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Abstract 

Contamination of water sources with compounds of emerging concern, particularly 

pharmaceuticals such as ciprofloxacin, is becoming an increasingly large problem.  Current 

water and wastewater treatment facilities are not specifically designed to remove 

pharmaceuticals.  The objective of this project was to study the removal and degradation of 

ciprofloxacin (CIP) from water through reactions with five oxidative treatments.  Reactants 

included hypochlorite, potassium permanganate, potassium ferrate, persulfate and 

hydrogen peroxide activated with ferrous oxide (Fenton’s reaction).  The concentration of 

CIP remaining after treatment was quantified using a UV spectrophotometer.  Results 

showed that all treatment methods evaluated were capable of removing concentrations of 

CIP from water.  Potassium ferrate, Fenton’s reaction and hypochlorite all achieved removal 

extents above 90%.  Persulfate and potassium permanganate did not achieve complete 

removal with the dosages utilized in this study.  All treatment methods achieved greater 

extents of removal with greater dosages of oxidant.   
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Chapter 1: Introduction 

The pharmaceutical industry has steadily grown over the past eight years, resulting 

in an average annual growth rate in the world market of almost 7% and topping out in 2010 

with $856 billion in sales (IMS Health, 2011).  In addition to the development in the 

pharmaceutical industry, the global population has grown at a rate of about 1.5% per year 

(Soubbotina, 2005).  With the limited number of potable water sources around the world 

and the continued population increase, it is necessary to ensure that drinking water will be 

available, abundant, and safe for years to come.   

Recent studies have shown that the development of new pharmaceutical drugs 

poses a potential threat to potable water sources.  The United States Environmental 

Protection Agency (USEPA) has classified endocrine disrupting compounds (EDCs) as 

compounds that interfere with the “synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body which are responsible for the maintenance of 

homeostasis, reproduction, development, and/or behavior”.  The presence of EDCs in the 

environment has been linked to deficiencies in human and wildlife hormone systems, such 

as the feminization of fish throughout several counties in California and in the United 

Kingdom (United States Interior Bureau of Reclamation, 2009).   

Over the past 30 years scientists have found traces of pharmaceuticals and personal 

care products (PPCPs), including EDCs, in both ground and surface water sources.  Short-

term studies have suggested that low concentrations of PPCPs in wastewater have no direct 

adverse effect on human health.  Because pharmaceuticals are relatively new to society, 

there are not many studies on the long-term effects of small concentrations of PPCPs in the 

environment on human health.  The presence of EDCs, PPCPs, metals and nitrosamines in 

the environment have been reported to interfere with human and animal hormone systems 

at sub-nanogram levels (United States Interior Bureau of Reclamation, 2009).  Therefore, 

they have all been grouped together and labeled as compounds of emerging concern or 

CECs.  
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CECs are being used with increased frequency.  Specifically, in the past ten years the 

use of pharmaceuticals in the U.S. has more than doubled (Araujo, 2010).  This boom, along 

with analytical technology advances, has led to discoveries of concentrations of CECs in 

surface and groundwater sources.  In a test conducted by the U.S. Geological Survey, 

approximately 80 percent of U.S. streams and 25 percent of groundwater sources were 

found to be contaminated with pharmaceuticals.  Contaminants enter water sources 

through various pathways including from wastewater treatment plants, landfills, and 

agricultural runoff (Fatta, 2007).  Most human pharmaceuticals are introduced into sewage 

water because they are only partially metabolized following ingestion.  When a human or an 

animal is given a drug, anywhere from 50 percent to 90 percent of it is excreted unchanged 

(U.S. Department of the Interior Bureau of Reclamation, 2009). Veterinary pharmaceuticals 

also contribute heavily to the contamination of water sources because they are excreted 

un-metabolized and flow directly into water sources through runoff.  A large amount of the 

remaining active components pass through water treatment systems unchanged and are 

discharged into waterways. 

 A study was conducted on the Cilfynydd Wastewater Treatment Plant in Wales, UK 

to determine the removal of various PPCPs.  Using solid-phase extraction and ultra-

performance liquid chromatography-electrospray tandem mass spectrometry, it was 

determined that concentrations of antibacterial drugs, antiepileptic drugs, and H-2 receptor 

antagonists were reduced minimally, if at all.  Anti-inflammatory/analgesic drug and lipid-

regulating drug concentrations were reduced by roughly 50% and beta-blocker 

concentrations were reduced by roughly 75%.  Most personal care products were reduced 

by factors ranging from 2 to 20 (Dinsdale, 2008). 

While it is likely that this problem has occurred since the introduction of 

pharmaceuticals and EDCs, only in recent years have the analytical techniques been 

available to accurately quantify CECs in water sources.  The use of equipment, such as gas 

and liquid chromatography and mass spectrometry, to identify and quantify individual 

constituents in water samples has helped scientists determine the extent of the problem 

(AwwaRF, 2005).  Although it is now possible to accurately quantify compounds, even at the 
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micro-scale, many pharmaceuticals have not been tested for their environmental impact.  

There are currently around 87,000 compounds identified by the EPA that need to be 

evaluated for adverse effects (AwwaRF, 2005).  

The technology to quantify CECs in water and wastewater has led to research to 

develop advanced removal methods which could be implemented in water and wastewater 

treatment plants.  Oxidants may be used in these removal processes to decrease the 

concentrations of CECs to harmless levels.  The oxidation processes described in this paper 

include chlorination, potassium permanganate treatment, potassium ferrate treatment, 

sodium persulfate treatment, Fenton’s oxidation and ozonation.  
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Chapter 2: Background 
This chapter discusses the research that has been conducted related to the presence 

and risks of Ciprofloxacin (CIP) and other pharmaceutically active compounds (PhACs) in the 

environment.   Studies which have confirmed that PhACs, particularly CIP, are present in the 

environment are discussed.  Ciprofloxacin (CIP) is then introduced and its chemical structure 

and pharmacokinetics are discussed.  Following the introduction of CIP is a description of 

the environmental and health risks associated with CIP and other PhACs in water supplies.  

Finally, a discussion of proven removal methods of CIP and other PhACs from water sources 

is provided.   

2.1 Pharmaceuticals and the environment 

Pharmaceuticals have been used more frequently over the past decade, with an 

increase in annual prescriptions from 2 to 3.9 billion between 1999 and 2009 (Braund, 

2011).  There are several ways in which PhACs can enter the environment.  Waste streams 

from industrial manufacturing that contain PhACs are discharged to air and water resources 

through regulated and unregulated practices.  Veterinary pharmaceuticals utilized in 

farming activities can be released to the environment through the excretion of fecal matter, 

urine, or perspiration.  The improper disposal of household products releases chemicals 

directly to wastewater with the intentions of being treated at a waste water treatment 

plant (WWTP) or domestic septic system.  It is estimated that 25 to 33 percent of 

pharmaceuticals are disposed of improperly and arrive in a landfill or WWTP (Lubliner, 

2008).  
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Figure 1: Methods for introduction of PhACs in environmental water (Jain-Cocks, 2011) 

 
Wastewater can be treated in two ways.  Septic tanks and filtration beds containing 

wastewater are commonly used for treatment on site, while wastewater from households 

and industries can be transported through municipal pipes for treatment at a central 

location.  The treatment of wastewater utilizes two main steps to remove contaminants.  

Primary treatment targets the removal of sludge and other solid particulates from sewage 

through physical processes such as screening and filtration.  Secondary treatment utilizes 

bacteria to remove dissolved organics and finer organic particulates from sewage through 

biological processes such as activated sludge.  In some WWTPs, a tertiary step uses 

advanced treatment methods to remove any constituents which were not targeted through 

primary or secondary treatment.  WWTPs are not designed to treat PhACs and other 

emerging organic contaminants, thus introducing these chemicals to natural waters (United 

Nations, 1992). 

2.2 Ciprofloxacin 

The pharmaceutical antibacterial drug Ciprofloxacin is one such contributor to the 

contamination of wastewater. Also known as CIP, this drug is an antibiotic used to treat or 

prevent infections caused by bacteria (PubMed Health, 2011).  This antibiotic is from the 
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fluoroquinolone drug class, which works by killing or preventing the growth of bacteria by 

attacking the enzymes that trigger protein and DNA synthesis.  CIP became popular when its 

capabilities of treating and preventing the symptoms caused by Anthrax were discovered.  

CIP has now grown to become one of the largest prescribed pharmaceuticals in the United 

States and Europe (Bhandari, 2008).  Figure 2 shows the chemical structure of CIP. 

 

Figure 2: Chemical structure of Ciprofloxacin (U.S. National Library of Medicine, 2011) 
 

The potential risks involved with the presence of Ciprofloxacin in the environment have 

led to rising concern.  The following section contains research evaluating the environmental 

risks associated with CIP.  The goal of this project was to determine feasible methods for the 

removal of Ciprofloxacin from water to reduce these environmental risks.  This goal was 

accomplished by evaluating the effectiveness of several removal processes.  

2.3 Ciprofloxacin in the Environment 

2.3.1 Occurrence 

With the increase in demand for pharmaceuticals over the past decade, the amount 

of water contamination from these drugs has also increased.  CIP, along with other 

antibiotics and pharmaceuticals, has been found in many samples of surface water, ground 

water and even drinking water (Araujo, 2010).  Recent technological improvements to 

detection methods have led to several studies which confirm that concentrations of CIP are 

present in several countries’ environmental waters.   
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A study performed by the Swiss Federal Institute for Environmental Science and 

Technology explored the presence of antibiotics, including CIP, in the environment. Their 

research found detectable levels of CIP in the effluent of wastewater treatment facilities, 

despite removal of 80-90% of the contaminant during the treatment process.  The presence 

of each contaminant was measured using fluorescence spectroscopy and liquid 

chromatography. Sewage sludge in wastewater treatment facilities was one component 

tested for CIP in which concentrations ranged from 1.4 to 2.4 mg/kg of dry matter (Alder, 

2003).  

A second study performed near Hyderabad, India found concentrations of CIP in the 

effluent of a wastewater treatment facility and in water samples from wells in six nearby 

villages. Liquid chromatography–mass spectrometry analytical methods were used to 

measure the concentrations of the contaminants.  Concentrations of more than 1 µg/L were 

present in several wells and 14 mg/L existed in the facility’s effluents. Along with the 

detection of CIP in the well water and effluent, high concentrations of the contaminant 

were also found in two nearby lakes (Fick, 2009).   In another study conducted in Norway, 

concentrations of several different hormones and antibiotics were tested in three municipal 

wastewater treatment facilities. CIP was found to have concentrations 10 times higher than 

the other drugs tested in the effluent of the facility due to poor removal efficiency (Plosz, 

2010).  

These studies, along with others, illustrate the frequency with which CIP is present in 

the environment.  Wastewater treatment facilities are inconsistent in their abilities to 

remove CIP, thus commonly discharging significant amounts of CIP into the environment.  

