recent research efforts have shifted towards more sophisticated

approaches, focusing on creating a representative feature space and ensuring equitable treatment of all

classes. This shift to the field of LTR marks a significant step forward in creating more robust and fair

image classification models in long-tailed data environments. The essence of LTR is to develop models that

can effectively learn from and accurately classify images from both head and tail classes, ensuring balanced

performance across all categories [12][13][14][15]. Success in this field is vital in critical applications to

enhance the capability of AI systems in handling diverse and realistic datasets, especially those involving
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rare events or minority classes. Therefore, while AI is currently employed in safety-critical environments[16],

its adoption at scale varies by industry and application. Demonstrating AI’s ability to mitigate the challenges

posed by long-tailed distributions in data can accelerate its broader adoption across various critical sectors.

Furthermore, progress in this field will spur inclusive and equitable technological solutions.

Figure 1: An illustration of the long-tailed distribution in image datasets and the challenge it presents in
classification tasks. This figure highlights the disparity between head (majority) classes and tail (minority)
classes, emphasizing the importance of developing effective strategies for long-tailed recognition.

1.2 Contributions

In this paper, we commence with a comprehensive review of related work in the domain of long-tailed

image recognition, with a special emphasis on latent space and feature-learning methods. This exploration is

critical as it underpins the development of more effective and equitable models in this field. Additionally, we

delineate the datasets utilized in our research, offering insights into their composition and relevance to our
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study. Following this, we delve into a detailed exposition of the methodologies employed in our experiments,

particularly highlighting the roles of contrastive learning [17].

The paper culminates with the proposition of variety of solid methods , offering a composition of

independently various techniques. The integration of these approaches enhances the model’s capability to

handle data imbalance inherent in long-tailed distributions. A thorough analysis of the results are presented,

highlighting the efficacy of our approach, followed by a discussion on potential future research directions,

aiming to further the frontiers of long-tailed image recognition.

2 Related Works

2.1 Image Classification

The use of convolutional neural networks (CNNs)[18] for image classification has been a significant

advancement in computer vision [2][5][19]. The ResNet architecture[20], introduced by , has significantly

contributed to the field of image recognition through its innovative approach to residual learning, which

enables the training of very deep networks by utilizing skip connections to bypass one or more layers[19].

Similarly, the VGG network architecture[21], as demonstrated by and Zisserman, has been influential due to

its simplicity and effectiveness, making it well-suited for image classification tasks, particularly on benchmark

datasets such as ImageNet [22]. Moreover, the training process for image classification typically involves min-

imizing a cross-entropy loss[23] function, which measures the disparity between predicted class probabilities

and the true distribution of classes in the training data. Additionally, advancements in image classification

have been driven by improvements in data sampling techniques and architectural changes, resulting in the

extraction of more discriminative features from images and ultimately improving the overall performance of

image classification models [24].
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Figure 2: t-SNE visualization[1] of the CIFAR10 dataset, demonstrating the clustered regions of features
corresponding to different classes. Each color and marker type represents a different class, illustrating the
separability and overlap between classes in the feature space. This visualization aids in understanding the
complexity of the classification problem and the importance of discriminative feature learning.
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2.2 Data Augmentation

Data augmentation is a technique used to artificially expand a dataset by creating modified versions

of the existing data instances. This process involves applying transformations such as rotation, flipping,

scaling, and adding noise to the original data. Data augmentation is employed to address the issue of limited

training data, particularly in scenarios where the available dataset is insufficient to effectively train a deep

learning model. By generating diverse variations of the original data, data augmentation aims to enhance

the generalization capability of the model and reduce the risk of over-fitting, ultimately leading to improved

performance on unseen data [25][26]. In the context of imbalanced datasets, data augmentation serves as a

typical approach to mitigate the class imbalance problem. However, it is important to note that while data

augmentation can alleviate the imbalance to some extent, it does not provide a comprehensive solution to the

problem because it primarily generates more data from existing instances without fundamentally changing

the class distribution or introducing genuinely new and diverse examples for underrepresented classes. It

helps to some extent by increasing the quantity of data for minority classes through transformations, but it

does not address the root causes of imbalance, such as the lack of variety and representativeness of minority

classes in the dataset.

As a result, researchers have sought out alternative methods to address the challenges posed by im-

balanced datasets, such as the utilization of advanced sampling techniques and the development of specialized

algorithms tailored to handle class imbalances [27][28]. In the context of our research, data augmentation

plays a crucial role in addressing the limitations posed by imbalanced datasets in image classification tasks.

By artificially expanding the dataset through diverse transformations, we aim to enhance the robustness

of our classification model and improve its performance, particularly in scenarios where certain classes are

underrepresented. Furthermore, our study integrates advanced data augmentation techniques to effectively

handle the challenges associated with imbalanced datasets, thereby contributing to the development of more

robust and accurate image classification models [29][30].

2.3 Data Sampling

In the endeavor to tackle the prevalent issue of class imbalance in long-tailed recognition, Liu et

al. leverage an innovative sampling technique [31] to increase robustness for LTR models. The adversarial,

class-balanced sampling ensures equitable representation of all classes, including those with fewer examples.

By generating synthetic samples for the minority class, the approach yields a balanced training dataset,

thereby enhancing the model’s performance and robustness against adversarial perturbations [32][33]. This
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plays a crucial role in addressing the challenges posed by LTR. This ultimately improves the model’s ability

to generalize which is crucial for widespread adoption.

2.4 Robust Feature Learning

Features are distinctive attributes extracted from data that enable the identification of objects.

Convolutional neural networks (CNNs)[18] utilize features to accurately classify images by learning hierar-

chical representations of visual data. CNNs[18] employ convolutional filters to extract features from input

data, enabling the network to capture intricate patterns and structures. However, conventional features

cannot characterize a class with inherent variability. For this reason, robust feature learning aims to identify

features that are consistent and reliable within each class, regardless of the intraclass diversity. This is

achieved by focusing on learning features that remain unchanged (invariant) under different conditions and

variations, which helps the model to perform well not only on the majority classes with abundant data but

also on the minority classes with fewer examples[34][35]. To further enhance our understanding of this field,

it’s crucial to recognize other prevalent methods that contribute to addressing these challenges.

2.5 Latent Space Design

Moreover, latent space plays a crucial role in machine learning, especially within neural networks,

serving as the foundational bedrock for understanding and manipulating data representations. Latent space

refers to an abstract, multi-dimensional representation of complex data, where relationships and features

are encoded in a way that is not immediately apparent in the raw data [36] see Figure 22. This space is

often where the most critical and intricate aspects of data are captured, enabling neural networks to perform

tasks like classification, regression, and even generative processes more effectively. The embedding space is

a result of the compressed representation of the input image and the loss function. Specifically, the encoder

portion of a neural network is responsible for obtaining the best features that minimize the loss function. In

the context of deep learning, an encoder is a set of layers that processes the input data. The goal of these

layers is to compress the data into a lower-dimensional space, the latent space, where the most salient and

useful features of the data are retained [37]. This process is essential for tasks that require a high level of

abstraction, such as image and speech recognition, natural language processing, and more. The design of

a robust latent space is crucial for the success of downstream tasks. A well-crafted latent space allows for

extraction of robust embeddings, which in turn enhances the performance of the neural network in various

applications [38]. Various AI methods have been developed to create effective latent spaces. One of the
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key methods is contrastive learning[39], a technique that learns presentations by comparing and contrasting

pairs of data points. By doing so, it helps in creating a more defined and structured latent space.

2.5.1 Contrastive Learning

Contrastive Learning[39] is a method in machine learning that focuses on understanding how sim-

ilar or dissimilar data points are from each other. Fundamentally, it operates on the principle of learning

representations by contrasting positive pairs against negative pairs. In simpler terms, it brings representa-

tions of similar items closer together and pushes apart those of dissimilar items in the latent space. This

technique is particularly effective in scenarios with complex data sets, such as image and speech recognition,

where it can discern subtle differences and similarities. Its intuitive approach of handling data, especially

in unsupervised or self-supervised learning scenarios, makes it a powerful tool for feature extraction and

representation learning [40][41][42][43].

The effectiveness and nuances of Contrastive Learning[39] are well-articulated by Li et al. they

tackle the challenge of poor class separability in feature space due to the class imbalance inherent in long-

tailed distributions [17]. Their solution, Targeted Supervised Contrastive Learning[39] (TSC)[17], aims to

improve the uniformity of feature distribution on a hypersphere by assigning uniformly distributed targets to

each class during training. TSC first computes the optimal positions for targets in the feature space, which

are distributed on a unit hypersphere (meaning each feature vector has a norm of one). These targets are

pre-computed before training and remain fixed. The unit hypersphere for target generation in feature space

helps normalize feature vectors, maintaining a consistent scale across all classes. This uniformity in feature

representation is crucial for mitigating class imbalance in long-tailed distributions.

The predecessor to TSC[17], KCL[44] , is a machine learning approach focused on improving the

uniformity of feature distribution across different classes in long-tailed recognition tasks. It achieves this by

uniformly distributing class centers on a hypersphere, enhancing class separability and decision boundaries.

. For the CIFAR-10-LT dataset, TSC[17] achieves an accuracy of 76.5%, which is a substantial improvement

over the KCL method[44], which achieves an accuracy of 71.8%.

Zhu et al. introduce Balanced Contrastive Learning (BCL)[45], which enhances the performance

of both head and tail classes [45]. BCL[45] works by combining two primary components: class-complement

and class-averaging techniques. These techniques are integrated with the supervised contrastive learning

framework[39]. The class-complement technique focuses on enhancing the feature learning for tail classes by

using the negative samples from head classes. In contrast, class-averaging balances the contribution of each
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class to the loss function, thereby mitigating the dominance of head classes. The results of their approach are

impressive. BCL[45] achieves a top-1 accuracy of 64.3% for many, 37.1% for medium, and 8.2% for few-shot

learning, with an overall accuracy of 43.7% on long-tailed CIFAR [46] datasets.

2.5.2 Geometric Design

Also in machine learning, the geometric design of a latent space, such as spherical or Euclidean

geometry, plays a crucial role in how data is represented and processed. Spherical geometry provides several

benefits to generalization, as it encourages a structured and well-distributed latent space. The symmetry

gained by having data points distributed on a sphere’s surface, making each point equidistant from the center,

reduces the likelihood of overfitting to specific patterns in the training data. This design is advantageous in

contrastive learning[39], as it offers a meaningful measure of data point similarity, crucial for applications

like image and speech recognition. Conversely, Euclidean geometry positions data in a traditional Cartesian

space, favoring tasks that benefit from linear relationships and straightforward distance calculations, like

clustering and linear separability in neural networks. The choice between these geometries hinges on the

nature of the data and the specific requirements of the task, each offering distinct benefits in terms of data

representation and model performance[47][48].

Yanbiao et al. propose a novel approach involving curvature regularization to balance the perceptual

manifolds in deep neural networks [49]. The authors introduce a curvature regularization term into the loss

function that modifies the latent space geometry of deep neural networks. This approach aims to flatten

the feature manifolds, reducing the bias towards head classes in long-tailed distributions. By adjusting the

curvature of the latent space, they ensure a more balanced representation for both head and tail classes.

Liu et al. introduced a methodology centers on Geometric Structure Transfer (GIST) [50]. This

involves encoding the geometric structure of well-represented (head) class features into a constellation of

classifier parameters, which are then transferred to aid in recognizing under-represented (tail) classes. The

network learns to map these geometric structures across different classes, enabling it to leverage the rich

feature information from head classes to improve the recognition of tail classes.

2.5.3 Other

Cui et al. propose a novel approach to address the long-tailed recognition problem in visual datasets

[11]. Their method, ResLT, uses a residual learning mechanism to rebalance the parameter space between

head (frequent) and tail (rare) classes. The ResLT framework includes parameter specialization and a
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residual fusion module. The former allocates individual parameters specifically for tail classes. This allows

the model to effectively learn and represent features from these less frequent classes. Furthermore, the multi-

branch structure enables nested class assignments and different focuses for each branch. These branches help

compensate for the under-representation of tail classes.

3 Datasets

Figure 3: Imbalanced Dataset distribution

3.1 CIFAR-10/100 LT

In our study, we leverage the CIFAR-10 [46] and CIFAR-100[46] datasets, each comprising 60,000

images segmented into 50,000 images for training and 10,000 images for validation. CIFAR-10 categorizes

these images into 10 distinct classes, facilitating a broad spectrum of basic object recognition tasks. On

the other hand, CIFAR-100[46], with its division into 100 classes, introduces a more granular classification

challenge, encompassing a wider variety of objects and thereby increasing the complexity of the recognition

task.

For the purpose of our experiment, we introduce a strategic modification to these datasets to sim-
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ulate long-tailed distributions—a scenario that closely mimics real-world data challenges where some classes

are significantly underrepresented compared to others. This transformation is crucial for our investigation

as it allows us to explore the efficacy of our proposed approach in a context that is notoriously difficult for

conventional image classification models due to the inherent imbalance. The creation of these long-tailed

versions of the CIFAR[46] datasets is meticulously designed to reflect a realistic skew in class distribution.

we follow Zhu et al. code [45] https://github.com/FlamieZhu/Balanced-Contrastive-Learning in creating the

Imbalanced dataset. Utilizing a custom script, we systematically reduce the sample size for each subsequent

class, maintaining a decreasing representation from the most populous (head) classes to the least populous

(tail) classes. This deliberate skewing is achieved through a calculated modulation of the number of samples

per class, ensuring a progressive diminution that accurately embodies long-tailed phenomena. Reference

Figure 3.

