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Abstract 

Support vector machines (SVMs) are a set of supervised learning methods that have 

recently been applied for structural damage detection due to their ability to form an 

accurate boundary from a small amount of training data. During training, they require 

data from the undamaged and damaged structure. The unavailability of data from the 

damaged structure is a major challenge in such methods due to the irreversibility of 

damage. Recent methods create data for the damaged structure from finite element 

models. In this thesis we propose a new method to derive the dataset representing the 

damage structure from the dataset measured on the undamaged structure without 

using a detailed structural finite element model. The basic idea is to reduce the values of 

a copy of the data from the undamaged structure to create the data representing the 

damaged structure. The performance of the method in the presence of measurement 

noise, ambient base excitation, wind loading is investigated. We find that SVMs can be 

used to detect small amounts of damage in the structure in the presence of noise.  The 

ability of the method to detect damage at different locations in a structure and the 

effect of measurement location on the sensitivity of the method has been investigated. 

An online structural health monitoring method has also been proposed to use the SVM 

boundary, trained on data measured from the damaged structure, as an indicator of the 

structural health condition. 
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 1 Introduction 

Millions of dollars are spent every year in the maintenance of large structures like 

buildings, bridges etc. As these structures become older and new structures are built, 

their maintenance and health monitoring becomes more and more critical to ensure the 

safety and performance for their users. Damage detection is an important task for 

Structural Health Monitoring (SHM) which can lead to considerable benefits by 

indicating which structures require retrofitting and which do not. Damage detection has 

been an active area of research for decades and a large number of techniques and 

methods have been developed. A brief overview of the more common techniques is 

given below. 

1.1 Classification of SHM techniques 

SHM involves detecting the presence of damage in a structure. To be able to effectively 

repair a damaged structure, the exact location of the damage in the structure needs to 

be identified. The knowledge of the nature (rusting, breaking, etc.) and extent of 

damage provides a better estimate of the usability of the structure and can help predict 

the remaining life of the structure. Information about the extent of damage can help 

derive the effectiveness of the repair measures once they are applied. With these ideas, 

structural damage detection tasks were broadly classified into the following levels by 

Rytter (1993):  

1) Level 1: Determination of the presence of damage   

2) Level 2:  Determination of the geometric location of damage 
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3) Level 3: Determination of the extent of damage 

4) Level 4: Prediction of the remaining life of the structure 

To be able to monitor the health of a structure some structural property is used to 

indicate damage in it. Damage in the structure causes a change in its physical properties 

(mass, stiffness, damping). A change in these physical properties in turn changes the 

dynamic characteristics (modal characteristics) or response of the structure. SHM 

methods that do not use the dynamic characteristics of the structure like the visual test, 

tap tests, acoustic or ultrasonic methods, magnetic field methods, radiographs, eddy-

current methods and thermal field methods require an approximate location of the 

damage to be already known. Hence they are known as “local” damage detection 

methods as opposed to dynamic (vibration) response based methods which are “global” 

methods. Global methods are indicators of the overall health of a system and have been 

investigated in great detail for SHM. The amount of change in modal properties (natural 

frequencies, mode shape and the modal damping) can be used to detect, locate and 

determine the extent of damage. 

The basic principle of vibration based methods is that a change in the physical 

properties modifies the modal properties (frequencies, mode shapes and modal 

damping) of the structure. This change can be detected by changes in the vibration 

measurements from the structure. A limitation of global methods is that while they 

indicate the global health of the structure, they are not sensitive to damage in 

redundant or structurally less important members. Existing methods try to extract the 

change in natural frequencies and mode shapes of the structure. This change pattern of 
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natural frequencies or mode shapes is then used to estimate the extent and location of 

damage. As these methods extract modal parameters from the vibration signals, the 

measurement locations have to be decided based on the mode shapes of the structure 

to capture required modes. 

Local structural health monitoring methods can be used to locate the damage and 

provide an estimate of the extent of damage. However, there are a number of 

challenges while using local SHM methods. They are typically very expensive, time 

consuming and access to all locations might not be feasible to apply these methods. As 

mentioned earlier, some prior knowledge of damaged locations or the critical sections 

of the structure is required for these methods to perform effectively. The best solution 

for applying SHM methods is using a combination of both global and local structural 

health monitoring methods.  

In the last decade, a lot of methods have been developed to evaluate damage in the 

structure based on either a change in the modal properties or from the physical 

properties estimated using the measured signal. The former set of methods depends on 

evaluating the change in the natural frequencies and mode shapes extracted from the 

vibration signal. The latter method depends on estimating the mass, stiffness and 

damping matrices derived from the structural vibration data. A change in the matrices 

provides an estimate of the presence, location and extent of damage. 

The use of each parameter and methods has its own advantages and disadvantages 

(Doebling, 1996a). An overview of health monitoring methods of civil infrastructure has 

been provided in Chang et al. (2003). Detection of damage and its location can be done 
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based on change in structural parameters, estimation of the extent of damage requires 

a model of the structure (Doebling, 1996a). Recently, damage detection has been seen 

as a pattern recognition problem where a mapping is derived from some parameter 

affected by a change in the physical properties of a system to the health condition of a 

structure. Pattern recognition methods like Neural Networks and Support Vector 

Machines require data from the undamaged and the damaged structure to be able to 

successfully train and then later be able to classify the structure into damaged and 

undamaged classes. The main challenge with these methods is that if the structure is 

considered undamaged in its current state, data from the damaged class is not available 

unless some detailed structural models such as a finite element model can be  used to 

generate data for the damaged class.  

Support Vector Machines (SVM) have gained significance recently due to their superior 

ability of generate an accurate mapping between the input and output from a small 

amount of training data. This ability to create an accurate mapping between the input 

and output classes from a small amount of data is called the generalization ability of the 

method. SVM have better generalization performance than other existing methods for 

problems of damage detection and location (Samanta, 2003). A benchmark study 

comparing the performance of SVMs with other classification techniques for natural and 

artificial datasets has been presented in Meyer (2003). 

In the following few sections we provide an overview of some major techniques being 

used for SHM. 
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1.1.1 SHM methods based on modal properties 

Damage in a structure causes a reduction in the stiffness of the structure and in turn 

modifies the modal properties of the structure. These changes in the modal properties 

can be used to detect damage in the structure. The amount of change can be used to 

estimate the damage extent. 

1.1.1.1 Damage detection methods based on shift in the natural 

frequency  

The natural frequency of a structure is one of the fundamental dynamic characteristics 

of the structure at which it resonates with an external disturbance of different 

frequency contents.   The natural frequency is a function of the physical properties 

(mass and stiffness) of a structure and can be extracted from the vibration signal 

measured from the structure. Damage in the structure, whether local or distributed, 

reduces the stiffness and hence the natural frequencies of the structure. The relative 

shift of natural frequencies of the structure can be used as an indicator of the presence 

and location of damaged elements of the structure. The advantage of using natural 

frequencies as a parameter is that they have much less statistical variation from random 

sources as compared to other modal parameters (Doebling, 1996a). The identification of 

a damage location and the severity of damage based on the change in the global 

properties derived from measurements at a limited number of sensor locations is a 

problem that has a non-unique solution (Humar et al., 2006). A large number of 

frequencies need to be measured for precise damage extent and location prediction. 



 

6 
 

Measurement of multiple frequencies is generally not possible with good accuracy due 

to the presence of noise, coupling of the higher modes and the limitations of the 

measuring equipment etc. Global properties like the natural frequency and mode 

shapes are not very sensitive to local damage in the structure (Chang et al., 2003).  This 

is because the stress distribution in a structure is non-uniform and different for each 

natural frequency (mode). Resultantly, the relative effect that a change in stiffness of 

each member will have on the modal properties will be different (Cawley et al., 1979). It 

is easier to detect damage using frequency shifts but more difficult to locate it because 

damage in more than one location can cause similar frequency shifts. 

Cawley et al. (1979) used natural frequencies for damage detection in structures. In the 

paper they compared the sensitivity matrix of each natural frequency for different 

damage locations with the actual vibration signal and selected the one with the least 

error. As the method compares model with the actual signal, for accurate damage 

detection and location with this method, a detailed mathematical model of the 

structure is required.  

A method to improve the accuracy of damage detection using frequency shifts by applying a 

preload to the structure before dynamic and static tests was presented by Chen (1999). 

They demonstrated that with preloads the structure behaves linearly because the load 

keeps the cracks open. Brincker et al., (1995a) use the difference between the natural 

frequencies of the vibration data measured from a concrete offshore oil platform structure 

and the auto regressive moving average (ARMA) model of the structure to evaluate the 

goodness of fit of the model.  



 

7 
 

1.1.1.2 Damage detection methods based on a change in the mode 

shapes 

Damage in a structure also changes its mode shapes. This change can be used to detect 

and locate damage in the structure. The mode shapes can be derived from the vibration 

signal. The standard test in the 1970s for the accuracy of measured modal vectors was 

the orthogonality test (Allemang, 2003). The essential condition to validate the 

experimental modal model was that each experimentally measured mode of a structure 

should be normal to other mode vectors (experimental or analytically derived from FEM 

model) when weighed by the analytical mass, stiffness or damping vector (derived from 

the FEM model). Unfortunately experimental modal vectors are not always orthogonal 

because of inaccuracies in measurement, incorrect mass matrix in the FEM model and 

errors introduced by the reduction algorithm used to modify the FEM mass matrix to 

match the dimensions corresponding to the number of measurement locations.  

Allemang (1980) introduced the modal assurance criterion (MAC) which is a statistical 

measure of the consistency (degree of linearity) between estimates of a modal vector. 

MAC and many of its variants have been used for the validation of experimental models, 

structural fault detection and optimal sensor placement among other applications.  

Liu (1995) use the modal shapes and natural frequencies to identify the element 

parameters like stiffness and density of a structure from vibration measurements. He 

used the derived element properties to locate the damaged element in a truss.  

Cao et al. (1999) introduced a method to extract load dependent Ritz vectors from 

experimental data using the state space formulation. Ritz vectors, just like modal 
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vectors, give an alternative form to represent the system (like modal equations) and can 

be used to reproduce the output vibration signal for a given input excitation signal (Sohn 

et al., 2001). Ritz vectors (or Lanczos vectors) can be analytically derived from the model 

of the structure and can also be experimentally measured as explained in this paper.  

1.1.2 SHM methods based on change in the dynamically measured  

 flexibility and other matrix update methods 

Another set of methods attempts to use the change in the structural properties (mass, 

stiffness and damping) for detection of damage. Finite element models are developed to 

numerically model structures for static and dynamic analysis. The mass, stiffness and 

damping matrices of the structure can be derived from these models. When there is 

damage in the structure, the measured vibration signal from the damaged structure can 

be used to update the parameters of the FEM model representing the undamaged 

structure. The changes in parameters required to update the model can then be used to 

estimate the damage.  