The failure to properly remove CIP from wastewater, combined with the small amounts of 

CIP that leach into the soil through septic systems or improper disposal are causing 

contamination of ground and surface water in many regions around the world.  This 

occurrence of contamination is important to study because there are associated 

environmental and health risks, which are described in the following section.  
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2.3.2 Associated Environmental and Human Risks 

 The introduction of antibiotics to the modern world has provided illness prevention 

and treatment to millions of people. However, as more drugs are prescribed there is an 

increasing concern for their effect on the environment. When drugs are excreted by a 

consumer or flushed down a drain they enter wastewater streams. If these contaminants 

are not sufficiently removed during wastewater treatment they can enter drinking water 

supplies. If an antibiotic such as CIP enters the drinking water supply, humans can 

unknowingly and continuously ingest small amounts of the drug.  One concern with 

continuous exposure to an antibiotic is bacterial resistance.  Bacterial resistance is the 

ability of a microbe to resist the effects of an antibiotic.  With continuous exposure to a 

specific drug, bacterial DNA can mutate, limiting the effectiveness of the antibiotic.  Strains 

of resistant bacteria have been found in surface and ground waters around the world and 

possess several harmful qualities (Ahmad, 2009).   

 An analytical term known as minimum inhibitory concentration (MIC) is used to 

determine resistance to antibiotics.  It is defined as the minimum amount of antibiotic that 

will inhibit the growth of a bacterium after overnight incubation.  The minimum inhibitory 

concentration for reduced susceptibility is the smallest antibiotic concentration where 

bacteria can survive.  Bacteria that survive between these two MIC concentrations possess 

intermediate resistance to the antibiotic and those that survive at higher concentrations 

have a stronger resistance to the drug (Ahmad, 2009).   

A study was conducted on the resistance of common bacteria such as fecal coliforms 

like E. coli and enterococci to Ciprofloxacin.  Influent and effluent water samples from 

wastewater treatment facilities were collected and analyzed for resistance to CIP and other 

antibiotics. Using several techniques, including the one described above, it was observed 

that fecal coliforms exhibited intermediate resistance to CIP. Reduced susceptibility to CIP 

was also found in 3.5% of the total fecal coliforms and 52% of the enterococci in the 

influent (Ahmad, 2009).   

 Along with this study, another was conducted looking into the effect of domestic 

wastewater treatment facilities on bacterial resistance to CIP.  The study suggests that 

nutrient rich environments like sewage and wastewater provide ideal conditions for 
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horizontal gene transfer, allowing bacterial resistance to spread amongst the organisms.  

This makes wastewater treatment facilities an ideal breeding ground for bacterial resistant 

organisms.  The study highly suggested that research should be conducted to determine 

treatments to decrease the amount of antibiotics in the effluent of the treatment facility in 

order to better preserve the environment (Coelho, 2010). 

  With an increasing number of studies revealing the effects of CIP in water, the 

argument for removing it becomes stronger.  The harmful effects both to the environment 

and humans described above provide pertinent evidence for its removal. Failure to do so 

could lead to significantly worse adverse effects than those already prevalent. 

2.4 Oxidative water treatment methods 

 Chemical oxidation is a process by which an organic compound is degraded by an 

oxidizing agent.  Oxidation techniques have application in water treatment because of their 

ability to oxidize organics to inactive intermediates or CO2, H2O, and salts.  The mechanism 

by which this occurs is called a “redox” couple because an oxidation reaction is coupled with 

a reduction reaction.  In a redox couple, oxidation is the loss of electrons from one reactant, 

while another reactant is reduced, thereby gaining those electrons.  Within water 

treatment, the oxidizing compound reacts with the contaminants to produce less harmful 

compounds. Another technique used in water treatment is advanced oxidation in which 

hydroxyl radicals are formed.  Hydroxyl radicals are the strongest oxidizers and forming 

them through advanced oxidation processes, AOP, is highly effective.  Hydroxyl radicals can 

be formed several ways including photocatalysis and electrolysis.     

 There are many oxidizing agents that are able to degrade organic compounds found 

in water but the reaction by-products must also be considered.  Chemical oxidant by-

products must be either non-toxic or easily removed from water sources.  Several of the 

most common oxidizing agents are listed below along with their oxidizing potential.   
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Table 1: Oxidation Potential of Common Chemical Oxidants (Graham, 2005)  

Oxidizing Species Oxidation Potential 

(Volts) 

Hydroxyl Radical 2.8 

Activated Persulfate 2.6 

Ferrate (VI) 2.2 

Ozone 2.07 

Persulfate 2.01 

Hydrogen Peroxide 1.77 

Perhydroxyl Radical 1.7 

Permanganate 1.69 

Chlorine 1.38 

 
2.4.1 Chlorine: 

 Perhaps the most commonly used method for disinfection of water and wastewater 

in the United States is chlorination (U.S. EPA, 1999). Chlorine is available in all three phases; 

gas, liquid, and solid with the latter two in the hypochlorite form. The most common 

aqueous hypochlorite solution is sodium hypochlorite, NaOCl. When added to water, the 

following reaction occurs: 

                                  (1) 

Commonly referred to as liquid bleach, sodium hypochlorite is a clear, moderately yellow 

solution of varying concentrations of chlorine with a distinctive odor. Its stability is 

dependent on the time and temperature of storage, any impurities in solution, and 

exposure to light. According to White (1992), besides being an effective disinfectant for 

wastewater, chlorine also serves other helpful purposes such as improved coagulation by 

activated silica, taste and odor control, and prevention of algal growth due to its strong 

oxidizing powers (U.S. EPA, 1999).  

 Research reveals the effectiveness of chlorine as a disinfectant for inactivating 

pathogens. According to Haas and Engelbrecht (1980), chlorination causes an immediate 
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decrease in oxygen utilization in both Escherichia coli and Candida parapsilosis as well as 

damage to their cell walls and membranes (U.S. EPA, 1999). Compared to other oxidative 

techniques such as ozone however, chlorine is incapable of deactivating protozoa.  

Experimentation revealed lower Ct-values (Concentration*time) for chlorine than for ozone, 

indicating that less protozoa were inactivated.  

 Dodd et al. (2005) conducted research to determine the oxidation reaction pathway 

that occurs when aqueous chlorine is added to a CIP solution. The aliphatic amino groups in 

CIP’s piperazine ring are reactive with chlorine (Huang, 2002). HOCI reacts very rapidly at 

CIP’s secondary N(4) amine, forming a chloramine intermediate that spontaneously decays 

in aqueous solutions by concerted piperazine fragmentation.  Experimentation by Huang et 

al. found that CIP reacts readily with chlorine. 

 Below are both the advantages and disadvantages of using chlorine (U.S. EPA, 1999). 

Advantages of chlorine, NaOCl: 

 is easily measured and controlled 

 economical 

 proven successful in improving water treatment operations  

Disadvantages of chorine, NaOCl: 

 produces undesirable DBPs (disinfection by products) 

 degradation over time and with exposure to light 

 corrosive 

 less effective at a high pH 

 high doses can cause taste and odor problems 

2.4.2 Potassium Permanganate: 

 Unlike chlorine, potassium permanganate (KMnO4) primarily uses its oxidizing 

potential to control taste and odors, and remove color as opposed to sterilization because it 

is a poor disinfectant. Under alkaline conditions, the oxidation half-reaction is as follows: 

                                      MnO4
- + 2H2O + 3e- ⇒ MnO2 + 4OH-                                     (2) 

 Potassium permanganate is a dark purple/black crystalline solid that, when added to 

water, makes a solution of a pink or purple color.  It is a reactive and fast acting oxidizer 
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that can cause eye injury and irritate the skin if not used with care.  Oxidation in water 

yields fast reaction rates and is dependent on temperature, pH and dosages. Cleasby et al. 

(1964) found that pH is the major factor affecting oxidation with potassium permanganate 

and that the lower the pH, the more effective the oxidation.  

 Research has been conducted to determine the effectiveness of potassium 

permanganate as a disinfectant against pathogens.  According to Banerjea (1950), only high 

dosages of about 20 mg/L and a 24-hour contact time proved to deactivate the studied 

pathogens.  To inactivate the polio virus, a dose of 50 mg/L of potassium permanganate and 

a contact time of 2 hours was required (U.S. EPA, 1999).  Further, a comparison between 

potassium permanganate and chlorine dioxide as a disinfectant of protozoa was measured 

using log inactivation (Au, 2004).  Log inactivation is a useful and effective way to express 

the number or percent of microorganisms inactivated through a disinfection process. The 

higher the number, the greater the percentage of microorganisms removed. It was found 

that disinfection of Cryptosporidium showed log inactivation of 0.3 using potassium 

permanganate compared to 2.0 using chlorine dioxide despite the use of twenty times more 

potassium permanganate.  This shows that potassium permanganate has far less 

disinfecting abilities than other oxidants.   

 Hu et al. (2011) investigated the reaction products and pathways of CIP oxidized by 

KMnO4. Using mass spectrometry, they identified 12 oxidation products with oxidation of 

the tertiary aromatic and secondary aliphatic amine groups on the piperazine ring and the 

cyclopropyl group which are evident in the figure below. 

 
Figure 3: Oxidation of CF with Permanganate 

(Hu, 2011) 
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Results of the study suggest that using permanganate to eliminate pharmaceutical activity 

in organic-rich matrices is plausible despite its lower reactivity compared to ozone and free 

chlorine (Hu, 2011). 

 Below are some of the advantages and disadvantages of using potassium 

permanganate (U.S. EPA, 1999). 

Advantages of potassium permanganate, KMnO4 

 oxidizes odor and taste-causing compounds 

 is easy to store and transport 

 has little impact on other treatment processes at the water treatment facility 

 controls the formation of DBPs 

Disadvantages of potassium permanganate, KMnO4 

 requires longer contact time 

 gives water a pink color 

 toxic and irritates both the skin and mucous membranes 

2.4.3 Ferrate:  

 Another technology that has applications in water and wastewater treatment is the 

use of ferrate, Fe(VI).  A common form of ferrate used in water treatment is potassium 

ferrate, K2FeO4, and is the most easily produced form of Fe (VI) . Potassium ferrate is a 

black-purple salt and is stable when isolated from moisture. Ferrate is a strong oxidant, 

particularly under acidic conditions and has a greater oxidizing potential than manganese 

(Jiang, 2002).  Not only does Fe (VI) have the ability to oxidize and disinfect water sources, it 

can also be used as a coagulant, helping to reduce turbidity in wastewater (Jiangyong et al., 

2005).   

 Research has been done to determine whether or not ferrate is a viable alternative 

to more traditional oxidation techniques (Jiangyong et al., 2005).  Jiangyong et al. have 

shown ferrate is able to kill 99.9% of total coliforms, although the required dosage is 

dependent on the initial number of coliforms.  Results of the study also indicate ferrate is 

more successful than chlorine at treating spore forming bacteria and is capable of 

inactivating viruses.   
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 In another study, the ability of ferrate to degrade CIP was analyzed.  Ferrate is 

particularly reactive with compounds that contain electron rich moieties, an amine in the 

case of CIP (Gunten et al., 2009).  Gunten et al. showed that a dosage of 2 mg/L Fe (VI) 

yielded >95% removal of pharmaceuticals containing a phenolic-moiety, while 5 mg/L of Fe 

(VI) only yielded >85% removal of compounds containing an amine or olefin moiety such as 

CIP.  This indicates that while oxidation using ferrate is successful for CIP, a higher dosage of 

ferrate is necessary for complete removal.   

