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Abstract 

In this project, we evaluated the measuring capabilities of a high-resolution fiber-optic 

strain sensor based on a miniaturized Fabry-Perot interferometer. We designed an opto-

electromechanical setup to experimentally evaluate our theoretical analyses of the sensor and to 

verify its reliability. High-resolutions are needed for testing performance and verification of new 

designs, especially in electro-mechanical components. As a consequence, high resolution sensors 

are needed. These sensors must not alter design intent and must be immune to electromagnetic 

interference.  Calibration was done on a cantilever beam subjected to static and dynamics 

loading conditions, using off the shelf electrical components.  Results indicate a gage factor on 

the order of 40 (mV/με). These results prove the capabilities of the fiber Fabry-Perot 

interferometer for high-resolution measurements of strain. The fiber Fabry-Perot can be 

embedded into a component without significantly altering its properties as characteristic 

dimensions of this fiber are smaller than 125 micrometers. We also applied the sensor to study 

dynamics of a scaled model of a wind turbine blade. The fiber Fabry-Perot interferometer has 

been proven to provide high-resolution measurements in conditions where conventional strain 

sensors may fail to provide reliable results. 

 

 

  

 



iii 
 

Acknowledgements 

 Our group owes many thanks for the generosity and support of many different individuals 

who helped us achieve our goals. Without them, the Evaluation and Application of a High-

Resolution Fiber Optic Strain Sensor project could not have become a reality. First and foremost, 

we would like to graciously thank our advisor, Professor Cosme Furlong for all his support and 

guidance throughout this project. He provided us with helpful advice and direction as well as the 

opportunity to work with state-of-the-art technologies in the CHSLT Lab. His researchers in the 

lab were always willing to help us with any problems we encountered and they deserve to be 

recognized for their contribution to this project. 

 Our group would also like to thank the faculty members at WPI who were willing to help 

us achieve specific project objectives. Professor Hefti aided our group in the holographic 

experiments of our project and without him those experiments would not have been a success. 

Finally, Dr. Flores and Nikhil Bapat guided us throughout our project when advice was needed 

and allowed us to accomplish our goals.  

 In closing, our group would like to thank Worcester Polytechnic Institute for providing us 

with an opportunity to partake in such a wonderful project experience.  

  



iv 
 

Table of Contents 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

Table of Figures ............................................................................................................................. vi 

1 Introduction ............................................................................................................................. 1 

2 Background .............................................................................................................................. 3 

2.1 Sensing Applications ........................................................................................................ 3 

2.1.1 Structural monitoring ................................................................................................ 3 

2.1.2 Health Monitoring ..................................................................................................... 4 

2.2 Conventional strain sensors .............................................................................................. 6 

2.2.1 Foil Strain Gage ........................................................................................................ 7 

2.2.2 Accelerometer ........................................................................................................... 8 

2.3 Optical Fiber Communications ...................................................................................... 10 

2.3.1 History and development of Optical Fiber Communications ................................. 10 

2.4 Principles of Operation – Fiber Optics ........................................................................... 12 

2.4.1 Design of Fiber Optics ............................................................................................ 12 

2.4.2 Physics of Fiber Optics ........................................................................................... 13 

2.5 Fiber Optic Sensor (FOS) Configurations ...................................................................... 14 

2.5.1 Fiber Bragg Grating ................................................................................................ 14 

2.5.2 Fabry-Perot Interferometer (FPI) ............................................................................ 15 

2.6 Principles of Operation – Fabry- Perot Interferometer (FPI) ......................................... 16 

2.6.1 Common Fabry-Perot Configurations..................................................................... 16 

2.6.2 Light Propagation and Governing Equations – Fabry-Perot Interferometer .......... 18 

2.7 Development of Miniaturized Fabry-Perot Interferometer ........................................ 21 

3 Methods ................................................................................................................................. 23 

3.1 Verification of Sensor Displacement Linearity .............................................................. 23 

3.1.1 Analytical Modeling to Prove Linearity ................................................................. 24 

3.1.2 Computational Modeling to Prove Linearity .......................................................... 26 

3.2 Realization Opto-Mechanical Setup for use of FPI Sensor ........................................... 28 

3.2.1 Vibrometer Design .................................................................................................. 30 



v 
 

3.2.2 Holographic Time Averaged Design ...................................................................... 30 

3.3 Calibration of the System ............................................................................................... 31 

3.3.1 Analytical Modeling ............................................................................................... 31 

3.3.2 Computational Modeling ........................................................................................ 35 

3.3.3 System Setup ........................................................................................................... 37 

3.4 Dynamic Evaluation........................................................................................................... 39 

3.4.1 Analytical Calculations ........................................................................................... 39 

3.4.2 Computational Calculations .................................................................................... 40 

3.4.3 Dynamic System Setup ........................................................................................... 42 

3.4.4 Laser Vibrometry .................................................................................................... 46 

3.4.5 Time- Averaged Holographic Interferometry ......................................................... 46 

4 Results ................................................................................................................................... 48 

4.1 Calibration Results ......................................................................................................... 48 

4.2 Dynamic Testing Results ............................................................................................... 49 

4.2.1 Cantilever Beam Dynamic Results ......................................................................... 50 

4.2.2 Wind Turbine Blade Dynamic Results ................................................................... 52 

5 Conclusions ........................................................................................................................... 54 

6 Future Work ........................................................................................................................... 55 

7 References ............................................................................................................................. 56 

Appendix A: MathCAD for Analytical FEA Calculations ........................................................... 58 

Appendix B: List of Equipment used in Opto-Mechanical Setup ................................................ 62 

Main Opto-Mechanical Setup Equiptment ................................................................................ 62 

Laser Vibrometer Setup Equipment .......................................................................................... 70 

Appendix C: Force-strain Relationship ........................................................................................ 73 

Appendix D : One Fringe Calculation .......................................................................................... 74 

Appendix E : Mass Calculation for One fringe ............................................................................ 75 

Appendix F: MathCAD Natural Frequency Calculations ............................................................. 76 

Appendix G : MathCAD – Natural Frequency of Block .............................................................. 77 

Appendix H : Uncertainty Analysis of Strain versus Applied Mass ............................................ 78 

 

  



vi 
 

Table of Figures 

Figure 1 Goodman Diagram of Thirteen R-values for Database Material DD16 ........................... 6 

Figure 2 (a) Schematic of Foil Strain Gage (b) Internal Block Diagram of Foil Strain Gage ........ 7 

Figure 3 (a) Schematic of MEMs Accelerometer (b) Internal Block Diagram of ADXL202 

MEMs Accelerometer ..................................................................................................................... 9 

Figure 4 Comparison of Strain Sensing Devices .......................................................................... 10 

Figure 5 Fiber Optic Cable Cross Section .................................................................................... 13 

Figure 6 Light Propagation through Singlemode and Multimode Fiber....................................... 13 

Figure 7 Total Internal Reflection................................................................................................. 14 

Figure 8 Common Fabry-Perot Configurations ............................................................................ 17 

Figure 9 Light Propagation through FPI Cavity ........................................................................... 18 

Figure 10 Theoretical Fringe Predictions for Different Applied Strains ...................................... 20 

Figure 11 Intensities Produced from Phase Shifts Induced by Applied Strains ........................... 20 

Figure 12 FISO Technologies Inc. fiber FPI strain sensor ........................................................... 21 

Figure 13 Magnified fiber FPI strain sensor ................................................................................. 22 

Figure 14 Analytical Spring Equivalent Model of FPI Sensor ..................................................... 24 

Figure 15 ANSYS Computational Model of FPI Strain Sensor ................................................... 27 

Figure 16 Analytical and Computational Agreement of Linearity of FPI Sensor ........................ 28 

Figure 17 Final Opto-Mechanical Design ..................................................................................... 29 

Figure 18 Free Body Diagram of Cantilever ................................................................................ 31 

Figure 19 Strain-Force Relationship ............................................................................................. 32 

Figure 20 Strain-Force-Location Relationship ............................................................................. 33 

Figure 21 Theoretical Relationship Between a Given Intensity and its Corresponding Strain .... 34 

Figure 22 Cantilever Design ......................................................................................................... 36 

Figure 23  Finite Element Model-Cantilever Beam ...................................................................... 37 

Figure 24 Static VI Block Diagram .............................................................................................. 37 

Figure 25 Static VI Front Panel .................................................................................................... 38 

Figure 26  Cantilever Beam and Wind Turbine Blade with FPI attached .................................... 39 

Figure 27 Cantilever Beam Modes of Vibration........................................................................... 40 

Figure 28 Cantilever Beam Bending Modes ................................................................................. 41 

Figure 29 Scaled Wind Turbine Blade Bending Modes ............................................................... 41 

Figure 30  Dynamic Testing setup ................................................................................................ 42 

Figure 31 Dyanamic VI for FPI and Vibrometer Block Diagram ................................................ 44 

Figure 32  Front Panel: Vibrometer .............................................................................................. 45 

Figure 33 Front Panel FPI ............................................................................................................. 45 

Figure 34  Laser Vibrometry ......................................................................................................... 46 

Figure 35 Comparison Between Experimentally Calibrated Output and Theoretically Expected 

Output ........................................................................................................................................... 48 

Figure 36  Uncertainty Analysis of Strain versus Applied Mass .................................................. 49 



vii 
 

Figure 37 Dynamic Analytical, Computational and Experimental Comparison – Cantilever Beam

....................................................................................................................................................... 50 

Figure 38 Cantilever Beam Natural Frequency Comparison ........................................................ 51 

Figure 39  Cantilever Beam – Holographic vs. FEM Results....................................................... 51 

Figure 40 Dynamic Analytical, Computational and Experimental Comparison – Scaled Wind 

Turbine Blade................................................................................................................................ 52 

Figure 41 Turbine Blade Natural Frequency Comparison ............................................................ 53 

Figure 42 Scaled Wind Turbine Blade – Holographic vs. FEM Results ...................................... 53 

Figure 43 Mini-Series Breadboard ................................................................................................ 62 

Figure 44 ITC-502 Laser Diode Controller .................................................................................. 63 

Figure 45 TCLDM9 Laser Cooler ................................................................................................ 63 

Figure 46 Pigtailed 830nm Laser Diode ....................................................................................... 64 

Figure 47 (a) Post, (b) Post Holder, (c) Mounting Base ............................................................... 64 

Figure 48 Connecting Rod ............................................................................................................ 65 

Figure 49Connecting Plate ............................................................................................................ 65 

Figure 50 FC Fiber Adapter .......................................................................................................... 65 

Figure 51 SM1Z Z-axis Translator ............................................................................................... 66 

Figure 52 Olympus 20X Objective Lens ...................................................................................... 66 

Figure 53 ST1XY-D X-Y-axis Translator .................................................................................... 67 

Figure 54 HPT1 X-Y-axis Translator ........................................................................................... 67 

Figure 55 BS017 Beamsplitter Cube ............................................................................................ 68 

Figure 56 Beamsplitter Cube Mount............................................................................................. 68 

Figure 57 ST Fiber Adapter .......................................................................................................... 69 

Figure 58 FOS-N-BA-C1-F1-M2-R1-ST Strain Sensor ............................................................... 69 

Figure 59 DET10A High-Speed Photodetector ............................................................................ 70 

Figure 60 NI DAQ ........................................................................................................................ 70 

Figure 61 Piezoelectric Shaker ..................................................................................................... 71 

Figure 62 Pragmatic 2414A .......................................................................................................... 71 

Figure 63 Fiber Laser Vibrometer ................................................................................................ 72 

Figure 64 Single Channel Piezo-Controller .................................................................................. 72 

 

  



1 
 

1 Introduction 

As technology advances, new designs and components require higher resolutions for 

monitoring health and structural characteristics and testing their performance. The quality of new 

devices directly relies on the level at which you can measure their performance. Conventional 

techniques do not provide the high resolutions needed for new and advancing designs for 

measurements of different quantities, particularly strain. Classic foil strain gauges and 

accelerometers have been used and trusted for several years to measure strains on various 

structures including buildings, wind turbines, air planes and the human body, among others; 

however, are known to fail under harsh conditions.  

