Computing Performance Benchmarks
among CPU, GPU, and FPGA

MathWorks

Authors:
Christopher Cullinan
Christopher Wyant
Timothy Frattesi

Advisor:
Xinming Huang

Abstract

In recent years, the world of high performance computing has been
developing rapidly. The goal of this project was to conduct computing performance
benchmarks on three major computing platforms, CPUs, GPUs, and FPGAs. A total of
66 benchmarks were evaluated. GPUs outperformed the other platforms in terms of
execution time. CPUs outperformed in overall execution combined with transfer
time. FPGAs outperformed for fixed algorithms using streaming. The team made

several recommendations for further research in this area.

Acknowledgements

The successful completion of this project would not have been feasible
without the help of several key individuals. First, we would like to express our
gratitude to our advisor, Xinming Huang, who met with us weekly throughout the
course of the project offering advice and wisdom. In addition, we would like to

thank our sponsor at MathWorks for their financial support of this project.

ii

Authorship

Christopher Cullinan

Christopher C. was responsible for the CPU Multicore portion of this project.
This included gathering and testing 34 benchmarks on the AMAX machine. In
addition, he wrote the CPU sections for the background, benchmark, and results

along with the future work and executive summary sections of this report.

Timothy Frattesi

Timothy was responsible for the GPU portion of this project. This included
gathering and testing 24 benchmarks on the GeForce GTX 460 and GeForce 9800
GTX+ NVIDIA graphics cards. In addition, he wrote the GPU sections for the
background, benchmark, and results of this report along with the future work and

executive summary sections.

Christopher Wyant

Christopher W. was responsible for the FPGA portion of this project. This
included gathering and testing of 8 benchmarks using the ISim program of Xilinx on
a Virtex-5 board. Christopher W. wrote the FPGA sections of the background,
benchmark, and results section of the report. In addition, he was responsible for

writing the abstract, acknowledgements, introduction and conclusion of this report.

iii

Executive Summary

Ever since the beginning of modern day computing, engineers and developers have
been trying to squeeze every ounce of performance into their devices. How do we
test for performance though? What quantifiable measurements can be made to
justify the superiority of one device over another? These are the types of questions
this project aims to answer. In this project, we investigated the performance
abilities of current generation multiprocessing hardware. Through looking at
multicore CPUs, general purpose GPU computing and an FPGA, we compared device
capabilities to determine which platform future investments should be focused
towards and why.

To begin our endeavor, we used benchmarking to accentuate the strengths
and weaknesses of these three devices. Benchmarking is the technique of using
crafted programs in order to attach quantifiable performance metrics to targeted
computer subsystems. By using cross platform, as well as individual, benchmarks
developed across a plethora of computational necessities, we determined which
device would be best suited towards specific tasks. For this project, we tested our
benchmarks across two Intel Xeon 5650 CPUs, the Virtex-5 FPGA and NVIDIA’s
GeForce GTX460 and 9800 GTX+ GPUs.

Realizing the sophistication early on in this project, we decided to use
already written benchmarking suites to conduct our tests. A benchmarking suite is
nothing more than a compilation of individual benchmarks with specific intent. In
total, we used seven benchmarking suites. For the FPGA, we used cores designed by

Xilinx Core Generator and MATLAB Simulink HDL Coder, which contained

iv

benchmarks encompassing mathematical algorithms and encryption. For the CPUs,
we used three benchmarking suites; SPEC CPU2006, Rodinia, and John Burkardt.
Lastly, for the GPUs, we used the Parboil, Rodinia, and SHOC benchmarking suites.
The CPU and GPU suites tested mathematical algorithms, high performance
simulation, and common computational necessities such as compression and
sorting.

To further enhance the findings of this project, we discussed several future
recommendations at the end of this report. These recommendations include testing
a broader spectrum of benchmarks capable of running across all three platforms.
Another possibility is to look into newer technologies, such as an Accelerated
Processing Unit (APU). We believe that by including these recommendations, a

conclusion of greater impact can be reached.

Table of Contents

AADSEIACT. ...ttt e st A R R AR R AR AR R R i
ACKNOWIEAZEIMENTS ... ii
AUTNOTSRID 1R AR iii
EXECULIVE SUIMIMIATY ..ocuctiiciceresssesesssesesssesssss s ssesssssesssssssssssssessssessssssesssssssasssssesssssssssssessssssssssssssnssssssssssseass v
TaDIE Of CONTENTS ..ot s s ses s s s s s e e ssssae b s b eR b R s s b vi
02T] (R0 30 ¥ T ix
02T] (30 = o) U= PP X
3 000 0 Yo LUt () o WP 1
B & - T3 ¢4 4010 s o ST 2
2.1, CPU et R 2
20 0 SR N0 2 1=3 G 5 6] o) oy 2R 2

00 N 00 o U =] =4 o N 4
2.1.3. CPU MUILICOTE ..eeereeecereeeereisissesssse s tssssessssss sttt sssssns 6

2.2, Graphics Processing UNit.......ommessssss s sssssssesssssssssssssssssssssssessssssssssssess 9
072 T €1 o U o § 1] o) o2 9
2.2.2. GPU Architecture and ParalleliSm........covrnnnenencneneseesesesesesesessessessessessesneens 12

2.3, FPGA BACKEGIOUNA.....oiieuieuenreeescesseseeeesseseeseesessssssesesssesssssessanes 17
0 T S & 1) o)) 2 0 2 o € N 17
2.3.2. Early Programmable DeVICES.......c.courrmmeereereeneerersenesnsesessessessessessessesssssessessessessesssssenns 18
2.3.3. FPGA ATCRITECTUTE ...ttt s s s s 19

G F 2 15 s Uod 01 00 =1 €T 24
3.1, FPGA BENCHMATKS ..ot ssssss sttt ssssssssssssnsons 26
3.2, SPEC CPUZO06.cceeeeeseeesesess s sssssssss s sssssssss sttt sssssssssssssssssssssssssssssssssnsons 28
3.2. 1. CPUINTZ006 c.eriereereereereereereesessessessessessessessessessessessssssssessssssssesssssssssssssssssessessssssssesssssssssssssnes 28
3.2.2. CFPZ006 et sessesssssessesssssessesss s s snssees 34

3.3, ROAINIA SUILE et 41
3.4. John Burkardt BeNChmarks ...t ssssenens 44
3.5, SHOC SUILE...euecececececeeeeeee e se e 45
3.6, PaAIDOI] SUILE ..ottt 48

4.

|5 STz (6 L o W 48

RESUILS .ottt b bbb 52
T N D 1) Vol T 52
B.1.1. GPU ettt R AR 52
0 O < TR 53
0 S R 1 < TN 53
O N) T D 1= v (o L PP 54
G T O = U) = TP 55
4.4, INdiVIAUAl RESUILS.....ceieceeeceseeeece et 57
4,41, GPU SPECIIC .cvrirrrrrrrirrirseresrinsisesssssssessssssess s ssnnes 57
R 08 o U 2 =T} 1 T 65
4.4.3. FPGA RESUILS....coieciceceeteteesetset ettt sttt s bbbt 72
FULUTE WOTK .ottt ss bbbt 74
(000 1ol 113 o) o HOP OSSP 75
DN 0] 01=) o Lo b (o1 PSP 76
7.1. Parboil RESUlts 9800 GTX+ ...c.comererrmenmerrmrnmessesssssesssssssssssssssesssssssssssssssssssssssesssssssssssssssssssssasesns 76
7.2. Parboil RESUILS GTX 460covreerieeerrereeeeeensessessnsnns 78
7.3. Rodinia RESUItS 9800 GTX+ ..cvcverrrrerrrrnnesressnessesssssesssssssssssssssesssssssssssssssssssssssesssssssssssssssssssssasesns 80
7.4. ROdiNia RESUILS GTX 460ceieceeeceeeeeeremeeseesessessessesssns 81
7.5. SHOC MaX FIOPS GTX 460.....eeecereereeremreeeeseessssssssssessses 84
7.6. SHOC Bus Download Speed GTX 460........cccuvurrvrmrrensenesnenssnesnensssessessssesssssssesssssssesssssssesssssssens 85
7.7. SHOC Device MemOry GTX 460.....ccorenrnrissssissssssesssessess s sesssssssesssssssesssssssesssssssens 86
7.8. SHOC SPMV GTX 460.....ecereereeeereereereesessesssssessans 87
7.9, SHOC MD GTX 460 ...ooeieceeeceeecereeseessseesessssssssesssans 88
7.10. SHOC RedUuCtion GTX 460cococereereeeereereereessseessesesssssssssssesssns 89
7.11. SHOUC S3D GTX 460 ...cecerrerrirsesersessesssssesssnsans 90
7.12. SHOC SCAN GTX 460.....iierrerrirsereersessesssssessesssnsans 91
7.13. SHOC SGEMM GTX 460ooverererrerreeereseessesssens 92
7.14. SHOC SOTE GTX 460.....ceieeerceeeeeeereesessesssssssssssssssssessses 93
7.15. SHOC StencCil 2D GTX 460......couereercerereereereeserserssssessses 94
7.16. SHOC Triad GTX 460 ...ccceceeeceeeceeereeersersssserssssesssssessses 95

7.17. SHOC Max FIOPS 9800 GTXH .cvvurerrrererrerrnessessesessssssssssssssssessasesns 96

7.18. SHOC Bus Download Speed 9800 GTX+....c.coumenerermemeermenmesmssnsenssssssesssssssssssssssssssssaseens 97
7.19. SHOC SPMV 9800 GTXH .ucuuerrereereeseeseeseessssessesssssssssssesses 98
7.20. SHOC MD 9800 GTXA ..eureeueereeremsemseesesssesssssssssesssesses 99
7.21. SHOC Reduction 9800 GTX+ccorerreererrerrerrersersessessessesssssesssssssssssesssssesssssessessesssssesssssesssses 100
7.22. SHOC S3D 9800 GTXH oeurieerirmirmsirssesssssssessass 101
7.23. SHOC SGEMM 9800 GTXA .veuirurirmrersirsserssesssesssssssesssass 102
7.24. SHOC SOIt 9800 GTX+ .coveueemermrerssersserssesssesssass 103
7.25. SHOC Stencil 2D 9800 GTX+ ..vveurreermrersrersserssesssesssssssessssssssssssssssssssssssssssssesssssssssssssssssssass 104
7.26. SHOC Triad 9800 GTX+...cccsreurirurermrerssersserssesssssssesssesssssssssssssssssssssass 105
7.27. SPEC CPU2006 Integer Results (No Auto-Parallel)comrreneneneneneneneeneenenns 106
7.28. SPEC CPU2006 Integer Results (Auto-Parallel Enabled)ccccounrneninncenernnnnne 106
7.29. Speedup of SPEC CPU2006 Integer ReSUILS ... 107
7.30. SPEC CPU2006 Floating Point Results (No Auto-Parallel)........coorrrnrenirncerernnnnn. 107
7.31. SPEC CPU2006 Floating Point Results (Auto-Parallel Enabled)........c.ccconeurirnnnnn. 108
7.32. Speedup of SPEC CPU2006 Floating Point RESUILSccocvrerrereneereeneereeneereeneereaneens 108
7.33. Rodinia/Burkardt Benchmarks Average Execution Timesouemmneenerneenne 109
7.34. Rodinia/Burkardt Benchmarks Speedup between Thread Count.........cccoccorurnnn. 109
S 1 T 0 o €] 1 110
110 D0} o4 =1 0] 4|/ 111

viii

Table of Figures

Figure 1 - AMD K10 ArChite@CtUTIEccoivererniririrese s ssssssssss s sssssssssssssssens 6
Figure 2 - Intel [7 950 Quad Core Processor DeSigNcovenenceneenernemnernemseesssneesessessessessessees 7
Figure 3 - S386C911 (1991) o sssssssssssses 10
Figure 4 - NVIDIA GeFOrce 256 (1998)conernerneneernersesessessessessessssssssessssssssesssssesssssesens 10
Figure 5 - GEFOrce 6600 (Z004)....coreererreerereereressessessessessessssssssessssssssesssssssssssesssssesssssesssssesees 11
Figure 6 - GEFOrce GTX 560 (201 1) cercereereererreereesessessessessessessessessessesssssessessessessesssssessessesees 11
Figure 7 - CUDA Software ATrChiteCTUTE ... sessessessessessessesees 12
Figure 8 - Improvements in CUDA GPU ArchiteCturernenenenesnessessessessessessennens 14
Figure 9 - Thread HIerarchy ... ssssssssssssssssssssenes 16
Figure 10 - Stream MUltiproCESSOT ... sssssssssssnes 16
Figure 11 - PLA ATCHItECIUIE ..ot ssssss s ssssssssssssnes 18
Figure 12 - CPLD ArChIiteCTUTE ..o sessssssssssnes 19
Figure 13 - Three INPUL LUT ... sessessssssssessssssssssssssssssssssessssssssssssssssssssnns 20
Figure 14 - SWItch BlOCK......cricesiceese e sesssssssssenns 21
Figure 15 - FPGA ROULING ..ot sss s sesssssessssssssssesssssessees 22
Figure 16 - SPecialiZed SHICES ..o sesssssesnes 23
Figure 17 — VIirteX-7 ArCRITECTUTE. ... ses s senees 23

ix

Table of Tables

Table 1 - FFT RESUILS ..ottt essessssse s s ssesses 54
Table 2 - CPU & GPU ReSUILS.....crereerereererreeressesressessessessessessesessessessesssssesssssesssssesssssesssssesssssessens 56
Table 3 - GEFOrce SPecifiCationnnnnenenesessssesessesssessssessssssssssssssssssssssssssees 58
Table 4 - Data Size vs. Data Rate ... sesessessessesssssessessesees 59
Table 5 - Global vs. Local MEMOTY SPEEAS ... sessesssessssssesssssssesssssssessens 60
Table 6 — Parboil Suite TimMiNGS.....ccorerereereererresressesressens 63
Table 7 - Rodinia Particle Filter RESUILS ... 64
Table 8 - SPEC CPUINT2006 w/ GCC, G++, GFortran compiler w/o auto parallel 65
Table 9 - SPEC CPUINTZ2006 run with Intel compiler in auto parallel.........ccouuurinnee. 66
Table 10 - Speedup percentages from the GNU run to the Intel runccoeevevererennee. 66
Table 11 - SPEC CFP2006 w/ GCC, G++, GFortran compiler w/o auto parallel........... 68
Table 12 - SPEC CFP2006 run with Intel compiler in auto parallel ... 68
Table 13 - Speedup percentages from the GNU run to the Intel runcoooverererennee 69
Table 14 - Rodinia/Burkardt average execution time on 2, 4, 8, 12, 24 threads......... 70
Table 15 - Speedup between thread COUNLS ... 71
Table 16 - FPGA RESULLS ... ses s s s essesssssesssssesssssesssssesssssessees 72

1. Introduction

The world of high performance computing is a rapidly evolving field of study. Many
options are open to businesses when designing a product. GPUs can provide
astonishing performance using the hundreds of cores available. On the other hand,
FPGAs can provide computational acceleration to many signal and data processing
applications. The question arises as to what level each platform performs at for
different benchmark algorithms.

To determine computing levels of each device we implemented existing
benchmark suites for each device. We tested several applications to see which
computing method was fastest for the various applications. While the benchmarks
did not completely lineup between the different processors the information
gathered laid a good foundation between different devices.

In order to explain the information in a clear manner, we broke up the
information into several sections. Presented first is the background of the devices,
both general and specific. The second section outlines all of the benchmarks we
tested so that the reader can understand the limitations of the project. The third
section discusses the results we gathered as well as a discussion of what they mean.
Lastly, we discuss some recommendations we would make for similar projects in

the future and some closing remarks.

2. Background

The background gives an overview of the different device we used in our project.
Within each section are the history of the device and a general overview of how they
work. This information gives a brief but necessary background into the platforms

used for this project.

2.1. CPU

2.1.1. A Brief History

The history of the Central Processing Unit (CPU) is in all respects a relatively
short one, yet it has revolutionized almost every aspect of our lives. In the early
1970, if I were to ask someone what a CPU was, they would have most likely
responded “A what!” Yet just over 40 years later, CPUs have become an integral part
of our lives. From desktop computers to cell phones, most of us do not go more than
a few hours without somehow interacting with a CPU. Despite its indisputable
popularity, most do not know how this hype all started.

In 1971, the 4-bit Intel 4004 was the first in the legacy of the CPU. It was the
first commercially available CPU on chip, made possible by the all-new silicon gate
technology. The max CPU clock rate of this revolutionary hardware was 740 kHz, an
astonishing speed at the time. This little guy could execute 92,000 instructions per
second with a single instruction cycle of 10.8 microseconds and a transistor count of
2,300. At the time, this device was truly a feat in computing technology, which

paved the road for much more innovation to come. [1]

Intel dominated CPU infancy, coming out with several subsequent CPU
designs including the 8086 (1978), 8088 (1979), 80186 (1980). Then, in 1993, one
of the most popular names in the history of the CPU surfaced, the Intel Pentium
processor. This legendary device operated at a whopping 60 MHz and 100 Millions
of Instructions per Second (MIPS). The trend of innovation from Intel continued for
several years until another major competitor in today’s market made their first
competitive appearance with the AMD AM5x86 in 1995. A fierce competition
between Intel and AMD has continued since. [2]

The next milestone in the CPU history was the commercial release of the first
1GHz processor. This achievement was reached by the AMD Athlon in 1999 and
then by the Intel Pentium III just two days later after. For this reason, “Athlon” was
fitting name for AMD’s milestone processor because it is the Greek word for
“Champion/trophy of the games”. The AMD Athlon is an x86-compatible processor
containing 22 million transistors in a slim size of 184 mm?2. [3]

Nowadays, it is a common occurrence to see CPUs clocked well above 1GHz
in devices as small as our cell phones. In just over 40 years, we have gone from 740
kHz to the GHz level (over a 1300 % increase) and increased the count of on chip
transistors from 2,300 to more than a billion (over a 434,000 % increase). We are
now producing CPUs with multiple cores on the same chip, which are capable of
support an increasingly important feature known as parallel computing, which we

will talk about in more detail later in this report. [2]

2.1.2. CPU Design

In a nutshell, CPU design is the design engineering process of creating a
central processing unit to be used in a computing system. Many factors go into
designing a CPU, especially with the level of sophistication in modern day CPUs.
There are six primary focuses that designers must account for when creating a CPU,
and they are; data paths, control unit, memory components, clock circuitry, pad
transceiver circuitry, and logic gate cell library. [4]

A data path by definition is, “A collection of functional units, such as
arithmetic logic units or multipliers, that perform data processing operations”. [5]
Intuitively from its name, data paths provide routes for data to traverse between the
components of a CPU. These routes are typically known as “Buses”. The majority of
CPUs include both a data path and a control unit, where the control unit specializes
in regulating data path and main memory interaction. [5]

Most modern day CPUs have several types of memory modules on chip. Two
of the most popular are register memory and cache, both of which are normally high
speed SRAM. Registers are the memory cells built directly into the CPU since they
contain specific data vital to CPU operations. Cache is the next portion of memory in
a CPU and is usually, in more complex processors, divided into L1 (level one) and L2
(level two) cache. Both L1 and L2 cache are there to store data that is most often
used by the CPU and is typically SRAM as well. [6]

The CPU clock is the sinusoidal frequency reference signal typically created
by a crystal oscillator. This sinusoidal waveform is first translated into a square

waveform of the same frequency by internal circuitry and then used to synchronize

the internal components of the CPU. The clock signal traverses to the various CPU
components via a clock distribution network. [7]

Lastly, the logic gate cell library is the collection of logic gates used to
implement computational logic in the CPU. The logic library collection consists of
low-level logic functions including AND, OR, INVERT gates as well as flip-flops,
latches, and buffers. A vital feature of these libraries is that they are fixed height and
variable width, meaning they can be placed in organized rows. This makes the
process of automated digital layout of these components possible and efficient. [8]

To give you an idea of a simple CPU design, the following figure shows the
AMD K10 Architecture of 2007. This processor is slightly outdated but is good for

our purposes to show the anatomy of a modern day CPU.

AMD K10 Architecture
Red: Difference between K8 and K10 Architecture
(Die Anderungen zwischen der K8- und K10-Architektur sind rot markiert)

ITLB Level 1 Instruction Cache
48-entry 64 KByte
L2-TLB I: 512-entry 256 Bit + Bitl52
D: 512-entry Predecode, Branch, Parity
1 GByte: 8-entry
Level 2 Cache Fetch 2-transit
512K, 16 way
exclusive Pick Buffer F
32 Byte
L2 ECE R
x86 Ops arget
L2 Tags v [l 512 indirect
L2 Tag ECC Leeade
A DirectPath ‘ VectorPath
Macro Ops
256 (RISC-like)
v A\ 4 A4
| Instruction Control Unit (72-entry) }
+ + + Yy V.V
Level 3 Cache
2 MByte...8 MByte 8-entry 8-entry 8-entry 36-entry
32 way Scheduler Scheduler Scheduler ‘ Scheduler 1
ALUI AGUI [Fapp| [FmuL| |Fmisc|
System Request ABM SSE
Queue (SRQ) 64 Loa 64 128 128
Cross Bar
XBAR
e | Load / Store Queue (44-entry) |
A A A A - Y i L
128 A pd?
- 641 64
v vY YV : v |y Al28.4128 ‘
2 Memory Hyper Data TLB - R e e -
Controller Transport 48-entry Level 1 Data Cache, 64 KByte, 2 way ECC
“F ot “The bhe v
64 16 w116 Y116
2 x DDR2-800
2...6 x 6,4 GByte/s

(zusammen fiir alle vier Cores)

Figure 1 - AMD K10 Architecture

2.1.3. CPU Multicore
The term “multi-core” refers to a multiple core processor that is simply an
integrated circuit where two or more processors have been attached for increased

performance via parallel processing. [9] Parallel processing is a type of computation

where many calculations are performed simultaneously. This method of
computation is based on the principle that large problems can be solved faster by
breaking them down into smaller pieces and then solving those pieces concurrently.
Because of this basic principle, parallel computing has become the dominant
standard in computer architecture in the most popular form of multicore
processing. As an example of a multicore processor design, the following figure

shows the internals to an Intel I7 950 Quad Core Processor.

Figure 2 - Intel 17 950 Quad Core Processor Design

In the real world, parallel processing is not limited to integrated circuits.
Virtually everything in our natural universe uses the principles of parallel
processing. A few examples are galaxy formation, planetary movements, weather
and ocean patterns, automobile assembly lines, rush hour traffic, and even ordering

a hamburger at a fast food restaurant. Within all of these phenomena, numerous

7

complex and interrelated events occur simultaneously to achieve a common goal.
[10]

In the past, parallel computing was attributed mainly to high end computing
and was used to solve complex mathematical problem in various areas of study. A
few of these areas included Atmospheric studies, Physics, Mechanical Engineering,
Electrical Engineering, and Seismology. Parallel computing is still used in those
areas today, but the rise of commercial applications has been a major contributor to
both the need for faster computing and the dispersion of parallel computing into
common electronic devices such as phones, desktops, laptops, etc. Database mining,
web search engines, medical imaging, and advanced graphics are just a few of the
applications that utilize parallel computing. [10]

At the beginning of this section, we briefly discussed the incentives to use
parallel computing; now we will delve deeper to justify the use of parallel
computing. Parallel computing saves time and money by both shortening the time
to the outcome and because parallel components are cheap. Second, larger
problems can be solved through the use of parallel computing that are not possible
by using a single computing resources. Finally, there are many limitations to serial
computing. These limitations include transmission speeds, limits to miniaturization,
and economic limitations. To get away from these confines, modern computer
architectures are heavily relying on multiple execution units, pipelined instructions,

and multi-core at the hardware level to increase performance. [10]

2.2. Graphics Processing Unit

As stated by Prof. Jack Dongarra, "GPUs have evolved to the point where
many real-world applications are easily implemented on them and run significantly
faster than on multi-core systems. Future computing architectures will be hybrid
systems with parallel-core GPUs working in tandem with multi-core CPUs." [11]
From this comment one can see one of the many thoughts on where the future or

high performance computing is headed.

2.2.1. GPU History

Much like computers in general, GPU's have progressed rapidly over the last
30 years since their introduction to the market. As GPU's have progressed over the
years their core functions have remained the acceleration and processing of images.

The introduction of graphics units came early in the 1980's where both Intel
and IBM brought specialized products to the market. Other companies such as
Commodore and Texas Instruments also added simple graphics capabilities either
on chip or using an external card. These cards had simplistic functionality and were
relatively expensive. Functions such as filling an area, shape drawing, and

modification of simple images were all that these early processors could support.

Figure 3 - S386C911 (1991) Figure 4 - NVIDIA GeForce 256 (1998)

The 1990's were the real beginning as far as the takeoff of GPUs. From the
beginning in 1991, S3 rolled out their 86C911 card which was one of the first
standards for the GPU industry. Two dimensional graphic processing had made its
way into almost every system by the mid 90's and the race was on to move towards
3D processing. Two notable chip sets in the race for dedicated 3D graphics include
the 3dfx Voodoo and Rendition's Verite. Until the late 90's all 3D rendering was
done with the assistance of CPUs, also known as hardware assisted 3D graphics
which we still see in lower end laptops today. [12]

To assist in the commonality of graphics processing several “languages” were
brought about in the late 90's including both OpenGL and Direct. Throughout the
90's OpenGL prospered as the software’s capability was usually ahead of Direct and
it was capable of being used across cards and platforms. Towards the end of the
90's these two API's introduced support for transform and lighting (T&L) which
provided a huge jump in GPU processing. T&L allowed for easier mapping of 3D
images to a 2D plane while incorporating the lighting all into one. By this time there

were only a few competing companies; NVIDIA, ATI, 3dfx, and S3. The end of the

10

90's saw the NVIDIA GeForce 256, the first readily available commercial card,

bringing 3D graphics, NVIDIA, and Direct to their own level. [12]

SANVIDIA.,

Figure 6 - GeForce GTX 560 (2011)
Figure 5 - GeForce 6600 (2004)

Through 2010 and to today we continue to see significant advancements in
the 3D rendering abilities of the GPU. On the front of programming the most notable
improvements include programmable shading and floating point abilities. ATI and
NVIDIA hold the majority of today’s market share in graphics processing and thus
have been major forces in shaping how these units improve.