This methodical adjustment not only challenges the model’s ability to learn from limited data but

also tests its robustness and generalization across diverse class distributions. By engaging with this skewed

dataset, our research confronts the critical issue of class imbalance head-on, addressing a pivotal hurdle in

the advancement of equitable machine learning models capable of recognizing and classifying a wide array

of images, regardless of their frequency in the training dataset.

3.2 Creating Imbalaced Dataset

We follow Zhu et al. method of creating the Imbalanced Dataset[45]. The dataset.py script

is a cornerstone of our project, designed to facilitate the study of class imbalance effects within image

classification tasks. It introduces a framework for generating imbalanced versions of the CIFAR10[46] and

CIFAR100[46] datasets, alongside capabilities to manage custom datasets defined by a directory structure.

This script encapsulates both the architecture and operations necessary to manipulate dataset distributions

and evaluate model performance under varying degrees of class imbalance.

3.2.1 Core Classes and Architecture

At the heart of this framework is the ImbalanceDataset class, a versatile base class crafted to

generate imbalanced datasets. It is adept at handling not only the CIFAR10[46] and CIFAR100[46]

datasets but also custom datasets supplied through a directory path. Initialization parameters for this class

include the CIFAR[46] version, the dataset’s root directory, indicators for training or testing subsets, data

transformations to be applied, the imbalance ratio to achieve, and an optional path for custom datasets.
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This design enables a flexible and dynamic approach to dataset preparation, allowing for precise control over

the degree of imbalance introduced.

3.2.2 Key Functionalities

The script introduces a method, create long tailed, dedicated to adjusting the class distribution

to form a long-tailed curve, emblematic of imbalanced datasets. By computing and then modulating the

number of samples per class, it ensures a systematic reduction in class representation from the most to the

least populous, mimicking real-world data scenarios where some classes are naturally less frequent.

Dataset initialization is a critical function, determined by the provided parameters, which dictate

whether the CIFAR[46] datasets are loaded via torchvision or from a custom directory. In the case of

custom datasets, the script adeptly enumerates the classes based on the directory structure. A notable

feature is the inclusion of a debug mode, which constrains the dataset size for expedited experimentation and

debugging processes. Data transformation capabilities are embedded within the class, supporting a sequence

of operations like normalization and augmentation to be applied during dataset loading, thereby ensuring

the data is suitably prepared for model training and evaluation. Expanding on the ImbalanceDataset

base class, the script also defines ImbalanceCIFAR10 and ImbalanceCIFAR100 subclasses. These are

specifically optimized to generate imbalanced versions of their respective CIFAR[46] datasets, leveraging

the foundational functionalities of the base class to introduce the desired degree of imbalance.

3.2.3 Additional Utility Functions

To complement dataset creation and manipulation, the script includes a suite of utility func-

tions aimed at data visualization and analysis. Functions such as imshow, show augmented images,

plot class distribution, and plot class distribution imbalanced offer insights into the dataset’s struc-

ture and the impact of imbalance adjustments. Moreover, for in-depth feature analysis, functions like ex-

tract features and labels, visualize with tsne, and visualize with pca are provided, facilitating the

exploration of data separability and the high-dimensional landscape of features through techniques like t-

SNE and PCA.

Dataset sampling methods, including get random batch and get samples from each class,

are integral to the script, enabling the selection of balanced or random data samples for model training,

testing, or inspection. This functionality is crucial for assessing model performance across varied class

distributions and ensuring balanced exposure to all classes during the training process.
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3.2.4 Usage

Utilizing the classes and functions within dataset.py typically involves instantiating an Imbal-

anceCIFAR10 or ImbalanceCIFAR100 object with specific parameters, such as the imbalance ratio and

desired transformations. This object can then seamlessly integrate with a PyTorch DataLoader, creating an

iterable data loader that facilitates the training or evaluation of machine learning models under conditions

of class imbalance.

3.3 Butterfly Custom Dataset

The Butterfly Custom Dataset used in this project was sourced from Kaggle. It can be found at

the following URL: Kaggle Butterfly Image Classification Dataset. This dataset comprises a total of 6500

samples, distributed across 75 classes. The distribution of the samples is as follows: 80:20 for training and

testing. To prepare the Butterfly Custom Dataset, the initial dataset was first unzipped within a Google

Drive environment. Subsequently, a systematic methodology was applied to organize the dataset into an

imbalanced structure suitable for our study. The procedure involved reading the dataset’s metadata from a

CSV file, which provided essential details such as file names and associated labels. Based on this metadata,

the dataset was divided into two subsets: a test set and a training set. For each class label, we created

separate directories within both test and training folders to maintain the dataset’s structure. Eight images

were allocated to each class in the test set, with the remainder being used for the training set. In our case,

the top eight images from each class were selected for the test set to simulate a scenario where the dataset

would exhibit a natural imbalance. This selection process was carried out for each class, effectively creating

an imbalanced dataset that mirrors real-world conditions where certain classes are underrepresented. The

images were then programmatically moved to their respective directories based on the organization defined

by the metadata. Reference Figure 4.

Figure 4: Butterfly Custom Dataset distribution
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3.3.1 Reason for Dataset Selection and Image Size

The Butterfly Custom Dataset was specifically chosen to evaluate the effectiveness of our method-

ology on real-world image datasets. This decision was made to move beyond the constraints of commonly

used, predefined datasets such as CIFAR-10/100[46], which, while standard, do not always represent the

complexity and variability found in real-world scenarios. By selecting this particular dataset, we aim to

demonstrate the applicability and robustness of our approach in a more varied and realistic context.

Furthermore, each image in the dataset has been standardized to a resolution of 224 x 224 pixels.

This uniform size was selected to conform with the input size requirements of prevalent deep learning

architectures while also ensuring that the images retain sufficient detail necessary for accurate classification.

It strikes a balance between computational efficiency and the preservation of visual information critical for

the performance of the models being evaluated. As a preprocessing step, each image was resized to a 64x64

using bilinear interpolation.
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Algorithm 1 Algorithm for Creating Imbalanced Datasets[45]

1: procedureCreateImbalancedDataset(dtsetType, rootDr, trn, trnsƒorm, mbRto, dtsetPth)
2: Initialization:
3: if dtsetType = “CIFAR10” or dtsetType = “CIFAR100” then
4: Download and load the CIFAR dataset.
5: else if dtsetPth ̸= NULL then
6: Load custom dataset from dtsetPth.
7: end if
8: Determine number of classes nmCsses.
9: Initialize empty lists for ndces, trgets.

10: Creating Long-Tailed Distribution:
11: Calculate class distribution cssConts.
12: for css = 1 to nmCsses do

13: nmSmpes = cssConts[css] × mbRto
css−1

nmCsses−1

14: Select nmSmpes indices for css randomly.
15: Append selected indices and class labels to ndces, trgets.
16: end for
17: Shuffle ndces to mix class samples.
18: Utility Functions:
19: Implement en (), gettem (d), and other utility functions as required.
20: Return dataset object with methods overridden for imbalanced data retrieval.
21: end procedure

4 Literature Review

4.1 Problem Definition

The primary focus of our investigation is the challenge of class imbalance in unbalanced datasets.

such imbalance often skews a model’s learning process, leading to over-fit to the majority classes while under-

representing the minority ones. The goal is to develop and refine methodologies that effectively address this

imbalance.

4.2 Weight Balancing

Weight balancing in Long-Tailed Recognition (LTR) is crucial for addressing class imbalance in ma-

chine learning datasets. This technique involves adjusting the training process by assigning different weights

to classes in the loss function, giving more weight to underrepresented classes and less to overrreprented ones.

This compensates for skewed class distribution, reducing bias towards the majority and improving model

performance across all classes[51]. Long-tailed recognition methods can be categorized into class-imbalanced

learning, logit adjustment, and ensemble learning[52].The imbalance in classification data causes poor per-
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formance in the minority class, and various techniques such as data re-sampling and loss re-weighting are

used to address this issue [53]. The drawback to this approach is it can lead to overfitting to minority classes

and may not effectively address the root cause of imbalance. Determining optimal weights for classes is

challenging and can result in sub-optimal performance, especially in extremely skewed distributions. This

approach, while helpful, often requires additional strategies to ensure balanced learning and generalization.

4.2.1 Weight Decay

Weight decay serves as a regularization strategy in Long-Tailed Recognition (LTR), where it helps

to counteract the overfitting often seen with imbalanced class distribution. By adding a penalty term to the

loss function, proportional to the sum of the squared weights of the model,weight decay encourages simpler,

more generalized models. The key intuition is to promote smaller, generalized weights, reducing the model’s

tendency to learn complex patterns specific to frequent classes, a common challenge in LTR [51][6]. The

drawback to this approach is it can sometimes be too restrictive, potentially leading to under-fitting if the

penalty on the model’s complexity is too high. Additionally, finding the optimal level of weight decay is

challenging and requires careful tuning to avoid adversely impacting model performance.

4.2.2 Max Normalization

Max Normalization is another technique used to scale input features or model weight. max nor-

malization involves scaling the features or weights by dividing them by the maximum value in the dataset

or layer. this process ensures that all inputs or weights have a constant scale, mitigating the risk of certain

features disproportionately influencing the model due to their large magnitude. The intuition is to normalize

the influence of each feature or weight , promoting a more balanced learning process where no single class

dominates due to scale difference[54][51]. While effective in scaling features or weights uniformly, can some-

times oversimplify data representations, potentially losing critical information in the process. This technique

may not adequately address inherent data complexities or class imbalances in datasets. Furthermore, it

assumes that the maximum value is an appropriate scale for all features, which might not always align with

the specific nuances of the data.

4.3 Metrics Learning

Metric learning is pivotal in LTR. This approach focuses on learning a distance function that

effectively measures the similarity or dissimilarity between data points. in the context of LTR, where minority
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classes are underrepresented, metric Learning aims to learn a space where distances between similar items

(regardless of their class frequency) are minimized, and those between dissimilar items are maximized. the

intuition is to create a feature space that enhances the separability of all classes, making it easier for the

model to distinguish between them, particularly for those classes with fewer examples. by doing so it insures

that the model is equally sensitive to all classes, enhancing the overall accuracy and fairness[55].

Though this approach is powerful in enhancing class separability, can be complex to implement

and may require substantial computational resources. It also faces the challenge of defining an appropriate

distance metric that accurately captures the nuances of different classes, especially in highly diverse datasets.

Given an input , the feature representation is obtained by passing it through an encoder:

ƒ = Encoder()

These features are then linearly transformed to raw class scores (logits):

z =Wƒ + b

where W is the weight matrix and b is the bias vector of the fully connected layer. The predicted

probabilities for each class are obtained using the softmax function:

po,c =
ezc
∑M

j=1 e
zj

Finally, the cross-entropy loss[23] for a single observation is calculated as:

L = −
M
∑

c=1

yo,c log(po,c)

where yo,c is a binary indicator of whether class c is the correct classification for observation o,

and M is the number of classes.

4.4 Contrastive Learning

Contrastive Learning[39] is an advanced powerful method effictive in LTR, where managing class

imbalance is crucial. This technique emphasizes learning representations by contrasting positive (similar)
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pairs against negative (dissimilar) pairs. In LTR scenarios, Contrastive Learning[39] aims to ensure that

samples within the same class (intraclass) are brought closer together in the feature space, while samples

from different classes (interclass) are pushed apart. This method hinges on the idea that a model can learn

more robust and discriminative features by focusing on the similarities within classes and the differences

between them, regardless of class frequency[56][17].

While this approach is effective in distinguishing between similar and dissimilar data points, can

require large amounts of data and computational resources for training. Additionally, it may struggle with

ambiguous or overlapping class boundaries where the distinction between classes is not clear-cut.

The supervised contrastive loss[39] is used for this purpose and can be defined mathematically as:

Lcontrste =
∑

∈

−1

|P()|

∑

p∈P()
log

exp(sim(z, zp)/τ)
∑

∈A() exp(sim(z, z)/τ)
(1)

where  is the set of all images, P() is the set of positives for image , z represents the normalized embeddings,

sim is the cosine similarity, and τ is the temperature parameter.

4.5 Focal loss

The Focal Loss[57] is an enhanced version of the Cross-Entropy Loss[23] designed to address class

imbalance by assigning more weight to hard, or easily misclassified examples and less weight to easy examples.

It introduces a modulating factor to the standard cross-entropy[23] criterion that forces the model to focus

on hard examples. This adds a factor (1− ŷt)γ to the standard Cross-Entropy Loss[23], which reduces the

relative loss for well-classified examples, putting more focus on hard, misclassified examples. Additionally, a

weighting factor αt can be applied to deal with class imbalance. The complete formula is given by:

Lƒoc(y, ŷ) = −αt(1 − ŷt)γ log(ŷt) (2)

where ŷt is the predicted probability of the true class t, γ is the focusing parameter, and αt is a

scalar or vector of weighting factors for each class.
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5 Our Approach and Implementation

5.1 Computational Environment

Our experiments utilize Google Colab and NVIDIA A100 GPUs to ensure optimal computational

efficiency. This setup facilitates the management of extensive datasets and supports the computational

demands of advanced model architectures, allowing for an in-depth exploration of their performance.

5.2 ResNet Models

We employ three ResNet models, each offering varying depths and computational complexities, to

investigate their performance across different datasets. This approach enables us to explore the balance

between model depth and classification accuracy, providing insights into optimal model selection based on

dataset characteristics.

• ResNet18[20]: This model is built with a series of convolutional neural networks[18] and uses the

BasicBlock architecture. It’s a smaller version of ResNet[20], making it faster and less computationally

intensive, suitable for less complex datasets or when computational resources are limited.

• ResNet34[20]: Similar to ResNet18[20], this model also utilizes BasicBlock but with a deeper archi-

tecture. It strikes a balance between computational efficiency and model complexity.