 We chose to work with a fiber optic strain sensor because it would not fail where a 

conventional strain sensor might, it has superior resolution and would not alter design intent. 

Fiber optic sensors are not only immune to electromagnetic interference, but can survive high 

temperatures and harsh weather conditions. The gauge factor of a fiber optic sensor is also 

significantly improved. When compared to a foil strain gauge, the gauge factor is nearly 25 times 

better. In our research, we chose to focus on two fiber optic strain sensors whose mechanical and 

optical properties changed with an applied strain – the Fiber Bragg Grating and the Fiber Fabry-

Perot interferometer. From these two technologies, we chose to purchase a Fiber Fabry-Perot 

interferometer (FPI) from FISOs Technologies, Incorporated. The sensor was affordable and 

available within four weeks of our request.  

 Therefore the objectives of this project were as follows. To investigate the principles of 

operation of fiber optics for measurements of strain, to apply the sensor for measurements of 

strain and vibrations in specific components, and the main goal, to identify and evaluate a 

specific strain sensor, the FPI, by application of analytical, computation and experimental 
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techniques. We would like to prove the high resolution of the fiber optic strain sensor through 

resolution results obtained through calibration of the system as well as comparison of dynamic 

results from the sensor to other high resolution systems.  
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2 Background 

In order to fully recognize the motivation of this project, information on sensing applications 

including structural, health and performance monitoring is needed. Conventional strain sensors 

such as foil strain gauges and accelerometers have been used for these applications in the past; 

however, fiber optics have proven and continue to prove their superiority to these sensors in 

several applications. 

2.1  Sensing Applications 

2.1.1 Structural monitoring 

 An overall deterioration of the United State’s civil infrastructure has been brought to the 

attention of engineers and researchers over the past decade. As a result, new technologies, such 

as fiber optic sensors, have been considered to monitor large structures to avoid these failures. A 

nondestructive and reliable sensor is needed to perform and evaluation of the structural health of 

concrete and other building materials. Fiber optic sensors (FOS) have many advantages that 

conventional sensors such as the foil strain gauge and accelerometer do not have. FOS are 

extremely small, on the order of micrometers in diameter, and will not affect the material 

properties of the concrete or other material in which they are embedded (Merzbacher, Kersey, & 

Friebele, 1995). When used to test or verify smaller components, the FOS will also not alter 

design intent allowing for a true measurement to be taken. Other advantages include their 

immunity to electromagnetic interferences (EMI) which becomes particularly important when 

monitoring structures in lightening storms as well as small electrical components (Merzbacher, 

Kersey, & Friebele, 1995). Fiber optic sensors are made such that their optical and mechanical 

properties change with the application of some induced strain, temperature change or pressure 
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change, among others. These changes cause a measurable change in several parameters of the 

output beam of light including intensity, frequency, polarization, and phase of the lightwave. 

These parameters allow for fiber optic sensors to be customized for a specific task such as 

measuring variation in strain of the structure.  

 Over the past few decades the uses for fiber optic sensors has broadened significantly. To 

prove this, students from the University of Vermont placed FOS in a variety of structures, 

including highway, pedestrian, and railway bridges, a dam, and a five-story building (Huston, 

Ambrose, & Barker, 1994). These studies are crucial in developing better strategies for utilizing 

various FOS in a wide range of structures. This is important because it is ideal to embed the 

sensor into the structure during construction and the logistical challenges need to be solved 

before completion of the structure. This played a role in our project when determining the 

placement of the sensor within the two scaled structures we chose to use. Because of material 

and machine constraints, we were not able to embed our sensor, but needed to simulate the 

embedding for the most accurate results. A user must also be cautious to protect the fiber within 

the structure to ensure its longevity and accuracy; however, if the FOS is properly embedded into 

a material, the strain cause by the curing process of the material as well as the health of the 

structure can be monitored over time. With this FOS monitoring system, commonly referred to 

as a nervous system, buildings, bridges and other structures can be properly monitored. In doing 

so, the structure can be maintained properly to guarantee it operates safely and effectively even 

after decades of operational and environmental abuse.  

2.1.2 Health Monitoring 

Health monitoring is often done as a combination or as a supplement to structural 

monitoring. The goal of health monitoring is to protect a structure or component from failure. 
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This is done by determining the maximum quantities it can withstand of measurements such as 

strain and performing maintenance or repairs before those quantities are reached.  

Health monitoring is often done in large moving structures such as wind turbines. Wind 

turbines have been utilized for various processes for centuries. Whether the wind turbine was 

used for grinding grain or producing electricity the process of capturing the kinetic energy of the 

wind and converting it to mechanical energy was based on the same idea. Wind turbines face 

many challenges due to constant rotation and vibration throughout their lifespan. One of the most 

problematic challenges faced by wind turbines is caused by the stresses and strains that act on the 

wind turbine blades while rotating. These cyclic stresses occur because of the repetitive rotating 

motion of the blades which have a direct effect on the materials of the wind turbine. Herbert 

Sutherland et al preformed an analysis of composite wind turbine blades and provided engineers 

with essential information regarding fatigue loads and damage predictions (2004). Because of the 

growing use of wind turbines to produce energy, this project will determine with what resolution 

a fiber optic sensor can dynamically measure strains on a scaled wind turbine blade. Damage 

analysis of wind turbine blades requires a description of the fatigue load spectra and the fatigue 

behavior of blade material. The R-value for a fatigue cycle commonly used when analyzing wind 

turbine blades is:   

𝑅 =
𝜍𝑚𝑖𝑛

𝜍𝑚𝑎𝑥
           (2.1) 

Where σmax is the maximum stress and σmin is the minimum stress in a fatigue stress cycle 

(Sutherland & Mandell, 2004). R-values must be considered for reverse loading, tensile values, 

compression values, and constant values. Goodman diagrams such as in Figure 1, represent 

cycles-to-failure plotted as a function of mean stress and range along lines of constant R-values 

(Sutherland 2004).  
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Figure 1 Goodman Diagram of Thirteen R-values for Database Material DD16  

The Goodman diagram shows that the alternating stress is at its maximum with an R-

value of -1 and a normalized mean stress equal to zero. It is also shows that it is important to 

consider the various materials that are commonly used in the construction of wind turbine blades 

because each material reacts differently to stresses and strains. The various materials that make 

up wind turbines can crack, peel, warp, and disintegrate from the cyclic stresses as well as from 

all the other forces acting on the structure. In order to prevent wind turbines from malfunctioning 

due to a lack of preventive measures, researchers and engineers have set out to find a solution 

that can function in the wind turbines extreme environment. As previously stated, we chose to 

utilize the electromagnetic and temperature immunity of a fiber optic sensor and apply it to a 

scaled wind turbine blade because it would survive in these extreme environments with little to 

no damage.   

2.2 Conventional strain sensors 

Some of the two most common sensors used to measure strain are the foil strain gauge and 

the MEMs accelerometer. Both sensors have been used and trusted to measure strain for several 
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years; however, with advancing technology, the way in which we measure strains also needs to 

advance.  

2.2.1 Foil Strain Gage 

The most common type of foil strain gauge consists of a metal foil pattern which is 

adhered to an insulating flexible backing. The foil gauge measures strain by being attached to an 

object and as the object deforms the foil is deformed, causing its electrical resistance to change.  

The resistance chance, usually measured using a Wheatstone bridge, is related to the strain by the 

quantity known as the gauge factor. Figure 2 shows both a schematic of a conventional foil strain 

gauge and an internal block diagram of the electrical set up within the gauge. The foil strain 

gauge is configured in a Wheatstone bridge, with resistors in parallel. 

 

Figure 2 (a) Schematic of Foil Strain Gage (b) Internal Block Diagram of Foil Strain Gage 

The resistance seen at the output follows the equation 2.2 and can be simply converted 

into strain. By exploiting the changes in resistance felt by the gauge at an applied load using 

equation 2.3. 

𝑅 = 𝜌
𝐿

𝐴
           (2.2) 

𝜀𝑥𝑥 =
Δ𝑅

𝐹𝑅
           (2.3) 
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Where is the resistivity of the material of the gauge, L the gage or active length, R is 

resistance and F is the gage factor. Values for the gage factor of a conventional foil strain gage 

are approximately 2.095 (Furlong, 2010).  

 Though the foil strain gage is inexpensive, simple to use, and suitable in certain 

applications, it does have several shortcomings. The gage factor of a fiber optic sensor is 

approximately 25 times the gage factor previously mentioned for the foil strain gage, showing a 

much higher resolution in the fiber optic sensor. High resolutions are needed in precise 

applications where measurements of small strains are needed to verify designs and test their 

performance. The foil strain gage is also not immune to large temperature changes. This causes 

the foil strain gage to fail or produce unreliable readings in harsh weather conditions or working 

environments. Another conventional strain sensing device with similar shortcomings is the 

MEMs accelerometer. 

2.2.2 Accelerometer 

The MEMs accelerometer, also a common sensor used for strain measurements, is an 

inertial sensor whose measurements of acceleration can be converted into strain, among other 

things. Commonly used to measure the dynamic forces acting on an object, an accelerometer is 

an electromagnetic device that measures acceleration forces an object experiences relative to 

freefall. Unlike the foil strain sensor, the accelerometer has the capabilities to measure quantities 

in 1, 2 or 3 directions (Anolog Devices, Inc., 2010). Commonly used low-cost accelerometers are 

the MEMs ADXL202 and ADXL203. Figure 3 shows both a schematic of a conventional 

accelerometer and an internal block diagram of the electrical set up within the sensor (Analog 

Devices, Inc, 2010). 
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(a)   (b)  

Figure 3 (a) Schematic of MEMs Accelerometer (b) Internal Block Diagram of ADXL202 MEMs Accelerometer 

Figure 3 shows one of the many available configurations of MEMs accelerometers, the 

ADXL202 is a dual axis accelerometer that measures accelerations along the x- and y-axis. The 

voltage change seen due to dynamic acceleration follows equation 2.4, derived from the position 

equation. 

 𝑦  𝑡 = −𝜔𝐴 sin 𝜔𝑡 + 𝜙          (2.4) 

Where ω is the frequency of excitation, ϕ is the phase shift, t, the time and A the 

amplitude. By exploiting the amplitude of the sine function, ωA, the strain of the system can be 

found. The sensitivity of MEMs accelerometers vary depending on application and model, but 

are slightly higher than that of a foil strain gage. The sensitivity of these sensors is on the order 

of 300mV/g, with g being the gravitational constant (Analog Devices, Inc., 1999). 

 Similar to the conventional foil strain gage, the MEMs accelerometer is also relatively 

inexpensive and easy to use. The MEMs accelerometer provides superior measuring accuracies 

when compared to the foil strain gage, but the capabilities of a fiber optic strain gauge still 

surpass the accelerometers. Though the accelerometer can withstand higher temperatures, up to 

85 degrees Celsius and requires slightly less power to operate than the foil strain gage, it is still 

sensitive to electromagnetic interference (Analog Devices, Inc., 1999).  This causes the MEMs 

accelerometer to fail or provide unreliable results when validating design or measuring the 
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performance of some electronic components or systems, such as an MRI machine used in 

hospitals or during light strikes on wind turbine blades. 