 Several advantages and disadvantages of ferrate are identified below:   

Advantages of Ferrate, Fe (VI) 

 no harmful disinfection byproducts 

 high oxidizing power 

 effective over large pH range 

 aids in coagulation, potentially eliminating coagulation steps downstream 

 removes phosphates  

Disadvantages of ferrate, Fe (VI) 

 high cost of raw materials 

 less research in effectiveness of treating compounds of emerging concern  

2.5 Advanced Oxidation Processes 

2.5.1 Peroxides: 
 Hydrogen peroxide is another compound with strong oxidative abilities.  It is the 

simplest peroxide, having the chemical formula H2O2 (Goi et al., 2009).   Hydrogen peroxide 

can be used as a bleach or disinfectant, and has applications in water treatment.  The 

disinfection occurs through the oxidation of hydrogen peroxide to highly reactive hydroxyl 

radicals.  

                (3)  

 The degradation into a radical can occur without a catalyst slowly; however, in the 

presence of catalysts, the reaction happens more rapidly, occurring within minutes.  

Hydrogen peroxide catalysts range from metals, such as iron or silver, to ozone or 

ultraviolet light (Gurol, 1994).  The hydroxyl radical will react with organic compounds, such 
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as pharmaceuticals, to produce lower-weight, inactive by-products.  The dosage of 

hydrogen peroxide is important, as it affects the speed at which the reaction occurs (Feng, 

2003).  Lower dosages of H2O2 may not generate enough hydroxyl radicals, while dosages 

above the optimal amount will result in scavenging of radicals.  Both scenarios result in an 

overall decrease in degradation. 

2.5.2 Fenton reaction: 

 One of the most common catalysts used in hydrogen peroxide oxidation is iron (II), 

or ferrous iron.  The use of iron (II) as a catalyst is called Fenton’s Oxidation (Gurol, 1994).  

The addition of the iron causes the hydrogen peroxide to rapidly degrade to the 

intermediate hydroxyl radical, which reacts with organic compounds with a second-order 

rate constant ranging from 107-1010 M-1s-1.  While there is some dispute about the 

mechanism by which the Fenton reaction occurs, one widely accepted mechanism is as 

follows: 

                                (4) 

              
      (5) 

          
              (6) 

          
           

  (7) 

                     (8) 

  Equations 2-6: Fenton Reaction Equations (Chemizmu, 2009) 

 

 The Fenton reaction, like all peroxide reactions, is dependent on the concentration 

of hydrogen peroxide, the ratio of Fe2+ to H2O2, pH and reaction time.  The Fenton reaction 

is also sensitive to UV radiation (Guo, 2009).  Using UV radiation to enhance the Fenton 

reaction is called the photo-Fenton reaction and is more effective because Fe3+ is reduced 

to Fe2+ forming OH● in the process and Fe3+ forms iron-organic complexes which then create 

organic radicals through UV radiation.  This can be seen in the equation below: 

 
                          (9) 

                             (10) 

Equations 7-8: photo-Fenton Reaction (Guo, 2009) 
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 Guo (2009) studied the effectiveness of both the Fenton and photo-Fenton reactions 

on the degradation of CIP over a range of pHs, temperatures and H2O2 and iron dosages.  

The experiment used 15 mg/L samples of CIP in distilled water for both the Fenton and 

photo-Fenton reactions while in the photo-Fenton reaction, a 6W UV bulb with a 365 nm 

wavelength was used as the radiation source. The degradation was observed using a 

Lambda 17 UV/Vis spectrophotometer with the absorbance wavelength set to 271 nm.   

 The best results for the photo-Fenton reaction were achieved using a pH of 4, 

although degradation was still possible in the pH range of 3-5 with no appreciable 

degradation observed at pH 6 (Guo, 2009).  The optimal molar ratio of [H2O2]/[CIP] was 

determined to be 128 and the degradation efficiency increased with increasing amounts of 

Fe (II).  However, too much H2O2 had an inhibitory effect on degradation.  Finally, at a higher 

temperature, the degradation occurred more efficiently.  The study shows that a very high 

extent (>90%) of CIP degradation is possible using the Fenton reaction, particularly if UV 

radiation is used as well.   

2.5.3 Persulfate: 
 Widely used for cleaning swimming pools, bleaching hair, and initiating 

polymerization reactions, persulfate is a strong oxidant.  Out of all the persulfate salts, the 

sodium form is the most commonly used for environmental purposes.  Sodium persulfate 

(Na2S2O8) is a white crystalline solid.  It is a highly reactive oxidant but is more stable than 

other disinfectants such as hydrogen peroxide and ozone. If applied correctly, sodium 

persulfate can destroy many organic contaminants.  It has potential for use for in degrading 

organic compounds found in contaminated soil and groundwater (Block et al., 2004).  The 

standard oxidation reduction reaction is below. 

      
                

  (11)  

 In the presence of a catalyst, persulfate can form sulfate free radicals, resulting in 

advanced oxidation using persulfate.  Sulfate free radicals are molecular fragments that 

have an unpaired electron causing them to be highly reactive and a strong oxidizing agent. 

The radical generation and reactions follow (where RH represents an organic compound 

and R• represents an oxidized organic compound): 
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Initiation:                       
      (12) 

Propagation:      
                

  (13) 

Termination:     
             

    (14) 

                 (15) 

  (Cronk, 2008)  

 There are numerous methods that can be used in order to activate sodium 

persulfate.  They include hydrogen peroxide, ferrous or chelated iron, alkaline conditions, 

and heat.  Selection of the proper activation method is dependent upon the contaminant of 

concern, as well as the conditions surrounding the oxidation. The most aggressive means of 

activation is the use of a high pH or addition of hydrogen peroxide. These activation 

methods can cause corrosion and damage to utilities and metal objects. In addition, 

hydrogen peroxide reacts very aggressively in the subsurface of groundwater.  Therefore, 

unless care is taken to control the reaction by adequately venting the off-gas produced by 

the reaction, peroxide will come to the surface.  Iron activation is not recommended to be 

used against gasoline and diesel range organics, vinyl chloride, methylene chloride, carbon 

tetrachloride, TCA or DCA despite its effectiveness on some hydrocarbons.  Lastly, heat 

activation is capable of decomposing a wide range of contaminants in aqueous systems; 

however, it is very costly due to the complexity of obtaining and generating a heat source 

(Cronk, 2008). 

 According to Furman et al. (2010), the most commonly used activators for in situ 

chemical oxidation (ISCO) are chelated iron and base.  Chelation is an effective way of 

maintaining metal activity at neutral and alkaline ground water conditions.  It provides 

protection from hydration and subsequent precipitation under the neutral pH conditions 

that may be found in the field.  Transition metals bound to strong chelating agents make up 

these chelated metal catalysts.  An example is chelated ferric iron (Fe3+) which has been 

found to have excellent oxidation performance, in addition to ferrous iron (Fe2+) which is 

the most commonly used and readily available activator for transition metal catalysis (Block 

et al., 2004). 
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 The reaction equations of ferrous iron with both persulfate and sulfate radicals are 

as follows: 

                                                     
           

       
      (16) 

                                                               
           

    (17) 

(Liu, 2011) 

Fe(III)-EDTA was found to be the best performing complex to activate persulfate oxidation 

of volatile organic compounds (Block et al., 2004). 

 Where persulfate ISCO takes place, more than half of the activations are base 

activation. Base-activated persulfate technology has been found to destroy highly 

chlorinated methanes and ethanes in groundwater and soil systems (Furman, 2010). 

Research suggests the following reactions occur: 

 

                                                
            

      
      

         (18) 

                                                              
          

         (19) 

(Furman, 2010) 

Potassium hydroxide, sodium hydroxide, and lime are bases that can be used to activate 

persulfate. The buffering capacity (mole ratio of pH modifier to persulfate) is important 

when creating alkaline-activated persulfate oxidation. The amount of base supply is 

essential for the alkaline activation of persulfate (Block et al., 2004). If there is not enough 

base, persulfate will not become activated.  

 The hydroxyl radical generated by Fenton’s chemistry for peroxides has a similar 

reaction mechanism as the sulfate radical. Comparison of persulfate and activated 

persulfate oxidation to other oxidant systems has shown persulfates to be more favorable. 

The sulfate radical travels a greater distance through sub-surfaces in contrast to the 

hydroxyl radical due to its greater stability. In addition, persulfate is more efficient in 

organic soils because it has a less affinity towards natural soil organics when compared to 

permanganate (Block et al., 2004). 
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2.5.4 Ozone: 
 Ozone is the triatomic form of oxygen, O3, and exists as a gas at room temperature.  

It is a highly unstable molecule because it readily decomposes back to oxygen and as such is 

a strong oxidant (U.S. EPA, 1999).  The oxidizing abilities of ozone are becoming more 

frequently used in water treatment to decompose organic compounds and 

pharmaceuticals.  

 Ozone readily decomposes in water, forming the free radical OH● (Balcioğlu, 2003).  

The hydroxyl radical is the strongest oxidizer and is highly useful in water treatment 

because it is nonselective in oxidizing organic compounds.  The attack on organic 

compounds through the hydroxyl radical is one method by which ozone is useful in water 

treatment.  This method, called radical oxidation, occurs in water with a pH at or above 7.  

The second method by which ozonation occurs is called direct oxidation by ozone and 

occurs at a pH less than 3.  Radical oxidation is generally more effective over a shorter 

exposure period because the hydroxyl radicals are highly reactive and will attack most 

functional groups, causing the oxidation to occur extremely quickly.   

 Ozonation can be improved through the use of hydrogen peroxide as a catalyst (U.S. 

EPA, 1999).  This method, called peroxone, accelerates the ozone decomposition, thus 

favoring the radical oxidation.  The main chemical reaction with the addition of hydrogen 

peroxide is as follows: 

                   (20) 

2.6 Summary 

The occurrence of CIP in both water and soil is a cause for concern due to its contamination 

of ground and surface water, and potential to develop antibiotic resistant bacterial.  WWTPs 

are ideal breeding grounds for these organisms; therefore, proper removal of antibiotics 

from the influent of the treatment facility would lower environmental risks.  Chemical 

oxidation is a proven method for water treatment, but optimal methods and conditions 

have yet to be conclusively determined.  
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Chapter 3: Methodology 

3.1 Sample Preparation 

Solutions containing known concentrations of CIP were created using CIP received 

from LKT Laboratories and purified water (ROpure ST Reserve Osmosis/tank system, 

Thermo Scientific).  The solutions were created by mixing predetermined masses of CIP 

weighed using a Mettler Toledo (AB104-S) scale with purified water.  The solutions were 

stirred for a minimum of 10 minutes until all CIP was dissolved.  The pH of all samples was 

adjusted to a range of 6.9-7.1 by the drop-wise addition of NaOH or HCl and the use of an 

Accument Basic AB 15 pH meter.  