Mottershead et al. (1993) did a survey of the existing finite element model update 

methods and classified the major forms of model error as:  

1. Model structure errors: the model does not reflect the system dynamics 

2. Model parameter errors: inaccurate assumptions and boundary 

conditions in the model 

3. Model order errors: discretizing the structure for modeling leads to a 

model of inaccurate order 
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Once the model order and structure have been decided upon, the problem is then one 

of parameter estimation for the mass, stiffness and damping matrices (system 

identification). To solve the system identification problem the least squares method was 

used and then later developed into more sophisticated methods like the Kalman, 

Weiner and Kolmogorov filters. 

The higher modes of the structure contribute more to the calculation of the stiffness 

matrix and so higher frequency modes are needed for the estimation of the stiffness 

matrix. In practice, only the first few modes can be measured (Pandey et al., 1994). To 

workaround this challenge, Pandey et al. (1994) used the flexibility matrix in place of the 

stiffness matrix for damage estimation. The flexibility matrix is defined as the inverse of 

the stiffness matrix and is affected more by the lower modes hence converging for a 

fewer number of modes. Each column of the flexibility matrix represents the 

displacement pattern when a unit force is applied at the associated DOF. The change in 

the flexibility matrix of a structure can be used as an indicator of damage in a structure.  

Pandey et al. (1994) evaluated change in flexibility as an indicator of damage and as a 

method to locate and estimate damage in a variety of numerical and experimental 

studies. As the method requires mode shapes for the calculation of the flexibility matrix, 

vibration data needs to be measured at a number of sensors in the structure for a 

detailed modal analysis. 

Amani et al. (2007) determined the change in the damping and stiffness matrices during 

damage using perturbation theory. They called the change in damping and stiffness 

matrices during damage as the “damage” damping and “damage” stiffness matrices 
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respectively. In their paper they derived the mass, damping and stiffness matrices of the 

undamaged structure from the FEM model. The “damage” stiffness and damping 

matrices for the structure (assuming the mass matrix is unchanged) were evaluated 

from the measured damaged modal matrices. The ability of the method to locate 

damage in the structure and also get a reasonable estimate of the magnitude of the 

damage through a number of simulation and experimental tests was illustrated. The 

“damage” damping matrix is a more sensitive indicator of damage than the “damage” 

stiffness matrix for some kind of structures. In this method the mass, stiffness and 

damping matrices for the undamaged structure are required to be available and can 

either be available from past measurements or can be derived from the output of a FEM 

model of the structure. 

1.1.3 SHM using Statistical Pattern Recognition methods 

Recently SHM is being investigated as a pattern recognition problem. The complete 

pattern recognition process consists of data acquisition, feature extraction, and 

classification or description. In the field of SHM, physical and modal parameters derived 

from the vibration response of the structure have been used as features for 

classification. Schalkoff et al. (1992) broadly divided classification techniques under 

pattern recognition into statistical and structural methods based on the approach used 

for classification or description. Statistical pattern recognition methods are based on 

some statistical measure derived from quantitative properties of the input data. 

Structural methods, on the other hand, use the interrelationships or interconnections of 

the input features for classification. Statistical Pattern recognition methods for 
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classification can also be divided, based on the availability of training data that has been 

already been classified, into supervised and unsupervised learning methods. Supervised 

learning methods are machine learning techniques that try to learn a function to map 

the input class with the output class (labels) in the training dataset. The training dataset 

consists of input vectors and desired output vectors. Unsupervised methods try to 

determine how the data is organized from the training set without the availability of 

labeled examples. 

In the field of SHM, Artificial Neural Networks (ANN) and Support Vector Machines 

(SVM) use the supervised learning paradigm for damage detection and location. 

1.1.3.1  Artificial Neural Networks (ANN) 

ANNs are computational models used to approximate the relation between inputs and 

outputs and have been applied to a wide variety of problems. The neural network 

consists of layers of kernel functions where the output of one layer is the input to the 

next. The output of each layer of the ANN is multiplied by weights, added, shifted by a 

bias and then fed to the next layer as input. In networks with back-propagation, the 

error between measured and predicted outputs is minimized by adjusting the weights 

and biases.  

The concept of ANNs has been around for more than 40 years but was first applied for 

damage detection by Ghaboussi et al. (1991). In this paper an ANN with back-

propagation was used to model the complex relationship between stresses and strains 

in reinforced concrete for the state of plane stress under monotonic biaxial loading and 

compressive uniaxial cycle loading. 
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In Kudva (1992), ANNs that were trained on FEM models of the structure were used to 

deduce the location and extent of damage.  Strain patterns were calculated for different 

damage sizes and locations using an FEM model of the structure. Measured data was 

compared against these strain patterns to detect damage locations and damage 

severity. The main limitation of the method is that representative training sets for all 

damage types and damage percents have to be carefully chosen. The effect of noise on 

the ability of the ANN to detect presence and location of damage has not been 

discussed. In the paper it was reported that estimation of damage location was easier 

than estimation of the damage extent.  

In Lim (1996), ANNs were used for online identification of modal parameters (such as 

natural frequency, damping ratio, and mode shape vectors) at each measurement 

location in the structure. The filtered signal measured was used to train a neural 

network which consists of a linear neuron with 3 weights. A limitation of the method is 

the extremely high sampling rates required for accurate parameter estimation. The 

ability of the structure of the ANN to adapt with time has not been demonstrated in the 

experiments. 

1.1.3.2  Support Vector Machines (SVM) 

These are a set of supervised learning methods for classification and regression. When 

applied to a binary classification problem, the SVM technique involves finding the 

separating plane between the two classes of training data that maximizes the distance 

between the classes (Burges, 1998). The assumption is that the maximum margin 

classifier plane is the best decision boundary between the two sets of data. This 



 

13 
 

classifier plane can then be used to classify test data based on which side of the 

classifier the data point lies.  SVMs have been used for SHM by treating the damage 

detection and location problem as a classification problem. A feature that is derived 

from the vibration data measured on the structure is used by the SVM technique to 

create the maximum margin classifier between the datasets derived from the damaged 

and the undamaged structure. The maximum margin classifier can then be used to 

classify the structure into either healthy or damaged in the future. 

The main difference between ANNs and SVMs is the risk minimization. The risk is 

defined as the expectation of an error in classification of test data that is drawn from an 

unknown probability distribution. ANNs try to minimize the traditional empirical risk. 

The empirical risk is defined as the measured mean error rate on the training set (for a 

fixed, finite number of observations) (Bishop, 1995). SVMs use the “structural risk” 

minimization principle which minimizes a cost function based on the empirical risk and 

the complexity of the model (Burges, 1998). More is explained about structural risk 

minimization later in the mathematical background of SVMs. 

When using SVMs in multiple-class classification problems, 3 main approaches are used 

(Widodo, 2006): 

1) One Against All (OAA): constructs k SVM models where k is the number of output 

classes. 

2) One Against One (OAO): constructs k*(k-1)/2 classifiers where each classifier is 

trained on data from 2 classes. The final class is predicted using the largest vote. 
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3) Direct Acyclic Graph (DAG): constructs k*(k-1)/2 classifiers for training. During 

testing, a rooted binary direct acyclic graph is created which has k*(k-1)/2 internal nodes 

and k leaves. 

Widodo et al. (20007) summarize that so far the following parameters have been used as 

input features for damage detection in SHM: 

1) Couples, moments and other statistical features 

2) Frequency domain analysis 

3) Other parameters specific to the problem like, temp, depth of cut, feed rate etc. 

In Yang et al. (2005), a comparison has been made between the performance of SVMs 

and two ANN methods (self-organizing feature maps and learning vector quantization) 

for damage detection. Features are extracted using the wavelet transform from the raw 

noise and vibration data. It was found that SVMs and the Learning Vector Quantization 

(LVQ) were most accurate. 

Shimada et al. (2005) used SVMs to solve the multiple-class classification problem of 

damage detection and prediction of damage location. The change pattern of the natural 

frequencies with damage was used as a feature for training the SVM and later detecting the 

location of damage in the structure. Abbasion et al. (2007) used SVM with the radial basis 

function kernel to detect the kind of damage in roller bearings. The vibration data 

measured from the structure was denoised using wavelet analysis. Comparison of the 

damage type prediction results of SVM with other methods showed that SVMs required 

only one training set with 2 input dimensions to train the SVM classifier for many more (7) 

output classes. 
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Widodo et al. (2007) summarized the various machine condition monitoring and fault 

diagnosis applications using Support Vector Machines. They mention that SVMs perform 

better than ANN when generalizing from a small number of input data points or when there 

are a fewer number of dimensions in the training data. The use of SVMs for damage 

detection in structures like buildings or bridges is still missing. For a more detailed 

discussion on the methods used for cleaning data or for feature extraction the reader is 

encouraged to refer to Widodo (2007). 

Zhang et. al. (2008) tested the applicability of the support vector regression (SVR) 

method for the estimation of the physical parameters of the structure. The stiffness and 

damping parameters for a five-floor shear-building shaking table computed by the SVR 

technique were compared against values computed using the H-infinity method. The 

SVR method was found to perform better than the Least Squares method for the 

estimation of physical parameters of the structure from the vibration signal. A limitation 

of the parameter estimation method used in this paper is that only simple structures 

can be analyzed and the estimation becomes a challenge as the number of model 

parameters increases.  

Noori et al. (2008) used SVMs for damage detection and reliability assessment. The SVM 

classifier was used as an approximate limit state function for reliability analysis to 

calculate the probability of the structure to fail.  The paper also presented some 

representative results in this thesis.  

In the training stage SVMs require data from the undamaged and damaged structure.  In 

industrial applications, many samples of data for each class (damaged and undamaged) 
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are available.  However, the SVM technique is not directly suited for use in structural 

health monitoring of structures (like building, bridges etc.) because in real structures 

data is not available from both classes (undamaged and damaged) due to the 

irreversibility of damage. To address this challenge a mathematical model is generally 

used to simulate data for the damaged structure. Using a model of the structure to 

generate data has its own challenges because of modeling inaccuracies, non-linearity of 

the structure and the inability of the model to accurately predict the output of the 

structure for changing operating conditions and environmental conditions.  

1.2 Limitations of current methods 

An effective SHM strategy for a structure involves the application of both global and 

local SHM methods. The disadvantage of global SHM methods is that they are 

dependent on global properties of the structure which are insensitive to small local 

damage. The extracted properties are also sensitive to the location of the sensors and 

the location of the damage in the structure. Measurement noise in the vibration data 

poses a challenge to extraction of structural and modal parameters of the structure. 

SVMs applied for damage detection in industrial applications using modal properties 

(global) have proved very promising in their ability to be able to detect damage in the 

presence of noise. SVMs have been found to have very good generalization ability due 

to their underlying technique of maximizing the margin between 2 classes of the data. 

The main challenge while using SVMs for damage detection in structures is the 

requirement of data from the damaged structure during the training phase. To address 
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the issue of unavailability of damaged data from a structure, in this thesis, we propose a 

method to generate the damaged dataset from the undamaged dataset measured in the 

structure.  