One of the most significant advancements of the past decade is general
purpose computing for GPU’s. Due to the highly parallel structure of modern
graphics cards it is possible to use them to perform research and analysis, often
times competing or surpassing modern CPUs. While this can be done with almost
any modern card, NVIDIA’s introduction of the Compute Unified Device Architecture
(CUDA) from NVIDIA this idea has become standardized. OpenCL is also a common
language for performing GPU computation, but it does not support as many

programming languages or have the same amount of industry support. CUDA

11

architecture is the main advancement that is allowing our society to take high
performance computing from CPUs and FPGAs and move it to a quicker paralleled

set of computations on thousands of threads instead of tens of threads. [13]

2.2.2. GPU Architecture and Parallelism

Here we will look at the both the CUDA architecture and the hardware
architecture that corresponds to it. NVIDIA has created this specialized architecture

to achieve the massively parallel systems that we have today.

Device-level APls Language Integration
L A r Bl
Applications Applications Applications Applications
Using DirectX Using OpenCL Using the Using C, C++, Fartran,
CUDA Driver API Java, Python, ...
HLSL | { OpenCLC CforCUDA | CforCUDA |
Compute Shaders | | Compute Kernels Compute Kernels | Compute Functions
DirectX OpenCL C Runtime
Compute Driver for CUDA
: . ©)
CUDA Driver PTX (ISA) @:
CUDA Support in OS Kernel @
CUDA Parallel Compute Engines @
inside NVIDIA GPUs

Figure 7 - CUDA Software Architecture

Looking backwards from computer to device we start with the Parallel
Thread Execution (PTX) instruction set. This specially optimized instruction set
allows for special optimization specifically designed for parallel processing on
NVIDIA cards. The PTX instruction set allows NVIDIA to set a standard across
multiple generations of GPUs as well as provide a common set of instructions for

12

both optimization and developer programming. This instruction set rests within the
CUDA drivers which are provided dating back to NVIDIA’s GeForce 8800 series. [14]

The next level up, CUDA Support in OS is provided through the CUDA Toolkit
which is currently on version 4.1. This toolkit provides all of the necessary
components to write and run CUDA code in an IDE such as Visual Studio or simply in
a text editor. Currently supported are both a LLVM based and the standard nvcc
compiler. The move to the LLVM based compiler has shown 10% increases in
speed, but is geared more towards the new Fermi architecture and beyond. With
the release of the new version of the CUDA toolkit, NVIDIA also provided a much
larger base of functions for image processing.

The base level is the actual CUDA Parallel Computing engines that are the
basis of all modern NVIDIA cards. The specialized hardware architecture in these
cards is what allows for such successful parallelism in general purpose computing.
On the current generation of CUDA capable hardware, Fermi, one can setup and
process 65,535 simultaneous threads in grids of up to 1024x1024x64. These grid
sizes have doubled and allowed for a third dimension since CUDAs initial release in
2006. The number of cores capable of providing floating point and integer
functionality has also increased six fold. In the following figure the hardware
advancements can be seen in overview as the architecture has changed. Further

improvements can all be seen in the tables attached in Appendix X. [15] [16]

13

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None MNone Configurable 16 KB or
48 KB

L2 Cache MNone MNone 768 KB

ECC Memory Support Mo Mo Yes

Concurrent Kernels Mo No Up to 16

Load/Store Address Width 32-hit 32-bit 64-bit

Figure 8 - Improvements in CUDA GPU Architecture

Parallelism is generated through the use of threads on the GPU. CUDA has
the ability to run a particular kernel across multiple threads and multiple cores.
Picture the newest card in NVIDIA’s lineup has 1024 cores per card. If each core can
provide up to 1024 threads per 65535 blocks, there is a possibility to run upwards
of 60 billion instances of a single kernel per card in a system. Spanning this number
across multi-card systems, or even multiple systems connected together, it is easy to
see how parallelism prevails and allows for faster processing. This type of
parallelism is known as single instruction multiple data (SIMD). CUDA devices are
also capable of running thousands of small programs simultaneously as well.

In order to achieve this number of parallel threads there is a complex setup
of memory. Each and every thread an individual piece of memory that is unshared.
This contains data such as program counters and individual registers. From there
we move up to thread blocks which share memory amongst themselves and then up

to sixty five thousand blocks sharing memory per core. These sets of blocks are

14

called grids and can share a set of application memory for use by smaller threads
with global memory. All of the threads running a particular instance of a kernel are
kept in synchronization through the use of special code functions that wait for all
threads to be completed before reading or writing large changes from global
memory. The memory hierarchy described here is important because each smaller
level allows for quicker access to data; thus like the L cache of a CPU, there is less
need to constantly read and write to slower global memory. [16] [17]

To handle all of these threads processing at the same time there is a unique
feature called a warp handler. A warp is a group of 32 threads; the smallest data
size for a SIMD setup. When programming in CUDA, users work with blocks so it is
up to the warp handler to determine how to divide the instructions. The Fermi
architecture has a dual warp scheduler, allowing it to process and divide up two sets
of instructions at a time. With 32 bit mathematics it is also possible to dispatch two
of a single type of instruction or a mix at one time. Since this setup works in sets of
32 in order to achieve the peak performance on CUDA capable GPUs is to run
kernels in sets divisible by 32. [17]

Along with the efficient thread hierarchy, the Fermi architecture relies on
NVIDIA’s third generation of stream multiprocessing (SM) for its hardware
architecture. In this revision of SM, there are 32 CUDA cores per multiprocessor,
giving each card 16 to 32 SMs; with each core having it's out floating point and
arithmetic logic units. Figure 9 below is a simplified example of third generation
SM. Pictured is a single multiprocessor, with the hardware available in each SM. In

the figure the 32 individual processing cores can be seen along with the 16

15

load/store units and the 4 special functions units. These units are accessed once the
warp schedulers divide tasks amongst the cores. Following these processing units
are the standard graphical processing hardware units such as those that perform
tessellations and texturing. It is also noted that in this version each individual core

has its own integer and floating point units. [16] [17]

Thread
g per-Thread Private
% Local Memory
Thread Block
[ecce < per-Block
L Shared Memory
S E RO R B b

Y

per-
Application
Context
Grid1 Global
: Memory

A 4

Figure 9 - Thread Hierarchy Figure 10 - Stream Multiprocessor

Added support for the new IEEE floating point standard has given these new
cards the ability to use a fused add and multiply in one step. Data precision has also
been improved so that the integer units provide 64 bit support while the floating
point units finally provide full 32 bit support. The sixteen load and store and four

special function units allow for up to sixteen thread address to be calculated at a

16

time and four instances of functions such as sine or square roots. With most of these
instructions executing with one instruction per clock cycle having so many SMs on a

single card allows for distribution of complex equations and faster execution. [16]

2.3. FPGA Background

2.3.1. History of FPGAs

Ross Freeman, co-founder of the company Xilinx, invented Field
Programmable Gate Arrays (FPGA) in 1894 while working for the company Zilog.
After inventing the FPGA Freeman left Zilog with his Patent (patent 4,870,302) to
found Xilinx. While Xilinx is a multi-billion dollar company today, Freeman did not
live to see this become a reality passing away in 1989. He was honored in 2009 by
being inducted into the National Inventor’s Hall of Fame for his work on FPGAs. [18]

The first FPGAs released to the market had only several thousand gates and
had several disadvantages to their counterparts, ASICs. They were slower,
consumed more power, and had limited functionality. The industry of FPGAs grew
slowly through the 1990s. In 1992 the U.S. Naval Surface Warfare department
completed a project on FPGAs that implemented 600,000 logic gates. During this
time, the main applications for FPGAs were networking and telecommunications.

By the late 90s, the number of gates on a single FPGA reached the millions
and many of the disadvantages compared to ASICs were diminishing. FPGAs began
entering many other industries because of the low time from development to
market introduction. Much money could be generated by being the first to the
market. [19]

17

Today, FPGAs can cater to many different applications. Different series and
families are application specific and have additional logic to support faster
processes. FPGAs have a high capacity for parallelization and pipelining processes.
Often, they are used as peripherals to CPUs to carry out specific processes that a

CPU has trouble handling.

2.3.2. Early Programmable Devices

The idea behind FPGAs originated from two devices, Programmable Logic
Arrays (PLA) and Complex Programmable Logic Devices (CPLDs). PLAs were
introduced during the early 1970s as one- time programmable chips to implement
logic functions. The AND gates and OR gates were connected with a communication
matric that could be programmed by burning fuses to implement a truth table. The

limiting factors were the number of inputs, AND gates, and OR gates. [20]

—
—
—

Figure 11 - PLA Architecture

Commutation matrix
Commutation matrix

T I T

CPLDs built upon the idea of PDAs with an interconnection matrix connecting

all of the inputs and outputs. The connection matrix was formed of on-chip Flash

18

memory to configure macrocells. These macrocells are very similar in structure to a
PLA. CPLDs are very similar to FPGAs as the main difference is in the underlying

architecture. [20]

0B 0B 108 108
L 10 10 1T
MC MC MC MC
— e [me J/_\ Me — o8 [—
/,—\/‘_-‘\{ [|
— 1B [mc Mc | 108 —
o T Interconnection I T
. N matrix N i
:IOB:MC MCZIOB:
— o8 H mc \M M [108 [—
MC MC MG MC
L 1L 1]
108 0B 108 108

Figure 12 - CPLD Architecture

2.3.3. FPGA Architecture

Field Programmable Gate Array is a semiconductor device comprised of
many logic blocks with configurable interconnections between these. The logic
blocks are capable of acting as simple logic gates, such as AND and XOR. In addition
to the logic gates, there are routing channels that run between each logic block.
These channels are programmable and enable different logic blocks to talk to each

other. In recent years, more specific circuits are implemented on FPGAs for

19

application specific purposes. These can include multipliers and DSP circuits, which
speed up processing for those applications.

The main component of FPGAs is the logic block. Millions of these are
replicated in a network throughout the chip. They are implemented in a Lookup
Table (LUT) usually consisting of four input pins. The LUTs have small piece of
memory attached that is programmed for output logic depending on the input.
Essentially, a truth table defined for that piece of logic. Some designers are

increasing the number of input pins to six to increase speed.

AND
8 = OR
b &
y
C
y=(a&b)|c
LUT
/ abcly
000]0
e 001|1
N 01010 y
) 011l
v 100(0
! 1011|1
‘\‘ 11011
v 11111

Figure 13 - Three Input LUT

Each LUT has only one output. This output can then be stored in a flip flop to
preserve values over a clock cycles, or it can run to other LUTs to further implement
logic. The Virtex-5, which the benchmarks in the report are based on, uses six input

LUTs.

20

The routing channels, which run between logic blocks, are used to connect
various LUTs together. The routing channels are controlled by switch blocks that
control connections between crossing wires. An example of this is seen below in

Figure 14.

Programmable
Wire Switch
Segment

Figure 14 - Switch Block

These connections allow for an immense amount of configurable logic
allowing an FPGA to carry out its functionality. Figure 15 below shows the layout of

blocks throughout a network. [21]

21

a a a
2 -

‘; Programmable
N h h " *y interconnect

—

Programmable
logic blocks

u u

Figure 15 - FPGA Routing

In newer FPGA series other blocks are implemented for application specific
functionality. These specialized blocks, or slices, run their specific functionality
faster than can be implemented using LUTs and routing wires. These slices also
drastically cut down the number of LUTs used. The two main blocks are the
multipliers and DSP slices. To implement the multiplication of two 32 bit numbers
would require more than 2000 operations for a single multiply. Different FGPA
series have different types and quantities of specialized blocks based on designed

applications. [22]

22

RAM blocks

Multipliers
l— Logic blocks
1=\
- N
i /
7

Figure 16 - Specialized Slices

The latest FPGA is the Virtex-7 from Xilinx. This model has increased
computing power and efficiency. The architecture for this model can be seen below

in Figure 17.

Xilinx Zyng EPP

Flash Controller
NOR, NAND, SRAM, QSP1

DRAM Controller
DDR2, DDR3, LPDDR2

AMBA Bus

AX! Interconnect

‘11

e |

ARM CoreSight Multi-Core Debug and Trace
" NEONDSPFPU || NEONDSPFPU

| ARM Cortex-A9 MPCore ARM Cortox-A9 MPCore
32i32 KB D Caches 32/32 KB /D Caches

4
v
Processor IO

AOCAOnI;

AMBA Bus
Programmable-Logic Fabric
Multi-standard /O (3.3V and high-speed 1.8V

AXl Interconnect

i

¢
AXI Interconnect

AT AT A

& RA RE OBA

System Monitor
and 2x ADCs Programmable-Logic Fabric

Multi-standard /O (3.3V and high-speed 1.8V) M Multi-Gigabit/Sec Transceivers i

2x
= GigE

Figure 17 - Virtex-7 Architecture

23

3. Benchmarks

Benchmarking has been around for years and is widely used as the standard to
which we base our computing processing power today. Programs available from
many different packages are used to measure the metrics of new processors daily.
In the beginning, performance was measured by various system specifications, such
as clock rate. Many designers and consumer realized that while this may give some
indication of the processing power of a machine, it did not incorporate the entire
scope of the situation. Many benchmarks are used today to apply stress to
processors through different processes for different applications. Benchmarks
come in four different types, each having its own strength and weaknesses: real
applications, small benchmarks, benchmark suites, and synthetic benchmarks.

Real applications are benchmarks bases pre-existing programs. They are
comprised of a typical user’s workload during the day. The advantages to running
real applications are that they directly translate over to improved performance
times on programs and very accurately mirror everyday workloads. However, these
benchmarks are usually very big and require more time to run and transfer to other
machines. In addition, it can be very hard to pinpoint a processing bottleneck to
discover what instruction types need to be improved for the greatest performance
increase.

The next type of benchmark is the small benchmark. It consists of a very
small code segment that exists in many other applications. For example, the

following C code could be a small benchmark.

24

for (j = 0; j<8; j++)
S=S+AxBy;

This code runs very fast and does not take very long to compile or transfer
between systems. In addition, it can give developers a very good idea about what
portion of their process is bottlenecking the systems in order to make
improvements and can be easy to simulate during design to test functionality.
However, many designers can take advantage of the limited instructions used to
design a system specialized for that particular loop. This abuses the benchmark and
does not report accurate data to both designers and customers.

Benchmark suites are compilations of different benchmarks from different
industries that together represent a variety of computing loads on a machine.
Standard Performance Evaluation Corporation (SPEC) provides one of the main
suites available to developers. SPEC began in 1989 with SPEC89 CPU intensive
benchmark suite. Many companies came together and agreed on a set of programs
that represented a user’s typical workload. Suites are very useful in covering a
diverse set of parameters and characteristics; however, they are still susceptible to
abuse. In addition, they require periodic updates to change the applications as
typical workloads change.

Lastly, some programmers advocate the use of synthetic benchmarks. These
programs attempt to mirror the characteristics of other applications while using
much less space and processing time. In reality, they do not perform any functional

task on the processor, but do give an accurate representation of processing power.

25

It is always important to run many iterations of a benchmark. Timings will
change and an average of all iterations should be used to provide a more accurate
picture for comparisons. Often manufacturers can find one or more benchmarks
that their platform particularly excels at and abuse this standard for advertisement.
The best benchmarks to look at for different computers are those posted by non-

profit organizations which are unbiased. [23]

3.1. FPGA Benchmarks

Benchmarking is not traditionally done for FPGAs. Rather, the datasheets for
different FPGAs have details about maximum clock cycle that they can operate at.
The user then looks at the program that they want to run and they can see number
of clock cycles it takes to produce a result. The throughput does not change
between iterations on the same machine. The following benchmarks that were run
on the Virtex-5 series FPGA were compiled using either the Xilinx Core Generator or
MATLAB Simulink HDL Coder.

The Xilinx CORE Generator is where most of the applications are from. It is
built into the Xilinx program. When opening a core you have several options that
can be selected based on your needs such as extra pin [/0, processing type, and size.
The Simulink HDL coder is a new addition to the program. Rather than designing
our own code, the current demos available in the Simulink program were used to
generate HDL code, which is then tested in the Xilinx program. The HDL Coder is

also capable of generating testbenches for the application.

26

Fast Fourier Transform (FFT)

A discrete Fourier transform that operates with reduced computational power. The
number of computations needed is reduced from 2N”2 to 2N Log2 N where N is the
number of points necessary for the computation. The FFT used in this study is a

1024 point FFT.

Finite Impulse Response Filter (FIR)

FIR Filters are designed to be simple to implement for Digital Signal
Processing (DSP). FIR filters are more commonly used then IIR filters because of the
advantages offered such as fractional arithmetic and fewer practical problems. The

FIR filter used for performance testing in this study is a low pass filter.

Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) specifies a FIPS-approved
cryptographic algorithm that can be used to protect electronic data. The AES
algorithm is a symmetric block cipher that is capable of encrypting (encipher) and
decrypting (decipher) information. Encryption converts data to an unintelligible
form called cipher text; decrypting the cipher text converts the data back into its
original form, called plaintext. The AES algorithm is capable of using cryptographic
keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits.

(http://csrc.nist.gov/publications/fips/fips197 /fips-197.pdf)

Double Precision Floating Point Multiplication

27

This block takes in two double floating point numbers for multiplication.
This is similar to a small benchmark for CPUs. A single FPGA is able to implement
multiple instances of this application allowing for large amounts of parallel

processing.

3.2. SPEC CPU2006

Standard Performance Evaluation Corporation (SPEC) CPU 2006 is a
benchmark suite that contains over twenty-five different benchmarks. These
industry-standardized benchmarks were created to stress a system’s processor,
memory architecture, and compilers. This particular suite is divided into two sub
categories, CINT2006 and CFP2006. The CINT2006 portion consists of twelve total
benchmarks that measure integer operation performance, while the CFP2006
portion consists of seventeen benchmarks that measure floating point operation
performance. A brief description of each SPEC CPU2006 benchmark can be seen

below. [24]

3.2.1. CPUINT2006
400.perlbench
“400.perlbench is a cut-down version of Perl v5.8.7, the popular scripting
language. SPEC's version of Perl has had most of OS-specific features removed. In
addition to the core Perl interpreter, several third-party modules are used:
e SpamAssassin v2.61
e Digest-MD5 v2.33

e HTML-Parser v3.35

28

e MHonArcv2.6.8

e [0-stringy v1.205

¢ MailTools v1.60

e TimeDate v1.16” [25]
401.bzip2

“401.bzip2 is based on Julian Seward's bzip2 version 1.0.3. The only

difference between bzip2 1.0.3 and 401.bzip2 is that SPEC's version of bzip2
performs no file I/O other than reading the input. All compression and

decompression happens entirely in memory. This is to help isolate the work done to

only the CPU and memory subsystem.” [25]

403.gcc

“403.gcc is based on gcc Version 3.2. It generates code for an AMD Opteron
processor. The benchmark runs as a compiler with many of its optimization flags
enabled.

403.gcc has had its inlining heuristics altered slightly, so as to inline more
code than would be typical on a UNIX system in 2002. It is expected that this effect
will be more typical of compiler usage in 2006. This was done so that 403.gcc would
spend more time analyzing its source code inputs, and use more memory. Without
this effect, 403.gcc would have done less analysis, and needed more input workloads

to achieve the run times required for CPU2006.” [25]

429.mcf

29

“429.mcf is a benchmark that is derived from MCF, a program used for single-
depot vehicle scheduling in public mass transportation. The program is written in C.
The benchmark version uses almost exclusively integer arithmetic.

The program is designed for the solution of single-depot vehicle scheduling
sub-problems occurring in the planning process of public transportation companies.
It considers one single depot and a homogeneous vehicle fleet. Based on a line plan
and service frequencies, so-called timetabled trips with fixed departure/arrival
locations and times are derived. Each of these timetabled trips has to be serviced by
exactly one vehicle. The links between these trips are so-called dead-head trips. In

addition, there are pull-out and pull-in trips for leaving and entering the depot.” [25]

445.gobmk
“The program plays Go and executes a set of commands to analyze Go

positions.” [25]

456.hmmer

“Profile Hidden Markov Models (profile HMMs) are statistical models of
multiple sequence alignments, which are used in computational biology to search
for patterns in DNA sequences.

The technique is used to do sensitive database searching, using statistical
descriptions of a sequence family's consensus. It is used for protein sequence

analysis.” [25]

30

458.sjeng

“458.sjeng is based on Sjeng 11.2, which is a program that plays chess and
several chess variants, such as drop-chess (similar to Shogi), and 'losing' chess.

It attempts to find the best move via a combination of alpha-beta or priority
proof number tree searches, advanced move ordering, positional evaluation and
heuristic forward pruning. Practically, it will explore the tree of variations resulting
from a given position to a given base depth, extending interesting variations but
discarding doubtful or irrelevant ones. From this tree the optimal line of play for
both players ("principle variation") is determined, as well as a score reflecting the
balance of power between the two.

The SPEC version is an enhanced version of the free Sjeng 11.2 program,
modified to be more portable and more accurately reflect the workload of current

professional programs.” [25]

462.libquantum

“Libquantum is a library for the simulation of a quantum computer. Quantum
computers are based on the principles of quantum mechanics and can solve certain
computationally hard tasks in polynomial time. In 1994, Peter Shor discovered a
polynomial-time algorithm for the factorization of numbers, a problem of particular
interest for cryptanalysis, as the widely used RSA cryptosystem depends on prime
factorization being a problem only to be solvable in exponential time. An

implementation of Shor's factorization algorithm is included in libquantum.

31

Libquantum provides a structure for representing a quantum register and
some elementary gates. Measurements can be used to extract information from the
system. Additionally, libquantum offers the simulation of decoherence, the most
important obstacle in building practical quantum computers. It is thus not only
possible to simulate any quantum algorithm, but also to develop quantum error
correction algorithms. As libquantum allows adding new gates, it can easily be
extended to fit the ongoing research, e.g. it has been deployed to analyze quantum

cryptography.” [25]

464.h264ref

“464.h264ref is a reference implementation of H.264/AVC (Advanced Video
Coding), the latest state-of-the-art video compression standard. The standard is
developed by the VCEG (Video Coding Experts Group) of the ITU (International
Telecommunications Union, http://www.itu.int) and the MPEG (Moving Pictures
Experts Group, http://mpeg.chiariglione.org) of the ISO/IEC (International
Standardization Organization, http://www.iso.ch). This standard replaces the
currently widely used MPEG-2 standard, and is being applied for applications such

as the next-generation DVDs (Blu-ray and HD DVD) and video broadcasting.” [25]

471.omnetpp
“The benchmark performs discrete event simulation of a large Ethernet
network. The simulation is based on the OMNeT++ discrete event simulation system

(www.omnetpp.org), a generic and open simulation framework. OMNeT++'s

32

primary application area is the simulation of communication networks, but its
generic and flexible architecture allows for its use in other areas such as the
simulation of IT systems, queuing networks, hardware architectures or business
processes as well. The Ethernet model used in this benchmark is publicly available

from the address given in the References.” [25]

473.astra

“473.astar (pronounced: A-star) is derived from a portable 2D path-finding
library that is used in game's Al. This library implements three different path-
finding algorithms: First is the well-known A* algorithm for maps with passable and
non-passable terrain types. Second is a modification of the A* path finding algorithm
for maps with different terrain types and different move speed. Third is an
implementation of A* algorithm for graphs. This is formed by map regions with
neighborhood relationship. The library also includes pseudo-intellectual functions

for map region determination.” [25]

483.xalancbmkg

“This program is a modified version of Xalan-C++, an XSLT processor written
in a portable subset of C++. You use the XSLT language to compose XSL style sheets.
An XSL style sheet contains instructions for transforming XML documents from one
document type to another document type (XML, HTML, or other). In structural
terms, an XSL style sheet specifies the transformation of one tree of nodes (the XML

input) into another tree of nodes (the output or transformation result).” [25]

33

3.2.2. CFP2006
410.bwaves

“410.bwaves numerically simulates blast waves in three dimensional
transonic transient laminar viscous flow.

The initial configuration of the blast waves problem consists of a high
pressure and density region at the center of a cubic cell of a periodic lattice, with
low pressure and density elsewhere. Periodic boundary conditions are applied to
the array of cubic cells forming an infinite network. Initially, the high pressure
volume begins to expand in the radial direction as classical shock waves. At the
same time, the expansion waves move to fill the void at the center of the cubic cell.
When the expanding flow reaches the boundaries, it collides with its periodic
images from other cells, thus creating a complex structure of interfering nonlinear
waves. These processes create a nonlinear damped periodic system with energy
being dissipated in time. Finally, the system will come to an equilibrium and steady
state.