 Clearly, higher resolutions and temperature and electromagnetically immune sensors are 

needed for several applications because of increasing and advancing technologies. We chose to 

work with fiber optic sensors because none of these problems would cause this kind of sensor to 

fail, and the resolutions are much higher. Figure 4 summarizes some of the expected and known 

advantages of using a fiber optic sensor when compared to two conventional techniques. 

Characteristics 
Foil Strain  

Gauge 

MEMS 

Accelerometer 
Fiber Optic Sensor 

Ultra High-Resolution    

Temperature Resistant    

Electromagnetically 

Immune 
   

Non-Invasive Design    

Commercially Available    

Figure 4 Comparison of Strain Sensing Devices 

2.3 Optical Fiber Communications  

2.3.1 History and development of Optical Fiber Communications 

Communications have been critical to human advancement, economic growth, and general 

prosperity.  Not long ago, the only form on information transfer was person to person.  

Consequently, advancements in civilizations were limited because the rate information travelled 

was limited. The most recent advancement in communications has been with the use of fiber 

optic technologies. 

To understand the benefits of optical fiber communications, the basics of telecommunications 

must be explored.  In the simplest terms, telecommunications contain a transmitter, channel to 
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carry the signal, and receiver to move information over long distances.  The transmitter is what 

inputs the information into the channel.  Transmissions can be explained by a simple analogy to 

the vocal cords of the human body.  In order to achieve a certain signals, the vocal cords create 

changes in air pressure in a specific pattern that passes through the air, or channel in which the 

information propagates.  The signal, or changes in air pressure, is then decoded by the air drum, 

which is analogous to a receiver.  In telecommunications, voltage is transferred through a 

channel in the form of current.  Current is output at the receiver is seen as a changing voltage, 

much like the sensing devices described in section 2.2. 

The media at which the information travels limits its accuracy and speed. Copper and other 

metals have been typically used because of its high conductivity and inexpensive price.  

Different materials obviously have different material properties which determine the bandwidth, 

or capacity, of information that can be transferred at any one time. Information is coded in 

different frequencies travelling through the channel whose summation can be found through 

Fourier synthesis. As signal distances increases over 300 meters, copper wires become 

uneconomical and unreliable as a means of information transmission because of a weakening 

signal. 

Different materials have been used to improve the disadvantages of copper for information 

transfer, one of which is the coaxial cable. A coaxial cable still contains a central conducting 

wire typically made of metal, surrounding by an insulation material, and an outer conducting 

material.  The electromagnetic waves are carried through the insulator of the cable rather than the 

core or outer cable.  Consequently, higher frequencies could be used, which increases the 

bandwidth, over longer distances without major attenuation.   
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Coaxial cables seemed to solve many of the initial problems with bandwidth and long-

distance information travel until the inventions of high bandwidth media, including televisions 

and the internet. These cables also may provide unreliable information transfer if used in the 

previously mentioned structural and health monitoring situations as they are not immune to 

electromagnetic interference. Radio waves are more commonly used today for information 

transfer, as their electromagnetic waves can be carried over much longer distances with greater 

accuracy; however, radio waves are also susceptible to interference. Each systems disadvantage 

has been more or less solved by the invention and design of optical fiber. Optical fiber allowed 

for significantly more bandwidth and do not contain metal limiting special and electrical loss of 

information. 

2.4 Principles of Operation – Fiber Optics 

2.4.1 Design of Fiber Optics 

The design of optical fibers is critical to their function.  An optical fiber is made from a 

glass core and cladding, commonly made from the material silica.  Figure 5 shows a simplified 

cross section of a fiber optic cable (Qwick Connect, 1999). The buffer, strength material and 

jacket are option with the core and cladding being the key to fiber optic technology. Fiber optics 

can be made of multimode or singlemode fiber, with the main difference between the two the 

size and propagation of light. Multimode fiber typically had a core and cladding diameter of 50 

micrometers and 125 micrometers, respectively. A singlemode fiber typically has a smaller core 

and cladding diameter of 8 micrometers and 62.5 micrometers, respectively.  
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Figure 5 Fiber Optic Cable Cross Section 

2.4.2 Physics of Fiber Optics 

As previously mentioned, light propagation through a fiber is determined by the type of fiber. 

In single mode fiber, light travels along one optical axis, where in a multimode fiber, light travels 

in a much more complex manner. Figure 6 shows a simplified pattern of light propagation 

through single and multimode fibers.  

 

Figure 6 Light Propagation through Singlemode and Multimode Fiber 

 Though the exact mathematics behind light propagation through the two main types of 

fiber is complex, the physics behind the light travel is governed by one equation. Light 

propagation through a fiber core is due to total internal reflection, as shown in Figure 7. 
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Figure 7 Total Internal Reflection 

Each fiber has a fiber core with an index of refraction higher than that of the fiber 

cladding. It is because of this, light does not escape through the fiber walls. This phenomenon is 

governed by equation 2.5, Snell’s law: 

sin⁡(𝜃1)

sin⁡(𝜃1)
=

𝑣1

𝑣2
=

𝑛2

𝑛1
          (2.5) 

With θ the angle at which light enters the fiber, v the velocity of light travel in each media 

and n the index of refraction of each media. The condition of total internal reflection is satisfied 

if 𝑛1 is greater than 𝑛2, as is true in all optical fibers (Yin, Yu, & Ruffin, 2008). 

2.5 Fiber Optic Sensor (FOS) Configurations 

Several fiber optic sensor configurations exist for a variety of applications including strain, 

pressure and temperature sensing, among others. We chose to focus on two fiber-optic strain 

sensors whose mechanical and optical properties change with an applied force – the Fiber Bragg 

Grating and the Fabry-Perot Interferometer. 

2.5.1 Fiber Bragg Grating 

This Fiber Bragg Grating sensor has become increasingly popular for strain and 

temperature measurement ever since it’s creation in 1989.  This interest in FBGs is the result of 

its ability to directly correlate the wavelength of light and the change in the desired strain. FBGs 

are structures made in core of the single mode optical fiber characterized by periodic changes in 
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the value of the refraction index occurring along the axis of the optical fiber. Because of these 

changes, part of the optical wave transmitted by the optical fiber is reflected by the Bragg’s 

grating structure, and the remainder is propagated along the optical fiber's core without any loss 

(FBGS Technologies, 2009). 

 If the fiber is strained from applied loads then these gratings will change accordingly and 

allow a different wavelength to be reflected back from the fiber.  The strain experienced by the 

FBG sensor can calculated by Equation 2.6 where Δλ is the wavelength reflected and λ is the 

original wavelength.  

𝜀 = 𝛥𝜆/𝜆           (2.6) 

 Calibrating the sensing equipment to read the changes in reflective index makes it possible to 

monitor temperature and strains by only analyzing the specific wavelength of the light source 

being reflected.  

2.5.2 Fabry-Perot Interferometer (FPI) 

 The first Fabry-Perot interferometer was a “bulk-optics-version” invented in the 

nineteenth century. This invention allowed for high-resolution spectroscopy (Yin, Yu, & Ruffin). 

Fiber optic versions of this Fabry-Perot have been created based on several principles and 

equations discovered and studied from this bulk version. The first of these fiber optic Fabry-

Perot interferometers (FFPI) was created in the 1980s and were commonly used for sensing 

temperature, strain and ultra-sonic pressure (Yin, Yu, & Ruffin, 2008). Since then, changes in 

materials used and structure of the FFPI has been adapted for higher resolutions and different 

applications, but the principles are still the same.  

 Fabry-Perots can be made to be fixed, know as an etalon, or mechanically movable. 

Measurements from etalons are from changes in angle or index of refraction as light travels 



16 
 

through the fixed cavity while mechanically movable FPIs measure changes in the cavity length 

(Measures, 2001). The configuration of an FPI consists of two parallel, semi to highly reflective 

mirrors or coated fiber tips spaced a distance apart. The distance between the two fiber tips is 

generally on the order of nanometers and, depending on the gauge length (the active sensing 

region, defined as the distance between fusion welds) ranges of mechanical or thermal strain the 

sensor has designed to measure (Belleville & Duplain, 1993). The sensor used in this project has 

been made to be nearly immune to the effects of thermal strain. Mechanical strains can be 

measured applying the basic definition of strain to this sensor, as follows: 

𝜀 =
∆𝑑

𝑑𝑜
=

 𝛿𝑐𝑎𝑣𝑖𝑡𝑦  

𝐿𝑔𝑎𝑢𝑔𝑒
          (2.7) 

Where δcavity is the change in the cavity length from a given load. This can be measured in a 

change in optical phase of the output light intensity. For the FPI sensor used in this project, Lgauge 

is approximately 5 millimeters and δcavity ranges between 8,000 and 23,000 nanometers, 

depending on the applied strain.  

2.6 Principles of Operation – Fabry- Perot Interferometer (FPI) 

2.6.1 Common Fabry-Perot Configurations 

In this project, we chose to utilize the Fabry-Perot Interferometer. The Fabry-Perot has three 

common configurations, shown in Figure 8. Each of the three configurations still contain a cavity 

surrounded by two semi-reflective tips allowing light to propagate and reflect back in a similar 

manner for each. 
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Figure 8 Common Fabry-Perot Configurations 

 The intrinsic Fabry-Perot interferometer (IFPI), shown in Figure 8a, is fully contained 

within the fiber, with no micro-capillary surrounding the distance between reflective mirrors. 

The IFPI is made by creating one or two reflective fusion splices within the fiber (Measures, 

2001). The medium between reflective surfaces is no longer air, but optical fiber. To build an 

IFPI, a solid length of optical fiber is taken and two in-fiber reflective splices are created to form 

the sensors cavity. 

 The extrinsic Fabry-Perot (EFPI), shown in Figure 8b, is the most commonly used FPI in 

strain-sensing applications because it is easier to manufacture than the intrinsic FPI (IFPI), it has 

a protective capillary tube which also acts as an alignment mechanism, and allows for no 

transverse coupling (Measures, 2001). When studying the benefits of no transverse coupling in 

1991, Sirkis and Haslach showed the extrinsic version of this sensor could “evaluate more 

directly the axial component of strain in the host material” (Measures, 2001). To build an EFPI, a 

cavity is created between two fiber ends which act as the two reflective surfaces by being coated 

in a semi-reflective to reflective material. These fibers, which can be singlemode or multimode, 
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are inserted into the capillary tube and fused into place. Another advantage of the EFPI sensor is 

the gauge length (distance between the fused welds) is generally greater than the cavity length, 

allowing the use of lasers with larger coherence lengths; however, extreme care must be used to 

determine this gauge length, if it is not previously known (Measures, 2001). 

 The third common type of FPI is the in-line fiber etalon (ILFE), as shown in Figure 8c. 

As previously mentioned, etalons have fixed reflective surfaces. The ILFE is created by welding 

a hollow-core fiber to the cleaved ends of two optical fibers with reflective coatings. Unlike both 

the extrinsic and intrinsic FPIs, the ILFE does not have any physical discontinuities after the 

welding (Measures, 2001). Though all three common types of FPIs sense using the basic 

principles of interference, the ILFE does not measure strains by change in cavity length. Strains 

are measured by differences in index of refraction and angle changes (Yin, Yu, & Ruffin, 2008). 

2.6.2 Light Propagation and Governing Equations – Fabry-Perot Interferometer 

 The first intrinsic FFPI was created by Lee and Taylor in 1988 coating fiber ends with 

TiO2 to create two internal mirrors (Measures, 2001).  Later, fiber tips were coated with multi-

layer TiO2/SiO2 films to create the semi-reflective “mirrors” both intrinsic and extrinsic FPIs 

contain (Measures, 2001). This technique is the most widely used for coating fiber tips of FFPIs, 

but the material used to create the film varies. Light propagation through the cavity can be seen 

in Figure 9.  