3.2 Measuring Sample Absorbance 

Samples of CIP solutions were analyzed before and after treatment experiments for 

equilibrium studies and during treatment for time trials to determine the concentration of 

CIP removed during each trial.  The analyses were done using a Varian-Cary 50 Scan UV- 

visible spectrophotometer and Plastibrand UV-cuvettes to measure absorbance at a 

wavelength of 270 nm.  

3.3 Ciprofloxacin Concentration Standard Curves with Detection Limit 

In order to determine unknown concentrations of treated samples, a standard 

concentration curve was generated using samples of known concentrations at pH 7.  Nine 

solutions of known concentrations, ranging from 20 mg/L to 0.078 mg/L CIP in water, were 

analyzed with a Varian-Cary 50 Scan UV-visible spectrophotometer to measure absorbance 

at 270 nm.  The absorbance readings were correlated to the known concentrations and 

graphed to generate a concentration standard curve, thus allowing any concentration 

within this range to be determined.  The limit of detection was also identified using a T test 

in Microsoft Excel.  The T test compares blank samples to samples of a known concentration 

to determine the concentration at which there is no longer a statistical difference between 

pure water and CIP samples.  The limit of detection was determined to be 0.313 mg/L CIP.   

The full data for the standard curve can be seen in Appendix A.  
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3.4 24 Hour Steady State Oxidation Tests 

 
3.4.1 Hypochlorite Oxidation 

The first oxidation treatment was conducted using a solution of 20 mg/L CIP with the 

addition of NaOCl based on a molar ratio.  Solutions were created using 100:1, 50:1, 25:1, 

17:1, 11:1, 5:1 and 1:1 molar ratios of NaOCl to CIP.  The oxidant was added to the CIP 

solution and the pH altered to 7 through the drop-wise addition of NaOH and HCl. Solutions 

were then placed in a rotator for 24 hours.  After 24 hours, the solutions were removed and 

each pH was adjusted back to 7.  Each sample was then analyzed by the spectrophotometer 

at 270 nm to determine the final absorbance.  The absorbance reading was converted to a 

final concentration using the concentration standard curve.  

Controls were made for each molar ratio using this process, except the 20 mg/L CIP 

solution was replaced with purified water.  These samples were also analyzed by the UV 

spectrophotometer to determine the absorbance reading of the chlorine.   

3.4.2 Potassium Permanganate Oxidation 

The oxidation treatment using potassium permanganate was conducted using a 

solution of 20 mg/L CIP with the addition of K2MnO4 based on a molar ratio.  Solutions were 

created using 100:1, 50:1, 25:1, 17:1, 11:1, 5:1 and 1:1 molar ratios of K2MnO4 to CIP.  The 

oxidant was added to the CIP solution and the pH altered to 7 through the drop-wise 

addition of NaOH and HCl. Solutions were then placed in a rotator for 24 hours.  After 24 

hours, the solutions were removed and each pH was adjusted back to 7 if necessary.  Each 

sample was then analyzed with the spectrophotometer at 270 nm to determine the final 

absorbance.  The absorbance reading was converted to a concentration using the 

concentration standard curve.  

Controls were made for each molar ratio using the same process, except the 20 

mg/L CIP solution was replaced with purified water.  These samples were also analyzed by 

the UV spectrophotometer to determine the absorbance reading of the potassium 

permanganate.   
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3.4.3 Potassium Ferrate Oxidation 

The oxidation treatment using potassium ferrate was conducted using a solution of 

20 mg/L CIP with the addition of K2FeO4 based on a molar ratio.  Solutions were created 

using 100:1, 50:1, 25:1, 17:1, 11:1, 5:1 and 1:1 molar ratios of K2FeO4 to CIP.  The oxidant 

was added to the CIP solution and the pH altered to 7 through the drop-wise addition of 

NaOH and HCl. Solutions were then placed in a rotator for 24 hours.  After 24 hours, the 

solutions were removed from the rotator, adjusted to pH 7 if necessary and centrifuged for 

4 minutes to remove the ferric hydroxide precipitate.  Each sample was then analyzed by 

the spectrophotometer at 270 nm to determine the final absorbance.  The absorbance 

reading was converted to concentration using the concentration standard curve.  

Controls were made for each molar ratio using the same process, except the 20 

mg/L CIP solution was replaced with purified water.  These samples were also centrifuged 

and analyzed with the UV spectrophotometer to determine the absorbance reading of the 

potassium ferrate.   

3.4.4 Persulfate Oxidation  

The oxidation treatment using persulfate was conducted using a solution of 20 mg/L 

CIP with the addition of Na2S2O8 based on a molar ratio.  Solutions were created using 

100:1, 50:1, 25:1, 17:1, 11:1, 5:1 and 1:1 molar ratios of Na2S2O8 to CIP.  The oxidant was 

added to the CIP solution and the pH altered to 7 through the drop-wise addition of NaOH 

and HCl. Solutions were then placed in a rotator for 24 hours.  After 24 hours, the solutions 

were removed from the rotator and adjusted to pH 7 if necessary.  Each sample was then 

analyzed by the spectrophotometer at 270 nm to determine the final absorbance.  The 

absorbance reading was converted to a concentration using the concentration standard 

curve.  

Controls were made for each molar ratio using the same process, except the 20 

mg/L CIP solution was replaced with purified water.  These samples were also analyzed by 

the UV spectrophotometer to determine the absorbance reading of the persulfate.   
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3.4.5 Fenton’s Oxidation 

The oxidation treatment using Fenton’s reaction was conducted using a solution of 

20 mg/L CIP with the addition of H2O2 based on a molar ratio.  Ferrous iron in the form of 

ferrous sulfate was used to activate the hydrogen peroxide and was added in a constant 

ratio of 5 moles ferrous to 1 mol CIP.   Solutions were created using 100:1, 50:1, 25:1, 17:1, 

11:1, 5:1 and 1:1 molar ratios of H2O2 to CIP.  The oxidant was added to the CIP solution and 

the pH altered to pH 7 through the drop-wise addition of NaOH and HCl. Solutions were 

then placed in a rotator for 24 hours.  After 24 hours, the solutions were removed from the 

rotator, adjusted to pH 7 if necessary and centrifuged for 4 minutes to remove the iron 

precipitate.  Each sample was then analyzed by the spectrophotometer at 270 nm to 

determine the final absorbance.  The absorbance reading was converted to a concentration 

using the concentration standard curve.  

Controls were made for each molar ratio using the same process, except the 20 

mg/L CIP solution was replaced with E-Pure water.  These samples were also centrifuged 

and analyzed with the UV spectrophotometer to determine the absorbance reading of the 

hydrogen peroxide and ferrous iron.   

3.5 Time Trial Methodology 

3.5.1 Hypochlorite 

A molar ratio of 17:1 NaOCl to CIP was chosen to conduct the time trial experiments.  

The pH of the solution containing 26.4 mL of 20 mg/L CIP solution was adjusted to pH 3.04 

at which point the requisite 3.6 mL NaOCl solution was added to the solution, thus bringing 

the final pH up to 7.  The time trial began at this point and the solution was continuously 

mixed throughout.  Aluminum foil was used to prevent degradation from UV rays.  After 1 

minute, a sample of the CIP and NaOCl solution was taken and analyzed in the UV 

spectrophotometer.  The resulting absorbance reading was recorded.  Samples were 

analyzed at regular intervals for 24 hours.   

Another chlorine time trial was conducted using a 5:1 molar ratio of NaOCl to CIP.  

The methods are the same as the initial chlorine time trial with several exceptions.  The 

initial CIP solution contained 28.4 mL CIP and the pH was adjusted to 3.6 before 1.6 mL 
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NaOCl was added. The time trial was only conducted for a total of nine hours until 

equilibrium was reached.  

A chlorine time trial was also conducted using a 100:1 molar ratio of NaOCl to CIP.  

The methods are the same as the initial chlorine time trial with several exceptions.  The 

initial CIP solution contained 30 mL CIP and the pH was adjusted to 2.2 before 23.9 mL 

NaOCl was added.  The time trial was only conducted for 15 minutes until equilibrium was 

reached.  

3.5.2 Persulfate 

A molar ratio of 17:1 persulfate to CIP was chosen to conduct the time trial 

experiments.  The pH of the solution containing 25.9 mL of 20 mg/L CIP solution was 

adjusted to pH 6.98, at which point the requisite 4.1 mL persulfate solution was added to 

the solution.  The time trial began at this point and was continuously mixed throughout.  

Aluminum foil was used to prevent degradation from UV rays.  After 1 minute, a sample of 

the CIP and persulfate solution was analyzed in the UV spectrophotometer.  The resulting 

absorbance reading was recorded.  Samples were analyzed at regular intervals for 21 hours.   

3.5.3 Potassium Ferrate 

A molar ratio of 17:1 potassium ferrate to CIP was chosen to conduct the time trial 

experiments. The pH of the solution containing 25.5 mL of 20 mg/L CIP solution was 

adjusted to pH 3.5 at which point the requisite 4.5 mL potassium ferrate solution was added 

to the solution, thus bringing the final pH up to 7. As soon as the oxidant was added to the 

solution, the timer was started and the solution was mixed continuously. Two methods 

were used to remove the ferrate in order to accurately test the absorbance of the CIP in 

solution. The first method used a Whatman microfiber glass 25mm syringe filter to remove 

the ferrate from the solution.  After 1 minute, a sample of the CIP and K2FeO4 solution was 

taken and analyzed by the UV spectrophotometer.  Samples of the solution and absorbance 

readings were taken at regular time intervals for 30 minutes. The second method used an 

Eppendorf centrifuge to separate out the ferrous precipitate from the solution. Once the 

precipitate was removed from the solution, an absorbance reading was taken 7 minutes 
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after the oxidant was added. Absorbance readings were taken at regular intervals for 30 

minutes at which point the solution reached equilibrium.  

3.5.4 Fenton’s Oxidation 

A molar ratio of 17:1 H2O2 to CIP was chosen to conduct the time trial experiments.  

