RVC-1701

COORDINATED QUADROTOR
UNMANNED AERIAL VEHICLES

A Major Qualifying Project Report
Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science
In Aerospace Engineering

 totn L

i Nicholas E. Green

Keith P. Rockwood

Lo ==

Aaron M. Vien

Approved by:

A2
Prof. Raghvendra V. Cowlagi, Advisor

Aerospace Engineering Program, Mechanical Engineering Department, WPI

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at
WPI, please see http://www.wpl.edu/academics/ugradstudies/project-learning. html

Abstract

The objective of this project is to design and implement coordinated estimation and
control algorithms for a pair of quadrotor unmanned aerial vehicles (UAVs). One
UAV is designated as a "carrier” (UAV-C), and primarily carries payload. The
other UAV is designated as a ”sensor” (UAV-S) and carriers several sensors to
perceive the environment and to track UAV-C. The estimation and control algorithms
enable UAV-S to reduce navigational uncertainty for UAV-C, which has a relatively
small number of sensors. The sensors installed on UAV-S include a LiDAR depth
sensor and a camera. An open-source vision-based tracking software package called
Apriltag is used to enable tracking of UAV-C by UAV-S. The commercially available
3DR Solo UAV is used as a platform. For each UAV, this platform is modified
by attaching a Raspberry Pi embedded computer, which provides high-level flight
commands to the native autopilots. A socket server is developed to enable direct
wireless communication between the two embedded computers. The linear quadratic
regulator (LQR) and Extended Kalman Filter (EKF) tools from control theory are
used to design the desired estimation and control algorithms. These algorithms are
implemented using the Python programming language to execute on the Raspberry Pi
computers. The system is tested with a flight test involving the two UAVs following
a straight line trajectory. Other laboratory bench tests, software unit tests, and flight
tests are performed to validate the proposed system design.

Contents

1 Background 1
1.1 Introduction 1
1.2 A Brief History of the Unmanned Aerial Vehicle 1
1.3 Guidance and Navigation 2

1.3.1 Navigational Uncertainty 3
1.3.2 Kalman Filtering 3
1.3.3 LiDAR Sensor in Navigation 4
1.4 Multiple Unmanned Air Vehicle System 4
1.4.1 Potential of Multiple UAVS 5

2 System Design and Configuration 6

2.1 Sensor Configuration L 6
2.1.1 Obstacle Avoidance Sensors 6
2.1.2 Additional Sensors 7
2.1.3 Image Processing Software Selection 8

2.2 Quadrotors as UAVs. 9
2.2.1 Multiple Quadrotor Unmanned Air Vehicles 9
2.2.2 UAV-C and UAV-S Selection 9

2.3 Computational Hardware Selection 10

2.4 Inter-UAV Communications 11
2.4.1 Wi-Fi Connection Between Raspberry Pis 11
2.4.2 Communication Protocol with Python 12

2.5 Electrical Powering Lo 13
2.5.1 Solo 3DR Power Analysis, 13

2.6 Hardware and Sensor Mounting, 15
2.6.1 Payload 15
2.6.2 Prototyping 16
2.6.3 Manufacturingo 17

3 System Installationo L 18

3.1 UAV-S Installation 18
3.1.1 Mount Attachment 18
3.1.2 Sensor Battery Mounting 18
3.1.3 MAVLink Flight Scripts 19

3.2 UAV-C Installation, 19
3.2.1 MAVLink Flight Scripts 19

3.3 Communication Installation, 20
3.3.1 Sensor Communication and Socket Server 20
3.3.2 Apriltag 21
3.3.3 Inter-UAV Communication 22

4 System Simulation 23
4.1 Dynamic Model 23
4.2 Controllers e 24

4.2.1 Attitude Controller oL 24
4.2.2 Position Controller 24

4.3 Two State Kalman Filter 25

4.3.1 Equations of Motion and Measurement Model 25

i

4.3.2 BEstimators 27

4.3.3 Twelve State Kalman filter 28

5 System Testing and Experimentation 29
5.1 TIER T . o o o o 29
52 TIER IT 29

6 Results and Conclusions L 31
6.1 Apriltag Field of View 31
6.1.1 X Displacement oo 32

6.1.2 Y Displacement 32

6.1.3 Z Displacemento 32

6.2 Flight testing with Apriltags 33
6.3 Areas for Further Development, 34

il

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
4.11
6.12
6.13
6.14

Comparison of Obstacle Avoidance Sensor Attributes 6
Comparison of Camera Attributes 9
Comparison of Quadcopter Models. 10
Comparison of Communication Attributes 11
Component List, Current Draw, and Weight 13
Unweighted Time of Flight 14
Method One: Actual Time of Flight 14
Method Two: Actual Time of Flight 14
Sensor Weights and Remaining Payload 16
Comparison of 3D Printable Material Attributes 17
Notation used in 2-D Kalman filter 26
Indoor X Displacement Apriltag Evaluation 31
Indoor Y Displacement Apriltag Evaluation 32
Indoor Z Displacement Apriltag Evaluation 32

v

Authorship Table

| Section | Author | Editor | Project Work |
1.1 Introduction JG JG, KR, CM JG
1.2 A Brief History of the UAV KR JG, KR, CM KR
1.3 Guidance, Navigation, and Control KR JG, KR, CM KR
1.4 LiDAR Sensor in Navigation NG JG, KR, CM NG
2.1 Sensor Configuration NG, KR, CM JG, KR, CM NG,KR,CM,AV
2.2 Quadrotor UAVs KR All KR
2.3 Computational Hardware Selection AV All AV
2.4 Inter-UAV Communications AV All AV
2.5 Electrical Powering JG JG, KR, CM JG
2.6 Hardware and Sensor Mounting CM JG, KR, CM, NG CM
3.1 UAV-S Installation CM JG, NG CM, JG, AV
3.2 UAV-C Installation CM JG, NG CM,JG, AV
3.3 Coordination Installation AV NG JG,AV NG,AV
4.1 Dynamic Model KR JG, NG KR, JG
4.2 Controllers KR JG, NG KR, JG
4.3 Two State Kalman Filter RVC JG, NG RVC
5.1 TIER I CM,JG JG KR All
5.2 TIER II CM,JG JG KR All
6.1 Apriltag Field of View CM JG,KR All
6.2 Flight testing with Apriltags JG KR,JG All
6.3 Areas for Further Development JG KR,JG All

1 Background

1.1 Introduction

Flight, and the pursuit thereof, has captivated mankind for centuries. More recently
however, military and civilian applications call for aircraft that fly themselves
(Everett and Marino pg 271, 2015), to minimize the risk inherent in flying for
human pilots. Remotely operated vehicles (ROVs) and unmanned aerial vehicles
(UAVs), are the products of this search.

Beyond minimizing risk for pilots, UAVs open many paths to applications
previously impractical for piloted aircraft. This is evidenced by the rapid growth in
the UAV market, with worldwide UAV production to more than triple in the next
decade (Teal Group Corporation, 2015). Applications of UAVs include security,
reconnaissance, search and rescue assistance, wildlife monitoring, crop dusting,
telecommunications relay, and commonly photography. Each task has a certain set
of requirements that make one type of UAV more effective than another. Tasks that
require traveling long distances or require extended periods of flight, need larger
UAVs with more payload capacity. These tasks are best suited for aircraft with
fixed wings. On the other hand, tasks like photography or search and rescue, where
maneuverability is the primary concern, are best suited for quadrotor UAVs.

Even within the quadrotor variety of UAVs, there are many different configurations
and variations in design based on the desired task. Some UAVs are large with
extended flight time and payload capacity increase, but come with increased cost.
For a specific task there is a set of parameters that must not only be met, but
optimized so that the job can be completed in the most efficient manner. Often
times, large UAVs are not the most efficient tool for certain tasks where cost and
size are important variables.

This project addresses the specific applications where sending a set of two smaller
UAVs is monetarily savy and more efficient in terms of size and noise generation
than sending one larger UAV. One possible way to split up the tasks necessary for
flight is to allocate one UAV for navigation and guidance (UAV-S), and the other
for payload carrying (UAV-C). The goal of this project is to create a proof of
concept model showing that it is possible to have coordinated flight between two
autonomous UAVs, providing support for their use as a feasible alternative to large
single UAV systems. This is done by allowing the UAV-S to provide the UAV-C
with a better estimate of its own position than the UAV-C can provide for itself.
The project shows proof of concept by having a UAV-S guide a UAV-C from point A
to B, which, with future work, means the system can be expanded to complete more
difficult tasks. The project also integrates a LIDAR system onto the UAV-S to allow
for that better estimate of the UAV-C position, as well as for obstacle avoidance.

1.2 A Brief History of the Unmanned Aerial Vehicle

One of the earliest predecessors to the modern day UAV dates back to 1910.
Thomas R. Philips, a consulting engineer from Liverpool England, created a
twenty-foot model dirigible. This dirigible was capable of hovering, steering, and

conducting other aerial maneuvers like “figure eights” (New York Times, 1910). The
aircraft was controlled by radio commands transmitted from a control apparatus on
the ground. These control commands directly manipulated certain propellers to spin
clockwise or counterclockwise. Philips designed the dirigible to contain bombs in an
effort to radically change how wars were fought (New York Times, 1910). Early
UAVs shared a similar purpose, often developed through research in aerial
torpedoes (Everett and Marino pg. 271, 2015). Both the United States Army and
Navy funded research into developing these unmanned torpedoes, however World
War I ended before they could be implemented on the battlefield (Yanushevsky pg.
2, 2011). As interest was fading, these unmanned vehicles were still unable to
reliably reach or intercept their respective targets.

During the interwar period, the United States military considered utilizing UAVs as
training tools. The US Navy was one such military branch, but their project went
dormant in 1925 after a failed test (Keane and Carr, 2013). The British Royal Air
Force was not as easily dissuaded and created an aerial target during the 1920s.
This target helped to train the anti-aircraft gunners of the Royal Home Fleet
(Keane and Carr, 2013). The success of the British system caused the US Army and
Navy to revamp their underdeveloped aerial torpedo systems and incorporate them
in training. The US Navy conducted a series of UAV tests involving piloting
bomb-carrying UAVs into moving naval targets (Keane and Carr, 2013). Impressed
by their success, the Navy deployed UAVs in the Pacific Theater, where they
conducted a number of successful missions against Japanese military targets (Keane
and Carr, 2013). The US Army also attempted to design their own remote
controlled bomb laden B-17 torpedoes, although their system was inoperable.