1.3 The proposed methodology and expected results  

In this thesis a method is proposed to address the issue of dependence of SVMs on data 

from the damaged structure during training. In the proposed method, we derive the 

damaged dataset from the undamaged dataset. The undamaged dataset is acquired 

from the structure. Due to the unavailability of testing equipment, all the results 

described in this thesis have been derived from simulations.  

To create the training set of data for the SVM: 

1. Vibration data is first measured from the undamaged structure. 

2. Representative features of the structural health condition are extracted from the 

vibration signal. These features could be the natural frequencies, the mode shapes or 

some other numerical parameter extracted from the vibration signal. All the selected 

features form a so-called input feature space for SVMs and the number of features used 

is the dimension of the input feature space. In this thesis the first two natural 

frequencies have been used to represent a point in the input feature space of the SVM. 

Multiple points extracted from the vibration signal constitute the undamaged “class” of 

data. 

3. The dataset for the damaged class is then derived from the undamaged class of 

data by creating a copy of the undamaged class and then reducing the values of this 
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copy by “some” percent. This value of the percent reduction of the undamaged dataset 

depends on the spread of the data. The intention of the reduction is to create two 

separable datasets. The reduced values of the natural frequencies can be used to create 

the damaged class in the training dataset for the structure since damage in the structure 

would reduce the stiffness of the structure and hence the natural frequencies. It should 

be noted that the damaged class dataset has been derived from the undamaged dataset 

without using a numerical/FEM model of the damaged structure. 

4. Both the undamaged and damaged classes of data are then used in the SVM 

technique as training data. Using the training dataset, the best possible hyperplane is 

then computed between these two classes of data. The evaluation of the best 

hyperplane involves choosing the parameters of the SVM (discussed later), the optimum 

percent reduction of the training undamaged class and then solving the SVM 

optimization problem.  The health condition of a structure can then be predicted by 

finding on what side of the SVM hyperplane does a test point derived from the structure 

lie. 

 It is expected that the trained SVM will be able to detect damage present in the 

structure under different working environments. 

The SVM boundary was found to shift when the undamaged class of training data it was 

trained on was collected from a structure with damage in it. As the damage in the 

structure increased, the SVM boundary trained on it was found to shift gradually. A 

method has been proposed for online health monitoring based on this shift of the SVM 
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boundary. It is expected that the SVM boundary will act as an accurate indicator of 

damage in the structure. 

1.4 Scope of thesis 

In this thesis a method has been proposed to address the challenge of unavailability of 

data from the damaged structure to train the SVM. The issues that were faced during 

the development of the method are explained in the following sections. The applicability 

of the method to detect damage was then tested under different operating conditions. 

In the next section, the mathematical background of linear and non-linear SVMs has 

been discussed. This is followed by a description of the method of numerically solving 

the SVM technique.  

Due to the unavailability of measuring equipment, all results have been derived from 

simulations. After the mathematical background of the method has been developed, we 

discuss the numerical model that was used to derive all the results. It should be noted 

that though the method has been demonstrated for use with the 4 degree of freedom 

(DOF) model, it can be used for any general structure.  

Section 3 discusses the results that were obtained by applying the method for damage 

detection in the model.  The effect of different parameters in the SVM algorithm on the 

final hyperplane selected is explored. The applicability of the method is tested in this 

section under different working conditions.  The ability of the method to detect damage 

in different floors and the effect of sensor location on the sensitivity of the method is 

investigated. 
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Section 4 introduces an online SHM technique using the SVM boundary. This method 

provides an easy visual indication of the health condition of the structure.    

In Section 5, the conclusions from the study have been explained. Section 6 mentions 

areas where there is scope for improvement of the method to be able to apply the 

method more effectively for damage detection.  
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2 Methodology 

2.1 Mathematical background for SVMs 

Support vector machines (SVMs) are a set of supervised learning methods that have 

been used for the classification and regression of data. Supervised learning methods are 

machine learning methods that try to create a map between the inputs and outputs in 

the training data. The training data consists of points from each class with the expected 

output specified for each point.  

In this thesis damage detection of a structure is treated as a classification problem. 

During the training phase of the SVM, the algorithm finds the best hyperplane that 

separates data from the undamaged and the damaged structure in the feature space. 

The feature space is the space with the dimensions of the input data. 

In the SVM technique, the best hyperplane is that plane which divides the target classes 

with the maximum margin between them. The approach lends itself to a very interesting 

geometrical interpretation and has scope for further research based on its 

interpretation.   

The best hyperplane can be a “linear” boundary in the input feature space. There can be 

some cases where a linear boundary might not be able to separate the two classes of 

data adequately. In such cases a non-linear boundary can be used to separate the target 

classes better. The mathematical background for finding the best linear and non-linear 

boundary to separate the target classes has been explained in the next two sections. 
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2.1.1  Linear SVMs 

In this section we discuss the mathematical background for creating a linear maximum 

margin boundary to separate two classes of data. As an example, the figure below 

contains points that belong to two linearly separable datasets (Class 1: red and Class 2: 

blue respectively). There are an infinite number of planes that can be drawn between 

the 2 sets of points e.g. H1, H2, H3…etc. The best dividing plane is one that will 

maximize the distance between the closest points on both sides of that plane. For the 

plane H2, the closest points on both sides are P1 and P2. It should be noted that for a 

different plane H1 or H3 the points from both classes closest to them can be different 

from P1 and P2. In the given figure, H2 is the best dividing plane because its distance 

from the closest points on both sides (P1 and P2) is the maximum possible. The classifier 

H2 is equidistant from both points P1 and P2. 

 

Fig. 1: Best classifier between two classes of data  
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Applying this approach of finding the best classifier to the problem of damage detection 

in structures, in Fig. 2 the two classes correspond to two linearly separable datasets 

extracted from the undamaged and damaged structures. The features 1 and 2 are the 

parameters extracted from the vibration data of the structure. The best classifier is one 

that maximizes the distance between the closest points in both classes and the 

hyperplane (H1). The planes H2 and H3 are called margins and are parallel and 

equidistant from the plane H1. They pass through the closest points in both classes. The 

closest points appear to be supporting the margins outwards and hence are called the 

support vectors. The selected configuration is called the Support Vector Machine. The 

Equation for H1 can be written as   

     (1) 

where   is any point that lies on the separating plane (H1) and  is a vector 

perpendicular to the plane. The distance of the separating hyperplane from the origin is 

.  The parameter  can be normalized such that the regions away from the two 

margin planes (H2 and H3) in the two classes are can be represented by: 

H2:  for  = -1 and    (2) 

H3:   for  = +1, respectively.   (3) 

The region of Class 2 is:  and the region of Class 1 is:   

The labels for the target classes,  , have been chosen to be ±1 for convenience. The 

equations (2) and (3) can be combined into one equation: 

     (4) 



 

24 
 

The distance between the margin planes is: . The best separating plane H1 is that 

which maximizes the margin:  , which is equivalent to minimizing . Hence finding 

the best plane equates to minimizing . It should be noted that changing of the 

objective function from  to  does not change the solution of the minimization 

and the factor ½ is used for convenience. This minimization problem is now a quadratic 

programming problem with the objective function  under the constraints defined by 

equation (4).  

 

Fig. 2: Best classifier to separate Class 1 (data from undamaged structure) and Class 2 (data 

from damaged structure) 

The optimization problem can be solved by using Lagrangian multipliers. The advantage 

of using the Lagrangian formulation is that the constraint (4) is changed onto a 

constraint on the Lagrangian multipliers. Later during the training stage of the SVM, the 
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training data will appear only as dot products between vectors. The final objective 

function can be written as: 

    (5) 

where  are positive Lagrangian multipliers. This is the primal form of the objective 

function. The aim is to minimize  with respect to  and b while requiring that the 

derivative of  with respect to all   be zero for . The objective function of this 

optimization problem and the linear constraints are convex. The optimization problem with 

a convex objective function and convex constraints is convex. For a convex quadratic 

optimization problem, as above in (5), any local solution will be a global solution.  The 

Karush-Kuhn Tucker (KKT) conditions are a generalization of the method of Lagrangian 

multipliers to inequality constraints. For the SVM convex optimization problem, KKT 

conditions are necessary and sufficient for  to be a unique solution (Fletcher, 

1987). Finding the solution to the SVM problem is equivalent to finding the solution to the 

Karush-Kuhn Tucker (KKT) conditions. The KKT conditions for the above optimization 

problem can be defined as:  

      (6) 

         (7) 

        (8) 

          (8) 

     (9) 
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where d is the dimension of the training data. The parameter  goes from 1 to the number 

of training points. The equation (8) is called the Karush-Kuch Tucker complementarity 

condition. It states that for strict inequality constraints, , =0. For 

equality constraints, , ≥0.  

Due to its convexity, this minimization problem in the primal form can be changed into 

an equivalent maximization problem in the Dual form (Wolfe, 1961). This dual objective 

function can be calculated by taking the derivative of the primal form, (5), with respect 

to   while requiring . The Dual form changes the minimization problem of 

(5) with constraints, say C1, to a maximization problem with constraints, say C2, without 

changing the point at which the solution occurs. In the Dual form, the problem can be 

written as: 

      (10) 

Under the condition: 

       (11) 

In the Dual form of the optimization problem, all the constraints are placed only on the 

Lagrangian variables. This form of the equation has easier constraints than the 

inequality constraints in the primal form to work with. The Dual form also allows the 

application of a number of algorithmic techniques derived from optimization theory for 

computational convenience (Cristianini, 2000).  

The normal to the separating plane is calculated as: 

     (12)  
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The training of the Support Vector Machine involves maximizing  under the condition (11) 

and calculating the normal to the final classifier plane by eq. (12).  The variable “b” was 

evaluated implicitly in the optimization and its calculation would require substituting the 

values of support vectors  the corresponding class labels (  and the value of  in 

equation (4) for the equality constraint.  For numerical precision reasons, it is better to take 

an average over all points for which  are nonzero. 

The values of  are nonzero only for the points that lie on the margin.  These points are 

called “support vectors” as they can be viewed as supporting the margin boundaries 

outwards. For all other points in the training dataset   Support Vectors are the only 

points needed in the calculation of the normal to the separating plane using eq. (12). Once 

the SVM has been trained, all data points in the training set that are not support vectors can 

be moved in the feature space and as long as none of these points crosses over the margins, 

training on this changed dataset will create the same SVM boundary as earlier. 

The above classification problem only considers problems when the classes are separable. In 

case there are misclassifications (possibly due to errors in measurement), the dual problem 

would become very large. The current method can be adapted to suit the situation by 

introducing positive slack parameters ( ) into the equations of the margins. This in effect 

makes the margins act as “soft” boundaries capable of absorbing some misclassification. 