The algorithm implemented is an unfactored solver for the implicit solution
of the compressible Navier-Stokes equations using the Bi-CGstab algorithm, which

solves systems of non-symmetric linear equations iteratively.” [26]

416.gamess

34

“A wide range of quantum chemical computations are possible using
GAMESS. The benchmark 416.gamess does the following computations for the
reference workload:

o Self-consistent field (SCF) computation (type: Restricted Hartree-Fock) of
cytosine molecule using the direct SCF method

e SCF computation (type: Restricted open-shell Hartee-Fock) of water and
cu2+ using the direct SCF method

e SCF computation (type: Multi-configuration Self-consisted field) of triazolium

ion using the direct SCF method” [26]
433.milc

“The program generates a gauge field, and is used in lattice gauge theory
applications involving dynamical quarks. Lattice gauge theory involves the study of
some of the fundamental constituents of matter, namely quarks and gluons. In this

area of quantum field theory, traditional perturbative expansions are not useful.

Introducing a discrete lattice of space-time points is the method of choice.” [26]

434.zeusmp

“434.zeusmp is based on ZEUS-MP, a computational fluid dynamics code
developed at the Laboratory for Computational Astrophysics (NCSA, University of
[llinois at Urbana-Champaign) for the simulation of astrophysical phenomena. ZEUS-
MP solves problems in three spatial dimensions with a wide variety of boundary
conditions.

The program solves the equations of ideal (non-resistive), non-relativistic,
hydrodynamics and magnetohydrodynamics, including externally applied

gravitational fields and self-gravity. The gas can be adiabatic or isothermal, and the

35

thermal pressure is isotropic. Boundary conditions may be specified as reflecting,

periodic, inflow, or outflow.” [26]

435.gromacs

“435.gromacs is derived from GROMACS, a versatile package that performs
molecular dynamics, i.e. simulation of the Newtonian equations of motion for
systems with hundreds to millions of particles.

The benchmark version performs a simulation of the protein Lysozyme in a
solution of water and ions. The structure of a protein is normally determined by
experimental techniques such as X-ray crystallography of NMR spectroscopy. By
simulating the atomic motions of these structures, one can gain significant
understanding of protein dynamics and function, and, in some cases, it might even

be possible to predict the structure of new proteins.” [26]

436.cactusADM

“CactusADM is a combination of Cactus, an open source problem solving
environment, and BenchADM, a computational kernel representative of many
applications in numerical relativity (ADM stands for ADM formalism developed by
Arnowitt, Deser and Misner). CactusADM solves the Einstein evolution equations,
which describe how space-time curves as response to its matter content, and are a
set of ten coupled nonlinear partial differential equations, in their standard ADM
3+1 formulation. A staggered-leapfrog numerical method is used to carry out the

update.” [26]

36

437 leslie3d

“437 leslie3d is derived from LESlie3d (Large-Eddy Simulations with Linear-
Eddy Model in 3D), a research-level Computational Fluid Dynamics (CFD) code. It is
the primary solver used to investigate a wide array of turbulence phenomena such
as mixing, combustion, acoustics and general fluid mechanics.

For CPU2006, the program has been set up to solve a test problem which
represents a subset of such flows, namely the temporal mixing layer. This type of
flow occurs in the mixing regions of all combustors that employ fuel injection
(which is nearly all combustors). Also, this sort of mixing layer is a benchmark

problem used to understand physics of turbulent mixing.” [26]

444 namd

“The 444.namd benchmark is derived from the data layout and inner loop of
NAMD, a parallel program for the simulation of large biomolecular systems.
Although NAMD was a winner of a 2002 Gordon Bell award for parallel scalability,
serial performance is equally important to the over 10,000 users who have
downloaded the program over the past several years. Almost all of the runtime is
spent calculating inter-atomic interactions in a small set of functions. This set was
separated from the bulk of the code to form a compact benchmark for CPU2006.
This computational core achieves good performance on a wide range of machines,

but contains no platform-specific optimizations.” [26]

37

447 dealll

“The SPEC CPU2006 benchmark 447.dealll is a program that uses deal.ll, a
C++ program library targeted at adaptive finite elements and error estimation. The
library uses state-of-the-art programming techniques of the C++ programming
language, including the Boost library. It offers a modern interface to the complex
data structures and algorithms required for adaptivity and enables use of a variety
of finite elements in one, two, and three space dimensions, as well as time-
dependent problems.

The main aim of deal.Il is to enable development of modern finite element
algorithms, using among other aspects sophisticated error estimators and adaptive
meshes. Writing such programs is a non-trivial task, and successful programs tend

to become very large and complex.” [26]

450.soplex
“450.soplex is based on SoPlex Version 1.2.1. SoPlex solves a linear program

using the Simplex algorithm.” [26]

453.povray

“POV-Ray is a ray-tracer. Ray-tracing is a rendering technique that calculates
an image of a scene by simulating the way rays of light travel in the real world but it
does so backwards. In the real world, rays of light are emitted from a light source
and illuminate objects. The light reflects off of the objects or passes through

transparent objects. This reflected light hits the human eye or a camera lens. As the

38

vast majority of rays never hit an observer, it would take forever to trace a scene.
Thus, ray-tracers like POV-Ray start with their simulated camera and trace rays
backwards out into the scene. The user specifies the location of the camera, light

sources, and objects as well as the surface textures and their interiors.” [26]

454 calculix

“454.calculix is based on CalculiX, which is a free software finite element
code for linear and nonlinear three-dimensional structural applications. It uses the
classical theory of finite elements described in books such as the work by O.C.
Zienkiewicz and R.L. Taylor, "The Finite Element Method", Fourth Edition, McGraw
Hill, 1989. CalculiX can be used to solve a variety of problems such as static
problems (bridge and building design), buckling, dynamic applications (crash,

earthquake resistance) and eigenmode analysis (resonance phenomena).” [26]

459.GemsFDTD

“GemsFDTD solves the Maxwell equations in 3D in the time domain using the
finite-difference time-domain (FDTD) method. The radar cross section (RCS) of a
perfectly conducting (PEC) object is computed. GemsFDTD is a subset of the code

GemsTD developed in the General ElectroMagnetic Solvers (GEMS) project.” [26]

465.tonto
“Tonto is an open source quantum chemistry package, designed by Dylan

Jayatilaka and Daniel J. Grimwood. Objectives include simplicity and portability;

39

aspects not seen in many quantum chemistry codes. The code is easily extendable
by chemists with limited programming skills and time, and is easy to understand
and use.

Tonto is written within an object oriented design, in Fortran 95. It uses
derived types and modules to represent classes. Classes range from integers and
text files, through to atoms, space groups and molecules. There is a "self" variable in
most routines, which should be familiar from many OO languages. Tonto uses
dynamic memory instead of common blocks, and uses array operations where

possible.” [26]

470.lbm

“This program implements the so-called "Lattice Boltzmann Method" (LBM)
to simulate incompressible fluids in 3D as described in. It is the computationally
most important part of a larger code which is used in the field of material science to
simulate the behavior of fluids with free surfaces, in particular the formation and
movement of gas bubbles in metal foams. For benchmarking purposes and easy
optimization for different architectures, the code makes extensive use of macros
which hide the details of the data access. A visualization of the results of the

submitted code can be seen below (flow through a porous medium, grid size

150x150x150, 1000 time steps).” [26]

481.wrf

40

“481.wrf is based on the Weather Research and Forecasting (WRF) Model,
which is a next-generation mesocale numerical weather prediction system designed
to serve both operational forecasting and atmospheric research needs.

WREF features multiple dynamical cores, a 3-dimensional variational (3DVAR)
data assimilation system, and a software architecture allowing for computational
parallelism and system extensibility. The parallel portions of the code have been
turned off for SPEC CPU2006 as the interest here is in single processor

performance.” [26]

482.sphinx3
“Sphinx-3 is a widely known speech recognition system from Carnegie
Mellon University. The 482.sphinx3 benchmark focuses on the CPU-intensive

portion of this speech recognition system.” [26]

3.3. Rodinia Suite

The following benchmarks were taken from the Rodinia Suite.

Leukocyte

The leukocyte application detects and tracks rolling leukocytes (white blood
cells) in in vivo video microscopy of blood vessels. The velocity of rolling leukocytes
provides important information about the inflammation process, which aids

biomedical researchers in the development of anti-inflammatory medications.

41

In the application, cells are detected in the first video frame and then tracked
through subsequent frames. Detection is accomplished by computing for every pixel
in the frame the maximal Gradient Inverse Coefficient of Variation (GICOV) score
across a range of possible ellipses. The GICOV score for an ellipse is the mean
gradient magnitude along the ellipse divided by the standard deviation of the
gradient magnitude. The matrix of GICOV scores is then dilated to simplify the
process of finding local maxima. For each local maximum, an active contour

algorithm is used to more accurately determine the shape of the cell. [27]

LU Decomposition
LU Decomposition is an algorithm to calculate the solutions of a set of linear
equations. The LUD kernel decomposes a matrix as the product of a lower triangular

matrix and an upper triangular matrix. [27]

SRAD

SRAD (Speckle Reducing Anisotropic Diffusion) is a diffusion method for
ultrasonic and radar imaging applications based on partial differential equations
(PDEs). It is used to remove locally correlated noise, known as speckles, without
destroying important image features. SRAD consists of several pieces of work: image
extraction, continuous iterations over the image (preparation, reduction, statistics,
computation 1 and computation 2) and image compression. The sequential
dependency between all of these stages requires synchronization after each stage

(because each stage operates on the entire image). [27]

42

K-means

K-means are a statistical analysis of clusters where each value is placed into a
group where it has the most similar mean. Initial data points are chosen and the
subsequent iterations shuffle the data around until there is convergence. K-means
is often considered a complex calculation, but over time modified algorithms have

improved speed. [27]

Heart Wall

The heart wall benchmark uses several types of processing to create a
benchmark testing “braided parallelism”. By using image despeckling and edge
detection a new image is produced to detect shapes. Once this process is complete
ellipses are added to the process and finally the entire image is tracked from frame
to frame. This allows for testing parallelism of both multiple tasks and massive

amounts of data. [27]

Hot Spot

This benchmark runs a simulation of processor power and temperature and
how cells affect their neighbors. These calculations are done by a series of
differential equations. The differential equations are run on a temperature map by

taking power usage into account until the entire map has been normalized. [27]

Needleman

43

This benchmark is a nonlinear optimization of DNA. It finds the optimal path
to particular cells. Based on cells surrounding elements, initially filled by the
program, backwards calculation is done to find proper alignment. The larger the
calculated score the closer to a match there is. Scores are calculated by looking at
the north, west, and north western cells and points deducted to missing elements.

[27]

Particle Filter

This benchmark estimated locations in noisy environments by looking at the
location and path of an object. This is done by making guesses, checking their
probability, normalizing the guesses, and updating the location of the object. This
implementation of a Particle Filter looking at the speed up provided by GPU
parallelism in order to make this application possible in real time applications. For
our purposes, trials were run on 1, 2 and 5 million data points in 16, 32 and 64 sized

processing grids. [27]

3.4. John Burkardt Benchmarks

John Burkardt is a computer programmer that has been working in the
computer science field for many years. His first job was at the Pittsburgh
Supercomputing Company from 1988 - 1992. Up until current day, he has had a
robust career and worked at several places including Bell Helicopter, the
Mathematics Department at lowa State University, Virginia Tech, and is currently

working at the Department of Scientific Computing at Florida State University. Mr.

44

Burkardt has written many applications, mostly for educational purposes, and two
of them were used in this project for their parallel computing attributes using the
OpenMP library. These two applications are an FFT benchmark and a Prime

Number Counting benchmark. [28]

FFT

This benchmark is a C program that computes a Fast Fourier Transform
using parallelism via OpenMP. Included in this program is the ability to change the
number of threads used. This allows the user to compare the execution time of

different numbers of threads. [28]

Prime Number Counting

This benchmark is a C program that counts the number of primes between 1
and N. In the default case, N is set to 131,072 but can be changed in the source code.
For the sake of this project, we only used the default case. This program also
allowed the user to change the number of active threads running for comparison of

execution times. [28]

3.5. SHOC Suite

Scalable Heterogeneous Computing Benchmark (SHOC) provides
benchmarks that are setup to run across GPUs, CPUs, and cluster computing through
Message Passing Interface (MPI). While originally designed for use with OpenCL,

the current version 1.1.2 supports NVIDIA’s CUDA language and MPI. SHOC

45

provides both stress and performance tests, coving areas from mathematical

problem and linear algebra to image processing.

Lennord Jones

This benchmark, based on molecular dynamics, performs nbody
computations using the Lennord Jones potential. N atoms are spread randomly over
a cubic domain for this particular execution. [29]
Reduction

As the name suggests, this benchmark is massive sum reduction performed
on floating point data. Sets of data points are reduced in individual threads before

being looked over again until a single number is reached. [29]

Chemical Modeling (S3D)

Using a three dimensional grid, with one thread per point, this benchmark is
a massively parallel calculation of chemical rates using S3D. S3D is a direct
numerical solver based on the Navier-Stokes equation. This benchmark relies

heavily on floating point calculations, an estimated 10 kKFLOPS per thread. [29]

Parallel Prefix Sum

Also known as a scan, this benchmark uses the addition of previous smaller
summations to yield a new overall result. With the addition of multiple parallel
threads, increasing the number of starting values make this harder to run on

modern CPU based systems. [29]

46

Radix Sort

This benchmark is a radix sorting algorithm where sorting is performed
based on individual locations within a number. For example sorting can be based
first on the highest digit, such as the hundreds place for example, and then proceed
to look at the next level down. Sorting as the algorithm processes each level allows

for the list to be sorted quickly in parallel. [29]

2D Stencil Operation

A 9 point stencil computation where each value is updated in turn based on
the X-point pattern defined by the algorithm. The standard pattern that updates
this algorithm remains the same during this benchmark; however, multiple
iterations show speedup in larger systems where multiple points can be processed

at once. [29]

Vector Dot Product

This benchmark calculates and checks the bandwidth of a given device while
performing a vector dot product operation. Vector dot product results in
calculations to determine of the vectors are orthogonal by performing normalization

and then looking at the angle between the two vectors. [29]

Device Information

47

These benchmarks include calculating data about the particular card that is
being used to execute other benchmarks. These statistics include the download
speed of the device, the devices memory capabilities, and the max flops possible on
the device. Since these numbers could all be limiting factors in the calculation of the
performance of any one device it is important to know where these numbers lie so

that they can be taken into account. [29]

3.6. Parboil Suite

Parboil is a suite designed by the IMPACT group, Illinois Microarchitecture
Project utilizing Advanced Compiler Technology, mainly for GPUs. Designed to focus
on the massively parallelism systems of today’s GPUs, modeling and complex
mathematics form the basis of the benchmarks. While the IMPACT group also
provides a CPU simulation compiler for CUDA, it is used solely for GPU testing in the

context of our project.

Breadth First Search

Breadth First Searching a style of graph searching algorithm that goes
through every node in a tree until the correct result is found. This algorithm
basically looks through the tree layer by layer, finding children for its next round as
it goes. It will not skip to any of the found children until every node on the current
level is finished being examined. With this type of exhaustive searching large trees

can require large amounts of space and time to compute. Benchmarking with a

48

breadth first searching algorithm will allow us to see the advantages, if any, to more

modern multiprocessor multithreaded systems. [30]

Dense Matrix Multiplication

In matrix multiplication, the dot product of a column by a row is performed.
The limitations on this idea are that the two matrices must have similar dimensions,
or at least have the x dimension of A equal to the y dimension of B. Dense matrix
multiplication follows this same principle, except that the properties of a dense
matrix are different than those of a normal matrix. Consider for example that every
block in a matrix is connected to every other block in the matrix, so that if you
change one you affect the entire matrix. This make multiplication of dense matrices
a time consuming task for simple non parallel processors and an excellent way to

benchmark the idea of parallel processing in modern hardware. [30]

FFT

The Fast Fourier Transform (FFT) is a very important algorithm for Digital
Signal Processing (DSP). Simply put, FFT is a computationally efficient method for
calculating the Discrete Fourier Transform (DFT). The DFT is a mathematical
operation of transforming a time domain function of finite (discrete) size into a
frequency domain function. There are several ways of computing the DFT, FFT
being one of them. Without FFT, calculating the DFT can be a long and tedious
process. The FFT simplifies this process by breaking the set of data into smaller and

smaller chunks and then calculating the DFT. For example, say there were 32 data

49

points. Trying to calculate the DFT on all 32 points at once would be very difficult.
FFT breaks down that data set into smaller and smaller sets until, in this case, there
are 16 sets of 2. It is much faster and easier to calculate the DFT at a data size of two
than at a data size of 30, especially when parallel computing is involved and several

of those 16 calculations can be done at the same time.

Sum of Absolute Differences

Sum of absolute differences (SAD) is an algorithm often used in video
encoding as it is a comparison between the current image and the next occurring
frame. The algorithm simple finds the absolute value of the given image minus the
next before proceeding to add them all together. The smallest set is the closest to
the same image. SAD is often used across multiple platforms for compressing video,
simple animation, and object recognition. [30]
Distance Cutoff Coulombic Potential

This benchmark computes the Coulombic Potential of each grid point in a 3D
matrix. This benchmark relies on the calculation of the unequal dipole forces of a

water molecule. Speedup is shown by splitting up the calculations among parallel

threads. [30]

Saturating Histogram
Using a 2 dimensional matrix, this benchmark calculates a saturated
histogram based on the input data. For our particular set of tests, the input data is

that of a silicon wafer with a Gaussian representation of data. [30]

50

Lattice Boltzman

The Lattice Boltzman benchmark is a fluid dynamics simulation within an
enclosed container. Within this benchmark, particle collision and general
interaction is calculated using a discrete equation. This method for fluid dynamic

simulation is easily ported to GPU benchmarking for its ease in parallelism. [30]

Sparse Matrix Dense Vector Multiplication

The SPMV benchmark is similar to the dense matrix multiplication in that all
points are related to one another, thus when one point is acted upon it effects the
results of other points. In this case the matrix itself is sparsely populated so there
are not as many points to work with. This particular execution uses JDS format so it

allows for padding with zeros and multiple alignments. [30]

Two Angular Correction Function

The TPACF benchmark performs a statistical analysis of a spatial
distribution, often used when measuring astronomical bodies. It calculates a
histogram of distances between every set of objects within the data set. Completion
of this benchmark places distances, normally on an exponential curve, within reach
of a straight sloped line. Parallelism allows for processing of a multitude of points at

one time. [30]

51

4,

4.1.

Results

Devices

The following is the exact specifications for the devices that these

benchmarks were tested on. This information includes: clock rates, system memory,

and host operating system among other specifications.

4.1.1. GPU

All of the GPU benchmarks were run on the same system. Since transfer time

and driver commands are issued by the CPU we must look at the whole system. The

test system is running Ubuntu 10.04 with the Linux kernel version 2.6.32-38-

generic. Other system specifications are as follows:

CPU: AMD Athlon 64 x2 5200+ running at 2.611GHz dual core

3GB of system memory, DDR2 800MHz

GPU 1:
o
o

©)

GPU 2:

NVIDIA GeForce GTX 460
CUDA Capability 2.1
336 CUDA capable cores
1024MB of global onboard memory
GPU clocks are as follows:

= Graphics 675MHz

= Memory 1800MHz

= Processor 1350MHz
NVIDIA GeForce 9800 GTX+
CUDA Capability 1.1
128 CUDA capable cores
512MB of global onboard memory

GPU clocks are as follows:

52

4.1.2.

= Graphics 738MHz
= Memory 1100MHz
= Processor 1836MHz

System PCIE version 1.1

CPU

All of the CPU benchmarks were also run on the same system know at

Worcester Polytechnic Institute as the AMAX machine. This system has the

following specifications:

4.1.3.

2x - Intel Xeon X5650 processors running at 1.6 GHz. The processor is
capable by factory default to run at 2.67GHz. These processors have 6 cores
and 12 threads a piece, totaling 12 cores and 24 threads using Hyper
Threading.

The total memory of this machine is 24.6 GB.

The operating system running on this machine is Linux version 2.6.18-
274.7.1.e15.

The compiler is GCC, G++, GFortran versions 4.3.4.

Intel C++ Compiler XE version 12.0.1.116 build 2010116

FPGA

The FPGA benchmarks were performed using simulations on a Virtex-5

family board. All simulations were performed using the ISIM program through the

Xilinx program. Virtex-5 boards come in many different series and are specialized

for the following applications taken from the Xilinx datasheet:

Virtex-5 LX: High-performance general logic applications

Virtex-5 LXT: High-performance logic with advanced serial connectivity

53

e Virtex-5 SXT: High-performance signal processing applications with
advanced serial connectivity

e Virtex-5 TXT: High-performance systems with double density advanced
serial connectivity

e Virtex-5 FXT: High-performance embedded systems with advanced serial

connectivity [31]

4.2. All Devices

As a comparison between all three platforms we looked to the Fast Fourier
Transform. The FFT benchmark was chosen since it was easily portable between all
three devices. For the CPU the benchmark was acquired from John Burkardt, while
the GPU one came from the Parboil Suite and the FPGA core came from MATLAB
HDL Coder. While the benchmark came from different sources, the FFT
implementation was similar. A factor for concern could come from the use of the
different style compilers, making different optimizations to the code. The timings

from this benchmark can be seen here in Table 1.

FFT Benchmark 262,155 Points

Bench
mark CPU GPU FPGA
2 4 8 12 24 Max Threads Virtex-5
Threads Threads Threads Threads Thread
S
FFT 76.17 4541 31.63 27.85 31.36 8.13 us 2.59 ms
ms ms ms ms ms (Execution)

Table 1 - FFT Results

54

Using these timings it is obvious that the GPU processed the FFT the fastest.
The GPU throughput at an FFT this size is 311 times more than that of the FPGA and
3351 times faster than the CPU Multicore with 12 threads. What is missing from
this data is the transfer time for the GPU to send and receive the data. This time is
69 ms for this size data. With this time added in the GPU actually becomes the
slowest of all three platforms. Now, the FPGA is the fastest at 26.67 times faster
than the GPU and 10.76 times faster than the CPU.

What these results can infer is that depending on the hookup of your GPU to
minimize transfer time you could be better off using another platform. As GPU
transfer times become smaller and smaller, it is evident that in terms of speed, your

best choice will be a GPU.

4.3. CPU&GPU

In this section, we will discuss how the CPU and GPU compared against each
other. The three benchmarks that we were able to test across both of these
platforms were all from the Rodinia benchmark suite. The Leukocyte, LU
Decomposition, and Speckle Reducing Anisotropic Diffusion (SRAD) benchmarks
were the three that were executed and the average timings from three runs can be

seen as a comparison in Table 2 below.

55

Benchmark CPU GPU

2 4 8 12 24 Max
Threads Threads Threads Threads Threads Threads
Leukocyte 11.70s 6.11s 3.65s 2.16s 1.67 s 0.157 s
LU 242.82 130.00 7640 ms 69.23ms 145.20 7.38 ms
Decomposition Bl ms ms
Speckle 638.14 415.07 306.41 283.93 492.26 282.93
Reduction ms ms ms ms ms ms

Table 2 - CPU & GPU Results

Looking at the above data in most cases the GPUs beats out CPUs in raw
processing. Raw processing is something to note because, for the GPU iterations,
data is all moved to the GPU’s global memory before testing. This keeps the GPU
from having to ask for data over the slower system bus.

Looking at the times required for the Leukocyte benchmark there is a 10.6x
speedup between the 24 Hyper threads of the AXAM machine and the CUDA based
GTX 460. Again this is looking at raw processing as even in the benchmark papers it
is stated that “Although the overall kernel executed in slightly less than a second, the
memory allocation and copying overheads add more than eleven seconds to the
overall runtime.” [32]

The ultimate success of CUDA results from the many code optimizations and
compacting the code into a single kernel; thus, removing much of the extra overhead
that decreases speed.

Moving onto the LU Decomposition, it is easy to see that the GPU was much
faster than the CPU running this benchmark. This is most likely due to the

functionality of LU Decomposition, which is purely linear algebra mathematics.

56

Since this benchmark is purely mathematical based, the 336 cores and consequently
the numerous ALUs of the GPU would be must faster in this type of computation
than the 12 cores of the CPU. The only place that the CPU would be able to make up
for its slower computation would be in the data transfer portion of this benchmark.
In this study though, we are only looking at raw execution and not data transfer, so
the GPU is much faster than the CPU in the computation of the LU Decomposition
benchmark.

The Speckle Reduction benchmark uses mostly partial differential equations
in its computations. As described in the background section, this benchmark
consists of several, sequential parts, making synchronization of these parts a
necessary feature. This necessity for synchronization is what most likely allowed
the CPU execution time to equal that of the GPU. In the flat out computational
portions of this benchmark, the GPU would most likely beat the CPU due to its sheer
number of available cores. Advancements in CPU pipelining, however, allow the
CPU to begin the next instruction while the current one is executing. This basically
means that the CPU has the ability to synchronize and start its next instruction at
the same time. We believe that is the uniqueness of CPU pipelining that allows it to

compete with the GPU in execution time for this benchmark.

4.4. Individual Results

4.4.1. GPU Specific
For any GPU today the biggest area of a setback is in the area of data transfer.

Until recently, and still the majority, GPUs were only on dedicated cards requiring a

57

link to the CPU and memory over a data bus. The limitation of these busses to
transfer the computed data severely limits the abilities of GPUs in high performance
computing. While bus speeds have come a long way since the original PCI and AGP
graphics interfaces, even the newest version of PCIE limits speeds to 32 GB/sec

assuming full utilization of every channel both upload and download.

