

Computing Performance Benchmarks
among CPU, GPU, and FPGA

MathWorks

Authors:
Christopher Cullinan
Christopher Wyant

Timothy Frattesi

Advisor:
Xinming Huang

i

Abstract

 In recent years, the world of high performance computing has been

developing rapidly. The goal of this project was to conduct computing performance

benchmarks on three major computing platforms, CPUs, GPUs, and FPGAs. A total of

66 benchmarks were evaluated. GPUs outperformed the other platforms in terms of

execution time. CPUs outperformed in overall execution combined with transfer

time. FPGAs outperformed for fixed algorithms using streaming. The team made

several recommendations for further research in this area.

ii

Acknowledgements

 The successful completion of this project would not have been feasible

without the help of several key individuals. First, we would like to express our

gratitude to our advisor, Xinming Huang, who met with us weekly throughout the

course of the project offering advice and wisdom. In addition, we would like to

thank our sponsor at MathWorks for their financial support of this project.

iii

Authorship

Christopher Cullinan

 Christopher C. was responsible for the CPU Multicore portion of this project.

This included gathering and testing 34 benchmarks on the AMAX machine. In

addition, he wrote the CPU sections for the background, benchmark, and results

along with the future work and executive summary sections of this report.

Timothy Frattesi

 Timothy was responsible for the GPU portion of this project. This included

gathering and testing 24 benchmarks on the GeForce GTX 460 and GeForce 9800

GTX+ NVIDIA graphics cards. In addition, he wrote the GPU sections for the

background, benchmark, and results of this report along with the future work and

executive summary sections.

Christopher Wyant

 Christopher W. was responsible for the FPGA portion of this project. This

included gathering and testing of 8 benchmarks using the ISim program of Xilinx on

a Virtex-5 board. Christopher W. wrote the FPGA sections of the background,

benchmark, and results section of the report. In addition, he was responsible for

writing the abstract, acknowledgements, introduction and conclusion of this report.

iv

Executive Summary

Ever since the beginning of modern day computing, engineers and developers have

been trying to squeeze every ounce of performance into their devices. How do we

test for performance though? What quantifiable measurements can be made to

justify the superiority of one device over another? These are the types of questions

this project aims to answer. In this project, we investigated the performance

abilities of current generation multiprocessing hardware. Through looking at

multicore CPUs, general purpose GPU computing and an FPGA, we compared device

capabilities to determine which platform future investments should be focused

towards and why.

 To begin our endeavor, we used benchmarking to accentuate the strengths

and weaknesses of these three devices. Benchmarking is the technique of using

crafted programs in order to attach quantifiable performance metrics to targeted

computer subsystems. By using cross platform, as well as individual, benchmarks

developed across a plethora of computational necessities, we determined which

device would be best suited towards specific tasks. For this project, we tested our

benchmarks across two Intel Xeon 5650 CPUs, the Virtex-5 FPGA and NVIDIA’s

GeForce GTX460 and 9800 GTX+ GPUs.

 Realizing the sophistication early on in this project, we decided to use

already written benchmarking suites to conduct our tests. A benchmarking suite is

nothing more than a compilation of individual benchmarks with specific intent. In

total, we used seven benchmarking suites. For the FPGA, we used cores designed by

Xilinx Core Generator and MATLAB Simulink HDL Coder, which contained

v

benchmarks encompassing mathematical algorithms and encryption. For the CPUs,

we used three benchmarking suites; SPEC CPU2006, Rodinia, and John Burkardt.

Lastly, for the GPUs, we used the Parboil, Rodinia, and SHOC benchmarking suites.

The CPU and GPU suites tested mathematical algorithms, high performance

simulation, and common computational necessities such as compression and

sorting.

 To further enhance the findings of this project, we discussed several future

recommendations at the end of this report. These recommendations include testing

a broader spectrum of benchmarks capable of running across all three platforms.

Another possibility is to look into newer technologies, such as an Accelerated

Processing Unit (APU). We believe that by including these recommendations, a

conclusion of greater impact can be reached.

vi

Table of Contents

Abstract .. i

Acknowledgements .. ii

Authorship .. iii

Executive Summary .. iv

Table of Contents ... vi

Table of Figures .. ix

Table of Tables ... x

1. Introduction .. 1

2. Background .. 2

2.1. CPU .. 2

2.1.1. A Brief History ... 2

2.1.2. CPU Design .. 4

2.1.3. CPU Multicore .. 6

2.2. Graphics Processing Unit.. 9

2.2.1. GPU History ... 9

2.2.2. GPU Architecture and Parallelism ... 12

2.3. FPGA Background.. 17

2.3.1. History of FPGAs .. 17

2.3.2. Early Programmable Devices .. 18

2.3.3. FPGA Architecture ... 19

3. Benchmarks .. 24

3.1. FPGA Benchmarks ... 26

3.2. SPEC CPU2006 .. 28

3.2.1. CPUINT2006 .. 28

3.2.2. CFP2006 .. 34

3.3. Rodinia Suite ... 41

3.4. John Burkardt Benchmarks ... 44

3.5. SHOC Suite .. 45

3.6. Parboil Suite .. 48

vii

Breadth ... 48

4. Results .. 52

4.1. Devices ... 52

4.1.1. GPU .. 52

4.1.2. CPU .. 53

4.1.3. FPGA ... 53

4.2. ALL Devices.. 54

4.3. CPU & GPU .. 55

4.4. Individual Results .. 57

4.4.1. GPU Specific ... 57

4.4.2. CPU Results .. 65

4.4.3. FPGA Results.. 72

5. Future Work ... 74

6. Conclusion ... 75

7. Appendices .. 76

7.1. Parboil Results 9800 GTX+ .. 76

7.2. Parboil Results GTX 460 ... 78

7.3. Rodinia Results 9800 GTX+ ... 80

7.4. Rodinia Results GTX 460 .. 81

7.5. SHOC Max Flops GTX 460 ... 84

7.6. SHOC Bus Download Speed GTX 460 ... 85

7.7. SHOC Device Memory GTX 460 .. 86

7.8. SHOC SPMV GTX 460 .. 87

7.9. SHOC MD GTX 460 .. 88

7.10. SHOC Reduction GTX 460 .. 89

7.11. SHOC S3D GTX 460 ... 90

7.12. SHOC Scan GTX 460 .. 91

7.13. SHOC SGEMM GTX 460 ... 92

7.14. SHOC Sort GTX 460 ... 93

7.15. SHOC Stencil 2D GTX 460 ... 94

7.16. SHOC Triad GTX 460 .. 95

viii

7.17. SHOC Max Flops 9800 GTX+ ... 96

7.18. SHOC Bus Download Speed 9800 GTX+ ... 97

7.19. SHOC SPMV 9800 GTX+ .. 98

7.20. SHOC MD 9800 GTX+ ... 99

7.21. SHOC Reduction 9800 GTX+ .. 100

7.22. SHOC S3D 9800 GTX+ ... 101

7.23. SHOC SGEMM 9800 GTX+ ... 102

7.24. SHOC Sort 9800 GTX+ .. 103

7.25. SHOC Stencil 2D 9800 GTX+ .. 104

7.26. SHOC Triad 9800 GTX+ .. 105

7.27. SPEC CPU2006 Integer Results (No Auto-Parallel) .. 106

7.28. SPEC CPU2006 Integer Results (Auto-Parallel Enabled) ... 106

7.29. Speedup of SPEC CPU2006 Integer Results ... 107

7.30. SPEC CPU2006 Floating Point Results (No Auto-Parallel) ... 107

7.31. SPEC CPU2006 Floating Point Results (Auto-Parallel Enabled) 108

7.32. Speedup of SPEC CPU2006 Floating Point Results ... 108

7.33. Rodinia/Burkardt Benchmarks Average Execution Times 109

7.34. Rodinia/Burkardt Benchmarks Speedup between Thread Count 109

7.35. FPGA Results .. 110

Bibliography... 111

ix

Table of Figures

Figure 1 - AMD K10 Architecture ... 6

Figure 2 - Intel I7 950 Quad Core Processor Design ... 7

Figure 3 - S386C911 (1991) .. 10

Figure 4 - NVIDIA GeForce 256 (1998) ... 10

Figure 5 - GeForce 6600 (2004) ... 11

Figure 6 - GeForce GTX 560 (2011) .. 11

Figure 7 - CUDA Software Architecture .. 12

Figure 8 - Improvements in CUDA GPU Architecture .. 14

Figure 9 - Thread Hierarchy .. 16

Figure 10 - Stream Multiprocessor ... 16

Figure 11 - PLA Architecture ... 18

Figure 12 - CPLD Architecture .. 19

Figure 13 - Three Input LUT .. 20

Figure 14 - Switch Block .. 21

Figure 15 - FPGA Routing ... 22

Figure 16 - Specialized Slices .. 23

Figure 17 – Virtex-7 Architecture .. 23

x

Table of Tables

Table 1 - FFT Results .. 54

Table 2 - CPU & GPU Results .. 56

Table 3 - GeForce Specification .. 58

Table 4 - Data Size vs. Data Rate .. 59

Table 5 – Global vs. Local Memory Speeds .. 60

Table 6 – Parboil Suite Timings .. 63

Table 7 - Rodinia Particle Filter Results .. 64

Table 8 - SPEC CPUINT2006 w/ GCC, G++, GFortran compiler w/o auto parallel 65

Table 9 - SPEC CPUINT2006 run with Intel compiler in auto parallel 66

Table 10 - Speedup percentages from the GNU run to the Intel run 66

Table 11 - SPEC CFP2006 w/ GCC, G++, GFortran compiler w/o auto parallel 68

Table 12 - SPEC CFP2006 run with Intel compiler in auto parallel 68

Table 13 - Speedup percentages from the GNU run to the Intel run 69

Table 14 - Rodinia/Burkardt average execution time on 2, 4, 8, 12, 24 threads 70

Table 15 - Speedup between thread counts .. 71

Table 16 - FPGA Results .. 72

1

1. Introduction

The world of high performance computing is a rapidly evolving field of study. Many

options are open to businesses when designing a product. GPUs can provide

astonishing performance using the hundreds of cores available. On the other hand,

FPGAs can provide computational acceleration to many signal and data processing

applications. The question arises as to what level each platform performs at for

different benchmark algorithms.

 To determine computing levels of each device we implemented existing

benchmark suites for each device. We tested several applications to see which

computing method was fastest for the various applications. While the benchmarks

did not completely lineup between the different processors the information

gathered laid a good foundation between different devices.

 In order to explain the information in a clear manner, we broke up the

information into several sections. Presented first is the background of the devices,

both general and specific. The second section outlines all of the benchmarks we

tested so that the reader can understand the limitations of the project. The third

section discusses the results we gathered as well as a discussion of what they mean.

Lastly, we discuss some recommendations we would make for similar projects in

the future and some closing remarks.

2

2. Background

The background gives an overview of the different device we used in our project.

Within each section are the history of the device and a general overview of how they

work. This information gives a brief but necessary background into the platforms

used for this project.

2.1. CPU

2.1.1. A Brief History

 The history of the Central Processing Unit (CPU) is in all respects a relatively

short one, yet it has revolutionized almost every aspect of our lives. In the early

1970, if I were to ask someone what a CPU was, they would have most likely

responded “A what!” Yet just over 40 years later, CPUs have become an integral part

of our lives. From desktop computers to cell phones, most of us do not go more than

a few hours without somehow interacting with a CPU. Despite its indisputable

popularity, most do not know how this hype all started.

 In 1971, the 4-bit Intel 4004 was the first in the legacy of the CPU. It was the

first commercially available CPU on chip, made possible by the all-new silicon gate

technology. The max CPU clock rate of this revolutionary hardware was 740 kHz, an

astonishing speed at the time. This little guy could execute 92,000 instructions per

second with a single instruction cycle of 10.8 microseconds and a transistor count of

2,300. At the time, this device was truly a feat in computing technology, which

paved the road for much more innovation to come. [1]

3

 Intel dominated CPU infancy, coming out with several subsequent CPU

designs including the 8086 (1978), 8088 (1979), 80186 (1980). Then, in 1993, one

of the most popular names in the history of the CPU surfaced, the Intel Pentium

processor. This legendary device operated at a whopping 60 MHz and 100 Millions

of Instructions per Second (MIPS). The trend of innovation from Intel continued for

several years until another major competitor in today’s market made their first

competitive appearance with the AMD AM5x86 in 1995. A fierce competition

between Intel and AMD has continued since. [2]

 The next milestone in the CPU history was the commercial release of the first

1GHz processor. This achievement was reached by the AMD Athlon in 1999 and

then by the Intel Pentium III just two days later after. For this reason, “Athlon” was

fitting name for AMD’s milestone processor because it is the Greek word for

“Champion/trophy of the games”. The AMD Athlon is an x86-compatible processor

containing 22 million transistors in a slim size of 184 mm2. [3]

 Nowadays, it is a common occurrence to see CPUs clocked well above 1GHz

in devices as small as our cell phones. In just over 40 years, we have gone from 740

kHz to the GHz level (over a 1300 % increase) and increased the count of on chip

transistors from 2,300 to more than a billion (over a 434,000 % increase). We are

now producing CPUs with multiple cores on the same chip, which are capable of

support an increasingly important feature known as parallel computing, which we

will talk about in more detail later in this report. [2]

4

2.1.2. CPU Design

 In a nutshell, CPU design is the design engineering process of creating a

central processing unit to be used in a computing system. Many factors go into

designing a CPU, especially with the level of sophistication in modern day CPUs.

There are six primary focuses that designers must account for when creating a CPU,

and they are; data paths, control unit, memory components, clock circuitry, pad

transceiver circuitry, and logic gate cell library. [4]

 A data path by definition is, “A collection of functional units, such as

arithmetic logic units or multipliers, that perform data processing operations”. [5]

Intuitively from its name, data paths provide routes for data to traverse between the

components of a CPU. These routes are typically known as “Buses”. The majority of

CPUs include both a data path and a control unit, where the control unit specializes

in regulating data path and main memory interaction. [5]

 Most modern day CPUs have several types of memory modules on chip. Two

of the most popular are register memory and cache, both of which are normally high

speed SRAM. Registers are the memory cells built directly into the CPU since they

contain specific data vital to CPU operations. Cache is the next portion of memory in

a CPU and is usually, in more complex processors, divided into L1 (level one) and L2

(level two) cache. Both L1 and L2 cache are there to store data that is most often

used by the CPU and is typically SRAM as well. [6]

 The CPU clock is the sinusoidal frequency reference signal typically created

by a crystal oscillator. This sinusoidal waveform is first translated into a square

waveform of the same frequency by internal circuitry and then used to synchronize

5

the internal components of the CPU. The clock signal traverses to the various CPU

components via a clock distribution network. [7]

 Lastly, the logic gate cell library is the collection of logic gates used to

implement computational logic in the CPU. The logic library collection consists of

low-level logic functions including AND, OR, INVERT gates as well as flip-flops,

latches, and buffers. A vital feature of these libraries is that they are fixed height and

variable width, meaning they can be placed in organized rows. This makes the

process of automated digital layout of these components possible and efficient. [8]

 To give you an idea of a simple CPU design, the following figure shows the

AMD K10 Architecture of 2007. This processor is slightly outdated but is good for

our purposes to show the anatomy of a modern day CPU.