The ratio of Fe(II) was maintained at 5:1 ferrous to CIP.  The pH of the solution containing 30 

mL of CIP and ferrous solution was adjusted to pH 7 at which point the requisite 0.6 mL of 

0.3 mass percent H2O2 solution was added, thus bringing the final pH up to 7.  As soon as 

the oxidant was added to the solution, the timer was started and the solution was mixed 

continuously.  Two methods were used to remove the iron precipitate in order to accurately 

test the absorbance of the CIP in solution.  The first method used a Whatman microfiber 

glass 25mm syringe filter to remove the ferrate from the solution.  After 1 minute, a sample 

of the solution was taken and analyzed by the UV spectrophotometer.  Absorbance readings 

were taken of the sample at regular time intervals for 30 minutes. The second method used 

an Eppendorf centrifuge to separate out the ferrous precipitate from the solution. Once the 

ferrous precipitate was separated out of the solution, an absorbance reading was taken 7 

minutes after the oxidant was added. Absorbance readings were taken at regular intervals 

for 15 minutes, at which point the solution reached equilibrium.   
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Chapter 4: Results and Discussion 

 The objective of this study was to obtain data for the oxidation reactions of CIP with 

hypochlorite, potassium permanganate, potassium ferrate, sodium persulfate, and Fenton’s 

reagent.  The data were analyzed to compare the extent of each reaction over a fixed 

period of time and the kinetics of each reaction.  The comparative data were used to 

analyze and form recommendations for potential oxidative treatment methods or further 

research.      

4.1: Degradation over 24 Hours 

4.1.1 Hypochlorite  

 Initial concentrations of CIP in purified water were 20 mg/L in each solution.  

Controls containing no CIP were prepared for each hypochlorite concentration to determine 

interference on final absorbance readings.  Table 2 displays the resulting concentrations and 

the extent of removal after 24 hours of various hypochlorite concentration treatments. 

Table 2:  Hypochlorite Molar Ratio Comparison 

Molar Ratio 
Cl:CIP 

Concentration of 
CIP After 24 Hours 

Extent of Removal of 
CIP (%) 

1 19.99 0.061 

5 4.298 78.5 

11 2.816 85.9 

17 2.374 88.1 

25 1.739 91.3 

50 1.608 92 

100 0.6623 96.7 

 

The resulting concentration of CIP after 24 hours of treatment with hypochlorite was 

also plotted against the molar ratio of chlorine to CIP.  Figure 4 shows this relationship. 
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Figure 4:  Hypochlorite Concentration and Corresponding CIP Concentration after 24 hours 

 

The results show insignificant removal with a 1:1 molar ratio of chlorine to CIP.  

However, significant removal of 75% or higher was achievable with chlorine concentrated 

more than 5 moles per mole of CIP.  With 100 moles of chlorine per mole of CIP almost 

complete degradation of CIP occurred.  The general trend shows that as the concentration 

of chlorine increased, the degradation of CIP increased.  When compared to the resulting 

concentration of a 1:1 molar ratio of chlorine to CIP, the 5:1 molar ratio of chlorine to CIP 

had greater than five times the amount of degradation. The removal achieved using molar 

ratios higher than 5:1 was not proportional to the increase in molar ratio.  

The results from this experiment were compared to literature documenting previous 

experiments of the oxidation of ciprofloxacin using hypochlorite. Both the literature and the 

experimental results from this study suggest that hypochlorite readily oxidizes CIP. In a 

study by Anderson et al. (2012), a moderate concentration of the chlorine dioxide, 20 mg/L, 

was found to remove 90-100% of the CIP contaminant.  This is comparable to the results of 

this study which showed a 91% reduction in CIP with a molar ratio of 25:1 hypochlorite to 

contaminant (Anderson, 2012).  

 Another study done by Huber et al. (2005) researched degradation of 

pharmaceuticals using chlorine dioxide.  The study tested several pharmaceuticals and 

found that chlorine dioxide oxidized only 4 out of the 9 drugs tested. Using chlorine dioxide 
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doses of 0.95 and 11.5 mg/L with a contact time of 30 minutes, the study found that 

macrolide and sulfonamide antibiotics as well as estrogens and phenazones were oxidized 

and sufficiently removed from the water.  However, chlorine was not able to oxidize five 

pharmaceuticals: bezafibrate, carbamazepine, diazepam, ibuprofen, and iopromide.  

Chlorination can be highly useful in water treatment facilities, but as the study by Huber et 

al. shows, it is not capable of oxidizing all organics and further treatment may be required 

(Huber, 2005).  

4.1.2 Potassium Permanganate 

Initial concentrations of CIP in E-pure water were 20 mg/L in each solution.  Controls 

containing no CIP were prepared for each potassium permanganate concentration to 

determine interference on final absorbance readings.  Table 3 displays the resulting 

concentrations and the extent of removal after 24 hours of various potassium 

permanganate concentration treatments. 

Table 3:  KMnO4 Molar Ratio Comparison 

Molar 
Ratio 

KMnO4:CIP 

Concentration 
of CIP After 

24 Hours 

Extent of 
Removal of CIP 

(%) 

1 24.84 -24.2 

5 17.68 11.6 

11 15.49 22.6 

17 16.55 17.2 

25 15.44 22.8 

50 11.51 42.4 

100 8.161 59.2 

 
The resulting concentration of CIP after 24 hours of treatment with potassium 

permanganate was also plotted against the molar ratio of potassium permanganate to CIP.  

Figure 5 shows this relationship. 
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Figure 5:  Potassium Permanganate Concentration and Corresponding CIP Concentration after 

24 hours 

 
With potassium permanganate treatment, a 50:1 and 100:1 molar ratio of oxidant to 

CIP were the only concentrations capable of removing over 40% of the initial CIP.  With a 

1:1 molar ratio of potassium permanganate to CIP, the resulting concentration of CIP was 

almost 25 mg/L.  Controls of potassium permanganate in E-pure water without any CIP 

were tested after mixing for 24 hours and the resulting absorbance values were subtracted. 

Despite subtracting the absorbance readings of the E-pure water and oxidant solution, the 

concentration of the 1:1 potassium permanganate to CIP solution was above the initial 

value.  This may indicate that a side reaction occurred between potassium permanganate 

and CIP during treatment, causing interference and a spike in absorbance readings.  It is 

inconclusive what the cause of the interference was in the 1:1 molar ratio sample, and it is 

also undetermined if the same interferences were present in higher molar ratio samples.  

However, the solutions with a molar ratio of 5:1 or higher produced results showing some 

increased extent of removal.    

Most literature on potassium permanganate in wastewater treatment studies the 

oxidants ability to deodorize or eliminate color. However, one study done by Hu et al. 

looked into the oxidation of three different antibiotics, including ciprofloxacin, using 

potassium permanganate. The experiment by Hu et al. used an excess of potassium 
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permanganate to study the effects on ciprofloxacin and two other antibiotics. The results 

showed noticeable reactivity of all three antibiotics with potassium permanganate.  It is also 

evident in the study that increasing the dosage of oxidant yields greater removal which 

supports the results of this study (Hu et al., 2010).     

4.1.3 Potassium Ferrate 

Initial concentrations of CIP in E-pure water were 20 mg/L in each solution.  Controls 

containing no CIP were prepared for each potassium ferrate concentration to determine 

interference on final absorbance readings.  After 24 hours of mixing, a precipitate formed in 

the solution.  To avoid absorbance interference, the samples were centrifuged before 

analysis by the UV spectrometer.  Table 4 displays the resulting concentrations and the 

extent of removal after 24 hours of various potassium ferrate concentration treatments. 

Table 4:  Potassium Ferrate Molar Ratio Comparison 

Molar Ratio 
Ferrate:CIP 

Concentration of 
CIP After 24 

Hours 

Extent of 
Removal of CIP 

(%) 

1 13.13 34.3 

5 5.669 71.7 

11 2.713 86.4 

17 1.031 94.8 

25 1.515 92.4 

50 1.016 94.9 

100 0.6643 96.7 

 
The resulting concentration of CIP after 24 hours of treatment with potassium ferrate 

was also plotted against the molar ratio of chlorine to CIP.  Figure 6 shows this relationship. 
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Figure 6:  Potassium Ferrate Concentration and Corresponding CIP Concentration after 24 

hours 

 
Potassium ferrate treatment was shown to be effective in removing CIP from E-pure 

water.  Samples with a molar ratio higher than 17:1 moles of potassium ferrate to CIP had 

extents of removal greater than 90%.  The results show that there was not a significant 

difference between the 17:1 molar ratio and the 100:1 molar ratio with a range in 

concentration of 0.8507 mg/L.   The least amount of degradation was 34.3% which was 

achieved using a 1:1 molar ratio solution.   

 A study by Jiang et al. investigated the removal of CIP by potassium ferrate.  

Beginning with solutions containing 10 mg/L CIP in deionized water, Jiang et al. tested 

potassium ferrate removal using concentrated doses of 1, 3, 5, 7, 9, 10, 15, and 20 

([K2FeO4]/[CIP]).  Once the appropriate potassium ferrate was added to the CIP solution, a 

wastewater treatment system was simulated through three steps: fast mixing for 1 minute 

at 400 rpm; slow mixing for 20 minutes at 45 rpm; followed by sedimentation for one hour.  

Samples were then analyzed, and results from the experiment showed that the average 

extent of removal ranged from 60-69%, with the general trend indicating an increase in 

removal as the dose of potassium ferrate was increased (Jiang et al., 2011).  The study by 

Jiang et al. resulted in extents of removal less than those achieved in this study at similar 

molar ratios of potassium ferrate to CIP.  The variance between the results of the study by 
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Jiang et al. and this experiment could be attributed to the differences in methods, 

treatment time and initial CIP concentration. However, both studies clearly indicate that 

removal of CIP from water is possible using potassium ferrate as a treatment method, with 

increased removal possible using higher dosages of oxidant.  

4.1.4 Persulfate 

Initial concentrations of CIP in purified water were 20 mg/L in each solution.  Controls 

containing no CIP were prepared for each persulfate concentration to determine 

interference on final absorbance readings.  Table 5 displays the resulting concentrations and 

the extent of removal after 24 hours of various persulfate concentration treatments. 

Table 5:  Persulfate Molar Ratio Comparison 

Molar Ratio 
Persulfate:CIP 

Concentration of 
CIP After 24 

Hours 

Extent of 
Removal of CIP 

(%) 

1 17.88 10.6 

5 17.28 13.6 

11 16.33 18.4 

17 15.16 24.2 

25 14.6 27 

50 12.14 39.3 

100 8.185 59.1 

 
The resulting concentration of CIP after 24 hours of treatment with persulfate was 

also plotted against the molar ratio of persulfate to CIP.  Figure 7 shows this relationship. 
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Figure 7:  Persulfate Concentration and Corresponding CIP Concentration after 24 hours 

 

Persulfate oxidation resulted in a steady decrease in CIP concentration as the molar 

ratio of CIP to persulfate was increased; however, the overall oxidation was not significant. 

A 100:1 molar ratio was the only concentration capable of a removal extent greater than 

50% of the initial concentration.  The overall range for resulting concentrations using 

persulfate was less than 10 mg/L.  This suggests that a large increase in the molar ratio of 

CIP to persulfate would be needed to achieve a greater removal extent.  An almost linear 

correlation resulted between the molar ratio of persulfate to CIP and the resulting CIP 

concentration.  After formatting a line of best fit through the data points collected and 

obtaining an R2 value of 0.9689, the corresponding equation for that line was: 

                   (21) 

Table 6 predicts the molar concentrations of persulfate to CIP needed to reduce initial 

CIP concentrations to selected extents using the above best fit line. 
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Table 6: Predicted molar concentrations of persulfate to CIP required for greater 
removal  

Extent of 
Removal (%) 

Resulting CIP 
Concentration (mg/L) 

Molar Concentration of 
Persulfate:CIP Needed 

70 6 119 

80 4 140 

90 2 162 

 
Using sodium persulfate as an oxidant in water treatment is a largely untested process.  As 

such, there is little research on removal extents of CIP or other pharmaceuticals using 

persulfate oxidation.  Relative comparisons have not yet been made for the use of 

persulfate to remove CIP from water.     