PCIE Version Raw Bitrate Total
(GT/sec) Bandwidth
(GB/sec)

1.0a

1.1

2.0

21

3.0

4.0 (theoretical)

Table 3 - GeForce Specification

Just looking at the specifications for the GeForce GTX460 we can see that its
maximum memory bandwidth is clocked at 115.2 GB/sec which is far in excess of
the 32 GB/sec we have with the current transfer standard. Looking at the SHOC
Benchmark Suite we can view download speeds and the speed of the onboard
memory of the tested cards as well. In the following table it is clear that larger file
sizes allow for use of more bandwidth, but the graphics cards simply are not capable
of utilizing the full bandwidth. The maximum data rate we see below is 3.278
GB/sec whereas the host systems capability was 4 GB/sec in both the upload and
download channels. With small file sizes, such as the 1kB file, the graphics card
barely reaches a tenth of its potential. As the file size increases past the 512kB point,

the time required to move the data increases in a linear fashion with a factor of two.

58

Focusing on the transfer capabilities of new generations of GPUs would allow for

much faster processing of large data sets by significantly reducing transfer times.

Size of Data Chunk GB / second Time
(kB) (milliseconds)

0.0968 0.01057
0.1919 0.01067
0.3399 0.01204
0.6074 0.01348
1.0987 0.01491
1.5839 0.02069
2.1322 0.03074
2.5777 0.05084
2.8825 0.09094
3.0872 0.1698
3.1711 0.3306
3.1773 0.6602
3.1769 1.3211
3.2272 2.5995
3.2552 5.1541
3.2357 10.369
3.2696 20.525
131072 3.2733 41.004
262144 3.2781 81.887
524288 3.2783 163.768

Table 4 - Data Size vs. Data Rate

In contrast to moving data to and from the device, moving data around
between the internal memory levels is a faster process. Looking below at Table 5
gives us another look at how slow global memory transfers are in comparison to the
internal capabilities of the GPU. The internal memory movement is on the order of a

hundred to three hundred GB/sec.

59

Read / Write Memory Block Size Speed (GB/sec)
Local 32 190 / 181
Local 64 288 / 328
Local 128 299 / 388
Local 256 289 / 385
Local 512 277 / 368
Global 32 7.4 /3.7
Global 64 5.8/35
Global 128 4.8 /3.4
Global 256 43 /34
Global 512 4.1/3.3

Table 5 - Global vs. Local Memory Speeds

As we can see in the table of timings below, from the Parboil Suite of
Benchmarks, large portions of time during any given benchmark is
transferring data to the GPU or the result back to main memory. While
transferring data is not necessarily the bulk of the time, a more efficient
method for transferring data is needed to help speed up the overall
computation times. As seen in

60

Average - 460

Average - 9800

Percent Diff

arboil
CUTCP
GPU 0.037495333 0.036806 -0.92775365
Copy 0.006528333 0.006477667 -0.38956379
FFT
GPU 0.000812667
Copy 0.069062
LBM - long
GPU 30.15880433 93.86147667 51.36472182
Copy 0.354906667 0.334240333 -2.99882802
LBM - short
GPU 1.006141333 3.124029333 51.2784621
Copy 0.340840333 0.332132333 -1.29396043
MM - long
GPU 0.008865333 0.010750667 9.61120174
Copy 0.010738333 0.010793667 0.256981856
SAD
GPU 0.001495667 0.002197667 19.00722022
Copy 0.115957 0.064151 -28.7638528
SPVM - large
GPU 0.000219333 0.000319333 18.56435644
Copy 0.076647333 0.054017333 -17.3191426
SPVM -
medium
GPU 0.000117 0.000114 -1.2987013
Copy 0.051963667 0.047360667 -4.6343125
SPVM - small
GPU 4.73333E-05 4.93333E-05 2.068965517
Copy 0.049963667 0.045377 -4.81081875
TPACF
GPU 1.361817 1.343129333 -0.69087015
Copy 0.081934 0.051611333 -22.7058976

Table 6 the smallest transfer time is still on the order of milliseconds (6.528
ms); magnitudes larger than a single cycle of execution for today’s modern CPUs and
GPUs (0.5 nanosec). An interesting note comes from the comparison of the older

9800 card to the current 460; the copy times actually increased by an average of

61

9.18% for the new architecture. This may be attributed to the added memory banks

or new hierarchy.

62

Parboil

Average - 460

Average - 9800

Percent Diff

CUTCP

GPU 0.037495333 0.036806 -0.92775365
Copy 0.006528333 0.006477667 -0.38956379
FFT

GPU 0.000812667

Copy 0.069062

LBM - long

GPU 30.15880433 93.86147667 51.36472182
Copy 0.354906667 0.334240333 -2.99882802
LBM - short

GPU 1.006141333 3.124029333 51.2784621
Copy 0.340840333 0.332132333 -1.29396043
MM - long

GPU 0.008865333 0.010750667 9.61120174
Copy 0.010738333 0.010793667 0.256981856
SAD

GPU 0.001495667 0.002197667 19.00722022
Copy 0.115957 0.064151 -28.7638528
SPVM - large

GPU 0.000219333 0.000319333 18.56435644
Copy 0.076647333 0.054017333 -17.3191426
SPVM -

medium

GPU 0.000117 0.000114 -1.2987013
Copy 0.051963667 0.047360667 -4.6343125
SPVM - small

GPU 4.73333E-05 4.93333E-05 2.068965517
Copy 0.049963667 0.045377 -4.81081875
TPACF

GPU 1.361817 1.343129333 -0.69087015
Copy 0.081934 0.051611333 -22.7058976

Table 6 - Parboil Suite Timings

Continuing to look at the Parboil Suite, there are other noticeable
improvements with the new Fermi architecture. The full table of results can be seen
in the appendices. Using the new architecture, the time spent on interactions

between the CPU and GPU decreased by a noticeable amount. CPU computation

time decreased by 8.77% and the time the CPU spent handling GPU commands
63

decreased by 2.21%. These increases show how newer GPUs are capable of
handling more commands by themselves and, while still reliant on CPUs, are moving
towards being able to compute by themselves.

Moving to the data from the Rodinia suite other observations on GPU
processing can be made. Once again, as with the Parboil suite, we can see that the
time taken to move memory around with the newer GTX 460 is still slower. Overall
this effect could be due to the test system’s PCIE bus. We did not have an
intermediate GPU to test floating point speedup with the new architecture, but using
the 9800 GTX+ we could observe native increase. Looking at the table below we see
that the older GPU beat the new architecture by a very slight margin; an average
increase of -0.97% for the GTX 460. Since the older architecture was optimized for

standard arithmetic and did not support floating point, this result is reasonable.

Rodinia Average - 460 Average - 9800 Percent Diff

Particle Float
(non-float)
A

GPU execution 0.000117667 0.000116889 -0.3315964
B
GPU execution 0.000129333 0.000129444 0.042936883
C
GPU execution 0.000126333 0.000123444 -1.15658363
D
GPU execution 0.000120333 0.000116111 -1.78571429
E
GPU execution 0.000125333 0.000122111 -1.30220027
F
GPU execution 0.000123 0.000121 -0.81967213
(]
GPU execution 0.000123667 0.000119889 -1.55109489
H
GPU execution 0.000129667 0.000127556 -0.82073434

Table 7 - Rodinia Particle Filter Results

64

4.4.2. CPU Results
SPEC CPUINT2006 Results

There were two instances of the CPUINT2006 benchmark suite run on the
CPU for this project. The first run through was done on only a single core and single
thread using the GCC, G++, and GFortran 4.3.4 (GNU) compiler. The second was
done using the Intel C++ Compiler XE. The GNU compiler run through had the auto
parallel feature off, meaning it used only a single thread. The Intel compiler run
through had the auto parallel feature enabled, meaning it was using multicore
parallelism to complete the benchmark. The results of these two runs can as well as

the overall speedup percentages can be seen in the following tables.

Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench EEEEKL 396.00 396.00
401.bzip2 582.00 582.00 581.00
403.gcc 375.00 375.00 375.00
429.mcf 373.00 373.00 371.00
445.gobmk 510.00 511.00 511.00
456.hmmer 869.00 869.00 869.00
458.jeng 595.00 612.00 595.00
CEyANLLLENTGE 508.00 506.00 506.00
464.h264ref 710.00 706.00 709.00
471.omnetpp 374.00 373.00 374.00
473.atar 494.00 495.00 494.00
CHEBEIENnlieY 268.00 260.00 259.00

Table 8 - SPEC CPUINT2006 w/ GCC, G++, GFortran compiler w/o auto parallel

65

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk

456.hmmer

458.jeng

462.libquantum
464.h264ref
471.omnetpp

473.atar

Iteration #1 [s]

410.00
539.00
330.00
184.00
600.00
213.00
508.00
12.20

959.00
339.00
350.00

483.xalancbmk BACXI

Iteration #2 [s]

411.00
539.00
331.00
184.00
601.00
214.00
508.00
14.30

959.00
340.00
349.00
214.00

Iteration #3 [s]

411.00
538.00
334.00
184.00
607.00
214.00
507.00
13.00
1031.00
339.00
349.00
214.00

Table 9 - SPEC CPUINT2006 run with Intel compiler in auto parallel

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk
456.hmmer
458.jeng

462.libquantum
464.h264ref

471.omnetpp
473.atar
483.xalancbmk

Average
Increase

Per Benchmark
Total Average
Increase

Iteration #1

Speedup
-3.02%
7.39%
12.00%
50.67%
-17.65%
75.49%
14.62%
97.60%
-35.07%
9.36%
29.15%
20.15%
21.72%

Iteration
Speedup

-3.79%
7.39%
11.73%
50.67%
-17.61%
75.37%
16.99%
97.17%
-35.84%
8.85%
29.49%
17.69%
21.51%

21.20%

#2 Iteration

Speedup

-3.79%
7.40%
10.93%
50.40%
-18.79%
75.37%
14.79%
97.43%
-45.42%
9.36%
29.35%
17.37%
20.37%

#2

Table 10 - Speedup percentages from the GNU run to the Intel run

66

From the tables above, you can see that the multicore, auto parallel run
through generally yielded a quicker execution time than the run through with only a
single thread. There were, however, a few of the benchmarks that actually ran
better using only a single thread. This is probably due to the fact that the work load
of these specific benchmarks was better optimized for only a single thread. Overall,
the multicore run through produced a 21.2% increase in speed over than of single

thread run.

SPEC CFP2006 Results

Once again, there were two instances of the SPEC CPU2006 floating point
suite benchmarks run on the CPU. There were two benchmarks in this suite, bwaves
and wrf, which were left out of these runs because of an invalid run error. Both of
these benchmarks would build successfully, but every time we tried to run them, we
would get this invalid run error that we could not figure out how to fix. Otherwise,
all the other benchmarks in the floating point suite ran fine and there timings can be
seen in the following two tables. The first table shows the timings for the run on the
GCC, G++, and GFortran compiler with the auto parallel feature off (single threaded).
The subsequent table shows the timings of the run on the Intel compiler with the

auto parallel feature on (multi-threaded).

67

416.gamess
435.gromacs
437.leslie3d
447.dealll

453.povray
459.GemsFDTD
470.lbm
482.sphinx3
434.zeusmp

Iteration #1 [s]

937
479
579
1372
604
496
430
270
236
1484
517
652
378
632
623

Iteration #2 [s]

940
463
579
1441
604
497
429
270
235
1484
517
649
379
630
625

Iteration #3 [s]

938
489
578
1338
603
496
430
283
237
1484
517
652
378
632
625

Table 11 - SPEC CFP2006 w/ GCC, G++, GFortran compiler w/o auto parallel

416.gamess
433.milc
435.gromacs
436.cactusADM
437.leslie3d
444.namd
447.dealll
450.soplex
453.povray
454.calculix
459.GemsFDTD
465.tonto
470.Ibm
482.sphinx3
434.zeusmp

Iteration #1 [s]

1238
190
485

60.9
87.7
457
293
296
191
382
119
469
49.9
528
93.9

Iteration #2 [s]

1185
189
489

53.1
90.5
456
293
263
191
292
122
462
49.9
544
93

Iteration #3 [s]

1197
190
482

50.3
95.8
457
293
286
190
375
121
469
50.1
514
90.8

Table 12 - SPEC CFP2006 run with Intel compiler in auto parallel

Though there were a few benchmarks that produced a negative speed

increase from the single threaded to the multi-threaded run, most benchmarks

68

displayed a significant increase in speed. The speedup of each benchmarking

iteration, as well as the average total speedup of all the run-throughs, can be seen in

the following table.

Iteration #1 Iteration #2 Iteration #3
Speedup Speedup Speedup
416.gamess -32.12% -26.06% -27.61%

60.33% 59.18% 61.15%
435.gromacs 16.23% 15.54% 16.61%
95.56% 96.32% 96.24%
437.leslie3d 85.48% 85.02% 84.11%
7.86% 8.25% 7.86%
447.dealll 31.86% 31.70% 31.86%
-9.63% 2.59% -1.06%
453.povray 19.07% 18.72% 19.83%
74.26% 80.32% 74.73%
459.GemsFDTD 76.98% 76.40% 76.60%
465.tonto 28.07% 28.81% 28.07%
470.lbm 86.80% 86.83% 86.75%
482.sphinx3 16.46% 13.65% 18.67%
434.zeusmp 84.93% 85.12% 85.47%
Average Increase Per 42.81% 44.16% 43.95%

Benchmark
Total Average Increase 43.64%

Table 13 - Speedup percentages from the GNU run to the Intel run

As you can see, there was an average total speedup of 43.64% for the SPEC
CPU2006 floating point suite. This is over two times the speedup we saw from the
CPU2006 integer suite. We believe that such an increase in speedup is due to the
complexity of floating point operations. A single thread would be able to run
simpler integer operations faster than complex floating point operations. Thus, you

would see a more significant speed increase when using the multi-threaded

69

capabilities of a CPU to calculate floating point operations as opposed to integer

operations.

Rodinia / John Burkardt Results

Each of the Rodinia and Burkardt benchmarks was run five different times at

three iterations a piece using 2, 4, 8, 12, and 24 threads. Since the CPU we were

testing on has two processors, totaling 12 cores, we believed that this range of

thread counts would cover the most practical multithreading situations. The

following table shows the average execution time for three iteration of each

benchmark on the various thread counts. The first five benchmarks in this table are

from the Rodinia suite and the other two are from Burkardt suite.

Leukocyte (s)

LU Decomposition 242.82 130.00
(ms)

Speckle Reduction 638.14 415.07
(ms)

Means (s) 3.35 3.67
Stream Clusters (s) [EZAL 25.18
FFT (ms) 76.17 45.41

Primes (s) 2.04 1.17

76.40

306.41

291

14.61

31.63

0.64

2 threads 4 threads 8 threads 12 threads 24 threads

2.16

69.23

283.93

2.16

11.91

27.85

0.44

1.67

145.20

492.26

1.67

10.40

31.36

0.36

Table 14 - Rodinia/Burkardt average execution time on 2, 4, 8, 12, 24 threads

70

As you can see, the execution times change when transitioning to a different
number of threads. The total speedup percentage change between thread counts

can be seen in the following table.

2-4 threads 4-8 threads 8-12 threads 12-24 threads

Leukocyte (s) 47.78% 40.26% 40.82% 22.69%

LU Decomposition 46.46% 41.23% 9.38% -109.74%
(ms)

Speckle Reduction 34.96% 26.18% 7.34% -73.37%
(ms)

kmeans (s) -9.55% 20.71% 25.77% 22.69%
Stream Clusters (s) REERYAY 41.98% 18.48% 12.68%
FFT (ms) 40.38% 30.35% 11.95% -12.60%
Primes (s) 42.65% 45.30% 31.25% 18.18%

Average Increase 35.60% 35.14% 20.71% -17.07%
Between Threads

Table 15 - Speedup between thread counts

Several interesting observations can be made from the information in the
table above. First, we saw that three out of the seven benchmarks had a decrease in
speed when transitioning between 12 and 24 threads. This is most likely due to the
hardware limitations of our processor. At twelve threads, our processor can
dedicate one core to each thread because it has a total of 12 cores. Once we
transition to 24 threads though, 12 of the 24 threads become “virtual” threads that
are implemented at the software level. This basically means that each core is
handling two threads apiece. While this technology may be good for some
applications, running two threads on a single core can sometimes produce slower

execution times than using a single thread per core.

71

The other interesting observation was that the average speed increase from
2 to 4 and 4 to 8 hovered around a 35% increase while the increase between 8 to 12
dropped down to 20%. This shows that there is a significant speed increase up until

8 threads, but beyond that, the speedup begins to become less prevalent.

4.4.3. FPGA Results

As is evident from the benchmarks run on the FPGA, they do not usually
perform as complex tasks as the CPU and GPU benchmarks show. The applications
they are used for are generally specific and are used to enhance applications for

other processes.

Benchmark Clk Clk Throughput Delay for
Period Cycles (ns) valid data

(MHz) (Clock
Cycles)

FFT 1 9.87

AES 376 1 2.66 1 2.66
FIR 710 1 1.41 8 1.13
FP Mul 550 9 16.4 9 46.4
FIR Core 550 11 20.0 20 36.4

Table 16 - FPGA Results

As the Table above shows, the majority of applications run on the FPGA do
not take much time between outputs, but there is usually a larger delay before the
output is actually available. All of these benchmarks were designed using a
pipelining implementation. This allowed the FPGA to use the ability to break up
tasks and use internal storage to speed up the overall throughput.

FPGAs are very useful to high performance computing, however on an

application specific basis. The advantage of having a higher processing power

72

compared to CPU and the ability to customize the data transfer method to meet your
needs is great. However, it is vital in today’s computing to find the board that has

the proper computational slices to meet the needs of your application.

73

5. Future Work

For future projects similar to this one, the main topics to focus on would be a
broader spectrum of benchmarks capable of running across all three platforms as
well as possibly looking into newer technologies, such as an Accelerated Processing
Unit (APU). Benchmarking of clusters or testing a single benchmark using multiple
platforms for speedup would also be of use in future research.

While most of today’s benchmarks lie in the realm of scientific and
mathematical algorithms, it would be beneficial to create cross platform
benchmarks across other types of general processing. Examples of general
processing benchmarks could be ones that handle word processing, weather
tracking, molecule design, encryption, and data compression, all with the capability
of running on all three platforms.

Newer technologies have allowed designers to put both CPUs and GPUs on
the same die, the concept behind APUs. This decreases data transfer times and
allows for newer instruction sets to incorporate both units. These new devices have
the ability to provide substantial performance increases to the processing world.
With this is mind, it would be beneficial to benchmark these new platforms against

their predecessors.

74

6. Conclusion

High Performance Computing is a rapidly growing field that will require more
research to understand. The technology surrounding CPUs, GPUs, and FPGAs is still
rapidly evolving and will continue in future years. Benchmarking will be a constant
process to stratify different systems as well as different devices. With the
information in this report, some light is shed on the processing power for different
applications between CPUs, GPUs, and FPGAs.

Overall, 66 benchmarks were investigated over eight suites and sources to
gather information. These results are useful to compare the three systems
discussed as well as in comparison with other devices during future studies. The
world of High Performance Computing is a constantly evolving field that will play a

significant role in the years to come in many diverse fields.

75

7.

7.1.

Appendices

Parboil Results 9800 GTX+

Parboil

Copy
Driver

Compute
CPU

Overlap
LBM - long

Copy
Driver
Compute
CPU
Overlap
LBM -
short

[0)

Copy
Driver
Compute
CPU
Overlap
MM - long
(o)

Copy
Driver

Compute
CPU

Overlap
GFLOPS

Iteration 1

0.039047
0.036803
0.006495
0.000139
0.199751
0.036803

0.040944
93.829116
0.335708
77.793763
1.016244
78.004436

0.049419
3.121433
0.331451
0.000734
0.920874
0.124557

3.084938

0.01076
0.010821
0.000104
0.051372
0.000146

1.55E-13

0.166941
0.00221

Iteration
2

0.047604
0.036811
0.006459
0.000141
0.199162
0.036811

0.040932
93.867864
0.333089
77.834447
1.009388
78.050671

0.051679
3.125452
0.332959
0.000679
0.976684
0.125872

3.099593
0.010734
0.010749
0.000124
0.051629
0.000169

1.55E-13

0.20198
0.002185

Iteration
3

0.042384
0.036804
0.006479
0.000141
0.199347
0.036804

0.040948
93.88745
0.333924
77.81375
1.009609
78.00946

0.051344
3.125203
0.331987
0.000699
0.968332

0.12585

3.09249
0.010758
0.010811
0.000121
0.051597
0.000159

1.55E-13

0.198754
0.002198

Average

0.0430117
0.036806
0.0064777
0.0001403
0.19942
0.036806

0.0409413
93.861477
0.3342403
77.813987

1.011747
78.021522

0.050814
3.1240293
0.3321323

0.000704
0.9552967
0.1254263

3.0923403
0.0107507
0.0107937
0.0001163
0.0515327

0.000158

1.554E-13

0.189225
0.0021977

SD

0.00431289
4.3589E-06
1.8037E-05
1.1547E-06

0.00030121
4.3589E-06

8.3267E-06
0.02968691
0.00133785
0.02034303
0.00389608
0.02536816

0.00121966
0.00225193
0.00076443

2.7839E-05
0.03010198
0.00075295

0.00732865
1.4468E-05
3.9004E-05
1.0786E-05

0.00014006
1.1533E-05

1.4673E-16

0.0193658
1.2503E-05

76

Copy
Driver
Compute
CPU
Overlap
SPVM -
large

10

Copy
Driver

Compute

CPU
Overlap

(o)

Copy
Driver

Compute
CPU

Overlap
SPVM - small

(o)

Copy
Driver

Compute
CPU

Overlap
TPACF

(o)

Copy
Driver

Compute

(of{V]
Overlap

SPVM - medium

0.063778

0.00003
0.000727
0.000042

0.142549
0.000319
0.053893
0.000063
0.004965
0.000079

0.024611
0.000117
0.047665
0.000064
0.002742

0.00008

0.021669
0.000051
0.045435
0.000043
0.002261
0.000054

1.129532
1.343114
0.051403
0.000093
0.019158
0.000137

0.064767
0.000031

0.00849
0.000042

0.087202
0.000319
0.054192
0.000062
0.004981
0.000079

0.02542
0.000112
0.047027

0.00006
0.002828
0.000075

0.000503
0.000048
0.045306
0.000041
0.002294
0.000052

1.067352
1.343151
0.051871
0.000089

0.0188
0.000129

0.063908
0.000029
0.007983
0.000041

0.113094
0.00032
0.053967
0.000062
0.004978
0.00008

0.02499
0.000113
0.04739
0.000061
0.00279
0.000079

0.02007
0.000049
0.04539
0.000041
0.002278
0.000052

1.07802
1.343123
0.05156
0.00009
0.019022
0.000131

0.064151
0.00003
0.0057333
4.167E-05

0.1142817
0.0003193
0.0540173
6.233E-05
0.0049747
7.933E-05

0.025007
0.000114
0.0473607
6.167E-05
0.0027867
0.000078

0.0140807
4.933E-05

0.045377
4.167E-05
0.0022777
5.267E-05

1.0916347
1.3431293
0.0516113
9.067E-05
0.0189933
0.0001323

0.00053742
0.000001
0.00434302
5.7735E-07

0.02769261
5.7735E-07
0.00015573
5.7735E-07
8.5049E-06
5.7735E-07

0.00040477
2.6458E-06
0.00032001
2.0817E-06
4.3097E-05
2.6458E-06

0.01178575
1.5275E-06
6.5475E-05
1.1547E-06
1.6503E-05
1.1547E-06

0.03325068
1.9296E-05
0.00023819
2.0817E-06
0.00018071
4.1633E-06

77

7.2.