6

Figure 1 - AMD K10 Architecture

2.1.3. CPU Multicore

 The term “multi-core” refers to a multiple core processor that is simply an

integrated circuit where two or more processors have been attached for increased

performance via parallel processing. [9] Parallel processing is a type of computation

7

where many calculations are performed simultaneously. This method of

computation is based on the principle that large problems can be solved faster by

breaking them down into smaller pieces and then solving those pieces concurrently.

Because of this basic principle, parallel computing has become the dominant

standard in computer architecture in the most popular form of multicore

processing. As an example of a multicore processor design, the following figure

shows the internals to an Intel I7 950 Quad Core Processor.

Figure 2 - Intel I7 950 Quad Core Processor Design

In the real world, parallel processing is not limited to integrated circuits.

Virtually everything in our natural universe uses the principles of parallel

processing. A few examples are galaxy formation, planetary movements, weather

and ocean patterns, automobile assembly lines, rush hour traffic, and even ordering

a hamburger at a fast food restaurant. Within all of these phenomena, numerous

8

complex and interrelated events occur simultaneously to achieve a common goal.

[10]

 In the past, parallel computing was attributed mainly to high end computing

and was used to solve complex mathematical problem in various areas of study. A

few of these areas included Atmospheric studies, Physics, Mechanical Engineering,

Electrical Engineering, and Seismology. Parallel computing is still used in those

areas today, but the rise of commercial applications has been a major contributor to

both the need for faster computing and the dispersion of parallel computing into

common electronic devices such as phones, desktops, laptops, etc. Database mining,

web search engines, medical imaging, and advanced graphics are just a few of the

applications that utilize parallel computing. [10]

 At the beginning of this section, we briefly discussed the incentives to use

parallel computing; now we will delve deeper to justify the use of parallel

computing. Parallel computing saves time and money by both shortening the time

to the outcome and because parallel components are cheap. Second, larger

problems can be solved through the use of parallel computing that are not possible

by using a single computing resources. Finally, there are many limitations to serial

computing. These limitations include transmission speeds, limits to miniaturization,

and economic limitations. To get away from these confines, modern computer

architectures are heavily relying on multiple execution units, pipelined instructions,

and multi-core at the hardware level to increase performance. [10]

9

2.2. Graphics Processing Unit

 As stated by Prof. Jack Dongarra, "GPUs have evolved to the point where

many real-world applications are easily implemented on them and run significantly

faster than on multi-core systems. Future computing architectures will be hybrid

systems with parallel-core GPUs working in tandem with multi-core CPUs." [11]

From this comment one can see one of the many thoughts on where the future or

high performance computing is headed.

2.2.1. GPU History

 Much like computers in general, GPU's have progressed rapidly over the last

30 years since their introduction to the market. As GPU's have progressed over the

years their core functions have remained the acceleration and processing of images.

 The introduction of graphics units came early in the 1980's where both Intel

and IBM brought specialized products to the market. Other companies such as

Commodore and Texas Instruments also added simple graphics capabilities either

on chip or using an external card. These cards had simplistic functionality and were

relatively expensive. Functions such as filling an area, shape drawing, and

modification of simple images were all that these early processors could support.

10

Figure 3 - S386C911 (1991) Figure 4 - NVIDIA GeForce 256 (1998)

 The 1990's were the real beginning as far as the takeoff of GPUs. From the

beginning in 1991, S3 rolled out their 86C911 card which was one of the first

standards for the GPU industry. Two dimensional graphic processing had made its

way into almost every system by the mid 90's and the race was on to move towards

3D processing. Two notable chip sets in the race for dedicated 3D graphics include

the 3dfx Voodoo and Rendition's Verite. Until the late 90's all 3D rendering was

done with the assistance of CPUs, also known as hardware assisted 3D graphics

which we still see in lower end laptops today. [12]

 To assist in the commonality of graphics processing several “languages” were

brought about in the late 90's including both OpenGL and Direct. Throughout the

90's OpenGL prospered as the software’s capability was usually ahead of Direct and

it was capable of being used across cards and platforms. Towards the end of the

90's these two API's introduced support for transform and lighting (T&L) which

provided a huge jump in GPU processing. T&L allowed for easier mapping of 3D

images to a 2D plane while incorporating the lighting all into one. By this time there

were only a few competing companies; NVIDIA, ATI, 3dfx, and S3. The end of the

11

90's saw the NVIDIA GeForce 256, the first readily available commercial card,

bringing 3D graphics, NVIDIA, and Direct to their own level. [12]

Figure 5 - GeForce 6600 (2004)

Figure 6 - GeForce GTX 560 (2011)

 Through 2010 and to today we continue to see significant advancements in

the 3D rendering abilities of the GPU. On the front of programming the most notable

improvements include programmable shading and floating point abilities. ATI and

NVIDIA hold the majority of today’s market share in graphics processing and thus

have been major forces in shaping how these units improve.

 One of the most significant advancements of the past decade is general

purpose computing for GPU’s. Due to the highly parallel structure of modern

graphics cards it is possible to use them to perform research and analysis, often

times competing or surpassing modern CPUs. While this can be done with almost

any modern card, NVIDIA’s introduction of the Compute Unified Device Architecture

(CUDA) from NVIDIA this idea has become standardized. OpenCL is also a common

language for performing GPU computation, but it does not support as many

programming languages or have the same amount of industry support. CUDA

12

architecture is the main advancement that is allowing our society to take high

performance computing from CPUs and FPGAs and move it to a quicker paralleled

set of computations on thousands of threads instead of tens of threads. [13]

2.2.2. GPU Architecture and Parallelism

 Here we will look at the both the CUDA architecture and the hardware

architecture that corresponds to it. NVIDIA has created this specialized architecture

to achieve the massively parallel systems that we have today.

Figure 7 - CUDA Software Architecture

 Looking backwards from computer to device we start with the Parallel

Thread Execution (PTX) instruction set. This specially optimized instruction set

allows for special optimization specifically designed for parallel processing on

NVIDIA cards. The PTX instruction set allows NVIDIA to set a standard across

multiple generations of GPUs as well as provide a common set of instructions for

13

both optimization and developer programming. This instruction set rests within the

CUDA drivers which are provided dating back to NVIDIA’s GeForce 8800 series. [14]

 The next level up, CUDA Support in OS is provided through the CUDA Toolkit

which is currently on version 4.1. This toolkit provides all of the necessary

components to write and run CUDA code in an IDE such as Visual Studio or simply in

a text editor. Currently supported are both a LLVM based and the standard nvcc

compiler. The move to the LLVM based compiler has shown 10% increases in

speed, but is geared more towards the new Fermi architecture and beyond. With

the release of the new version of the CUDA toolkit, NVIDIA also provided a much

larger base of functions for image processing.

 The base level is the actual CUDA Parallel Computing engines that are the

basis of all modern NVIDIA cards. The specialized hardware architecture in these

cards is what allows for such successful parallelism in general purpose computing.

On the current generation of CUDA capable hardware, Fermi, one can setup and

process 65,535 simultaneous threads in grids of up to 1024x1024x64. These grid

sizes have doubled and allowed for a third dimension since CUDAs initial release in

2006. The number of cores capable of providing floating point and integer

functionality has also increased six fold. In the following figure the hardware

advancements can be seen in overview as the architecture has changed. Further

improvements can all be seen in the tables attached in Appendix X. [15] [16]

14

Figure 8 - Improvements in CUDA GPU Architecture

 Parallelism is generated through the use of threads on the GPU. CUDA has

the ability to run a particular kernel across multiple threads and multiple cores.

Picture the newest card in NVIDIA’s lineup has 1024 cores per card. If each core can

provide up to 1024 threads per 65535 blocks, there is a possibility to run upwards

of 60 billion instances of a single kernel per card in a system. Spanning this number

across multi-card systems, or even multiple systems connected together, it is easy to

see how parallelism prevails and allows for faster processing. This type of

parallelism is known as single instruction multiple data (SIMD). CUDA devices are

also capable of running thousands of small programs simultaneously as well.

 In order to achieve this number of parallel threads there is a complex setup

of memory. Each and every thread an individual piece of memory that is unshared.

This contains data such as program counters and individual registers. From there

we move up to thread blocks which share memory amongst themselves and then up

to sixty five thousand blocks sharing memory per core. These sets of blocks are

15

called grids and can share a set of application memory for use by smaller threads

with global memory. All of the threads running a particular instance of a kernel are

kept in synchronization through the use of special code functions that wait for all

threads to be completed before reading or writing large changes from global

memory. The memory hierarchy described here is important because each smaller

level allows for quicker access to data; thus like the L cache of a CPU, there is less

need to constantly read and write to slower global memory. [16] [17]

 To handle all of these threads processing at the same time there is a unique

feature called a warp handler. A warp is a group of 32 threads; the smallest data

size for a SIMD setup. When programming in CUDA, users work with blocks so it is

up to the warp handler to determine how to divide the instructions. The Fermi

architecture has a dual warp scheduler, allowing it to process and divide up two sets

of instructions at a time. With 32 bit mathematics it is also possible to dispatch two

of a single type of instruction or a mix at one time. Since this setup works in sets of

32 in order to achieve the peak performance on CUDA capable GPUs is to run

kernels in sets divisible by 32. [17]

 Along with the efficient thread hierarchy, the Fermi architecture relies on

NVIDIA’s third generation of stream multiprocessing (SM) for its hardware

architecture. In this revision of SM, there are 32 CUDA cores per multiprocessor,

giving each card 16 to 32 SMs; with each core having it’s out floating point and

arithmetic logic units. Figure 9 below is a simplified example of third generation

SM. Pictured is a single multiprocessor, with the hardware available in each SM. In

the figure the 32 individual processing cores can be seen along with the 16

16

load/store units and the 4 special functions units. These units are accessed once the

warp schedulers divide tasks amongst the cores. Following these processing units

are the standard graphical processing hardware units such as those that perform

tessellations and texturing. It is also noted that in this version each individual core

has its own integer and floating point units. [16] [17]

Figure 9 - Thread Hierarchy

 Figure 10 - Stream Multiprocessor

Added support for the new IEEE floating point standard has given these new

cards the ability to use a fused add and multiply in one step. Data precision has also

been improved so that the integer units provide 64 bit support while the floating

point units finally provide full 32 bit support. The sixteen load and store and four

special function units allow for up to sixteen thread address to be calculated at a

17

time and four instances of functions such as sine or square roots. With most of these

instructions executing with one instruction per clock cycle having so many SMs on a

single card allows for distribution of complex equations and faster execution. [16]

2.3. FPGA Background

2.3.1. History of FPGAs

 Ross Freeman, co-founder of the company Xilinx, invented Field

Programmable Gate Arrays (FPGA) in 1894 while working for the company Zilog.

After inventing the FPGA Freeman left Zilog with his Patent (patent 4,870,302) to

found Xilinx. While Xilinx is a multi-billion dollar company today, Freeman did not

live to see this become a reality passing away in 1989. He was honored in 2009 by

being inducted into the National Inventor’s Hall of Fame for his work on FPGAs. [18]

 The first FPGAs released to the market had only several thousand gates and

had several disadvantages to their counterparts, ASICs. They were slower,

consumed more power, and had limited functionality. The industry of FPGAs grew

slowly through the 1990s. In 1992 the U.S. Naval Surface Warfare department

completed a project on FPGAs that implemented 600,000 logic gates. During this

time, the main applications for FPGAs were networking and telecommunications.

 By the late 90s, the number of gates on a single FPGA reached the millions

and many of the disadvantages compared to ASICs were diminishing. FPGAs began

entering many other industries because of the low time from development to

market introduction. Much money could be generated by being the first to the

market. [19]

18

 Today, FPGAs can cater to many different applications. Different series and

families are application specific and have additional logic to support faster

processes. FPGAs have a high capacity for parallelization and pipelining processes.

Often, they are used as peripherals to CPUs to carry out specific processes that a

CPU has trouble handling.

2.3.2. Early Programmable Devices

 The idea behind FPGAs originated from two devices, Programmable Logic

Arrays (PLA) and Complex Programmable Logic Devices (CPLDs). PLAs were

introduced during the early 1970s as one- time programmable chips to implement

logic functions. The AND gates and OR gates were connected with a communication

matric that could be programmed by burning fuses to implement a truth table. The

limiting factors were the number of inputs, AND gates, and OR gates. [20]

Figure 11 - PLA Architecture

 CPLDs built upon the idea of PDAs with an interconnection matrix connecting

all of the inputs and outputs. The connection matrix was formed of on-chip Flash

19

memory to configure macrocells. These macrocells are very similar in structure to a

PLA. CPLDs are very similar to FPGAs as the main difference is in the underlying

architecture. [20]

Figure 12 - CPLD Architecture

2.3.3. FPGA Architecture

 Field Programmable Gate Array is a semiconductor device comprised of

many logic blocks with configurable interconnections between these. The logic

blocks are capable of acting as simple logic gates, such as AND and XOR. In addition

to the logic gates, there are routing channels that run between each logic block.

These channels are programmable and enable different logic blocks to talk to each

other. In recent years, more specific circuits are implemented on FPGAs for

20

application specific purposes. These can include multipliers and DSP circuits, which

speed up processing for those applications.

 The main component of FPGAs is the logic block. Millions of these are

replicated in a network throughout the chip. They are implemented in a Lookup

Table (LUT) usually consisting of four input pins. The LUTs have small piece of

memory attached that is programmed for output logic depending on the input.

Essentially, a truth table defined for that piece of logic. Some designers are

increasing the number of input pins to six to increase speed.

Figure 13 - Three Input LUT

 Each LUT has only one output. This output can then be stored in a flip flop to

preserve values over a clock cycles, or it can run to other LUTs to further implement

logic. The Virtex-5, which the benchmarks in the report are based on, uses six input

LUTs.

21

 The routing channels, which run between logic blocks, are used to connect

various LUTs together. The routing channels are controlled by switch blocks that

control connections between crossing wires. An example of this is seen below in

Figure 14.

Figure 14 - Switch Block

 These connections allow for an immense amount of configurable logic

allowing an FPGA to carry out its functionality. Figure 15 below shows the layout of

blocks throughout a network. [21]

22

Figure 15 - FPGA Routing

 In newer FPGA series other blocks are implemented for application specific

functionality. These specialized blocks, or slices, run their specific functionality

faster than can be implemented using LUTs and routing wires. These slices also

drastically cut down the number of LUTs used. The two main blocks are the

multipliers and DSP slices. To implement the multiplication of two 32 bit numbers

would require more than 2000 operations for a single multiply. Different FGPA

series have different types and quantities of specialized blocks based on designed

applications. [22]

23

Figure 16 - Specialized Slices

 The latest FPGA is the Virtex-7 from Xilinx. This model has increased

computing power and efficiency. The architecture for this model can be seen below

in Figure 17.

Figure 17 – Virtex-7 Architecture

24

3. Benchmarks

Benchmarking has been around for years and is widely used as the standard to

which we base our computing processing power today. Programs available from

many different packages are used to measure the metrics of new processors daily.