 

Figure 9 Light Propagation through FPI Cavity 
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Light propagates through the cavity containing semi-reflective mirrors. Some of the light 

is transmitted and some is reflected. The returning light interferes resulting in black and white 

bands known as fringes caused by destructive and constructive interference. The intensity of 

these fringes vary due to a change in the optical path length related to a change in cavity length 

when uniaxial force is applied. This phenomenon can be quantified through the summation of 

two waves. By multiplying the complex conjugate (equation 2.8)  and applying Euler’s Identity 

(equation 2.10) we obtain the following equation of reflected intensity at a given power for 

planar wave fronts (equation 2.11) (Gangopadhyay, 2004): 

𝐼 =  𝑈1 + 𝑈2  𝑈1 + 𝑈2 
∗         (2.8) 

𝐼 = 𝐴1
2 + 𝐴2

2 + 𝐴1𝐴2𝑒
(𝜙1−𝜙2)𝑖+𝐴1𝐴2𝑒

(𝜙2−𝜙1)𝑖       (2.9) 

 𝑒𝜙𝑖 = 𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙          (2.10) 

𝐼 = 𝐴1
2+𝐴2

2 + 2𝐴1𝐴2 cos 𝛥𝜙 − 𝛥𝜃         (2.11) 

With A1 and A2 representing the amplitude coefficients of the reflected signals due to the 

reflectivities, R1 and R2, respectively. The above equation can be changed to represent only 

intensities by substituting Ai
2
=Ii, i=1,2: 

𝐼𝑅 = 𝐼1 + 𝐼2 + 2 𝐼1𝐼2 cos 𝛥𝜙1         (2.12) 

Where I1+I2 will remain constant, due to the power input of the system and the coefficient 

of the cosine function will determine the contrast of fringes. The argument of the cosine function 

is related to the initial cavity length, ΔL and change in cavity length δ with Δϕ  and Δθ defined as 

follows 

Δ𝜙 =
2𝜋

𝜆
Δ𝐿           (2.13) 

Δ𝜃 =
2𝜋

𝜆
2δ           (2.14) 
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The change in round trip phase lag, as defined in equation 2.14, is directly correlated to 

the pattern of fringes (Gangopadhyay, 2004). From these equations we were able to predict the 

fringe patterns produced by different amounts of stress, as shown in Figure 10 (Vest, 1979). 

 

Figure 10 Theoretical Fringe Predictions for Different Applied Strains 

  The intensity of the fringes follow a periodic function as force is applied, as shown in 

Figure 11. By exploitation of interference characteristics, we can measure strains.  

 

Figure 11 Intensities Produced from Phase Shifts Induced by Applied Strains 
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2.7 Development of Miniaturized Fabry-Perot Interferometer 

  After analyzing the principles of operation of a bulk Fabry-Perot Interferometer, a 

manufactured miniaturized Fiber Fabry-Perot Interferometer strain sensor needed to be explored. 

A sensor was needed that could be customized to an application where sensor design and 

environmental operation conditions are crucial for proper implementation of the sensor.  

There are not many manufacturers that produce miniaturized FPI strain sensors and as a 

result FISO Technologies Inc. was chosen for this project. FISO Technologies, located out of 

Canada, is a leading developer and manufacturer of fiber optic sensors. FISO Technologies Inc.’s 

FOS-N strain sensor was chosen for its high sensitivity and resolution, resistance to temperature, 

no interference due to cable bending, non-invasive design, as well as its immunity to 

electromagnetic interference. The final specifications of the fiber FPI strain sensor that was 

purchased for this project are: functional with 830nm light source, 1m long multimode fiber with 

an ST connector, core diameter of 50μm, cladding diameter of 125μm, 1mm outer diameter 

PTFE coating, operating temperature of -40°C to 250°C, 20mm bare tip, and has a sensing range  

of +/- 1000μm. 

 

Figure 12 FISO Technologies Inc. fiber FPI strain sensor 

Figure 12 shows how the FISO Technologies FPI strain sensor is packaged after it is 

manufactured. The main component of the FPI’s design is the glass capillary at the end of the 
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multimode fiber, which contains the sensing cavity. This glass capillary is seen in a magnified 

view with all of its dimensions in Figure 13. 

 

Figure 13 Magnified fiber FPI strain sensor 

 Within the capillary, there are three fusion welds which attach the three fibers to the glass 

capillary wall. The main component of the FPI is the sensing cavity, seen by the highlighted 

green faces in the middle of the capillary, has a width of 15.8μm and this width was measured 

using a high-resolution microscope. Once we purchased a miniaturized fiber Fabry-Perot 

Interferometer strain sensor we set out on validating its functionality with the help of analytical 

and computational finite element analysis calculations. 
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3 Methods 

3.1 Verification of Sensor Displacement Linearity 

 Analyzing the deformation behavior of the sensor, the glass capillary and its components, 

as a load is applied was important to the project as a whole. The sensor’s linearity must be 

verified using finite element analysis because if it is not linear then the future experiments and 

other calculations will not work because they are based on a linear sensor.  

Finite Element Analysis (FEA) is a numerical technique for obtaining approximate 

solution to a wide variety of complex engineering problems. The variables of the problems are 

related by a series of differential and integral equations. FEA is commonly used in the 

aeronautical, biomedical, and automotive industries in research and development of their 

products. FEA is not limited to structural analysis though, it can also help analyze thermo, 

electromagnetic, and fluid environments. FEA uses a complex system of points called nodes, 

which make a grid called a mesh, as seen in Figure 15, in a proceeding section. This mesh is 

programmed to contain the material and structural properties that define how the structure will 

react to certain loading conditions (Widas, 1997). FEA can be performed both analytically by 

hand and computationally with the help of FEA software such as ANSYS. 

In the case of using ANSYS, a computer is used to perform the calculations needed to 

find solutions to the differential and integral equations, producing results to graphically show 

how the structure behaves. Sometimes the computer based FEA provides more opportunities for 

faster and more accurate results when analyzing a structure than analytical calculations. 

However, both analytical and computational finite element analysis techniques are extremely 

useful when observing the behavior of a structure such as our FPI strain sensor. 
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3.1.1 Analytical Modeling to Prove Linearity 

The first approach is based on a finite element analysis spring equivalent model that has 

five elements, six nodes, a fixed restraint at the flat end of the sensor, and an axially applied 

force in the x-direction. Figure 14 shows the spring equivalent model used in the analytical 

calculations.  

 

Figure 14 Analytical Spring Equivalent Model of FPI Sensor 

It is important to note that the glass capillary and the three fusions welds are what make 

up the basis for the spring equivalent model. The three pieces of fiber are not included in the 

model because they do not come in direct contact with the capillary wall. Instead, the fusion 

welds are in direct contact with the capillary wall and thus are the components of the sensor that 

experience the deformations due to an applied force. As the welds deform, the fiber pieces within 

the sensor move which in turn alters the width of the sensing cavity and the strain measurements. 

 Once the spring equivalent model was made the spring equivalent constants for each of 

the five elements could be formed. The spring equivalent constant, seen in Equation 3.1, is equal 

to the cross sectional area of the material multiplied by the elastic modulus of the material and 

then divided by the length of the element. 

𝑘 =
𝐴𝐸

𝐿
            (3.1) 

Applied Force 
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From Equation 3.1 we began to solve for the equivalent spring stiffness of the global 

system. This was done by calculation the spring equivalent constant, Equation 3.1, for the glass 

capillary and fusion weld of each element. Equation 3.2a through 3.2e shows that once the spring 

constants were calculated for each of the components of the elements the equivalent spring 

constants for the individual spring constants of the elements in parallel could be calculated.   

Element 1: 𝑘𝑒𝑞1 = 𝑘1 + 𝑘1𝑔          (3.2a) 

 

Element 2: 𝑘𝑒𝑞2 = 𝑘2𝑔          (3.2b) 

 

Element 3: 𝑘𝑒𝑞3 = 𝑘3 + 𝑘3𝑔           (3.2c)           

 

Element 4: 𝑘𝑒𝑞4 = 𝑘4𝑔          (3.2d) 

 

Element 5: 𝑘𝑒𝑞5 = 𝑘5 + 𝑘5𝑔          (3.2e) 

 
Once the equivalent spring constants for the parallel components have been developed 

the equivalent spring constant for the elements in series can be formed in Equation 3.3. This is 

the last step before calculating the total displacement of the sensor as a whole. 

𝑘𝑒𝑞 ,𝑡𝑜𝑡𝑎𝑙 =
1

  
1

𝑘𝑒𝑞 1
 + 

1

𝑘𝑒𝑞 2
 + 

1

𝑘𝑒𝑞 3
 + 

1

𝑘𝑒𝑞 4
 + 

1

𝑘𝑒𝑞 5
  

                      (3.3) 

  
From Equation 3.3 the global displacement of the sensor, Equation 3.4, was calculated and an 

applied force of 4mN was used in this calculation. The 4mN force was chosen so that the 

calculations would remain within the value of a one fringe.  

𝐺𝑙𝑜𝑏𝑎𝑙 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡: 𝑢 = (
𝑃

𝑘𝑒𝑞 ,𝑡𝑜𝑡𝑎𝑙
)                    (3.4) 

 

 After solving for the global displacement of the sensor, the displacements at the six nodes 

are to be solved for using the matrix equation for linear springs of each element, Equation 3.5. 

Element n:   
𝑘𝑒𝑞 ,𝑛 −𝑘𝑒𝑞 ,𝑛

−𝑘𝑒𝑞 ,𝑛 𝑘𝑒𝑞 ,𝑛
 ∗  

𝑢𝑛
𝑢𝑛+1

 =  
𝑓𝑛𝑜𝑑𝑒
𝑛

𝑓𝑛𝑜𝑑𝑒
𝑛        (3.5) 
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Where  𝑓𝑛𝑜𝑑𝑒
𝑛 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ′𝑛′ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 ′𝑛𝑜𝑑𝑒′ 

 

The matrix equations for linear springs of each element are utilized to form the global 

stiffness matrix, Equation 3.6, and from here the nodal force equations can be developed, 

Equations 3.7a to 7f.  

  

 

 
 
 
 

𝑘𝑒𝑞1 −𝑘𝑒𝑞1 0 0 0 0

−𝑘𝑒𝑞1 (𝑘𝑒𝑞1 + 𝑘𝑒𝑞2) −𝑘𝑒𝑞2 0 0 0

0 −𝑘𝑒𝑞2  𝑘𝑒𝑞2 + 𝑘𝑒𝑞3 −𝑘𝑒𝑞3 0 0

0 0 −𝑘𝑒𝑞3  𝑘𝑒𝑞3 + 𝑘𝑒𝑞4 −𝑘4 0

0 0 0 −𝑘4  𝑘𝑒𝑞4 + 𝑘𝑒𝑞5 −𝑘5

0 0 0 0 −𝑘5 𝑘5  

 
 
 
 

∗

 

  
 

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6 

  
 

=

 

 
 
 

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝑃 

 
 
 

  (3.6) 

 

 

 

𝐹1 = (𝑘𝑒𝑞1 ∗ 𝑢1)            (3.7a) 

𝐹2 =  𝑘𝑒𝑞1 + 𝑘𝑒𝑞2 ∗ 𝑢1 − (𝑘𝑒𝑞2 ∗ 𝑢3)         (3.7b) 

𝐹3 =  −𝑘𝑒𝑞2 ∗ 𝑢2 +  𝑘𝑒𝑞2 + 𝑘𝑒𝑞3 ∗ 𝑢3 − (𝑘𝑒𝑞3 ∗ 𝑢4)       (3.7c) 

𝐹4 =  −𝑘𝑒𝑞3 ∗ 𝑢3 +  𝑘𝑒𝑞3 + 𝑘𝑒𝑞4 ∗ 𝑢4 − (𝑘𝑒𝑞4 ∗ 𝑢5)       (3.7d) 

𝐹5 =  −𝑘𝑒𝑞4 ∗ 𝑢4 +  𝑘𝑒𝑞4 + 𝑘𝑒𝑞5 ∗ 𝑢35 − (𝑘𝑒𝑞5 ∗ 𝑢6)       (3.7e) 

𝑃 = (−𝑘𝑒𝑞5 ∗ 𝑢5) + (𝑘𝑒𝑞5 ∗ 𝑢6)          (3.7f) 

 
 

With Equations 3.7a to 3.7f, mathematic software called MathCAD was used to solve for 

the nodal displacements of the sensor. The complete calculations performed in the analytical 

calculations can be seen in Appendix A.  