4.1.5 Fenton’s Oxidation  

Initial concentrations of CIP in purified water were 20 mg/L in each solution.  Controls 

containing no CIP were prepared while varying the hydrogen peroxide concentration and 

keeping the Fe(II) concentration at a constant ratio of 5:1.  However for the controls of this 

experiment, no precipitate formed after 24 hours, resulting in absorbance readings greater 

than that of the original CIP solution.  It is possible no precipitate formed because without 

the CIP in solution, no oxidation occurred and the iron remained in solution as ferrous 

sulfate.  Therefore, the control absorbance readings were not deducted from the 

CIP/oxidant solutions.  Within the CIP/oxidant solutions, a precipitate did form and the 

samples were centrifuged to avoid absorbance interference before analysis by the UV 

spectrophotometer.  Table 7 displays the resulting concentrations and the extent of 

removal after 24 hours of various reactant doses. 
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Table 7: H2O2 Molar Ratio Comparison using 5:1 ratio of ferrous to CIP 

Molar Ratio 
H2O2:CIP 

Concentration of 
CIP After 24 Hours 

Extent of Removal of 
CIP (%) 

1 10.74 46.3 

2 1.96 90.2 

3 0.91 95.5 

4 2.71 86.5 

5 1.17 94.1 

11 1.02 94.9 

17 1.68 91.6 

25 0.83 95.8 

50 0.86 95.7 

100 1.44 92.8 

 
The resulting concentration of CIP after 24 hours of treatment with Fenton’s 

oxidation was also plotted against the molar ratio of H2O2 to CIP.  Figure 8 shows this 

relationship. 

 
Figure 8: Fenton’s Oxidation: Hydrogen Peroxide Concentration and Corresponding CIP 

Concentration after 24 hours (using 5:1 ferrous to CIP) 
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Similar to potassium ferrate treatment, each molar ratio of hydrogen peroxide to CIP 

reduced CIP concentrations below 15 mg/L.  While a molar ratio of 1:1 did not remove more 

than 50% of the initial CIP, every molar ratio tested which was greater than 1:1 had a rate of 

removal higher than 85%.  The greatest extent of removal was 95.8% and occurred with a 

25:1 ratio.  The 100:1 and 50:1 ratio solutions resulted in similar removals, although there 

was a slight increase in the final concentration as compared to the 25:1 molar ratio.  The 

increase was approximately 0.6 mg/L, which could have been a result of error in the 

spectrophotometer or due to an increase in interference from the excess oxidant.  While 

there may be slight experimental error in the results, the data show that it is possible to get 

over 85% removal of CIP with a molar ratio of only 2:1 hydrogen peroxide to CIP.  These 

results show that Fenton’s oxidation is a viable option for the removal of CIP from water.  

To further supplement the study of Fenton’s oxidation as a potential treatment 

method for CIP, the experiment was conducted using a set molar ratio of 1.4:1 Fe (II) to CIP.  

The concentrations of hydrogen peroxide were varied as before and all controls were 

prepared and analyzed similarly. Table 8 displays the resulting concentrations and the 

extent of removal after 24 hours of various hydrogen peroxide concentration treatments. 

Table 8: H2O2 Molar Ratio Comparison using 1.4:1 Ratio of Fe (II) to CIP 

Molar Ratio 
H2O2:CIP 

Concentration of 
CIP After 24 Hours 

Extent of Removal of 
CIP (%) 

1 14.14 29.2 

5 9.766 51.0 

11 6.918 65.4 

17 6.816 66.0 

25 7.935 60.4 

50 2.543 87.1 

100 4.273 78.4 

 
The resulting concentration of CIP after 24 hours of treatment with Fenton’s 

oxidation was also plotted against the molar ratio of H2O2 to CIP.  Figure 9 shows this 

relationship. 
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Figure 9:  Fenton’s Oxidation: Hydrogen Peroxide Concentration and Corresponding CIP 

Concentration after 24 hours (using 1.4:1 ferrous to CIP) 
 

Using a molar ratio of 1.4:1 Fe (II) to CIP the overall removal extent is decreased.  The 

maximum removal was 87% which was achieved using a 50:1 molar ratio of H2O2 to CIP.  

When comparing a 1.4:1 ratio of Fe (II) to CIP to that of the 5:1 molar ratio, more hydrogen 

peroxide is required to achieve removal extents greater than 85%.  The additional iron 

serves as a catalyst to more quickly generate hydroxyl radicals which results in greater 

removal.  Again, there is some variability in the results of this study, evident in the slight 

peak at 25 on the x-axis and the increase at 100 on the x-axis.  These fluctuations can likely 

be attributed to variability in the spectrophotometer readings or in an incomplete removal 

of the iron precipitate.  However, despite the experimental error, the results indicated that 

using a lower ratio of ferrous iron to as a catalyst had a deleterious effect on the overall 

removal of CIP from water.  

These results are comparable to those achieved in a study conducted by Guo et al. in 

2008.  Their research showed the photo-Fenton reaction is capable of the total degradation 

of CIP using a molar ratio of 128:1 H2O2 to CIP in 60 minutes.  The study also showed that by 

increasing the amount of ferrous ions in the solution, greater removal was possible.   

Despite the addition of UV light to enhance the reaction, the results of the study by Guo et 
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al. are comparable to those in this experiment.  Both studies achieved a very high removal 

extent of CIP from water and showed that increases in both the moles of H2O2 and Fe(II) 

increase the removal extent of CIP (Guo et al., 2008).  

Furthermore, a study by Chaudhuri and Elmolla in 2009 investigated the ability of 

Fenton’s oxidation to degrade three different antibiotics in water: amoxicillin, ampicillin and 

cloxacillin.  Their results conclude that Fenton’s oxidation is capable of complete removal of 

each antibiotic in two minutes using a molar ratio of 1:3:0.3, antibiotic:H2O2:Fe(II).  The 

results of the study by Chaudhuri and Elmolla compare well to those determined in this 

experiment.  Both studies showed that a ratio of 3:1 H2O2 to antibiotic is sufficient for near 

complete removal of the antibiotic.  While there are differences in each of the three 

studies, it is clear that total removal of CIP as well as other antibiotics is possible using 

Fenton’s oxidation (Chaudhuri and Elmolla, 2009).  

4.2 Kinetic Time Trials 

Time trials were conducted to determine the rate law constants for the reaction 

between NaOCl and CIP. Three time trials were conducted using 20 mg/L CIP in water with 

the oxidant NaOCl in a 17:1 molar ratio with CIP.  Samples of the solution were analyzed in 

the UV spectrometer at 1 minute and subsequent regular intervals and the absorbance 

determined.  A concentration was determined for each time interval using the standard 

curve.   The time trial was conducted over 24 hours and the results of CIP concentration 

verses time are shown below.  
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Figure 10: CIP Concentration at Various Treatment Time Intervals with a 17:1 molar ratio of 
hypochlorite to CIP 

 
While the time trials were conducted over a 24 hour period as seen in figure 10, 90% 

of the initial CIP was removed within 30 minutes.   Shown below is the data collected from 

the first 30 minutes of the 24 hour time trial which was used to calculate the rate law 

constants and reaction order.   

  
Figure 11: CIP Concentration through first 30 Minutes of Treatment with a 17:1 molar ratio of 

hypochlorite to CIP 
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The rate equation was written for a batch process, which was the type of process used to 

obtain the data in this study.  

 Rate of degradation:   
 [ ]

  
  [ ] (22) 

Where [A] = Concentration of CIP (mg/L) 

t = time (min) 

k = rate constant (1/min) 

The integrated form of the rate equation is shown in equation 23: 

   [ ]         [ ]  (23) 

In order to determine if the rate was first order, the natural log of the concentration 

of CIP verses time was plotted, which gave a trend line with a slope of -k.  Using first order 

kinetics, the rate law constant was determined to be 0.0376/min (R2=0.8183).  

 
Figure 12: 17:1 ratio first order hypochlorite oxidation kinetics 
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 Rate of degradation:   
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  [ ][ ] (24) 
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The reaction rate is written in terms of both concentration of CIP and hypochlorite; 

however, it was not possible to measure the changing concentration of hypochlorite.  To 

determine the rate law constant, the inverse of the concentration verses time was plotted 

with the slope of the trend line equal to k.  Using second order kinetics, the rate law 

constant is equal to 0.0041 (R2=0.9216) as is shown in figure 13.  

 
Figure 13: 17:1 ratio second order hypochlorite oxidation kinetics 
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match the experimental results.  The figure is shown below.  
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Figure 14: Experimental CIP removal using 17:1 (hypochlorite to CIP) molar ratio compared with 

theoretical removal based on first and second order rate models 

 
 Figure 14 shows that the rate constant determined using second order kinetics 
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model fits the data with high accuracy.  Although the second order model fits more closely 

to the data, the order of the reaction is still not conclusive. 
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Figure 15: CIP Concentration after various treatment time intervals with a 5:1 molar ratio of 

hypochlorite to CIP 

 
The kinetic analysis was conducted using the data from the first 90 minutes of the 

reaction, the time interval which encompassed over 90% of the total oxidation.  The results 

of the 5:1 molar ratio time trial support the results of the 17:1 molar ratio time trial.  When 

plotted, a second order reaction again fits the data more closely, as evidenced by an R2 

value above 0.99.  However, both first and second order reactions appear plausible.  When 

comparing the rate constants generated from the 17:1 and 5:1 second order plots, the two 

values are nearly identical.  This gives further support to the likelihood that the reaction is 

occurring as a second order reaction.  The results of both the first and second order kinetic 

data for a 5:1 ratio can be seen below in figures 16 and 17, respectively.  

 
Figure 16: 5:1 ratio first order hypochlorite kinetics 
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Figure 17: 5:1 ratio second order hypochlorite kinetics. 

 
To more clearly compare the results of the kinetic analysis, the rate constants 

generated from both the first and second order kinetics and the rate laws were used to plot 

the theoretical removal of CIP.  The results of these theoretical models can be seen in figure 

18.  

 
Figure 18: Experimental CIP removal using 5:1 (hypochlorite to CIP) molar ratio compared with 

theoretical removal based on first and second order rate models 
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very close fit to the observed removal of CIP and generated a more accurate model in both 

the 17:1 and 5:1 molar ratio experiments.  

The 100:1 molar ratio time trial was inconclusive.  It appears that the reaction 

occurred much more quickly than the 17:1 molar ratio, indicating a faster rate. In fact, 

because the reaction happened so quickly it was not possible to gather enough samples to 

accurately determine kinetics.  The results of the time trial are shown below.  