The postwar years resulted in further evolution in the design of the UAV. With the
onset of the Cold War and the downing of U-2 spy planes, the US Military desired
unmanned reconnaissance aircraft. Target drones were retrofitted to include spying
capabilities. This time period also birthed the utilization of UAVs as weapon
platforms, hunting for submarines for the Navy and launching missiles and bombs in
Vietnam (Keane and Carr, 2013). Multirotors are an invention that dates back to
the interwar period. Etienne Oehmichen created a rotorcraft in 1924 driven by four
rotors and eight propellers. Also known as Helicopter No. 2, this rotorcraft
conducted more than one-thousand successful flight tests. It also demonstrated the
ability to fly in circular motion. (Spooner, 1924). The drawback to the multirotor
design is that the aircraft is inherently unstable. This instability is caused by the
weight of the craft being suspended between the rotors. Constant feedback
adjustments to the rotor speeds are therefore necessary for level hovering and flight.
However, the recent developments in modern control theory and electronic
autopilots has allowed for the creation of multirotor UAVs. These autopilots can
easily perform the rotor adjustments needed for hovering, leaving human pilots able
to focus on guidance and navigation.

1.3 Guidance and Navigation

In the realm of fully autonomous UAVs however, there are no human pilots
involved. Instead, on-board flight controllers are responsible for running guidance,
navigation, and control algorithms for the aircraft. Guidance algorithms generate a

trajectory for the aircraft, steering it from one location to another by determining
the needed accelerations (Yanushevsky pg 4, 2011). These guidance algorithms may
rely on data from navigation sensors, which provide an estimation of the aircraft’s
state (i.e. position and heading). The control algorithms take the trajectory
generated by the guidance algorithms and utilize the system’s actuators to modify
the system’s state to follow the desired trajectory. For fixed wing UAVs these
actuators are elevators, ailerons and rudders, while for multirotors the actuators are
the motors of the aircraft (Yanushevsky pg 5. 2011). These control algorithms may
also incorporate feedback from navigation sensors to determine when the desired
state has been achieved. Working in tandem, the guidance and control algorithms
along with appropriate sensor measurements enable autonomous vehicles to conduct
a multitude of tasks without the aid of human operators.

1.3.1 Navigational Uncertainty

The goal of any type of navigation system is to determine the position of a location
within a certain coordinate frame (Rohel pg. 1, 1937). Navigation systems use a
variety of methods to make this determination, including celestial navigation, radio
navigation, and inertial navigation. Quadcopter UAVs typically use a combination
of radio navigation from GNSS satellites and inertial navigation from on-board
inertial measurement units (IMUs). While either one of these sensors would in
theory enable accurate navigation, in practice all sensors exhibit measurement noise.
For GNSS sensors, this uncertainty primarily stems from atmospheric delays and
multipath errors. Uncertainty in IMU based navigation stems from integration of
their starting conditions, which means noise in the initial condition measurements
causes errors to propagate through time. This uncertainty from navigational sensors
limits the determination of concrete position for a location. Instead, the
navigational sensors provide a best estimate and the algorithm generates a range of
possible positions, which we refer to as a ”ball of uncertainty” for the true state of
the location. This ball of uncertainty can be reduced by using more precise sensors,
or by applying estimation techniques such as a Kalman Filter.

1.3.2 Kalman Filtering

The Kalman filter is an algorithm that incorporates a predictive model and a
corrective model to attain a more accurate estimation of a system’s state. (Bishop
& Welsh pg.26, 2001). The predictive model takes the state and covariance
estimates from the last time step and predicts what they should be at the current
time step. Next a Kalman gain is computed based on the estimate error covariance
and measurement error covariance. This gain constant is then used in a recursive
step that compares both the predicted state and estimate error covariance with the
measured state and error covariance. Ultimately this comparison yields updated
state values and estimate error covariance. These updated values are then fed into
the predictive model, and the process repeats. In this way the most accurate value,
or best guess, of the actual position is found, given the sensors available to the UAV.

1.3.3 LiDAR Sensor in Navigation

Light Detection and Ranging, or LiDAR, sensors are one of the many ways to
determine distances to objects. LiDAR functions by emitting brief pulses of light
and recording the time it takes for the particles to be reflected. LIDAR was first
used in the early 1960s by the National Center for Atmospheric Research (NCAR).
These sensors were used to measure the distance to clouds in the sky (Goyer, 1963).
LiDAR works in a similar fashion as radar, which uses radio waves to determine
distances from a point source, whereas LiDAR uses lasers of varying frequencies.
One of the advantages of LiDAR is the degree of accuracy that can be obtained
using this sensor. LiDAR can be used to map the terrain below an aircraft with a
resolution of 30cm or less (Carter, 2012). Due to the accuracy obtained by these
sensors, LiIDAR is the premier method of creating digital elevation models. LiDAR
is also used for obstacle avoidance on autonomous aircraft, including the Boeing
AH-6 helicopter, which uses LiDAR to navigate without a pre-programmed flight
path (Koski, 2010).

1.4 Multiple Unmanned Air Vehicle System

The most influential parameter to consider when designing a small-scale quadrotor
UAYV system, is the relationship between the vehicle’s maximum thrust and weight.
An optimally stable configuration would allow the quadrotor to roll and pitch to
move transitionally without immediately losing altitude. This optimally stable
configuration is typically met when the maximum thrust is equal to twice the
weight of the quadcopter. This relationship is important to remember in light of
modern UAV trends, namely that many companies are envisioning using
quadcopters as delivery vehicles (Anthony, 2013). On account of the desired thrust
to weight ratio, any added payload requires twice as much additional thrust. This
increased thrust in turn requires a stronger, and most likely a heavier, frame to deal
with the increased bending moments from the motors.

Another consideration for small scale UAV systems is the need for on-board
computing and sensors. Frequently, additional sensors must be attached to UAVs to
conduct specific tasks, for instance camera gimbals for photography or LiDAR for
surveying. In turn, computational power is required to control these sensors and
process their output. The flight controllers incorporated in commercial UAVs are
typically too specialized to handle these computing requirements, and so an
additional computer must be attached to the UAV. The UAV must also carry the
mounts and cases for these often fragile devices. These various additions to the
UAV quickly alter the moments of inertia of the aircraft, which can render the
control algorithms to be inaccurate. Not only does the quadcopter become more
complex because of this chain of modifications, its price tag grows substantially as
well. An alternative to this painful process is to utilize multiple smaller quadcopters
instead of a single larger one.

1.4.1 Potential of Multiple UAVS

The coordination of multiple UAVs in the same system to perform a single task
allows for a unique separation of duties. This coordination may take on the form of
multiple vehicles collaborating on the same specific task, such as two UAVs lifting a
large net to clean pollution in the ocean. Alternatively the task could be divided up
and each UAV assigned a portion to complete. This concept can be applied to
package delivery, with one UAV carrying the package, while the other UAV guides
and navigates the UAV pair. UAV-C is the term used for the vehicle that will
transport cargo. In this way, a dual UAV system has the potential to be the most
efficient tool for the described tasks, and a proof of concept is therefore necessary to
determine whether a system of this nature is feasible and economical.

2 System Design and Configuration

To fully develop a multiple quadrotor UAV system there were several design
features to consider. These features included sensor type, processor type, UAV
communication type, powering type and method, as well as the type of mount
attaching the components to the base quadrotor. Due to time constraints, designing
a quadcopter from scratch was considered impractical within the time constraints of
this project. Instead, the base quadcopters were purchased, selected after
considering several off-the-shelf models, so that the required payload capacity was
exceeded for the chosen sensors. Other design choices followed, each facilitating the
subsequent decision making process, until the final system was determined.

2.1 Sensor Configuration

The sensor selection was at the crux of the overall system design, and was naturally
the starting point. The system’s sensors were tailored to best complete the desired
task, which in the case of this project involved the UAVs navigating from one point
to another while avoiding obstacles. Furthermore, the sensors needed to allow the
UAV-S to measure the physical state of the UAV-C, in order to provide the UAV-C
with greater positional certainty through Kalman filtering. Most quadcopters
already contain GPS receivers and Inertial Measurement Units (IMUs). When
combined, these sensors can compute the entire state of a quadcopter. Once the
state of each UAV is effectively measured, this information can be used in
conjunction with environmental information to avoid obstacles while navigating to
the desired destination.

2.1.1 Obstacle Avoidance Sensors

In order to expand the possible operational environments for the UAVs, the system
requires sensors for obstacle avoidance. With additional sensors the UAVs can safely
operate in unknown or changing environments. LiDAR, sonar and cameras were
considered for obstacle avoidance. The properties of each sensor type are
summarized in Table 2.1.

| Attributes | LiDAR | Sonar | Cameras
Measuring UAV-C State Moderate Difficult Moderate
Positional Uncertainty 2D Ellipse | Elliptical Cone | Stereoscopic Images
Sensors Needed for 2D Operations 1 8 4 Stereoscopic
Ease of Use Moderate Difficult Difficult
Sensor Weight 200g 35g each 24g each
Price (USD) $350.00 $240.00 $210.00
Supporting Documentation Moderate Scarce Plentiful

Table 2.1: Comparison of Obstacle Avoidance Sensor Attributes

As a result of the analysis presented by Table 2.1, the LiDAR is the best choice for
local navigation and obstacle detection. While the LiDAR sensor is the most
expensive and heaviest option, only one is needed for planar operation if mounted
on a gimbal, or a fixed rotating platform mount. The LiDAR mounted on a gimbal
operates by emitting a laser, measuring the time until the light returns which is fast
enough for the component to take a full rotations worth of measurements in less
than a second and lastly outputs indexed data of the distance the laser was able to
travel before hitting something.