Parboil

Copy
Driver

Compute
CPU Overlap

Copy
Driver

Compute
CPU Overlap
Histogram
10

Copy
Driver

Compute
CPU Overlap
LBM - long

Copy
Driver

Compute
CPU Overlap
LBM - short
[o)

Copy
Driver

Compute
CPU Overlap
MM - long

Iteration
1

0.024785
0.037782
0.006324
0.000138
0.198731
0.037782

0.052376
0.000813
0.074595
0.000047
0.000353
0.000062

0.152658
0.140838

0.139518
0.00043
0.140838

0.047836
30.16735
0.363583

24.9618
0.961555
25.16581

0.054089
1.005346
0.345664
0.000834
1.020029
0.125006

3.195248
0.008869

Parboil Results GTX 460

Iteration
2

0.026053
0.03735
0.006336
0.000148
0.199476
0.03735

0.040751
0.000812
0.066348
0.000048
0.000467
0.000064

0.156614
0.140679

0.139357
0.000496
0.140679

0.049771
30.14701
0.352151
24.94686
0.996269
25.14708

0.060643
1.004551
0.336826
0.000976

0.9414
0.123213

3.154655
0.008867

Iteration
3

0.026624
0.037354
0.006925
0.000155
0.199039
0.037354

0.041094
0.000813
0.066243
0.000047
0.000369
0.000064

0.158582
0.140491

0.139178
0.000457
0.140491

0.049561
30.16205
0.348986
24.94136
1.013636
25.14502

0.075741
1.008527
0.340031
0.000836
0.927952
0.112586

3.190209
0.00886

Average

0.025820667
0.037495333
0.006528333
0.000147
0.199082
0.037495333

0.044740333
0.000812667
0.069062
4.73333E-05
0.000396333
6.33333E-05

0.155951333
0.140669333

0.139351
0.000461
0.140669333

0.049056
30.15880433
0.354906667
24.95000833
0.990486667

25.152638

0.063491
1.006141333
0.340840333

0.000882

0.963127
0.120268333

3.180037333
0.008865333

SD

0.000941257
0.000248269
0.000343576

8.544E-06
0.000374357
0.000248269

0.006614905
5.7735E-07
0.004792006
5.7735E-07
6.17198E-05
1.1547E-06

0.003017083
0.000173702

0.000170079
3.31813E-05
0.000173702

0.001061756
0.010548376
0.007678761
0.01057388
0.02651762
0.011457143

0.011103405
0.002103939

0.00447424
8.14125E-05
0.049735203
0.006713225

0.022125664
4.72582E-06

78

Copy
Driver

Compute
CPU Overlap
GFLOPS

[0)

Copy
Driver

Compute
CPU Overlap
SPVM - large

Copy
Driver

Compute

CPU Overlap
SPVM - medium
[o)

Copy
Driver

Compute
CPU Overlap
SPVM - small

Copy
Driver

Compute
CPU Overlap
TPACF

[0}

Copy
Driver

Compute
CPU Overlap

0.010757
0.000109
0.092311
0.000153

1.55E-13

0.213267
0.001498
0.126214
0.000038
0.000981
0.000053

0.146448
0.000218
0.084568
0.000066
0.004543
0.000081

0.023466
0.000118
0.051357
0.000063
0.002235
0.000078

0.007575
0.000048
0.049176
0.000043
0.001726
0.000055

1.18402
1.361854
0.095364
0.000113

0.00904
0.000156

0.010806
0.000132
0.081318
0.000179

1.55E-13

0.153
0.001493
0.102197
0.000035
0.000795

0.00005

0.148342

0.00022
0.075166
0.000068
0.004651
0.000084

0.024767
0.000116

0.05229
0.000061
0.002791
0.000076

0.014441
0.000047
0.050157
0.000042
0.002104
0.000054

1.18196
1.361822
0.075245

0.00011

0.01928
0.000152

0.010652
0.000116
0.080229
0.000158

1.55E-13

0.206935
0.001496

0.11946
0.000035
0.000721
0.000049

0.148184

0.00022
0.070208
0.000066
0.004879
0.000082

0.024647
0.000117
0.052244
0.000062
0.002609
0.000077

0.015238
0.000047
0.050558
0.000043

0.00209
0.000054

1.177699
1.361775
0.075193

0.0001
0.020788
0.000142

0.010738333
0.000119
0.084619333
0.000163333
1.55371E-13

0.191067333
0.001495667
0.115957
0.000036
0.000832333
5.06667E-05

0.147658
0.000219333
0.076647333

6.66667E-05

0.004691

8.23333E-05

0.024293333
0.000117
0.051963667
0.000062
0.002545
0.000077

0.012418
4.73333E-05
0.049963667
4.26667E-05
0.001973333
5.43333E-05

1.181226333
1.361817
0.081934

0.000107667

0.016369333

0.00015

7.86787E-05
1.17898E-05
0.006683396
1.37961E-05
1.15326E-17

0.033118952
2.51661E-06
0.012385771
1.73205E-06
0.00013396
2.08167E-06

0.001050864
1.1547E-06
0.007293707
1.1547E-06
0.000171534
1.52753E-06

0.000719
1E-06
0.000525892
0.000001
0.000283471
1E-06

0.00421305
5.7735E-07
0.000710995
5.7735E-07
0.000214311
5.7735E-07

0.003223734
3.97366E-05
0.01163075
6.80686E-06
0.006392015
7.2111E-06

79

7.3.

Rodinia

LUD

64

256

512

2048

Particle Float (naive)
A

send from GPU
send to GPU
GPU execution
Total

B

send from GPU
send to GPU
GPU execution
Total

C

send from GPU
send to GPU
GPU execution
Total

D

send from GPU
send to GPU
GPU execution
Total

E

send from GPU
send to GPU
GPU execution
Total

F

send from GPU
send to GPU
GPU execution
Total

(]

send from GPU
send to GPU

Iteration 1

ms
0.238
1.185
3.311
34.445

sec

0.02881
0.037435
0.00016
3.284789

0.059425
0.074129
0.000162
6.524812

0.146823
0.186539
0.000173
16.691667

0.029974
0.037564
0.000154
3.278011

0.058106
0.074384
0.000167
6.527779

0.141125
0.184281
0.000169
16.157624

0.029478
0.037714

Rodinia Results 9800 GTX+

Iteration 2

0.239
1.512
3.315
34.534

0.034164
0.037895
0.000167
3.280237

0.060929
0.074013
0.000164
6.702561

0.149165
0.184094
0.000169
16.667685

0.029582
0.037992
0.000159
3.289114

0.056998
0.073757
0.000159
6.501522

0.139959
0.182941
0.000166
16.205709

0.029737
0.037855

Iteration 3

0.239
1.456
3.312
34.511

0.032453
0.03769
0.000166
3.28295

0.060115
0.074069
0.000164
6.593282

0.148302
0.185983
0.00017
16.682983

0.029834
0.0376982
0.000156
3.283495

0.057398
0.074287
0.000166

6.51213

0.13997
0.183213
0.000168

16.199371

0.029587
0.037729

Average

0.238666667
1.384333333
3.312666667
34.49666667

0.031809
0.037673333
0.000164333
3.282658667

0.060156333
0.074070333
0.000163333

6.606885

0.148096667
0.185538667
0.000170667
16.68077833

0.029796667
0.0377514
0.000156333
3.28354

0.057500667
0.074142667

0.000164
6.513810333

0.140351333
0.183478333
0.000167667

16.187568

0.029600667
0.037766

SD

0.00057735
0.17488377
0.00208167
0.04619885

0.00273448
0.00023045

3.7859E-06
0.00228994

0.00075285
5.8011E-05
1.1547E-06

0.08965187

0.00118442
0.00128163

2.0817E-06
0.01214205

0.00019865
0.0002189
2.5166E-06
0.00555164

0.00056109
0.0003375
4.3589E-06
0.0132089

0.00067004
0.00070831

1.5275E-06
0.02612518

0.00013004
7.744E-05

80

GPU execution
Total

H

send from GPU

send to GPU
GPU execution
Total

7.4.

Rodinia

Leukocyte
Detection
computation
dilation

total
Tracking
computation
evolution
total

TOTAL

LUD

64

256

512

2048

Particle Float
(float)
A

send from GPU
send to GPU
GPU execution
Total

B

send from GPU
send to GPU
GPU execution
Total

D

send from GPU

Rodinia Results GTX 460

0.000163 0.00016 0.000161 0.000161333 1.5275E-06
3.286379 3.285156 3.285983 3.285839333 0.00062403
0.058453 0.057608 0.057983 0.058014667 0.00042339
0.074478 0.074515 0.745983 0.298325333 0.38768291
0.000163 0.000173 0.001064 0.000466667 0.00051733
6.700087 6.518035 6.690865 6.636329 0.10254933
Iteration Iteration Iteration Average SD

1 p 3
sec

0.0185 0.01944 0.01946 0.019133333 0.000548574
0.01006 0.01068 0.01068 0.010473333 0.000357957
0.08415 0.09912 0.09981 0.09436 0.008848847
sec
0.04268 0.04274 0.04282 0.042746667 7.02377E-05
0.01027 0.01027 0.01037 0.010303333 5.7735E-05
0.0655 0.06538 0.06544 0.06544 6E-05
4.01395 4.02195 4.02639 4.020763333 0.006304327
ms

0.575 0.579 0.575 0.576333333 0.002309401
2.848 2.828 2.83 2.835333333 0.011015141
7.374 7.388 7.387 7.383 0.00781025
115.623 115.375 117.59 116.196 1.213590953
sec
0.484112 0.48184 0.480469 0.482140207 0.001840149
0.014158 0.013941 0.013862 0.013987 0.000153268
0.000251 0.000258 0.000255 0.000254667 3.51188E-06
0.65792 0.584687 0.61418 0.618929 0.036846748
0.977968 0.979106 0.973441 0.976838333 0.002996693
0.028367 0.027495 0.027456 0.027772667 0.000515077
0.000267 0.00024 0.000237 0.000248 1.65227E-05
1.099265 1.099386 1.094044 1.097565 0.003049876
21.25275 14.00893 30.37887 21.88018267 8.202989064

81

send to GPU
GPU execution
Total

E

send from GPU
send to GPU
GPU execution
Total

(]

send from GPU
send to GPU
GPU execution
Total

H

send from GPU
send to GPU
GPU execution
Total

Particle Float
(naive)

A

send from GPU
send to GPU
GPU execution
Total

B

send from GPU
send to GPU
GPU execution
Total

C

send from GPU
send to GPU
GPU execution
Total

D

send from GPU
send to GPU
GPU execution
Total

E

send from GPU
send to GPU

0.013946
0.000265
21.34469

8.556762
0.027564
0.000234
8.675124

32.85077
0.013938
0.000251
32.94073

8.535585
0.027881
0.000245
8.656592
sec

18.03987
0.037767

0.00012
21.40222

8.695787
0.075593
0.000129
15.20682

14.00524
0.187186
0.000135

30.2434

12.49726
0.038156
0.000133
15.77098

10.85223
0.075725

0.013852
0.00253
14.10073

8.546939
0.027571
0.000244
8.666531

13.84569
0.013869
0.000245
13.93179

8.5487
0.027692
0.000236
8.669315

11.67335
0.037449
0.00012
14.9382

9.222604
0.075548
0.000118
15.67589

8.159942
0.183569
0.000118
24.24978

12.42138
0.037788
0.000117
15.77281

10.2257
0.075797

0.013902
0.000255
30.46716

8.539814
0.027614
0.000259
8.660525

14.8465
0.013931
0.000248
14.93657

8.544959
0.027521
0.000241
8.670502

11.65105
0.037533
0.000113
14.92392

9.195602

0.0736
0.000141
15.67246

8.216452
0.185398
0.000126
24.24987

12.48212
0.037667
0.000111
15.74104

9.016069
0.07437

0.0139
0.001016667
21.97086

8.547838333

0.027583
0.000245667
8.667393333

20.51432133
0.013912667
0.000248
20.603027

8.543081333

0.027698
0.000240667
8.665469667

13.78808867

0.037583
0.000117667
17.08811367

9.037997667
0.074913667
0.000129333

15.518391

10.12720967
0.185384333
0.000126333

26.247683

12.46691867
0.037870333
0.000120333
15.76160833

10.031332
0.075297333

4.70319E-05
0.001310595
8.201161321

0.008509717
2.7074E-05
1.25831E-05
0.007337603

10.69539136
3.79781E-05

3E-06
10.69656602

0.006756111
0.000180075
4.50925E-06
0.007711159

3.682170995
0.000164791
4.04145E-06
3.736133375

0.296670494
0.001137891

1.15036E-05
0.269830416

3.358587309
0.001808539

8.5049E-06
3.460390697

0.040157217
0.000254685

1.13725E-05
0.017839721

0.933383694
0.000803901

82

GPU execution
Total

F

send from GPU
send to GPU
GPU execution
Total

(]

send from GPU
send to GPU
GPU execution
Total

H

send from GPU
send to GPU
GPU execution
Total

0.000135
46.67132

14.11983

0.18705
0.000129
30.24967

13.49624
0.037861
0.000135

16.7578

9.182923
0.075046
0.000136
15.67639

0.000117
16.67096

15.16998
0.185197

0.00012
31.24654

12.51239
0.037656
0.000125
15.77179

10.20361
0.075518
0.000123

16.6652

0.000124
15.6721

14.26351
0.183663

0.00012
30.24503

12.51785
0.037663
0.000111
15.77775

9.200904
0.074179

0.00013
15.67365

0.000125333
26.33812367

14.51777167
0.185303333

0.000123
30.58041333

12.84216133
0.037726667
0.000123667

16.102446

9.529146333
0.074914333
0.000129667
16.00507867

9.07377E-06
17.6161456

0.56937989
0.001696002
5.19615E-06
0.576885553

0.566457901
0.000116389

1.20554E-05
0.567560183

0.584173588
0.000679141

6.50641E-06
0.571680899

83

SHOC Max Flops GTX 460

7.5.

910 0S¥
PZIE"9S
=1]
STED 95
ZLE'ETY
T659°95
e’ 1.9
£8099°95
PSL by
E0/9°95
PES ' TISK
8/54°/E
TBE 25k
960/ [E
96 'B¥¥
86.4°1E
2.0 00E
ZZBL e
605825
TLER'SL
Zr0 698
0oy 'S

<88
6F0S S
8/ 088
68rS S
8/8'#65
TISS°SL
895" ISk
PIvL LE
226 "' 1Sk
TL94°LE
[A=prasy
BSLL°LE
ZCE 862
TI8L LE
61ETJ3

L¥0 0Sk
FZIE 95
=1]
8TED 05
CE'ET9
85095
9g8 149
£899°95
ESL LvY
£049°95
625" ISk
954 LE
£8EZSk
969, " [E
FET OSk
[B6L4°1E

T'00E
284 [E
8r9 875
TLER'SL
TLE'698
909t 'S
910588
TSES'SL
£10° 188
885" QL
Z0E 'S65
T1S5°SL
95" ISk
FIvL LE
26" ISk
TL94°[E
95 TSk
8/ [E
CEC 862
TI8L LE
81ETJ3

200 0S¥
FZIE'9S
SLvR9
9TED 95
Z9E"ET9
850995
8 149
989995
2L vy
£0£9°95
ZES'TSY
SISLLE
TBE 25k
969L " [E
BEB'6¥F
8644 [E
S0 00E
8L [E
919825
TLER'SL
652 698
£09F 'S
CZ0'se8
SOS'SL
CBE ' 188
885 'SL
20565
6055°SL
oS TSk
ZIvL LE
9z6" 1Sy
290 /8
6L5°2SF
B6SLL[E
812 862
TIBL LE
L1BTd3

616 6FF
FZTIE "S5
EEL FR9
8TES 'S5
L[SETETY
65995
9Z8° 149
989995
QEL"IPF
E0£9°95
ZES' TSF
8/SLLE
EBE'ZSF
969L LE
SZT' 0sF
8644 LE
0" 00E
ZZ8L ' LE
ZZF '8ZS
TLER'SL
781 698
09 'S
20588
2505 'S

¥ 188
88F5'SL
LT GBS
TS5 'SL
1S TSk
ETRLLE
916" 1Sk
L9448
L9525k
BSLLLE
SE 862
8L LE
918143

O OSk
FETE'9S
=T]
9TED 'G5
CGE'ET9

65995
BEB"TL9
£899°95
250 iFy
¥0L9°9S
ZES' TSk
851 °/E
£BEZSk
969/ [E
268 6¥¥
86LL°[E
910 00E
228l [E
¥S5°82S
TLER'SL
18t "898
109% 'S
L0588
TSOS°'SL
YEG 088

6FS°SL
PSE6 ' PES
€I55°'SL
ZL5' TSk
STvL ' LE
626" TSh
2L90°[E
6L5°ZSk

QL1 [E
E6T 862
218l [E

S1ETd:

6ED 0S¥
PZIE"9S
TrL "w#r9
£LTES QS
POEET9
659°95
BEB ' TL9
£8099°95
8L L%y
E0/9°95
EES'TSK
9547 LE
YBE 25k
960/ [E
EZT 0S¥
86.4°1E
£20°00E
EZBL/E
ESZ 'BZS
TLER'SL
9Ty ‘698
800% 'S/
ET0D'S88
SSRS SL
609088
88rS°SL
80Z 'S65
TISS°SL
995" TS¥
LTvLLE
SZ6 1Sk
AT
895 °Zs¥
QlL°lE
£9Z '86C
8L LE
F1lETdL

0 oSy
FZIE 95
9SL vP9
9TED " o%
T9E'ET9
65995
EV8 ' TL9
£899°95
8.4 L%Y
70L9°95
CES ' TSk
LiSL e
Z8E "ZSk
[69L°[E
68 6¥F
8644 [E
L66 662
£28L°[E
EVE 8ZS
TLER'SL
v 698
909t 'S
810588
SOS'SL
£85°188
885" QL
L0 °S6S
Z155°'SL
995" TSk
FIvL LE
9z6 " 1Sk
TL94°[E
895 °Zsk
BS54 LE
ZCC 862
2184 [E
E1ETd3

820 0S¥
EZTE'9S
rLvR9
STED 95
LYE'ETS
65995
P8 149
£899°95
BEQ " I¥Y
F0L9°9S
ZES TSy
vISLLE
o8E"ZSy
L69L°[E
8B 6¥¥
8641 [E
ZED ' O0E
£28L°[E
80F ' 8ZS
TLER'SL
SBE 698
£09F 'S4
ZED'SE8
1505 'SL
LE0° 188
885 'SL
621565
Z1S5'SL
255" TSy
PIvL LE
616" TSY
290 [E
9.5 TSy
QiLLE
12 862
TIBL LE
AL T

FED OSF
FZTIE "S5
BEL FF9
FTES 'S5
ECE'ETY
65995
QEB"TL9
£899°95
PO LvF
0L 95
EEC'TSF
SISLLE
TBE 'Z5F
SE9LLE
88" 6¥¥
8644 LE
870 ' 00E
£Z8L°LE
LTE BZS
TLER'SL
Z0v 698
ToF 'S
TED " S88
£CS0S'SL
CTL 088
68FS 'S
60565
TS5 'SL
195" TSk
STRLLE
9Z6"' 1Sk
29018
6VS ZSF
BSLLLE
EGT 862
2184 LE
T1eTd:

S68 6FF
FETE'9S
9EL FF9
LTED'GS
TSE'ET9
65995
TEB ' TL9
£899°95
LSB Py
£0.9°95
TES TSk
SISLLE
TBE 'ZSF
1694 [E
£88 '6F¥
86LL°[E
686662
£E€BL/E
969825
TLER'SL
[SE 698
800 'S
816 88
£S05°'SL
L5188
68rS°SL
EFZ GBS
ETS5'SL
T95 " TSk
9TrL ' LE
806" TSk
EL94°[E
¥o5 ISk
BSLL[E
ECZ B6C
8L LE
018Td3

£¥0 0Sy
PZIE"9S
=T]
8TES 95
ZLE'ETY
T659°95
8 T1L9
£8099°95
£SB vy
v0L9°9S
CES TSk
8/54°/E
Q8E 'ZSk
L6047 [E
6T OSk
86.4°1E
T'00E
EZBL/E
968 '8ZS
TLER'SL
9Ty ‘698
To¥'SL
£E0°S88
£S05°SL
£85°188
6VS°SL
Z0E "S65
ETS5°SL
2.5 1Sk
LTvLLE
626" 1S¥
E[84°/E
6L5°ZSy
QlL°lE
ZCE 862
Z18L7LE
Xeuw

S68 6FF
EZTE'9S
EEL¥FO
FTIES 95
LFEETS
#8589 95
9Z8°'T/9
989999
8E9 " LFY
£049°95
625" ISk
w{SLLE
TBE 'ZSF
SB9LCLE
8E8 '6FF
[BL1°1E
686 662
ZZ8sl e
£52 'BES
T/EV'SL
8% ‘898
£09F 'S
816 88
GY0S SL
8/% 088
88¥S"aL
8/8 65
6095
255" ISk
ZivL LE
806 ' TSk
T894 [E
6S 2ot
854/ [E
E6T 862
8L LE
utu

90020500
6D-3650T8 ' T
9yTS6900 0
ZZ0/ 110000
£165T£00°0
£8566T000 0
£2075000°0
S0-98SERT ¥
909650 °0
SD-9BZFY9 ¥
SYBELTO0'0
9YTEETO00 'O
£2Z¥6YT00 0
SD-89E08T ¥
E£55ZZT'0
SD-3YESOT'E
/BEBTED 'O
SD-3TELO6 ' T
EBTENT'O
SD-888G/Y ' T
BOBSLZ 'O
9ya1Z000'0
6EOEZED "0
IYYEZO0O "0
B8EE08E 0
SD-88/997 'S
1857210
SD-8/9W/L B
997975000
[Tr/ETO00 0
1859855000
SD-8ELFT6 'S
6YE1S800°0
S0-3Z0EES ‘¥
6SSPOED "0
S0-3TH08Z 'O
A2pp3S

£00 0S¥
FETE'9S
SkLFR9
9TED 'G5
ISE'ET9
685995
LEB'TL9
£899°95
QEL LFY
£0.9°95
ZES' TSk
QL84 [E
Z8E"ZSk
969/ [E
196" BF¥
86LL°[E
LED"O0E
228l [E
9% B82S
TLER'SL
CET 698
909 'SL
0588

2505 'S
L0188
88rS'SL
ZIT'SES
TISS'SL
S5 TSk
YIvL ' LE
226" TSk
2L90°[E
695" ZSk
BSLL[E
EEZ 'B6C
T8l [E
uezu

€20 '0sy
FZIE'9S
Strf vF9
9TES'95
95E'ET9
659795
BEB'TL9
£B899°95
vl Lby
£0/9°95
ZES TSk
9/8/ " LE
CBE'ZSF
969/ " LE
68 6Fr
86/4°[E
9E0 'DOE
€Z8l /e
SOF 'BES
TLEV'SL
¥9OE '698
909F 'S/
610588
TSOS°SL
GZO 188
8BFS°aL
60T 565
T195°SL
985 ' ISk
FIvL LE
GZ6 ' 1Sk
€l94° 8
895 "Zor
6547 LE
€ 'B6C
TI8L " LE
UBTpaW

5407149
Sd07149
5407149
Sd0749
5407149
5407149
Sd07149
5407149
Sd07149
Sd07149
Sd07149
5407149
Sd0749
5407149
5407149
Sd07149
5407149
Sd07149
Sd07149
Sd07149
5407149
Sd0749
5407149
5407149
Sd07149
5407149
Sd07149
Sd07149
Sd07149
5407149
Sd0749
5407149
5407149
Sd07149
5407149
Sd07149

s31Tun

FOEFGETF 3215
FOEFETF 8215
CSTL60C 8ZTS
ZSTLBOZ 8215
ESTL60E 9T
ZSTLBOE S 8ZTS
ZETLBOE 32T
CSTLEOZ F3ZTS
ZETL60Z 3215
CSTL6OC 9215
ZET/B0Z 82T
CSTL60C 8ZTS
ZSTLBOZ 8215
ESTL60E 9T
ZSTLBOE S 8ZTS
ZETLBOE 32T
CSTL60C 3215
ZETL60Z 3215
FOEFE T - 9215
FOEFETF 8215
CSTL60C 8ZTS
ZSTLBOZ 8215
ESTL60E 9T
ZSTLBOE S 8ZTS
ZETLBOE 32T
CSTL60C 3215
ZETL60Z 3215
CSTL6OC 9215
ZET/B0Z 82T
CSTL60C 8ZTS
ZSTLBOZ 8215
ESTL60E 9T
CSTLEOZ F3ZTS
ZETLBOE 32T
CSTL60C 3215
ZETL60Z 3215

s13E

d5-NPPYHLW
d0-NPPYHLMW
d5-8PPYHLW
d0-8PPYH LW
dS-FPPYWLNW
d0-FPPYHLNW
dS-ZPPYHLNW
d0-ZPPYH1W
oS- TPPYHLMW
- TPPYW1W
dS-81NW
dd-81NW
dS-¥1NW
dd-¥1NW
dS-Z1NW
da-Z1NW
dS-T1NW
da-T1NW
dS-NPRVH
da-NPPVk
dS-8PPVH
da-8PPVh
dS-TPPVN
dd-v PPV
dS-ZPPVH
dd-CPPVH
dS-TPPYW
dd-TPPVH
dS-8ppV
dad-8sppv
dS-¥Ppv
dad-vppy
dS-ZppY
da-ppy
dS-TPpY
da-Tppy
1531

84

SHOC Bus Download Speed GTX 460

7.6.