The modified equation of the margins is: 

H2:  for  = -1 and   (13) 

H3:   for  = +1 respectively.  (14) 

These functions can be combined into one function in the form: 

         (15) 
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For an incorrect classification, the parameter  has to be greater than one.  can provide 

a measure of the misclassification. The objective function of the minimization problem 

changes from minimizing  to minimizing ( ). Here the parameter 

C is a user selected cost parameter for incorrect classifications (nonzero ). The effect of 

this parameter on the final SVM boundary has been investigated in section 3.2.1.2. The 

optimization problem stays convex for any value of parameter p. For p=2 and p=1 the 

problem stays a quadratic programming problem and for k=1 the slack parameters 

disappear from the dual form of the optimization problem. The Dual form of the 

optimization problem for non-separable data is: 

       (16) 

It should be noted that the slack variables ( ) are missing from the dual formulation of the 

optimization problem. 

Under the condition: 

     ;     (17) 

            (18) 

And the SVM is calculated with 

        (19) 

The only difference in the above formulation from the separable case is the upper bound on 

the Lagrangian parameters. There number of Lagrangian parameters is equal to the number 

of training points and the magnitude of the Lagrangian parameter indicates the effect that 

the corresponding training point can have on the final separating boundary being 

calculated.  In the separable data case the upper bound of  was infinity, implying an 

infinite effect of each point in the calculation of the classifier. For non-separable data, the 
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condition  C can be interpreted as the maximum effect that any one point can have on 

the nature of the final decision boundary is limited. 

The primal form of the Lagrangian for the non-separable case is: 

   (20) 

Where   are Lagrangian parameters to enforce that  

 

The KKT conditions for the non-separable data are:  

                 (21) 

        (22) 

        (23) 

     (24) 

          (25) 

         (26) 

         (27) 

          (28) 

        (29) 

For all points where , from (29),  = 0. This result when used along with equation 

(23), means . Hence, all wrongly classified points are always support vectors and 

affect the calculation of the decision boundary to the maximum possible. The other support 

vectors have varying level of effect on the calculation of the calculation of the SVM. It 

should also be noted that  when . To calculate b, an average should be 

taken of the value calculated from equation (28) for all support vectors where . 
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From equation (29) it can be noted that when the inequality condition holds in equation 

(15), . This would mean that all points that are not on the SVM margins and which 

have not been wrongly classified do not affect the calculation of the SVM boundary. This 

reduces the amount of computation and the memory required to store matrices during the 

computation of the SVM boundary. As a comparison, if the normal to a simple regression 

line created for the training data was used for classification, all the data point would be 

required for the calculation and, therefore, the computation effort is expensive for a large 

amount of training data.  

Till now we have discussed situations where a linear boundary suffices to act as a separator. 

There might be situations where a non-linear boundary or classifier is more suitable. There 

is very minor modification required to the derivation done so far. Note that in equation (16), 

the linear non-separable dual objective function, the training data  exist only as dot 

products with other data points. This particular form lends itself to a very simple 

mathematical transformation called the kernel trick when modifying the linear classifier to a 

non-linear one, as described in the following section.  

2.1.2 Non-Linear SVMs 

Suppose we use a mapping function vector φ to project the data points  from the lower 

dimensional feature space, say L, to a higher dimensional space, say H.  

    φ: L→H     (30) 

After the mapping, the dot products between the points would change from  to 

. However, as the dimension of H can be very high, possibly infinite, 
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computations in it would be very expensive. One way to address the challenge would be to 

find a function K  such that: 

=      (31) 

then that would lead to multiple benefits while creating the SVM in the high dimensional 

space H.  Firstly, we do not need to calculate the mapping function  as we can just use this 

function K. Secondly, as the computations are done in the data feature space L, the 

computations take as much time as it would for unmapped data. The function K is called the 

kernel function. To modify our algorithm to create this SVM in the high dimensional space, 

we can now replace all dot products between points by their kernel functions. The 

optimization problem can now be written as: 

         (32) 

Under the condition: 

     ;     (33) 

      (34) 

And the SVM is calculated from  

         (35) 

It is important to note that the vector  is calculated in the higher dimensional space H and 

there might be no vector in the lower dimensional space L that can map to it. Also, even 

though the nonlinearities introduced by the kernel alter the quadratic form of the primal 

Lagrangian, the dual form is still quadratic in α. However, to use the SVM classifier for 

classification we do not need to calculate the value of  explicitly. To classify a test point we 

need to calculate to which side of the classifier plane does the test point lie. For a point z, 

the class that it lies in can be calculated by computing: 
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sgn   sgn     (36) 

where i = 1… number of support vectors; 

 : support vectors.  

By applying the kernel trick, this can be further simplified to: 

Class of point z = sgn(   (37) 

The point “z” for a damage detection problem will be a feature vector, derived from the 

vibration signal of the structure, which will be used to classify the structure into the 

undamaged and the damaged classes.  

An SVM always finds a global solution in comparison to an ANN where local minima 

might exist. For SVMs, since the objective function is convex, all local solutions are 

global. Strict convexity of an objective function means a unique solution. For a quadratic 

objective function, the Hessian of the objective function is positive definite if and only if 

the objective function is strictly convex. Hence for a quadratic objective function, if the 

Hessian is positive definite, the solution will be unique. For non-quadratic objective 

functions, a positive definite Hessian implies a strictly convex function but not vice-

versa. Hence, the objective function could be strictly convex (and resultingly the 

solution of the optimization unique) even for a positive semi-definite Hessian. If the 

solution calculated is not unique (which can happen only for a positive semi-definite 

Hessian), then there is a path between the 2 points that are solutions such that all 

points on this path are also solutions (Burges, 1998).  

In this thesis, we demonstrate the use, and later test, the proposed method for damage 

detection in structures using simulation data from a 4 degree of freedom spring-mass-
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damper model. It should be noted that though the use of the method has been illustrated 

for a 4-DOF system, it can be applied to detect damage in any structure. In the following 

section, the major steps involved with using SVMs for damage detection by the proposed 

method are explained. 

 2.2 Method for using SVMs for damage detection 

In this section, the procedure to use the SVM technique for damage detection in 

structures is explained. The proposed method for creating the damaged class of training 

data from the undamaged class has been demonstrated using data from simulation 

studies. All results have been derived for a 4-DOF spring mass damper system. The same 

procedure can followed to apply the method for damage detection in any structure. The 

main steps in the damage detection method are the measurement of data from the 

undamaged structure, creation of the damaged training class and training the SVM from 

this dataset. The methodology to test the generated SVM for damage detection in a 

structure has also been explained. 

2.2.1 Creation of “Undamaged” class of simulation data 

A 4 degree of freedom spring-mass-damper system was used to create the vibration 

data. The structure is assumed to be undamaged initially.  The Fourier transform of the 

vibration data collected from the structure is calculated using FFT to extract the natural 

frequencies of the structure. The first two natural frequencies have been extracted and 

form the two features of the input data. These features (2 natural frequencies) are the 2 
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dimensions of the input feature space.  In the following sub-sections we describe the 

model used in the simulations and the procedure to derive damaged class of data.  

2.2.1.1  4- DOF Spring Mass Damper Model used 

The 4 DOF system is used to represent a lumped mass model of a 4 storey building.  

 

Fig. 3: 4-DOF spring-mass-damper model 

The equation of the model is: 

   (38) 

The vector  is a 4 by 1 vector representing the lateral displacement of the 1st to 4th 

DOF of the structure with respect to the base. The other model parameters have been 

chosen accordingly to model lateral motion. 

In equation (38), [M] is the mass matrix defined by:  
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     (39) 

The values for the masses of each DOF are as follows: 

   (40) 

The stiffness matrix [K] in equation (38) is defined by: 

    (41) 

The stiffness of the springs is as follows: 

    (42) 

The effects of nonlinearities have been ignored in the model.  Rayleigh damping is 

assumed in this study, i.e. . The values of parameters α and β are 

0.2s-1 and 0.0015 s respectively. The resulting Modal Damping Ratios of the model 

were . The time step for the simulation was 0.02 

seconds and the total time for the simulation was 600 seconds. 

The natural frequencies and the corresponding modal shape vectors can be found by 

solving the associated eigenvalue problem (Rao, 2003): 

=0     (43) 

where  are the natural frequencies of the system. Their values were: 3.884 rad/s2, 

11.185 rad/s2, 17.136 rad/s2 and 21.021 rad/s2 respectively for the model. 

Fig. 4 shows the mode shapes of the 4-DOF model. 
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Fig. 4: Mode shapes for the 4-DOF Model 

2.2.1.2  Analysis of simulation data without measurement noise: 

The vibration data was simulated using the Runge-Kutta method for the 4-DOF 

numerical model (Rao, 2004). The initial conditions (displacement and velocity) were set 

to randomly generated values of reasonable order in the simulation. There was no 

excitation in the model and hence the results in this section are for free vibration of the 

structure under initial conditions. The structure was assumed to behave linearly with 

Rayleigh Damping.  

Fig. 5a is the free vibration signal simulated from the 4 DOF signal when there is no 

damage in the structure. It can be noted from Fig. 5(a) that the vibration signal dies out 

after some time due the presence of damping. The plot contains the displacement 

measurement of the 1st DOF (the lowest floor of the building). Fig 5b presents a 

zoomed in plot of Fig. 5a. 
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Fig. 5a: Free-Vibration simulation response for the 1
s t

-DOF with random initial conditions  

 

Fig. 5b: Zoomed in plot of Fig. 5a  
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2.2.1.3  Calculation of Fourier Transform of the vibration signal 

For this study the first two natural frequencies of the system have been used as input 

features for the SVM technique and constitute the feature space for the SVM classifier. 

To extract the natural frequencies of the system, the Fourier Transform of the 

simulation signal is computed by using the FFT technique. Fig 6 shows the Fourier 

amplitude spectrum of the vibration simulation from the 1st DOF of the model. It can be 

noted that the first two natural frequencies can easily be identified from the plot. A 

function was written in MATLAB to automate this process.  

 

Fig. 6: Fourier amplitude spectrum of the vibration simulation of the 1
s t

-DOF  

The length of time signal (seconds) for the simulation was 600 seconds with a time step 

of 0.02 seconds. The corresponding sampling frequency was 50 samples/second 

(=1/0.02). The frequency interval was0.00167 Hz (= 1/600). The Nyquist Frequency was 

25 Hz (=sampling frequency/2).  
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When extracting the natural frequencies from the signal, the readings of the first 5 

seconds were removed from the time signal to reduce edge effects. The values of the 

first two natural frequencies form the two dimensions of each training point. Multiple 

data points are calculated in a similar way from successive vibration signals collected 

(simulated) from the structure. To account  

 

Fig. 7: Undamaged class of data extracted from the vibration simulation of the 1
s t

-DOF of the 

structure 

for modeling error in actual measurements, a random variation equal to 2% of the RMS 

value of collected natural frequencies was added to the readings. These points form the 

undamaged class of data. Fig 7 plots the undamaged class of data containing 50 data 

points. The 1st feature for each data point if the 1st natural frequency extracted from the 

vibration signal and the 2nd feature is the 2nd natural frequency. 