Most light weight cameras do not possess the refresh rate to be mounted via gimbal
and produce as high of fidelity measurements as a simple laser can. As such the
practice of multiple fixed sensors was evaluated. Sonar sensors’ limited field of view
requires eight or more copies of this component in order to cover the same 2-D plane
that the LIDAR does. The cameras face a similar challenge. While lighter and
cheaper than the LiDAR, there would need to be a camera on the UAV’s left, right,
fore and aft to achieve the same desired outcome. Additionally, these cameras would
need to be stereoscopic to provide depth data and would require significant
computational processing resources to process four live camera feeds simultaneously.
The RPLiDAR A2 sensor by SLAMTEC is a 2D LiDAR that is mounted onto a
gimbal platform. This sensor utilizes a laser triangulation measurement system and
performs well in indoor and outdoor environments without direct sunlight exposure.
The sensor can operate at a maximum rate of 4000 samples per second with a range
of up to 6 meters. Additionally, this sensor is advertised for many similar
applications as a high fidelity, lightweight and relativity low-cost option.

After purchasing and testing the RPLIiDAR A2 sensor, it was apparent that it was
not feasible for the LiDAR to detect UAV-C alone. As Figure 2 reveals, it is difficult
to use LiDAR to discern the location and orientation of specific objects. This meant
that using LIDAR alone, UAV-C was indistinguishable from the environment. As a
result, this greatly limited the ability to measure the state of UAV-C and increased
the uncertainty in the measurements. Due to the described limitations of the
LiDAR device additional UAV-C detection methods were considered.

2.1.2 Additional Sensors

Various sensors were considered to measure the UAV-C positional and dynamical
state. Pure depth sensors were quickly ruled out, as they would have the same
trouble measuring UAV-C’s states as the LIDAR. To simplify the decision making
process a further assumption was made for the quadrotor UAV system, that UAV-C
would always be behind UAV-S. This assumption allows a single rear pointed
camera on UAV-S to always have line of sight contact with UAV-C. For this
purpose, two types of cameras were considered and are compared in Table 2.2.
The Raspberry Pi camera is superior as it has better documentation and is
presently available from previous contributors to this project. It also previously
works with the well documented Raspberry Pi computer, while the Realsense
requires a special Intel processor to function.

7

Figure 1: SLAMTEC’s RPLiDAR A2

6.4 Hz (386 RPM)

Figure 2: Example of the LiDAR outputs in SDK

2.1.3 Image Processing Software Selection

In order to gain useful information about UAV-C from the camera, image processing
software is required. Two image processing libraries were considered. The first
library considered was OpenCV, which allows for a high level of customization and

| | Raspberry Pi Camera | Intel Realsense |

Ease of measuring UAV-C state = =
Ease of use Moderate Difficult
Total sensor weight bg 8g
Price (USD) Already Owned $150
Supporting Documentation Moderate Scarce
Processor Required Raspberry Pi Intel

Table 2.2: Comparison of Camera Attributes

creation. The second library considered was Apriltags, which is an application of
the OpenCV library applied to specific targets. The Apriltags library was selected
because it already contained image processing algorithms while OpenCV would
require the creation of such algorithms from scratch. Apriltags recognizes QR code
like images that can be created from a normal printer. This software provides
distance and orientation data of the QR code based tags it sees. In order to utilize
this feature, a tag will be placed on the front of UAV-C to enable UAV-S to calculate
the heading and position of the UAV-C in UAV-S body relative coordinates.

2.2 Quadrotors as UAVs
2.2.1 Multiple Quadrotor Unmanned Air Vehicles

In order to fully justify the implementation of a multiple UAV system, a comparison
of a single- and multi-UAV system must occur. In reality, larger quadcopters exist
that could support the entire payload of a multiple UAV system. These larger
quadcopters however, tend to be much more expensive than multiple smaller UAVs.
Larger quadcopters must inherently produce more lift, which requires larger or
faster spinning propellers and stronger frames to withstand the higher stresses and
bending moments. All of these components drastically increase the cost of a single
UAV system. Larger and faster rotating blades will also produce more audible noise,
which may not be desirable depending on the system’s application. Clearly it is
possible, for a fraction of the cost of one larger UAV, to create a multiple UAV
system of equal efficacy. This comparison alone lends value to the research
conducted by this project, and defines an unfilled application for which this project

seeks to produce a solution.
1

2.2.2 UAV-C and UAV-S Selection

Another important component of the UAV system is the selection of an appropriate
pair of quadrotors. This problem was solved by finding a quadcopter that could
support a projected payload of around 600g. The 3DR Solo quadcopter was selected

Lvalues obtained from drones.specout.com circa October 2016

| UAV model || Price ($) | Payload (g) | Manufacturer |

Iris+ 420 400 3dR Robotics
Solo 400 800 3dR Robotics
Ghost Basic! 600 1,000 Ehang
Hexacopter Hawk! 1,600 1,200 Skyhawk
M600 Prot 5,000 6,000 DJI
Alta Hexacopter? 8,495 6,800 Free Fly Systems

Table 2.3: Comparison of Quadcopter Models.

as both the UAV-S and the UAV-C as each quadcopter had a total payload of
approximately 700 grams, which is sufficient for the purposes of this project.
Initially, an IRIS+ was the selection for the UAV-C. This quadcopter was presently
available from previous contributors to this project. After some initial flight testing,
the IRIS model bequeathed proved to be be unstable as it produced unwanted drift
which led to several immediate crashes.

2.3 Computational Hardware Selection

In order to achieve autonomy, it is vital that an on board computer be connected to
the quadcopter. Sensors measurements must be processed by this computer to create
estimates of the UAV’s state. Subsequently, this computer must run scripts that
will utilize these state estimations to allow for navigation and obstacle avoidance.
Two different computers were considered for use in this UAV pair: the Raspberry Pi
2 Model B and the Intel Joule. The Intel Joule was considered because it worked
with the Intel Realsense Camera, while the Raspberry Pi did not. However, after
selecting the Raspberry Pi Camera, the only usable computer is the Raspberry Pi
Model B. Additionally, two Raspberry Pi computers were inherited from previous
projects, resulting in cost savings.

The next decision was whether to use a Raspberry Pi computer on both the UAV-C
and the UAV-S, or only on the UAV-S. Connecting a Raspberry Pi only on the
UAV-S would maximize the payload possible on the UAV-C. This setup would
require that the UAV-S constantly send commands to the UAV-C. In the event of a
break in communications UAV-C would need to wait until communications were
reestablished to continue navigating. Utilizing a computer on both the UAV-S and
UAV-C however, enables the UAV pair to be significantly more resilient. With a
computer mounted to the UAV-C, along with an IMU and a GPS receiver, UAV-C
could estimate its own state and therefore continue to navigate alone. While the
fidelity of these estimations would be reduced compared with working with UAV-S,
UAV-C self navigation allows for contingencies that increase the likelihood of task
completion.

10

2.4 Inter-UAV Communications

Based upon a need for flexibility and seamless dynamic motion, it is pertinent that
the UAVs are connected to one another wirelessly. The two most popular wireless
connection methods, Wi-Fi and Bluetooth, were considered. The selected
communication method would need to be able to consistently send state and input
information between the UAVs. A comparison of the characteristics of both
methods is listed in Table 2.4 From Table 2.4, it is clear that both methods are

| Communication type || Bluetooth | Wi-Fi |
Range 10-20 meters up to 30 meters
Data Transfer rate up to 3 Mbps 54-150 Mbps
Reliability Lesser Greater
Ease of Use Difficult Moderate
Dongle Weight 2.5-30 grams 20-30 grams
Price (USD) $5-315 $10-$15
Documentation Moderate Well Documented
Establishing Connection Automatic Requires Several Scripts
Types of Connection Direct Direct and Infrastructure

Table 2.4: Comparison of Communication Attributes

quite similar and meet the needs of the project. Both methods had sufficient
transfer speed for the exchange of simple state messages. Both methods were also
lightweight and inexpensive to implement on the UAV pair. Additionally, both
methods easily had enough range for the UAV pair to communicate. Ultimately,
Wi-Fi was chosen as it had greater documentation. Wi-Fi supports a larger variety
of connection types for testing and improving reliability. Additionally, the Solo 3DR
development guide listed a plethora of supporting documentation that utilized
Wi-Fi to connect, communicate and command the quadcopter.

2.4.1 Wi-Fi Connection Between Raspberry Pis

The CanaKit Raspberry Pi Wi-Fi Adapter was used to communicate between both
Raspberry Pi computers. This network was created locally, such that when given a
common SSID and manually specifying an IP address, they can communicate as if
there were a router present. Additionally, this adapter was chosen because it
supported both ad-hoc and infrastructure mode communication. Infrastructure
mode communication is traditionally how Wi-Fi is used, where the adapter connects
to a Wi-Fi network created by a router. An ad-hoc network removes the need for a
router or mid-point ground station. Instead this communication mode involves
creating a network between two or more devices. Furthermore, the compatibility of
this adapter with the Raspberry Pi allowed for simple setup. The necessary drivers
were already present on the previously installed Raspbian Operating System
distribution.

As a result of the aforementioned network information, the Raspberry Pi computers
were then connected over an ad-hoc network. Wireless encryption was not used for

11

the test network, though it could be adopted for additional security measures.
Additionally, each Raspberry Pi computer was scripted to initialize this connection
on reboot, otherwise each computer would have had to have been supplied with the
connection commands manually.

Alternatively, it would also be feasible to use the infrastructure communication
mode. The implementation of this mode would require a router. This router could
then act as a relay and ensure that the computers were connected, increasing
reliability without affecting the front-end operation. This would be useful in
situations where there is a lot of wireless interference.

2.4.2 Communication Protocol with Python

To better integrate communications with MAVLink, the transport layer of
communication was done in Python 2.7. MAVLink is a communication protocol
that is used by the Pixhawk flight controller which came installed on both UAVs.
This flight controller provides access to IMU data, and can control each UAV. Using
MAVLink allows the Pi to communicate directly with the UAV, extracting location
and flight information to be used in the Kalman filters and control algorithms.
Updated inputs can then be generated on the Pi, and sent back to the Pixhawk over
MAVLink. A unified encoding protocol was written in addition to the main
communication scripts. This protocol allowed for the sending of packets
approximately 4 kilobytes in size, which supported sending state and IMU data
between UAVs. To support the various simultaneous operations required by the Pis
in this project, the main scripts are multi-threaded. This multi-threading allows
secondary commands to be sent to both UAVs to modify operation.