3.1.2 Computational Modeling to Prove Linearity 

The analytical calculations are based on the force and displacement of the sensor; 

however, we are also interested in studying the stresses at the welds to see if their deformations 

will affect the linearity of the sensing cavity. 
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Figure 15 ANSYS Computational Model of FPI Strain Sensor 

A finite element analysis software, ANSYS Workbench, was utilized to develop a fully 

three-dimensional model of our FPI strain sensor. This was used to verify the analytical 

displacement results as well as measure the strains experienced by the sensor. A computer aided 

design program, SolidWorks, was used to make the initial fully three dimensional model of the 

sensor. This model was then imported into ANSYS Workbench with the correct constraints, 

applied force, and material properties just as in the analytical model as seen in Figure 15. The 

ANSYS contained a great deal more elements and nodes than the analytical model with 8076 

elements and 22183 nodes. After the complex model was tested and the results were analyzed, 

comparisons between the analytical and computational calculations were made.  
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Figure 16 Analytical and Computational Agreement of Linearity of FPI Sensor 

As Figure 16 displays, there is a nearly perfect agreement between the analytical and 

computational calculations with less than 1% error between them. Since the FPI sensor’s 

linearity was verified using two different finite element methods, we now had to set out on 

designing an opto-mechanical setup for use of our FPI sensor. 

3.2 Realization Opto-Mechanical Setup for use of FPI Sensor 

It was determined from our background research that our fiber FPI strain sensor typically 

utilized white light when operating. Therefore, a light source is needed that is compatible with 

both the FPI sensor as well as with a detector.  

The opto-mechanical setup begins with a pigtailed laser diode (PLD) which emits light in 

the 830nm rand of the infrared line with a power of 1mW. This diode is controlled by a laser 

diode controller (LDC ) which has a PID built in which helps stabilize the temperature and 

current of the diode when attached to laser cooler. The output of the pigtailed laser that exits the 

FC connector ( FC ) at the end of the sensor’s fiber is connected to a Z-axis translator ( ZT ). 

This Z-axis translator helps focus the divergent light onto a 20X objective lens mounted to an X-
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Y-axis translator ( 20XYT ). This collimated light is sent into a 50:50 beam splitter cube ( BS ) 

where fifty percent of the light is split towards the FPI sensor ( FPI ) and the other fifty percent 

is not used.  

The light that is sent to the sensor is focused onto the 50μm core of the sensor’s 

multimode fiber. This focusing is accomplished with the help of another 20X objective lens 

mounted to an X-Y-axis translator which focuses the light onto the fiber core which is able to 

adjust via a Z-axis translator which has the FPI fiber’s ST connector ( ST ) attached to it. The 

light travels through the fiber and into the sensing cavity and then back reflects out the same 

optical axis it came in. This back reflected light passes through the 20X objective lens and is 

collimated into the beam splitter and once through the beam splitter the light is sent into the 

photodetector   ( PD ). The photodetector’s output is digitized by a 16-bit data acquisition system 

( DAQ ) and a processing computer ( PC ) is used to calculated the strain values.  

 
Figure 17 Final Opto-Mechanical Design 

It is important to take note that the highlighted 20X objective lens in Figure 17 was added 

later on in our project. The rest of the opto-mechanical setup is the remained the same as the 
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prior setup, the only addition was the third 20X objective lens. The lens was added because there 

was a large amount of noise being recorded in our data and we were having trouble analyzing it 

properly in order to calibrate our complete setup. As a result, an additional 20X objective lens 

was added so that the light could be directly focused into the photodetector’s sensing region in 

order to successfully reduce the noise in the recordings. Refer to Appendix B for complete 

descriptions of all the components used in our projects experiment. 

3.2.1 Vibrometer Design 

After we finalized our opto-mechanical setup design, our fiber FPI strain sensor could be 

evaluated in our experiments. In addition to the final opto-mechanical setup, we required the use 

of addition equipment for our dynamic experiments. Our cantilever beam and turbine blade 

model with FPI sensor attached, were vibrated using a Jordon EV-30 piezoelectric shaker. To 

control the frequency of the piezoelectric shaker a Pragmatic 2414A waveform generator and a 

ThorLabs MDT694A piezo controller were used. The displacement of the vibrating cantilever 

beam and turbine blade was measured using a Polytec OFV fiber vibrometer which utilizes a 

reference beam as well as a probe beam to complete the measurements. The vibrometer 

measurements are then digitized by a DAQ system so that a computer can process the final 

dynamic test calculations.  

3.2.2 Holographic Time Averaged Design 

 We utilized a previously constructed holography setup that is in the CHSLT lab to 

perform our holographic time averaged tests. This holographic setup allowed us to view the 

bending modes of our cantilever beam and turbine blade.  
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3.3 Calibration of the System 

 Once the Fabry-Perot Interferometer was incorporated into our opto-mechanical setup, 

the system needed to be calibrated.  Calibration was done by attaching the FPI to a cantilever 

beam based on analytical and computational calculations of the areas of maximum strain when a 

static load has been to the free end of the beam.  The maximum applied weight was determined 

to stay within one fringe variation.     

3.3.1 Analytical Modeling 

The cantilever beam can be modeled by a free body diagram. Figure 18 shows the 

cantilever beam with the fixed end, left, and free end, right.  Figure 18 also shows the free body 

diagram of the corresponding cantilever beam.  The reaction forces at the wall are represented by 

forces in the horizontal and vertical directions, Rx and Ry, respectively.  Based on the right hand 

rule, the bending moment of the beam is counterclockwise and represented using the variable M.  

At the free end of the beam of length, L, is an applied force, F.   

 

                                              

Figure 18 Free Body Diagram of Cantilever 

The strain on the beam can be calculated in terms of the applied force, shown in equation 

3.8 and 3.9, where F is the applied force, L is the length of the beam, c is the distance from the 
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center of the beam along the y-direction, b is the width of the base, t is the thickness, and E is 

young’s modulus.   

𝜀𝑥𝑥 =
𝑀𝑐

𝐼𝑧𝑧𝐸
           (3.8) 

𝜀𝑥𝑥 (𝐹) =
12𝐹𝐿𝑐

𝑏𝑡3𝐸
          (3.9) 

Appendix C shows the step by step calculation for the strain-force relationship that has 

been summarized above.  This relationship can be graphed to show that strain and applied force 

on the cantilever beam have a linear relationship, Figure 19.    

 

Figure 19 Strain-Force Relationship 

 In addition to identifying the force strain relationship, it is critical to determine the area of 

maximum strain when a load is applied to the end of the cantilever beam.  As a result, further 

analysis must be done on the cantilever by taking a “cut” through the beam.  The free body 

diagram is now shown below, where V is equal to the shear force on the cross section al area of 

the cut and N is the force normal the cross sectional area.   
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Based on the diagram, the summation of the moments about the cut in the beam, 𝑀𝑜 , is 

quantified by equation 3.10: 

𝑀𝑜 = 𝑅𝑦 𝑥 − 𝐹𝐿          (3.10) 

Equation 3.9 can be used to plot the relationship between the strain response as a function of 

varying the applied force and at different locations (x) from the fixed end of the beam.  A three 

dimensional color plot of the results are shown below in Figure 20.  Clearly, the maximum strain 

occurs when x is equal to zero, corresponding to the point where the beam is fixed to the wall.  

The strain also increases as the applied force increases, as expected.  Therefore, analytical 

calculations show that statically loading the cantilever with increasing weight will results in 

higher strains at the fixed end of the beam.    

 

Figure 20 Strain-Force-Location Relationship 

In order to calibrate the FPI, the relationship between the intensity of light at the output 

of the strain must be derived.  The general equation for intensity was outlined in the background 
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and is shown in below in equation 3.11.  ΔΦ,is defined as the change in phase and is equal to the 

wave number,  
2𝜋

𝜆
, multiplied by the length of the sensing cavity region and the strain in the x-

direction, equation 3.12.  This value for the change in phase was substituted into intensity 

equation and it is now possible to predict the output intensity of light as a function of the induced 

strain, equation 3.14.  In addition, this relationship is plotted in Figure 21, where the intensity 

ranges from zero to 2Io.   

𝐼 = 2𝐼𝑜 1 + cos ∆𝜙           (3.12) 

∆𝜙 =
2𝜋 𝜀𝑥𝑥 𝐿𝑐𝑎𝑣𝑖𝑡𝑦  

𝜆
          (3.13) 

𝐼 = 2𝐼𝑜  1 + cos  
2𝜋 𝜀𝑥𝑥 𝐿𝑐𝑎𝑣𝑖𝑡𝑦  

𝜆
          (3.14) 

From equation 3.14, we can determine the theoretical strain at any given voltage, as seen 

in Figure 21. 

 

Figure 21 Theoretical Relationship Between a Given Intensity and its Corresponding Strain 

From the graph in Figure 21, it is clear that as the strain increases, the intensity follows a 

sinusoidal pattern.  Consequently, to determine the exact strain value the number of waves, or 

2Io 

Io 
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fringes, needs to be counted.  To avoid fringe counting in this experiment, the applied load was 

calculated for the cantilever beam to remain within one fringe.   

A one fringe variation corresponds to at change in phase of 2𝜋.  As a result, equation 

3.13 can be used to solve for the strain at one fringe variation, which can be substituted in the 

original strain equation given by equation 3.11.  Rearranging this equation allows us to 

determine the maximum theoretical applied force for one fringe variation, seen in equation 3.15.  

Remaining within one fringe avoids fringe counting to determine the strain.  The maximum 

applied force is related to the wavelength, 𝜆, the thickness of the beam, 𝑡, the width of the beam, 

𝑏, Young’s modulus, 𝐸, the length of the cavity sensing region, 𝐿𝑐𝑎𝑣𝑖𝑡𝑦 , the length of the beam, 

𝐿, and the distance from the center of the beam, 𝑐.  A detailed, step by step, calculation can be 

seen in Appendix D.   

𝐹𝑚𝑎𝑥𝑖𝑚𝑢𝑚 =
𝜆𝑏 𝑡3𝐸

12𝐿𝐿𝑐𝑎𝑣𝑖𝑡𝑦 𝑐
         (3.15) 

When calculating the maximum force, it was assumed that the fiber was laid perfectly 

along the surface of the beam, at a value of c equal to exactly half of the thickness.  Calibration 

would compensate for uncertainties in the placement of the fiber inside the groove.  A maximum 

applied force of 160.0 grams was calculated to remain within one fringe variation, the calculation 

is shown in Appendix E.   