In the beginning, performance was measured by various system specifications, such

as clock rate. Many designers and consumer realized that while this may give some

indication of the processing power of a machine, it did not incorporate the entire

scope of the situation. Many benchmarks are used today to apply stress to

processors through different processes for different applications. Benchmarks

come in four different types, each having its own strength and weaknesses: real

applications, small benchmarks, benchmark suites, and synthetic benchmarks.

 Real applications are benchmarks bases pre-existing programs. They are

comprised of a typical user’s workload during the day. The advantages to running

real applications are that they directly translate over to improved performance

times on programs and very accurately mirror everyday workloads. However, these

benchmarks are usually very big and require more time to run and transfer to other

machines. In addition, it can be very hard to pinpoint a processing bottleneck to

discover what instruction types need to be improved for the greatest performance

increase.

 The next type of benchmark is the small benchmark. It consists of a very

small code segment that exists in many other applications. For example, the

following C code could be a small benchmark.

25

 for (j = 0; j<8; j++)

 S = S + Aj  Bi-j;

 This code runs very fast and does not take very long to compile or transfer

between systems. In addition, it can give developers a very good idea about what

portion of their process is bottlenecking the systems in order to make

improvements and can be easy to simulate during design to test functionality.

However, many designers can take advantage of the limited instructions used to

design a system specialized for that particular loop. This abuses the benchmark and

does not report accurate data to both designers and customers.

 Benchmark suites are compilations of different benchmarks from different

industries that together represent a variety of computing loads on a machine.

Standard Performance Evaluation Corporation (SPEC) provides one of the main

suites available to developers. SPEC began in 1989 with SPEC89 CPU intensive

benchmark suite. Many companies came together and agreed on a set of programs

that represented a user’s typical workload. Suites are very useful in covering a

diverse set of parameters and characteristics; however, they are still susceptible to

abuse. In addition, they require periodic updates to change the applications as

typical workloads change.

 Lastly, some programmers advocate the use of synthetic benchmarks. These

programs attempt to mirror the characteristics of other applications while using

much less space and processing time. In reality, they do not perform any functional

task on the processor, but do give an accurate representation of processing power.

26

 It is always important to run many iterations of a benchmark. Timings will

change and an average of all iterations should be used to provide a more accurate

picture for comparisons. Often manufacturers can find one or more benchmarks

that their platform particularly excels at and abuse this standard for advertisement.

The best benchmarks to look at for different computers are those posted by non-

profit organizations which are unbiased. [23]

3.1. FPGA Benchmarks

 Benchmarking is not traditionally done for FPGAs. Rather, the datasheets for

different FPGAs have details about maximum clock cycle that they can operate at.

The user then looks at the program that they want to run and they can see number

of clock cycles it takes to produce a result. The throughput does not change

between iterations on the same machine. The following benchmarks that were run

on the Virtex-5 series FPGA were compiled using either the Xilinx Core Generator or

MATLAB Simulink HDL Coder.

 The Xilinx CORE Generator is where most of the applications are from. It is

built into the Xilinx program. When opening a core you have several options that

can be selected based on your needs such as extra pin I/O, processing type, and size.

The Simulink HDL coder is a new addition to the program. Rather than designing

our own code, the current demos available in the Simulink program were used to

generate HDL code, which is then tested in the Xilinx program. The HDL Coder is

also capable of generating testbenches for the application.

27

Fast Fourier Transform (FFT)

A discrete Fourier transform that operates with reduced computational power. The

number of computations needed is reduced from 2N^2 to 2N Log2 N where N is the

number of points necessary for the computation. The FFT used in this study is a

1024 point FFT.

Finite Impulse Response Filter (FIR)

 FIR Filters are designed to be simple to implement for Digital Signal

Processing (DSP). FIR filters are more commonly used then IIR filters because of the

advantages offered such as fractional arithmetic and fewer practical problems. The

FIR filter used for performance testing in this study is a low pass filter.

Advanced Encryption Standard (AES)

 The Advanced Encryption Standard (AES) specifies a FIPS-approved

cryptographic algorithm that can be used to protect electronic data. The AES

algorithm is a symmetric block cipher that is capable of encrypting (encipher) and

decrypting (decipher) information. Encryption converts data to an unintelligible

form called cipher text; decrypting the cipher text converts the data back into its

original form, called plaintext. The AES algorithm is capable of using cryptographic

keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits.

(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

Double Precision Floating Point Multiplication

28

 This block takes in two double floating point numbers for multiplication.

This is similar to a small benchmark for CPUs. A single FPGA is able to implement

multiple instances of this application allowing for large amounts of parallel

processing.

3.2. SPEC CPU2006

 Standard Performance Evaluation Corporation (SPEC) CPU 2006 is a

benchmark suite that contains over twenty-five different benchmarks. These

industry-standardized benchmarks were created to stress a system’s processor,

memory architecture, and compilers. This particular suite is divided into two sub

categories, CINT2006 and CFP2006. The CINT2006 portion consists of twelve total

benchmarks that measure integer operation performance, while the CFP2006

portion consists of seventeen benchmarks that measure floating point operation

performance. A brief description of each SPEC CPU2006 benchmark can be seen

below. [24]

3.2.1. CPUINT2006

400.perlbench

 “400.perlbench is a cut-down version of Perl v5.8.7, the popular scripting

language. SPEC's version of Perl has had most of OS-specific features removed. In

addition to the core Perl interpreter, several third-party modules are used:

 SpamAssassin v2.61
 Digest-MD5 v2.33
 HTML-Parser v3.35

29

 MHonArc v2.6.8
 IO-stringy v1.205
 MailTools v1.60
 TimeDate v1.16” [25]

401.bzip2

 “401.bzip2 is based on Julian Seward's bzip2 version 1.0.3. The only

difference between bzip2 1.0.3 and 401.bzip2 is that SPEC's version of bzip2

performs no file I/O other than reading the input. All compression and

decompression happens entirely in memory. This is to help isolate the work done to

only the CPU and memory subsystem.” [25]

403.gcc

 “403.gcc is based on gcc Version 3.2. It generates code for an AMD Opteron

processor. The benchmark runs as a compiler with many of its optimization flags

enabled.

 403.gcc has had its inlining heuristics altered slightly, so as to inline more

code than would be typical on a UNIX system in 2002. It is expected that this effect

will be more typical of compiler usage in 2006. This was done so that 403.gcc would

spend more time analyzing its source code inputs, and use more memory. Without

this effect, 403.gcc would have done less analysis, and needed more input workloads

to achieve the run times required for CPU2006.” [25]

429.mcf

30

 “429.mcf is a benchmark that is derived from MCF, a program used for single-

depot vehicle scheduling in public mass transportation. The program is written in C.

The benchmark version uses almost exclusively integer arithmetic.

 The program is designed for the solution of single-depot vehicle scheduling

sub-problems occurring in the planning process of public transportation companies.

It considers one single depot and a homogeneous vehicle fleet. Based on a line plan

and service frequencies, so-called timetabled trips with fixed departure/arrival

locations and times are derived. Each of these timetabled trips has to be serviced by

exactly one vehicle. The links between these trips are so-called dead-head trips. In

addition, there are pull-out and pull-in trips for leaving and entering the depot.” [25]

445.gobmk

 “The program plays Go and executes a set of commands to analyze Go

positions.” [25]

456.hmmer

 “Profile Hidden Markov Models (profile HMMs) are statistical models of

multiple sequence alignments, which are used in computational biology to search

for patterns in DNA sequences.

 The technique is used to do sensitive database searching, using statistical

descriptions of a sequence family's consensus. It is used for protein sequence

analysis.” [25]

31

458.sjeng

 “458.sjeng is based on Sjeng 11.2, which is a program that plays chess and

several chess variants, such as drop-chess (similar to Shogi), and 'losing' chess.

 It attempts to find the best move via a combination of alpha-beta or priority

proof number tree searches, advanced move ordering, positional evaluation and

heuristic forward pruning. Practically, it will explore the tree of variations resulting

from a given position to a given base depth, extending interesting variations but

discarding doubtful or irrelevant ones. From this tree the optimal line of play for

both players ("principle variation") is determined, as well as a score reflecting the

balance of power between the two.

 The SPEC version is an enhanced version of the free Sjeng 11.2 program,

modified to be more portable and more accurately reflect the workload of current

professional programs.” [25]

462.libquantum

 “Libquantum is a library for the simulation of a quantum computer. Quantum

computers are based on the principles of quantum mechanics and can solve certain

computationally hard tasks in polynomial time. In 1994, Peter Shor discovered a

polynomial-time algorithm for the factorization of numbers, a problem of particular

interest for cryptanalysis, as the widely used RSA cryptosystem depends on prime

factorization being a problem only to be solvable in exponential time. An

implementation of Shor's factorization algorithm is included in libquantum.

32

 Libquantum provides a structure for representing a quantum register and

some elementary gates. Measurements can be used to extract information from the

system. Additionally, libquantum offers the simulation of decoherence, the most

important obstacle in building practical quantum computers. It is thus not only

possible to simulate any quantum algorithm, but also to develop quantum error

correction algorithms. As libquantum allows adding new gates, it can easily be

extended to fit the ongoing research, e.g. it has been deployed to analyze quantum

cryptography.” [25]

464.h264ref

 “464.h264ref is a reference implementation of H.264/AVC (Advanced Video

Coding), the latest state-of-the-art video compression standard. The standard is

developed by the VCEG (Video Coding Experts Group) of the ITU (International

Telecommunications Union, http://www.itu.int) and the MPEG (Moving Pictures

Experts Group, http://mpeg.chiariglione.org) of the ISO/IEC (International

Standardization Organization, http://www.iso.ch). This standard replaces the

currently widely used MPEG-2 standard, and is being applied for applications such

as the next-generation DVDs (Blu-ray and HD DVD) and video broadcasting.” [25]

471.omnetpp

 “The benchmark performs discrete event simulation of a large Ethernet

network. The simulation is based on the OMNeT++ discrete event simulation system

(www.omnetpp.org), a generic and open simulation framework. OMNeT++'s

33

primary application area is the simulation of communication networks, but its

generic and flexible architecture allows for its use in other areas such as the

simulation of IT systems, queuing networks, hardware architectures or business

processes as well. The Ethernet model used in this benchmark is publicly available

from the address given in the References.” [25]

473.astra

 “473.astar (pronounced: A-star) is derived from a portable 2D path-finding

library that is used in game's AI. This library implements three different path-

finding algorithms: First is the well-known A* algorithm for maps with passable and

non-passable terrain types. Second is a modification of the A* path finding algorithm

for maps with different terrain types and different move speed. Third is an

implementation of A* algorithm for graphs. This is formed by map regions with

neighborhood relationship. The library also includes pseudo-intellectual functions

for map region determination.” [25]

483.xalancbmkg

 “This program is a modified version of Xalan-C++, an XSLT processor written

in a portable subset of C++. You use the XSLT language to compose XSL style sheets.

An XSL style sheet contains instructions for transforming XML documents from one

document type to another document type (XML, HTML, or other). In structural

terms, an XSL style sheet specifies the transformation of one tree of nodes (the XML

input) into another tree of nodes (the output or transformation result).” [25]

34

3.2.2. CFP2006

410.bwaves

 “410.bwaves numerically simulates blast waves in three dimensional

transonic transient laminar viscous flow.

 The initial configuration of the blast waves problem consists of a high

pressure and density region at the center of a cubic cell of a periodic lattice, with

low pressure and density elsewhere. Periodic boundary conditions are applied to

the array of cubic cells forming an infinite network. Initially, the high pressure

volume begins to expand in the radial direction as classical shock waves. At the

same time, the expansion waves move to fill the void at the center of the cubic cell.

When the expanding flow reaches the boundaries, it collides with its periodic

images from other cells, thus creating a complex structure of interfering nonlinear

waves. These processes create a nonlinear damped periodic system with energy

being dissipated in time. Finally, the system will come to an equilibrium and steady

state.

 The algorithm implemented is an unfactored solver for the implicit solution

of the compressible Navier-Stokes equations using the Bi-CGstab algorithm, which

solves systems of non-symmetric linear equations iteratively.” [26]

416.gamess

35

 “A wide range of quantum chemical computations are possible using

GAMESS. The benchmark 416.gamess does the following computations for the

reference workload:

 Self-consistent field (SCF) computation (type: Restricted Hartree-Fock) of
cytosine molecule using the direct SCF method

 SCF computation (type: Restricted open-shell Hartee-Fock) of water and
cu2+ using the direct SCF method

 SCF computation (type: Multi-configuration Self-consisted field) of triazolium
ion using the direct SCF method” [26]

433.milc

 “The program generates a gauge field, and is used in lattice gauge theory

applications involving dynamical quarks. Lattice gauge theory involves the study of

some of the fundamental constituents of matter, namely quarks and gluons. In this

area of quantum field theory, traditional perturbative expansions are not useful.

Introducing a discrete lattice of space-time points is the method of choice.” [26]

434.zeusmp

 “434.zeusmp is based on ZEUS-MP, a computational fluid dynamics code

developed at the Laboratory for Computational Astrophysics (NCSA, University of

Illinois at Urbana-Champaign) for the simulation of astrophysical phenomena. ZEUS-

MP solves problems in three spatial dimensions with a wide variety of boundary

conditions.

 The program solves the equations of ideal (non-resistive), non-relativistic,

hydrodynamics and magnetohydrodynamics, including externally applied

gravitational fields and self-gravity. The gas can be adiabatic or isothermal, and the

36

thermal pressure is isotropic. Boundary conditions may be specified as reflecting,

periodic, inflow, or outflow.” [26]

435.gromacs

 “435.gromacs is derived from GROMACS, a versatile package that performs

molecular dynamics, i.e. simulation of the Newtonian equations of motion for

systems with hundreds to millions of particles.

 The benchmark version performs a simulation of the protein Lysozyme in a

solution of water and ions. The structure of a protein is normally determined by

experimental techniques such as X-ray crystallography of NMR spectroscopy. By

simulating the atomic motions of these structures, one can gain significant

understanding of protein dynamics and function, and, in some cases, it might even

be possible to predict the structure of new proteins.” [26]

436.cactusADM

 “CactusADM is a combination of Cactus, an open source problem solving

environment, and BenchADM, a computational kernel representative of many

applications in numerical relativity (ADM stands for ADM formalism developed by

Arnowitt, Deser and Misner). CactusADM solves the Einstein evolution equations,

which describe how space-time curves as response to its matter content, and are a

set of ten coupled nonlinear partial differential equations, in their standard ADM

3+1 formulation. A staggered-leapfrog numerical method is used to carry out the

update.” [26]

37

437.leslie3d

 “437.leslie3d is derived from LESlie3d (Large-Eddy Simulations with Linear-

Eddy Model in 3D), a research-level Computational Fluid Dynamics (CFD) code. It is

the primary solver used to investigate a wide array of turbulence phenomena such

as mixing, combustion, acoustics and general fluid mechanics.