The Transmission Control Protocol (TCP) was chosen to send the system’s data.
This protocol allows the system to time-stamp when a message was received and
have it wait to receive a reply. Specifically, this allowed UAV-S to listen for a reply
from UAV-C about its current state. Another useful feature of TCP is that it
guarantees that packets are received in the required order, preventing data from
being scrambled and losing communication. While the risk of data holdups is
minimal, since there are no relay points where they packets could get held up, this
does still increase the time it takes for information to be sent. Unfortunately, during
a communication holdup the communication will stop while waiting for the packet
to timeout and announce that it has not been received.

The main script files were setup to allow a variety of communication types. The
scripts can be initialized on reboot to begin communicating, and commanded to end
communication if a ”ground station” is not detected within a specified time. A
ground station would be any user-controlled system, allowing for commands to be
sent and data to be received so as to monitor the status of the system. This could
be potentially expanded to process a larger volume of data, such as location
information or environment simulations, before sending it to the necessary UAVs.
Additionally, the scripts also possess the ability to communicate on a single
response, or continuous response basis. A single response would allow simple
sending of information whenever it became necessary, while a continuous response
would send the information that was currently processed, even if this included new
and old information. For example, a continuous response might include current

12

velocity but GPS from 2 seconds ago.

2.5 Electrical Powering

After selecting all of the components that were to be used in the two UAV system,
the next question was how to most efficiently power the system. A power analysis
was conducted, and then powering components were experimentally tested to
determine the optimal configuration for powering the on-board vision sensors,
computer, and other communication hardware.

2.5.1 Solo 3DR Power Analysis

| Component || Current Draw (mA) | Weight (g) |
Raspberry Pi 500-1200 45
Raspberry Pi Cam 250 8
LiDAR 400-1500 200
Wifi Dongle 100-500 10

Table 2.5: Component List, Current Draw, and Weight

The first step of the power analysis was to determine the minimum and maximum
current draw of each component of the proposed system. This data can be seen in
Table 2.5, and sums to a total of 1250-3450 mA. The power analysis compared two
main methods: tapping the on-board Solo battery to power every component of the
system, and adding separate external batteries. The equations from the power
analysis done by the previous contributors to this project were utilized to conduct
each calculation. First considering method one, Solo battery power only, the total
number of milliamps were found using the following equation:

Battery mAh - 60%’"’

Total C t= 1

on arren TOFunloaded ()
5200, 47, - 6072

Total Current = 2‘? h —12,480mA (2)

Next this unloaded current requirement was combined with the external component
current draws. This yielded three different currents, minimum, maximum, and
realistic, which equaled 13,730mA, 17,180mA, and 16,180mA respectively. Using
equation (3) the time of flight was calculated for each of the three currents, and
effects of weight were temporarily neglected.

Battery mAh - GOme
Current

TOFunweighted = (3>

Once the unweighted time of flight was found, the weight from added components
was considered. The equation used to find the weighted time of flight is equation

13

| Current (mA) || Unweighted Time of Flight (min) |

13,730 22.72 (max)
15,930 19.59 (min)
14,930 20.90 (realistic)

Table 2.6: Unweighted Time of Flight

(4). The final time of flight calculations for the first method, entirely on-board
power, are seen in Table 6. T OF}, ;i refers to the 25 minute as advertised time of
flight of the Solo before any modifications were made. ”Solo weight” is the weight of
the Solo quadcopter and mount, and ”Solo actual” is the total weight of the system
with everything on board. Finally the T'OFyueightea refers to the values found in

Table 2.6.

TO Enitial

oS0l actual — TOFipiar) (4
Solo weight Solo actua OFmisiat)) - (4)

TOFweighted = (TOFunweighted> - ((

| Actual Time of Flight (min) |
18.42 (max)
15.29 (min)

16.60 (realistic)

Table 2.7: Method One: Actual Time of Flight

Moving on to method two, powering the attached components with an external
source, the calculations were much simpler and only the weight had to be varied.
The equation was of the same form as equation (4), except T'O Fypweighted SImply
becomes T'O F}yi1i01, and 7 Solo actual” varies depending on the source used. This
equation is equation (5) and the final results of method two can be seen in Table 2.8.

TO Evzitial

< Solo actual — TOFingia
Solo weight Solo actua OF i) (3)

TOFyeighted = (T'OFinitiat) — ((

| External Source || Actual Time of Flight (min) |
USB Power Pack 16.93
8 AA Batteries 17.35
Lipo Battery Option 1 18.57
Lipo Battery Option 2 19.63

Table 2.8: Method Two: Actual Time of Flight

14

The power analysis made it clear that an external power source would provide
longer operational test flight time. Due to a bequeathed 2500 mAH dual USB port
power pack and many AA batteries these powering methods were experimentally
tested. This test is documented in the Appendix section of this report.

The results of the testing determined that the USB power pack can power the whole
system for much longer than the time of flight. However, it is a poor choice because
of its excessive weight of 240 grams. Several different configurations of AA batteries,
including 4 in parallel, 6 in parallel, and 8 in parallel were tested in the same way.
Sets of 4 and 6 were immediately ruled out as they could not provide enough
current to the system during LiIDAR startup. The 8 AA batteries functioned
properly and could potentially work long enough for a whole flight test, but not
within a reasonable margin of error. There was a possibility that the on-board
systems would run out of power before the Solo itself, which was an unacceptable
option. Furthermore, the AA battery pack was not considered to be a ”scalable”
solution, since even the relatively small Solo already needed at least 8 AA batteries.
For these reasons the AA battery source was rejected.

Finally, the Lithium ion polymer or LiPo battery was examined. This battery type
can easily provide enough electrical current, and weighs less than all other options
considered. Using the LiPo battery as the source allows for the longest operational
time of flight while also definitely powering the on-board system for longer than the
Solo could stay in the air. The LiPo supply would power everything for
approximately 20 minutes per charge assuming that all electrical components were
drawing the maximum possible current at all times during a flight. This is an
unrealistic assumption which means the battery has a significant safety factor, and
will definitely last for the duration of any flight test. The LiPo battery is clearly
superior, and was therefore selected as the final power source for the UAV-S system.

2.6 Hardware and Sensor Mounting

The final aspect of the systems physical design is a secure and balanced method of
installing hardware to each quadrotor. Since both quadrotors would carry a slightly
different configuration of sensors, it became necessary to perform individual flight
tests.

The SOLO 3DR houses an easily accessible accessory bay on the underbelly of its
chassis. This bay provides four equally spaced M2 sized tapped holes with depths of
seven millimeters. These holes are spaced evenly about the Solo’s center of mass
and are the primary method to connect all components to this UAV.

2.6.1 Payload

The overall goal of the mounting design is to allow the Raspberry Pi computer, the
Raspberry Pi camera, the RPLIDAR A2, and any additional power components to
attach to the Solo 3DR without impeding any aerobatic capabilities. The maximum
payload of the Solo 3DR is conservatively reported as 700 grams, which establishes
weight as a major deciding factor in component selection. The weights of each of
the selected sensors are reported in Table 2.9 along with the remaining conservative
payload as a result of only adding the hardware.

15

| Hardware Component || Weight |

Raspberry Pi Model B || 45 grams

Raspberry Pi Camera O grams
RPLiDAR A2 200 grams
LiPo Battery 16 grams

| Remaining Payload || 334 grams |

Table 2.9: Sensor Weights and Remaining Payload

2.6.2 Prototyping

With a remaining payload of 334 grams, the weight of the mount is a vital
parameter driving the design process. Modeling the mount in SolidWorks and
selecting materials allows the weight of the mount assembly to be determined easily.
GrabCAD.com was utilized in order to acquire preexisting models of each
component to aid in the overall mount design. Figure 2 displays the chosen
mounting system rendered in SolidWorks:

Figure 3: Partially Assembled Component Mount

In order to ensure that the mounted system will not impede flight capabilities, the
UAV’s moment of inertia about the center of mass must be examined. The desired
moment of inertia matrix should resemble a diagonal matrix otherwise populated
with zeros. This indicates that the principal axes of the system align with the axes
of the body coordinate system.

I:r:c _Ixy _[xz Ixm 0 0
ICG,Ideal = _Iya? [yy _[yz = 0 [yy 0
_]zm _]zy]zz 0 0 [zz

To evaluate the simulated values of I,,, I, and I, the Evaluate: Mass Properties
function of SolidWorks was utilized. It is evident that electrical components, such as
the Raspberry Pi computer, have nonuniform mass and as such will create non-zero
values in the non-diagonal portion of the matrix.

16

A simulation of the system assembly was constructed after creating a crude model
of the Solo 3DR quadcopter using a vernier, using a dimensioned drawing of the
accessory bay area and also utilizing preexisting models of the hardware and
respective mounting. Instructions for assembling the mount can be located in the
Appendix section of this report. After evaluating the mass properties of the Solo
3DR assembled model via SolidWorks it was determined that the effects of the non
uniform mass are practically negligible. This claim will need to be tested through
hovering flight testing to evaluate the physical effect of the non-diagonal value.

Lo —L, —I. 114.220782 0.045346 2.298259
oG Avtual = [—Iyx I, —IyZ] - [0.045346 912.391757 —0.002915
I, —L, L, 2.208259 —0.002915 274.203654

[kg/cm?]

2.6.3 Manufacturing

Worcester Polytechnic Institute houses facilities that enable students to 3D print
various items in an array of various materials across various machines. There are
many material options available, including high or low density ABS plastic, as well
as a multitude of resin choices. Several possible materials are compared in Table
2.10. The comparisons reveal that ABS Plastic is the best choice. The largest

| Material || Density | Price (USD) | Min Thickness | Error | Total Weight |
ABS Plastic || 1.05g/cm? $0.49/cm? 0.1524cm 0.01524¢cm 135 g
Nylon 1.15g/cm?® | $1.53 — $3.06/cm? 0.1524cm N/A 14785 g
Resin 0.961g/cm? | $1.23 — $1.84/cm? 0.0254cm 0.002032cm 123.56 g

Table 2.10: Comparison of 3D Printable Material Attributes

contributing factor is the fact that it is the least expensive option while still
retaining a relatively moderate density. For this application, the minimum thickness
and error are negligible. Furthermore the mount weighs considerably less than the
maximum leftover payload weight of 334 grams.