• ResNet50[20]: Utilizing the Bottleneck architecture, ResNet50[20] is significantly deeper, allowing it

to learn more complex features. It’s designed for more complex datasets and tasks but requires more

computational power.

ResNet18[20], ResNet34[20], and ResNet5[20]0 represent three points in the spectrum of depth for

convolutional neural networks[18]. With ResNet18[20] as the shallowest and ResNet50[20] as the deepest,

ResNet34[20] offers a middle ground with an increased capacity for feature extraction over ResNet18[20],

but with less complexity than ResNet50[20]. The primary expectation is that ResNet50[20], with its in-

creased depth and complexity, would be able to learn the most nuanced features from the data. However,

ResNet34[20] might provide a balance between depth and computational efficiency, potentially offering the

best trade-off for certain types of image datasets. This tiered approach to model depth is based on the

hypothesis that deeper models have a greater capacity for representing complex functions and hierarchies of

features. This is particularly beneficial when dealing with high-resolution images or intricate patterns within
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the data. Each model’s performance will be critically evaluated to determine the optimal balance between

depth and efficiency, providing insights into how these factors influence the success of image classification

tasks in various real-world scenarios.

5.3 Rationale Behind Loss Function Choices

Regarding the loss functions—Focal loss[57], Supervised Contrastive loss (SupCon)[39] , Cross-

Entropy (CE)[23], and the combination of SupCon and CE, we anticipate varying levels of performance

across different scenarios. Focal loss[57] is designed to address class imbalance by focusing more on hard-to-

classify examples, making it potentially advantageous in our imbalanced dataset scenario. SupCon, which

emphasizes the learning of feature representations by bringing closer samples of the same class and pushing

apart samples from different classes in the feature space, might outshine others when the task requires a

clear separation of class clusters. The combination of SupCon and CE is expected to leverage the benefits of

both contrastive learning[39] and traditional classification objectives. This hybrid approach could potentially

yield the best results by ensuring that the model is not only good at distinguishing between different classes

but also at making confident predictions for individual instances. In scenarios where inter-class variance

is subtle, SupCon might prove superior due to its emphasis on relative comparison between samples. On

the other hand, in situations where the classes are well-separated and the challenge lies more in dealing

with intraclass variance, focal loss[57] or CE might be more effective. Each approach has its strengths, and

the best-performing loss function may vary depending on the specific characteristics of the dataset and the

task at hand. For instance, in highly imbalanced datasets, focal loss[57] might outperform others, while in

tasks requiring fine-grained distinction between classes, SupCon could provide an edge. Our experiments

are designed to shed light on these nuances and offer insights into the scenarios where one method would

outperform the other.

These models and loss functions were selected for their representativeness of common approaches

in the field and their potential synergistic effects when combined. By exploring these combinations, we aim

to derive insights into their applicability and efficacy across different datasets and imbalanced scenarios,

thereby informing future research directions and applications in the domain of imbalanced learning.

5.4 Implementation

To ensure experimental integrity and comparability of results, we adhere to predefined constants in

terms of epochs, batch size, early stopping criteria, learning rate adjustments, and more. This standardized
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approach facilitates a fair assessment of each model and loss function’s impact on addressing class imbalance.

• Epochs: Each model is trained for 100 epochs, depending on the convergence behavior observed during

preliminary experiments.

• Batch Size: The default batch size is set to 32 for all experiments to balance computational demand

and training stability.

• Early Stopping: Implemented with a patience of 10 epochs, this mechanism ceases training if the

validation loss does not show improvement, mitigating overfitting risks.

• Learning Rate: Default set to 0.1. This controls the step size at each iteration while moving toward

a minimum of a loss function.

• LR Decay Epochs: Specifies the epochs at which the learning rate should decay. Default values are

’700,800,900’.

• LR Decay Rate: The factor by which the learning rate should decay. Default is 0.1.

• Momentum : Default set to 0.9, it accelerates the gradient vectors in the right direction, leading to

faster converging.

• Temperature: Controls the sharpness of the softmax distribution in contrastive learning[39], set to

0.07 by default.

Beyond these practical considerations, our selection of loss functions is grounded in theoretical principles

aimed at enhancing model performance in imbalanced classification tasks. Here, we delve into the mathe-

matical underpinnings of each chosen loss function:

1. Cross-Entropy Loss: The Cross-Entropy Loss[23] is fundamental for classification tasks, aiming to

minimize the distance between the true distribution y and the predicted distribution ŷ. The formula

for Cross-Entropy Loss[23] is given by:

LCE = −
M
∑

c=1

yo,c log(ŷo,c) (3)

whereM is the number of classes, yo,c is a binary indicator of whether class c is the correct classification

for observation o, and ŷo,c is the predicted probability of observation o being of class c.
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2. Focal Loss: Focal Loss[57] addresses class imbalance by focusing more on hard-to-classify examples.

It is defined as:

LFL = −αt(1 − ŷt)γ log(ŷt) (4)

where αt is the weighting factor for class t, γ is the focusing parameter that adjusts the rate at which

easy examples are down-weighted, and ŷt is the predicted probability for the true class t.

3. Supervised Contrastive Loss: This loss enhances feature learning by promoting class separability

in the embedding space. For α = 1.0, β = 0.0, it is calculated as:

LSCL =
1

N

N
∑

=1

−1

|P()|

∑

p∈P()
log

exp(sim(z, zp)/τ)
∑

∈A() exp(sim(z, z)/τ)
(5)

For a combination when α = 0.5, β = 0.5, the loss is adjusted to incorporate both components

weighted by α and β. In these formulas, N is the number of samples, P() denotes the set of indices

of positive samples for , A() includes all other indices, sim denotes the cosine similarity, z represents

embeddings, and τ is a temperature scaling parameter.

These theoretical foundations inform our experimental strategy, enabling a nuanced evaluation of how dif-

ferent loss functions can be optimized to tackle the challenges inherent in class imbalance.

5.5 Hypotheses and Model Selection Rationale

To systematically investigate the performance of various models on imbalanced datasets, we have

formulated several hypotheses. Given the depth variations between ResNet18[20], ResNet34[20], and ResNet50[20],

we hypothesize that the deeper architectures will exhibit superior performance in extracting nuanced features

from the datasets, potentially leading to better classification accuracy. However, this may come at the cost

of increased computational resources and overfitting risks, especially for ResNet50[20].

We expect ResNet18[20] to perform adequately on less complex datasets due to its smaller archi-

tecture, while ResNet34[20] might strike a balance between performance and efficiency. For ResNet50[20],

which is significantly deeper, we anticipate it to excel on more complex datasets where the abstraction of

higher-level features is critical.

As for the loss functions—cross-entropy (CE)[23], focal loss[57], supervised contrastive loss (SupCon)[39]

, and the combination of SupCon + CE—we hypothesize that focal loss[57] might perform better on datasets

with severe class imbalance by emphasizing the learning of underrepresented classes. SupCon is expected to
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enhance the separability of classes in the feature space, which might be more beneficial for datasets where

classes are not well-separated. The hybrid approach of SupCon + CE could potentially combine the strengths

of both, offering improved performance across various scenarios.

5.6 Experimental Validation

Following our experimental phase, we will juxtapose the observed outcomes against our initial

hypotheses. This analysis is pivotal in refining our understanding of the interplay between model architecture,

loss function choice, and dataset characteristics, thereby enriching the field’s knowledge on effective strategies

for imbalanced image classification.

5.7 Preparation

In the development and implementation of our model, we adhere closely to the established and

groundbreaking architecture known as ResNet (Residual Networks)[20], as introduced by Kaiming He, Xi-

angyu Zhang, Shaoqing Ren, and Jian Sun in their pivotal work, ”Deep Residual Learning for Image Recog-

nition” [19]. This architecture has set a new standard for deep learning models, particularly in the domain

of image recognition, by enabling the training of significantly deeper networks through the innovative use

of residual blocks. These blocks facilitate the flow of gradients during training, thereby alleviating the van-

ishing gradient problem and resulting in enhanced learning capabilities. Our implementation is adapted

from the codebase provided at https://github.com/bearpaw/pytorch-classification, which serves as a robust

foundation for building ImageNet-style ResNet models[20] in PyTorch.

Furthermore, recognizing the challenges posed by class imbalance in image datasets—a scenario

where certain classes are underrepresented compared to others—we incorporate principles from ”Targeted

Supervised Contrastive Learning[39] for Long-Tailed Recognition” by Li et al., presented at CVPR 2022.

This approach reimagines the contrastive learning[39] paradigm, traditionally used in self-supervised set-

tings, for supervised learning to specifically address the long-tail distribution of classes. By leveraging the

discriminative power of contrastive learning[39], we aim to enhance the representation of minority classes,

thus fostering a more balanced and equitable learning process across all classes. Our methodology combines

the robust backbone of ResNet[20] with the targeted application of Supervised Contrastive Learning[39]

(SupCon) to navigate the complexities of long-tailed class distributions effectively. This hybrid strategy

not only benefits from the deep residual learning’s representational depth and efficiency but also from the

nuanced approach to addressing class imbalance offered by supervised contrastive learning[39]. The adapta-
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tion of these advanced techniques underscores our commitment to pushing the boundaries of accuracy and

fairness in image classification tasks.

In summary, our work is grounded in the rich legacy of ResNet’s architectural[20] innovations and

enriched by the latest advancements in tackling class imbalance through Supervised Contrastive Learning[39].

This dual approach ensures that our models are not only capable of learning deep, complex representations

but are also attuned to the nuances of real-world data distributions, making them highly effective for a wide

range of image recognition applications.

Dataset Handling

Custom Dataset Preparation ImbalanceCIFAR Class: This class handles the creation of imbal-

anced versions of the CIFAR datasets or custom datasets by specifying a path. It introduces an imbalance

by adjusting the distribution of classes based on an imbalance ratio, creating a long-tailed distribution to

simulate real-world scenarios where some classes are underrepresented.

Data Augmentation

While specific transformations are not detailed in the snippets provided, the dataset class supports

the passing of a transform parameter, allowing for data augmentation techniques such as random cropping,

flipping, and normalization to improve model robustness and generalization.

Model Architecture

ResNet[20] Customization BasicBlock and Bottleneck: Two types of blocks are implemented,

allowing for the construction of various ResNet[20] configurations. Each block type supports an is last

parameter, potentially used for models where the final block’s output is treated differently, such as in feature

extraction scenarios.

Adaptive Components: The ResNet[20] class is designed to be adaptable, with support for

custom input channels and optional zero initialization of residual connections, catering to a wide range of

image sizes and dataset specifics.

Training Methodology

Hybrid Training Approach: The train contrastive method[39] encapsulates a training process

that combines SupCon (Supervised Contrastive Learning[39]) or SimCLR (Simple Framework for Contrastive

Learning[39] of Visual Representations) with cross-entropy[23] loss, aiming to leverage the strengths of both

contrastive learning[39] for feature space optimization and supervised learning for direct classification.

Learning Rate Warmup and Adjustment: The training scripts incorporate a learning rate
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warmup strategy, gradually increasing the learning rate from a lower value to facilitate more stable and

effective model training in the initial epochs.

Loss Functions

Addressing Class Imbalance Focal Loss[57] Implementation: To specifically address the chal-

lenge of class imbalance, Focal Loss[57] is employed. This loss function adjusts the cross-entropy[23] loss

such that harder-to-classify examples are given more focus, helping to prevent the model from becoming

biased towards the majority classes.

Cross-Entropy[23] and SupCon Loss: In addition to Focal Loss[57], the experiment setup also

utilizes cross-entropy[23] and SupCon loss. The latter is particularly used in the contrastive learning[39]

setup, indicating a nuanced approach to balancing between learning distinctive features and achieving accu-

rate classification.

Evaluation Metrics

Detailed Performance Analysis Accuracy and Loss Metrics: During training, both accuracy

and loss are meticulously tracked, offering insights into the model’s learning progress and effectiveness at

minimizing classification error.

Confusion Matrix and Additional Metrics: The evaluation extends beyond simple accuracy,

employing confusion matrices, precision 6, recall 7, F1 8 scores, and potentially other metrics to provide a

comprehensive view of model performance across all classes, which is crucial in the context of imbalanced

datasets.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 ×
Precision× Recall

Precision+ Recall
(8)

Experiment Insights

Dynamic Experimentation Framework: The provided code establishes a dynamic framework

for experimenting with different aspects of model training and evaluation. By adjusting parameters such as
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the imbalance ratio, block types in ResNet[20], loss function weights, and learning rate schedules, researchers

can explore a vast space of configurations to identify optimal setups for specific challenges.

Class Imbalance Focus: A significant focus of the experimentation is on addressing class imbal-

ance, a common challenge in real-world datasets. Through the use of imbalanced datasets, Focal Loss[57],

and contrastive learning[39] strategies, the experiments aim to develop models that perform well across both

majority and minority classes, ensuring fairness and robustness in model predictions.

5.8 Conclusion

By methodically evaluating the impact of various loss functions across a range of datasets and

model architectures, this experimental framework aims to uncover actionable insights that can guide the

development of more equitable and effective machine learning models in the face of class imbalance challenges.

6 Experiments

6.1 CIFAR10

6.1.1 Resnet18

ResNet18[20] CIFAR10
Method Learning Rate Batch Size Precision Recall F1 Score Accuracy
CE 0.1 32 0.748 0.722 0.723 0.722
Focal 0.1 32 0.722 0.709 0.701 0.709

SupCon + CE 0.1 32 0.788 0.769 0.770 0.769

Table 1: ResNet18 on CIFAR10

6.1.1.1 Analysis of Results

• Precision and Recall: The SupCon + CE method outperforms both CE and Focal Loss[57] in terms

of precision and recall. This indicates that the hybrid method is not only more accurate in its positive

predictions (precision) but also more comprehensive in identifying all relevant instances (recall) seen

in Table 1.