 For CPU2006, the program has been set up to solve a test problem which

represents a subset of such flows, namely the temporal mixing layer. This type of

flow occurs in the mixing regions of all combustors that employ fuel injection

(which is nearly all combustors). Also, this sort of mixing layer is a benchmark

problem used to understand physics of turbulent mixing.” [26]

444.namd

 “The 444.namd benchmark is derived from the data layout and inner loop of

NAMD, a parallel program for the simulation of large biomolecular systems.

Although NAMD was a winner of a 2002 Gordon Bell award for parallel scalability,

serial performance is equally important to the over 10,000 users who have

downloaded the program over the past several years. Almost all of the runtime is

spent calculating inter-atomic interactions in a small set of functions. This set was

separated from the bulk of the code to form a compact benchmark for CPU2006.

This computational core achieves good performance on a wide range of machines,

but contains no platform-specific optimizations.” [26]

38

447.dealll

 “The SPEC CPU2006 benchmark 447.dealII is a program that uses deal.II, a

C++ program library targeted at adaptive finite elements and error estimation. The

library uses state-of-the-art programming techniques of the C++ programming

language, including the Boost library. It offers a modern interface to the complex

data structures and algorithms required for adaptivity and enables use of a variety

of finite elements in one, two, and three space dimensions, as well as time-

dependent problems.

 The main aim of deal.II is to enable development of modern finite element

algorithms, using among other aspects sophisticated error estimators and adaptive

meshes. Writing such programs is a non-trivial task, and successful programs tend

to become very large and complex.” [26]

450.soplex

 “450.soplex is based on SoPlex Version 1.2.1. SoPlex solves a linear program

using the Simplex algorithm.” [26]

453.povray

 “POV-Ray is a ray-tracer. Ray-tracing is a rendering technique that calculates

an image of a scene by simulating the way rays of light travel in the real world but it

does so backwards. In the real world, rays of light are emitted from a light source

and illuminate objects. The light reflects off of the objects or passes through

transparent objects. This reflected light hits the human eye or a camera lens. As the

39

vast majority of rays never hit an observer, it would take forever to trace a scene.

Thus, ray-tracers like POV-Ray start with their simulated camera and trace rays

backwards out into the scene. The user specifies the location of the camera, light

sources, and objects as well as the surface textures and their interiors.” [26]

454.calculix

 “454.calculix is based on CalculiX, which is a free software finite element

code for linear and nonlinear three-dimensional structural applications. It uses the

classical theory of finite elements described in books such as the work by O.C.

Zienkiewicz and R.L. Taylor, "The Finite Element Method", Fourth Edition, McGraw

Hill, 1989. CalculiX can be used to solve a variety of problems such as static

problems (bridge and building design), buckling, dynamic applications (crash,

earthquake resistance) and eigenmode analysis (resonance phenomena).” [26]

459.GemsFDTD

 “GemsFDTD solves the Maxwell equations in 3D in the time domain using the

finite-difference time-domain (FDTD) method. The radar cross section (RCS) of a

perfectly conducting (PEC) object is computed. GemsFDTD is a subset of the code

GemsTD developed in the General ElectroMagnetic Solvers (GEMS) project.” [26]

465.tonto

 “Tonto is an open source quantum chemistry package, designed by Dylan

Jayatilaka and Daniel J. Grimwood. Objectives include simplicity and portability;

40

aspects not seen in many quantum chemistry codes. The code is easily extendable

by chemists with limited programming skills and time, and is easy to understand

and use.

 Tonto is written within an object oriented design, in Fortran 95. It uses

derived types and modules to represent classes. Classes range from integers and

text files, through to atoms, space groups and molecules. There is a "self" variable in

most routines, which should be familiar from many OO languages. Tonto uses

dynamic memory instead of common blocks, and uses array operations where

possible.” [26]

470.lbm

 “This program implements the so-called "Lattice Boltzmann Method" (LBM)

to simulate incompressible fluids in 3D as described in. It is the computationally

most important part of a larger code which is used in the field of material science to

simulate the behavior of fluids with free surfaces, in particular the formation and

movement of gas bubbles in metal foams. For benchmarking purposes and easy

optimization for different architectures, the code makes extensive use of macros

which hide the details of the data access. A visualization of the results of the

submitted code can be seen below (flow through a porous medium, grid size

150x150x150, 1000 time steps).” [26]

481.wrf

41

 “481.wrf is based on the Weather Research and Forecasting (WRF) Model,

which is a next-generation mesocale numerical weather prediction system designed

to serve both operational forecasting and atmospheric research needs.

 WRF features multiple dynamical cores, a 3-dimensional variational (3DVAR)

data assimilation system, and a software architecture allowing for computational

parallelism and system extensibility. The parallel portions of the code have been

turned off for SPEC CPU2006 as the interest here is in single processor

performance.” [26]

482.sphinx3

 “Sphinx-3 is a widely known speech recognition system from Carnegie

Mellon University. The 482.sphinx3 benchmark focuses on the CPU-intensive

portion of this speech recognition system.” [26]

3.3. Rodinia Suite

 The following benchmarks were taken from the Rodinia Suite.

Leukocyte

 The leukocyte application detects and tracks rolling leukocytes (white blood

cells) in in vivo video microscopy of blood vessels. The velocity of rolling leukocytes

provides important information about the inflammation process, which aids

biomedical researchers in the development of anti-inflammatory medications.

42

 In the application, cells are detected in the first video frame and then tracked

through subsequent frames. Detection is accomplished by computing for every pixel

in the frame the maximal Gradient Inverse Coefficient of Variation (GICOV) score

across a range of possible ellipses. The GICOV score for an ellipse is the mean

gradient magnitude along the ellipse divided by the standard deviation of the

gradient magnitude. The matrix of GICOV scores is then dilated to simplify the

process of finding local maxima. For each local maximum, an active contour

algorithm is used to more accurately determine the shape of the cell. [27]

LU Decomposition

 LU Decomposition is an algorithm to calculate the solutions of a set of linear

equations. The LUD kernel decomposes a matrix as the product of a lower triangular

matrix and an upper triangular matrix. [27]

SRAD

 SRAD (Speckle Reducing Anisotropic Diffusion) is a diffusion method for

ultrasonic and radar imaging applications based on partial differential equations

(PDEs). It is used to remove locally correlated noise, known as speckles, without

destroying important image features. SRAD consists of several pieces of work: image

extraction, continuous iterations over the image (preparation, reduction, statistics,

computation 1 and computation 2) and image compression. The sequential

dependency between all of these stages requires synchronization after each stage

(because each stage operates on the entire image). [27]

43

K-means

 K-means are a statistical analysis of clusters where each value is placed into a

group where it has the most similar mean. Initial data points are chosen and the

subsequent iterations shuffle the data around until there is convergence. K-means

is often considered a complex calculation, but over time modified algorithms have

improved speed. [27]

Heart Wall

 The heart wall benchmark uses several types of processing to create a

benchmark testing “braided parallelism”. By using image despeckling and edge

detection a new image is produced to detect shapes. Once this process is complete

ellipses are added to the process and finally the entire image is tracked from frame

to frame. This allows for testing parallelism of both multiple tasks and massive

amounts of data. [27]

Hot Spot

 This benchmark runs a simulation of processor power and temperature and

how cells affect their neighbors. These calculations are done by a series of

differential equations. The differential equations are run on a temperature map by

taking power usage into account until the entire map has been normalized. [27]

Needleman

44

 This benchmark is a nonlinear optimization of DNA. It finds the optimal path

to particular cells. Based on cells surrounding elements, initially filled by the

program, backwards calculation is done to find proper alignment. The larger the

calculated score the closer to a match there is. Scores are calculated by looking at

the north, west, and north western cells and points deducted to missing elements.

[27]

Particle Filter

 This benchmark estimated locations in noisy environments by looking at the

location and path of an object. This is done by making guesses, checking their

probability, normalizing the guesses, and updating the location of the object. This

implementation of a Particle Filter looking at the speed up provided by GPU

parallelism in order to make this application possible in real time applications. For

our purposes, trials were run on 1, 2 and 5 million data points in 16, 32 and 64 sized

processing grids. [27]

3.4. John Burkardt Benchmarks

 John Burkardt is a computer programmer that has been working in the

computer science field for many years. His first job was at the Pittsburgh

Supercomputing Company from 1988 – 1992. Up until current day, he has had a

robust career and worked at several places including Bell Helicopter, the

Mathematics Department at Iowa State University, Virginia Tech, and is currently

working at the Department of Scientific Computing at Florida State University. Mr.

45

Burkardt has written many applications, mostly for educational purposes, and two

of them were used in this project for their parallel computing attributes using the

OpenMP library. These two applications are an FFT benchmark and a Prime

Number Counting benchmark. [28]

FFT

 This benchmark is a C program that computes a Fast Fourier Transform

using parallelism via OpenMP. Included in this program is the ability to change the

number of threads used. This allows the user to compare the execution time of

different numbers of threads. [28]

Prime Number Counting

 This benchmark is a C program that counts the number of primes between 1

and N. In the default case, N is set to 131,072 but can be changed in the source code.

For the sake of this project, we only used the default case. This program also

allowed the user to change the number of active threads running for comparison of

execution times. [28]

3.5. SHOC Suite

 Scalable Heterogeneous Computing Benchmark (SHOC) provides

benchmarks that are setup to run across GPUs, CPUs, and cluster computing through

Message Passing Interface (MPI). While originally designed for use with OpenCL,

the current version 1.1.2 supports NVIDIA’s CUDA language and MPI. SHOC

46

provides both stress and performance tests, coving areas from mathematical

problem and linear algebra to image processing.

 Lennord Jones

 This benchmark, based on molecular dynamics, performs nbody

computations using the Lennord Jones potential. N atoms are spread randomly over

a cubic domain for this particular execution. [29]

Reduction

 As the name suggests, this benchmark is massive sum reduction performed

on floating point data. Sets of data points are reduced in individual threads before

being looked over again until a single number is reached. [29]

Chemical Modeling (S3D)

 Using a three dimensional grid, with one thread per point, this benchmark is

a massively parallel calculation of chemical rates using S3D. S3D is a direct

numerical solver based on the Navier-Stokes equation. This benchmark relies

heavily on floating point calculations, an estimated 10 kFLOPS per thread. [29]

Parallel Prefix Sum

 Also known as a scan, this benchmark uses the addition of previous smaller

summations to yield a new overall result. With the addition of multiple parallel

threads, increasing the number of starting values make this harder to run on

modern CPU based systems. [29]

47

Radix Sort

 This benchmark is a radix sorting algorithm where sorting is performed

based on individual locations within a number. For example sorting can be based

first on the highest digit, such as the hundreds place for example, and then proceed

to look at the next level down. Sorting as the algorithm processes each level allows

for the list to be sorted quickly in parallel. [29]

2D Stencil Operation

 A 9 point stencil computation where each value is updated in turn based on

the X-point pattern defined by the algorithm. The standard pattern that updates

this algorithm remains the same during this benchmark; however, multiple

iterations show speedup in larger systems where multiple points can be processed

at once. [29]

Vector Dot Product

 This benchmark calculates and checks the bandwidth of a given device while

performing a vector dot product operation. Vector dot product results in

calculations to determine of the vectors are orthogonal by performing normalization

and then looking at the angle between the two vectors. [29]

Device Information

48

 These benchmarks include calculating data about the particular card that is

being used to execute other benchmarks. These statistics include the download

speed of the device, the devices memory capabilities, and the max flops possible on

the device. Since these numbers could all be limiting factors in the calculation of the

performance of any one device it is important to know where these numbers lie so

that they can be taken into account. [29]

3.6. Parboil Suite

 Parboil is a suite designed by the IMPACT group, Illinois Microarchitecture

Project utilizing Advanced Compiler Technology, mainly for GPUs. Designed to focus

on the massively parallelism systems of today’s GPUs, modeling and complex

mathematics form the basis of the benchmarks. While the IMPACT group also

provides a CPU simulation compiler for CUDA, it is used solely for GPU testing in the

context of our project.

Breadth First Search

 Breadth First Searching a style of graph searching algorithm that goes

through every node in a tree until the correct result is found. This algorithm

basically looks through the tree layer by layer, finding children for its next round as

it goes. It will not skip to any of the found children until every node on the current

level is finished being examined. With this type of exhaustive searching large trees

can require large amounts of space and time to compute. Benchmarking with a

49

breadth first searching algorithm will allow us to see the advantages, if any, to more

modern multiprocessor multithreaded systems. [30]

Dense Matrix Multiplication

 In matrix multiplication, the dot product of a column by a row is performed.

The limitations on this idea are that the two matrices must have similar dimensions,

or at least have the x dimension of A equal to the y dimension of B. Dense matrix

multiplication follows this same principle, except that the properties of a dense

matrix are different than those of a normal matrix. Consider for example that every

block in a matrix is connected to every other block in the matrix, so that if you

change one you affect the entire matrix. This make multiplication of dense matrices

a time consuming task for simple non parallel processors and an excellent way to

benchmark the idea of parallel processing in modern hardware. [30]

FFT

 The Fast Fourier Transform (FFT) is a very important algorithm for Digital

Signal Processing (DSP). Simply put, FFT is a computationally efficient method for

calculating the Discrete Fourier Transform (DFT). The DFT is a mathematical

operation of transforming a time domain function of finite (discrete) size into a

frequency domain function. There are several ways of computing the DFT, FFT

being one of them. Without FFT, calculating the DFT can be a long and tedious

process. The FFT simplifies this process by breaking the set of data into smaller and

smaller chunks and then calculating the DFT. For example, say there were 32 data

50

points. Trying to calculate the DFT on all 32 points at once would be very difficult.

FFT breaks down that data set into smaller and smaller sets until, in this case, there

are 16 sets of 2. It is much faster and easier to calculate the DFT at a data size of two

than at a data size of 30, especially when parallel computing is involved and several

of those 16 calculations can be done at the same time.

Sum of Absolute Differences

 Sum of absolute differences (SAD) is an algorithm often used in video

encoding as it is a comparison between the current image and the next occurring

frame. The algorithm simple finds the absolute value of the given image minus the

next before proceeding to add them all together. The smallest set is the closest to

the same image. SAD is often used across multiple platforms for compressing video,

simple animation, and object recognition. [30]

Distance Cutoff Coulombic Potential

 This benchmark computes the Coulombic Potential of each grid point in a 3D

matrix. This benchmark relies on the calculation of the unequal dipole forces of a

water molecule. Speedup is shown by splitting up the calculations among parallel

threads. [30]

Saturating Histogram

 Using a 2 dimensional matrix, this benchmark calculates a saturated

histogram based on the input data. For our particular set of tests, the input data is

that of a silicon wafer with a Gaussian representation of data. [30]

51

Lattice Boltzman

 The Lattice Boltzman benchmark is a fluid dynamics simulation within an

enclosed container. Within this benchmark, particle collision and general

interaction is calculated using a discrete equation. This method for fluid dynamic

simulation is easily ported to GPU benchmarking for its ease in parallelism. [30]

Sparse Matrix Dense Vector Multiplication

 The SPMV benchmark is similar to the dense matrix multiplication in that all

points are related to one another, thus when one point is acted upon it effects the

results of other points. In this case the matrix itself is sparsely populated so there

are not as many points to work with. This particular execution uses JDS format so it

allows for padding with zeros and multiple alignments. [30]

Two Angular Correction Function

 The TPACF benchmark performs a statistical analysis of a spatial

distribution, often used when measuring astronomical bodies. It calculates a

histogram of distances between every set of objects within the data set. Completion

of this benchmark places distances, normally on an exponential curve, within reach

of a straight sloped line. Parallelism allows for processing of a multitude of points at

one time. [30]

52

4. Results

4.1. Devices

 The following is the exact specifications for the devices that these

benchmarks were tested on. This information includes: clock rates, system memory,

and host operating system among other specifications.