The overall dimensions of each mounting component can be located as standard
drawings in the appendix. The weights for each mounting component in ABS Plastic
are 135 grams in total. Additionally, sixteen M2 socket head cap screws and four M3
socket head cap screws are used to fasten each component to one another weighing a
total of 8 grams. This leaves a total of 191 grams of conservative payload remaining.

17

3 System Installation

With the physical system designed and the individual parts assembled, the next
step was to begin system installation. Installation encompasses the assembly of all
required subsystems such as hardware and auxiliary power components. Installation
also refers to the generation of python scripts that control the system during
autonomous flight.

3.1 UAYV-S Installation

The UAV-S system needed to carry several sensors, the power system designed
ealier, and the raspberry pi, making the design of the mount of special importance.
Here, the system installation process is defined, and described.

3.1.1 Mount Attachment

The UAV-S installation began with attaching the sensor mounts to each component
and fixing it to the body mount of the quadcopter. First the body mount was
attached to the bottom of the Solo by means of four set screws. This mount serves
as the base to which the LiDAR, raspberry pi, and pi camera attach. One of the
major considerations during the design phase was how the UAV would perform with
the additional sensors attached. The added mass changes affecting the inertia
matrices could have potentially made the UAV harder to stabilize, or worse,
dynamically unstable. In order to have greater control of the center of mass of the
UAV, the mounting system was designed to allow the sensors to be mounted in
multiple locations. This was accomplished by creating the base mounting structure
have beams with holes along their length. Each sensor has a mounting component
with similarly sized holes, allowing the sensor to be screwed onto the primary mount
at any desired distance longitudinally along the base of the Solo. With the hardware
attached the wires utilized for power and data transfer were organized. Due to the
limited space on the UAV, compact and efficient organization of the system’s cables
was essential. Loose wires could interfere with the rotors and disrupt flight. As such,
the mounting system was designed such that the middle of primary mount contains
a channel for connections. Figure 4 is a block diagram explaining the necessary
connections. Lastly, the system required several python based MAVLink packages to
be installed. These packages were used to compose scripts that allow the UAV-S to
fly and operate autonomously. Download instructions are detailed in the appendix.

3.1.2 Sensor Battery Mounting

As described in the power analysis, the auxiliary power system was powered by a
Lithium Polymer(LiPo) battery. A 2400 mAH LiPo battery in the lab was used to
power the UAV-S sensors. Originally, the LiPo battery cable had a deans type
connector; this connector was removed and a TX60 header was attached to that it
could interface with the rest of the on-board power system. The battery itself sits
directly on top of the Solo, connected via Velcro, and therefore does not effect the
center of mass in the x or y directions.

18

S0LO 3DR

Cluadcopter,
Pixhawk 2
I MicroUSB
USE to to USB
MicrolUSE Ribbon
Cable

LiPO Battery »
TxB0,
Connector

F‘Iaﬁpber;_.eri Model |- RasPiCamera

MicroUSB

el Red: Power
MicroUSB Blue: Data
Purple: Power & Data

RPLIDAR A2

Figure 4: UAV-S system block diagram

3.1.3 MAVLink Flight Scripts

To begin the software development aspect of this project it was necessary to decide
upon several benchmarks for autonomous flight. Autonomous arming was the first
goal. Subsequently automated takeoff, hover and landing was the next goal. The
ultimate goal for the autonomous flight scripts was to incorporate horizontal motion
after hovering, and to have the UAVs follow the same path.

The MAVLink software package offers several methods of flying a quadcopter.
These methods include setting global level position commands in terms of longitude
and latitude, local level position commands from the inertial north end down
reference system as well as setting a velocity vector from the inertial plane for a set
time. It is worth noting that in order for any quadcopter to reduce drift during
hovering there must be an established satellite link and as such it is difficult to
operate either UAV indoors.

Final flight scripts have been included in Appendix B.

3.2 UAV-C Installation

The installation of the UAV-C was identical to the UAV-S except the LiDAR sensor
and camera were not incorporated. However, a five inch by five inch Apriltag was
attached to the front of the UAV.

3.2.1 MAVLink Flight Scripts

To begin the simple flight scripting aspect of the UAV-C, the scripts composed for
the Solo were recycled. Once the UAV-C is able to perform simple scripted flight via
python and MAVLink the resultant step will be to establish coordination between
the UAV pair.

19

3.3 Communication Installation

The next step in developing the software aspect of this system is to write scripts
that aid in the coordination of this autonomous system. This will be performed in
two segments. The first segment will be to have the UAV-S follow a flight script
while a Kalman filter developed in python improves the positional certainty during
the mission.The second segment will be to have the UAV-S fly some designated path
while the UAV-C follows it, or visa-versa also requiring an additional Kalman filter.

3.3.1 Sensor Communication and Socket Server

With the UAV-S carrying the Pi camera and LiDAR sensor, a method of sending
data collected by the sensors to the Kalman filter running on the Raspberry Pi was
needed. There are many algorithms of communication between processes on a
computer; this report highlights three different algorithms, and the reasoning
behind the final decision.

The first communication algorithm analyzed was Inter-Process Communication
(IPC). IPC is an algorithm to allow a computer to coordinate multiple requests at
the same time. IPC can achieve this through a the utilization of certain tools and
methods to receive and process data from different sources concurrently.

The IPC algorithm contains many different methods, with the first studied being
sockets, in order to process communication between different sources. Sockets are
used in virtually every computer for various uses, the most common of which is the
creation of a server-client system, as seen in Fig 5 below.

Server Client

Y * T

Server o 2, Client

listen Socket " send, recy | Socket
r Y
accept

Ly Listen

Socket = connect

Figure 5: Socket Server Visualization

In this server-client implementation, the client - the on-board sensors - connects and
continuously writes data to a socket, while the server - running on the Raspberry Pi
- finds the socket and listens to receive the client data. This architecture is used for
both IPC as well as network applications. Sockets can be used to send data between
two different systems.

The final algorithm studied for communication between the on-board sensors and
the Raspberry Pi was the Lightweight Communication and Marshalling (LCM),
developed my MIT in 2006. LCM has been used in many robotic and autonomous
systems, and seen use in research and products around the globe.

20

3.3.2 Apriltag

At the crux of this report is the Kalman filter that provides an improved estimation
of each quadrotor’s state. In order to determine the state of the UAV-C, the Pi
camera mounted on the UAV-S is able to track and determine the distance and pose
of the UAV-C. The camera is able to track the UAV-C by mounting an Apriltag,
shown in Fig 6, on the front of the quadrotor, facing the camera on the UAV-S.

Figure 6: Example of Apriltag Mounted on UAV-C

Using the Apriltag algorithm developed by the University of Michigan April
Robotics Laboratory, the UAV-S is able to recognize the Apriltag mounted on the
UAV-C to calculate the state of the UAV-C. This state is then fed into the Kalman
filter running on the UAV-S to update the state measurements. The code that
starts the camera to begin looking for Apriltags first looks for a socket to connect
to, then calculates the distance and pose of the Apriltag in view and stores the data
in a string. This string is then sent through the socket, where the awaiting server
receives the string and sends it into the Kalman filter running on the UAV-S.

For debugging purposes, the server also prints the data received from the camera
through the socket. Figure 7 shows the format of the string sent through the socket
by the camera code. Each value in the array is used to identify the distance and
pose of the Apriltag in view.

1. Tag ID: Each Apriltag has an ID to allow for multiple tags in camera view.
X Distance: Distance from camera on UAV-S to tag on UAV-C

Y Distance: Tag distance from horizontal center of camera

Z Distance: Tag distance from vertical center of camera

Roll: Tag roll in radians with respect to camera normal

Pitch: Tag pitch in radians with respect to camera normal

S A o

Yaw: Tag yaw in radians with respect to camera normal

21

Terminal = () (5:49, 91%) 1:00PM 1%
@ S @ nick@athena: ~/dev/mgp-quadrotor/bin
['2', '0.256521', '-0.8123177', '6.6430946', '6.143526', '6.125834', '-1nick@athena:-/dev/mqp-quadrotor/bin$./camera
.762'] Starting
['2', '0.258343', '-0.6143963', '06.8437534', '6.151762', '6.124991', '-1VIDIOC_QUERYMENU: Invalid argument
= ! VIDIOC_QUERYMENU: Invalid argument
['2', '08.253817', '-8.8162552', '0.0422663', '6.121924', '06.137423', '-1VIDIOC_QUERYMENU: Invalid argument

Camera: 100 (18 sent)
'0.251694", '-0.0154903', '0.0398448', '0.104543', '0.125145', '-1Camera: 200 (26 sent)

, '0.254756', '-8.013938', '0.0390998', '0.129974', '@.123749', '-1.
'0.25604', '-0.0139659', '0.0384435', '0.124736', '6.131201', '-1.
'0.255011', '-0.0142543', '0.0382363', '0.124425', '0.123939', '-1

‘,]'0.23254', '-0.00436357', '©.0355904', '0.0747567', '0.137918', '-

'0.237561', '-0.00426758', '0.0388344', '0.0936424', '0.137144', '

'6.239218', '-0.00630631', '0.0389786', '6.1142', '0.13078', '-

e
"
=2 |3
.
K
R

'0.196448', '0.00656325', '0.6462672', '0.10144', '0.0983008', '-1
'0.193851", '-0.0186832', '9.82735083', '0.0443944', '0.169763", '
,]'0.20149', '-0.0139715', '0.8335461', '6.146711', '0.226661', '-1.

'0.197654', '-0.0163434', '0.6386716', '0.6868592', '0.195982', '
'0.195708', '-0.0137396', '0.8423616', '0.0762432', '0.118868', '
.]'9.195555‘, '-0.010055', '8.0397145', '6.885785', '0.144359', '-1
'0.194765', '-0.0141509', '0.6416915', '0.663767', '0.137951', '-1
'0.197625', '-0.0141886', '0.6424683', '0.0807353', '6.132506', '

1
', '0.197864', '-0.013866', '0.0438912', '0.0850418', '0.125247', '-1l

Figure 7: Apriltag Output Running in Terminal

3.3.3 Inter-UAV Communication

In addition to the socket server developed for passing sensor data to the Kalman
Filter, a server was created to talk between the UAV-S and UAV-C, primarily to
pass state information. It was built upon an internal ad-hoc network structure,
allowing for testing to be down in a variety of environments with minimal setup.
Additionally, if needed, a dedicated access point (AP) could replace this with
minimal difficulty.