• F1 Score: Similarly, SupCon + CE achieves the highest F1 Score, which is a balanced measure that

considers both precision and recall. This suggests that the method is effective in maintaining a balance
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between the precision and recall, making it superior for scenarios where both metrics are crucial seen

in Table 1.

• Accuracy: Consistent with the other metrics, SupCon + CE also leads in accuracy. This demonstrates

the overall effectiveness of combining contrastive learning[39] with traditional supervised learning for

image classification tasks, see Table seen in Table 1.

The superior performance of the SupCon + CE method underscores the value of leveraging con-

trastive learning[39] in conjunction with cross-entropy loss[23], especially in a dataset with diverse and

potentially imbalanced classes like CIFAR10. This approach not only enhances the model’s discriminative

capabilities but also its generalization power across different classes, see Table 1.

Figure 5: ResNet18 CE Accuracy Curve on CIFAR10 Figure 6: ResNet18 CE Loss Curve on CIFAR10

Figure 7: ResNet18 CE Confusion Matrix on CI-
FAR10
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Figure 8: ResNet18 Focal Accuracy Curve on CI-
FAR10

Figure 9: ResNet18 Focal Loss Curve on CIFAR10

Figure 10: ResNet18 Focal Confusion Matrix on CI-
FAR10
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Figure 11: ResNet18 SupCon+CE Accuracy Curve
on CIFAR10

Figure 12: ResNet18 SupCon+CE Loss Curve on CI-
FAR10

Figure 13: ResNet18 Focal Confusion Matrix on CI-
FAR10

6.1.1.2 Visual Analysis

6.1.1.3 CE

Accuracy Curve Analysis

The accuracy curve provided indicates a steady improvement in training accuracy over epochs,

which suggests that the model is learning effectively from the training data. However, there is a noticeable

gap between training and validation accuracy. This could be due to the model learning features that are

very specific to the training set, which do not generalize well to unseen data, see Figure 50.

Loss Curve Analysis
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The loss curve shows a consistent decrease in training loss, indicating good convergence of the

model. However, similar to the accuracy curve, the validation loss appears to be higher than the training

loss and exhibits some volatility. This oscillation in validation loss could be a sign of the model’s struggle to

generalize, as it indicates fluctuations in the model’s performance on the validation set, see Figure 51.

Confusion Matrix Analysis

The confusion matrix gives a more detailed look at the model’s performance across different classes.

From the matrix, we can see that the model performs well on some classes (e.g., ’automobile’ and ’ship’), but

seems to struggle with others (e.g., ’cat’ and ’dog’). This kind of misclassification between certain classes

may stem from similarities in the features of these classes that the model finds challenging to distinguish.

Additionally, it might also point towards a limitation in the representational power of the model to capture

the nuances between such similar classes, see Figure 7.

Overall Analysis

Considering the results from the table, the model using CE loss performs reasonably well with an

accuracy of 72.2%. However, this could potentially be improved. The slightly lower precision compared to

recall suggests that the model is making more false positive errors, which in turn affects the F1 score. The

F1 score being close to the accuracy indicates that the model’s performance is relatively balanced across

classes.

6.1.1.4 Focal

Accuracy Curve Analysis

The accuracy curve shows that the training accuracy steadily increases and plateaus around 70%,

which suggests the model is learning from the training dataset. However, the validation accuracy fluctuates

more compared to the training accuracy and does not reach the same level, peaking around 60%. This

discrepancy indicates that the model may be learning specific patterns not generalizable to the validation

set, which is a common challenge when using the Focal loss[57] function due to its focus on harder-to-classify

examples, see Figure 52.

Loss Curve Analysis

The loss curve presents a decreasing trend in training loss, demonstrating that the model is learning

and improving its predictions over epochs. However, the validation loss shows higher variability and doesn’t

decrease as smoothly. The oscillations in the validation loss suggest that the model’s performance on the
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validation set is not consistent and may benefit from further tuning of the Focal loss[57] hyperparameters to

stabilize learning, see Figure 53.

Confusion Matrix Analysis

The confusion matrix for the Focal[57] method shows that certain classes, such as ’ship’ and ’truck’,

are classified with high accuracy. However, there are classes like ’cat’ and ’dog’ where the model is less

accurate, which can be attributed to the Focal loss[57] emphasizing the learning of more complex patterns,

possibly at the expense of simpler but critical features necessary for distinguishing between similar classes,

see Figure 10.

Overall Analysis

Considering the CIFAR10 table results for the Focal method[57], we see slightly reduced perfor-

mance across Precision, Recall, F1 Score, and Accuracy compared to the CE method. This might be due

to Focal loss[57] focusing on misclassified or difficult examples, which can sometimes lead to neglecting the

’easier’ examples that are still important for overall accuracy. It’s a balance that needs to be carefully

managed to avoid biasing the model too much toward the difficult cases, , see Figure 1.

6.1.1.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method indicates a stable increase in training accuracy,

reaching close to 90%. This high level of training accuracy suggests that the model is learning effectively

and can capture the features necessary to classify the training images. The validation accuracy also shows

an increasing trend but plateaus around 70%. The validation accuracy is relatively stable, which is a good

sign of the model’s generalization capabilities, see Figure 36.

Loss Curve Analysis

The loss curve for the SupCon+CE method depicts a sharp decline in training loss, which levels off

as the epochs increase, suggesting that the model is converging well. The validation loss decreases alongside

the training loss but exhibits some fluctuations in the later epochs. These fluctuations could indicate that

the model is sensitive to the initialization and variability in the training data presented in each epoch, see

Figure37.

Confusion Matrix Analysis

The confusion matrix for the SupCon+CE method shows a strong diagonal, indicating that most
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classes are correctly classified. There are, however, some misclassifications, such as between ’cat’ and ’dog,’

which are common due to their visual similarities. The relatively high numbers on the matrix’s diagonal line

suggest that the model, trained with the SupCon+CE method, is quite effective in distinguishing between

most of the CIFAR10 classes, see Figure 13.

Overall Analysis

The SupCon+CE method, which combines the strengths of Supervised Contrastive Learning[39]

with Cross-Entropy[23], appears to have resulted in a model that not only performs well on the training

set but also has a decent generalization to the validation set. The high training accuracy and more stable

validation accuracy, as compared to the Focal method[57], suggest that SupCon+CE is a strong method for

this dataset.

6.1.2 Resnet34

ResNet34 CIFAR10

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 32 0.777 0.749 0.753 0.749

Focal 0.1 32 0.736 0.731 0.726 0.731

SupCon + CE 0.1 32 0.813 0.791 0.792 0.791

Table 2: ResNet34 on CIFAR10

6.1.2.1 Analysis of Results

• Precision: The SupCon + CE method outperforms CE and Focal Loss[57] with the highest precision

of 0.813. This indicates that when a class is predicted, it is correct more often for the SupCon + CE

method than the others, see Table 2.

• Recall: Similarly, the SupCon + CE method achieves the highest recall, indicating that it is better at

identifying all relevant instances within a class, see Table 2.

• F1 Score: The F1 Score is the harmonic mean of precision and recall and is particularly important in

situations where a balance between precision and recall is needed. The SupCon + CE method leads

in this metric as well, suggesting it is the most balanced approach among those tested, see Table 2.

• Accuracy: Reflecting the trends in precision and F1 Score, the SupCon + CE method also has the
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highest overall accuracy, demonstrating its effectiveness across all classes in CIFAR10, see Table 2.

The results from the ResNet34[20] model trained on the CIFAR10 dataset highlight the effectiveness

of the SupCon + CE method, which has shown superior performance across all metrics when compared to

CE and Focal Loss[57]. The integration of Supervised Contrastive Learning[39] with Cross-Entropy Loss[23]

has proven beneficial in creating a model that not only predicts with higher precision but also recalls a larger

proportion of relevant instances across the classes.

The leading F1 Score for the SupCon + CE method indicates a balanced model that does not

excessively favor precision over recall or vice versa, which is essential for a dataset with a diverse set of classes

such as CIFAR10. Furthermore, the high accuracy achieved by the SupCon + CE method underscores its

overall effectiveness and potential as a robust approach for image classification tasks. These results advocate

for the adoption of hybrid training strategies, particularly in complex datasets, to improve the precision and

reliability of predictive models.
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Figure 14: ResNet34 CE Accuracy Curve on CI-
FAR10

Figure 15: ResNet34 CE Loss Curve on CIFAR10

Figure 16: ResNet34 CE Confusion Matrix on CI-
FAR10

33



Figure 17: ResNet34 Focal Accuracy Curve on CI-
FAR10

Figure 18: ResNet34 Focal Loss Curve on CIFAR10

Figure 19: ResNet34 Focal Confusion Matrix on CI-
FAR10
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Figure 20: ResNet34 SupCon+CE Accuracy Curve
on CIFAR10

Figure 21: ResNet34 SupCon+CE Loss Curve on CI-
FAR10

Figure 22: ResNet34 SupCon+CE Confusion Matrix
on CIFAR10

6.1.2.2 Visual Analysis

6.1.2.3 CE

Accuracy Curve Analysis

The provided accuracy curve shows that the training accuracy steadily increases throughout the

epochs, indicating that the model is learning effectively and continuously improving its ability to correctly

classify the training data. The validation accuracy also increases but seems to plateau around 70%. This

plateau could imply that the model has reached its capacity for generalization with the current setup. see

Figure 14.
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Loss Curve Analysis

The loss curve exhibits a decreasing trend in training loss, which is a good sign of the model’s

ability to minimize the error over time. The validation loss decreases alongside the training loss but shows

more fluctuation, which is typical in validation metrics as the model is tested against data it hasn’t seen

before. see Figure 15.

Confusion Matrix Analysis

The confusion matrix gives a detailed account of the model’s performance across all classes. High

values along the diagonal indicate correct classifications, with particularly strong performance for classes like

’automobile’ and ’ship’. However, there are notable confusions between certain classes such as ’cat’ and ’dog’,

and ’bird’ and ’plane’, which may share similar features and thus are harder for the model to distinguish,

see Figure 16.

Overall Analysis

With the CE method, the ResNet34[20] model achieves an accuracy of 74.9%, along with precision,

recall, and F1 scores in the same range. These results are fairly balanced, suggesting that the model has a

consistent performance across different classes without significant bias.

6.1.2.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal method[57] shows that the training accuracy improves consistently

as the epochs progress, which indicates effective learning from the training data. However, the validation

accuracy, after an initial increase, shows some fluctuation and then levels off, suggesting that the model may

be having difficulties generalizing to the validation data beyond a certain point. see Figure 17.

Loss Curve Analysis

The loss curve displays a continuous decline in training loss, which is expected as the model opti-

mizes its parameters. The validation loss decreases initially but then starts to fluctuate, indicating that the

model’s improvements on the training data are not consistently reflected in its performance on the validation

set. This could be a result of the Focal loss[57] function focusing the model’s learning on hard examples,

potentially at the expense of not adequately learning simpler but still informative features, see Figure 18.

Confusion Matrix Analysis

The confusion matrix provides insights into the model’s performance on a class-by-class basis. For

36



the Focal method[57], certain classes such as ’ship’ and ’truck’ show high correct classification rates, which

is positive. However, there are noticeable confusions between classes like ’cat’ and ’dog’, as well as ’bird’

and ’deer’, which may be due to these classes sharing similar features that the model, guided by the Focal

loss[57], finds difficult to distinguish, see Figure 19.

Overall Analysis

In terms of numerical performance, the Focal method[57] achieves an accuracy of 73.1%, with

precision, recall, and F1 Score slightly lower compared to the CE method. This suggests that while the

Focal loss[57] helps in focusing on difficult examples, it may not be optimizing the overall balance between

precision and recall as effectively as the CE method in this case.

6.1.2.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve indicates a significant difference between training and validation accuracy, with

the training accuracy being much higher. This gap suggests the model is learning the training data well but

may not be generalizing effectively to the validation data. see Figure 20.

Loss Curve Analysis

The loss curve shows a consistent decrease in training loss, indicating that the model is improving

and learning from the training data over time. However, the validation loss seems to plateau and fluctuate,

see Figure 21.

Confusion Matrix Analysis

The confusion matrix reveals the model’s performance on individual classes. There is a strong

diagonal, indicating correct classifications for most classes. Some confusion is present between similar classes

such as ’cat’ and ’dog’, which is a common issue due to the visual similarities between these classes. The

confusion matrix can be used to identify which classes might need further data augmentation or more nuanced

feature learning, see Figure 22.

Overall Analysis

The SupCon+CE method has led to high training accuracy, but the validation accuracy indicates

the model may have memorized the training data rather than learned generalizable features. This method

typically aims to improve feature representation by learning more about the relationships between different

classes.
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6.1.3 Resnet50

ResNet50 CIFAR10

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 32 0.692 0.665 0.665 0.665

Focal 0.1 32 0.715 0.711 0.707 0.711

SupCon + CE 0.1 32 0.784 0.771 0.771 0.771

Table 3: ResNet50 on CIFAR10

6.1.3.1 Analysis of Results

• Precision: The highest precision is achieved with the SupCon + CE method at 78.4%, indicating

that this approach is the most precise in classifying images correctly among the tested methods. In

comparison, the Focal method[57] shows an improvement over the standard CE, with a precision of

71.5%, see Table 3.

• Recall: Similarly, SupCon + CE leads in recall with 77.1%, suggesting that it is better at identifying

all relevant instances within the classes. The Focal method[57] also surpasses CE, which implies it is

more effective in dealing with class imbalances present in the dataset, see Table 3.