4.1.1. GPU

 All of the GPU benchmarks were run on the same system. Since transfer time

and driver commands are issued by the CPU we must look at the whole system. The

test system is running Ubuntu 10.04 with the Linux kernel version 2.6.32-38-

generic. Other system specifications are as follows:

 CPU: AMD Athlon 64 x2 5200+ running at 2.611GHz dual core

 3GB of system memory, DDR2 800MHz

 GPU 1: NVIDIA GeForce GTX 460

o CUDA Capability 2.1

o 336 CUDA capable cores

o 1024MB of global onboard memory

o GPU clocks are as follows:

 Graphics 675MHz

 Memory 1800MHz

 Processor 1350MHz

 GPU 2: NVIDIA GeForce 9800 GTX+

o CUDA Capability 1.1

o 128 CUDA capable cores

o 512MB of global onboard memory

o GPU clocks are as follows:

53

 Graphics 738MHz

 Memory 1100MHz

 Processor 1836MHz

 System PCIE version 1.1

4.1.2. CPU

 All of the CPU benchmarks were also run on the same system know at

Worcester Polytechnic Institute as the AMAX machine. This system has the

following specifications:

 2x – Intel Xeon X5650 processors running at 1.6 GHz. The processor is

capable by factory default to run at 2.67GHz. These processors have 6 cores

and 12 threads a piece, totaling 12 cores and 24 threads using Hyper

Threading.

 The total memory of this machine is 24.6 GB.

 The operating system running on this machine is Linux version 2.6.18-

274.7.1.e15.

 The compiler is GCC, G++, GFortran versions 4.3.4.

 Intel C++ Compiler XE version 12.0.1.116 build 2010116

4.1.3. FPGA

 The FPGA benchmarks were performed using simulations on a Virtex-5

family board. All simulations were performed using the ISIM program through the

Xilinx program. Virtex-5 boards come in many different series and are specialized

for the following applications taken from the Xilinx datasheet:

 Virtex-5 LX: High-performance general logic applications

 Virtex-5 LXT: High-performance logic with advanced serial connectivity

54

 Virtex-5 SXT: High-performance signal processing applications with

advanced serial connectivity

 Virtex-5 TXT: High-performance systems with double density advanced

serial connectivity

 Virtex-5 FXT: High-performance embedded systems with advanced serial

connectivity [31]

4.2. All Devices

 As a comparison between all three platforms we looked to the Fast Fourier

Transform. The FFT benchmark was chosen since it was easily portable between all

three devices. For the CPU the benchmark was acquired from John Burkardt, while

the GPU one came from the Parboil Suite and the FPGA core came from MATLAB

HDL Coder. While the benchmark came from different sources, the FFT

implementation was similar. A factor for concern could come from the use of the

different style compilers, making different optimizations to the code. The timings

from this benchmark can be seen here in Table 1.

FFT Benchmark 262,155 Points

Bench
mark CPU GPU FPGA

 2
Threads

4
Threads

8
Threads

12
Threads

24
Thread

s

Max Threads Virtex-5

FFT 76.17
ms

45.41
ms

31.63
ms

27.85
ms

31.36
ms

8.13 us
(Execution)

2.59 ms

Table 1 - FFT Results

55

 Using these timings it is obvious that the GPU processed the FFT the fastest.

The GPU throughput at an FFT this size is 311 times more than that of the FPGA and

3351 times faster than the CPU Multicore with 12 threads. What is missing from

this data is the transfer time for the GPU to send and receive the data. This time is

69 ms for this size data. With this time added in the GPU actually becomes the

slowest of all three platforms. Now, the FPGA is the fastest at 26.67 times faster

than the GPU and 10.76 times faster than the CPU.

 What these results can infer is that depending on the hookup of your GPU to

minimize transfer time you could be better off using another platform. As GPU

transfer times become smaller and smaller, it is evident that in terms of speed, your

best choice will be a GPU.

4.3. CPU & GPU

 In this section, we will discuss how the CPU and GPU compared against each

other. The three benchmarks that we were able to test across both of these

platforms were all from the Rodinia benchmark suite. The Leukocyte, LU

Decomposition, and Speckle Reducing Anisotropic Diffusion (SRAD) benchmarks

were the three that were executed and the average timings from three runs can be

seen as a comparison in Table 2 below.

56

Benchmark CPU GPU

 2
Threads

4
Threads

8
Threads

12
Threads

24
Threads

Max
Threads

Leukocyte 11.70 s 6.11 s 3.65 s 2.16 s 1.67 s 0.157 s

LU
Decomposition

242.82
ms

130.00
ms

76.40 ms 69.23 ms 145.20
ms

7.38 ms

Speckle
Reduction

638.14
ms

415.07
ms

306.41
ms

283.93
ms

492.26
ms

282.93
ms

Table 2 - CPU & GPU Results

 Looking at the above data in most cases the GPUs beats out CPUs in raw

processing. Raw processing is something to note because, for the GPU iterations,

data is all moved to the GPU’s global memory before testing. This keeps the GPU

from having to ask for data over the slower system bus.

 Looking at the times required for the Leukocyte benchmark there is a 10.6x

speedup between the 24 Hyper threads of the AXAM machine and the CUDA based

GTX 460. Again this is looking at raw processing as even in the benchmark papers it

is stated that “Although the overall kernel executed in slightly less than a second, the

memory allocation and copying overheads add more than eleven seconds to the

overall runtime.” [32]

 The ultimate success of CUDA results from the many code optimizations and

compacting the code into a single kernel; thus, removing much of the extra overhead

that decreases speed.

 Moving onto the LU Decomposition, it is easy to see that the GPU was much

faster than the CPU running this benchmark. This is most likely due to the

functionality of LU Decomposition, which is purely linear algebra mathematics.

57

Since this benchmark is purely mathematical based, the 336 cores and consequently

the numerous ALUs of the GPU would be must faster in this type of computation

than the 12 cores of the CPU. The only place that the CPU would be able to make up

for its slower computation would be in the data transfer portion of this benchmark.

In this study though, we are only looking at raw execution and not data transfer, so

the GPU is much faster than the CPU in the computation of the LU Decomposition

benchmark.

 The Speckle Reduction benchmark uses mostly partial differential equations

in its computations. As described in the background section, this benchmark

consists of several, sequential parts, making synchronization of these parts a

necessary feature. This necessity for synchronization is what most likely allowed

the CPU execution time to equal that of the GPU. In the flat out computational

portions of this benchmark, the GPU would most likely beat the CPU due to its sheer

number of available cores. Advancements in CPU pipelining, however, allow the

CPU to begin the next instruction while the current one is executing. This basically

means that the CPU has the ability to synchronize and start its next instruction at

the same time. We believe that is the uniqueness of CPU pipelining that allows it to

compete with the GPU in execution time for this benchmark.

4.4. Individual Results

4.4.1. GPU Specific

For any GPU today the biggest area of a setback is in the area of data transfer.

Until recently, and still the majority, GPUs were only on dedicated cards requiring a

58

link to the CPU and memory over a data bus. The limitation of these busses to

transfer the computed data severely limits the abilities of GPUs in high performance

computing. While bus speeds have come a long way since the original PCI and AGP

graphics interfaces, even the newest version of PCIE limits speeds to 32 GB/sec

assuming full utilization of every channel both upload and download.

PCIE Version Raw Bitrate
(GT/sec)

Total
Bandwidth
(GB/sec)

1.0a 2.5 8
1.1 2.5 8
2.0 5 16
2.1 5 16
3.0 8 32
4.0 (theoretical) 16 X

Table 3 - GeForce Specification

Just looking at the specifications for the GeForce GTX460 we can see that its

maximum memory bandwidth is clocked at 115.2 GB/sec which is far in excess of

the 32 GB/sec we have with the current transfer standard. Looking at the SHOC

Benchmark Suite we can view download speeds and the speed of the onboard

memory of the tested cards as well. In the following table it is clear that larger file

sizes allow for use of more bandwidth, but the graphics cards simply are not capable

of utilizing the full bandwidth. The maximum data rate we see below is 3.278

GB/sec whereas the host systems capability was 4 GB/sec in both the upload and

download channels. With small file sizes, such as the 1kB file, the graphics card

barely reaches a tenth of its potential. As the file size increases past the 512kB point,

the time required to move the data increases in a linear fashion with a factor of two.

59

Focusing on the transfer capabilities of new generations of GPUs would allow for

much faster processing of large data sets by significantly reducing transfer times.

Size of Data Chunk
(kB)

GB / second Time
(milliseconds)

1 0.0968 0.01057
2 0.1919 0. 01067
4 0.3399 0. 01204
8 0.6074 0. 01348
16 1.0987 0.01491
32 1.5839 0.02069
64 2.1322 0.03074
128 2.5777 0.05084
256 2.8825 0.09094
512 3.0872 0.1698
1024 3.1711 0.3306
2048 3.1773 0.6602
4096 3.1769 1.3211
8192 3.2272 2.5995
16384 3.2552 5.1541
32768 3.2357 10.369
65536 3.2696 20.525
131072 3.2733 41.004
262144 3.2781 81.887
524288 3.2783 163.768

Table 4 - Data Size vs. Data Rate

In contrast to moving data to and from the device, moving data around

between the internal memory levels is a faster process. Looking below at Table 5

gives us another look at how slow global memory transfers are in comparison to the

internal capabilities of the GPU. The internal memory movement is on the order of a

hundred to three hundred GB/sec.

60

Read / Write Memory Block Size Speed (GB/sec)

Local 32 190 / 181
Local 64 288 / 328
Local 128 299 / 388
Local 256 289 / 385
Local 512 277 / 368
Global 32 7.4 / 3.7
Global 64 5.8 / 3.5
Global 128 4.8 / 3.4
Global 256 4.3 / 3.4
Global 512 4.1 / 3.3

Table 5 – Global vs. Local Memory Speeds

As we can see in the table of timings below, from the Parboil Suite of
Benchmarks, large portions of time during any given benchmark is
transferring data to the GPU or the result back to main memory. While
transferring data is not necessarily the bulk of the time, a more efficient
method for transferring data is needed to help speed up the overall
computation times. As seen in

61

P
arboil

Average - 460 Average - 9800 Percent Diff

CUTCP

GPU 0.037495333 0.036806 -0.92775365

Copy 0.006528333 0.006477667 -0.38956379

FFT

GPU 0.000812667

Copy 0.069062

LBM - long

GPU 30.15880433 93.86147667 51.36472182

Copy 0.354906667 0.334240333 -2.99882802

LBM - short

GPU 1.006141333 3.124029333 51.2784621

Copy 0.340840333 0.332132333 -1.29396043

MM - long

GPU 0.008865333 0.010750667 9.61120174

Copy 0.010738333 0.010793667 0.256981856

SAD

GPU 0.001495667 0.002197667 19.00722022

Copy 0.115957 0.064151 -28.7638528

SPVM - large

GPU 0.000219333 0.000319333 18.56435644

Copy 0.076647333 0.054017333 -17.3191426

SPVM -
medium

GPU 0.000117 0.000114 -1.2987013

Copy 0.051963667 0.047360667 -4.6343125

SPVM - small

GPU 4.73333E-05 4.93333E-05 2.068965517

Copy 0.049963667 0.045377 -4.81081875

TPACF

GPU 1.361817 1.343129333 -0.69087015

Copy 0.081934 0.051611333 -22.7058976

Table 6 the smallest transfer time is still on the order of milliseconds (6.528

ms); magnitudes larger than a single cycle of execution for today’s modern CPUs and

GPUs (0.5 nanosec). An interesting note comes from the comparison of the older

9800 card to the current 460; the copy times actually increased by an average of

62

9.18% for the new architecture. This may be attributed to the added memory banks

or new hierarchy.

63

Parboil Average - 460 Average - 9800 Percent Diff

CUTCP

GPU 0.037495333 0.036806 -0.92775365

Copy 0.006528333 0.006477667 -0.38956379

FFT

GPU 0.000812667

Copy 0.069062

LBM - long

GPU 30.15880433 93.86147667 51.36472182

Copy 0.354906667 0.334240333 -2.99882802

LBM - short

GPU 1.006141333 3.124029333 51.2784621

Copy 0.340840333 0.332132333 -1.29396043

MM - long

GPU 0.008865333 0.010750667 9.61120174

Copy 0.010738333 0.010793667 0.256981856

SAD

GPU 0.001495667 0.002197667 19.00722022

Copy 0.115957 0.064151 -28.7638528

SPVM - large

GPU 0.000219333 0.000319333 18.56435644

Copy 0.076647333 0.054017333 -17.3191426

SPVM -
medium

GPU 0.000117 0.000114 -1.2987013

Copy 0.051963667 0.047360667 -4.6343125

SPVM - small

GPU 4.73333E-05 4.93333E-05 2.068965517

Copy 0.049963667 0.045377 -4.81081875

TPACF

GPU 1.361817 1.343129333 -0.69087015

Copy 0.081934 0.051611333 -22.7058976

Table 6 – Parboil Suite Timings

 Continuing to look at the Parboil Suite, there are other noticeable

improvements with the new Fermi architecture. The full table of results can be seen

in the appendices. Using the new architecture, the time spent on interactions

between the CPU and GPU decreased by a noticeable amount. CPU computation

time decreased by 8.77% and the time the CPU spent handling GPU commands

64

decreased by 2.21%. These increases show how newer GPUs are capable of

handling more commands by themselves and, while still reliant on CPUs, are moving

towards being able to compute by themselves.

 Moving to the data from the Rodinia suite other observations on GPU

processing can be made. Once again, as with the Parboil suite, we can see that the

time taken to move memory around with the newer GTX 460 is still slower. Overall

this effect could be due to the test system’s PCIE bus. We did not have an

intermediate GPU to test floating point speedup with the new architecture, but using

the 9800 GTX+ we could observe native increase. Looking at the table below we see

that the older GPU beat the new architecture by a very slight margin; an average

increase of -0.97% for the GTX 460. Since the older architecture was optimized for

standard arithmetic and did not support floating point, this result is reasonable.