 

 
Figure 19: CIP Concentration after various treatment time intervals with a 100:1 molar ratio of 

hypochlorite to CIP 

 
 Overall, it appears that the oxidation of CIP by NaOCl was a second order reaction; 
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or rate constant for any of these oxidants because the reactions occurred too quickly.  The 

results of these time trials can be found in Appendix D. 

4.3 Comparison of Oxidants 

 
The graph below compares the different oxidation methods and their effectiveness 

in removing CIP over a 24-hour period.  As the plot indicates, all solutions began with 20 

mg/L of CIP. 

 
Figure 20: Comparison of CIP concentration after 24 hours of treatment with each oxidant 
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or analytical error.  The concentration of CIP sharply peaked at a 1:1 molar ratio, decreased 

and then peaked once more at a 17:1 molar ratio before showing a continued decline.  

Persulfate was perhaps the most gradual treatment, decreasing in a nearly linear fashion.  

Use of persulfate and potassium permanganate both reached a final concentration of 8 

mg/L.  However final CIP concentrations never leveled off, indicating higher molar ratios 

could produce greater CIP removal.  
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Chapter 5: Conclusions and Recommendations  

All oxidation methods evaluated in this study are potentially successful methods for 

removing CIP from water; however, some are more effective than others.  The treatment of 

CIP in water using Fenton’s oxidation achieved a significant removal extent.  Removal of 

over 90% of the CIP was achieved in 24 hours of treatment using all molar ratios greater 

than 4:1 hydrogen peroxide to CIP and a 5:1 molar ratio of Fe(II) to CIP.  Oxidation using 

potassium ferrate was also highly successful and achieved over 90% removal over 24 hours 

of treatment using molar ratios of 17, 25, 50 and 100:1 ferrate to CIP.  Some treatment 

facilities may find potassium ferrate is easier to use because the oxidation requires only one 

additive instead of the two required for Fenton’s oxidation. Both treatment techniques are 

viable options to use in water treatment facilities to degrade organic contaminants and 

have applications as a flocculent.  However, due to the addition of iron, a settling step is 

necessary after oxidation to remove the iron precipitate.  Chlorine oxidation was also very 

effective and achieved over 90% removal after 24 hours of treatment using ratios of 25, 50 

and 100:1 NaOCl to CIP.  Although this oxidation technique required a higher molar ratio, it 

may be easier to implement chlorine oxidation due to its frequent use in existing water 

treatment plants.   

A study conducted by Roma et al. (2011) investigated the removal of CIP by UV and 

UV combined with hydrogen peroxide oxidation.  All samples for the oxidation experiments 

in this research project were concealed from any outside sources of UV light to isolate the 

compound from further degradation.  Complete oxidation was achieved after 60 minutes 

using UV treatment at 254 nm, at which point Roma et al. were able to degrade a CIP 

solution at pH 7 by 94.6% (Roma et al., 2011).  This percentage increased slightly to 97.5% 

and the residence time decreased to 30 minutes when a 50:1 molar ratio of H2O2 to CIP was 

added.  Several oxidants used in this study were able to achieve similar results.   

In this work, using a molar ratio of 100:1 NaOCl to CIP, 89% removal was achieved 

after 10 minutes of treatment and 96.7% was removed after 24 hours.  Comparatively, 

using a 17:1 NaOCl to CIP ratio resulted in 71% removal within 30 minutes and 83% removal 

within 24 hours.  The results of the hypochlorite tests indicate that chlorination is a viable 

option for use in CIP removal. However, hypochlorite doses greater than 100:1 NaOCl to CIP 
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would be required to achieve similar results to the 50:1 molar ratio UV/H2O2 oxidation 

studied by Roma et al.  

Using solutions of 50:1 and 100:1 potassium ferrate to CIP with 24 hours of 

treatment, removal extents of 94.9% and 97.6% were achieved, respectively.  A time trial 

was conducted using a 17:1 ratio of potassium ferrate to CIP, resulting in the removal of 

88% of CIP within ten minutes and 88.6% after 30 minutes, indicating all significant removal 

occurred within ten minutes.  This oxidation technique is comparable to UV/H2O2 in both 

extent of removal and residence time.   Similar removal extents (over 90%) are possible 

using 17:1 and 25:1 molar ratios of potassium ferrate to CIP and 88% oxidation occurs 

within 30 minutes with a 17:1 molar ratio. 

Fenton’s oxidation also achieved substantial removal of CIP in water.  Several ratios 

of hydrogen peroxide to CIP, including  5, 11, 25 and 50:1, used with a 5:1 ratio of Fe(II) to 

CIP, achieved greater than 94% removal.  While lower doses of hydrogen peroxide were 

able to achieve removal extents greater than those observed by Roma et al. using UV/H2O2, 

the process requires increased residence time.  Only 44% removal was achieved after 15 

min using a 17:1 ratio of H2O2 to CIP, whereas after 10 minutes Roma et al. saw 89.6% 

removal of CIP using UV/H2O2.  

Further research must be conducted before definitive treatment suggestions can be 

made. Neither potassium permanganate nor persulfate achieved removal extents greater 

than 60%; however, further studies could use higher doses of each oxidant to determine if 

greater removal is achievable.  Furthermore, kinetic studies of potassium ferrate and 

Fenton’s oxidation could be conducted using molar ratios which yielded the greatest 

removal extents in order to compare the corresponding reaction rates, rate constants and 

required residence times.  The comparison of reaction rates and residence times would 

allow the process efficiencies to be compared and a treatment process to be recommended 

more definitively.  

Before a treatment process is determined or implemented, a more thorough 

analysis is recommended.  It would be useful to study the effect of mixtures of antibiotics in 

the same solution to test for the selectivity of treatment.  An oxidant which requires a 
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higher dosage or residence time but is able to oxidize many compounds may be more useful 

for a water or wastewater treatment facility.  An analysis of the energy and environmental 

considerations involved with these treatment methods would also supplement the study.  

Essential parameters to consider would be the removal and disposal of oxidants or 

byproducts following treatment, further treatment steps required and storage the of 

chemicals.  Finally, a complete economic analysis of each treatment process should be 

conducted to ensure there is balance between the effectiveness, efficiency and economics 

in the chosen treatment process.  
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Appendix 

Appendix A: Calibration Curve 
 

Measured concentration of CIP 
(mg/L) 

pH Absorbance 

20 7.07 1.968 

10 7.02 0.986 

5 6.98 0.474 

2.5 6.92 0.243 

1.25 6.97 0.124 

0.625 7.07 0.088 

0.313 7.04 0.031 

0.156 7.00 0.012 

0.078 6.90 -0.013 
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Appendix B: Raw Data 
 
Chlorine: 

 
 
Potassium Permanganate: 

 
 
Potassium Ferrate: 

 
  

20 N/A 6.940 1.801 18.321 18.321

N/A 5 mg/L Cl 7.080 0.162 1.647 1.647

20 1 6.930 1.986 20.198 0.021 19.988 0.012 0.061

20 5 6.940 0.467 4.755 0.045 4.298 15.702 78.510

20 11 6.940 0.345 3.514 0.069 2.816 17.184 85.921

20 17 6.960 0.336 3.418 0.103 2.374 17.626 88.128

20 25 6.920 0.333 3.386 0.162 1.739 18.261 91.307

20 50 6.980 0.392 3.987 0.234 1.608 18.392 91.958

20 100 6.910 0.461 4.691 0.396 0.662 19.338 96.689

% CIP 

Removed

Initial 

Concentration 

(mg/L)

Cl:CIP Molar Ratio pH ABS

Final 

Concentration 

(mg/L)

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.

20 N/A 7.040 1.707 17.362 17.362

N/A 5 mg/L Cl 7.040 0.971 9.881 9.881

20 1 6.920 2.528 25.718 0.086 24.842 -4.842 -24.212

20 5 6.970 2.007 20.412 0.269 17.677 2.323 11.617

20 11 7.060 2.020 20.547 0.497 15.490 4.510 22.548

20 17 6.940 2.599 26.439 0.971 16.558 3.442 17.208

20 25 7.050 2.490 25.330 0.971 15.449 4.551 22.757

20 50 6.930 2.575 26.196 1.443 11.519 8.481 42.406

20 100 7.080 2.861 29.107 2.059 8.161 11.839 59.196

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.
% CIP 

Removed

Initial 

Concentration 

(mg/L)

KMnO4:CIP Molar Ratio pH ABS

Final 

Concentration 

(mg/L)

20 N/A 7.050 1.775 17.064 17.064

N/A 5 mg/L Cl 6.930 0.177 0.615 0.615

20 1 7.090 1.354 13.772 0.063 13.133 6.867 34.334

20 5 6.930 0.615 6.258 0.058 5.669 14.331 71.653

20 11 6.930 0.319 3.246 0.052 2.713 17.287 86.434

20 17 7.080 0.162 1.646 0.061 1.031 18.969 94.847

20 25 7.060 0.221 2.252 0.073 1.515 18.485 92.426

20 50 7.100 0.159 1.621 0.059 1.017 18.983 94.914

20 100 6.930 0.139 1.410 0.073 0.664 19.336 96.679

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.
% CIP 

Removed

Initial 

Concentration 

(mg/L)

Ferrate:CIP Molar Ratio pH ABS

Final 

Concentration 

(mg/L)
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Persulfate: 

 
 
Fenton’s Oxidation: 
Using a 5:1 molar ratio of ferrous oxide:CIP 
 

 
 
Using a 1.4:1 molar ratio of ferrous oxide:CIP 

 
 
 
 
 

20 N/A 7.030 1.855 18.120 17.064

N/A 5 mg/L Cl 6.900 0.056 0.659 0.615

20 1 6.950 1.789 18.195 0.031 17.879 2.121 10.605

20 5 6.960 1.763 17.933 0.064 17.279 2.721 13.606

20 11 7.010 1.623 16.514 0.018 16.328 3.672 18.362

20 17 6.950 1.545 15.721 0.056 15.157 4.843 24.217

20 25 7.050 1.491 15.165 0.056 14.600 5.400 26.999

20 50 6.940 1.229 12.498 0.035 12.138 7.862 39.308

20 100 7.100 0.859 8.738 0.054 8.185 11.815 59.074

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.
% CIP 

Removed

Initial 

Concentration 

(mg/L)

Persulfate:CIP Molar Ratio pH ABS
Final 

Concentration 

(mg/L)