• F1 Score: The F1 Score, which balances precision and recall, is again the highest for SupCon + CE

at 77.1%. This is indicative of a well-rounded model that does not excessively trade off precision for

recall or vice versa. The Focal method’s[57] F1 Score shows it has a better balance than CE but still

falls short of the hybrid method, see Table 3.

• Accuracy: For overall accuracy, SupCon + CE demonstrates superior performance at 77.1%, signifi-

cantly higher than both the CE and Focal methods[57]. This reinforces the effectiveness of combining

contrastive learning[39] with cross-entropy[23] in achieving a more accurate model on CIFAR10, see

Table 3

The comparative analysis of the ResNet50[20] model on the CIFAR10 dataset clearly illustrates the

superiority of the SupCon + CE method over the standard CE and Focal methods[57] across all evaluated

metrics. By effectively leveraging the strengths of supervised contrastive learning[39] combined with cross-

entropy loss[23], the model not only improves in distinguishing between classes but also in generalizing from

the training data to unseen data. These results suggest that future works should consider hybrid approaches
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like SupCon + CE, especially in scenarios where complex data distributions are present, to enhance model

performance and reliability.

Figure 23: ResNet50 CE Accuracy Curve on CI-
FAR10

Figure 24: ResNet50 CE Loss Curve on CIFAR10

Figure 25: ResNet50 CE Confusion Matrix on CI-
FAR10
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Figure 26: ResNet50 Focal Accuracy Curve on CI-
FAR10

Figure 27: ResNet50 Focal Loss Curve on CIFAR10

Figure 28: ResNet50 Focal Confusion Matrix on CI-
FAR10
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Figure 29: ResNet50 SupCon+CE Accuracy Curve
on CIFAR10

Figure 30: ResNet50 SupCon+CE Loss Curve on CI-
FAR10

Figure 31: ResNet50 SupCon+CE Confusion Matrix
on CIFAR10

6.1.3.2 Visual Analysis

6.1.3.3 CE

Accuracy Curve Analysis

The accuracy curve for the CE method reveals a consistent increase in training accuracy, reaching

above 70%. The validation accuracy initially follows the training accuracy but begins to plateau and shows

variability, see Figure 23.

Loss Curve Analysis
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The training loss curve demonstrates a steady decline, indicating effective learning and optimization

of model parameters. In contrast, the validation loss declines but with noticeable fluctuations, particularly

in later epochs. This behavior often signifies that while the model is becoming better at fitting the training

data, it is not consistently improving its generalization to the validation set, see Figure 24.

Confusion Matrix Analysis

The confusion matrix displays a strong diagonal, indicating a high number of correct predictions

across most classes. However, there are significant misclassifications for certain classes, suggesting that the

model may be confusing features between these classes. It is particularly evident in classes where the visual

distinction is subtler, which can lead to higher confusion rates, see Figure 25.

Overall Analysis

The results from the ResNet50[20] model using the CE method on CIFAR10 show that while the

model achieves a relatively high training accuracy, there is a notable discrepancy with the validation accuracy.

This discrepancy points towards overfitting, which is further supported by the fluctuations in the validation

loss. The confusion matrix corroborates this by showing certain classes where the model performance is not

optimal. To enhance the model’s generalization ability, strategies such as data augmentation, regularization,

and hyperparameter tuning should be considered.

6.1.3.4 Focal

Accuracy Curve Analysis

The accuracy curve depicts a consistent increase in the training accuracy, signifying that the model

is learning and improving from the training data. The validation accuracy, however, shows a more volatile

progression with several peaks and troughs, see Figure 26.

Loss Curve Analysis

The training loss demonstrates a steady decrease, which is an expected trend as the model is

optimizing. The validation loss, in contrast, decreases but with fluctuations and a less pronounced decline.

This variability might suggest that while the model is becoming adept at fitting to the training data, it is

not steadily improving on the validation set, see Figure 27.

Confusion Matrix Analysis

The confusion matrix shows the number of correct and incorrect predictions made by the model.

It indicates that certain classes are well-identified, whereas others, particularly those with similar features,
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are often confused. This suggests that while Focal loss[57] helps in focusing training on hard examples, it

may not be as effective in distinguishing between certain classes, see Figure 28.

Overall Analysis

Overall, the Focal method[57] shows an improvement in handling the dataset’s class imbalance

compared to the standard CE method, as indicated by the higher accuracy and lower loss. However, the

accuracy and loss curves suggest that the model might benefit from techniques to improve its generalization

capabilities, such as regularization and data augmentation. Furthermore, the confusion matrix points out

specific classes where the model’s performance could be enhanced, perhaps by fine-tuning the focal[57]

parameters or employing targeted data augmentation strategies.

6.1.3.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE (Supervised Contrastive Learning[39] combined with Cross-

Entropy)[23] model applied to ResNet50[20] on CIFAR-10 dataset shows a clear trend of increasing training

accuracy over the epochs. The training accuracy starts at around 30% and gradually increases to just over

80% by the 50th epoch. This indicates that the model is effectively learning from the training data over time.

However, the validation accuracy is more volatile and does not show a similar smooth increase. It starts at

around the same level as the training accuracy but only reaches a peak of about 70% before declining and

ending at around 65%.See Figure 29.

Loss Curve Analysis

The loss curve complements the accuracy curve, with the training loss decreasing steadily from

around 2.8 to just under 1.6. This decrease in loss indicates that the model is getting better at making

predictions on the training data. The validation loss, on the other hand, decreases less smoothly and seems

to plateau around the 2.0 mark. see Figure 30.

Confusion Matrix Analysis

The confusion matrix provides insight into the model’s performance on individual classes. The

diagonal values represent the number of correct predictions for each class, with higher values indicating

better performance. The model performs best in classifying ’automobile’, ’ship’, and ’truck’, with correct

predictions of 964, 787, and 831 respectively. The classes ’bird’, ’cat’, and ’dog’ have the most confusion,

with the model often misclassifying between these three categories. The ’frog’ class also sees a high number
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of correct predictions (828), but there is notable confusion with the ’cat’ class, see Figure 31.

Overall Analysis

Overall, the SupCon+CE model trained on the CIFAR-10 dataset using ResNet50[20] architecture

shows a promising increase in training accuracy over time. The model performs very well on certain classes

such as ’automobile’, ’ship’, and ’truck’, but struggles with ’bird’, ’cat’, and ’dog’, which may be due to

similarities between these classes causing confusion.

6.2 CIFAR100

6.2.1 Resnet18

ResNet18 CIFAR100

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 32 0.475 0.388 0.378 0.388

Focal 0.1 32 0.384 0.374 0.351 0.374

SupCon + CE 0.1 32 0.368 0.393 0.328 0.393

Table 4: ResNet18 on CIFAR100

6.2.1.1 Analysis of Results

• Precision: The CE method exhibits the highest precision with a score of 0.475, indicating that it

has the highest proportion of true positive identifications relative to the number of true positives and

false positives combined. This suggests that the CE method is relatively reliable when it classifies an

instance as positive, see Table 4.

• Recall: SupCon + CE achieves the best recall score of 0.393, showing that it is more effective than

the other methods at identifying all relevant instances. This method’s higher recall indicates a better

capability to find all the positive samples, but not necessarily correctly identify only the positives, as

evidenced by its precision, see Table 4.

• F1 Score: The CE method has the highest F1 score at 0.378, which suggests a balanced performance

between precision and recall. Despite its lower recall compared to SupCon + CE, the CE method’s

higher precision contributes to a better F1 score, showing a balanced trade-off between the two metrics,

see Table 4.
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• Accuracy: Both CE and SupCon + CE share the highest accuracy score of 0.393. This indicates that,

overall, they classify the correct labels for a given input more frequently than the Focal method[57],

considering all classes, see Table 4.

Conclusion

In summary, the CE method appears to be the most effective when considering precision and

F1 score, which implies a better overall balance of false positives and false negatives in classification on

CIFAR100 using ResNet18[20]. SupCon + CE, while having the highest recall, does not achieve the same

level of precision or F1 score, indicating a potential over-classification of positives. The Focal method[57]

lags behind in all performance metrics, suggesting that the balancing mechanism of Focal loss[57] is not

as beneficial for this dataset and model as the other methods. Given that CE and SupCon + CE tie in

accuracy, the choice between them may depend on the specific needs of the application: CE for cases where

false positives are more costly, and SupCon + CE where missing out on true positives is a greater concern.

Figure 32: ResNet18 CE Accuracy Curve on CI-
FAR100

Figure 33: ResNet18 CE Loss Curve on CIFAR100

Figure 34: ResNet18 Focal Accuracy Curve on CI-
FAR100

Figure 35: ResNet18 Focal Loss Curve on CIFAR100
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Figure 36: ResNet18 SupCon+CE Accuracy Curve
on CIFAR100

Figure 37: ResNet18 SupCon+CE Loss Curve on CI-
FAR100

6.2.1.2 Visual Analysis

6.2.1.3 CE

Accuracy Curve Analysis

The accuracy curve for the Cross-Entropy (CE)[23] loss function when applied to a ResNet18[20]

model trained on the CIFAR100 dataset shows a continuous improvement in training accuracy over 30

epochs. The training accuracy starts at around 10% and steadily increases to approximately 70%. This

consistent increase suggests that the model is effectively learning and improving its ability to classify the 100

different classes in the CIFAR100 dataset. The validation accuracy, however, starts at a similar point but

only increases to about 30%, and from epoch 10 onwards, it plateaus with slight fluctuations. See Figure 32.

Loss Curve Analysis

The loss curve exhibits a decreasing trend in training loss, which drops from around 4.5 to below

1.0, suggesting that the model is becoming more confident in its predictions on the training set as the epochs

progress. However, the validation loss decreases only until it reaches approximately 2.5 by the 5th epoch

and then fluctuates around this value for the remainder of the epochs. See Figure 33.

Overall Analysis

The analysis of the accuracy and loss curves for the CE method with ResNet18[20] on CIFAR100

points towards a model that is learning well. The model’s training accuracy is high, and training loss is

low, yet it fails to generalize these results effectively to the validation data, as shown by the lower validation

accuracy and higher validation loss.
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6.2.1.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal loss[57] function applied to a ResNet18[20] model on the CIFAR100

dataset shows a positive trend in both training and validation accuracy over 50 epochs. The training accuracy

starts at approximately 10% and exhibits a steady increase, plateauing around 40% towards the later epochs.

The validation accuracy, although following a similar upward trend, demonstrates greater variability and ends

at around 30%. The convergence between training and validation accuracy is not apparent, see Figure 35.

Loss Curve Analysis

The loss curve reveals that the training loss decreases significantly from approximately 0.040 to

just below 0.010, indicating improved model performance on the training data as learning progresses. Con-

versely, the validation loss decreases from around 0.035 to about 0.025 before plateauing and then exhibits

fluctuations without a clear downward trend. This pattern in the validation loss suggests that the model’s

ability to generalize to unseen data may not be improving significantly after a certain point, see Figure 35.

Overall Analysis

Overall, the Focal loss[57] function with ResNet18[20] on CIFAR100 leads to an increase in training

accuracy and a decrease in training loss, indicative of learning. However, the model’s performance on

validation data does not mirror this improvement, as evidenced by the lower validation accuracy and higher

validation loss. The discrepancy between training and validation metrics indicates that the model may be

overfitting the training data, and the Focal loss[57] function’s intrinsic focus on harder, misclassified examples

does not seem to close this gap.

6.2.1.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method applied to ResNet18[20] on the CIFAR100 dataset

shows a training accuracy that starts at approximately 10% and steadily climbs to surpass 60% by the end

of 100 epochs. This gradual increase indicates that the model is continuously learning and improving its

ability to correctly classify images from the dataset. The validation accuracy begins at a similar level but

only reaches about 25%. Despite some fluctuations, it maintains a consistent upward trajectory, though it

remains significantly lower than the training accuracy. The persistent gap between training and validation

accuracy suggests that while the model is learning the training data effectively, it may not be generalizing
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as well to new, unseen data, see Figure 36

Loss Curve Analysis

The training loss curve starts at around 3.5 and decreases to just over 1.0, which corroborates the

positive learning trend shown in the accuracy curve. The model is becoming more confident and making

fewer errors on the training set over time. On the other hand, the validation loss decreases alongside the

training loss until approximately the 20th epoch, where it begins to plateau around 1.5. The plateau and

slight upward trend in the later epochs may indicate that the model’s ability to generalize is not improving

further, see Figure 37.

Overall Analysis

Overall, the SupCon+CE approach shows a model that is capable of learning from the training data

with a steady improvement in accuracy and decrease in loss. However, the less pronounced improvement

on the validation set suggests that the model’s generalization to unseen data is limited. To counteract this,

strategies such as implementing regularization techniques, fine-tuning the model’s hyperparameters, or using

more advanced data augmentation methods could be beneficial. Moreover, considering modifications to the

SupCon+CE approach, like adjusting the weight given to the supervised contrastive loss[39] component,

could potentially enhance the model’s generalization performance.

6.2.2 Resnet34

ResNet34 CIFAR100

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 32 0.468 0.404 0.386 0.404

Focal 0.1 32 0.450 0.434 0.424 0.434

SupCon + CE 0.1 32 0.376 0.386 0.327 0.386

Table 5: ResNet34 on CIFAR100

6.2.2.1 Analysis of Results

• Precision: In terms of precision, which measures the accuracy of positive predictions, the CE method

outperforms the other methods with a score of 0.468. This indicates that when the CE method predicts

an instance as positive, it is more likely to be correct compared to the other methods, see Table 5.