Rodinia Average - 460 Average - 9800 Percent Diff

Particle Float
(non-float)

A

GPU execution 0.000117667 0.000116889 -0.3315964

B

GPU execution 0.000129333 0.000129444 0.042936883

C

GPU execution 0.000126333 0.000123444 -1.15658363

D

GPU execution 0.000120333 0.000116111 -1.78571429

E

GPU execution 0.000125333 0.000122111 -1.30220027

F

GPU execution 0.000123 0.000121 -0.81967213

G

GPU execution 0.000123667 0.000119889 -1.55109489

H

GPU execution 0.000129667 0.000127556 -0.82073434

Table 7 - Rodinia Particle Filter Results

65

4.4.2. CPU Results

SPEC CPUINT2006 Results

 There were two instances of the CPUINT2006 benchmark suite run on the

CPU for this project. The first run through was done on only a single core and single

thread using the GCC, G++, and GFortran 4.3.4 (GNU) compiler. The second was

done using the Intel C++ Compiler XE. The GNU compiler run through had the auto

parallel feature off, meaning it used only a single thread. The Intel compiler run

through had the auto parallel feature enabled, meaning it was using multicore

parallelism to complete the benchmark. The results of these two runs can as well as

the overall speedup percentages can be seen in the following tables.

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench 398.00 396.00 396.00

401.bzip2 582.00 582.00 581.00

403.gcc 375.00 375.00 375.00

429.mcf 373.00 373.00 371.00

445.gobmk 510.00 511.00 511.00

456.hmmer 869.00 869.00 869.00

458.jeng 595.00 612.00 595.00

462.libquantum 508.00 506.00 506.00

464.h264ref 710.00 706.00 709.00

471.omnetpp 374.00 373.00 374.00

473.atar 494.00 495.00 494.00

483.xalancbmk 268.00 260.00 259.00

Table 8 - SPEC CPUINT2006 w/ GCC, G++, GFortran compiler w/o auto parallel

66

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench 410.00 411.00 411.00

401.bzip2 539.00 539.00 538.00

403.gcc 330.00 331.00 334.00

429.mcf 184.00 184.00 184.00

445.gobmk 600.00 601.00 607.00

456.hmmer 213.00 214.00 214.00

458.jeng 508.00 508.00 507.00

462.libquantum 12.20 14.30 13.00

464.h264ref 959.00 959.00 1031.00

471.omnetpp 339.00 340.00 339.00

473.atar 350.00 349.00 349.00

483.xalancbmk 214.00 214.00 214.00

Table 9 - SPEC CPUINT2006 run with Intel compiler in auto parallel

 Iteration #1
Speedup

Iteration #2
Speedup

Iteration #2
Speedup

400.perlbench -3.02% -3.79% -3.79%

401.bzip2 7.39% 7.39% 7.40%

403.gcc 12.00% 11.73% 10.93%

429.mcf 50.67% 50.67% 50.40%

445.gobmk -17.65% -17.61% -18.79%

456.hmmer 75.49% 75.37% 75.37%

458.jeng 14.62% 16.99% 14.79%

462.libquantum 97.60% 97.17% 97.43%

464.h264ref -35.07% -35.84% -45.42%

471.omnetpp 9.36% 8.85% 9.36%

473.atar 29.15% 29.49% 29.35%

483.xalancbmk 20.15% 17.69% 17.37%

Average
Increase
Per Benchmark

21.72% 21.51% 20.37%

Total Average
Increase

21.20%

Table 10 - Speedup percentages from the GNU run to the Intel run

67

 From the tables above, you can see that the multicore, auto parallel run

through generally yielded a quicker execution time than the run through with only a

single thread. There were, however, a few of the benchmarks that actually ran

better using only a single thread. This is probably due to the fact that the work load

of these specific benchmarks was better optimized for only a single thread. Overall,

the multicore run through produced a 21.2% increase in speed over than of single

thread run.

SPEC CFP2006 Results

 Once again, there were two instances of the SPEC CPU2006 floating point

suite benchmarks run on the CPU. There were two benchmarks in this suite, bwaves

and wrf, which were left out of these runs because of an invalid run error. Both of

these benchmarks would build successfully, but every time we tried to run them, we

would get this invalid run error that we could not figure out how to fix. Otherwise,

all the other benchmarks in the floating point suite ran fine and there timings can be

seen in the following two tables. The first table shows the timings for the run on the

GCC, G++, and GFortran compiler with the auto parallel feature off (single threaded).

The subsequent table shows the timings of the run on the Intel compiler with the

auto parallel feature on (multi-threaded).

68

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

416.gamess 937 940 938
433.milc 479 463 489
435.gromacs 579 579 578
436.cactusADM 1372 1441 1338
437.leslie3d 604 604 603
444.namd 496 497 496
447.dealII 430 429 430
450.soplex 270 270 283

453.povray 236 235 237
454.calculix 1484 1484 1484
459.GemsFDTD 517 517 517
465.tonto 652 649 652
470.lbm 378 379 378
482.sphinx3 632 630 632
434.zeusmp 623 625 625

Table 11 - SPEC CFP2006 w/ GCC, G++, GFortran compiler w/o auto parallel

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

416.gamess 1238 1185 1197
433.milc 190 189 190
435.gromacs 485 489 482
436.cactusADM 60.9 53.1 50.3
437.leslie3d 87.7 90.5 95.8
444.namd 457 456 457
447.dealII 293 293 293
450.soplex 296 263 286

453.povray 191 191 190
454.calculix 382 292 375
459.GemsFDTD 119 122 121
465.tonto 469 462 469
470.lbm 49.9 49.9 50.1
482.sphinx3 528 544 514
434.zeusmp 93.9 93 90.8

Table 12 - SPEC CFP2006 run with Intel compiler in auto parallel

 Though there were a few benchmarks that produced a negative speed

increase from the single threaded to the multi-threaded run, most benchmarks

69

displayed a significant increase in speed. The speedup of each benchmarking

iteration, as well as the average total speedup of all the run-throughs, can be seen in

the following table.

 Iteration #1
Speedup

Iteration #2
Speedup

Iteration #3
Speedup

416.gamess -32.12% -26.06% -27.61%
433.milc 60.33% 59.18% 61.15%

435.gromacs 16.23% 15.54% 16.61%
436.cactusADM 95.56% 96.32% 96.24%
437.leslie3d 85.48% 85.02% 84.11%
444.namd 7.86% 8.25% 7.86%
447.dealII 31.86% 31.70% 31.86%
450.soplex -9.63% 2.59% -1.06%
453.povray 19.07% 18.72% 19.83%
454.calculix 74.26% 80.32% 74.73%
459.GemsFDTD 76.98% 76.40% 76.60%
465.tonto 28.07% 28.81% 28.07%

470.lbm 86.80% 86.83% 86.75%
482.sphinx3 16.46% 13.65% 18.67%
434.zeusmp 84.93% 85.12% 85.47%
Average Increase Per
Benchmark

42.81% 44.16% 43.95%

Total Average Increase 43.64%

Table 13 - Speedup percentages from the GNU run to the Intel run

 As you can see, there was an average total speedup of 43.64% for the SPEC

CPU2006 floating point suite. This is over two times the speedup we saw from the

CPU2006 integer suite. We believe that such an increase in speedup is due to the

complexity of floating point operations. A single thread would be able to run

simpler integer operations faster than complex floating point operations. Thus, you

would see a more significant speed increase when using the multi-threaded

70

capabilities of a CPU to calculate floating point operations as opposed to integer

operations.

Rodinia / John Burkardt Results

 Each of the Rodinia and Burkardt benchmarks was run five different times at

three iterations a piece using 2, 4, 8, 12, and 24 threads. Since the CPU we were

testing on has two processors, totaling 12 cores, we believed that this range of

thread counts would cover the most practical multithreading situations. The

following table shows the average execution time for three iteration of each

benchmark on the various thread counts. The first five benchmarks in this table are

from the Rodinia suite and the other two are from Burkardt suite.

 2 threads 4 threads 8 threads 12 threads 24 threads

Leukocyte (s) 11.70 6.11 3.65 2.16 1.67

LU Decomposition
(ms)

242.82 130.00 76.40 69.23 145.20

Speckle Reduction
(ms)

638.14 415.07 306.41 283.93 492.26

Means (s) 3.35 3.67 2.91 2.16 1.67

Stream Clusters (s) 47.08 25.18 14.61 11.91 10.40

FFT (ms) 76.17 45.41 31.63 27.85 31.36

Primes (s) 2.04 1.17 0.64 0.44 0.36

Table 14 - Rodinia/Burkardt average execution time on 2, 4, 8, 12, 24 threads

71

 As you can see, the execution times change when transitioning to a different

number of threads. The total speedup percentage change between thread counts

can be seen in the following table.

 2-4 threads 4-8 threads 8-12 threads 12-24 threads

Leukocyte (s) 47.78% 40.26% 40.82% 22.69%

LU Decomposition
(ms)

46.46% 41.23% 9.38% -109.74%

Speckle Reduction
(ms)

34.96% 26.18% 7.34% -73.37%

kmeans (s) -9.55% 20.71% 25.77% 22.69%

Stream Clusters (s) 46.52% 41.98% 18.48% 12.68%

FFT (ms) 40.38% 30.35% 11.95% -12.60%

Primes (s) 42.65% 45.30% 31.25% 18.18%

Average Increase
Between Threads

35.60% 35.14% 20.71% -17.07%

Table 15 - Speedup between thread counts

 Several interesting observations can be made from the information in the

table above. First, we saw that three out of the seven benchmarks had a decrease in

speed when transitioning between 12 and 24 threads. This is most likely due to the

hardware limitations of our processor. At twelve threads, our processor can

dedicate one core to each thread because it has a total of 12 cores. Once we

transition to 24 threads though, 12 of the 24 threads become “virtual” threads that

are implemented at the software level. This basically means that each core is

handling two threads apiece. While this technology may be good for some

applications, running two threads on a single core can sometimes produce slower

execution times than using a single thread per core.

72

 The other interesting observation was that the average speed increase from

2 to 4 and 4 to 8 hovered around a 35% increase while the increase between 8 to 12

dropped down to 20%. This shows that there is a significant speed increase up until

8 threads, but beyond that, the speedup begins to become less prevalent.

4.4.3. FPGA Results

 As is evident from the benchmarks run on the FPGA, they do not usually

perform as complex tasks as the CPU and GPU benchmarks show. The applications

they are used for are generally specific and are used to enhance applications for

other processes.

Benchmark Clk
Period
(MHz)

Clk
Cycles

Throughput
(ns)

Delay for
valid data
(Clock
Cycles)

Delay
(ns)

FFT 101 1 9.87 12 118
AES 376 1 2.66 1 2.66
FIR 710 1 1.41 8 1.13
FP Mul 550 9 16.4 9 46.4
FIR Core 550 11 20.0 20 36.4

Table 16 - FPGA Results

 As the Table above shows, the majority of applications run on the FPGA do

not take much time between outputs, but there is usually a larger delay before the

output is actually available. All of these benchmarks were designed using a

pipelining implementation. This allowed the FPGA to use the ability to break up

tasks and use internal storage to speed up the overall throughput.

 FPGAs are very useful to high performance computing, however on an

application specific basis. The advantage of having a higher processing power

73

compared to CPU and the ability to customize the data transfer method to meet your

needs is great. However, it is vital in today’s computing to find the board that has

the proper computational slices to meet the needs of your application.

74

5. Future Work

For future projects similar to this one, the main topics to focus on would be a

broader spectrum of benchmarks capable of running across all three platforms as

well as possibly looking into newer technologies, such as an Accelerated Processing

Unit (APU). Benchmarking of clusters or testing a single benchmark using multiple

platforms for speedup would also be of use in future research.

While most of today’s benchmarks lie in the realm of scientific and

mathematical algorithms, it would be beneficial to create cross platform

benchmarks across other types of general processing. Examples of general

processing benchmarks could be ones that handle word processing, weather

tracking, molecule design, encryption, and data compression, all with the capability

of running on all three platforms.

Newer technologies have allowed designers to put both CPUs and GPUs on

the same die, the concept behind APUs. This decreases data transfer times and

allows for newer instruction sets to incorporate both units. These new devices have

the ability to provide substantial performance increases to the processing world.

With this is mind, it would be beneficial to benchmark these new platforms against

their predecessors.

75

6. Conclusion

High Performance Computing is a rapidly growing field that will require more

research to understand. The technology surrounding CPUs, GPUs, and FPGAs is still

rapidly evolving and will continue in future years. Benchmarking will be a constant

process to stratify different systems as well as different devices. With the

information in this report, some light is shed on the processing power for different

applications between CPUs, GPUs, and FPGAs.

 Overall, 66 benchmarks were investigated over eight suites and sources to

gather information. These results are useful to compare the three systems

discussed as well as in comparison with other devices during future studies. The

world of High Performance Computing is a constantly evolving field that will play a

significant role in the years to come in many diverse fields.