 

40 
 

2.2.2 Creation of the “Damaged” class of simulation data 

As the SVM method is a supervised learning method, it requires data from both the 

undamaged structure and the damaged structure to be able to create a classifier during 

the training phase. In the proposed method we create the second class of training data,  

representing the damaged structure (“damaged” class), by creating a copy of the 

undamaged class (generated in the last section) and reducing the numerical values of 

data points in this copy by “some” percent. Fig 8a plots both the undamaged (blue) and 

“damaged” (red) classes of data for the 4-DOF model in the same figure.  

The motivation behind choosing a particular value of percentage reduction is to be able 

to create two separable sets of data (damaged and undamaged class). A detailed 

analysis for this choice is included in section 3.2.3.  For now, we will assume that the 

reduction of the values of the undamaged class to create the damaged class is 2%.  

 

Fig. 8a: “Undamaged” (blue) and “Damaged” (red) classes of data for the training dataset  
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The new dataset created by reducing the frequencies can be assumed to represent the 

damaged “class” of the training dataset since it is well known that damage weakens a 

structure and in turn generally reduces its natural frequencies. As an example, Fig 8b 

shows the percent reduction of the first two natural frequencies for different levels of 

damage in a structure model later used in this study.  

 

 

Fig. 8b: Percent reduction of the first two natural frequencies of the structure  with an increase 

in damage in K1. 

The reduction of frequency values of the undamaged structure to create the damaged 

class can be viewed as measuring natural frequencies from a damaged structure.  
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2.2.3 Development of the SVM classifier 

Once the training dataset has been created with data from the undamaged and the 

damaged class, we need to find the classifier that can separate them. Before we can 

calculate a solution to the optimization problem an important question that still remains 

to be answered is what functions can be chosen as kernel functions. The Mercer’s 

condition (Courant, 1953) states that: 

There exists a mapping  and a function  

         (44) 

if and only if, for any f(x) which has a positive L2 norm, or  is finite, then 

         (45) 

As it can be seen, checking the Mercer’s condition is not always a trivial task. For the 

dual form of the optimization problem to be positive definite the kernel function should 

satisfy the Mercer’s condition. Any function that satisfies the MERCER’s condition 

represents a dot product in some higher dimensional space H through a function   and 

can be used as a kernel function. 

The types of kernel functions that were used for the simulations in this thesis are: 

a) Linear Kernel:  

     (46) 

The only parameter required to be supplied to the SVM for training was the 

regularization parameter “C” in equations (18) and (34). The regularization parameter is 

a user selected cost associated with incorrect classifications.  

b) Polynomial Kernel: 
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     (47) 

When using this kernel in our simulations, we chose the parameter a = 0 for 

convenience. Both the order of the polynomial, p, and the regularization parameter of 

the SVM “C” needed to be selected while training the SVM using the polynomial kernel. 

c) Radial Basis Function Kernel (RBF):   

    (48) 

The parameters to be selected while training were the “width”, , and the regularization 

parameter of the SVM “C”.  It was found the training process was very sensitive to the 

parameter “ ”. Choosing a very small  always lead to perfect classification (zero 

classification error). However a very small “width”, , created a model that was over 

fitted to the training dataset. As a result, the trained SVM was able to learn the training 

dataset correctly but had poor generalization performance. In other words, if the 

dataset to be classified was different from the training dataset, the error of classification 

was high. If the value of  was too high, the curvature for the SVM trained was very low 

and the SVM trained was similar to the linear SVM. Such a model is called to be over-

generalized and leads to high classification errors both while training and testing. 

d) Sigmoid Kernel: 

    (49) 

We chose  =0 to for convenience (reduce iterations for parameter selection). The 

parameters to be selected during training were the parameter  and the regularization 

parameter of the SVM “C”. The hyperbolic tangent kernel only satisfies the Mercer’s 

condition for a small subset of values of the parameters  and . 
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Once the SVM parameters have been selected, calculating the SVM boundary amounts 

to solving the optimization problem in equation (32) - (35). To efficiently solve the 

optimization problem, any implementation of the SVM algorithm should proceed in the 

following manner to converge to a solution: 

 Break data into manageable sizes  

 Find a method to continuously and uniformly increase the dual objective 

function subject to the constraints 

 Checking that the KKT conditions are satisfied at the solution 

For this study I used the MATLAB toolbox “STPRTool” developed by Vojtech Franc at the 

Czech Technical University in Prague. This toolbox uses the Sequential Minimal 

Optimization (SMO) technique (Platt, 1998) to break a large training dataset for the SVM 

into smaller chunks that can be solved analytically and proceed towards a solution to 

the optimization problem defined in (33)-(38). There are two parts to this algorithm, one 

choosing which two Lagrangian multipliers to optimize in each step and another 

performing the analytical optimization. The two Lagrangian multipliers to optimize are 

selected by different heuristics. The first point selected is one that violates the KKT 

conditions the worst. After the selection of the first point, the second point is selected 

so that an updating of the two points would lead to a large increase in the dual 

objective. It should be noted that the method optimizes a subset of only two points at 

each step. The solution to the optimization problem of 2 points can be obtained 

analytically (Cristianini, 2000). The strength of this method lies in using the analytical 

solution and hence avoiding a resource intensive numerical optimization problem in the 

http://cmp.felk.cvut.cz/~xfrancv
http://cmp.felk.cvut.cz/cmp/software/stprtool/www.cvut.cz
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inner loop of the algorithm. As this algorithm does not require the complete training set 

to be present in memory for matrix computation during the optimization stage, the 

memory required for the SMO scales between linear and quadratic in the training set 

size for test problems. For a more detailed analysis of the SVM implementation using 

the SMO algorithm the reader is referred to Platt (1998), Cristianini (2000) and Franc 

(2004).  

2.2.4 Creation of the testing dataset 

We choose the “best” SVM classifier for the damage detection problem by testing the 

performance of classifiers trained of different SVM parameters on various training sets. 

Each classifier is tested by evaluating the accuracy of prediction of the SVM when used 

to classify the test dataset. The test data set is used at two stages in the methodology 

proposed. First, when the best SVM kernel and its parameters are being chosen and 

later when we recheck the value of the percentage shift that was assumed initially for 

creating the damaged class in the training stage.  The procedure for creating the testing 

dataset is the same in both cases. The points in the testing dataset, like the training 

dataset, have the values of their two dimensions equal to the first two natural 

frequencies of the structure. The testing dataset consists of data points from the 

undamaged structure (which can be measured) and data points from the damaged 

structure. The data from the damaged structure needs to be simulated from a model of 

a structure by reducing the stiffness of elements in the structure. From the simulated 

vibration signal, the natural frequencies are extracted as earlier, using the FFT, to create 

the damaged testing class of data. Datasets are created for different levels of damage in 
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the structure. The accuracy of the SVM classifier to detect different levels of damage is 

then evaluated by classifying these datasets. 

As the class of each data point in the testing dataset is already known, the target labels 

( ) can be assigned to the points accordingly. Once the SVM is trained on the training 

dataset, it is used to classify the test dataset. The known labels for a each point in the 

test set are compared against the predicted labels for each point to evaluate the 

performance of the trained SVM on the test set.  

3  Results 

3.1 Application of SVMs for damage detection 

For the selection of the best SVM kernel and its parameters, the performance of a range 

of parameters for each kernel was evaluated on the test dataset. A classification by the 

trained SVM is called an error if the target class it predicts differs from the known label 

of the point. For a given number of test points, the Error Rate is evaluated as the ratio of 

the number of points incorrectly classified in the testing set to the total number of input 

test points. 

The error rate indicates the ability of the SVM to predict damage in the structure. For 

example, consider a test set consisting of 50 points with “known” output Class 1 

(undamaged signal) and 50 points with “known” output Class 2 (damaged structure 

signal). Note that the testing set also includes the “known” target classification (“Class 

1” or “Class 2”) specified along with the input data. When the trained SVM was used to 

classify this test dataset, if the SVM predicted the output classes of 3 out of the 100 
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total points differently from the “known” classes, the SVM error rate on the dataset 

would be would be 3/100 = 0.03.  

In the damage detection problem without any measurement noise, the best SVM kernel 

was found to be the linear kernel and the regularization parameter “C” parameter was 

selected as 3000.   

Once the SVM parameters have been chosen, these parameters can be used to optimize 

the shift percent values that were used in the training stage of the SVM to create the 

damage class. With the best SVM parameters and the best shift percent, the best SVM 

classifier can be determined for the classification of structures into damaged and 

undamaged. Fig. 9 shows the SVM that was calculated given the training dataset 

created. Each class of training data consisted of 50 training points. It can be seen that 

the SVM calculated is able to clearly separate the training datasets into the undamaged 

(blue) and the damaged (red) classes. After training, prediction of the health of the 

structure only involves finding which side of the decision boundary the test point lies. It 

should be noted that as in this study only 2 natural frequencies of the structure were 

used, the analysis was performed in a 2-D feature space and the visualization of the 

linear SVM boundary was not difficult. For a higher dimensional data feature space, 

visualization of the boundary could be more complicated.  

The trained SVM was tested by classifying a test dataset in which the damaged class was 

created from a model of the structure with 10% reduction in stiffness of K1. 
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Fig. 9: Best classifier that was determined using the linear kernel and 3% shift for creating the 

damage class during training. The data shown above is the training dataset.  

 
Fig. 10: Classification results when the SVM boundary shown in Fig 9 was used to classify the 

testing dataset. The damage class of the testing dataset had 10% reduction i n stiffness of K1 

It can be seen that the trained SVM is able to classify the testing dataset for 10% 
damage in K1 with 100% accuracy. 
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3.2 Main issues faced: 

During the evaluation of the SVM, there are three variables that need to be checked to 

find the best SVM: 

I. The percent reduction of the undamaged dataset to create the damaged data 

II. The kernel function to be used for the SVM and  

III. The parameters of the kernel function chosen  

When choosing the best kernel function during the training phase, a value of percent 

reduction of the undamaged class is assumed. After the kernel function and its 

parameters are selected, the choice of percentage shift for creating the “damaged” class 

is optimized. The effect of shifting percentages on the accuracy of the SVM has been 

explored later in this section. 

As there are multiple kernel functions available, choosing the best kernel functions and 

it parameters is a challenge. The behavior of each kernel varies vastly based on its 

parameters chosen and in turn affects the SVM created using those parameters. An 

analysis has been done in the following section to illustrate the effect of kernel 

parameters on the SVM classifier. 

The effect of measurement noise and different working conditions on the performance 

of the method is also investigated in a later section.  
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3.2.1 Effect of parameters γ and C on SVM created 

After the two datasets (training and testing) are available, we decide the best kernel and 

its parameters by evaluating the performance of the SVMs for a range of parameters 

with each kernel function when used to classify the testing set.  