As the wifi adapters chosen supported both ad-hoc and AP mode, all required
drivers were pre-installed on our Raspberry Pi’s. Due to this, we began by finding
MAC address tied to each UAVs adapter. Using this, scripts were written in a bash
script, simulating command line entry, which configured a network called
"CQMQP” with the ip of 156.0.0.X. The final number being specified for each
device manually. The UAV-S was given 156.0.0.1, and UAV-C 156.0.0.2. The launch
conditions of the Pi’s were then configured to run these scripts on start, allowing
them to be accessed while on a UAV.

Using this network as a backbone, a pair of communication scripts was designed,
which could be implemented into code as needed. The primary functions of these
scripts was to allow TCP packets of information to be transfered between both
UAVs, to be used in local code or as command inputs. In order to accomplish this,
an small encoding protocol was also written, allowing for specified packets of
information to be sent and committed in a timely fashion, and to minimize possible
data loss. This script was configured to allow multi-threading, so the connection
could be kept open for the entire flight. A timestamp functionality was also
included.

22

4 System Simulation

Simulations can act as a vital test bed for systems, providing important insight into
system performance. The higher the fidelity of the simulation, the more valuable
the insights gleaned will be. The primary goals of the simulation for the UAV
system were to test and verify the UAV controllers and Kalman filters. First a
dynamic model was created in Matlab based on the paper ”Trajectory generation
and control for precise aggressive maneuvers with quadrotors” (Mellinger et al.,
2012). The simple controllers from this paper were then combined with the dynamic
model to test the functionality of the controllers. Next, a simple two state
continuous-discrete Kalman filter was created. The full simulation was created by
combining a 12 state continuous discrete Kalman filter, with the attitude and
position controllers, and the dynamic model from the paper by Mellinger et al.

4.1 Dynamic Model

The dynamic model presented by Mellinger et al. provides twelve differential
equations that model the changes in the twelve states used to represent the UAV.
These twelve states are x, y, and z position, x, y, and z velocity, angular rates p, q,
and r, and euler angles ¢, 6, and 1. Assuming that the UAV has only these twelve
states, these twelve equations can be integrated to provide the state values over
time. The equations are as follows:

Pa Vg
Py| = |y (6)
z Uz
Uy 0 0
m|v,| =] 0 | +RY | O (7)
U, —mg Z?:lF

Where F is the force produced by each rotor and R}} is the matrix to convert from
body coordinates to inertial coordinates:

c(¥)e(d) — s(@)s(¥)s(0) —c(@)s(y) c(y)s(0) + c(0)s(@)s(¥)
Ry = [C(@S(d)) +e()s(9)s(0) c(@)e() s(v)s(0) — 6(1/1)0(9)5(@]
—c(9)s(0) s(¢) c(9)c(0)

Note s(f)=sin(#) and c(f)=cos().

@ [005(0) 0 —cos(gb)sm(e)] ! [p]
gf=1] 0 1 0 (8)
0 sin(0) 0 cos(¢p)cos(d) T

D L(F, — F}) p J4
Bl 0l
T Ml —A.12+A13—M4 r T

Once these equations were implemented in Matlab, they were tested by supplying
rotor speeds that should have caused hover, ascension and descension.

23

4.2 Controllers
4.2.1 Attitude Controller

The first controller implemented was the attitude controller, again taken from
Mellinger et al, (2012). This controller took the following form:

des

wy 10 -1 1 wy, + Awy

wiel 111 0 —1 Awg (10)
wies| (10 1 1 Ay

wzles 1 -1 0 -1 Al/)

where wy, is the rotor speed for hover, and the A terms are:
Awg = kp (6™ = ¢) + ka s (0™ —p)

A’LUQ — kp?e(edes . 9) + kd,e(qdes _ q)

Awy = kp (Y =) + kay (r®® =)

This controller was tested by supplying desired angles and analyzing the system
response. The various k gain values were tuned for a quick system response with
minimal overshoot.

4.2.2 Position Controller

The second controller implemented was the position controller, again taken from
Mellinger et al, (2012). This controller took the following form:

1, s . .
% = = (¥4 sinypp — 79 cos(r)
g
1,. wdes -
0% = — (i cosipp + 73 sin(yr)
g
m
Aw, = --des
f Skfwh 3

where k¢ is a constant relating rotor speed to thrust, and the desired 7 values are
found through PD feedback. For example, the desired 7 is:

j;des = k‘p,l(rfes — 7“1) + kjd,l(_fl) (].].)

Ultimately this controller compares the current position with the desired position,
and calculates the necessary accelerations. These accelerations get put into the
position controller, which in turn generates the desired ¢s and #s and additional
thrust to supply those accelerations. Lastly these desired angles get placed into
attitude the controller. This generates the desired rotor speeds to achieve the
desired accelerations.

24

While this controller worked adequately before measurement noise was added to the
simulated sensor measurements, with the introduction of measurement noise the
simulation could only run for eight seconds before oscillations caused the simulation
to crash. Tuning the controllers’ gains fixed this crashing problem, but the system
performance was far from ideal. For example, during simple hover tests the UAV
would have semi-random oscillations of 20 cm about the desired z position, and
would randomly move in the x and y axes.

In light of these control problems a linear quadratic regulator(LQR) was selected to
replace the PD control segment of the simulation. Since each segment of flight had
different desired rotor speeds, a separate LQR was created for each flight segment.
These LQRs created gain matrices that translated the current state into changes in
rotor speeds to achieve the desired state. There are five of these LQRs in total, one
for rise, one for hover, one for forward motion, one for sideways motion, and one for
descent. The gain matrices were generated in Matlab and hard-coded into the
on-board python scripts due to the lack of a capable discrete time Riccatti equation
solver library.

4.3 Two State Kalman Filter

In order to provide a proof of concept for the eventual 12 state Kalman filter, a
simple 2-D version was first created. This filter was based on a 2-D model that only
incorporated position and velocity in two directions. The notation used in the
model is located in Table 4.11.

4.3.1 Equations of Motion and Measurement Model

53 = Ags + Bu37 (12>
Sc - Agc + Buca (13)
where
0010 00
A — 00 01 B— 00
00 0O 10
i 00 00] i 0 1]

Clearly these are very simple equations of motion, but are still enough to simulate
system dynamics. These system dynamics are then measured using the following
measurement model:

Zgs [777/] = Ossfs [m] + Nss [m] ch[n] = Occgc[n] + ncc[n]» Zg [l‘v] = Ocsgc[k] + ncs[k]a
(14)

25

Symbol Meaning

&s State of UAV-S, & = (ps, Vs)

& State of UAV-C, &, = (pe, Ve)

u, True input to UAV-S

U, Measured input to UAV-S

u, True input to UAV-C

U, Measured input to UAV-C

Zs Measurement by UAV-S about itself from its own sensors
R, Measurement error covariance for zg

ls.ss Sample time for measurement z

Zee Measurement by UAV-C about itself from its own sensors
R.. Measurement error covariance for z..

Ts.cc Sample time for measurement z..

Zs Measurement by UAV-S about UAV-C from sensors on UAV-S
R Measurement error covariance for z.g

ts.ecs Sample time for measurement z.

oo State of UAV-S, self-estimated by UAV-S

P, Estimation error covariance for éss

e State of UAV-C, self-estimated by UAV-C

P. Estimation error covariance for écc

écs State of UAV-C, estimated by UAV-S

P, Estimation error covariance for fcs

Table 4.11: Notation used in 2-D Kalman filter

where

(15)

Css:Ccs:[(4>7 Ccczll 00 0]

0100
The notation [m], [n], [k] indicates values at time instants t = mt, g5, t = nts o, and
t = kts s, respectively. C,. is only a 2x4 matrix to highlight the state estimation

improvements achieved with the help of UAV-S. While UAV-C can only measure its
own position, UAV-S can measure both UAV-C’s position and its velocity.

26

4.3.2 Estimators
UAV-S Self-navigation

Initialize with £, = £,,(0), P = Pu(0), then iterate: For ¢ € [mi g, (m + 1)tz

~

x ~ . ~ +
fss = Aéss + Bus: é[m] = éss ()
Kss - Psscsz(Rss + CssPssOgD_l (18>
P;; = (I(4) - KSSCSS)PSS[m + 1] (20)

UAV-S observation of UAV-C

initialize with f;; = fCS(O) Pl = P.s(0), then iterate: For ¢t € [mts cs, (M + 1)t5 5]

’ cs

Eos = Ales + Blie, Eu5[k] = Eos
P., = AP.; + P AT + Q.. P.g[k] = P,

i (21)
(22)
Kcs = PCSC(?;<RCS + CCSPCSCZS>_1 (23>
(24)
(25)

= E[k 1)+ Kog(2s — Cusbos[m + 1)
PC: = (](4) — KCSC’CS)PCS[k: + 1]

UAV-C Self-navigation

Assuming t comm > tscc, initialize with ‘ACJ;J“ = fw(O), P+ = P..(0), then iterate: For
t e [mts,cm n—+ 1>ts,cc]

~

X ~ . ~ 4
fcc - Agcc + Bum f[n] = gcc
Pcc:APcc+PccAT+QCCa Pcc[n] :P:c_+

: (26)
(27)
ch,l = R?CCC,Z;(RCC + OC(?R?CCC,Z;)_I (28)
(29)
(30)

= Euln + 1) + Koot (2ee — Cocboc[n + 1))
Pc—"c_ = (1(4) - KCC,lccc)Pcc[n + 1]

27

~ ~

If (n+2)tsee < (£ + Ditscomm, E7 =&L4, and PLT = Pt Otherwise:

cec?