76

7. Appendices

7.1. Parboil Results 9800 GTX+

Parboil Iteration 1 Iteration
2

Iteration
3

Average SD

CUTCP

IO 0.039047 0.047604 0.042384 0.0430117 0.00431289

GPU 0.036803 0.036811 0.036804 0.036806 4.3589E-06

Copy 0.006495 0.006459 0.006479 0.0064777 1.8037E-05

Driver 0.000139 0.000141 0.000141 0.0001403 1.1547E-06

Compute 0.199751 0.199162 0.199347 0.19942 0.00030121

CPU
Overlap

0.036803 0.036811 0.036804 0.036806 4.3589E-06

LBM - long

IO 0.040944 0.040932 0.040948 0.0409413 8.3267E-06

GPU 93.829116 93.867864 93.88745 93.861477 0.02968691

Copy 0.335708 0.333089 0.333924 0.3342403 0.00133785

Driver 77.793763 77.834447 77.81375 77.813987 0.02034303

Compute 1.016244 1.009388 1.009609 1.011747 0.00389608

CPU
Overlap

78.004436 78.050671 78.00946 78.021522 0.02536816

LBM -
short

IO 0.049419 0.051679 0.051344 0.050814 0.00121966

GPU 3.121433 3.125452 3.125203 3.1240293 0.00225193

Copy 0.331451 0.332959 0.331987 0.3321323 0.00076443

Driver 0.000734 0.000679 0.000699 0.000704 2.7839E-05

Compute 0.920874 0.976684 0.968332 0.9552967 0.03010198

CPU
Overlap

0.124557 0.125872 0.12585 0.1254263 0.00075295

MM - long

IO 3.084938 3.099593 3.09249 3.0923403 0.00732865

GPU 0.01076 0.010734 0.010758 0.0107507 1.4468E-05

Copy 0.010821 0.010749 0.010811 0.0107937 3.9004E-05

Driver 0.000104 0.000124 0.000121 0.0001163 1.0786E-05

Compute 0.051372 0.051629 0.051597 0.0515327 0.00014006

CPU
Overlap

0.000146 0.000169 0.000159 0.000158 1.1533E-05

GFLOPS 1.55E-13 1.55E-13 1.55E-13 1.554E-13 1.4673E-16

SAD

IO 0.166941 0.20198 0.198754 0.189225 0.0193658

GPU 0.00221 0.002185 0.002198 0.0021977 1.2503E-05

77

Copy 0.063778 0.064767 0.063908 0.064151 0.00053742

Driver 0.00003 0.000031 0.000029 0.00003 0.000001

Compute 0.000727 0.00849 0.007983 0.0057333 0.00434302

CPU
Overlap

0.000042 0.000042 0.000041 4.167E-05 5.7735E-07

SPVM -
large

IO 0.142549 0.087202 0.113094 0.1142817 0.02769261

GPU 0.000319 0.000319 0.00032 0.0003193 5.7735E-07

Copy 0.053893 0.054192 0.053967 0.0540173 0.00015573

Driver 0.000063 0.000062 0.000062 6.233E-05 5.7735E-07

Compute 0.004965 0.004981 0.004978 0.0049747 8.5049E-06

CPU
Overlap

0.000079 0.000079 0.00008 7.933E-05 5.7735E-07

SPVM - medium

IO 0.024611 0.02542 0.02499 0.025007 0.00040477

GPU 0.000117 0.000112 0.000113 0.000114 2.6458E-06

Copy 0.047665 0.047027 0.04739 0.0473607 0.00032001

Driver 0.000064 0.00006 0.000061 6.167E-05 2.0817E-06

Compute 0.002742 0.002828 0.00279 0.0027867 4.3097E-05

CPU
Overlap

0.00008 0.000075 0.000079 0.000078 2.6458E-06

SPVM - small

IO 0.021669 0.000503 0.02007 0.0140807 0.01178575

GPU 0.000051 0.000048 0.000049 4.933E-05 1.5275E-06

Copy 0.045435 0.045306 0.04539 0.045377 6.5475E-05

Driver 0.000043 0.000041 0.000041 4.167E-05 1.1547E-06

Compute 0.002261 0.002294 0.002278 0.0022777 1.6503E-05

CPU
Overlap

0.000054 0.000052 0.000052 5.267E-05 1.1547E-06

TPACF

IO 1.129532 1.067352 1.07802 1.0916347 0.03325068

GPU 1.343114 1.343151 1.343123 1.3431293 1.9296E-05

Copy 0.051403 0.051871 0.05156 0.0516113 0.00023819

Driver 0.000093 0.000089 0.00009 9.067E-05 2.0817E-06

Compute 0.019158 0.0188 0.019022 0.0189933 0.00018071

CPU
Overlap

0.000137 0.000129 0.000131 0.0001323 4.1633E-06

78

7.2. Parboil Results GTX 460

Parboil Iteration
1

Iteration
2

Iteration
3

Average SD

CUTCP

IO 0.024785 0.026053 0.026624 0.025820667 0.000941257

GPU 0.037782 0.03735 0.037354 0.037495333 0.000248269

Copy 0.006324 0.006336 0.006925 0.006528333 0.000343576

Driver 0.000138 0.000148 0.000155 0.000147 8.544E-06

Compute 0.198731 0.199476 0.199039 0.199082 0.000374357

CPU Overlap 0.037782 0.03735 0.037354 0.037495333 0.000248269

FFT

IO 0.052376 0.040751 0.041094 0.044740333 0.006614905

GPU 0.000813 0.000812 0.000813 0.000812667 5.7735E-07

Copy 0.074595 0.066348 0.066243 0.069062 0.004792006

Driver 0.000047 0.000048 0.000047 4.73333E-05 5.7735E-07

Compute 0.000353 0.000467 0.000369 0.000396333 6.17198E-05

CPU Overlap 0.000062 0.000064 0.000064 6.33333E-05 1.1547E-06

Histogram

IO 0.152658 0.156614 0.158582 0.155951333 0.003017083

GPU 0.140838 0.140679 0.140491 0.140669333 0.000173702

Copy

Driver 0.139518 0.139357 0.139178 0.139351 0.000170079

Compute 0.00043 0.000496 0.000457 0.000461 3.31813E-05

CPU Overlap 0.140838 0.140679 0.140491 0.140669333 0.000173702

LBM - long

IO 0.047836 0.049771 0.049561 0.049056 0.001061756

GPU 30.16735 30.14701 30.16205 30.15880433 0.010548376

Copy 0.363583 0.352151 0.348986 0.354906667 0.007678761

Driver 24.9618 24.94686 24.94136 24.95000833 0.01057388

Compute 0.961555 0.996269 1.013636 0.990486667 0.02651762

CPU Overlap 25.16581 25.14708 25.14502 25.152638 0.011457143

LBM - short

IO 0.054089 0.060643 0.075741 0.063491 0.011103405

GPU 1.005346 1.004551 1.008527 1.006141333 0.002103939

Copy 0.345664 0.336826 0.340031 0.340840333 0.00447424

Driver 0.000834 0.000976 0.000836 0.000882 8.14125E-05

Compute 1.020029 0.9414 0.927952 0.963127 0.049735203

CPU Overlap 0.125006 0.123213 0.112586 0.120268333 0.006713225

MM - long

IO 3.195248 3.154655 3.190209 3.180037333 0.022125664

GPU 0.008869 0.008867 0.00886 0.008865333 4.72582E-06

79

Copy 0.010757 0.010806 0.010652 0.010738333 7.86787E-05

Driver 0.000109 0.000132 0.000116 0.000119 1.17898E-05

Compute 0.092311 0.081318 0.080229 0.084619333 0.006683396

CPU Overlap 0.000153 0.000179 0.000158 0.000163333 1.37961E-05

GFLOPS 1.55E-13 1.55E-13 1.55E-13 1.55371E-13 1.15326E-17

SAD

IO 0.213267 0.153 0.206935 0.191067333 0.033118952

GPU 0.001498 0.001493 0.001496 0.001495667 2.51661E-06

Copy 0.126214 0.102197 0.11946 0.115957 0.012385771

Driver 0.000038 0.000035 0.000035 0.000036 1.73205E-06

Compute 0.000981 0.000795 0.000721 0.000832333 0.00013396

CPU Overlap 0.000053 0.00005 0.000049 5.06667E-05 2.08167E-06

SPVM - large

IO 0.146448 0.148342 0.148184 0.147658 0.001050864

GPU 0.000218 0.00022 0.00022 0.000219333 1.1547E-06

Copy 0.084568 0.075166 0.070208 0.076647333 0.007293707

Driver 0.000066 0.000068 0.000066 6.66667E-05 1.1547E-06

Compute 0.004543 0.004651 0.004879 0.004691 0.000171534

CPU Overlap 0.000081 0.000084 0.000082 8.23333E-05 1.52753E-06

SPVM - medium

IO 0.023466 0.024767 0.024647 0.024293333 0.000719

GPU 0.000118 0.000116 0.000117 0.000117 1E-06

Copy 0.051357 0.05229 0.052244 0.051963667 0.000525892

Driver 0.000063 0.000061 0.000062 0.000062 0.000001

Compute 0.002235 0.002791 0.002609 0.002545 0.000283471

CPU Overlap 0.000078 0.000076 0.000077 0.000077 1E-06

SPVM - small

IO 0.007575 0.014441 0.015238 0.012418 0.00421305

GPU 0.000048 0.000047 0.000047 4.73333E-05 5.7735E-07

Copy 0.049176 0.050157 0.050558 0.049963667 0.000710995

Driver 0.000043 0.000042 0.000043 4.26667E-05 5.7735E-07

Compute 0.001726 0.002104 0.00209 0.001973333 0.000214311

CPU Overlap 0.000055 0.000054 0.000054 5.43333E-05 5.7735E-07

TPACF

IO 1.18402 1.18196 1.177699 1.181226333 0.003223734

GPU 1.361854 1.361822 1.361775 1.361817 3.97366E-05

Copy 0.095364 0.075245 0.075193 0.081934 0.01163075

Driver 0.000113 0.00011 0.0001 0.000107667 6.80686E-06

Compute 0.00904 0.01928 0.020788 0.016369333 0.006392015

CPU Overlap 0.000156 0.000152 0.000142 0.00015 7.2111E-06

80

7.3. Rodinia Results 9800 GTX+

Rodinia Iteration 1 Iteration 2 Iteration 3 Average SD

LUD ms

64 0.238 0.239 0.239 0.238666667 0.00057735

256 1.185 1.512 1.456 1.384333333 0.17488377

512 3.311 3.315 3.312 3.312666667 0.00208167

2048 34.445 34.534 34.511 34.49666667 0.04619885

Particle Float (naïve) sec

A

send from GPU 0.02881 0.034164 0.032453 0.031809 0.00273448

send to GPU 0.037435 0.037895 0.03769 0.037673333 0.00023045

GPU execution 0.00016 0.000167 0.000166 0.000164333 3.7859E-06

Total 3.284789 3.280237 3.28295 3.282658667 0.00228994

B

send from GPU 0.059425 0.060929 0.060115 0.060156333 0.00075285

send to GPU 0.074129 0.074013 0.074069 0.074070333 5.8011E-05

GPU execution 0.000162 0.000164 0.000164 0.000163333 1.1547E-06

Total 6.524812 6.702561 6.593282 6.606885 0.08965187

C

send from GPU 0.146823 0.149165 0.148302 0.148096667 0.00118442

send to GPU 0.186539 0.184094 0.185983 0.185538667 0.00128163

GPU execution 0.000173 0.000169 0.00017 0.000170667 2.0817E-06

Total 16.691667 16.667685 16.682983 16.68077833 0.01214205

D

send from GPU 0.029974 0.029582 0.029834 0.029796667 0.00019865

send to GPU 0.037564 0.037992 0.0376982 0.0377514 0.0002189

GPU execution 0.000154 0.000159 0.000156 0.000156333 2.5166E-06

Total 3.278011 3.289114 3.283495 3.28354 0.00555164

E

send from GPU 0.058106 0.056998 0.057398 0.057500667 0.00056109

send to GPU 0.074384 0.073757 0.074287 0.074142667 0.0003375

GPU execution 0.000167 0.000159 0.000166 0.000164 4.3589E-06

Total 6.527779 6.501522 6.51213 6.513810333 0.0132089

F

send from GPU 0.141125 0.139959 0.13997 0.140351333 0.00067004

send to GPU 0.184281 0.182941 0.183213 0.183478333 0.00070831

GPU execution 0.000169 0.000166 0.000168 0.000167667 1.5275E-06

Total 16.157624 16.205709 16.199371 16.187568 0.02612518

G

send from GPU 0.029478 0.029737 0.029587 0.029600667 0.00013004

send to GPU 0.037714 0.037855 0.037729 0.037766 7.744E-05

81

GPU execution 0.000163 0.00016 0.000161 0.000161333 1.5275E-06

Total 3.286379 3.285156 3.285983 3.285839333 0.00062403

H

send from GPU 0.058453 0.057608 0.057983 0.058014667 0.00042339

send to GPU 0.074478 0.074515 0.745983 0.298325333 0.38768291

GPU execution 0.000163 0.000173 0.001064 0.000466667 0.00051733

Total 6.700087 6.518035 6.690865 6.636329 0.10254933

7.4. Rodinia Results GTX 460

Rodinia Iteration
1

Iteration
2

Iteration
3

Average SD

Leukocyte sec

Detection

computation 0.0185 0.01944 0.01946 0.019133333 0.000548574

dilation 0.01006 0.01068 0.01068 0.010473333 0.000357957

total 0.08415 0.09912 0.09981 0.09436 0.008848847

Tracking sec

computation 0.04268 0.04274 0.04282 0.042746667 7.02377E-05

evolution 0.01027 0.01027 0.01037 0.010303333 5.7735E-05

total 0.0655 0.06538 0.06544 0.06544 6E-05

TOTAL 4.01395 4.02195 4.02639 4.020763333 0.006304327

LUD ms

64 0.575 0.579 0.575 0.576333333 0.002309401

256 2.848 2.828 2.83 2.835333333 0.011015141

512 7.374 7.388 7.387 7.383 0.00781025

2048 115.623 115.375 117.59 116.196 1.213590953

Particle Float
(float)

sec

A

send from GPU 0.484112 0.48184 0.480469 0.482140207 0.001840149

send to GPU 0.014158 0.013941 0.013862 0.013987 0.000153268

GPU execution 0.000251 0.000258 0.000255 0.000254667 3.51188E-06

Total 0.65792 0.584687 0.61418 0.618929 0.036846748

B

send from GPU 0.977968 0.979106 0.973441 0.976838333 0.002996693

send to GPU 0.028367 0.027495 0.027456 0.027772667 0.000515077

GPU execution 0.000267 0.00024 0.000237 0.000248 1.65227E-05

Total 1.099265 1.099386 1.094044 1.097565 0.003049876

D

send from GPU 21.25275 14.00893 30.37887 21.88018267 8.202989064

82

send to GPU 0.013946 0.013852 0.013902 0.0139 4.70319E-05

GPU execution 0.000265 0.00253 0.000255 0.001016667 0.001310595

Total 21.34469 14.10073 30.46716 21.97086 8.201161321

E

send from GPU 8.556762 8.546939 8.539814 8.547838333 0.008509717

send to GPU 0.027564 0.027571 0.027614 0.027583 2.7074E-05

GPU execution 0.000234 0.000244 0.000259 0.000245667 1.25831E-05

Total 8.675124 8.666531 8.660525 8.667393333 0.007337603

G

send from GPU 32.85077 13.84569 14.8465 20.51432133 10.69539136

send to GPU 0.013938 0.013869 0.013931 0.013912667 3.79781E-05

GPU execution 0.000251 0.000245 0.000248 0.000248 3E-06

Total 32.94073 13.93179 14.93657 20.603027 10.69656602

H

send from GPU 8.535585 8.5487 8.544959 8.543081333 0.006756111

send to GPU 0.027881 0.027692 0.027521 0.027698 0.000180075

GPU execution 0.000245 0.000236 0.000241 0.000240667 4.50925E-06

Total 8.656592 8.669315 8.670502 8.665469667 0.007711159

Particle Float
(naïve)