In the following section we investigate the effect of the kernel parameter (γ) and 

regularization parameter (C) on the SVM boundary finally created. Though in the cases 

that follow, the effect of kernel parameters (γ and C) has been demonstrated on the 

SVM boundary when using the RBF kernel, a similar effect is observed for the 

polynomial and sigmoid kernels also. The dataset that has been used in this section was 

artificially created to illustrate the concept. 

3.2.1.1 The kernel argument (γ)  

This parameter has different interpretations for the polynomial, RBF and the sigmoid 

kernels but affects the final SVM created using each in a similar manner. This parameter 

has no effect on the linear classifier. The exact formula for each kernel function is 

mentioned in section 2.3.3. For the polynomial, RBF and the sigmoid kernel “γ” affects 

the curvature of the SVM calculated. To demonstrate the effect of the change in “γ” on 

the SVM, we compute SVMs for the RBF kernel with different values of “γ” and a 

constant reasonable value of the regularization parameter “C” (=100). The effect of the 

parameter “C” on the SVM has been explored in a later section. 

a. Case 1: Very low “γ” (0.01) , Reasonable C (100) 
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In this case the RBF kernel parameter was 0.01. The number of kernel evaluations to 

compute the SVM was 294220, which is quite high. There were 179 support vectors 

(=number of training points) created during the training.  As the number of support 

vectors was equal to the number of training points, each point in the result is a support 

vector (circled points in Fig. 11). The width of the margin was 0.0752units. There was no 

training error (=0.00%). The training error is calculated as the error of classification of 

the training set with the trained SVM. A 0% training error means that the SVM was able 

to learn the training set.  

 

Fig. 11: Trained SVM with reasonable value of “C” (=100) and low value of “γ” (=0.1) 

Here the value of “γ” is very low. For the RBF kernel this parameters is the “width” of 

the radial basis function centered at each training point. The low width of the kernel 

leads to each point being learned by the algorithm. This would allow the SVM to learn 
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the training set completely and hence return 0% error when the trained SVM is used to 

classify the training set again. However, this is a highly overfitted SVM and would result 

in bad performance during the test phase for any set of data different form the training 

set. The time taken for the training was 0.2417 seconds. 

b. Case 2: Reasonable “γ” (2), Reasonable C (100) 

The value of the kernel parameter was reasonable (=2) in this case. The number of 

kernel evaluations to compute the SVM was 39382 with a computation time of 0.0349 

seconds which are both lower than case (a). There were 22 support vectors created 

during the training phase. As can be noticed this was much lower than the number of 

training points (circled points in Fig. 12). The width of the margin was 0.0403units, 

which is lesser than the case with a very low value of “γ”. The training error was 3.35%, 

which is more than case (a) as expected. However it should be noted from Fig. 12 that 

the training leads to a boundary that is able to classify the two datasets.  

 

Fig. 12: Trained SVM with reasonable value of “C” (=100) and reasonable value of “γ” (=2) 
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c. Case 3: High “γ” (10), Reasonable C (100) 

In this case we assume a “high” value of the parameter “γ”.   

The value of the kernel parameter was high (=10) in this case. The training required 

97784 kernel evaluations with a computation time of 0.1530 seconds. 

 

Fig. 13: Trained SVM with reasonable value of “C” (=100) and high value of “γ” (=10) 

The number of kernel evaluations and the time taken for the training phase is more than 

for case (b). There were 48 support vectors created during the training phase. This is 

expected as the width of the margin was larger than the margin in case (b) and more 

points lie within the boundary (Fig. 13).  The training error was 3.91%, which is more 

than case (b). This is because the boundary is very straight and hence is over-

generalized. This will increase the error at the margins when this SVM boundary is used 

for classification of the testing dataset.  

From the above study it can be seen that too low a value of “γ” or too high a value 

would lead to poor generalization performance (high error rate) of the SVM classifier. 
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3.2.1.2 The regularization parameter (C) 

The regularization parameter “C” is introduced into the SVM methodology to associate a 

cost for every incorrect classification during the optimization and to limit the effect that 

an incorrect classification can have on the final boundary. A high value of “C” would 

reduce the number of misclassifications in the final SVM. The parameter “γ” majorly 

affects the curvature of the SVM calculated; the parameter “C” controls the thickness of 

the margins on both sides. A high value of “C” would lead to a thinner margin on both 

sides and a slightly more curved classifier. A very low value of “C” would lead to a very 

broad margin on both sides of the SVM. 

We show the effect of the parameter “C” on the SVM calculated in the following 

section. 

a. Case a: Reasonable “γ” (2), Low C (10) 

In this case the regularization parameter was 10.  

 

Fig. 14: Trained SVM with low value of “C” (=10) and reasonable value of “γ” (=2) 
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The number of kernel evaluations to compute the SVM was 469837, which is quite high. 

There were 39 support vectors created during the training and the margin was 0.0758 

units.  The training error was 2.79%. The time taken for the training was 0.1148 seconds, 

which is comparatively high due to the large number of kernel evaluations.  The classifier 

boundary has low curvature. 

b. Case b: Reasonable “γ” (2.2), Reasonable C (100) 

 

 

Fig. 15: Trained SVM with reasonable value of “C” (=100) and reasonable value of “γ” (=2.2) 

In this case the regularization parameter was 100. The number of kernel evaluations to 

compute the SVM was 41590, which is lower than the case (a). There were 23 support 

vectors created during the training and the margin was 0428 units.  Both these numbers 

have reduced as an effect of increasing the value of “C”. The training error was still 

2.79% because the curvature of the SVM has not changed and then number of 
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classifications at the boundaries remains the same. The time taken for the training was 

0.0284 seconds, which is lower than case (a) since the number of kernel evaluations has 

decreased. The classifier boundary still has low curvature. 

c. Case c: Reasonable “γ” (2), High C (1000) 

The regularization parameter was selected as 1000 in this case. The number of kernel 

evaluations to compute the SVM was 152317, which is lower than the case (b). 

Increasing the value of “C” reduced the margins and resultingly the number of support 

vectors. The training error was still 2.79% though there is a slight increase in the 

curvature of the SVM. The time taken for the training was 0.0417 seconds, which is 

higher than case (b) since the number of kernel evaluations has increased.  

 

Fig. 16: Trained SVM with high value of “C” (=100) and reasonable value of “γ” (=2.2) 

It can be concluded from the above discussion that reasonable values of “C” and “γ” 

lead to the best performance for the SVM with respect to the times taken for 

computation and the generalization performance of the classifier. 
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3.2.2 Selection of the best SVM kernel and its parameters 

To select the best kernel and its parameters for the classification problem, SVM 

boundaries were calculated for different combination of “γ” and “C” values. The error 

rate was computed for the classification of a test set by each of these SVM classifiers.  

The test dataset consisted of the undamaged class and damaged class of data. The 

damaged class was created by extracting the natural frequencies from the simulation 

response of a model of the structure with reduced stiffness in K1 (10% reduction). Fig. 

17 – Fig. 20 plot the error rate for each kernel functions over a range of selected 

parameters values. 

 

Fig. 17: Error rates when the SVM classifier, calculated with the RBF kernel function on a 

range of “C” and “γ” values, was used on the testing set.  
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Fig. 18: Error rates when the SVM classifier, calculated with the linear kernel function on a 

range of “C” and “γ” values, was used on the testing set  

From figure 17 it can be seen that the error rates are high for very small values of “γ” 

and “C”. This is expected, from the last section, as a low value of “γ” leads to bad 

generalized performance and a small value of “C” does not penalize wrong 

classifications adequately. 

Comparing figure 18 with Fig. 17 it can be seen that the linear SVM leads to a low error 

(=0) rate for all values of C. The parameter “γ” does not affect the linear kernel. This plot 

also points to the fact that the data in the testing set was separable with a linear 

boundary. 

A look at Fig. 19 shows that the sigmoid kernel has a high error rate for all values of the 

kernel and regularization parameters and is not able to classify the classes. Fig. 20 shows 

that polynomial kernels are able to separate the classes in the testing dataset well for 
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low values of the parameter “γ”. The parameter “γ” in the polynomial kernel was used 

as the degree of the polynomial and a low value, close to one, would mean a near-linear 

boundary. 

The linear SVM boundary takes the least amount of time to compute and perfor ms well 

for the classification problem. Hence, the linear kernel with a value of “C” = 3000 was 

chosen in the simulations. 

 

 

Fig. 19: Error rates when the SVM classifier, calculated with the sigmoid kernel function on a 

range of “C” and “γ” values, was used on the testing set  
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Fig. 20: Error rates when the SVM classifier, calculated with the polynomial kernel function on 

a range of “C” and “γ” values, was used on the testing set  

3.2.3 Effect of percent frequency shifts in the training dataset 

After the best SVM parameters have been selected for the given dataset, the 

percentage reduction of the undamaged training set during training that was used to 

create the damaged training set needs to be revisited. If the shift of the dataset is not 

adequate, both the sets of data will overlap and it will not be possible to create a  

boundary separating the two classes of data. On training, this will create a classifier 

boundary that passes partially through the undamaged dataset. As in the Fig. 21 below, 

though the test data point was derived from the undamaged class, it is classified as 

belonging to the damaged class during testing. Such a misclassification gives a false 

indication of damage.  
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Similarly, if the percent reduction of the undamaged training class is too high during 

training, there might be a huge gap between the two classes of data during training. The 

classifier boundary created from such a training set would classify data points from 

structures with small amounts of damage as belonging to the undamaged class. This 

would reduce the sensitivity of the method to detect damage. 

To find the best shift percent we create the damaged class of the training datasets from 

different percent reduction values of the undamaged training class. SVMs are trained on 

each of these datasets and tested against the test datasets created using the simulation 

model. Each test dataset contains data from the undamaged structure and the damaged 

structure (percentage reduction of stiffness in the model). Multiple testing datasets with 

different damage levels in the model are created. Each trained SVM is tested on each 

test dataset to compute the error rate. This error rate indicates the ability of a particular 

percent shift to detect damage in the structure. 

Results compiled in figure 22 below show the ability of the SVM trained on 2% percent 

shift (black) to detect damage levels as low as 4%. The 1% reduction line in the figure 

has a high error rate for all damage levels because as described earlier it misclassifies 

undamaged data as damaged due a very small percent shift. An increase in the shift  

percent increases the minimum damage that can be detected. From the figure we chose 

2 % shift as the best shift for damage detection for this model.  
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Fig. 21: SVM linear classifier calculated if the percent shift of natural frequencies in the 

undamaged dataset is too small during training 

 

Fig. 22: Error rate versus percent damage for different percent reduction of the undamaged 

class during training. The error rate is calculated on a test dataset  
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3.2.4 Effects of measurement noise 

Real world measurements are always contaminated by noise from different sources in 

the working environment. The equipment for vibration measurement also has its 

limitations on data recording precision. These sources can all add up noise to a 

significant level and can make the structural modal parameters difficult to extract from 

the contaminated vibration data.  