A ~ . 2 ~ +
gcc = Agcc + BUC7 S[k] - gcc
Pcc:APcc+PccAT+Q007 Pcc[k]:P+

cc

(31)
(32)
ch,Z - Pcc(Pcs [l + 1] + Pcc)_l (33)
(34)
(35)

3;+ = S;C[n + 1] + ch,Z(écs - écs [n + 1])
Pt =(1(4) — Keea) Pl + 1]

4.3.3 Twelve State Kalman filter

The twelve state Kalman filter followed the same principles laid out in the 2-D
model, but was more complex in a number of ways. Due to the nonlinearities in the
UAV dynamic model, the filter had to be an Extended Kalman Filter. This made
the A matrix significantly more complicated, as each entry in A was a partial
differential equation of one of the twelve equations of motion. Additionally the
control inputs were included in the A matrix, such that the motion equation was of

the form £ = A¢. The full A matrix can be found in the appendix.

28

5 System Testing and Experimentation

Iterative unit flight tests were necessary in order to evaluate how well the system
improved navigational certainty. To better organize the flight tests, a tier based
system was established. The TIER I unit flight tests are the initial steps that made
sure each component of the system was working properly before moving to more
complex tasks. TIER II encompassed all of the unit tests involving the Apriltag and
tandem flight maneuvers.

5.1 TIERI

The first unit test in TIER I was a basic script written to test required functionality
of the UAV using the dronekit python library. The script established a connection
with the SOLO, allowed all sensors to initialize, armed the drone, printed several
parameters, and disarmed the drone.

In order to test the accuracy of the state estimation with the Kalman filter, the
UAV was manually piloted while the Kalman Filter estimated the state of the UAV.
These estimates were then recorded and compared to the actual flight
characteristics to determine if the Kalman filter was working.

The next unit test was to develop an altitude hold script. The script commanded
the UAV to fly to a target altitude and hover for 30 seconds. The evaluation was
conducted by observing the UAV as it hovered and by measuring the drift in the
xyz coordinate directions relative to the desired hover location. This evaluation was
conducted for both the UAV-S and the UAV-C.

Steady level flight in a straight line was the next test, and the UAV was given
commands to take off, hover briefly, and then travel three meters forward towards
the north. The UAV-C was given this task on it’s own for TIER I because it
established a baseline performance that was compared with later test results. These
TIER I unit tests served to establish user familiarity with the necessary technical
components, and determined that each individual piece of the entire system was
functioning properly before moving on.

5.2 TIER II

TIER II incorporates tandem flight tasks with both UAV-S and UAV-C flying
autonomously while communicating. The first test was to have both UAVs take off
and hover, measuring the amount of drift in all xyz directions. This was minimal
and therefore inconclusive as to the improvement of the navigational certainty. This
test was iterated three times to see if it the behavior was repeatable.

Next, the UAV pair was commanded to take off, hover, roll to the positive y
direction, and recover to the hover position. This test was iterated several times to
see if the behavior was repeatable at different velocities and roll angles. The UAV-C
was programmed to follow the UAV-S by attempting to keep its position equal to
zero with respect to the UAV-S’s coordinate frame. Additionally, the z and y values
will be monitored but remained at zero.

Next the UAV pair was commanded to travel in the z direction only, that is directly

29

upward. In this series of flight tests the UAV-S climbed to an altitude of 5 meters at
several different rates and once 5 meters was achieved, it held that altitude for 15
seconds. Next, the UAV-S descended to 5 meters and paused for 15 seconds and
then landed. The UAV-C was evaluated by its ability to keep the same consistent
altitude as the UAV-S. The x and y position values were monitored but remained
equal to zero.

After this, the x and y planar unit test was conducted. This involved the UAV pair
flying at a specified altitude of 2 meters in a square shape, while attempting to
maintain the displacement between UAVs. In this way two similar squares were
"drawn” in the air by the UAVs several meters apart from one another. This flight
test ensured that the UAV-C could maintain a constant altitude while maneuvering
in a pattern significantly more complex than a straight line.

30

6 Results and Conclusions

6.1 Apriltag Field of View

In order to ensure UAV-S detected UAV-C consistently, the Raspberry Pi camera’s
ability to track the Apriltag was evaluated. This evaluation was completed by
determining the maximum distances of detection using linear x displacements, y
displacements at 3 different x displacements and z displacements at 3 different x
displacements. The following tables were constructed by viewing a live terminal feed
of Apriltag measurements while incrementally moving the 5”x5” inch tag away from
the Pi camera. The limits were determined by the distances at which Apriltag
measurements were no longer received. Note that these maximum distances are
taken from very slow and meticulous movements of UAV-C. If these limits are
approached quickly, the software loses its reading of the Apriltag. Ultimately, this
quality reduces the maximum speed the UAVs can operate in order for the UAV-C

to receive consistent corrective telemetry commands.

Distance (m) | Trial 1 (m) | Trial 2 (m) | Average (m) | Actual - Avg (m) | % Error
0.305 0.271 0.274 0.272 0.033 11.96%
0.610 0.563 0.563 0.563 0.046 8.25%
0.914 0.846 0.833 0.840 0.075 8.92%
1.219 1.129 1.133 1.131 0.088 7.80%
1.524 1.141 1.410 1.276 0.248 19.47%
1.829 1.708 1.697 1.703 0.126 7.42%
2.134 1.991 1.984 1.988 0.146 7.35%
2.438 2.264 2.270 2.267 0.171 7.56%
2.743 2.537 2.542 2.540 0.204 8.02%
3.048 2.851 2.852 2.852 0.197 6.89%
3.353 3.170 3.170 3.170 0.183 5.77%
3.658 3.485 3.442 3.464 0.194 5.60%
3.962 3.744 3.723 3.734 0.229 6.13%
4.267 4.057 4.045 4.051 0.216 5.34%
4.572 4.388 4.408 4.398 0.174 3.96%
4.877 4.588 4.634 4.611 0.266 5.76%

Table 6.12: Indoor X Displacement Apriltag Evaluation

31

6.1.1 X Displacement

The first field of view experiment conducted was the indoor and outdoor Apriltag x
displacement evaluation, longitudinally away from the UAV-S. The results of this
experiment are documented in Table 6.12. Since both UAVs are equipped with
propeller guards, the minimum separation distance for the two UAVs is 1 foot or
0.305 meters. The maximum x displacement of the Apriltag is 16 feet or 4.877
meters. Note there still existed a significant percentage of error even after
calibrating the Pi camera.

6.1.2 Y Displacement

The next evaluation completed was to determine the maximum y displacement line
of sight, or the system’s field of view lateral to the UAV-S. This evaluation was
conducted by measuring the maximum y displacement at 3 different longitudinal
displacements. By utilizing both of these values and basic trigonometry, an average
angle was determined in order to predict a projected y displacement at any x
displacement. The results of this experiment can be found in Table 6.13. The
orientation of the determined angle is displayed in table 8. Since .,y = 23.58 deg,
at the maximum displacement of 4.877 meters the maximum y displacement is 2.129
meters.

X Actual (m) | Y Actual (m) | Y Reading (m) | Actual - Reading (m) | % Error | f(deg)
0.9144 0.3683 0.399 -0.0307 -7.69% | 21.94
1.8288 0.8128 0.854 -0.0412 -4.82% | 23.96
2.7432 1.27 1.325 -0.055 -4.15% | 24.84

Table 6.13: Indoor Y Displacement Apriltag Evaluation
6.1.3 Z Displacement

X Actual (m) | Z Actual (m) | Z Reading (m) | Actual - Reading (m) | % Error | ®(deg)
0.9144 0.4318 0.235 0.1206 34% 5.60
1.8288 0.6477 0.435 0.1365 24% 5.89
2.7432 1.016 0.632 0.3078 33% 5.86

Table 6.14: Indoor Z Displacement Apriltag Evaluation

32

Y-Actual

X-Actual

£\

Figure 8: 'Y Displacement Angle Orientation

The final field of view evaluation performed was based in the z or vertical direction.
The maximum z displacement was determined at three different x displacements to

determine an average angle of view. The results of this evaluation are found in table
6.14. In summary, the average angle of view is 5.78 deg.

6.2 Flight testing with Apriltags

Due to weather related difficulties, extensive flight testing proved impossible.
Instead, a proof of concept demonstration for UAV collaboration became the
primary goal for flight testing. Preliminary results of the flight testing suggested
that a two UAV system could collaborate to complete a task, making it a feasible
solution for future development and potential commercialization. The two UAVs
successfully flew in tandem while live Apriltag data was being captured by UAV-S’s
Pi cam and streamed to a file saved on UAV-S’s Pi. This test highlighted UAV-S’s
capability of taking measurements of UAV-C in real time, which is a vital
requirement for collaboration amongst the UAV pair. In separate tests, individual
UAVs were able to successfully navigate along pre-chosen trajectories. These
navigation tests emphasized the feasibility of fully automated UAV navigation.
While this success is important, it would be foolish not to consider the limitations of
the current system. One important limit is that the system has no higher level
navigation capabilities. The system requires trajectories to be specified before a
flight has begun. The system is further limited by a requirement for a GPS fix,
effectively forcing all testing to be conducted outside. Another limitation is the
range of the Apriltag, and the speed at which data can be sent and received, as well
as processed. These hardware based limitations further reduce the mission readiness
of the system, but in no way effect the proof of concept as they are primarily
financially limited. The Raspberry Pi and Pi camera could be switched for much
more powerful processors and cameras in a system that was designed to function in

33

a real world scenario. Due to the budget constraints of the project, the hardware
selected was optimized to complete the task without exceeding the budget.

It must also be addressed that several of the initial goals created at the beginning of
this project were not completed. One of these goals was to conduct fully automated
flight tests in tandem. With the system built, and flight testing underway, several
issues arose. First of all it was winter, and the weather became a large issue. Flight
tests needed to be conducted outdoors and therefore a large open area free of snow
was required. Additionally, the performance of the UAV controllers degraded in the
cold, making it difficult to prepare the UAVs for automated flight. Time itself was
also a constraining factor, resulting in only a few days that were clear enough and
warm enough to allow for reliable testing. These constraints led to a reworking of
the original goals which had been based on assumptions. Instead these goals were
replaced with the proof of concept goal, namely having tandem flight with live state
estimation via the Apriltag code. This revised goal was successfully achieved.