• Recall: For recall, which assesses the model’s ability to identify all actual positive instances, Focal
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loss[57] leads with a score of 0.434. This suggests that Focal loss[57] is more effective at capturing the

majority of positive instances in the dataset, see Table 5.

• F1 Score: The F1 score is the harmonic mean of precision and recall and is used to measure a

test’s accuracy. The Focal method[57] achieves the highest F1 score at 0.424, reflecting a balanced

performance between precision and recall, indicating its robustness in handling both false positives and

false negatives, see Table 5.

• Accuracy: Regarding overall accuracy, which reflects the proportion of true results (both true positives

and true negatives) among the total number of cases examined, the Focal method[57] again ranks

highest with a score of 0.434. This means it correctly labels more instances across all classes than the

other methods, see Table 5.

Conclusion

The comparison of CE, Focal, and SupCon + CE methods for ResNet34[20] on CIFAR100 shows

that while CE has the highest precision, it is the Focal method[57] that leads in recall, F1 score, and

accuracy. The Focal method’s[57] superior recall and F1 score suggest it is particularly effective in a dataset

like CIFAR100, where there may be a high class imbalance, and the cost of missing a positive instance is

significant. The SupCon + CE method, while innovative in combining supervised contrastive learning[39]

with cross-entropy[23], does not perform as well on these metrics, which could indicate that the balance

between the two loss functions needs to be optimized for this specific task. Given the complexity and

variability of the CIFAR100 dataset, the Focal method’s[57] ability to focus on harder-to-classify examples

and reduce the weight of well-classified examples seems to give it an edge in overall performance.

Figure 38: ResNet34 CE Accuracy Curve on CI-
FAR100

Figure 39: ResNet34 CE Loss Curve on CIFAR100
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Figure 40: ResNet34 Focal Accuracy Curve on CI-
FAR100

Figure 41: ResNet34 Focal Loss Curve on CIFAR100

Figure 42: ResNet34 SupCon+CE Accuracy Curve
on CIFAR100

Figure 43: ResNet34 SupCon+CE Loss Curve on CI-
FAR100

6.2.2.2 Visual Analysis

6.2.2.3 CE

Accuracy Curve Analysis

For the CE (Cross-Entropy)[23] method on a ResNet34[20] model trained on CIFAR100, the training

accuracy curve starts at around 10% and exhibits a stable and consistent increase throughout the 50 epochs,

reaching above 60%. This steady progression indicates that the model is learning effectively from the

training data. However, the validation accuracy starts at a similar level but plateaus around 30%, with

minor fluctuations throughout the training process. See Figure 38.

Loss Curve Analysis

The training loss curve demonstrates a sharp decline from around 4.5 to below 1.5, indicating

that the model is getting progressively better at classifying the training images correctly. In contrast, the
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validation loss decreases alongside the training loss initially but begins to plateau around the 2.5 mark,

showing little improvement as the epochs increase. see Figure 41.

Overall Analysis

Overall, the CE approach for ResNet34[20] on CIFAR100 indicates a model that is capable of

learning from the training data but shows signs of disparities between training and validation performance.

The model’s ability to generalize to new data is not as strong as its ability to learn from the training data.

6.2.2.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal loss[57] function applied to a ResNet34[20] architecture on the

CIFAR100 dataset shows an upward trajectory for training accuracy, beginning at around 10% and reaching

approximately 50% by the 70th epoch. This steady climb suggests the model is effectively learning from

the training data. However, the validation accuracy starts at the same level but plateaus around 40% much

earlier, around the 30th epoch, with some variability afterwards. See Figure 40.

Loss Curve Analysis

The training loss decreases substantially from about 0.040 to below 0.010, suggesting that the model

is becoming more accurate in its predictions over time. In contrast, the validation loss declines alongside

the training loss initially but then levels off around 0.015 and displays some fluctuations for the remainder

of the training. This pattern of validation loss indicates that the model’s improvement on the validation set

is not as pronounced as it is on the training set, see Figure 40.

Overall Analysis

Overall, the use of Focal loss[57] with ResNet34[20] on the CIFAR100 dataset shows a model

capable of learning and improving its predictions on the training set but with limitations in generalizing

these improvements to the validation set. The persistent gap between training and validation accuracy, along

with the plateau in validation loss. To address this, techniques such as data augmentation, introduction of

regularization (like dropout or weight decay), and hyperparameter tuning could be explored to enhance the

model’s generalization capabilities. Additionally, experimenting with the gamma parameter of the Focal

loss[57], which focuses the training on hard-to-classify examples, might help in improving the performance

on the validation set.
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6.2.2.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method when applied to ResNet34[20] on CIFAR100 shows

that the training accuracy begins at around 10% and follows a steady upward trend, reaching just over 60%

by the end of 100 epochs. This indicates a good learning progression. The validation accuracy also starts

at about 10% but plateaus near 35% after about 60 epochs, demonstrating a significant and sustained gap

with the training accuracy. See Figure 42.

Loss Curve Analysis

The loss curve reflects a consistent decrease in training loss from around 3.5 to below 1.5, which is

indicative of the model learning and improving its prediction accuracy on the training data. The validation

loss, while also decreasing, shows a more gradual reduction and begins to plateau around 1.5. It does not

achieve the low levels seen in the training loss, see Figure 43.

Overall Analysis

Overall, the SupCon+CE training for ResNet34[20] on CIFAR100 illustrates that the model is ca-

pable of learning from the training data, as shown by the increase in training accuracy and the decrease in

training loss. However, the discrepancy between the training and validation results, with validation metrics

plateauing at a much lower level than the training metrics, indicates a potential issue with overfitting. This

suggests that while the model is fitting the training data well, it is not as capable when it comes to gener-

alizing to new, unseen data. To improve the model’s generalization, techniques such as data augmentation,

regularization, and perhaps adjustment of the SupCon+CE loss function parameters could be considered.

6.2.3 Resnet50

ResNet50 CIFAR100

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 32 0.468 0.404 0.386 0.404

Focal 0.1 32 0.450 0.434 0.424 0.434

SupCon + CE 0.1 32 0.376 0.386 0.327 0.386

Table 6: ResNet50 on CIFAR100
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6.2.3.1 Analysis of Results

• Precision: The CE method tops the precision metric with a score of 0.468, indicating that it has the

highest likelihood of its positive predictions being correct when compared to the other methods, see

Table 6.

• Recall: Focal loss[57] demonstrates the highest recall at 0.434, meaning it is more effective than the

other methods at identifying all the relevant instances in the dataset, see Table 6.

• F1 Score: With regards to the F1 score, which balances precision and recall, the Focal method[57]

again leads with a score of 0.424, suggesting that it has the most balanced performance between

precision and recall, see Table 6.

• Accuracy: In terms of overall accuracy, the Focal method[57] stands out as the best performer with

a score of 0.434, which indicates that it correctly classifies a higher percentage of instances across all

classes, see Table 6.

Conclusion

The performance metrics of ResNet50[20] on CIFAR100 reveal that the CE method has the highest

precision, suggesting it is relatively more reliable in its positive classifications. The Focal loss[57] method,

however, outperforms in recall, F1 score, and accuracy, indicating it is generally more effective across the

board. This could be due to the Focal loss’s[57] ability to focus more on difficult-to-classify examples, which

seems to benefit the overall performance on a diverse and complex dataset like CIFAR100. The SupCon

+ CE method, while innovative in its approach to combine contrastive learning[39] with cross-entropy[23],

does not seem to measure up to the Focal method[57] in this instance, possibly due to a less optimal balance

between learning from hard negatives and classifying correctly. The findings suggest that for a dataset with

a large number of classes and potential class imbalance, a method that can address class imbalance like Focal

loss[57] might be more advantageous.
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Figure 44: ResNet50 CE Accuracy Curve on CI-
FAR100

Figure 45: ResNet50 CE Loss Curve on CIFAR100

Figure 46: ResNet50 Focal Accuracy Curve on CI-
FAR100

Figure 47: ResNet50 Focal Loss Curve on CIFAR100

Figure 48: ResNet50 SupCon+CE Accuracy Curve
on CIFAR100

Figure 49: ResNet50 SupCon+CE Loss Curve on CI-
FAR100
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6.2.3.2 Visual Analysis

6.2.3.3 CE

Accuracy Curve Analysis

The accuracy curve for the Cross-Entropy (CE)[23] loss function on the ResNet50[20] model training

with CIFAR100 data set displays a continuous increase in training accuracy over the epochs, starting from

around 10% and reaching just above 70%. This consistent growth indicates that the model is learning

effectively from the training data. However, the validation accuracy follows a similar upward trend initially

but then plateaus around the 40% mark, showing a significant disparity with the training accuracy. See

Figure 44

Loss Curve Analysis

The training loss curve starts at a high of around 4.5 and drops steadily to below 1.0, which is

a good sign of the model’s improving capability to make accurate predictions on the training set. The

validation loss, on the other hand, decreases but levels off much earlier, fluctuating around the value of 2.5

and not achieving the low levels of the training loss. This pattern suggests the model’s performance is not

generalizing as effectively to the validation set, see Figure 45

Overall Analysis

The overall trends in the accuracy and loss curves indicate that while the CE method allows the

ResNet50[20] model to learn well from the CIFAR100 training data, there is a significant discrepancy when

it comes to the validation data. The model’s overfitting is evident from the higher validation loss and

lower validation accuracy as compared to the training metrics. To improve the model’s generalization to

unseen data, techniques like regularization, more complex data augmentation, or even model architecture

adjustments could be explored. Additionally, modifying the learning rate schedule, implementing dropout,

or early stopping could help mitigate overfitting and enhance the model’s performance on new data.

6.2.3.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal loss[57] function used on a ResNet50[20] model with the CIFAR100

dataset shows a consistent upward trend in training accuracy, starting from about 10% and reaching ap-

proximately 40% by the end of 60 epochs. This gradual improvement suggests effective learning from the
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training data. The validation accuracy also increases but exhibits more variability, plateauing around 30%.

See Figure 46.

Loss Curve Analysis

The training loss curve begins at around 0.045 and drops sharply to below 0.020, indicating the

model is increasingly successful in classifying the training data correctly. In contrast, the validation loss

starts at a similar level but only decreases to around 0.025 and then fluctuates, which could indicate the

model’s limitations in generalizing what it has learned to new data, see Figure 47.

Overall Analysis

Overall, the Focal loss[57] approach with ResNet50[20] on CIFAR100 demonstrates that the model

learns and improves over time, as seen by the increase in training accuracy and the decrease in training

loss. However, the validation accuracy and loss do not show the same level of improvement. To address

this, it may be helpful to explore strategies that promote better generalization, such as adjusting the Focal

loss[57] hyperparameters, employing more sophisticated data augmentation, or introducing regularization

techniques.

6.2.3.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method on a ResNet50[20] architecture trained on the

CIFAR100 dataset shows the training accuracy starting at about 10% and steadily climbing to over 50% by

the 100th epoch. This indicates that the model is learning effectively from the training data. The validation

accuracy also improves over time but plateaus around the 30% mark and does not exhibit the same steep

increase as the training accuracy. This suggests a gap between the model’s ability to learn from the training

data versus its performance on unseen validation data, see Figure 48.

Loss Curve Analysis

The training loss curve begins at around 3.5 and exhibits a continuous decline, reaching just below

1.5, which aligns with the increasing training accuracy and indicates that the model is getting better at

making correct predictions. On the other hand, the validation loss starts high and decreases alongside the

training loss but begins to flatten out around the 2.0 mark, see Figure 49.

Overall Analysis

In summary, the SupCon+CE loss approach with the ResNet50[20] model on CIFAR100 demon-
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strates a model that is capable of learning from the training data, as seen by the steady improvement in

training accuracy and the decrease in training loss. However, the less pronounced improvement in validation

accuracy and the higher validation loss compared to the training metrics.

6.3 Butterfly

6.3.1 ResNet18

ResNet18 Custom Dataset

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 64 0.712 0.648 0.632 0.648

Focal 0.1 64 0.735 0.702 0.695 0.702

SupCon + CE 0.1 64 0.508 0.573 0.509 0.573

Table 7: ResNet18 on Butterfly Dataset

6.3.1.1 Analysis of Results

• Precision: Precision measures the accuracy of positive predictions. The Focal method[57] achieves

the highest precision with a score of 0.735, indicating it has the highest rate of true positive predictions

relative to the number of positive predictions made, see Table 7.

• Recall: Recall measures the ability to find all the relevant instances in a dataset. Here, the Focal

method[57] again ranks highest with a recall of 0.702, suggesting it is the most capable of identifying

all actual positives, see Table 7.

• F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a balance between

the two. The Focal method[57] leads with an F1 score of 0.695, indicating a robust balance between

precision and recall and suggesting a consistent performance across different parts of the dataset, see

Table 7.

• Accuracy: Accuracy is the ratio of correctly predicted observations to the total observations. The

Focal method[57] outperforms with the highest accuracy of 0.702, reflecting its superior ability to label

all instances correctly, see Table 7.
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Conclusion

The evaluation of different methods applied to ResNet18[20] for a custom butterfly dataset shows

that the Focal method[57] outshines the others across all metrics: precision, recall, F1 score, and accuracy.