In this section we introduce a cepstrum-like method to denoise the vibration signal and 

extract modal parameters from it. Fig. 23 displays the data from the damaged structure 

contaminated with measurement noise.  The Signal to Noise Ratio (SNR) of the signal is 

5. The signal to noise ratio is defined as the ratio of the RMS value of the meaningful 

signal to the RMS value of background noise. 

I. Preliminary analysis of simulation data  

a. Free vibration simulation data with measurement noise (SNR =5)  

The responses of the 1st DOF of the model without and with measurement noise are 

displayed in Fig 23 (a) and (b) respectively.  
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Fig. 23: Simulated free vibration response from 1st-DOF of model (a) without measurement 

noise (b) with measurement noise 

b. Fourier Transform of the noisy signal  

Fig.24 is the Fourier amplitude spectrum of the noisy signal in Fig 23. It can be seen that 

identifying the natural frequency peaks becomes a challenge in the noisy data. Errors in 

the extraction of the frequencies would affect the sensitivity of the damage detection 

method. To address this challenge, we require some method to denoise the data. 
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Fig. 24: Fourier amplitude spectrum of the noisy si mulated vibration response from the 1st 

DOF of the model 

2. Cepstrum-like technique to reduce the effect of noise from the Fourier 

amplitude spectrum of the signal 

To reduce the effect of noise in the noisy signal and make the extraction of the natural 

frequencies easier, we remove the higher frequency components from the Fourier 

Amplitude Spectrum of the signal by the following procedure:  

a. Calculation of the Fourier amplitude spectrum (FAS) of the Fourier amplitude 

spectrum of the signal: First the amplitude of the Fourier transform of the Fourier 

amplitude spectrum of the vibration signal is calculated (Fig 25).  
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Fig. 25: Fourier amplitude spectrum of the Fourier amplitude spectrum of the vibration 

response signal of the 1st-DOF of model with measurement noise  

b. Filter the Fourier amplitude spectrum of the signal by setting the points after  

first 500 points to zero:  
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Fig. 26: (a) above: The Fourier amplitude spectrum of the Fourier amplitude spectrum. 

(b)below: All point after 500 have been set to zero in the Fourier spectrum of the Fourier 

amplitude spectrum. The plots shows the amplitude of the Fourier spectrum of the FAS.  

To “clean” the noise from the Fourier amplitude spectrum, the values of the Fourier 

transform of the Fourier amplitude spectrum after the first few (=500 in this case) points 

are set to zero. This has the effect of removing the higher frequency components from 

the FT of the signal.  

 

c. Take the Inverse FT of the cleaned FAS of FAS of the vibration signal and then 

used the recovered signal to extract the frequencies. 
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Fig. 27: (a) above: The Fourier amplitude spectrum of the Fourier amplitude spectrum with all 

points after 500 set to a value of zero (b) below: the inverse Fourier transform of 27 (a) 

As can be seen from Fig. 27, the natural frequency peaks are easier to recognize from 

this cleaned signal as compared to the “unclean” FAS in Fig. 25. 

 

3.2.5 Effects of external excitation 

Outdoor structures are exposed to external forcing conditions like winds etc. which can 

be a major concern for vibration measurements. We introduce forces at the masses 

proportional to the wind excitation and test the ability of the method to detect damage.  

3.2.5.1 Effect on method in the presence of base excitation 
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Structures like buildings, bridges etc. are exposed to ground based ambient vibration 

which forces them to vibrate. This ground based excitation can originate from micro 

tremors, microseisms and various local and periodic sources (like traffic, heavy 

machinery etc).  An analysis of the change of the apparent natural frequencies of a 7-

storey building over a period of time was provided in Trifunac et al. (2001a and 2001b). 

Ivanovic et al. (2007) discuss the ambient vibration survey of the Van-Nuys 7-story 

building and the ability of the survey to provide conclusive information about local 

damage. In this section we introduce base excitation into the model and test the ability 

of the method to detect damage in its presence. Ambient excitations have a very small 

magnitude (order of 10^-4 m/s2). The ambient ground acceleration was modeled as 

white noise with a standard distribution of 0.0005 m/s2. We first found the best kernel 

and its parameters for the simulation data with base excited vibrations. This was 

necessary as the presence of excitation changes the nature of the vibration data 

collected from the structure. The linear kernel and the parameters used in the earlier 

case worked satisfactorily for this set of data. Once the best SVM parameters were 

selected, we recheck the validity of the initially assumed value of percentage reduction 

of frequencies for the training of the SVM.  

Fig. 28 shows that the SVM trained on 3% frequency reduction (shift) was able to detect 

the lowest damage (~6%). For our simulations we chose to reduce the undamaged class 

of the training dataset by 3 % as the best shift for detecting damage. The best curve for 

percent shift found in Fig. 28 has been presented in Fig. 29. 
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Fig. 28: Error rate versus percent damage for di fferent percent reduction of the undamaged 

class during training. The error rate is calculated on a test dataset. The training and testing 

datasets were derived from the model under base excitation  

 

Fig. 29: Selected best percent reduction of the undamaged class during training. The error rate 

is calculated on a test dataset. The training and testing datasets were derived from the model 

under base excitation 
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Fig 30 shows the SVM trained on the chosen kernel parameters and the selected 

percent shift for damage detection. It can be seen that that the SVM created is able to 

classify data clearly into two sets. 

 

 

Fig. 30: The training SVM classifier selected using the model under base excitation  

3.2.5.2 Effects of wind excitation on the damage 

Wind loading can be an important factor to consider when making dynamic 

measurements in a structure. To test the performance of the damage detection method 

in the presence of wind loading, we introduce forces at each degree of freedom in the 

model. The wind load on the building has been modeled as having a static component 

and a dynamic component. Both components of the load increase from the 1st-DOF to 

the 4th-DOF. The dynamic component of the load has been modeled as a white noise. To 

apply the method for detecting damage, the best set of kernel parameters was chosen 

from the training dataset. The training dataset contained data from the undamaged 
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class and the damaged class (created with an assumed value of reduction of the training 

undamaged class equal to 3%). It was found that in the model wind loading introduces 

larger forces on each DOF of the structure as compared to forces created by base 

excitation. 

An analysis of the SVM kernel and its parameters showed that the linear SVM had the 

best classification results when applied to the classification of the test dataset. The 

parameter C was chosen as: C = 6000. The parameter “γ” has no relevance for the SVM 

trained with a linear kernel. 

With the kernel parameters decided, we plot the error rate for different percent shifts 

to find the best shift percent. In fig 31, and SVM trained with 3% frequency shift can 

detect damage as low as 10%.  The curve for the selected shift percent (3%), decided 

from Fig 31, is displayed in Fig 32.  

 

Fig. 31: Error rate versus percent damage for different percent reduction of the undamaged 

class during training. The error rate is calculated on a test dataset. The training and testing 

datasets were derived from the model under wind loading  
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Fig. 32: Selected best percent reduction of the undamaged class during training. The error rate 

is calculated on a test dataset. The training and testing datasets were derived from the model 

under wind loading 

It can be noticed that the minimum amount of damage that can be measured without 

any error has increased from 6% (Fig. 29) for the model with only base excitation to 10% 

(Fig. 32) for the model with base excitation and wind loading. Fig. 33 shows the SVM 

created by training on the model under wind loading. 

 

Fig. 33: The trained SVM classifier selected using the model under wind loading  
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3.3 SVM performance for different damage locations 

In the above analysis, damage was introduced in the lowest floor in the structure. This 

was done in the simulation by reducing the stiffness of K1 in the model. In this section 

we will check the sensitivity of the method if damage is present in other floors. This test 

is important when a global property like the natural frequency has been used as a 

feature for damage detection. Before we proceed it is important to evaluate the effect 

of damage in different locations of the structure on the natural frequencies. Figures 34 – 

37 show the percent change in the 1st and the 2nd natural frequency for increasing 

amounts of damage in each DOF. It should be noticed that the damage in the 2nd floor 

does not affect the second natural frequency in this particular model.  

 

Fig. 34: Percent Change in natural frequency with damage in 1st floor  
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Fig. 35: Percent Change in natural frequency with damage in 2nd floor  

 

Fig. 36: Percent Change in natural frequency with damage in 3rd floor  
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Fig. 37: Percent Change in natural frequency with damage in 4th floor 

After an analysis on the performance of the SVM kernels and their parameters we 

selected the same kernel paramters as for earlier case when the damage was modeled 

in the 1st floor.  We then proceed to evaluate the best percent shift of the undmaged 

training class for damage in each floor in Fig 38-40. It could again be seen thatand SVM 

created with 3% frequency shift performed better than other shift percents for 

detection of damage though the damage detection ability with any shift percent was 

poor.   

The results for Fig. 38 indicate that the best percent shift (3%) can successfully detect 

damage above 20%. Fig. 39 and Fig. 40 indicate the minimum amount of damage that 

can be detected is approximately 12% and 15% for damage in K3 and K4 respectively. 

The results are poor for detecting local damage in the second floor. 
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Fig. 38: Error rate versus percent damage (in K2) for different percent reduction of the 

undamaged class during training. The error rate is calculated on a test dat aset. The training and 

testing datasets were derived from the model under wind loading  

 

Fig. 39: Error rate versus percent damage (in K3) for different percent reduction of the 

undamaged class during training. The error rate is calculated on a test datase t. The training and 

testing datasets were derived from the model under wind loading  
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Fig. 40: Error rate versus percent damage (in K4) for different percent reduction of the 

undamaged class during training. The error rate is calculated on a test dataset. The training and 

testing datasets were derived from the model under wind loading  

An investigation of the poor results for damage detection when the damage was in K2 

revealed that the nature of the training and testing dataset were different. This was 

because in the training set both the natural frequencies were reduced by the same 

percent to create the damaged class of data. Damage in K2 however does not affect the 

2nd natural frequency. This leads to improper training and poor results.  

To work around this limitation while keeping the dependence on modal analysis 

minimal, we modified the data creation method for the damaged training class to 

account for such situations when only few frequencies were affected during damage. 

The “new” training data set now consists of: 

a. only the first natural frequency reduced by 4% while keeping the 2nd constant  

b. only the 2nd natural frequency reduced by 4% while keeping the 1st constant  
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c. both the frequencies reduced together by (4/√2)%. The parameter √2 was 

introduced to keep the 3 training datasets of the damaged class equidistant from the 

undamaged class of the training datset. 

We reselected the best SVM paramters and the best shift percent of the undamaged 

class for this new set of training data. In this case, the RBF kernel performed the best 

and the parameters chosen were: γ = 1; C= 100. 

Fig. 41 shows the best shift percent versus the error rate for the percent damage in K2. 

From this plot we conclude that the best shift percent is 4% for this training set. The 

minimum amount of damage that can be detected by this method is ~10% which is an 

improvement over the damage from the earlier dataset. Fig 42-Fig 44 show the best 

shift percent versus the error rate for the percent damage in K1, K3 and K4 respectively 

using the RBF kernel.  