In summary, while there are definitive and undeniable holes in the capability of the
system, according to realistic goals set at the time of completion, this system does
indeed complete the task of being a proof of concept for a low-cost alternative to
larger UAV systems. There are however, areas that could be further researched to
create a system that is significantly more mission capable.

6.3 Areas for Further Development

Several areas that could be considered for future development include: Kalman filter
integration, predetermined path following in tandem flight, and testing to quantify
the increase in navigational certainty while in tandem flight. First off, scripts for the
integration of a Kalman filter into the system were already created. These scripts
were not able to be debugged in time for the flight testing, but they worked in
simulation. Utilizing Kalman filters would improve the accuracy of UAV navigation
and increase the value provided from Apriltag measurements. Path following in
tandem flight would be another realistic area for further development. The building
blocks for this goal were established, but were unable to be used in conjunction to
achieve the automated tandem flying. Tests that can quantify how much the
navigational certainty improves after implementing the Kalman filters would also
provide valuable numerical data to confirm that this system functions in a superior
manner to a single UAV system in terms of navigational certainty.

These three areas are the logical next steps that should be taken if further work is
to be done on this project. With the data and experiment results from such
research, a more practical system could be created, and a more thorough
explanation of which tasks such a system would be suited for could be defined. This
project therefore suggests the three steps to any who consider furthering research
into coordinated quadrotor UAV systems.

34

Acknowledgments
Our team would like to thank Professor Raghvendra Cowlagi, Ruixiang Du, and

Bryan Healy for all your help and guidance. This project would not look the same
without your help.

35

Bibliography

Anthony, S. (2013). Amazon unveils 30-minute Prime Air quadcopter delivery
service, but it’s completely impractical. Retrieved from
http://www.extremetech.com/extreme/171879-amazon-unveils-30-minute-prime-air
-quadcopter-delivery-service-but-its-completely-impractical

Blythe, J. D., & Borowicz, K. A.,& Hollander, A. N. (2016). Autonomous
Quadrotor Navigation and Guidance. Retrieved from
https://web.wpi.edu/Pubs/E-project/Available/E-project-032316-184225/

Bishop, G., Welch, G. (2001). An Introduction to the Kalman Filter. Retrieved from
http://www.cs.unc.edu/ “tracker /media/pdf/SIGGRAPH2001_CoursePack_08.pdf

Carter, Jamie; Keil Schmid; Kirk Waters; Lindy Betzhold; Brian Hadley; Rebecca
Mataosky; Jennifer Halleran (2012). ”Lidar 101: An Introduction to Lidar
Technology, Data, and Applications.” (NOAA) Coastal Services Center” (PDF).
Coast.noaaa.gov. p. 14.

Compare Drones. (2015). Available from http://drones.specout.com/

Friedland, B.(1986). Control System Design - An Introduction to State-Space
Methods. Retrieved from

https://app.knovel.com/web/toc.v/cid:kpCSDAISS1 /viewerType:toc/root_slug:contr
ol-system-design /url_slug:kt00B0OCJD2

Goyer, G. G.; R. Watson (September 1963). " The Laser and its Application to
Meteorology”. Bulletin of the American Meteorological Society. 44 (9): 564-575
[568].

Keane, J. F., Carr, S. S. (2013). A Brief History of Early Unmanned Aircraft. John
Hopkins APL Technical Digest, 32(3).Retrieved from
http://www.jhuapl.edu/techdigest /TD/td3203/32_03-Keane.pdf

Koski, O. In a First, Full-Sized Robo-Copter Flies With No Human Help. Wired, 14
July 2010.

New York Times. (1910, May 22). Torpedo Airship Controlled by Wireless is the
Latest Invention. New York Times. Retrieved from
http://query.nytimes.com/mem/archive-free/pdf 7res=9D02E2D71139E333A25751C
2A9639C946196D6CF

Mellinger, D.,Powers, C., Kumar, V. (2015). Quadrotor Kinematics and Dynamics.
Handbook of Unmanned Aerial Vehicles, 1: 307-328.

Rohel, E.(1937). Navigation.Retrieved from
https://1a800500.us.archive.org/16/items
/navigation028934mbp/navigation028934mbp.pdf

Siouris, G. M. (2004). Missile guidance and control systems. New York: Springer.

36

Spooner, S. (1924). A Successful French Helicopter. Flight, 16(4). Retrieved from
https://www.flightglobal.com/pdfarchive /view/1924/1924%20%200047.html

Teal Group Corporation. (2015). Teal Group Predicts Worldwide UAV Production

Will Total $93 Billion in its 2015 UAV Market Profile and Forecast. Retrieved from
http://www.prnewswire.com /news-releases/teal-group-predicts-worldwide-uav-produ
ction-will-total-93-billion-in-its-2015-uav-market-profile-and-forecast-300128745.html

Yanushevsky, R.(2011). Guidance of unmanned aerial vehicles. Retrieved from
http://www.crcnetbase.com.ezproxy.wpi.edu/ishbn/978-1-4398-5096- 1

37

CAD Detailed Drawings

Appendix A

L [4 € 14

140 L 133HS =~ BS8:IHORBM § 7 :31vOS SIMAIOTTS 10N NOILYOITdd
Junow . noazsn s DA
< uoisupdxj Aog A10ss900V m E
En] "ON "Oma 3718
F
sugziL WD
ava N Q312345 ISIMITHLO SSTINA
N N - = =
N N TN 0
@ I ow > g
N 4 NN o
S
[

s
€9
i WA

S
SATEED T |
NYHLZ D "dAL TEAOFT QT 1\

TV NAHLOV'T @ Xp

_ N

& 057 Z0°€l

1:1 37vOS

09

o
[N A C o

Accessory Bay Expansion Mount Detailed Drawing
38

Figure 9

| 4

| 4O | 133HS 6 1Z (LIHDIIM 1-1 FTVYOS ONIMVHA 3T¥DS ION OQ NOILYOINddY ‘Q3LEIHO¥
SHdM
NO a3$n ASSY XN 40 NOISSIW3d NILUEM 3HL INOHLM
214 Aueqdsoy woyjog eso) s IOHH ¥ 5 50 134 N NOIONGORE3S
mm_ “ ’ .MV,_Z ‘OMa . 3718 s fasetpate o pune Olisbld S8V 10 ABOLITIOS 341 S NIMYH
SINIWWOD IVIRELYW SIHL NI G3NIVINOD NOILYWOSNI FHL

: 43d ONIONVI10L VIINIAIINOD NV AYVIINLO¥d

VO DIJIIWOID 133d43INI

asPD S|OPIUNOW ¥AE —
0|0S - Id Alaqdspy

TUL Q1ogo | STOT TYAIDIA 30V1d OML

< . SIONVITIOL
oL/ge/iL WaD NMYQ SIHONI NI 3V SNOISNIWIQ {

ava | IAWN XQ31D3dS ISIMITHLO SSTINN

W G :yolid S|oH

TATTIT T ATITTIN

mITTn =
SC L FDL LlLlL I
m T

98°LL

SZ'6 dAL 9

e

o 00 00 N ~ NN OO AN DMNWWLWWN O
NN — N — O 00 OW N MO NO O
o — — — — O~ N NW N N0 NN
0o v v o nO 00O U

Figure 10: Case Bottom for Raspberry Pi 2b Detailed Drawing
39

|

1 4O | 133HS BTz [IHOIIM 111 :3TVDS ONIMYEATTVOS LON 0a
v Zv avandy "
ofwnow-ans W
Dlso|
A3 "ON "OMa 371 . WU SBY, i
SININNOD 33d ONIONVSIIOL
O OIYIIWOIO 133d¥3INI
¥ddV OIN
“¥ddV ONI
. ST 3 IYWID3A 3DV1d OML
JLIL AOIHO SIONVAIIOL
oL/ge/iL WaD NMYQ Wi N| 33V SNOISNIWIA
iva INVYN *Q31HID3dS ISIMITHIO SSTINN
T " T
[T r=ri
1l l 1 1l
—F=3— _ —F=3—

(04

NIYHLZ D "dAlL

o€

3AIS YVIN 506 X G659 D N\ -

eEAQ0S9 D[]
TV NAHL09°C @ X¥

NOILYOIddY
‘Q3ULIHOE SIIdM
40 NOISSIWId
NILUYM FHL INOHUMITOHM V SV
JO [¥¥d NINOILONAOIIY ANV “IdM
40 ALd3dOdd F10S 3HL SI ONIMYIA
SIHL NI G3NIVINOD NOILYWAOINI 3HL

IVIINIAIINOD ANV A¥V1INJONd

NO a3sn ASSY IXaN

v0'S/

Figure 11: Mount for RPLiDAR A2 Detailed Drawing

40

| 4

oG9y

| 4O | 133HS QHDIAM 1AL TTVYOS ONIMVHA 3T¥DS ION OQ NOILYOINddY ‘Q3LEIHO¥
SHdM
4O NOISSIW3d NILUNM IHL INOHLM
< DIBWDD HSINIE 1o azsn ASSY LAN FIOHM V S 4O 1dvd NI NOILONAO3Y
1450y 10} JUNOW-gNS . ANY 1dM
. : N lisold SgV 40 ALY34O¥d 3108 3HL ST ONIMYAQ
AJY ON "OMAd 371) WAL SIHL NI GINIVINOD NOILYWSOANI FHL
SINTWNGS 1¥3d ONIONVSI10L VIINIAIINOD NV AYVIINLO¥d
Vo OIYIIWOIO B¥d¥aINI
“4ddV OIN
#dYONT | yz 3 wNIDIa 30v1d OML
3L A3 ‘SIONVHIIOL
oL/ge/iL WaD NMYQ WW NI 34V SNOISNIWIQ
ilva NN :Q3H4123dS ISIMIIHLO SSTINN
f f
S 7 1z 7
. = ¢ #
S 05 P
(@] w
o
w % % i o
TIV NAHLOVY'T @ XY o o
NIHLZ DX €
04

Figure 12: Mount for RasPi Camera Detailed Drawing

41

Appendix B: Programming

All code has been uploaded to shared repository. See link below:
https://bitbucket.org/rvcowlagi/srcl_mqgp/src

42