20 No H2O2 or ferrous 7.070 1.855 18.874 18.874

20 5 mg/L H2O2 (no ferrous) 7.070 1.769 17.992 17.992

N/A 5 mg/L H2O2 w/ ferrous 7.050 1.770 18.006 18.006

20 1 6.950 1.104 11.229 1.615 -5.204 8.771 43.856

20 2 7.010 0.152 1.548 N/A N/A 18.452 92.258

20 3 7.030 0.159 1.620 N/A N/A 18.380 91.902

20 4 6.990 0.158 1.604 N/A N/A 18.396 91.979

20 5 6.910 0.115 1.174 1.711 -16.233 18.826 94.130

20 11 6.970 0.100 1.018 1.770 -16.988 18.982 94.908

20 17 6.940 0.165 1.678 1.805 -16.683 18.322 91.612

20 25 7.080 0.082 0.838 0.068 0.149 19.162 95.809

20 50 6.950 0.085 0.862 1.797 -17.420 19.138 95.692

20 100 6.970 0.142 1.445 0.088 0.546 18.555 92.777

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.
% CIP 

Removed

Initial 

Concentration 

(mg/L)

H2O2:CIP Molar Ratio pH ABS

Final 

Concentration 

(mg/L)

20 No H2O2 or ferrous 7.070 1.855 18.874 18.874

20 5 mg/L H2O2 (no ferrous) 7.070 1.769 17.992 17.992

N/A 5 mg/L H2O2 w/ ferrous 7.050 0.145 1.475 1.475

20 1 7.070 1.393 14.167 0.191 12.224 5.833 29.166

20 5 6.960 0.964 9.810 0.177 8.007 10.190 50.951

20 11 7.040 0.680 6.915 0.145 5.439 13.085 65.427

20 17 7.020 0.669 6.803 0.183 4.945 13.197 65.987

20 25 7.070 0.778 7.910 0.166 6.226 12.090 60.448

20 50 7.040 0.254 2.586 0.141 1.155 17.414 87.070

20 100 7.030 0.425 4.321 0.213 2.156 15.679 78.393

Interference 

(ABS)

Adjusted Final 

Concentration 

(mg/L)

Δ Conc.
% CIP 

Removed

Initial 

Concentration 

(mg/L)

H2O2:CIP Molar Ratio pH ABS

Final 

Concentration 

(mg/L)
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Appendix C: Ratio Comparisons 
 

1:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 19.99 0.061 

Potassium Permanganate 24.84 -24.2 

Sodium Ferrate 13.13 34.3 

Persulfate 17.88 10.6 

Fenton’s Oxidation 12.22 38.9 

 

5:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 4.3 78.5 

Potassium Permanganate 17.68 11.6 

Sodium Ferrate 5.67 71.7 

Persulfate 17.28 13.6 

Fenton’s Oxidation 8 60 

 

11:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 2.374 88.1 

Potassium Permanganate 16.55 17.2 

Sodium Ferrate 1.031 94.8 

Persulfate 15.16 24.2 

Fenton’s Oxidation 4.945 75.3 

 

17:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 2.816 85.9 

Potassium Permanganate 15.49 22.6 

Sodium Ferrate 2.713 86.4 

Persulfate 16.33 18.4 

Fenton’s Oxidation 5.439 72.8 
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25:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 1.739 91.3 

Potassium Permanganate 15.44 22.8 

Sodium Ferrate 1.515 92.4 

Persulfate 14.6 27 

Fenton’s Oxidation 6.226 68.9 

 

50:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 1.608 92 

Potassium Permanganate 11.51 42.4 

Sodium Ferrate 1.016 94.9 

Persulfate 12.14 39.3 

Fenton’s Oxidation 1.155 94.2 

 

100:1 Ratio 

Oxidant 
Concentration of 

CIP After 24 Hours 
Extent of Removal 

of CIP (%) 

Hypochlorite 0.6623 96.7 

Potassium Permanganate 8.161 59.2 

Sodium Ferrate 0.6642 96.7 

Persulfate 8.185 59.1 

Fenton’s Oxidation 2.156 89.2 
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Appendix D: Time Trials 
 
5:1 Chlorine:CIP 

Time (minutes) ABS Conc. (mg/L) 
Adjusted Conc. 

(mg/L) 
ln(A) 1/A 

0   20 20 2.996 0.050 

1 1.863 18.951 14.923 2.703 0.067 

2 1.820 18.514 14.485 2.673 0.069 

3 1.764 17.948 13.920 2.633 0.072 

5 1.670 16.991 12.962 2.562 0.077 

7 1.568 15.949 11.921 2.478 0.084 

10 1.455 14.798 10.769 2.377 0.093 

15 1.287 13.092 9.063 2.204 0.110 

20 1.153 11.730 7.702 2.042 0.130 

30 0.952 9.687 5.658 1.733 0.177 

60 0.719 7.309 3.281 1.188 0.305 

90 0.641 6.522 2.493 0.914 0.401 

150 0.514 5.228 1.199 0.182 0.834 

210 0.510 5.192 1.164 0.152 0.859 

450 0.442 4.493 0.465 -0.766 2.151 

540 0.434 4.416 0.388 -0.948 2.580 
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17: 1 Chlorine:CIP—Trial 1 

Time (minutes) ABS 
Conc. 

(mg/L) 
Adjusted 

Conc. (mg/L) 
ln (A) 1/A 

0   20 20 2.99573 0.05 

1 1.613 16.405 15.361 2.732 0.065 

2 1.456 14.808 13.764 2.622 0.073 

3 1.350 13.728 12.685 2.540 0.079 

5 1.170 11.899 10.856 2.385 0.092 

7 1.038 10.559 9.515 2.253 0.105 

10 0.902 9.174 8.130 2.096 0.123 

15 0.745 7.578 6.534 1.877 0.153 

20 0.698 7.101 6.057 1.801 0.165 

30 0.658 6.689 5.645 1.731 0.177 

45 0.641 6.521 5.477 1.701 0.183 

60 0.627 6.376 5.333 1.674 0.188 

120 0.618 6.284 5.240 1.656 0.191 

300 0.593 6.032 4.988 1.607 0.200 

660 0.502 5.109 4.065 1.402 0.246 

1320 0.479 4.874 3.830 1.343 0.261 
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17:1 Chlorine:CIP—Trial 2 

Time (minutes) ABS 
Conc. 

(mg/L) 
Adjusted 

Conc. (mg/L) 
ln (A) 1/A 

0   20 20 2.99573 0.05 

1 1.437 14.621 13.577 2.608 0.068 

2 1.349 13.723 12.680 2.540 0.073 

3 1.220 12.406 11.362 2.430 0.081 

5 1.074 10.923 9.879 2.290 0.092 

7 0.954 9.704 8.660 2.159 0.103 

10 0.838 8.523 7.479 2.012 0.117 

15 0.736 7.489 6.446 1.863 0.134 

20 0.689 7.012 5.968 1.786 0.143 

30 0.652 6.633 5.589 1.721 0.151 

80 0.603 6.130 5.086 1.627 0.163 

180 0.535 5.444 4.400 1.482 0.184 

280 0.494 5.022 3.979 1.381 0.199 

320 0.493 5.019 3.976 1.380 0.199 

440 0.430 4.374 3.331 1.203 0.229 

560 0.454 4.615 3.572 1.273 0.217 

680 0.438 4.453 3.409 1.226 0.225 

1320 0.437 4.440 3.397 1.223 0.225 

1440 0.462 4.697 3.653 1.296 0.213 
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17:1 Chlorine:CIP—Trial 3 

Time (minutes) ABS 
Conc. 

(mg/L) 
Adjusted 

Conc. (mg/L) 
ln (A) 1/A 

0   20 20 2.99573 0.05 

1 1.530 15.566 14.522 2.676 0.064 

2 1.413 14.371 13.328 2.590 0.070 

3 1.343 13.666 12.623 2.535 0.073 

5 1.199 12.201 11.158 2.412 0.082 

7 1.079 10.977 9.933 2.296 0.091 

10 0.964 9.805 8.761 2.170 0.102 

15 0.840 8.549 7.506 2.016 0.117 

20 0.777 7.899 6.856 1.925 0.127 

30 0.678 6.895 5.851 1.767 0.145 

60 0.630 6.408 5.364 1.680 0.156 

90 0.631 6.423 5.379 1.683 0.156 

120 0.587 5.968 4.925 1.594 0.168 

210 0.562 5.718 4.674 1.542 0.175 

330 0.497 5.057 4.013 1.390 0.198 

750 0.458 4.658 3.614 1.285 0.215 

1350 0.426 4.338 3.294 1.192 0.231 

1440 0.377 3.837 2.793 1.027 0.261 

1485 0.419 4.261 3.218 1.169 0.235 

 
100:1 Chlorine:CIP 

Time (minutes) ABS 
Conc. 

(mg/L) 
Adjusted 

Conc. (mg/L) 
ln (A) 1/A 

0   20 20 2.99573 0.05 

1 0.608 6.185 2.157 0.769 0.464 

2 0.458 4.663 0.635 -0.455 1.575 

3 0.593 6.033 2.004 0.695 0.499 

5 0.601 6.118 2.090 0.737 0.479 

7 0.603 6.136 2.108 0.746 0.474 

10 0.612 6.224 2.195 0.786 0.456 

15 0.646 6.571 2.542 0.933 0.393 
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17:1 Persulfate:CIP—Trial 1 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

1 1.598 16.255 

2 1.656 16.847 

3 1.648 16.762 

5 1.613 16.405 

7 1.619 16.474 

10 1.618 16.457 

15 1.602 16.292 

20 1.606 16.337 

30 1.585 16.122 

60 1.583 16.102 

100 1.598 16.254 

190 1.610 16.375 

310 1.617 16.454 

730 1.678 17.073 

1270 1.740 17.697 
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17:1 Persulfate:CIP—Trial 2 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

1 1.631 16.594 

2 1.647 16.752 

3 1.635 16.635 

5 1.639 16.670 

7 1.648 16.767 

10 1.627 16.553 

15 1.632 16.605 

20 1.615 16.431 

30 1.532 15.585 

50 1.629 16.570 

90 1.633 16.613 

180 1.664 16.925 

300 1.719 17.487 

720 2.067 21.030 

1260 2.806 28.545 

 
17:1 Potassium Ferrate:CIP—Trial 1 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

2 1.818 18.493 

3 1.579 16.061 

4 1.192 12.128 

6 0.273 2.772 

9 0.247 2.512 

10 0.236 2.398 

12 0.227 2.312 

15 0.232 2.360 

17 0.234 2.384 

20 0.221 2.251 

30 0.224 2.279 
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17:1 Potassium Ferrate:CIP—Trial 2 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

2 0.202 2.055 

3 0.215 2.184 

5 0.186 1.891 

15 0.362 3.683 

20 0.274 2.789 

30 0.276 2.803 

 
17:1 Potassium Ferrate:CIP—Trial 3 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

12 0.243 2.475 

25 0.244 2.485 

 
17:1 H2O2:CIP—Trial 1 (Filtered) 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

1 0.708 7.203 

2 0.875 8.899 

3 0.698 7.103 

5 0.799 8.128 

7 0.842 8.565 

10 0.728 7.407 

15 0.705 7.169 
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17:1 H2O2:CIP—Trial 2 (Centrifuged) 

Time (minutes) ABS 
Conc. 

(mg/L) 

0   20 

7 1.086 11.045 

10 1.059 10.777 

13 1.066 10.839 

15 1.058 10.759 

 
 

 
 
 