3.3.2 Computational Modeling 

Finite element Analysis was also performed to determine the location of maximum strain 

when the beam was statically loaded.  Finite Element Analysis is a method of modeling complex 

structures by dividing the structure in elements.  Integration and Partial Differential Equations 

are used to determine the response of the system under various conditions.  This system can be 

utilized to determine the maximum strain on the cantilever beam.   
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The cantilever was designed from three components, a beam that was fixed between an 

upper and lower block clamping system as shown in Figure 22 below.  The block was made from 

Aluminum 6061 and the beam would be of Aluminum 6063-T5.  Also, the beam would have a 

small 1.5875 mm groove to lay the sensor that would extend 25.4 mm from the fixed end of the 

beam.  To ensure the PVC fiber covering could fit through the block, the upper block had a 

matching groove to provide the appropriate tolerances.    

 

Figure 22 Cantilever Design 

The cantilever was manufactured to be attached to a piezoelectric shaker using four 

countersunk 0.25 inch corner through holes shown in Figure 22.  The two, smaller #8-32 holes 

were used to secure the upper block to the lower block.   

Finite Element Analysis of this model was done using SolidWorks Simulation.  

SolidWorks Simulation is an add on to the SolidWorks interface that lets the user directly test 

CAD models, including modal, stress, impact, and heat analysis among many others (Simulation 

, 2010).  The load was applied at the end of the beam.  The beam was constrained assuming 

perfect boundary conditions.  Therefore, the face where the beam meets the block was fixed in 

all directions.  Also, the surface of the countersunk holes was fixed in all directions because this 

was the location where the screws would be locking the cantilever into the piezoelectric shaker. 

A 4-point Jacobian, fine mesh was applied to the beam.  The results are shown in Figure 23 
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below and validate the analytical computations with the maximum strain located along the 

surface of the fixed end of the beam. 

 

Figure 23  Finite Element Model-Cantilever Beam 

3.3.3 System Setup 

A hanger system was employed at the end of the cantilever beam to statically apply the 

load in increments of the 5 grams.  Each of the weights used were weighted on a calibrated scale 

to ten-thousands of a gram accuracy.  The opto-mechanical setup was used to measure the output 

light intensity from the FPI and was recorded using the virtual instrument (VI) from the 

LabView program shown in Figure 24.  A 16-bit data acquisition (DAQ) system from National 

Instruments, model USB 6229-BNC, was used to read the output from the photodetector.  

 

Figure 24 Static VI Block Diagram 
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Figure 25 Static VI Front Panel 

The block diagram shown in Figure 24 was built to record the output voltage as a 

function of time.  Controls were made so that the number of samples and sampling rate could be 

controlled on the DAQ system.  The output voltage is sent to a waveform graph and also to a 

“Basic DC/RMS” function.  This function allows the user to view the DC value and the root 

mean square (RMS) value from the magnitude of the inputs. Data from both the waveform graph 

and the DC/RMS values were sent to a respective build array and written to a file that could be 

specified.  The Front panel, user interface, of this VI can be seen in Figure 25.    

The results from the static load testing would give the resolution of the of the FPI system 

in microstrains per millivolt, equation 3.16.  The inverse of this number will determine the gage 

factor, which can be compared to a typical strain gage, equation 3.17.  Additionally, by 

examining the resolution of the DAQ system, the lowest measurable value of strain can be 

calculated and compared to that of typical strain gauges using the same resolution DAQ system.   

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
∆𝑉

∆𝜀
=

𝑉2−𝑉1

𝜀2−𝜀1
         (3.16) 

𝐺𝑎𝑢𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
∆𝜀

∆𝑣
          (3.17) 
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3.4 Dynamic Evaluation  

 Dynamic testing was done on two components.  The first was using the manufactured 

cantilever beam that was used for static testing.  Additionally, another FPI was attached to a 

scale model wind turbine blade at location where the blade is fixed to the block, which is the area 

of maximum strain.  The scale model of the blade is shown below in Figure 26 and was rapid 

prototyped using a plastic polymer.  The blade had an overall length of 100 mm.  The hole 

pattern was also designed to fit into a model EV-30 piezoelectric shaker.     

 

Figure 26  Cantilever Beam and Wind Turbine Blade with FPI attached 

3.4.1 Analytical Calculations  

 The modes of vibration for the cantilever could be calculated using equation 3.18, where 

Cn is a constant given based on which mode is being determined, E is young’s modulus, Izz is the 

moment of inertia about the z-axis, 𝑚  is the mass per unit length, and L is the length of the beam.  

Table 3.1 shows the natural frequency of the beam for the first three bending modes of the beam.  

Detailed calculations are shown in Appendix F.  The natural frequency of the block was also 

calculated to ensure that the beam and block did not have a close natural frequency.  The natural 

frequency for the block can be seen in Appendix G.      

𝜔𝑛 =
𝐶𝑛

2𝜋
 
𝐸𝐼𝑧𝑧

𝑚 𝐿4
            (3.18) 
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Analytical calculations were not done on the turbine blade because of the complicated 

geometry.  Hand calculations could have large error, which would affect the interpretation of the 

results.  

3.4.2 Computational Calculations 

 The first three bending modes for the cantilever beam and the wind turbine blade were 

determined from finite element modeling.  The young’s modulus used was 68.9 GPa for both 

aluminum 6061 and aluminum 6063-T5.  Figure 28 shows the results and an exaggerated view of 

the mode shape for each bending.  The beam was fixed at the bottom of the figure and red 

signifies maximum displacement, which is at the free end of the beam.  Blue represents zero 

displacement.  Ideal boundary conditions show that there should no displacement at the fixed end 

of the wall.  For each additional bending mode there is an additional node where no displacement 

occurs.  For the cantilever beam, the first three bending modes were at 68.75 hz, 430.3 Hz, and 

1205 Hz, respectively.      

Mode of Vibration Cn value Natural 

Frequency 

1
st
 Bending  3.516 68 Hz 

2
nd

 Bending  22.0345 426.16 Hz 

3
rd

 Bending  61.6972 1193 Hz 

Figure 27 Cantilever Beam Modes of Vibration 
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Figure 28 Cantilever Beam Bending Modes 

The first three bending modes are shown for the scale model of the wind turbine blade in 

Figure 29.  The same color distributed is used for the displacement of the blade, where blue 

represents no displacement and red represents maximum displace.  The exact properties of the 

plastic used to make the prototype of the blade were unknown for this analysis.  As a result, a 

young’s modulus value of 15.5 GPa was used based research in general plastic properties.  The 

boundary conditions are at the base of the blade, corresponding to the bottom of the models 

shown in Figure 29.  The first three bending modes for the wind turbine blade were 175.6 Hz, 

534.3 Hz, and 1136.69 Hz, respectively.   

 

Figure 29 Scaled Wind Turbine Blade Bending Modes 
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3.4.3 Dynamic System Setup 

The same opto-mechanical setup was used in the dynamic testing of the turbine blade and 

the cantilever beam.  A EV-30 piezoelectric shaker was mounted vertically and excited using a 

function generation, and amplifier. The basic components of the piezoelectric system can be seen 

in Figure 30 below.  The blade and the cantilever beam were interchanged during each test.  The 

fiber optic cable was connected to our opto-mechancial setup.   

 

 

Figure 30  Dynamic Testing setup 

 This setup was connected to the DAQ system and the data was analyzed using another VI 

that is shown below.  The VI for this system was combined to collect data from two systems.  

The first was from the FPI sensor and the second from the Laser Vibrometer system that is 

described in the next section.  The main components of the system are the time domain graph 

and the power spectrum graph.  The time domain graph shows the input light intensity as a 

function of time for the FPI and shows the displacement of the beam for the vibrometer.  The 

power spectrum graph identifies the natural frequency for each system.  In addition, there are 

controls that output the maximum light intensity of the FPI and the maximum beam or blade 
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deflection for the vibrometer.  The combination of the two systems allows for a direct 

comparison of two methods of comparing the natural frequency.  The block diagram of this 

system and the corresponding front panels can be seen in Figure 31, Figure 32, Figure 33 on the 

proceeding pages.  The VI’s also have the capabilities to record the data to files.   
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Figure 31 Dyanamic VI for FPI and Vibrometer Block Diagram 

             



45 
 

 

Figure 32  Front Panel: Vibrometer 

 

Figure 33 Front Panel FPI 
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3.4.4 Laser Vibrometry 

 The natural frequency of each component was calculated by a high resolution method 

called Laser Vibrometry.  This method focuses a laser on the surface of interest, in our case the 

cantilever beam or wind turbine blade.  An example of the setup is shown in Figure 34.  The 

system used was from Polytec model number OFV 1000 Fiber Vibrometer.  The principles of 

Laser Vibrometry utilize a two beam system.  The phase shift of the laser that is focused on the 

component is compared to another reference beam.  Therefore, the amplitude of the displacement 

and the natural frequency of the component can be determined (Laser Doppler Vibrometry, 

2010).    

 

Figure 34  Laser Vibrometry 

3.4.5 Time- Averaged Holographic Interferometry  

 Another high resolution technique was used to measure the natural frequencies of each of 

the components called Time-Averaged Holographic Interferometry.  Holographic Interferometry 

is a method of measuring displacement on the order of a wavelength.  A high resolution camera 

is used to determine the modulation of the component by combined an object and reference 

beam. (Vest, 1979).  The amplitude and phase of the light is reconstructed and a frozen image is 
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reproduced using dark and light fringes.  The fringes represent deflections in the component, but 

do not provide information on the direction of the displacement (Vest, 1979).    
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4 Results 

The system was successful calibrated and the high resolution of the FPI was validated 

experimentally when compared to the analytical solutions, computational solutions and the other 

high resolution methods including Laser Vibrometry and Time-Averaged Holographic 

Interferometry.   

4.1 Calibration Results 

 The calibrated system can be seen in the voltage-strain graph shown in Figure 35.  The 

theoretically predicted relationship is shown in the graph.   

 

Figure 35 Comparison Between Experimentally Calibrated Output and Theoretically Expected Output 

The FPI strain gage was calculated to have a gage factor of 47.48 mV/µε.  When 

examining the resolution of the 16 bit data acquisition system, it was calculated that the FPI 

sensor could measure a minimum strain value of approximately 6.4 nanostrains.  This is 

equivalent to 6400 thousandths of a microstrain.  These values were compared to those 

previously researched data for typical strain gauges.  Strain gauges have a gauge factor typically 
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of approximately 2.1 and can measure a minimum strain on the order of one microstrains, as 

previously mentioned.   

Stability was a key component for a successful static test.  As weights were applied to the 

system, data was only recorded when the vibrations subsided and the system seemed constant.  

Yet, some hysterics in our system could have caused slight deviations, including acoustics from 

others talking nearby and vibrations from equipment on the nearby table.  With the high 

resolution and measuring capabilities of our system, these influences cannot be ignored.   

The uncertainty of our system was calculated to show that our calibrated system is within 

the expected values.  The uncertainty in terms of the strain versus the applied force is shown 

below.  The experimental data falls directly between the maximum and minimum values.  The 

detailed uncertainty analysis can be seen in Appendix H.   

 

Figure 36  Uncertainty Analysis of Strain versus Applied Mass 

4.2 Dynamic Testing Results  

 The proceeding sections examine the results for the dynamic testing of both the cantilever 

beam and the wind turbine blade.   
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4.2.1 Cantilever Beam Dynamic Results 

 The results for the first three bending modes of the cantilever beam analytically, 

computationally and experimentally with our FPI sensor, Laser Vibrometer and Holographic 

Interferometer, are summarized in below in Figure 37.  Calculations on the average deviation of 

the FPI sensor from the other methods were conducted.  Results showed an average deviation of 

3.1 percent.   