This dominance suggests that the Focal method[57], which is designed to give more weight to difficult, mis-

classified cases, is particularly effective for this dataset, potentially due to its capacity to handle imbalanced

data or more complex patterns within the classes. The CE method shows respectable results, but it falls

short of the performance of the Focal method[57]. SupCon + CE, despite its lower metrics, may still offer

benefits not fully captured by these metrics, such as better feature representations, which could be advan-

tageous in different aspects of a real-world application or further training stages. However, for the primary

evaluation metrics considered here, the Focal method[57] is the clear leader for the butterfly dataset with

the ResNet18 [20]architecture.7

Figure 50: ResNet18 CE Accuracy Curve on Custom
Dataset

Figure 51: ResNet18 CE Loss Curve on Custom
Dataset

Figure 52: ResNet18 Focal Accuracy Curve on Cus-
tom Dataset

Figure 53: ResNet18 Focal Loss Curve on Custom
Dataset
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Figure 54: ResNet18 SupCon + CE Accuracy Curve
on Custom Dataset

Figure 55: ResNet18 SupCon + CE Loss Curve on
Custom Dataset

6.3.1.2 Visual Analysis

6.3.1.3 CE

Accuracy Curve Analysis

The accuracy curve for the Cross-Entropy (CE)[23] loss function on the ResNet18[20] model trained

on a custom dataset exhibits a consistent improvement in training accuracy over the epochs, starting at about

10% and reaching over 60%. This indicates the model’s capability to learn effectively from the training data.

The validation accuracy also increases but at a slower rate, plateauing around 40%. Reference Figure 50.

Loss Curve Analysis

The training loss curve shows a sharp decline, indicating that the model is becoming increasingly

effective at making correct predictions on the training set. The validation loss decreases alongside the training

loss but shows greater volatility and levels off around the 2.0 mark. The fluctuation and higher plateau of the

validation loss compared to the training loss further point to potential overfitting issues. Reference Figure

51.

Overall Analysis

Overall, the CE method using ResNet18[20] on this custom dataset has demonstrated good learning

capacity as evidenced by the high training accuracy and low training loss. However, the model does not

perform as well on the validation set, which is a sign that it might not generalize well when exposed to new,

unseen data.
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6.3.1.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal loss[57] on a ResNet18[20]model with a custom dataset shows a

steady increase in training accuracy, starting from below 10% and reaching approximately 80% by the end

of 100 epochs. This demonstrates effective learning and adaptation of the model to the training data over

time. However, the validation accuracy exhibits significant variability and appears to plateau around 40%.

Reference Figure 52.

Loss Curve Analysis

The training loss curve presents a sharp decrease from initial epochs and continues to decline, level-

ing off as it approaches 0.00, which is indicative of the model’s increasing prediction accuracy on the training

data. On the other hand, the validation loss starts high and decreases but then fluctuates significantly, sug-

gesting the model’s performance on the validation set is not as consistent as with the training set. Reference

Figure 53.

Overall Analysis

Overall, the Focal loss[57] function with ResNet18[20] on this custom dataset is showing promising

results in terms of learning from the training data, as indicated by the high training accuracy and low training

loss. However, the gap between training and validation performance, particularly the high variability and

plateau in validation accuracy and loss.

6.3.1.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method on a ResNet18[20] model trained with a custom

dataset shows that training accuracy starts from below 10% and steadily climbs to over 70% by the 100th

epoch. This is indicative of effective learning from the training data. The validation accuracy also shows

an upward trend but with more volatility, and it seems to plateau around 40%, which is a common sign of

overfitting; the model performs well on the training data but doesn’t generalize as effectively to the validation

data. Reference Figure54.
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Loss Curve Analysis

The training loss curve depicts a clear downward trend, starting from around 3.5 and reducing to

below 1.0, which corresponds to the increase in training accuracy and shows that the model’s predictions

are becoming more accurate. However, the validation loss decreases less smoothly and appears to stabilize

around the 1.5 mark, fluctuating thereafter. This pattern in the validation loss suggests that the model’s

improvement on the validation set is not as pronounced as on the training set. Reference Figure 55.

Overall Analysis

Overall, the SupCon+CE approach for this custom dataset indicates that while the model is learning

well from the training data (as shown by the high training accuracy and low training loss), it is not performing

as strongly on the validation data. This disparity between training and validation suggests that the model

may be too tailored to the training data and not generalizing well to new data.

6.3.2 ResNet34

ResNet34 Custom Dataset

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 64 0.695 0.618 0.614 0.618

Focal 0.1 64 0.708 0.665 0.660 0.665

SupCon + CE 0.1 64 0.413 0.487 0.411 0.487

Table 8: ResNet34 on Butterfly Dataset

6.3.2.1 Analysis of Results

• Precision: The Focal method[57] demonstrates the highest precision at 0.708, indicating that it has

the best ratio of true positive identifications to the total number of positive identifications (both true

positives and false positives). Reference Table 8.

• Recall: In terms of recall, the Focal method[57] also leads with a score of 0.665, reflecting its superior

ability to identify all relevant instances within the dataset (true positives) out of all actual positives.

Reference Table 8.

• F1 Score: The F1 score, which is the harmonic mean of precision and recall, is again highest for the

Focal method[57] at 0.660. This suggests that the Focal method[57] maintains a balanced relationship
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between precision and recall, ensuring neither is disproportionately high at the expense of the other.

Reference Table 8.

• Accuracy: For overall accuracy, which considers both true positives and true negatives in relation

to all predictions, the Focal method[57] stands out with the highest value of 0.665. This indicates

that the Focal method[57] is the most effective overall at correctly classifying instances in the dataset.

Reference Table 8.

Conclusion

The performance metrics for the ResNet34[20] architecture on a custom butterfly dataset suggest

that the Focal loss[57] method outperforms CE and SupCon+CE across all evaluated metrics: precision,

recall, F1 score, and accuracy. The Focal method’s[57] emphasis on learning from difficult or misclassified

examples appears particularly effective for this dataset, which may present challenging or imbalanced classes.

While the CE method shows reasonable effectiveness, it does not reach the performance levels of the Focal

method[57]. The SupCon+CE method trails behind in all metrics, which might be due to the particular

characteristics of the dataset or the need for further tuning of the loss function parameters.

Figure 56: ResNet34 CE Accuracy Curve on Custom
Dataset

Figure 57: ResNet34 CE Loss Curve on Custom
Dataset
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Figure 58: ResNet34 Focal Accuracy Curve on Cus-
tom Dataset

Figure 59: ResNet34 Focal Loss Curve on Custom
Dataset

Figure 60: ResNet34 SupCon + CE Accuracy Curve
on Custom Dataset

Figure 61: ResNet34 SupCon + CE Loss Curve on
Custom Dataset

6.3.2.2 Visual Analysis

6.3.2.3 CE

Accuracy Curve Analysis

The accuracy curve for the Cross-Entropy (CE)[23] loss function on a ResNet34[20] model trained

with a custom dataset shows that the training accuracy starts low but climbs steadily throughout the

epochs, leveling off at around 80%. This indicates that the model is learning from the training data quite

well. However, the validation accuracy also improves but plateaus and fluctuates around 40%. Reference

Figure 56.

Loss Curve Analysis

The training loss curve shows a significant decline, indicating that the model is becoming better at

predicting the correct classes over time. The validation loss decreases as well but exhibits fluctuations and
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does not continue to decline after reaching a certain point, unlike the training loss. Reference Figure 56.

Overall Analysis

Overall, the CE loss method enables the ResNet34[20] model to learn effectively from the training

data of the custom dataset, as seen in the high training accuracy and the decline in training loss. Nevertheless,

the model’s ability to perform equally well on validation data is questionable due to the lower validation

accuracy and the lack of a consistent decline in validation loss.

6.3.2.4 Focal

Accuracy Curve Analysis

The training accuracy curve for the Focal loss[57] function on a ResNet34[20] model with a custom

dataset demonstrates a strong positive trend, with accuracy starting near 0% and ascending to above 60%

over the course of 70 epochs. This indicates solid learning progress from the training data. The validation

accuracy also increases but with more variability, peaking around 40%. Reference Figure 58.

Loss Curve Analysis

The training loss curve decreases sharply at first, leveling off to just above 0.00, which corresponds

with the increasing training accuracy, signifying improved model performance. However, the validation

loss shows considerable volatility and doesn’t decline as steadily, as the model may not be as effective at

predicting the validation data. Reference Figure 59.

Overall Analysis

In summary, the application of Focal loss[57] to the ResNet34[20] model on this custom dataset

yields good learning from the training data but presents challenges in validation performance. The model’s

high training accuracy and low training loss contrast with the lower validation accuracy and erratic validation

loss.

6.3.2.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve for the SupCon+CE method on the ResNet34[20] model trained with a custom

dataset reveals a consistent increase in training accuracy, from around 10% to approximately 70% over 100

epochs. This steady rise indicates effective learning from the training data. The validation accuracy follows

a similar upward trend but with more pronounced fluctuations, achieving about 30% accuracy. Reference
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Figure 60.

Loss Curve Analysis

The training loss curve depicts a continuous descent, suggesting that the model is becoming in-

creasingly proficient at making correct predictions as it learns from the training data. The validation loss

decreases alongside the training loss but exhibits greater variability, which could be a sign that the model is

not generalizing as well to unseen data, consistent with the trends observed in the accuracy curve. Reference

Figure 61.

Overall Analysis

In general, the SupCon+CE method allows the ResNet34[20] model to learn effectively from the

training data, as demonstrated by the increasing training accuracy and decreasing training loss. However, the

model’s validation performance shows room for improvement, as indicated by the lower validation accuracy

and more volatile validation loss.

6.3.3 ResNet50

ResNet50 Custom Dataset

Method Learning Rate Batch Size Precision Recall F1 Score Accuracy

CE 0.1 64 0.700 0.660 0.642 0.660

Focal 0.1 64 0.670 0.640 0.633 0.640

SupCon + CE 0.1 64 .352 .452 .362 .452

Table 9: ResNet50 on Butterfly Dataset

6.3.3.1 Analysis of Results

• Precision: The CE method achieved the highest precision at 0.700, indicating that when it predicts

a class label, it is correct 70% of the time, which is the best result among the three methods for this

dataset. Reference Table 9.

• Recall: The CE method also leads in recall with a score of 0.660, meaning it correctly identifies 66% of

all actual positives. This is especially important if the cost of missing a true positive is high. Reference

Table 9.

• F1 Score: In terms of the F1 score, which balances precision and recall, the CE method again has the
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highest score at 0.642. This suggests that it maintains a good balance between precision and recall,

which is beneficial when we need a single metric to compare models. Reference Table 9.

• Accuracy: The CE method tops accuracy as well at 0.660, showing that it correctly classifies 66% of

the total instances, making it the most accurate method for this particular dataset. Reference Table

9.

Conclusion

Overall, the CE loss function with ResNet50[20] on this custom butterfly dataset outperforms the

other methods across all metrics, making it the most effective method for this particular classification task.

Its superior performance in precision and recall translates to the highest F1 score and accuracy, indicating

that it is the most reliable at predicting true positives while minimizing false positives and negatives. The

SupCon+CE method significantly lags behind the other two methods, suggesting that the addition of the

supervised contrastive loss[39] does not benefit this particular dataset or task, or it may require further

parameter tuning. The Focal loss[57] method, while effective, does not reach the performance levels of the

CE method[?], which could be due to the dataset characteristics or the specific challenges inherent to the

classification task. Overall, the CE loss function[23] with ResNet50[20] on this custom butterfly dataset

outperforms the other methods across all metrics, making it the most effective method for this particular

classification task. Its superior performance in precision and recall translates to the highest F1 score and

accuracy, indicating that it is the most reliable at predicting true positives while minimizing false positives

and negatives. The SupCon+CE method significantly lags behind the other two methods, suggesting that

the addition of the supervised contrastive loss[39] does not benefit this particular dataset or task, or it may

require further parameter tuning. The Focal loss[57] method, while effective, does not reach the performance

levels of the CE method[23], which could be due to the dataset characteristics or the specific challenges

inherent to the classification task.
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Figure 62: ResNet50 CE Accuracy Curve on Custom
Dataset

Figure 63: ResNet50 CE Loss Curve on Custom
Dataset

Figure 64: ResNet34 Focal Accuracy Curve on Cus-
tom Dataset

Figure 65: ResNet50 Focal Loss Curve on Custom
Dataset

Figure 66: ResNet50 SupCon + CE Accuracy Curve
on Custom Dataset

Figure 67: ResNet50 SupCon + CE Loss Curve on
Custom Dataset
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6.3.3.2 Visual Analysis

6.3.3.3 CE

Accuracy Curve Analysis

The accuracy curve for the CE (Cross-Entropy)[23] method on a ResNet50[20] model trained with a

custom dataset shows a positive trend in both training and validation accuracy over 70 epochs. The training

accuracy shows a steady and significant increase, leveling off around 80%, which indicates that the model

has learned to fit the training data well. The validation accuracy initially follows the training accuracy but

starts to plateau around the 40% mark, showing some fluctuations thereafter but without a clear upward

trend past the halfway mark. Reference Figure 62.

Loss Curve Analysis

The loss curves show a decreasing trend for both training and validation, which is expected as

the model learns. The training loss demonstrates a consistent decrease, indicative of the model’s increasing

confidence in its predictions on the training set. The validation loss, however, while decreasing overall,

shows higher variability and some spikes, suggesting that the model’s performance on the validation set is

less stable and may be affected by the complex features of the validation data that the model has not learned

to generalize. Reference Figure 63.

Overall Analysis

Overall, the CE method with ResNet50[20] on this custom dataset indicates that while the model is

learning and improving its predictions on the training data, it is not performing equally well on the validation

set. The high training accuracy in contrast with the much lower validation accuracy suggests overfitting,

where the model may be memorizing the training data rather than learning to generalize.

6.3.3.4 Focal

Accuracy Curve Analysis

The accuracy curve for the Focal method[57] shows a continuous increase in training accuracy over

the epochs, which indicates consistent learning. However, the validation accuracy appears to plateau and

exhibits more variability, especially in the latter half of the epochs. This could suggest that while the model

is improving on the training data, it may not generalize as well to unseen data. Reference Figure 64.