8/6°'¥9T
¥¥89' 18
8r8 ' oF
TIEr 02
BTEE'OT
T881T°S
£295°¢C
LE98Z°T
oTY8rs ‘o
CE6ZE'0
9696910
885060 0
B¥B0S0 "0
9SC0ED "0
9.5070°0
(A A0N]
¥PETO 0
B96TIO 'O
2650700
950100
ST E
SE98T £
B/SBT'E
¥OY8ZE
BOLYT'E
LBBLT'E
SBELT'E
B8S09Z'E
LEPET'E
[ZBIT'E
[S6BO'E
T9068°C
CLLLS'T
BLIET'E
ESZ6S'T
T860°T
75603 0
OFZerE D
ESEEBT'O
LB96960 "0
g91BTI1

viL°E9T
79/8°18
SvLE 07
S68F 0T
ZTSE0T
L6TBT'S
VLBLL'T
Z8T0r ' T
YBTLEL'D
YB66CE "0
8886910
YOT160°'0
8890500
9T80ED O
L90Z0°0
88F10°0
YOSETO'0

[4008¢]
2650100

ESEEBT'0
L696960°0
SleT

EES'¥OT
6¥B3° 18
riBE oY
¥roT
85F 0T
BZLTIT'S
88FES'C
EPFSE' T
¥9880L 'O
YBITFE 'O
rrERLTO
2650600
¥r60S0°'0
¥PE0ED 'O
1800
8rP9TO 0
PFETO'O
902100
YZPTIT0'0
¥Z90TO'0
{3=Ta
EZ98T £
Z9ZBT £
TEEBC 'E
1S80C'E
7SBLT €
BIEBT'E
E{960°'E
LFBS6'C
PEELD'E
68966 '
BOEGE '€
98ZLS €
BBLIT'Z
9BSE/E'D
601966 'O
256090
ETSBEE 'O
ZLEBLT'O
SSBESE0 D
PLETIY

09 °'£3T
9887 'Z8
BLZO'TF
09502
ZPEY 0T
EEDZ'S
BLYSO'Z
16077 T
9EL9EL'D
821007 'O
ZSS1IEC'0
9/ETIT'O
ZEDOYT 'O
Z6L620'0
ZS1120°0
2547700
9SBETO 'O
221’0
290700
950700
(4= 3
TZvse e
ZZYCT 'E
BBESZ 'E
18STE'E
FEFTZ €
1865T'E
9/zi6'E
¥S9v8 2
90Z8'Z
EZVOT'T
EbFCO' T
S10926°0
6/66T'Z
LT6VS' T
E9OTT'T
PZZTRS 0
B6/0SEE "D
TLLTBT'O
£B96960 0
£1BTI1

£96 €8T
¥8.'Z8
LS80 T
SOEY 0T
£ZZT 0T
Elran
S9E9S'T
ETL8T'T

9E960° T
GE9903 'O
¥OTEYE 'O

SL5T9T0°0
¥FOCLE0'0
FALIAES

GPSEQT
€006 18
VEED T
veL9 0T
T8EP 'OT
£9BBT'S
B8ITF9'C
TTEER' T
ZSBETL 'O
880710V "0
959852 0
90260 0
BTESSO 'O
9T80E0 O
¥rSOC0 0
(A AUNG]
¥OSETO 'O
9ELCTOO
9T80TO "0
650700
TZ8C'E
BSLLEE
YERLZ E
LTPSC'E
ZoOFICE
EVEEZ'E
BOSLT'E
S9Z6°T
BELEG'T
EEFTO'T
£689Z0°C
wive's
B9E°C
BIGZT'Z
20S65° T
T£860°T
GEGG03 0
BOSTZE'O
BYEEBT O
£9/9960°0
TIeT1

ErZ'¥9T
1960°78
LO0B 0F
80FF 0T
8Z{Z'0T
TEBIT'S
WLLS'T
LB T
zllda =]
CEGEEE'D
SL69T'0
8250600
8r80S0°0
¥BLOED'D
968020 °0
¥9ZSTO 0
ZLPETO'O
CSEZTO0
BZETTO'O
8ror1o’e
8L89C°E
LLBOT'E
CGTBZ'E
BOEBZ'E
YESOT'E
869LZ'E
L9YSZ'E
GGBSC'E
EEBZC'E
TEZFT'E
Tv8B0°E
ZLSEB T
CLLLS'T
BBZT'Z
S1895° T
BEELO'T
G/0809°0
SOSTEE D
1640810
GE6BCLO D
CILSEAN

B/6 73T
¥8L'Z8
PBLEEV
2290
85F ‘9T
BSDEE'S
PLBLL'E
SLFSY' T
YBILEL'D
880TOV 'O
9S985C 0
G/ETIT'O
ZEOOKT'O
¥PE0ED 'O
Z1LLB0°0
8rP9TO 0
9SBETO 'O
SELZTO O
ZSL9ZT'O
8rorTo 0
ZZEBT €
SZ98T £
BISBT 'E
S/¥BZ'E
SEZBL £
LBBLT '€
SBELZ'E
BSD9Z 'E
LZVET'E
GETBT £
¥Zreo €
EBEDG'Z
98585 €
B6/66T'C
205651
E90TT'1T
256090
YOTEFE 'O
BEGEBT 'O
Yr9ZLE0 D
XEW

ZS'E9T
¥89°' 18
B¥8'0F
SOEY 0L
£Zze ot

SLST9T0°0
6268CL0'0
utw

£8/89¢ 0
TLEZVE'O
ET6EZL 0
910LLD O
9/zZof0"0
BY6CYE0 "0
B9S¥90 0
ZO¥ESS0 D
E/SPSED D
L¥¥9/Z0°0
6IZEOED "D
Z5FTIZ0 0
ES99Z0 0
B6FCOEO00 0
95600200
£BZELYORD O
¥OB6E1TO00 "0
TBOLECO00 'O
POBLFED D
BSEVOTO0 0
LZOEEROD "0
Z65ET0°0
65625500
EW/CZTO 0
9TrOZZ0 0
BLILBED'D
E{BSS/0°0
¥Z60ST 0
coz19T'0
SUBTZ'O
BSBELE'D
ZSO8LED
6LZ06F 0
B6TLSTZO O
¥Ivese 0
680BTED O
[Z9/7500°0
Pr/07900 0
BOEEZSD 0
B69B61L00°0
A3pp1S

SP6 'E9T
9£00°Z8
BEOE T
£075°0C
ZEGE DT
S69T'S
28e819°C
ET6PE'T
¥SETBO'0
CUSPE D
B18SBT 0
ZS56/60°0
9/7090°0
¥C990ED D
CTLZPLZOD
¥8/05T0°0
CETSETO'O
CIETCTIOD
BIGEZZO 'O
¥816070°0
VLPLT'E
TSELT'E
B6POSZ'E
weLlT'E
BBLET'E
T65PEE
B6L0Z°E
CEQTT'E
¥S980°E
8S0S0°E
vZ8B'T
SLLSL'T
E9PBE T
CCIET'T
£709¥%" T
6SL80° T
TZ8509°0
L9/[EE'D
LEEZLT'O
L¥LPPE0°0
ueau

89/ €91
8/88°18
00" Tr
SZS°0T
869E°0T
PIFST'S
SBBS T
BOTZE'T
¥ZZ099°'0
C/90EE'D
286910
760600
8780500
SELOED'D
889020 0
ZT6vT0'0
B8BPETO 'O
B8rOZI0'0
24807100
8/50T0°'0
SEBLC'E
B0BLE €
BZELT'E
E969C 'E
LLSET'E
ETESTE
YZIZT'E
TESLT'E
STLLT'E
COTLT'E
YZ{BO'E
8rZee T
TLLLS'T
ETZET'T
TBEBS'T
1L860°T
GSEL09°'0
P/66EE 'O
BOBTET O
CETBO60 D
UBTpaw

=l

suw

suw

sw

suw

suw

sw

=l

su

suw

sw

=l

suw

suw

sw

suw

suw

sw

=l

suw
28s/80
29s/89
585/80
085/89
28s/89
285/80
85/80
85/89
28s/80
235/80
28s5/89
28s/80
29s/89
235/89
J8s/89
29s/80
235/80
23s5/89
28s/80
29s/80
syTUn

8388ZYZS
BArb T29T
BAZLOTET
B9ESS9
838a/ze
BAFBEST
8iZ6T8
8219601
8%8roz
BiArzoT
BAZTIS
83952
838z T
R
8iZE
49T
aig
84
e
T
8iesTres
BArF 29T
BAZLOTET
BA9ESS9
8389LzE
BAFBEST
8%z6T8
839601
BABFOT
8irzeT
BiZTS
ajese
838 T
bl
Bize
8491
g
af
M4
84T

s11e

auT1peoiumed
BUT|pEO] UMD
SUTIpe0] UAOg
auTIpeo)umog
3T peo]uAog
SUTpeo]umog
auTIpeo)umog
aUT|pe0|uAcg
3UT|peo]uAogd
8UT]peO) UAOg
auT|peo)uacg
auTlpeoiumed
BUT|pEO] UMD
SUTIpe0] UAOg
auTIpeo)umog
3T peo]uAog
8UT]peO) UAOg
auT|peo)uacg
auTlpeoiumed
BUT|pEO] UMD
pesdspeo]umog
paadspeo)umog
paadspeo)uaog
paadspeo)umog
paadspeo)umog
paadspen)uaog
paadspeo)uaog
pesdspeo]umog
paadspeo)umog
paadspeoiuscg
paadspeo)uaog
paadspeo)umog
paadspeo)umog
paadspeo)uaog
pesdspeo]umog
paadspeo)umog
paadspeoiuscg
paadspeo)uaog
pesdspeo]umog
paadspeo)umog

1531

85

SHOC Device Memory GTX 460

7.7.

SBY '80E
BEL'SBE
£/6°8BBE
8/9°8CE
T6L°TET
9/STE'E
90ZCr 'E
L9Tvv'E
Yi9%F'E

665587
B8BTS '0S
TIES 9
€00 ¥ZT
€92 12T
SPZEOT
B8¢°99T
8868°89
ST0°906
¥ "898
e 0oL
05 'Z89
105" 0SZ
611

GEG'BOE
TOL"SBE
656 'BBE
CSLBEE
S8/ 18T
8S/0E'E
96TV 'E
EBEV'E
620BF 'E
9FZOLE
/16716
CEEB'Z6
CEBS'Z6
SBT9'16
¥IF6 26
GSE"L/E
£15'682
999°662
SZZ 88T
0 06T
8/B66°E
EEETE'¥
BEFBL ¥
TPOEE 'S
ThPER "L

85T' 2T
06 EDT
ZFeg 991
£6EL°89
£82°'016
¥Z0 0L8
8 S0L
81/ 'Z88
888°'05¢
81end:

615 89E
SELSBE
96 '8BE
9/9°'8¢E
S69°TBT
EL06Z'E
YOTEY 'E
SPIvy '€
6¥8SY 'E

£19' T2T
968 '£0T
816991
£4/9°89
911 '906
v65 €48
228 5oL
90229
zz ST
£1eT1

86805 TvS '80E
S/9°GBE BEL'SBE
10" 685 10068
169825 91L '82E
80/ 18T S18° 18T
U6OE'E LTIE'E
YOvZy £ STOTY €
OvEry £ EZEEY 'S
86EEY '€ BTRLY '€
69S89°E G2/9'E
9858 16 806" 16
807826 YOVE 26
EvvL 26 1299°26
[9TE " 16 6S9E " 16
85/0°26 TEL'Z6
IET" 42 BET' LT
v/ 682 /2682
£69'662 £59 66T
7GZ'88Z LVZ 88T
£88'68T 20 06T
100£0°% ££140'F
8/60E" ¥ SYVOE ¥
£GGLL T VYVBL T
96128'C TE/58'G
SE0LE"L EZL6E "L
SS6 26 BBLYT6
[BIE'SE ZE'SE
¥GI8'CH SSFT 06
£951'G6 BS2T'S6
9588 6£.9997 6L
1GE°8T MELE 8T
8666 vZ Z1E0°GZ
Tvv ' BF €05t "B
£715'05 810505
116805 p818°0E
0" PET E06 'E2T
617 T2T TLE°T2T
96°£0T 79/ '€0T
1S6°SOT 60E 99T
ZoER'80 Z6/°89
82/ '806 865606
€71 T/8 E6S 898
666804 802 'SOL
6EL°6L9 [EV 819
£/%'0SZ YST'6VT
918T41 GleTd

£SF'80E
£0L°SBE
V66 8BE
£59°8¢E
689 18T

LEV'TET
rI8'EOT
EFZ 99T
6v99°89
669" 706
6.8 998
8977900
689089
S66'6vC
v1eTd1

L0089
FTLSBE
FEG "BBE
6¥9 "8ZE
ERLTTBT
8862 'E
BSBIF 'E
BOTPP 'E
FELSEE

£8°021
GET'EDT
8rT 991
£F0L 89
T0E 'S06
GOE 698
EF 904
72689
Ze6'8ve
£18T43

£25'89¢E
BT/ 'SBE
€98 '8BE
€0.'8ZE
28181
LYT6Z'E
9B0EY 'E
vigvv'E
LZL6V'E

Z1end1

Z5F 'BOE
929°'SBE
E/6°BBE
£/9°BZE
L0 TBT
LZOZE'E
9B9TF 'E
SEBEV'E
CBLIFE

ETESO ¥
ETFIE' ¥
FI89L ¥
EGEFE'S
STETF 'L

T1eT4}

LT15°89E
T84 'SBE
[E6 "BBE
£0L 8CE
LTL°T8T
GGZIE'E
PI6TY 'E
EEEVY 'E
86597 'E

£65°T2T
968 '€0T
Zsr 991
o0z/'89
28806
z19°1/8
£45°20L
SYT'649
61E '81T
O1eTI1

¥8G'80E
TBLSBE
¥10°68E
€SL°8eE

28’181

9588 6L
ISIE°8T
SZED'GE
L[985S BF
669505
6S8°0E
GOT'FET
ET9'TET
96°'€0T
ZSF 99T
886889
[S8°0T6
¥6SELB
666 °80L
Z26°'FES
cg'ese

XEew

£00 '89E
925 °'S98E
€98 'BBE
69 "BEE
685181
ELDBE'E
STOTF 'E
TSPEY 'E
BEEER 'E
95559 'E
v 16
L4726
125926
£B826°06
8IS 'E6
L16'942
122442
S8 662
BTZ '882
688681
B8/BE6'E
SrrOE 't
rI89L 17
9IST18'S
SEOLE "L
G8LF 'E6
{BIESE
SBZ9 'S6
EGTB V6
SPSO 6L
¥ESE 81
SBLE VT
660 '8¥
SE6 'BY
958y "9
T88'ECT
SEE'OET
ZED'EDT
rIb'S9T
655 89
668 'F06
BF "{E8
FEO 'D0L
604 °9¥9
G61E '8¥C

utu

9rE9ST 0
9ESYEED 'O
STSTTFO 'O

£620°0
SBPLERD 0
y12rEz0 0
78904000
TTTO9E00 "0
7T19£T0°0
YBYEFTO 0
COEZZED D
ZrE80E0 0
ZZE6FED 0
1896610
TZSLT°0
SrEE8T 0
EO¥O6 'S
782999000
£8£96T0 0

2025600

££EBTZ0'0
815297000
SPZPOTo 0
9872100
T6T9LTO "0
£E620TO 0
TSOEZE00 "0

SLB9YT 0

B0DOLE 'O

S9ELEE 'O

T790TZ00 0
72058100

TB9SET 0

peLTST'O

185E01°0
6££0280°0

TOE6ZY 'O

VEZIVE'D

(Z09(Z°0
95TLFL0°0

€20 ‘2
vevr 9T
5669 'Z
162501
69501
ABpPP3S

297 '89E
ETL'SBE
196 'BBE
689 '8CE
4S84 TBT
LETE'E
BETEZV'E
22T 'E
T2L8%'E
SPy{9°E
V¥S68 16
9928°26
B6TL°Z6

ASRCAN
£59'E0T
SST'99T
£9S/ 89
968 °'L06
9. 198
L6 0L
£08°LL9
L6 '6¥T

uesw

81589
9T/ 'SBE
996 '88E
¥89°82E
99/ " 18T
TLOTE'E
EEQEV 'E
LEZTPFE
600LF'E

FLEOR 'L
SBBF 26
88¢E"'S6

98'S6
ETEE'SE
99k 6L
SCLEBT
jetatalat=rad
886F "B
92es 05
£0E8 92
196 'E€T
LIE'TET
GSBE0T

UETpaW

az1532014
2z1530014
82152014
371532010
221532014
2z1530014
82152014
1321532010
132152019
1321532010
tazTS 2019
1321532010
132152019
1321532010
CEQBZTSHI01]
161871539010
952921532014
8CT:821539014
790182152010
Z£0:871539010
215921539014
95z 821532014
871:9215%2010
001921532014
ZE0: 921532014
215821532010
9571821532019
821:9215%9014
901921532014
2£0: 821539014
8496017
g4F201
84952
a:1vy9
g391
84960%
84k2o1
8495
a:1r9
89491
84960%
8ArE0T
BHOSE
gi4r9
8491
5118

f10WSN1 230733 TIA
Aiowspe30733T4A
AJI0WSW1EI0T33TIA
f1owspE20783 TAM
f10WSN1B30733 TIA
1TURAJ0WBK1 B0 1083 TIA
1TUNAJ0WSK1EQO1DR3 TIA
1TURAI0WSK1BO01D83 TIA
1TUMAJOWSK1EQ0]D33 TIA
1TURAJ0WBK1BQ01D83 TIA
pE25a1e00f40WSK1EQ01DA3 TIA
pa3saleodfl0WsK1B001083 TIA
PEREENEL R LN ITEN =L I ERR ST
pa2saleodfiowsy12001993 TIA
pa2sa1e00fJ0WsK1EQ01093 TIA
fiowse30pEad
Kiowspe30pesd
fiowspe30pesd
fiowsWe30pesd
fiowse30pEad
1TURAJ WS EG01DpESS
1TunfJowsy1Eqo1DpEad
1TunAJowsK1EQO1DpPESS
1TURAJ oW Bq01DpEES
1TURAJ WS EGODpESS
paosaleodflowsyEqo10pead
paosaleodflowsyEqo]opead
padsaleodflowsyeq010pead
paosaleodhdowsy12q010pEad
paosaleodflowsy1Eqo10pead
553007 U0pUEYpaleadayaInixal
S5320yUopURYpalEadayaInIXa L
55320y UopUEYpalEadayaInixal
S58207UopURYpalEadayaInIXa L
S53007U0pUEYpalEadayaInIXaL
s5320yJeauTIpaleadayainixal
S5320yJeauTIpaleadayadnixal
S5820yJeauTIpalEadayaanixal
S5300yJeauTIpaleadaysanixal
s5320yJeauTIpaleadayainixal
1THaYepateadayadnyxal
1THaYEJpateadadanixal
1THaYoeDpaleadaysIn}xaL
1THaYEpateadayaIny el
1THaYsepateadayadnyxa L
1581

86

SHOC SPMV GTX 460

7.8.

TI¥86Z'0
TestT'e
YISSPE 0
€9e8° T

SITLBT'O
STTESS'0
SSETSS 'O
8TSrPS0
SEETBT'O
B96ZE" T
ZSPEST'O
86STT'T
E0SEQT'O
BEBBEL'O
9LTEFT O
¥IFZ0s 0

BT}

9T¥B6Z 'D
QEEQT'T
S8YSFZ 0
£9vER'T
9EQLET D
9TvEL'D
GETLBT'D
£0STSS'D
€oz1ss e
ELSPFSD
EPETBT'D
CIOEE'T

GEZE09'D
£1ETI}

96EB6Z ‘D

EZIT'T
8rskz e
BEFES'T
9/EBET D
LZOFEL'D
£SZLBT'
£99155'0
BEZTISS B
£29FFS 0
BOETBT O
ESTEE'T
ZregT’e
BrFIT'T
6TEEQT'D
SOrBEL'D
£66FFT'0
690E09 D

Z1ETJ1

T¥B6Z '8
SPE9T'T
90SSFZ 0
6BSER"' T
T9¥BEZ '@
PIEFEL'®
EFOLBT' B
£86055'0
CTETSS '@
[l
PIETBT B
BSBZE " T

9E£709°0
T1ETI}

GSESBZ 'O
Ze'e

6T£055'0
LSEZLFS'O
69L6ES D
PEETBT O
¥952E " T
8TIrE9T @
BEVTIT'T
£56/5T'0
89.92L°0
800FFT 0
6294650

01eTd1

LS¥B6Z'0
58812
SESSPZ 'O
or/e8"' T
BSL8ET 'O
€HS9EL'D
662/81'0
S rt=i=gs]
TESTSS '@
SS97FS 0
9/ET8T'0
TSTEE'T

GSESBZ 0
[« 4104
8rSrZ 0
BEPEB'T
8B680Z 0
#9789 0
EVO/BT O
6TL0SS'0
LSELYS D
69L6ES'D
FIETBT O
BS8ZE'T
9BEEST O
9EETT'T
IS6/ST'D
BOL9ZL 0
800FFT 0
B6Z9/6S°D
utw

968/T6000'D

LYEESFO 'O
SD-26T209°' T
ZBBS68000 D

96901100

FrOOSTO 0
SD-2TE0T9 L
GSZEZYO0O'D
Tgezeoo 0
FECEFTOD 0
SD-3506Z8 "' T

£¢T99T00'0
96£85£00 0
65T98£000°0
PIEESTO0 0

nspp3s

801862 '0
918F1'C
OSSP e
GSOSEB'T
96T1ET 'O
TeE6EL D
¥6TL8T'D
E0ZTISS'D
£16055 '8
Zo0FFS e
TPETBT 'O
SOREE'T
E£ZYEQT'D
E9FTT'T
8162910

TTFB6Z 0
LOEIT'T
OSSFZ 0
E/SER'T

6IFEOT'O
SPPTIT' T
86FEQT'D
BOLBEL'D
ETZSFT'O
6TOED9 'O

UBTpaW

s/do14n
s/do14n
s/doso
s/do14n
s/doyyn
s/do14n
s/do1yn
s/do14n
s/do14n
s/doso
s/do14n
s/doyyn
s/do14n
s/do1sn
s/do14n
s/do14n
s/doso
s/do14n

s}Tun

SMOJ_yZOT_S1U3US|3_ZEBYT
SAO._pZOT_SIUBWE18 ZERYT
SA0_pZOT_SIUSW31S ZERTT
SA0J_pZOT_S1UBW318_ZERST
SA0._pEOT_S}UsuS18 ZERYT
SA0._pZOT_SIUSWa1S ZERYT
SA0._pZOT_SIUSW31S ZERTT
m)oLI»uNDHImHEmEm.FmINmmBH
SAO._pZOT_SIUBWE18 80T
SA0_PZOT_SIUSWR13 S8Y0T
SA0J_pZOT_S1UBU313_GBY0T
SA0._pZOT_S}usua18_SBY0T
SA0._pZOT_SIUSWA13 80T
SAO._pZOT_SIUSW313 SBYOT
m)oLI»uNDHIer_mEm.lemm#DH
SAO._pZOT_SIUBWE18 80T
SA0_PZOT_SIUSWR13 S8Y0T
SMOJ PZOT SIUsWs13 SBPOT

s}11e

810d d5-J0138A-US)_Papped
dS-40308A-HSD_PEppEd
3124 d0-40323A -5 papped
~d0-40393A-45D_papped
8I0d dS-4B1835-4SD_Pepped
dS-Je1835-4s)_papped
aIDd d0-4B1835-¥S)_papped
d0-Je1835-4S) pepped
d5-HVETH
0DV

3104 d5-J03934-H5D
_dS5-403934-4SD

2104 d0-40322A-¥SD
~da-401334-45]

310d d5-4B1825-¥SD

T _dS-JE1EIS-HSD

3104 da-4B1835-¥sD
d0-4B1895-H5)

1591

87

SHOC MD GTX 460

7.9.