 
Figure 37 Dynamic Analytical, Computational and Experimental Comparison – Cantilever Beam 

The results were also plotted showing the natural frequency and the corresponding 

bending mode for each method.  The graph verifies the close relationship between all methods 

and the high measuring capabilities of the FPI sensor.  In addition, the holographic pictures are 

compared alongside the Finite Element Solution, shown in Figure 38.   
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Figure 38 Cantilever Beam Natural Frequency Comparison 

 

 

Figure 39  Cantilever Beam – Holographic vs. FEM Results 

 The Holographic images produced from the cantilever beam have poor contrast because 

of the size of the beam.  The beam had to be a greater distance from the light source to capture 

the entire component, which means less light was able to be captured by the camera.  Also, the 

displacements in the beam were so large at lower frequencies that the exposure time had of the 

camera had to be high enough to capture deflection while still making sure that the pixels in the 

image were not saturated.  This balance in camera exposure time also made it difficult to produce 

higher quality holographic images.   
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The Finite Element solutions provided the greatest deviation from the experimental 

results because perfect boundary conditions were assumed for the analysis.  In actuality, the 

clamping mechanism in our cantilever beam was most likely a source of error.  Yet, all of the 

experimental data, including Laser Vibrometry and Time Averaged Holography, showed much 

smaller deviation from the FPI sensor.  

4.2.2 Wind Turbine Blade Dynamic Results 

 The dynamic testing results for the wind turbine blade show similar, high accuracy results 

in the experimental data.  Figure 40 summarizes the results for the computational calculation, 

experimental result, Laser Vibrometry, and Time Averaged Holographic Interferometry.  The 

average deviation was calculated to be 1.6 percent.     

 

Figure 40 Dynamic Analytical, Computational and Experimental Comparison – Scaled Wind Turbine Blade 

The results were again plotted showing the natural frequency at each of the bending 

modes for the wind turbine blade in Figure 41 below.  Once again, the holographic solutions are 

shown against the Finite Element Solutions in Figure 42.  The high measuring capabilities of the 

system were again validated by comparing the results of the FPI sensor.    
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Figure 41 Turbine Blade Natural Frequency Comparison 

 

Figure 42 Scaled Wind Turbine Blade – Holographic vs. FEM Results 

 The Holographic images for the wind turbine blade produced higher contrast images 

because the size of the blade.  The nodes can be seen in each of the Holographic images and 

directly correspond to the Finite Element Solutions.  There were some variations in the FEM and 

the experimental results because the prototype machine did not have the tolerance capabilities 

necessary to reproduce the model exactly as expected.     
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5 Conclusions 

 A new generation fiber optic strain sensor was successfully identified, calibrated, and 

applied to simulate potential real world applications.  Comparisons between the fiber optic 

sensor and a typical foil strain gauge proved the FPI was superior in aspects including immunity 

to electromagnetic waves and resolution.  In additional, the size of the optical fiber provides a 

non-invasive design on the order of 125 micrometers in diameter that can be attached to the 

surface of the materials or embedded directly in the material.   

 Fiber optic sensors are the future of sensors as the world pushes to miniaturize opto-

electrical components.  FPI sensors have the high measuring capabilities and size to detect the 

small levels strains that may be experienced in these components.  Similarly, these sensors are 

perfect for applications in wind turbine blades where they may be subjected to storms and 

electromagnetic interference.  Other potential applications could be to components in MRI 

systems, which also cannot use typical foil gauges.   

 One of the major benefits of fiber optics is that they provide health monitoring 

capabilities on systems where typical foil gauges are not applicable.  Therefore, this reduces 

down time maintenance on new generation equipment and, using the example of wind turbines, 

could generate higher volumes of energy over time.  This is the next generation sensing system 

for a world moving towards energy independence and a cleaner environment.    
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6 Future Work  

Future testing should be done on this sensor to evaluate its performance and durability under 

different environmental conditions.  Wind turbine blades are subjected to extreme temperatures, 

high winds, and precipitation, all of which should be examined.  Once further testing has been 

completed, the FPI should be attached to a full scale model of a wind turbine blade.  A health 

monitoring system could be developed where an alarm system alters engineers when the turbine 

blade is subjected to high strains that could potentially damage the blade or minimize the blades 

lifespan.  Systems of FPI sensors could be incorporated into a variety of structural applications to 

create a type of nervous system that can detect damages, strains, and provide information on the 

health of the structure.   
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Appendix A: MathCAD for Analytical FEA Calculations  

Calculations for Spring Constants 

k is the equivalent spring constant 

A is the cross sectional area of the object 

E is the elastic modulus 

L is the length of the material 

 

General Spring Constant Equation 

𝑘 =
𝐴 ∗ 𝐸

𝐿
 

 

Material Properties: 

 

For Pure Silica Glass: 

𝐸𝑔 =
71700𝑁

𝑚𝑚2
 

 

𝐴𝑔 = 0.01169𝑚𝑚2 

 

 

For Fusion Weld (Pure Silica Glass): 

𝐸𝑤 =
71700𝑁

𝑚𝑚2
 

 

𝐴𝑤 = 0.0146𝑚𝑚2 
 

L varies for each element 

 

 

Global 

Solve for the equivalent spring stiffness of the global system 

 

Element 1: 

𝐿1 = 0.2422𝑚𝑚 
 

Fusion Weld at Element 1 

 

𝑘1 =
𝐴𝑤 ∗ 𝐸𝑤

𝐿1
 

Glass at Element 1 

 

𝑘1𝑔 =
𝐴𝑔 ∗ 𝐸𝑔

𝐿1
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Element 2: 

𝐿2 = 2.2195𝑚𝑚 
 

NO Fusion Weld at Element 2 

 

Glass at Element 2 

𝑘2𝑔 =
𝐴𝑔𝐸𝑔

𝐿2
 

 

 

Element 3: 

𝐿3 = 0.1228𝑚𝑚 
 

Fusion Weld at Element 3 

 

𝑘3 =
𝐴𝑤𝐸𝑤
𝐿3

 

 

Glass at Element 3 

𝑘3𝑔 =
𝐴𝑔𝐸𝑔

𝐿3
 

 

 

Element 4: 

𝐿4 = 0.1228𝑚𝑚 
 

NO Fusion Weld at Element 4 

 

Glass at Element 4 

𝑘4𝑔 =
𝐴𝑔𝐸𝑔

𝐿4
 

 

 

 

Element 5: 

𝐿5 = 0.1306𝑚𝑚 
 

Fusion Weld at Element 5 

𝑘5 =
𝐴𝑤𝐸𝑤
𝐿5

 

 

Glass at Element 5 

𝑘5𝑔 =
𝐴𝑔𝐸𝑔

𝐿5
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Calculate the equivalent spring constants for the individual spring constants of the elements in 

parallel. 

 

Element 1: 𝑘𝑒𝑞1 = 𝑘1 + 𝑘1𝑔  

 

Element 2: 𝑘𝑒𝑞2 = 𝑘2𝑔  

 

Element 3: 𝑘𝑒𝑞3 = 𝑘3 + 𝑘3𝑔  

 

Element 4: 𝑘𝑒𝑞4 = 𝑘4𝑔  

 

Element 5: 𝑘𝑒𝑞5 = 𝑘5 + 𝑘5𝑔  

 

 

 

Calculate the equivalent spring constant for the elements in series in order to find the total 

equivalent spring constant. 

 

 

𝑘𝑒𝑞 ,𝑡𝑜𝑡𝑎𝑙 =
1

  
1

𝑘𝑒𝑞1
 +  

1
𝑘𝑒𝑞2

 +  
1

𝑘𝑒𝑞3
 +  

1
𝑘𝑒𝑞4

 +  
1

𝑘𝑒𝑞5
  

 

  

 

 

Calculate the total displacement. 

 

𝐹𝑜𝑟𝑐𝑒: 𝑃 = 4.002 ∗ 10−3𝑁 
 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡: 𝑢 = (
𝑃

𝑘𝑒𝑞 ,𝑡𝑜𝑡𝑎𝑙
) 

 

 

Local 

Solve for the nodal displacements using the matrix equation for linear springs. 

 

𝑓𝑛
𝑒 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ′𝑛′𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑛𝑜𝑑𝑒 ′𝑛′ 

 

Element 1:   
𝑘𝑒𝑞1 −𝑘𝑒𝑞1

−𝑘𝑒𝑞1 𝑘𝑒𝑞1
 ∗  

𝑢1

𝑢2
 =  

𝑓1
1

𝑓2
1  

 

Element 2:  
𝑘𝑒𝑞2 −𝑘𝑒𝑞2

−𝑘𝑒𝑞2 𝑘𝑒𝑞2
 ∗  

𝑢2

𝑢3
 =  

𝑓2
2

𝑓3
2  
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Element 3:  
𝑘𝑒𝑞3 −𝑘𝑒𝑞3

−𝑘𝑒𝑞3 𝑘𝑒𝑞3
 ∗  

𝑢3

𝑢4
 =  

𝑓3
3

𝑓4
3  

 

Element 4:  
𝑘𝑒𝑞4 −𝑘𝑒𝑞4

−𝑘𝑒𝑞4 𝑘𝑒𝑞4
 ∗  

𝑢4

𝑢5
 =  

𝑓4
4

𝑓5
4  

 

Element 5:  
𝑘𝑒𝑞5 −𝑘𝑒𝑞5

−𝑘𝑒𝑞5 𝑘𝑒𝑞5
 ∗  

𝑢5

𝑢6
 =  

𝑓5
5

𝑓6
5  

 

 

 

Form Global Stiffness Matrix 

 

 

 
 
 
 

𝑘𝑒𝑞1 −𝑘𝑒𝑞1 0 0 0 0

−𝑘𝑒𝑞1 (𝑘𝑒𝑞1 + 𝑘𝑒𝑞2) −𝑘𝑒𝑞2 0 0 0

0 −𝑘𝑒𝑞2  𝑘𝑒𝑞2 + 𝑘𝑒𝑞3 −𝑘𝑒𝑞3 0 0

0 0 −𝑘𝑒𝑞3  𝑘𝑒𝑞3 + 𝑘𝑒𝑞4 −𝑘4 0

0 0 0 −𝑘4  𝑘𝑒𝑞4 + 𝑘𝑒𝑞5 −𝑘5

0 0 0 0 −𝑘5 𝑘5  

 
 
 
 

∗

 

  
 

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6 

  
 

=

 

 
 
 

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝑃 

 
 
 

 

 

F1, F2, F3, F4, F5 are equal to zero because there is no external force on those nodes 

Set up equations in order to solve for nodal displacements: u1 to u6 

 

𝐹1 = (𝑘𝑒𝑞1 ∗ 𝑢1) 

𝐹2 =  𝑘𝑒𝑞1 + 𝑘𝑒𝑞2 ∗ 𝑢1 − (𝑘𝑒𝑞2 ∗ 𝑢3) 

𝐹3 =  −𝑘𝑒𝑞2 ∗ 𝑢2 +  𝑘𝑒𝑞2 + 𝑘𝑒𝑞3 ∗ 𝑢3 − (𝑘𝑒𝑞3 ∗ 𝑢4) 

𝐹4 =  −𝑘𝑒𝑞3 ∗ 𝑢3 +  𝑘𝑒𝑞3 + 𝑘𝑒𝑞4 ∗ 𝑢4 − (𝑘𝑒𝑞4 ∗ 𝑢5) 

𝐹5 =  −𝑘𝑒𝑞4 ∗ 𝑢4 +  𝑘𝑒𝑞4 + 𝑘𝑒𝑞5 ∗ 𝑢35 − (𝑘𝑒𝑞5 ∗ 𝑢6) 

𝑃 = (−𝑘𝑒𝑞5 ∗ 𝑢5) + (𝑘𝑒𝑞5 ∗ 𝑢6) 

 

 

Assume: 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 = 0 

 

Guess values of each nodal displacement and then use MathCAD to find the nodal 

displacements. 