 

Fig. 41: Error rate versus percent damage (in K2) for different percent reductions of the 

undamaged class during training. The error rate is calculated on a test dataset. The training 

(“new”) and testing datasets were derived from the model under  wind loading 
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Fig. 42: Error rate versus percent damage (in K1) for different percent reductions of the 

undamaged class during training. The error rate is calculated on a test dataset. The training 

(“new”) and testing datasets were derived from the model  under wind loading 

 

Fig. 43: Error rate versus percent damage (in K3) for different percent reductions of the 

undamaged class during training. The error rate is calculated on a test dataset. The training 

(“new”) and testing datasets were derived from the model under wind loading 
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Fig. 44: Error rate versus percent damage (in K4) for different percent reductions of the 

undamaged class during training. The error rate is calculated on a test dataset. The training 

(“new”) and testing datasets were derived from the model under wind loading  

 

Fig. 45: The SVM classifier, trained on the “new” training dataset, selected using the model 

under wind loading 
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The results show that the SVM created using the RBF kernel (Fig. 41, 43, 45) performs 

better for damage detection that the SVM created using the linear kernel (Fig. 38, 39, 

40). The trained SVM for the “new” dataset is present in Fig 45. 

3.4 SVM performance for different measurement locations  

The above simulation results were calculated for vibration readings only from the 1st 

DOF. We test the applicability of the method for readings from the 2nd – 4th degrees of 

freedom when there is damage only in K1. The kernel parameters selected for the SVM 

were the same as when the measurements were made in the 1st-DOF with damage in 

K1. Fig. 46-48 show the error rate of classification when SVMs trained with different 

percent shifts are used to classify the test dataset. In Fig 46-48 the measurements are 

made in the 2nd, 3rd and the 4th DOF respectively. 

 

Fig. 46: Error rate versus percent damage (in K1) for different percent reductions of the 

undamaged class during training when the measurements are made in the 2 nd DOF. The 

training and testing datasets were derived from the model under combined wind loading and 

ambient base excitation 
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In Fig. 46, the best curve can be seen to be for a shift of 3%. It can be noticed that the 

minimum damage in K1 that can be measured with complete accuracy has increased to 

15% when the measurements are made in the 2nd DOF.  

In Fig. 47, the best curve is for a shift of 3%. It can be seen that the minimum damage in 

K1 that can be measured is about 13% when the measurements are made in the 3rd 

DOF. The results are not as clean as when the measurements were made in the 1st DOF 

because of a combined effect of a high level of excitation and lesser sensitivity to 

damage. 

 

Fig. 47: Error rate versus percent damage (in K1) for different percent reductions of the 

undamaged class during training when the measurements are made in the 3 rd DOF. The training 

and testing datasets were derived from the model under combined wind loading and ambient 

base excitation 



 

84 
 

 

Fig. 48: Error rate versus percent damage (in K1) for different percent reductions of the 

undamaged class during training when the measurements are made in the 4th DOF. The training 

and testing datasets were derived from the model under combined wind loading and ambient 

base excitation 

In Fig. 48, the best selected curve is for a shift of 4%. The minimum damage in K1 that 

can be measured is about 13% for measurements made in the 4th DOF. This is a 

combination of the presence of a high level of excitation and the fact that readings are 

made on floors that are not damaged. 

3.5 Application of SVMs for Online Health Monitoring 

The method developed can be used for online Structural Health Monitoring. A change in 

the structural properties due to either progressive damage due to fatigue and corrosion 

or abrupt damage caused by successive stresses would cause a corresponding change in 

the modal properties of the structure. Due to this change of properties, with time, more 

and more points tested against the old SVM boundary would be classified as belonging 
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to the damaged class. More points would be classified to the damaged class even 

though the structure might seem okay after manual inspection. To update the boundary 

as per the current health condition of the structure, fresh data can be collected from the 

structure and used to train a new SVM boundary. We define this boundary that 

represents the health condition of the structure as the “SVM safety margin”. The SVM 

safety margin would shift from the earlier boundary with time due to a change in the 

structural properties. The location of this new SVM boundary can be used as an 

indicator of the health condition of the structure. A limiting condition for the SVM safety 

margin can be decided by judgment for each structure to represent the limit of damage 

making the structure unsafe for use.  

The amount of shift of the SVM safety margin can be used to estimate the extent of 

damage caused to the structure. This would be very helpful to indicate the damage  

caused to the structure by strong motion and the effectiveness of retrofitting methods 

on a damaged structure.  

To test the ability of the SVM safety margin to detect damage in a structure, we trained 

SVM boundaries on data from increasingly damaged structures. This provides an easy 

visualization of the health condition of the structure with the gradual shift of the SVM 

boundary. We test the idea for 3 cases when there is no external excitation on the 

structure; there is ambient base excitation on the structure; there is combined loading 

from ambient base excitations and wind loading on the structure. In all cases the 

damage is modeled in K1 and the measurements are made in the 1st DOF. In the first 

case we investigate the shift of the SVM boundary when the training data is derived 



 

86 
 

from a damaged structure in the absence of any external loading. The SVM is trained for 

the parameters selection in section 3.1.4 when measurement noise was added to the 

simulation.  In Fig. 48 and Fig 49 SVM safety margins are calculated for undamaged, 10% 

damage, 20% damage and 30% damage in K1.  

 

Fig. 49: Shift of the SVM safety margin when trained on data from increasingly damaged 

structures in the absence of external loading. The SVM safety margins have been created for 

structures that are 0%, 10%, 20% and 30% damaged.   

It can be seen that as the training data is derived from structures with larger levels of 

damage, the SVM safety margins trained on them shift counter-clockwise. To make the 

visualization clearer, the boundaries were marked with different colors and the margins 

on both sides were removed.  
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Fig. 50: Shift of the SVM safety margin when trained on data from increasingly damaged 

structures without any external loading. The safety margins were colored for visualization 

In Fig. 51 the shift of the SVM safety margin has been investigated when the structure is 

affected by ambient base excitations. The best parameters for the training of the SVM 

have been used from section 3.1.5. It can be seen that the damage in Fig. 51 that there 

is a gradual progression of the boundary, though not ideal, as the damage in it 

increases. Fig. 52 illustrates the shift of the SVM safety margin when the structure was 

affected by combined loading from ambient base excitation and wind loading. The best 

parameters for the training of the SVM have been used from section 3.1.6. In both the 

above cases, the SVM has been trained for 0%, 10%, 20% and 30% damage in K1.  
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Fig. 51: Shift of the SVM safety margin when trained on data from increasingly damaged 

structures in the presence of ambient base excitations. The safety margins were colored for 

visualization 

 

Fig. 52: Shift of the SVM safety margin when trained o n data from increasingly damaged 

structures in the presence of ambient base excitations and wind loading. The safety margins 

were colored for visualization  
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From the above analysis that the SVM safety margin shifts gradually when the structure 

from which its training dataset is measured is increasingly damaged.   

4 Conclusion 

It this thesis a method has been proposed for using SVMs for structural health 

monitoring. The method has been illustrated by a simulation study with a four-story 

building model.  The method includes the following essential developments: 

1)  Creation of the damaged “class” of the training data for SVMs.  The 

unavailability of data from the damaged structure is a challenge for the application of 

SVMs for damage detection of structures. The proposed method creates the dataset 

representing the damaged class of data from the undamaged set of data measured on 

the structure by reducing numerical values of the undamaged dataset by some percent. 

As the natural frequencies are used as features of the data points, the reduced 

frequency values of the undamaged structure can be physically interpreted as 

representing the damaged structure. To account for the situation where only some 

frequencies are (one frequency in this case) affected by structural damage the damaged 

class of the training dataset consists of points created by reducing each frequency 

individually (while keeping the others constant) and also reducing all the frequencies at 

the same time.  

2) Development of a cepstrum-like technique to “denoise” the Fourier spectra of 

the vibration data for better extraction of the first two natural frequencies. The 

presence of measurement noise in the structure is a major challenge when extracting 
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the natural frequencies from the measured vibration signal. To address this challenge, a 

cepstrum-like method is proposed to “clean” the Fourier amplitude spectrum of the 

measured vibration signal by taking Fourier transform of the Fourier amplitude 

spectrum of the vibration data and then filtering out the high frequency part of the 

signal obtained. An inverse Fourier transform of the truncated cepstrum is implemented 

to get back a “cleaned” Fourier amplitude spectrum of the vibration signal. The 

cepstrum-like technique proposed was able to “clean” a reasonably noisy signal 

successfully.  

3) Development of SVM safety margin for structural health monitoring. It was 

found that the SVM classifier boundary shifted gradually when it was trained on data 

from a progressively damaged structure. These updated SVM classifiers may be used as 

good visual indicators of structural damage development and the most recent position 

for the SVM classifier (referred to as the SVM safety margin) can provide a qualitative 

assessment of structural damage and help to make an appropriate maintenance 

decision.  

In this thesis, several important issues related to the SVM classifier performance were 

extensively investigated. The optimal SVM parameters (the kernel and the regularization 

parameters) were selected based on an extensive comparison. The performance of the 

damage detection method was proven satisfactory in the presence of measurement 

noise, ambient base vibrations and wind loading. The damage detection methodology 

was sensitive to the location of the damage as expected since the natural frequency is a 

global property of the structure and might not be affected by small local structural 
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damage. The method was also sensitive to the measurement location in the structure 

since the ability to detect the natural frequencies (features used in this research) 

depends on the mode shapes of the structure.   

5 Future Work 

The results have been successful for detection of damage in all floors though the 

minimum amount of damage that can be detected varies for different locations. 

Possible alternatives could be the use of different set of parameters, instead of the 

natural frequencies, that are more sensitive to local damage. Some kind of averaging of 

the parameter could also prove to be a more accurate parameter for indicating health of 

the structure. In the presence of nonlinearities introduced by damage in the structure, 

such as a beam with a crack, it is expected that use of variation of the natural 

frequencies of the structure might not be enough for the SVM classifier to perform 

satisfactorily. A study should be conducted to check which new features are most 

effective damage indications and how they can be incorporated into the proposed SVM 

methodology for damage detection.    

To be able to successfully detect damage of this nature we modified the method of 

creation of the damaged class of the training dataset. The new training dataset 

consisted of a copy of healthy dataset when both the frequencies were reduced and it 

also included points when only one frequency was reduced and the others left constant. 

If more than 2 frequencies are measured, the training dataset would consist of a 

reduction of all frequencies and one frequency at a time. In this situation the Linear 
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SVM might not prove to be the best and that creates a large set of parameters to 

choose from when choosing the best SVM parameters. More research needs to be done 

to be able to associate the nature of the data with the kernels available.  A better 

understanding of the applicability of SVM parameters for different types of data would 

reduce the time to implement the method in real time. 

In the above study environmental factors have not been accounted for. The 

environmental conditions like moisture, temperature, winds etc. can cause huge 

variations in the structural response. A method to account for these effects on the 

structural behavior and correspondingly normalizing the input data to be tested would 

make the method more robust for real world application.  
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