ZI6Z'E
zeee Tt
9ELSE'T
vLiE 0T
PLLO"PT
£558°SY
[BET"VE
£5VBE'6
6042 0F
€567 25
61843

LT62°E
LEEZ°2T
6552 T
L0701
60L0°7T
6658°St
T2ET vE
9BYBE 6
12 0F
££05°25
g1eTd}

0062 '€
zzez'Tl
9Z8ST T
£BLF"0T
160" %1
SELB'SY
ZZV T vE
G/EBE'6
So6z o
994725
£18T43

9E68Z '€
oTez 21
755 T
Erir 0T
EEL0°PT
7118°SY
960" 7E
£EBE'6
£8Y2"0F
659725
918143

T0L62 '€
067z 2T
10652 ‘T
£6L7°0T
0080 ¥ T
888 S
SEST'¥E
PLTBE'6
16120
oBZY TS
gletdd

69682 '€
61€Z°21
£V09T T
818F 01
££80° 1
9.16°SY
TSLT'VE
Z5EBE'6
vZ5Z " oF
Z1LP TS
p1eT4d

SBEEZ '€
zIee zt
96T T
808t 0T
780" pT
BE06 "SF
6¥9T"vE
1628E°6
Zzve ' ov
6.5 25
£1eT44

SELBZ'E
867221
11852 T
SBLF 0T
684071
SER=Y

PT'vE
L6T8E'6
8E7Z "0
BEEF TS
z1eTdd

LTEBT'E
£0z2'Z1
TEVST T
£4v'0T
o101
TEBL ST
280" vE
8T6/E'6
1Z4T°0F
£/9€°TS
118143

YESBZ'E
z87z 21
T185Z°C
SBLF 0T
680" 7T
S0L8°ST

Y17
£008E "6
Z66T"0F
610725
01eT}

LI6Z'E
LEET'ET
EFO9Z T
8T8r 0T
EEBO PT
9L16 'SP
TS84T PE
98FBE'6

LT oy
EEOS'ZS

Xew

LTEBT'E
£922°71
TEVST T
ELF°0T
9TL0'FT
CEBL 'SP
280" FE
8T6LE'6
[ZLT or
E/9E°ZS

utu

9252000
£T6TZ00°0
ZZYBLTO0 D
LFZSZ00°0
£09TFEDD 'O
Y¥Z9E0 D
£546920°0
ZET89T00 0
8060E0 'O
20620700
A2pp3s

LE8BZ'E
80E2°TT
18{5C°C
8/F'0T
£8/0°vT
Sro98 sy
SSET'VE
FOZBE'6
E9EZ"OF
cOsSk TS

ueau

1682 g
¥1ez 7T
TIBSZ '
=:Th o
680 1
508 'SP

v1'VE
£1E8€°6
fasrAlold
6T9Y TS
uetpau

N
5407149
N
540749
s/49
s/49
5407149
s/49
S/8D
5407149
S1TUN

swole gezzl
SWo}e_gezeT
Swo}e 88zl
swo}e gezzT
swole_ggzzl
Swo}e 88zl
swole g8zl
swo}e ggzel
SWo}e_B8zZT
Swo}e”88eeT

S11F

frTaed TI-OM

3I0d [1-QM

Ayraed da-c1-aW

B #I0d d0-C1-QW
312d Y1pTApUEE-dd-[1-ONW
Y1pTApLEE-dT-CT-OW

B da-C1-aw
3I0d YPTAPUEE-[T-OW
U1pTMpUEE-[T-CW
r1-aW

1583

88

7.10. SHOC Reduction GTX 460

TOLLOZ
ST1988'C
209 °'0g
EZS09B'C
8re8 "' 19
8TEB 'O
618143

OZ8/ 07 E0LLOZ 90B'OZ 96EL'ODZ Z8EZ6°0Z TI6L'OZ EBFL'OEZ
/6588°'7 Zv988'Z SZv88'Z OT688'Z £BZ/8'Z 6888'Z ZOT68'T
vOSP'0Z 805 '0Z SELY'OZ 80SY 0T T/Ov'0Z 9Z1S 0Z ZTbb 0T
TSE/8'Z €/998°7 ZLOLB'Z [S6/8'Z TEEL8'T T8L98'T GZSIB'Z
TSS9 195099 ' 19 2FF9 "' 19 169L'T19 6189 ' 19 TFE9 ' 19 26F9 ' 19
B8£98'Z0 YBES'ZO ¥BS'ZO Z608'Z9 066'Z9 TEVS'Z9 B/88'Z9
81BTJ} /1BTJ} QO1BTI} GlBTI} pleTJ} E1BT4} Z1BTI}

1006 '0Z 69L8'TZ 69.8'TZ
EC698°'C v¥BYZL T Z9168°'C
SG9S 02 806 02 ¥906 0
9Z0/8°¢ BEOTB'T LS6/B'E
S868°'T9 9B.S'T19 S868' 19
GOEB'E9 BSEE'Z9 966°E9

Ten1 gletd}

Xew

9BEL 0T
vevzli'e
2lvy 02
86018 '€
9B/S'TO
GSEE €9

utu

vezize 0
L0B6L10°0
BYZZET'0
S99S8T0°0
SZYZOT'0
81899T°0

ABpP1S

ETT6 02
¥rL98°E
SBES’0E
¥ESSE'E
SZTL 19
9ETE'E9

uesw

898/ 02
T1S88'C
216¥ 02
6rOL8°C
ZTL8°' 18
LOvBE9

UETpaW

N
s/89

s/89
s/89
s/89
51TUN

SWs1T pr1Z9Z
SWS1T pr1Z9T
SW31T Z/OTET
SW31T Z/OTET
SWs1T Z/0TET
SWS1T pr1Z9T

S11E

f1Taed uoTionpay
3104 UoT1onpay
f1Tied da-uoTionpay
3I0d dd-UuoTionpay
dd-uoT3onpay
uoTaNpay

1583

89

7.11. SHOC S3D GTX 460

Z6YB6T 0

666°v1
91814}

B9/86T°0
£566°' 7T

966
86550Z 0
BZEY 'TT
ST00°ST

g1etd:

EGYBET 0

E200°ST
P1eTdd

Sri86T 0

£18T43

ELTBET'O
V8E6 ¥
508862

156902 '8
9Lty 'ZTT
LEZO'ST

z1eTd}

ST861'0

TieT}

L92/6T°0
7861 4T
1069 62

ei=pi=lora)
SEE'TT
2888 '¥1

018141

B9/86T'0
£566°7T
¥96 62
TS690Z "0
9LryTT
[EEO'ST
xew

[92/61°0

BSEBBED 0
A3pp1s

E9Z86T°0
86 ' ¥T
EVEB 62
fidasloTao]
65TF 2T
[T
ueaw

Teess1 q

T966°vT
ueTpau

N
Sd0TH9
Sd0HD

N

Sd0729
Sd0HD
s1TUn

S1UTodpTIb pZBET
S1UTOdpTIB pzeeT
s1uTodpTIb FEBET
s1uTodpTa6 gser
S1UTodpTI6 o60r
sjutodpTdboser

511E

f11ied ds-0ES
aI0d d5-0ES
d5-0ES

£1Taed d0-ges
aIdd da-0es

90

7.12. SHOC Scan GTX 460

692899
£T595700°0
CE"98ES
£7515200°0
8EL8'ET
8ppT LT
91T}

55°6£99
175052000
6 'EBES
12515200°0
£E68'ET
BOET'LT
s1eT}

89'7899
£1595200°0
12 '6BES
LZ5/5200°0
z188 €T
8rpT'LT
r1eTI}

S9°899
£T595200°0
SE'¥BES
L2S5200°0
Spees'ET
SPET'LT
E1T}

80899
175857008
88" ¥6ES
12515200°0
8568'£1
SSET'LT
z1en}

121899
£1595700°0
E¥ 'BBES
£Z515200°0
<06 ET
€701 L1
T1eTd}

88°£999
£1595200°0
92 '0BES
LZ5/5200°0
6688°ET
890T°/T
01T}

S8'9899
£TS9SZ00 0
EF 'BBES
LESLSEOD 0
SO6°ET
SSST LT
Xew

88°'£999
£T595208 "0
€E'98ES
LESLSEOR 0
BELB'ET
890T LT
utw

CSLL9'Y

0T-39Z169 '€

£898958°'E

OT-3FrrIr '€

6LE£6600°0
0002100
npp3s

¥E'0899
£TS9SZ00°0
EV "EBES
LESLSTO0'0
1268 ET
8BET /LT
uesu

L 1809
£1595200'0
ET ¥BES
475152000
6668 £1
vErT LT
ueTpaw

SWRY TPy 1Z9Z
SWa1Tyy 1292
SWslTZ/OTET
SWRITZLOTET
SWRITZLOTET
SWa1TyyTZ9Z

s11e

fytaed uess
aIdd uels
A1T4ed da-ueds
aI0d dd-Uueds
da-ueds

ueag

1581

91

7.13. SHOC SGEMM GTX 460

re6FE " T
(5] el
o0 " L6T
EEPOE'T
0S8 69
808 'Z0Z
£EG98'T
6955 LT
QELE 0S5
aress ' 1
ETE29'LT
9971605
618743

LEF9L T
BB66 L9
100881
£50968°'T
a1SL 69
8ED 2O
16#88 "' T
Q009" LT
EEBL OS
apciBe’' T
BSLS LT
£BES'OS
BT}

ZOBVE ' 1
TEET 69
VEG 96T
BOEOG T
ZEre 6o

B8 Z0Z
Lrise' 1
Br19°LT
Z298°0S
woie'1
¥ESS'LT
920F '0S
L1BT43

=] JU=V
£9E0 89
887 '88T
GSEQE ' T
r8 69
6L°€0C
6oT168 ' T
GBZO LT
9/6'05
wrois' T
FESS LT
SZor 'S
91eTd}

TZBOEB'T
61765 89
629261
BS06° T
69869
920 °e0Z
BEZLE'T
6595 LT
9SF '0S
81881
S86S°LT
LEBOL'DS
S1ET43

66FFE " T
£580 69
LFS 96T
£BEG6E'T
FEBL 69
GBE €O
80EB8°'T
Q009 LT
TrFs 0S5
LESEET
EOF9 LT
ES/0°' TS
v1eTd3

Z55E8°' T
£096 '89
BES'GET
PLOOE " T
S08°'69
98 "Z0T
EBELE'T
9045 LT
BrFG¥ '0S
68/8°T
TLBS'LT
PIES ' DS
E1ETJ3

BSSFE " T
CEGD 69
T19'96T
FESOG T
TEQE 69
96 'COE
GE808° T
EESSLT
SPFE 05
jradi:
ES9S /LT
TISF 05
z1eTd3

TB6ER'T
L10°69
966 °"S6T
ETEOE T
Z5E8 B9
L Z0g
682981
LPES'LT
B666T 05
64BS8° T
Z1Es LT
9680 '0S
T1eTd3

GTOSE " T
QEST 69
0T LBT
QEBGE T
8vLL 69
EEC 'COE
8ress’ 1
ETE9 LT
9971605
82T198°1
FEES LT
L95T'05
O1eT43

B6TOSE ' T
9EST 69
10T L6T
B8S06° T
698769
920 "E0Z
69768 ' 1
SBZ9LT
9£6°0S
LESBE T
EOF9LT
ES/O'TS

Xew

LIF8L T
8866 L9
o0 88T
£9968° T
9TSL 689
8E0"Z0Z
68298 T
LPES' LT
6661 05
6£8S8°T
ZTEs' LT
968005

uTu

S/06TE0'0
LBZTER 0
TT66E '€
EV676200°0
69ZELE0°0
£0ZPTE 0
£T9E9600°0
TESETED 'O
69965Z°0
18880100
SESYSED'O
90YEEZ "0
(LIRS

56281
L8 89
TLF PET
ETZOE " T
9ZZ8 69
SEDZ0T
EEBLE'T
TSBS°LT
919°0S
wsis'1T
98/S°LT
PLESOS

uezu

vere ' 1
£T50 '69
TLE2°96T
QEEDE'T
TBEB 69
SOL Z0E
apeL8’ 1
9585 /LT
SET9°05
EBE/B'T
9045 LT
66l 05

ueTpau

N
sdo149
sdo149

N
sdo4o
sdo4o

N
sdo14o
sdo14o

N
sdo14o
sdo14o

51TUN

osz

f1Tded” 1 -WW3DS
3IDd L-WW30S
~L-Wi39S

A3 1aed N-WIW3DS
8I0d N-WW3DS
“N-Wi305
Aytaed” 1 -Wna00
3IDd L-Wh320
~L-Wi300
Aytaed N-WH320
3I0d N-Wh320

N W30

1s81

92

7.14. SHOC Sort GTX 460

£5/69'0
TOLOBS'©
98S86°0
91eTd3

T1969'0
GOEBLS D
£99286°'0

S1ETI3

S8/669'0
rYIES e
E0066 0
1T

6/¢B69'0
LLpTBS'D
B29/86°'0

E1ETI3

£D06BS "0
GBETBS'®
8///86°0

Z1eTd3

8000L'0
£EDBS'O
9/9986°'0
T1ET4}

98Z0L'0
29LTLS0
S8P/6°0
01814y

902040
FrFZ8s 0
E0066'0
xew

11962 '0
TOLELS'D
SL8V/6°0

uTuw

9¥869T00°0
729652000
8/20v00°0
A2pp3s

866869 '0
1410859
£0/S86°0

ueaw

TSBB69'0
PLL0BS'O
SS0/86°0

uetpau

N
s/89
s/89

s1TUn

SURTHYTZ9Z
SWRITHPYTEOT
SUBITIYTZ9Z

s11e

f1T4ed B1EY-1J05
3IDd 9184-1405
81BY-1405

1523

93

7.15. SHOC Stencil 2D GTX 460

¥6681°0
STTISE D
91814}

ZHOOST'0
08150
S1eT}

65L05T'0
96TISE'D
P1eTI}

5566810
¥ZETSE'D
£1BTI}

9/E06T'0
TIYISE 0
FAL 3

SE0BT'0
292z<E 0
TieT

5066520
LLERSED
01T}

BO6GET 'O
LLETSE'D
XEW

66810
9TTISE @
utw

6168FT10°0
€6L22r000°0
A3pp3s

TwEssT o
BZLISE'O
ueau

BOEDBT O
EBTSE'D
UETpau

s
s
s1TUN

9T¥9T'89/ %89/ '000T
9TX9T 89LXEIL 000 T
s1e

qzuslIs_ds
Qzusis aa
1531

94

7.16. SHOC Triad GTX 460

LBODEE "D

sleny

FELOOY 'O
B6EVBY 'O

vlens

SO9ELY 'O

POTFO'T
E1ETJ1

TL6ZLr°0
208VOS "0
BT/EBS O
LyTF8Y '8
9BLLEY "D

BLLLY D
BTLSLF'O

zieny

ETS99¢7 ‘0
SZEVOS'O
95z0s'0
BESTOS 'O
5l dolol=ic]
TTS67 'O

675L8°'Z
66.¥8°T
TEES'E
e

OFEEBY 'O

01eT1

9SESBY '8

95ESEY D

LBOBBE 'O
BEC6LV 'O

£B9EIE0 "D
88200700
956£070°0
TEESTE00 D
£5910700°9
95r£6600°0
£10£SE00°0
TES0EZ0 0
89980200
ZI9LTZ O
STLT090°0
BELLFSD'D
18/6870°0
666609600
rLrE650°0
8081120
BLEBET'
1025210
Aspp1s

ToEV? 'O

Z8T109% 'O
EOVEBY 'O
6960050
PSTI0S 0

18619°'C
uetsu

S/d0H9
S/d0H9
S/d0H9
5/d01H42
$/d0749
$/d0749
S/d0H9
S/d0H9
8/d0H2

E¥BEOT 2018
B¥26180: 42018
8496070 42018
B8¥0Z0 32018
B4Z0TO 2018
B4ZTS00 2018
95200 42018
a48Z100: 42018
9000 42018
B4BEST 2018
476180 22018
BX960r0 ° 42018
a48rez0 42018
BrZeTe 42018
B4ZTS00 2018
8495200 22018
4821002018
849000 42018

s11e

sdojdpetdL
sdojgpetal
sdojgpetal
sdoj4petdl
sdo1dpeTdL
sdojdpetdL
sdojgpetay
sdojgpetal
sdojdpetdl
Y1ApEPETIL
Y1ApEpETIL
Y1ApEpETIL
yiApapET L
yiApapET L
YimpEpETIL
Y1ApEPETL
y1ApEpeTIL
yinpapET L

1581

95

7.17. SHOC Max Flops 9800 GTX+

L0F " S6F
GOE "BLE
EQE"LIE
669 '8/E
6EG "68E
861082
ZrS'BLE
678 9.2
LTT'862
ST6°68E
8E8'80E
£10°6OE
EGZ '60E
L¥Z ' 6OE
ETL0EE
£60 " TET
860" TEZ
G80 " TEZ
61eTJ}

60Z " S67
TOE"BLE
Z8E"LLE
82L°8LE
TS6°68E
9gZ 08¢
Tiv'8LE
16°9L2
SELL6E
6LE LBE
SFB'B0E
870 ' 60E
162 '60E
LTE'6OE
iy xa
921" 1e2
[XA
166" 0EZ
81eTJ:

8ST'S6¥
GGE'BLE
Z6E"LLE
TOL BLE
S6°68E
Z2'08g
815'8LE
816°9.€
SEG'L6E
80F ' 68E
¥8'80E
690" 60E
982 '60E
652 60E
TEL OEE
921" 1e2
L9T"TEE
EFD" TET
L1eTdY

LET S6¥
¥E'BLE
88ELLE
¥EQ'BLE
G/8'68E
¥12 082
60¥ 'BLE
168'9LE
ETE 862

6°68E
9¥8 '80E
90 '60E
6¥Z '60E
8¢ '60E
GEL'OEE
9ZT1'1e2
LST'TEE
250" 1e2
91eTd1

640" S6F
8ZE"'8LE
v LLE
89°8/E
£20°06E
98T'08Z
LZ5'8LE
6889/
S60 862
900" L{BE
958 '80E
190 '60E
882 '60E
¥8Z '60E
904 "0EZ
65T TET
BT 1EZ
LTT'1EE
S1etd:

251" 56
9LE"BLE
ETv " LLE
TeL 8L
TED "OBE
GEZ '08Z
66 "8.Z
8/8'9/Z
860862
CL 68E
LEB'BOE
990 '60E
¥LE 6OE
292 '60E
789 0EZ
£40°TEZ
65T TEZ
£00° TEZ
71eTJ}

£90°S6¥
9FE ' BLE
SGE'LLE
89°8/E
EL6°68E
L¥1°08E
96% '8LE
16°9LE
Z11'862
8F¥ LBE
198 '80E
S50 60E
£82°60E
BEC '60E
69" 0EE
980" T2
60" TEE
¥96 ' 0EZ
€letdy

166 ¥6r
£8E'BLE
VEE'LLE
T99°8LE
£6°'68E
¥ig 082
S&\'BLE
Li8°9LE
¥E 862
86¥ " LBE
£98°80E
990 60E
S92 60E
862 60E
9TL 0EE
850" 1E2
¥ST'TEE
660" TEZ
Zletdy

Zv0 "S6¥
Z1e'8LE
QEELLE
STL'BLE
¥EG '68E
£0Z 082
TES'BLE
18879/
Z¥0 '86g
L¥T°LBE
L¥8°BOE
6.0 °'60E
LE°60E
SOE '60E
EEL°0EE
290" 1e2
EET'TEC
£0°'TET
Tietd:

190" S6F
LIZ'BLE
SZE'LLE
S59°BLE
626 68E
61082
18F'8LE
826°9LE2
L6 L6E
€59 °'68E
£98'80E
SB6 '80E
82 '60E
¥¥E GOE
104" 0EE
a8rT TET
96T TEZ
676 '0ET
01eTJ1

L0v " S6F
L8E'BLE
ETF " LLE
8ZL°8LE
TED "O6E
¥¥e 08g
Zrs'8LE
8Z6°9L2
¥Z 862
ST6 682
£98'80E
640" 60E
T6€ '60E
¥¥E 6OE
GEL"OEZ
65T TET
96T TEZ
LT 1E2

Xew

166" FEl
LIT'BLE
SEELLE
VEG'BLE
/B 68E
Lr1'08C
60r "BLE
68 9.2
SeLiee
900" LBE
LEB"BOE
SB6 BOE
62 '6OE
BEZ 'GOE
6{9°0EC
850 TEZ
LB60°"TEC
66 'OET

uTu

9TS0TI' 0
8/57€0°0
E8VO0E0 "0
¥1ZE6Z0°0
669SERD "0
80SK9Z0°0
Z0690T0 "0
ZOBETZO' 0
899TFT'0
vi9ez T
6S00TTO "0
SLIVSEO'0
£0607T0" 0
£T29TE0°0
ZLOVLTO'O
vrE0rED "0
BEFBOE0" 0
1888750°0
ABpPLS

ET S6¥
EEE'BLE
LETLLE
£89°8LE
¥S6 ' 68E
02082
6% '8LE
¥68'9LE
S50 862
£05°88E
1S8°80E
150" 60E
¥LE 6OE
£8Z '60E
TIL0EE
90T 1E2
6F T TET
¥0 ' TET

uesw

E0T S6F
FEE'BLE
ELETLLE
69°'8LE
Si6 "68E
602 '08C
LBF'BLC
68°9/C
LB0 86T
E5F '88E
98 "BOE
580 '60E
L{€"6OE
ZB8Z '6OE
STL'0ET
60T TET
L=1=) N £
Iv0 " TET
UETpal

5407149
5407149
5407149
5407149
5407149
5407149
5407149
5407149
5407149
5d07149
5407149
5d0742
5407149
5d0742
5407149
540749
5407149
Sd0749

s1TUN

FOEPETR 9215
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
Z5TLBOE P 9ZTS
FOEFGE IR 9215
Z5TLBOE P 9ZTS
ESTLGOE 8215
Z5TLBOE P 9ZTS
CSTL6OT 9215
Z5TLBOE P 9ZTS
ZSTL6OE 2215
Z5TLBOE P 9ZTS
ZSTLBOE 18215

s11E

dS-MPPYW LMW
dS-8PPYW1NW
dS-FPPYWLNW
dS-ZPPYW1NW
dS-TPPYW1NW
dS-B1MW
dS-F1MW
dS-Z1MW
dS-T1NW
dS-NPPVH
dS-8PPVH
dS-FPPVH
dS-ZPPVKH
dS-TPPVH
dS-8PpY
dS-FPPY
dS-ZppY
dS-TppY
1583

96

95ES 18
LTe8 oy
BECY 0T
EBTC'OT
8IEIT'S
#BESS'T
8L48T°T
7056¥9°'0
9TBOEE '@
CTEOZTLT '@
TLBTEO'
9EGTSO @
¥8TE0 @
96¥2Z0°0
9EL9T0°0
¥9ZSTO @
8BBETO '
ZEZTO'®

91062800
81eTd1

7.18. SHOC Bus Download Speed 9800 GTX+

6r91'Z8
99T T
L6508 0T
88T19°0T
TSZEL'S
#ST1%6°T
£6889°'T
8L760° T
PEBSTL
TTE0LL'D
8r9T60 '@

969LE80 'O
L1eTdy

PELTSS O
9LTTRE O
SPLTST O
GSEB6ESD 0

91eTd1

8 EBLC'ZB
788 0v
9527 0T
SrIZ 01T
99ETT'S
LTe95°2
968821

¥EZTSO°0
FOTEE @
PRLILT O
96Z160°0
9LLTSO'0
8ZTIZED'0
YOETTO 'O
¥ZBLT0'0
r6rT0°0
969£70°0

6OSSESD 0
S1eTdy

Tosz 8
e

5602
TEST'OT
LTISET'S
#5189°2
GEFRE'T
¥8E99°0
80ZTYE "D
9LSTLT'O

Z560°0
¥8150°0
¥92£0°0
Z6T120°0
969/70°0
¥OSTO 8

9270°0
ZIEETO'0
B8ZTZT0°0
6/S8T'E
BOT/Z'E
B9ZOT 'E

LTEFYBD 'O
T1ETJL

90SL " 18
S558 07

88TrZ6'0
818rS 0
ZOLYRE'D
£9904T°0
908880 ‘0
£1ETJL

Firye 18
VECB OF
BOEY 0T
LTITL0T
97985 S
LZ98S°T

9682 T
¥Z059°0
SETTEE D
S9EGTLT'O
¥85160°0
8871500

LTEPST O
¥B9E£50°0
ZieTdL

TosZ '8
99LZ" Ty
61796 0T
8rz 11T
66078 S
#6900
6LT0L°T
8L760° T

TSE866 0
FELTISS O
TTI0E "0
£990LT°0
¥ESTH80 "0
TIETJ]

95€9° 18
LTe8 oy
ELTP BT
Sriz'et
8TETIT'S
LTESS'T
8LLBZ'1T
FOS6F9 0
9T80EE "0
TETLT'D
9621600
TETTSO'0
¥BIED'©
¥Z8TZ0°'0
9TrFST0'0
8v8rT0'0
9/EETO'O

¥89££50°'0
01eTJL

TEEBB8 0
SEEE9T'O
Z518TZ'0
TBTESE'©
800Z8Z 0
9SSBT 0
FS6ZBT 0
TSETLT'O
GETEIT'O
LBBBLT'O
7ErITI00 @
SZT150T000°'0
ZZOTZEN00 '@
TCEGEEDDD @
L¥ELSO0D B
6ESZ6TE00 'O
Z6rT6TE00 '8
T/EZTO000'0
BZOZZE000'0
OZE/YED'D
CZEFETD 'O
BTIGEED 'O
TErOT 0
29809T'0
BLTEOZ'O
S9/0SE'D
£BO6OS 'O
796890
T9810L'0
TZL9EED'O
E20TOTO'0
8LZTOZO'D
GZ9ETZO 0
CEBLTED'®
ZLZ£98900°'0
8SL8TrOD '@
¥Z00LL00°0
9S6ETS00 0
Xew

EEEZ T8
56 0%
eSS 02
760591
99TBE'S
TeseL'g
FECTY ' T
TwIZhL'©
ETOSTF 'O
T9vvEZ '@
TFEIT60 0
ZEBSTSO'©
CEVTZED'®
25612200
YEZTLIO 0
89TTISTO '@
SELGETD 'O
PO6/ZTO'0
9/SPZTO'0

BZTIL 18
6958 '0F
SSoF BT
66EE'OT
ZBOZE 'S

BEBS'T
86962 1
TEO8S9'0
9TCEEE '@
FBETLT O
8081600
FrLTIS0'0
8ZTIZED'D

SZCe9T 0
7800
AZPP1S

BArr TC9E
BACLOTET
B29£S59
B380LCE
Bir8E9T
8jyze1e
82960F
828r0T
ArzeT
83TS
8395z

BArr 1292
BYZLOTET
B49ESS9
Bi89/cE
BAFBEST
84618
B84960F
B848v0T
AreeT
8%e1s
8395z
8481
4r9
aze

uetpau -S1TUN

suTpeoluMog
suTpeoluMOg
suTpeolumeg
suTpeolumeg
awtpeoiumeg
awtpeoiumeg
2wt peoluMog
2wt peoluMog
2wt peoluMog
2wt peoluMog
2wt peoluMog
awTpeoiumog
aWTpeolumog
aWT|peolumog
aWT|peolumog
BUT | peoUMOQ
BUT | peoUMOQ
SWTpe0UMOQ
SWT | pe0UMOQ
pasdspeo)umog
pasdspeo)umeg
peadspeo)umeg
peadspeo)umeg
peadspeo)umeg
peadspeo)umeg
peadspeo)umeg
peadspeo)umeg
peadspeo)umog
peadspeo)umog
peadspeoumeg
peadspeoumeg
paadspeo)umog
paadspeo)umog
paadspeo)umog
paadspeo)umog
paadspeoyumog
paadspeoyumog
paadspeoyumog
s11e 1581

97

7.19. SHOC SPMV 9800 GTX+

6FBBET D
ZBYZLY'D
BrFO0TC'D
T698E9°'0
588550
TZP6aT 0
TOFTSE 0
YEZLET'D
VEEZEY D

tletdl

9z/881°0
CI6TLF 'O
FLLOTE O
Z586€9°0
6506550
8956010
S¥zeoz o
CSE9ET'0
PEETEY 0

£1eTJ]