Loss Curve Analysis
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The loss curve presents a typical pattern where the training loss decreases smoothly, suggesting good

optimization. The validation loss, on the other hand, has fluctuations but overall maintains a downward

trend, albeit less pronounced than the training loss. This pattern supports the accuracy analysis, where

the model learns the training data well but may struggle to maintain performance on the validation set.

Reference Figure 65.

Overall Analysis

Overall, the Focal method’s[57] performance on this custom dataset indicates that the model is

learning and improving its predictions on the training data. However, the difference between training and

validation metrics and the fluctuations in validation loss suggest that the model may benefit from regular-

ization techniques to improve generalization to new data.

6.3.3.5 SupCon+CE

Accuracy Curve Analysis

The accuracy curve image shows the model’s training and validation accuracy over 100 epochs. The

training accuracy shows a consistent upward trend, indicating that the model is learning effectively from the

training data. However, the validation accuracy, while also improving over time, is significantly lower than

the training accuracy and exhibits a jagged progression with some fluctuations. The lack of smoothness in

the validation curve might also imply that the model’s performance on the validation set is sensitive to the

specific samples being evaluated. Reference Figure 66.

Loss Curve Analysis

The loss curve image illustrates the model’s training and validation loss over the same 100 epochs.

Both training and validation loss decrease over time, which is a good sign of learning. Initially, both losses

decrease at a similar rate, but as training progresses, the training loss continues to decrease more smoothly

while the validation loss shows more variability and a less steep decline. The pattern of the validation loss

suggests that the model may have difficulty in further reducing error on the validation set as it learns the

training data more deeply. Reference Figure 67.

Overall Analysis

The overall performance of the SupCon+CE model on the custom dataset using ResNet50[20]

architecture shows promise, as evidenced by the improvement in training accuracy and decrease in training

loss. However, the disparity between training and validation metrics raises concerns about the model’s ability
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to generalize to new, unseen data. The training curves are smooth, which is typically a good indicator, but

the variability in the validation curves—particularly the accuracy—suggests that the model might not be as

robust to variations in the validation set.

6.4 Discussion

6.4.1 Performance Analysis

6.4.1.1 CIFAR10

Figure 68: CIFAR10 Models Methods performance

Model Comparison:

ResNet34[20] combined with SupCon+CE emerges as the best-performing model on the CIFAR10

dataset among the three ResNet[20] variants tested. It achieves the highest accuracy, suggesting that it

has effectively learned discriminative features from the dataset, which are crucial for accurate classification.

Reference Figure 68.

ResNet50[20], despite being a deeper network than ResNet34[20], does not translate that depth into

higher accuracy. This might be due to the CIFAR10 dataset not requiring the complexity that ResNet50[20]
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offers, or it might be an indication that ResNet50[20] requires more data or further tuning to achieve its

potential on this dataset. Reference Figure 68.

ResNet18[20], while being the least complex network, still shows competitive performance, especially

when combined with the SupCon+CE method. This suggests that for smaller datasets like CIFAR10, simpler

architectures can be quite effective when paired with powerful training methods. Reference Figure 68.

Method Comparison:

The SupCon+CE method consistently outperforms the standard CE and Focal methods[57] across

all ResNet architectures[20]. This indicates the effectiveness of combining supervised contrastive learning[39]

with cross-entropy[23], which seems to enhance feature representation and improve generalization. Reference

Figure 68.

The Focal loss[57] method, designed to address class imbalance by focusing on harder-to-classify

examples, does not outperform the other methods. This might indicate that the CIFAR10 dataset does

not have a significant class imbalance problem, or it might suggest that Focal loss[57] requires more careful

tuning to achieve better results on this dataset. Reference Figure 68.

Cross-Entropy loss[23], a standard loss function for classification problems, shows the least effective

results when used alone. However, its combination with supervised contrastive learning[39] in the Sup-

Con+CE method suggests that cross-entropy can still be part of a highly effective training regime when used

alongside other techniques. Reference Figure 68.

Overall Analysis:

The results strongly suggest that the choice of both the architecture and the training method

are critical for model performance. While deeper networks are generally considered more powerful, the

ResNet34’s[20] top performance indicates that there is a balance to be struck between model complexity and

the nature of the dataset. Reference Figure 68.

The superior results of SupCon+CE across all models underline the potential of hybrid methods

that integrate contrastive learning[39] principles with traditional loss functions. Reference Figure 68.

The results also highlight the importance of model tuning and the potential need for different strate-

gies depending on the dataset’s characteristics. In conclusion, ResNet34[20] combined with SupCon+CE

stands out as the best model for the CIFAR10 dataset among the tested configurations, striking an optimal

balance between model complexity and learning capability. This suggests that for similar datasets, starting

with a moderately complex model architecture and leveraging hybrid training methods could be a promising
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approach. Reference Figure 68.

6.4.1.2 CIFAR100

Figure 69: CIFAR100 Models Methods performance

Model and Method Comparison:

ResNet34[20] with the Focal method[57] stands out as the top performer in terms of accuracy,

which suggests that this combination is particularly effective for the CIFAR100 dataset. It seems that the

Focal method’s[57] emphasis on learning difficult examples works well with the slightly deeper architecture

of ResNet34[20] compared to ResNet18[20]. Reference Figure 69.

ResNet50[20] with the Focal method[57] matches the accuracy of ResNet34[20], suggesting that

both architectures are equally suitable when using the Focal loss. This could indicate that the CIFAR100

dataset benefits from the Focal loss’s[57] ability to address class imbalance, which is effectively leveraged by

the higher capacity models. Reference Figure 69.

SupCon+CE shows comparable performance to CE in ResNet18[20] and ResNet50 but falls slightly

behind in ResNet34[20]. This may imply that the benefit of combining supervised contrastive learning[39]

with cross-entropy[23] loss does not outweigh the advantages of the Focal method[57] or CE alone for this
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particular dataset and these model architectures. Reference Figure 69.

Overall Analysis:

The CIFAR100 dataset, which has 100 classes, presents a more challenging classification task than

CIFAR10. The results suggest that the Focal loss[57] method, designed to address difficulties with hard-

to-classify examples, can significantly improve performance on such complex datasets. Reference Figure

69.

While ResNet50[20] is the most complex and deepest network among the three, it does not neces-

sarily yield the best results, which could be due to various factors such as overfitting or the need for more

extensive hyperparameter tuning. Reference Figure 69.

In scenarios where false positives are costly, one might prefer a model with higher precision. How-

ever, if the cost of missing true positives (recall) is more critical, then a model with higher recall would

be preferred. In the case of CIFAR100, the Focal method[57] with ResNet34[20] seems to strike the best

balance, resulting in the highest overall accuracy. Reference Figure 69.

In conclusion, when choosing a model for CIFAR100, the ResNet34[20] architecture with the Focal

loss[57] method appears to be the best option based on the provided data. However, this does not rule out

the potential effectiveness of other models or methods that could perform better with further optimization

or under different conditions. The choice of the best model and method ultimately depends on the specific

requirements and constraints of the task at hand. Reference Figure 69.

73



6.4.1.3 Butterfly Dataset

Figure 70: Custom Dataset Models Methods performance

Model and Method Performance:

Focal Method’s[57] Superiority: For both ResNet18[20] and ResNet34[20], the Focal method[57]

achieves the highest accuracy, underscoring its effectiveness in handling the dataset. The method’s design,

which focuses more on difficult-to-classify examples, seems particularly beneficial for the Butterfly Custom

Dataset, potentially due to class imbalances or intricate patterns within the classes.

CE Method with ResNet50:

Interestingly, the CE method paired with ResNet50[20] outperforms other combinations for this

specific model, indicating that for more complex architectures like ResNet50[20], traditional loss functions

such as Cross-Entropy[23] might still be very effective, especially when precision in classification is paramount.

SupCon+CE’s Underperformance:

Across all three models, SupCon+CE consistently shows lower accuracy compared to the other

methods. This suggests that the combination of supervised contrastive learning[39] with cross-entropy[23]

loss might not align well with the dataset’s characteristics or could require additional optimization to enhance

its performance.
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Optimal Model Selection:

Dataset Characteristics Influence: The results emphasize the significance of dataset charac-

teristics in selecting the optimal model and method. The Focal method’s[57] success with ResNet18[20]

and ResNet34[20] suggests that these models, when combined with a method tailored to address specific

challenges such as class imbalance or complex patterns, can lead to superior performance.

Balancing Complexity and Performance: Despite ResNet50’s[20] complexity, it does not

necessarily guarantee the best performance with all methods. However, its pairing with the CE method

demonstrates that matching the model’s capacity with an appropriate loss function is crucial for optimizing

performance.

6.4.2 Recommendations

Model and Method Pairing is Key:

The best model and method pairing depends on specific dataset challenges and desired outcomes.

For the Butterfly Custom Dataset, ResNet34[20] combined with the Focal method[57] emerges as a strong

contender for achieving high accuracy, especially when handling complex or imbalanced data.

Consideration for Application Requirements:

The choice between these combinations should also consider application-specific requirements, such

as the need for high precision or recall, which could influence the preference for one method over another.

The Supervised Contrastive Learning[39] combined with Cross-Entropy[23] (SupCon+CE) method,

as discussed in the paper, represents a solid foundation approach in the realm of deep learning for enhancing

model performance across various datasets and architectures. This method leverages the strengths of both

supervised contrastive learning[39] to enhance the feature space representation by bringing similar classes

closer and pushing dissimilar classes apart, and cross-entropy loss[23] to fine-tune the decision boundaries

for precise classification.

Evaluating SupCon+CE Across Datasets and Architectures:

In the report, the SupCon+CE method is extensively evaluated against traditional Cross-Entropy

(CE)[23] and Focal loss[57] methods across different datasets and ResNet architectures[20]. Particularly,

its performance on CIFAR10 and CIFAR100 datasets using ResNet18[20], ResNet34[20], and ResNet50[20]

models demonstrates its potential. The method consistently outperforms or competes closely with the other

loss functions across various metrics, including precision, recall, F1 score, and accuracy.
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For CIFAR10, the SupCon+CE method showed superior performance in precision, recall, F1 score,

and accuracy metrics when using ResNet34[20], underscoring its effectiveness in handling complex data

distributions. This suggests that integrating supervised contrastive learning[39] with cross-entropy loss[23]

can significantly improve the model’s ability to predict with higher precision and recall a larger proportion

of relevant instances across classes.

However, the performance of SupCon+CE varied across different datasets and architectures. While

it showed promising results in some settings, there were scenarios where traditional methods like Cross-

Entropy[23] or Focal loss[57] performed better, particularly in CIFAR100 with ResNet34[20] and ResNet50[20]

models. This variation in performance highlights the importance of context and dataset characteristics when

choosing the appropriate training strategy.

In conclusion, the SupCon+CE method presents a compelling hybrid approach that combines the

strengths of supervised contrastive learning[39] and cross-entropy loss[23]. It proves particularly effective

in datasets with complex distributions, showcasing improved precision, recall, and overall accuracy. The

method’s ability to generalize well to unseen data, as indicated by its validation performance, suggests its

potential as a robust solution for image classification tasks. Future research could further explore the optimal

balance and parameter tuning of SupCon+CE to maximize its benefits across a wider range of datasets and

problem settings.

7 Conclusion and Discussion

This study embarked on a journey to explore the intricate challenges posed by class imbalance in

image classification, a pervasive problem in machine learning that hinders the development of equitable and

effective models. Through our comprehensive exploration, we aimed not only to shed light on this issue but

also to propose and evaluate a suite of methodologies designed to mitigate its impact. Our work, grounded in

the principles of convergent learning, sought to provide a nuanced understanding of the problem, introduce

innovative solutions, and, ultimately, lay a foundation for future advancements in the field.

We have demonstrated the efficacy of various strategies, including weight balancing, metrics learn-

ing, and Contrastive learning[39], among others, in addressing class imbalance. Our experimental results

reveal the nuanced performance of these methodologies across different datasets and scenarios, underscoring

the complexity of the problem and the need for tailored solutions. By employing a variety of loss functions,

including Focal loss[57], and introducing data augmentation techniques and hyperparameter tuning, we have

showcased the potential for significant improvements in model performance.
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One of the key takeaways from our work is the critical importance of selecting the appropriate loss

function and data augmentation strategy for a given use case. This decision-making process is not trivial; it

requires a deep understanding of the underlying data distribution and the specific challenges it presents. Our

findings suggest that there is no one-size-fits-all solution; rather, the effectiveness of a particular approach

depends on the intricacies of the dataset and the goals of the classification task.

Moreover, our study emphasizes the value of a robust methodology that can be generalized to

different forms of datasets. The development of such a methodology is imperative for advancing the field

and ensuring that machine learning models can be effectively applied to a wide range of real-world problems.

Through our experiments, we have taken steps toward creating a more adaptable framework, one that can

accommodate the diversity of datasets encountered in practice.

Our work also highlights the significance of intuition in designing intelligent systems. Beyond the

technical aspects of model construction and evaluation, the development of an effective solution requires an

intuitive understanding of the problem space and the creative application of theoretical knowledge. This

blend of intuition and technical expertise is crucial for pushing the boundaries of what is possible in machine

learning.

In conclusion, this paper has not only explored ways to solve the class imbalance problem but has

also aimed to provide a solid foundation for more advanced approaches. The methodologies and insights

presented herein contribute to a deeper understanding of the challenges and opportunities in the field, paving

the way for future research to build upon our work. We hope that our study will inspire continued exploration

and innovation, driving forward the development of more equitable, efficient, and effective machine learning

models.
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