sec

A

send from GPU 18.03987 11.67335 11.65105 13.78808867 3.682170995

send to GPU 0.037767 0.037449 0.037533 0.037583 0.000164791

GPU execution 0.00012 0.00012 0.000113 0.000117667 4.04145E-06

Total 21.40222 14.9382 14.92392 17.08811367 3.736133375

B

send from GPU 8.695787 9.222604 9.195602 9.037997667 0.296670494

send to GPU 0.075593 0.075548 0.0736 0.074913667 0.001137891

GPU execution 0.000129 0.000118 0.000141 0.000129333 1.15036E-05

Total 15.20682 15.67589 15.67246 15.518391 0.269830416

C

send from GPU 14.00524 8.159942 8.216452 10.12720967 3.358587309

send to GPU 0.187186 0.183569 0.185398 0.185384333 0.001808539

GPU execution 0.000135 0.000118 0.000126 0.000126333 8.5049E-06

Total 30.2434 24.24978 24.24987 26.247683 3.460390697

D

send from GPU 12.49726 12.42138 12.48212 12.46691867 0.040157217

send to GPU 0.038156 0.037788 0.037667 0.037870333 0.000254685

GPU execution 0.000133 0.000117 0.000111 0.000120333 1.13725E-05

Total 15.77098 15.77281 15.74104 15.76160833 0.017839721

E

send from GPU 10.85223 10.2257 9.016069 10.031332 0.933383694

send to GPU 0.075725 0.075797 0.07437 0.075297333 0.000803901

83

GPU execution 0.000135 0.000117 0.000124 0.000125333 9.07377E-06

Total 46.67132 16.67096 15.6721 26.33812367 17.6161456

F

send from GPU 14.11983 15.16998 14.26351 14.51777167 0.56937989

send to GPU 0.18705 0.185197 0.183663 0.185303333 0.001696002

GPU execution 0.000129 0.00012 0.00012 0.000123 5.19615E-06

Total 30.24967 31.24654 30.24503 30.58041333 0.576885553

G

send from GPU 13.49624 12.51239 12.51785 12.84216133 0.566457901

send to GPU 0.037861 0.037656 0.037663 0.037726667 0.000116389

GPU execution 0.000135 0.000125 0.000111 0.000123667 1.20554E-05

Total 16.7578 15.77179 15.77775 16.102446 0.567560183

H

send from GPU 9.182923 10.20361 9.200904 9.529146333 0.584173588

send to GPU 0.075046 0.075518 0.074179 0.074914333 0.000679141

GPU execution 0.000136 0.000123 0.00013 0.000129667 6.50641E-06

Total 15.67639 16.6652 15.67365 16.00507867 0.571680899

84

7.5. SHOC Max Flops GTX 460

85

7.6. SHOC Bus Download Speed GTX 460

86

7.7. SHOC Device Memory GTX 460

87

7.8. SHOC SPMV GTX 460

88

7.9. SHOC MD GTX 460

89

7.10. SHOC Reduction GTX 460

90

7.11. SHOC S3D GTX 460

91

7.12. SHOC Scan GTX 460

92

7.13. SHOC SGEMM GTX 460

93

7.14. SHOC Sort GTX 460

94

7.15. SHOC Stencil 2D GTX 460

95

7.16. SHOC Triad GTX 460

96

7.17. SHOC Max Flops 9800 GTX+

97

7.18. SHOC Bus Download Speed 9800 GTX+

98

7.19. SHOC SPMV 9800 GTX+

99

7.20. SHOC MD 9800 GTX+

100

7.21. SHOC Reduction 9800 GTX+

101

7.22. SHOC S3D 9800 GTX+

102

7.23. SHOC SGEMM 9800 GTX+

103

7.24. SHOC Sort 9800 GTX+

104

7.25. SHOC Stencil 2D 9800 GTX+

105

7.26. SHOC Triad 9800 GTX+

106

7.27. SPEC CPU2006 Integer Results (No Auto-Parallel)

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench 398.00 396.00 396.00

401.bzip2 582.00 582.00 581.00

403.gcc 375.00 375.00 375.00

429.mcf 373.00 373.00 371.00

445.gobmk 510.00 511.00 511.00

456.hmmer 869.00 869.00 869.00

458.jeng 595.00 612.00 595.00

462.libquantum 508.00 506.00 506.00

464.h264ref 710.00 706.00 709.00

471.omnetpp 374.00 373.00 374.00

473.atar 494.00 495.00 494.00

483.xalancbmk 268.00 260.00 259.00

7.28. SPEC CPU2006 Integer Results (Auto-Parallel Enabled)

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench 410.00 411.00 411.00

401.bzip2 539.00 539.00 538.00

403.gcc 330.00 331.00 334.00

429.mcf 184.00 184.00 184.00

445.gobmk 600.00 601.00 607.00

456.hmmer 213.00 214.00 214.00

458.jeng 508.00 508.00 507.00

462.libquantum 12.20 14.30 13.00

464.h264ref 959.00 959.00 1031.00

471.omnetpp 339.00 340.00 339.00

473.atar 350.00 349.00 349.00

483.xalancbmk 214.00 214.00 214.00

107

7.29. Speedup of SPEC CPU2006 Integer Results

 Iteration #1
Speedup

Iteration #2
Speedup

Iteration #2
Speedup

400.perlbench -3.02% -3.79% -3.79%

401.bzip2 7.39% 7.39% 7.40%

403.gcc 12.00% 11.73% 10.93%

429.mcf 50.67% 50.67% 50.40%

445.gobmk -17.65% -17.61% -18.79%

456.hmmer 75.49% 75.37% 75.37%

458.jeng 14.62% 16.99% 14.79%

462.libquantum 97.60% 97.17% 97.43%

464.h264ref -35.07% -35.84% -45.42%

471.omnetpp 9.36% 8.85% 9.36%

473.atar 29.15% 29.49% 29.35%

483.xalancbmk 20.15% 17.69% 17.37%

Average
Increase
Per Benchmark

21.72% 21.51% 20.37%

Total Average
Increase

21.20%

7.30. SPEC CPU2006 Floating Point Results (No Auto-Parallel)

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

416.gamess 937 940 938
433.milc 479 463 489
435.gromacs 579 579 578
436.cactusADM 1372 1441 1338
437.leslie3d 604 604 603
444.namd 496 497 496
447.dealII 430 429 430
450.soplex 270 270 283
453.povray 236 235 237
454.calculix 1484 1484 1484

459.GemsFDTD 517 517 517
465.tonto 652 649 652
470.lbm 378 379 378

108

482.sphinx3 632 630 632
434.zeusmp 623 625 625

7.31. SPEC CPU2006 Floating Point Results (Auto-Parallel Enabled)

 Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

416.gamess 1238 1185 1197
433.milc 190 189 190

435.gromacs 485 489 482
436.cactusADM 60.9 53.1 50.3
437.leslie3d 87.7 90.5 95.8
444.namd 457 456 457

447.dealII 293 293 293
450.soplex 296 263 286
453.povray 191 191 190
454.calculix 382 292 375
459.GemsFDTD 119 122 121
465.tonto 469 462 469

470.lbm 49.9 49.9 50.1
482.sphinx3 528 544 514
434.zeusmp 93.9 93 90.8

7.32. Speedup of SPEC CPU2006 Floating Point Results

 Iteration #1
Speedup

Iteration #2
Speedup

Iteration #3
Speedup

416.gamess -32.12% -26.06% -27.61%
433.milc 60.33% 59.18% 61.15%
435.gromacs 16.23% 15.54% 16.61%
436.cactusADM 95.56% 96.32% 96.24%
437.leslie3d 85.48% 85.02% 84.11%
444.namd 7.86% 8.25% 7.86%
447.dealII 31.86% 31.70% 31.86%
450.soplex -9.63% 2.59% -1.06%
453.povray 19.07% 18.72% 19.83%
454.calculix 74.26% 80.32% 74.73%

459.GemsFDTD 76.98% 76.40% 76.60%
465.tonto 28.07% 28.81% 28.07%
470.lbm 86.80% 86.83% 86.75%

109

482.sphinx3 16.46% 13.65% 18.67%
434.zeusmp 84.93% 85.12% 85.47%
Average Increase Per
Benchmark

42.81% 44.16% 43.95%

Total Average Increase 43.64%

7.33. Rodinia/Burkardt Benchmarks Average Execution Times

 2 threads 4 threads 8 threads 12 threads 24 threads

Leukocyte (s) 11.70 6.11 3.65 2.16 1.67

LU Decomposition
(ms)

242.82 130.00 76.40 69.23 145.20

Speckle Reduction
(ms)

638.14 415.07 306.41 283.93 492.26

Kmeans (s) 3.35 3.67 2.91 2.16 1.67

Stream Clusters (s) 47.08 25.18 14.61 11.91 10.40

FFT (ms) 76.17 45.41 31.63 27.85 31.36

Primes (s) 2.04 1.17 0.64 0.44 0.36

7.34. Rodinia/Burkardt Benchmarks Speedup between Thread Count

 2-4 threads 4-8 threads 8-12 threads 12-24 threads

Leukocyte (s) 47.78% 40.26% 40.82% 22.69%

LU Decomposition
(ms)

46.46% 41.23% 9.38% -109.74%

Speckle Reduction
(ms)

34.96% 26.18% 7.34% -73.37%

kmeans (s) -9.55% 20.71% 25.77% 22.69%

Stream Clusters (s) 46.52% 41.98% 18.48% 12.68%

FFT (ms) 40.38% 30.35% 11.95% -12.60%

Primes (s) 42.65% 45.30% 31.25% 18.18%

Average Increase
Between Threads

35.60% 35.14% 20.71% -17.07%

110

7.35. FPGA Results

Benchmark Clk
Period
(MHz)

Clk
Cycles

Throughput
(ns)

Delay for
valid data
(Clock
Cycles)

Delay
(ns)

FFT 101 1 9.87 12 118
AES 376 1 2.66 1 2.66
FIR 710 1 1.41 8 1.13

FP Mul 550 9 16.4 9 46.4
FIR Core 550 11 20.0 20 36.4

111

Bibliography

[1] "The Methodology of Random Logic Design," [Online]. Available:
http://www.intel4004.com/mrld.htm. [Accessed 20 January 2012].

[2] D. Risley, "PCMech," 23 March 2001. [Online]. Available:
http://www.pcmech.com/article/a-cpu-history/10/. [Accessed 21 January 2012].

[3] "AMD," 5 June 2000. [Online]. Available: http://www.amd.com/us/press-
releases/Pages/Press_Release_729.aspx. [Accessed 20 January 2012].

[4] C. S. a. D. Patterson, "Berkley," [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/CSD-82-106.pdf. [Accessed 20
January 2012].

[5] M. Schmalz, "University of Florida," [Online]. Available:
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html. [Accessed 21 January
2012].

[6] J. Tyson, "HowStuffWorks.com," 23 August 2000. [Online]. Available:
http://computer.howstuffworks.com/computer-memory4.htm. [Accessed 21 January
2012].

[7] T. Soderstrom, "Tom's Hardware," 11 December 2006. [Online]. Available:
http://www.tomshardware.com/reviews/overclocking-guide-part-1,1379.html.
[Accessed 20 January 2012].

[8] G. Petley, "VlsiTechnology," 22 September 2008. [Online]. Available:
http://www.vlsitechnology.org/. [Accessed 22 January 2012].

[9] "SeachDataCenter," October 2004. [Online]. Available:
http://searchdatacenter.techtarget.com/definition/multi-core-processor. [Accessed 23
January 2012].

[10] B. Barney, "Lawrence Livermore National Laboratory," [Online]. Available:
https://computing.llnl.gov/tutorials/parallel_comp/. [Accessed 23 January 2012].

[11] NVIDIA, "What is GPU Computing?," 2012. [Online]. Available:
http://www.nvidia.com/object/GPU_Computing.html. [Accessed 18 1 2012].

[12] P. Lilly, "From Voodoo to GeForce: The Awsome History of 3D Graphics," 19 5 2009.
[Online]. Available:
www.maximumpc.com/article/features/voodoo_geforce_awsome_history_3d_graphics.
[Accessed 26 1 2012].

[13] "Graphics Processing Unit," 12 1 2012. [Online]. Available:

112

en.wikipedia.oeg/wiki/Grpahics_processing_unit. [Accessed 19 1 2012].

[14] NVIDIA, "PTX: Parallel Thread Execution ISA Version 2.3," NVIDIA, 2011.

[15] "NVIDIA CUDA Compute Capability Comparative Table," 6 6 2010. [Online]. Available:
www.geeks3d.com/20100606/gpu-computing-nvidia-cuda-compute-capability-
comparative-table/. [Accessed 11 12 2011].

[16] NVIDIA, "NVIDIA's Next Generation CUDA Compute Architecture: Fermi v1.1," NVIDIA,
2009.

[17] NVIDIA, "NVIDIA CUDA Architecture," NVIDIA, 2009.

[18] F. E. Allen, "The Greatest Inventors You've Never Heard Of," 2009.

[19] "FPGA Applications & Consulting Experts," [Online]. Available:
http://fpgaace.com/index.php/fpga-history/. [Accessed 27 February 2012].

[20] "FPGA Central," 2011. [Online]. Available: http://www.fpgacentral.com/docs/fpga-
tutorial/history-programmable-logic. [Accessed 28 January 2012].

[21] V. Betz, "University of Toronto," [Online]. Available:
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html. [Accessed February
1 2012].

[22] "Electrical Engineering Times," October 2008. [Online]. Available:
http://www.eetimes.com/electrical-engineers/education-
training/courses/4000134/Fundamentals-of-FPGAs. [Accessed 2 February 2012].

[23] B. C. L. a. A. E. Crews, "The Evolution of Benchmarking as a Computer Performance
Evaluation Technique," MIS Quarterly, vol. 9, no. 1, pp. 7-16, 1985.

[24] "SPEC CPU 2006," 7 September 2011. [Online]. Available:
http://www.spec.org/cpu2006/. [Accessed 22 January 2012].

[25] "SPEC," 24 August 2006. [Online]. Available:
http://www.spec.org/cpu2006/CINT2006/. [Accessed 22 January 2012].

[26] "SPEC," 27 September 2006. [Online]. Available:
http://www.spec.org/cpu2006/CFP2006/. [Accessed 22 January 2012].

[27] "Rodinia: Accelerated Compute-Intensive Applicaitons with Accelerators," 16 12 2011.
[Online]. Available:
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page. [Accessed
18 12 2011].

[28] J. Burkardt, "Florida State University," 03 September 2011. [Online]. Available:
http://people.sc.fsu.edu/~jburkardt/. [Accessed 23 January 2012].

[29] "Scalable HeterOgeneous Computing (SHOC) Benchmarking Suite," Oak Ridge National
Laboratory, 11 11 2011. [Online]. Available: ft.ornl.gov/doku/shoc/start. [Accessed 19

113

12 2011].

[30] "Parboil Benchmark Suite," Illinois Microarchitecture Project utilizing Advanced
Compiler Technology (IMPACT), [Online]. Available:
impact.crhc.illinois.edu/parboil.php. [Accessed 18 12 2011].

[31] "Xilinx," 6 February 2009. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf. [Accessed 12
February 2012].

[32] "University of Virginia," [Online]. Available:
http://www.cs.virginia.edu/!skadron/Papers/boyer_leukocyte_ipdps09.pdf. [Accessed
23 January 2012].

[33] M. Strickland, "HEARST Electronic Products," 1 March 2010. [Online]. Available:
http://www2.electronicproducts.com/The_evolution_of_FPGA_coprocessing-article-
FAJH_FPGA_Mar2010-html.aspx. [Accessed January 29 2012].

[34] J. Sanders and E. Kandrot, CUDA by Example, Boston, MA: Pearson Education, 2011.

[35] NVIDIA, "NVIDIA CUDA C Programming Guide," NVIDIA, 2011.

[36] W.-m. Hwu and D. Kirk, Programming Massively Parallel Processors: A Hands-on
Approach, Burlington, MA: Morgan Kaufmann, 2010.

[37] A. Danalis, P. Roth, G. Marin, K. Spafford, C. McCurdy, V. Tipparaju, J. Meredith and J.
Vetter, "The Scalabe HeterOgeneous Computing (SHOC) Benchmark Suite," Pittsburgh,
PA, 2010.

[38] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee and K. Skadron, "Rodinia: A
Benchmark Suite for Heterogeneous Computing," Dept Computer Science, UVA, 2009.

[39] F. Abi-Chahla, "A Few Definitions," 18 6 2008. [Online]. Available:
www.tomshardware.com/reviews/nvidia-cuda-gpu,1945-7.html. [Accessed 27 1
2012].

[40] "National Instruments," 19 December 2011. [Online]. Available:
http://zone.ni.com/devzone/cda/tut/p/id/6983. [Accessed 27 January 2012].