E8SBBT 0
8IOTLF D
6880120
L7I6ES'D
£89855°0
BEZEOT O
Z9E09Z "0
TECLET'®
7881670

Z1etTdl

97/88T'0
TFOZLF ' ©
Ts012°8
TEODFS "0
1158559
LFTZOT 8
GGEETT '8
GIDLET'®
GBZEF 0

Ti1eTJdl

VELBBT B
COBTLF '@
C6ZZIE 0
BEEBES '@
TLBSSS 0
896F0T @
GE/EZ'D
BLFFET @
CETLBY 0

01ETJ4L

688810
TweZLivr'e
Z6ZZTC0
TE0OrS 'O
T99655°0

95r8BT'0
EEZOLY 'O
BFSOTZ 'O
T698£9°'0
TLBSSS°0
LFT2OT 0
B66EETT 0
BLYPET'O
CEZLBY'O

utw

LTETFTO00 "0
¥S9ZB8000 "0
BLFLS000°0
6528070000
6¥SFL6000°0
YEFEYZOD 'O
STEBZTD 'O
CSOZLESDDD 'O
BZE95T00 0
A3ppls

898818
L) VA o]
SETITC O
BESBED'D
ST9855 0
SSZ80T @
FETSST 'O
FOBOET O
€S816F 0

uesu

E/BBT'B
BEBTLF O
89801 '©
GELBES '
2088SS 0
ZIFE0T @
G6FETSZ '@
BSTLET @
ESECZEF 0

uetpzu

s/do1yn
s/do1yo
s/do140
s/do14n
s/do1yn
s/do1yn
s/do1yn
s/do1yo
s/do14o

s1TUN

SM0."7ZOT_SIUBWa13 Ze8gT
SMO._pZOT_SIUBUS|E 89T
SMO0J_7ZOT_SIUBUS1E ZEBIT
SMO0J_yZOT_SIUBUE1E_ZERST
SMO0J_pZOT_SIUBUE13_SBROT
SMOJ_yZOT_S1UaWa12 S8yt
SMOJ_pZOT_S1UaWa12 S8yt
SM0._7ZOT_SIUBWa]3 SBraT
SMO. FZOT SIUBUS|E SEBFOT

511E

210d dS-10322A-HSI_papped
~dS-103087 "4SD_pepped
9I0d dS-JE1E3S-YSD_Papped
d5-JE1835-4S) PappeEd

_ dS-HNVdTE

310d d5-1031230-45)
d5-10323AH5D

aI0d d5-4E1835-¥SD
dS-4E1E35-4S)

1581

98

7.20. SHOC MD 9800 GTX+

88STr '€ 66T0F 2 TTITTIF'Z FZEOF'E Z0TTF ' S660F 2 G9EOF'Z ZFEOY '€ v.IECK'C OEBOE 'Z W.LEZF'Z 9QEBSE'Z LB/8ETO'0 vESOF 'Z ZBOOF'Z N m_____ou.mummmm._” _.E.H.._mn_HHi_.D__.._
GBSZ ' TT S6EZ ' IT ZSZ'IT €TvE 1T 8182 1T vOSZ ' TIT BTFEZ 'TIT PIrE 1T €692 1T LZ6T TIT €692 'TIT LZ6T' 11 PLLTETO O BEPZ 'TIT TOFZ'TT SH071ED Swole BBZZT _ 8I0d [1-0W
9/89£9'8 9TZ79 '8 9/TES '8 BFECS '8 /9TES '8 FSODES'B GBREZS'8B [O9EF9'8 /6FFD'8 ZESBS 'B /6FFS'8 ZESBS'8 STIT/FTI0 0 ESSZY'B #ZIZ9'8 s/89 SWwole BBZZT 2104 Y1PTApUER-[T-0W
120562 OZEE 67 GEVY 62 BLYE'6Z BZvy'67 [6Zv 62 TESE'6Z GE 67 28BS 67 B1Z5'SC Z86G'6Z 81Z6'87 E8YBOT'0 ZZ/E'6Z GIBE'6C 5/ED swole 8ezZT Y1pTApUER-(T-OH
9/SY'BE 99EZ'BE BT8E 'BE ¥9SZ 'S £OBE'BE ZESE'BE GEOZ'8E E6GZ'BE B78S'SE ZT0L'/E 8Z8S'BE ZIOL'LE TE602Z'0 €882 '8E VETE'BE SdOED suwo1e B8zZT £+
61BTJ} B81BTJ} []BTI} OQlBTI} GlETJ} pleTJ} €1BT} Z1BTI} T1BTI} @leTsy xew utu ASPPIS UEBW UBTpEW S1TUN si1e 1581

99

7.21. SHOC Reduction 9800 GTX+

L9ST ST 9290 °'ST SO0 ST FFTIT'ST S/90°'ST EEBD'ST SF/0'ST EDET'ST
£198/'Z 98108'C Z0908'Z LOSEL'Z B9Z08'Z 6Z66L'Z ZLOOB'Z BYYEL'T
EST0°GP 2S00 'Sk £970'Sv LOVO'Sy ZE0'Sy 6TZ0'St Z0Z0'St BSL0°Sh
61811 88Tl /1ETJ1 OleW1 GleTl pleTdl E|BTJl Z|BTJl

LPTT'ST ¥ZP0 9T vEF0 9T SOFD ST
SO6L°€ ZTSES'T £0908°'C ZLSES'E
896 'v¥ SOTE tr BSLO'SF SOTE ¥r
1141 918ty XEW utu

£Z987 "0 EGBT ST BBED'ST
TZE68F0°0 CIBL'C BILE6L'E
[BEZFO 0 9TTO 'Sy TCO'SF
ABPP1S ueaw - UBTpaW

N
s/89
s/89

s1TUn

SWsLT_py 1797
SWS1T prT1Z9Z
SW3LT prI1Z9Z

S11E

£y1ded uotionpay
3I0d UDTioNpay
uoT3anpay

1583

100

7.22. SHOC S3D 9800 GTX+

¥So8T'0
¥BIS 61
EBST'EZ
918143

686E8T°0
6Z6Z 6T
SZyB T

S1eTdY

£18581°0
¥esr 61
6990 'EZ

P1eT3

L58S8T 0
ESSP 6T
ET/0°ET

£18T43

£57981°0
SiF 61
VLOT EZ
Z1eT3

LOESET'O
EZTP 6T
9600 °ET

T1eTd}

98FLLT°0 FSOBT'O
€S/9'8T ¥8T1S'61
B686 T2 EBST ET

018TI1 Xew

98FLLT O
25/9°81
8686° 12

utw

8EOYSTO0 "0
SOZVEZ 'O
TESZE'®
AZPP3S

TesretT @
8OVE BT
Te16°22

ueaw

9SSBT 0
ECEV BT
EBED ET

uetpaw

540749
540749
s1TUn

SIUTOJPTJE pZBET
SIUTOdpTb $ZBET
SIUTOJPTB pZBET

s11E

Aytied ds-GeS
8I0d dS-0ES
d5-0ES

1531

101

7.23. SHOC SGEMM 9800 GTX+

99TEL '€ L9622 °'C FSLlZC'C 16LCC'C BBCC'C
TIFE 'EL BTEE EL TOOE EL BEDE'EL TEZE'EL
00" [ET 908'9EZ 6.5'9EZ 619 957 618'9EZ
EZZPT '€ TOPET '€ OTSET'Z POEFPT'E 9SPT'E
00724 T8TE'ZL SOEE'ZL SSTF'TL Evb'ZL
B6TS L2 9¥9 92 B9L '9¢C S09'LEC LLB'LEE
§18T41 81PTJ3 /]BTI} 91T GlELIY

96EEE '€
GEOE'EL
192 'LET
CLBET'E
809Z'2L
¥80 922
p1eTi3

ESSEE '€
96LZ 'EL
GOE '9ET
GEZRT'Z
80F ‘2L
TES LEE
18143

GWCE '€
CELEEL
66Z '9ET
EQTET €
LEBT'EL
TEE 'SE€

z1etd}

QTLEE '€
2962 'EL
BES '9ET
BZBET '€
ZFo9E'CL

| i

TIeT}

T9SEZ'Z T9SEC '€ 6FZE'T
ZEBEEL ZEBEEL ZELZEL
SEY'/ET 9EV '[ET 66T '9ET
8TITPT'€ 9SPT'Z EQTET'E
GSB6E'ZL EVY'ZL LEBT'TL
80y "LZ€ [L/8°[ET TEE'SEE
o1etdy Xeu utu

TPETEEQD O 9E6ZC'Z 6L8ZT'C
ZIBLEED' O LBIEEL BZTE'EL
EPSZSE 0 ELLDET €TL9EC
ZELBOLO0' D EELET E ELBET'E
Z2ro8/0°0 9ZSE'TL BBLECL
6TLESL D L8697 vSZ°LZE
ASPP1S uesll - UBTP3W

N
sdo14o
sdo149

N
sdo1p
sdo149

s1TUN

L=]=rt
{=]=r4
45z
{=]=r
95z
= =0
s11e

A1Tded

L-WW395

310d L-WW30S

1-WiW395

f111ed N-WW3DS
8I0d N-WW395

N-HW3D5
1s81

102

7.24. SHOC Sort 9800 GTX+

4r97 0
169957 '@
6168990

91T}

L86YOF "0
98/95¢°0
SBI69S 0

SleT:

590570
S/5TSE 'O
EVZES9°0

p1eT}

££950F "0
ZETESE "0
LEBZLS'O

€181}

Z86¢9% 0
SZSBSY 'O
ELTL9'0

z1eTI}

TIvo9Y "0
88/850°0
TL£249°0

T1eTJ3

£7.29% 'O
£6ETSY 'O
</2099°'0

01T}

TIF9SF 0
ZETESF 'O
LEBZLS0

Xew

G895 0
EGETSY '8
EVEZE59°'0

utw

19V0Z£00°0
££S85200°0
Z5/66700°0

nepps

155297 '@
TrP9SSY '8
vOr999°'0

uesu

9ZLESK O
99555k "0
EBT999°'0

uetpau

N
s/80
s/80

s1Tun

SWRTHi TCST
SUTHiTZSZ
SUBYTHY TZ9T

s1e

AITdEd 31EY-1J0S
3I0d 21BY-1405
81EY-1405

EECH

103

7.25. SHOC Stencil 2D 9800 GTX+

LYBE/6'D
gleTiy

CCE2L6'0
Sletiy

SE6ZL6'0
FACEEY

+1846°0
18143

TETEL6°0
Z1ety

GIEF/B'D
Tleni

ELZZ0' T E4220'T
01ETJ1 Xeu

L¥BZ/6'D
utw

55697100
A3pp3s

1888/6'0
uezu

TZPELE'D
ueTpaw

5
S1Tun

9T¥9T'89/X89/ '000T
s11e

azusls ds
1593

104

7.26. SHOC Triad 9800 GTX+

¥8/48F 0

gl

ET18BYF '8
681505 '@
CS9EEY '@

F1ETI}

TEDBBY B

E1ETIY

198187 'D
995050

ET6Y 0
TLSTLF'D
BBZSEV D
LETSLE'D
690T6C "D
TrSrOC D
ETPRET'D

[l ra
LBEEO'E

BLY6'T
EPEZ8 T
BLTT9E

Z1en}

€95/87'0

cisge1
zZ2veLs'0
T1eTI}

18188t 'O
PEESOS 0
ESBZEY 0

SZTLLL'D
a1etdy

BSEGLY 'O
CEQEDS 'O
9ETFER 'O

18188F '8
2945050
QETFEY '@

A3pp3s

G/BBZEDD 'O
670929000 "0
L9EBFTOR 0
ECTE0TOR'0
9PED0SE0 0
L6ZE6F000°0
668871000

£470708°0
SEDY 8000 "0

GSZELETO'D
6C9SLEQD'D

T2rBero0 "0
ueau

¥ZBSBY 0
167050
995267 0
EFETLF'O
TIrvEY 0
GBZS/E'D
9ZTP6Z 0
GZ950Z 0
CEEBCT O

ueTpau

28/8¥'0
POBYOS 0
TI1E6Y 'O
9/8TLF'0
BrYrEY 0
EBZS/E'D
SISP6Z "0
S/502°0

s/d0149
5/d07149
5/d07149
S/d0749
S/d07149
5/d07149
5/d0749
s/d0149
s/d07149

EAFBEST 42018
HMZET80 42018
EX960r0 42018
DIsFOZ0: 42018
DAPOTO 42018
IZTS00 %2018
95200 32018
EM8ZT00 %2018
E4F9000 32018
EMFBEST 42018
IZETB0: 42018
I960r0 42018
DIBrOZO %2018
MAFZOTO 32018
ENZTSE0 42018
HX95200 32018
E¥8Z100 42018
o000+ 42018

s11e

sdoydperdy
sdojdperdy
sdodpeTdL
sdo1dpeTJL
sdodpeTdL
sdoydpetd)
sdoydpetd
sdoydperdy
sdojdperdL
Y3mpgPETIL
U1MpEpETIL
y1ApaPETIL
Y3MpEpETIL
Y3MpEpETIL
y3mpEpeTIL
y3mpgpeTIL
y3mpgpETIL
U1MpEpETIL

1881

105

7.27. SPEC CPU2006 Integer Results (No Auto-Parallel)

Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

400.perlbench EEEEKI] 396.00 396.00
401.bzip2 582.00 582.00 581.00
403.gcc 375.00 375.00 375.00
429.mcf 373.00 373.00 371.00
445.gobmk 510.00 511.00 511.00
456.hmmer 869.00 869.00 869.00
458.jeng 595.00 612.00 595.00
462.libquantum geIEX) 506.00 506.00
464.h264ref 710.00 706.00 709.00
471.omnetpp 374.00 373.00 374.00
473.atar 494.00 495.00 494.00
483 .xalancbmk ARl 260.00 259.00

7.28. SPEC CPU2006 Integer Results (Auto-Parallel Enabled)

Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

ZONASI LI 410.00 411.00 411.00
401.bzip2 539.00 539.00 538.00
403.gcc 330.00 331.00 334.00
429.mcf 184.00 184.00 184.00
445.gobmk 600.00 601.00 607.00
456.hmmer 213.00 214.00 214.00
458.jeng 508.00 508.00 507.00
CGYANLLE Ll 12.20 14.30 13.00
464.h264ref 959.00 959.00 1031.00
471.omnetpp 339.00 340.00 339.00
473.atar 350.00 349.00 349.00
483.xalancbmk AL 214.00 214.00

106

7.29. Speedup of SPEC CPU2006 Integer Results

Iteration #1 Iteration #2 Iteration #2

Speedup Speedup Speedup
400.perlbench -3.02% -3.79% -3.79%
401.bzip2 7.39% 7.39% 7.40%
403.gcc 12.00% 11.73% 10.93%
429.mcf 50.67% 50.67% 50.40%
445.gobmk -17.65% -17.61% -18.79%
456.hmmer 75.49% 75.37% 75.37%
458.jeng 14.62% 16.99% 14.79%
462.libquantum 97.60% 97.17% 97.43%
464.h264ref -35.07% -35.84% -45.42%
471.omnetpp 9.36% 8.85% 9.36%
473.atar 29.15% 29.49% 29.35%
483.xalancbmk 20.15% 17.69% 17.37%
Average 21.72% 21.51% 20.37%
Increase
Per Benchmark
Total Average 21.20%

Increase

7.30. SPEC CPU2006 Floating Point Results (No Auto-Parallel)

Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]

416.gamess 937 940 938
433.milc 479 463 489
435.gromacs 579 579 578
436.cactusADM 1372 1441 1338
437.leslie3d 604 604 603
444.namd 496 497 496
447.dealll 430 429 430
450.soplex 270 270 283
453.povray 236 235 237
454 calculix 1484 1484 1484
459.GemsFDTD 517 517 517
465.tonto 652 649 652
378 379 378

107

482.sphinx3 632 630 632

434.zeusmp 623 625 625

7.31. SPEC CPU2006 Floating Point Results (Auto-Parallel Enabled)

Iteration #1 [s] Iteration #2 [s] Iteration #3 [s]
416.gamess 1238 1185 1197

190 189 190
435.gromacs 485 489 482
60.9 53.1 50.3
437.leslie3d 87.7 90.5 95.8
457 456 457
447.dealll 293 293 293
296 263 286
453.povray 191 191 190
382 292 375
459.GemsFDTD 119 122 121
465.tonto 469 462 469
470.lbm 49.9 49.9 50.1

482.sphinx3 528 544 514
434.zeusmp 93.9 93 90.8

7.32. Speedup of SPEC CPU2006 Floating Point Results

Iteration #3

Iteration #1 Iteration #2

Speedup Speedup Speedup

416.gamess -32.12% -26.06% -27.61%
433.milc 60.33% 59.18% 61.15%
435.gromacs 16.23% 15.54% 16.61%
436.cactusADM 95.56% 96.32% 96.24%
437.leslie3d 85.48% 85.02% 84.11%
444.namd 7.86% 8.25% 7.86%
447 .dealll 31.86% 31.70% 31.86%
450.soplex -9.63% 2.59% -1.06%
453.povray 19.07% 18.72% 19.83%
454.calculix 74.26% 80.32% 74.73%
459.GemsFDTD 76.98% 76.40% 76.60%

465.tonto 28.07% 28.81% 28.07%
470.lbm 86.80% 86.83% 86.75%

108

482.sphinx3 16.46% 13.65% 18.67%

434.zeusmp 84.93% 85.12% 85.47%
Average Increase Per 42.81% 44.16% 43.95%
Benchmark

Total Average Increase 43.64%

7.33. Rodinia/Burkardt Benchmarks Average Execution Times

2 threads 4 threads 8 threads 12 threads 24 threads

Leukocyte (s) 11.70 6.11 3.65 2.16 1.67

LU Decomposition 242.82 130.00 76.40 69.23 145.20
(ms)

Speckle Reduction 638.14 415.07 306.41 283.93 492.26
(ms)

Kmeans (s) 3.35 3.67 291 2.16 1.67

Stream Clusters (s) REIAVS 25.18 14.61 11.91 10.40
FFT (ms) 76.17 45.41 31.63 27.85 31.36

Primes (s) 2.04 1.17 0.64 0.44 0.36

7.34. Rodinia/Burkardt Benchmarks Speedup between Thread Count

2-4 threads 4-8 threads 8-12 threads 12-24 threads

Leukocyte (s) 47.78% 40.26% 40.82% 22.69%

LU Decomposition 46.46% 41.23% 9.38% -109.74%
(ms)

Speckle Reduction 34.96% 26.18% 7.34% -73.37%
(ms)

kmeans (s) -9.55% 20.71% 25.77% 22.69%
Stream Clusters (s) RIEYLS 41.98% 18.48% 12.68%
FFT (ms) 40.38% 30.35% 11.95% -12.60%
Primes (s) 42.65% 45.30% 31.25% 18.18%

Average Increase 35.60% 35.14% 20.71% -17.07%
Between Threads

109

7.35. FPGA Results

Benchmark

AES
FIR

FP Mul
FIR Core

Clk
Period
(MHz)

101
376
710
550
550

Clk
Cycles

O R R -

Throughput Delay for

(ns)

2.66
1.41
16.4
20.0

valid data
(Clock
Cycles)

2.66
1.13
46.4
36.4

110

Bibliography

[1] "The Methodology of Random Logic Design,” [Online]. Available:
http://www.intel4004.com/mrld.htm. [Accessed 20 January 2012].

[2] D. Risley, "PCMech," 23 March 2001. [Online]. Available:
http://www.pcmech.com/article/a-cpu-history/10/. [Accessed 21 January 2012].

[3] "AMD," 5 June 2000. [Online]. Available: http://www.amd.com/us/press-
releases/Pages/Press_Release_729.aspx. [Accessed 20 January 2012].

[4] C. S. a. D. Patterson, "Berkley," [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/CSD-82-106.pdf. [Accessed 20
January 2012].

[5] M. Schmalz, "University of Florida," [Online]. Available:
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html. [Accessed 21 January
2012].

[6] J. Tyson, "HowStuffWorks.com,” 23 August 2000. [Online]. Available:
http://computer.howstuffworks.com/computer-memory4.htm. [Accessed 21 January
2012].

[7] T. Soderstrom, "Tom's Hardware,” 11 December 2006. [Online]. Available:
http://www.tomshardware.com/reviews/overclocking-guide-part-1,1379.html.
[Accessed 20 January 2012].

[8] G. Petley, "VIsiTechnology," 22 September 2008. [Online]. Available:
http://www.vlsitechnology.org/. [Accessed 22 January 2012].

[9] "SeachDataCenter," October 2004. [Online]. Available:
http://searchdatacenter.techtarget.com/definition/multi-core-processor. [Accessed 23
January 2012].

[10] B. Barney, "Lawrence Livermore National Laboratory,” [Online]. Available:
https://computing.linl.gov/tutorials/parallel_comp/. [Accessed 23 January 2012].

[11] NVIDIA, "What is GPU Computing?," 2012. [Online]. Available:
http://www.nvidia.com/object/GPU_Computing.html. [Accessed 18 1 2012].

[12] P. Lilly, "From Voodoo to GeForce: The Awsome History of 3D Graphics,” 19 5 2009.
[Online]. Available:
www.maximumpc.com/article/features/voodoo_geforce_awsome_history_3d_graphics.
[Accessed 26 1 2012].

[13] "Graphics Processing Unit," 12 1 2012. [Online]. Available:

111

en.wikipedia.oeg/wiki/Grpahics_processing_unit. [Accessed 19 1 2012].
[14] NVIDIA, "PTX: Parallel Thread Execution ISA Version 2.3," NVIDIA, 2011.

[15] "NVIDIA CUDA Compute Capability Comparative Table," 6 6 2010. [Online]. Available:
www.geeks3d.com/20100606/gpu-computing-nvidia-cuda-compute-capability-
comparative-table/. [Accessed 11 12 2011].

[16] NVIDIA, "NVIDIA's Next Generation CUDA Compute Architecture: Fermi v1.1," NVIDIA,
20009.

[17] NVIDIA, "NVIDIA CUDA Architecture,” NVIDIA, 2009.
[18] F. E. Allen, "The Greatest Inventors You've Never Heard Of," 2009.

[19] "FPGA Applications & Consulting Experts," [Online]. Available:
http://fpgaace.com/index.php/fpga-history/. [Accessed 27 February 2012].

[20] "FPGA Central,” 2011. [Online]. Available: http://www.fpgacentral.com/docs/fpga-
tutorial/history-programmable-logic. [Accessed 28 January 2012].

[21] V. Betz, "University of Toronto," [Online]. Available:

http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html. [Accessed February
12012].

[22] "Electrical ~ Engineering Times," October 2008. [Online]. Available:
http://www.eetimes.com/electrical-engineers/education-
training/courses/4000134/Fundamentals-of-FPGAs. [Accessed 2 February 2012].

[23] B. C. L. a. A. E. Crews, "The Evolution of Benchmarking as a Computer Performance
Evaluation Technique," MIS Quarterly, vol. 9, no. 1, pp. 7-16, 1985.

[24] "SPEC CPU 2006," 7 September 2011. [Online]. Available:
http://www.spec.org/cpu2006/. [Accessed 22 January 2012].

[25] "SPEC," 24 August 2006. [Online]. Available:
http://www.spec.org/cpu2006/CINT2006/. [Accessed 22 January 2012].

[26] "SPEC," 27 September 2006. [Online]. Available:
http://www.spec.org/cpu2006/CFP2006/. [Accessed 22 January 2012].

[27] "Rodinia: Accelerated Compute-Intensive Applicaitons with Accelerators,” 16 12 2011.
[Online]. Available:
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page. [Accessed
1812 2011].

[28]]. Burkardt, "Florida State University," 03 September 2011. [Online]. Available:
http://people.sc.fsu.edu/~jburkardt/. [Accessed 23 January 2012].

[29] "Scalable HeterOgeneous Computing (SHOC) Benchmarking Suite," Oak Ridge National
Laboratory, 11 11 2011. [Online]. Available: ft.ornl.gov/doku/shoc/start. [Accessed 19

112

12 2011].

[30] "Parboil Benchmark Suite," Illinois Microarchitecture Project utilizing Advanced
Compiler Technology (IMPACT), [Online]. Available:
impact.crhc.illinois.edu/parboil.php. [Accessed 18 12 2011].

[31] "Xilinx," 6 February 20009. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf. [Accessed 12
February 2012].

[32] "University of Virginia," [Online]. Available:
http://www.cs.virginia.edu/!skadron/Papers/boyer_leukocyte_ipdps09.pdf. [Accessed
23 January 2012].

[33] M. Strickland, "HEARST Electronic Products,” 1 March 2010. [Online]. Available:
http://www?2.electronicproducts.com/The_evolution_of FPGA_coprocessing-article-
FAJH_FPGA_Mar2010-html.aspx. [Accessed January 29 2012].

[34] J. Sanders and E. Kandrot, CUDA by Example, Boston, MA: Pearson Education, 2011.
[35] NVIDIA, "NVIDIA CUDA C Programming Guide," NVIDIA, 2011.

[36] W.-m. Hwu and D. Kirk, Programming Massively Parallel Processors: A Hands-on
Approach, Burlington, MA: Morgan Kaufmann, 2010.

[37] A. Danalis, P. Roth, G. Marin, K. Spafford, C. McCurdy, V. Tipparaju,]. Meredith and J.
Vetter, "The Scalabe HeterOgeneous Computing (SHOC) Benchmark Suite," Pittsburgh,
PA, 2010.

[38] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee and K. Skadron, "Rodinia: A
Benchmark Suite for Heterogeneous Computing," Dept Computer Science, UVA, 2009.

[39] F. Abi-Chahla, "A Few Definitions," 18 6 2008. [Online]. Available:
www.tomshardware.com/reviews/nvidia-cuda-gpu,1945-7.html. [Accessed 27 1
2012].

[40] "National Instruments,” 19 December 2011. [Online]. Available:
http://zone.ni.com/devzone/cda/tut/p/id/6983. [Accessed 27 January 2012].

113