 

𝑢1 = 0𝑛𝑚 

𝑢2 = 0.5142𝑛𝑚 

𝑢3 = 11.11𝑛𝑚 

𝑢4 = 11.37𝑛𝑚 

𝑢5 = 34.2𝑛𝑚 

𝑢6 = 34.48𝑛𝑚 
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Appendix B: List of Equipment used in Opto-Mechanical Setup 

 Main Opto-Mechanical Setup Equiptment 

ThorLabs Mini-Series Breadboard 

 To properly support our opto-mechanical setup we needed a secure plate (Figure 43) to 

put it on. This metallic plate was equipped with an array of ¼-20 holes so that our setup could be 

secured at various points (ThorLabs, 2010). For our purposes we used a mini-series 12’’x8” 

breadboard.  

 

Figure 43 Mini-Series Breadboard 

ThorLabs ITC-502 Laser Diode Controller 

 To use our pigtailed laser diode, we needed an ITC-502 laser diode controller (Figure 44) 

to provide the correct voltage, current, temperature, and frequency to the diode. This device 

accomplishes these things with the help of a proportional-integral-derivative (PID) controller, 

letting us choose how much power to supply to the laser diode (ThorLabs, 2010). 
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Figure 44 ITC-502 Laser Diode Controller 

ThorLabs TCLDM9 Laser Cooler 

 The laser diode must be kept within a certain temperature range to keep it stable and in 

great operating condition. A TCLDM9 Laser Cooler (Figure 45) with the help of the ThorLabs 

ITC-502 Laser Diode Controller was used to accomplish this task (ThorLabs, 2010). 

 

Figure 45 TCLDM9 Laser Cooler 

ThorLabs LPS-830-FC Laser Diode 

 The pigtailed laser diode used for this project is the LPS-830-FC from ThorLabs Figure 

46. It has an 830nm wavelength and runs on an average of 1mW of power (ThorLabs, 2010). 
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Figure 46 Pigtailed 830nm Laser Diode 

ThorLabs Post, PH2-ST Post Holder, and BA2T2 Adjustable Mounting Base 

 The opto-mechanical setup is positioned at the same height vertically using ½”  diameter 

precision ground stainless steel posts of varying heights with 8-32 removable stud in the top. The 

posts were placed into a PH2-ST Post Holder (Figure 47) which has a locking thumbscrew which 

helps lock the post into. The post holder is then attached to a BA2T2 base plate which is secured 

to the breadboard using ¼-20” cap screws (ThorLabs, 2010).  

(a)   (b)   (c)  

Figure 47 (a) Post, (b) Post Holder, (c) Mounting Base 

ThorLabs 5mm Connecting Rods and Cage Plate 

 The entire opto-mechanical setup is arranged using ThorLabs 5mm connecting rods 

(Figure 48) in order to align and maintain structural rigidity of the setup. The individual 

components of the setup are attached to each other with the help of the 5mm rods. In addition to 

the components being attached to each other cage plates Figure 49 (ThorLabs, 2010). 



65 
 

 

Figure 48 Connecting Rod 

 

 

Figure 49Connecting Plate 

ThorLabs SM1FC FC Fiber Connector 

 The FC Fiber Connector  (Figure 50), fixed to the end of the pigtailed laser diode is used 

to attach the output of the laser diode to the opto-mechanical setup (ThorLabs, 2010). This type 

of adaptor allows for quick change out of components if a problem occurs.  

 

Figure 50 FC Fiber Adapter 

ThorLabs SM1Z Z-axis Translator  
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 To properly align the output of the pigtailed laser diode we needed a SM1Z (Figure 51) 

fitted with a SM1FC (ThorLabs, 2010). This Z-axis translator can adjust the distance between the 

output of the laser diode and the 20X objective lens at a micrometer level of precision.    

 

Figure 51 SM1Z Z-axis Translator 

Olympus 20X Objective Lens 

 The 20X objective lens (Figure 52) helped with the collimating and focusing of light 

(Olympus, 2010). Depending on the orientation of the lens in our opto-mechanical setup with 

respect to the incoming light because the light would either be collimated or focused into the 

next component of the setup.  

 

Figure 52 Olympus 20X Objective Lens 

ThorLabs ST1XY-D and HPT1 X-Y-axis Translator 
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 The ST1XY (Figure 53) and (HPT1) (Figure 54) are the main components that aided us 

in the alignment of our opto-mechanical setup. Precision adjustments in both the X and Y-axis of 

the 20X objective lenses position were made using these translators (ThorLabs, 2010).  

 

Figure 53 ST1XY-D X-Y-axis Translator 

  

 

Figure 54 HPT1 X-Y-axis Translator 

ThorLabs BS017 20mm Non-Polarized Beamsplitter Cube 

The BS017 (Figure 55) is capable of splitting 700-1100nm light and is used to split the 

output of our project’s 830nm laser diode with a 50:50 power ratio (ThorLabs, 2010). This 

beamsplitter cube effectively allows light to travel to the fiber Fabry-Perot Interferometer as well 

as to the detector in or experiments.  
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Figure 55 BS017 Beamsplitter Cube 

ThorLabs CM1-4E Beamsplitter Cube Mount 

 We used the CM1-4ER (Figure 56) to mount the beamsplitter cube. This reusable cube 

mount is the center structure of the opto-mechanical setup and allows for other components to be 

screwed into it using the connecting rods (ThorLabs, 2010). 

 

Figure 56 Beamsplitter Cube Mount 

ThorLabs SM1ST Fiber Adapter 

 Connecting our fiber FPI sensor to the opto-mechanical setup required a SM1ST fiber 

adapter (Figure 57) fitted into a SM1Z Z-axis translator (ThorLabs, 2010). This fiber adapter 

allowed for quick and easy attachment of different fiber FPI sensors during our various 

experiments. 
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Figure 57 ST Fiber Adapter 

FISO Technologies FOS-N-BA-C1-F1-M2-R1-ST Fabry-Perot Interferometer Strain Sensor 

 This new generation fiber optic strain sensor is the main component of our project. The 

FOS-N-BA-C1-F1-M2-R1-ST (Figure 58) is a 50μm multimode fiber Fabry-Perot Interferometer 

strain sensor that has an operating temperature of -40 °C to 250 °C, 20 mm bare tip, pyrocoated 

cable with 1 mm outer diameter, fiber length of 2 meters, ST fiber connector, and a sensing range 

of +/- 1000µe (FISO Technologies Inc., 2010). For a more in depth description of the sensor’s 

principles of operation please refer to the background section. 

 

 

Figure 58 FOS-N-BA-C1-F1-M2-R1-ST Strain Sensor 

ThorLabs DET10A High-Speed Photodetector 

 The final light output leaving the opto-mechanical setup is monitored using a DET10A 

high-speed photodetector (Figure 59). The battery operated DET10A is capable of detecting the 

small fluctuations in light intensity occurring in our experiments. It also has a single output 

which converts the light intensity measurements into a positive voltage using a terminating 

resistor (ThorLabs, 2010).  
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Figure 59 DET10A High-Speed Photodetector 

National Instruments 16-Bit Data Acquisition System ( DAQ ) 

 The 16-Bit DAQ (Figure 60) was implemented to digitize the voltage output of the 

photodetector (National Instruments, 2010). The photodetector was connected to the DAQ via a 

BNC cable.  

 

Figure 60 NI DAQ 

Dell Core 2 Duo Computer Processor 

 To process all of the data from our experiments we utilized a generic computer processor.  

Laser Vibrometer Setup Equipment 

 

Jordon EV-30 Piezoelectric Shaker  

 The EV-30 Figure 61 is designed to excite or induce mechanical vibrations into test 

pieces at frequencies as high as several hundred kilohertz (Jodon, 2010). We needed this device 
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to non-destructively excite our cantilever beam and turbine scale model for our dynamic 

experiments.  

 

Figure 61 Piezoelectric Shaker 

Pragmatic 2414A 20MHz Arbitrary Waveform Generator 

 To control the operating frequency of the EV-30 piezoelectric shaker we needed a 

waveform generator. The Pragmatic 2414A Figure 62 allowed for specific frequencies as high as 

20MHz to be generated so that we could analyze our cantilever beam and turbine blade scale 

model at their natural frequencies (Pragmatic, 2010).  

 

Figure 62 Pragmatic 2414A 

Polytec OFV 1000 Fiber Vibrometer 

 The OFV 1000 Figure 63 is used to measure the displacement of an object as it is excited 

by a piezo electric shaker. A standard single-point measurement is used to determine the in-plane 

vibrations and displacements of the object such as a cantilever beam or a scale turbine blade 
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model. The laser beam from the vibrometer is split into one reference and one probe beam 

(Polytec, 2010). We used this device in our dynamic tests in order to have a comparison to our 

measurements taken by our FPI sensor.  

 

Figure 63 Fiber Laser Vibrometer 

ThorLabs MDT694A Single Channel Piezo Controller 

 The MDT694A Figure 64 combines precision control of the output voltage for maximum 

piezo resolution as well as a high output current capability which allows external modulation of 

the piezo (ThorLabs, 2010).  

 

Figure 64 Single Channel Piezo-Controller 
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Appendix C: Force-strain Relationship  

Summation of forces in the x-direction and y-direction as well as the moments gives the 

solutions given as follows based on the free body of the cantilever beam:  

𝑅𝑥 = 0             

𝑅𝑦 = 𝐹            

𝑀 = 𝐹𝐿            

The relationship between the applied force and resulting strain was determined for the 

cantilever beam.  The stress on the beam is equal to the moment multiplied by the distance from 

the center axis through the beam all divided by the moment of inertia of the beam.   

𝜍 =
𝑀𝑐

𝐼𝑧𝑧
                  

𝜀𝑥𝑥 =
𝑀𝑐

𝐼𝑧𝑧𝐸
            

The width of the base is defined by the variable, b, the thickness of the beam by the variable t.   

𝐼𝑧𝑧 =
1

12
𝑏𝑡3            

𝜀𝑥𝑥 (𝐹) =
12𝐹𝐿𝑐

𝑏𝑡3𝐸
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Appendix D : One Fringe Calculation 

𝐼 = 2𝐼𝑜[1 + cos ∆𝛷 ] 

∆𝛷 = 𝐾 ∆𝐿 =
2𝜋(∆𝐿)

𝜆
 

𝜀𝑥𝑥 =
∆𝐿𝑐𝑎𝑣𝑖𝑡𝑦

𝐿𝑐𝑎𝑣𝑖𝑡𝑦
 

∆𝐿𝑐𝑎𝑣𝑖𝑡𝑦 = 𝜀𝑥𝑥𝐿𝑐𝑎𝑣𝑖𝑡𝑦  

Substitute ∆𝐿𝑐𝑎𝑣𝑖𝑡𝑦  into to the ∆𝛷 equation above and get the following equation: 

∆𝛷 =
2𝜋(𝜀𝑥𝑥𝐿𝑐𝑎𝑣𝑖𝑡𝑦 )

𝜆
 

For one Fringe, set delta phi to 2𝜋 and solve for the strain at 1 fringe: 

2𝜋(𝜀𝑥𝑥𝐿𝑐𝑎𝑣𝑖𝑡𝑦 )

𝜆
= 2𝜋 

𝜀𝑥𝑥 =
𝜆

𝐿𝑐𝑎𝑣𝑖𝑡𝑦
 

Substitute the value for strain into the original equation for strain and force yields the final 

solution: 

𝐹𝑚𝑎𝑥𝑖𝑚𝑢𝑚 =
𝜆𝑏𝑡3𝐸

12𝐿𝐿𝑐𝑎𝑣𝑖𝑡𝑦 𝑐
 

 

  



75 
 

Appendix E : Mass Calculation for One fringe 

 

 

 

 

 

 

INPUT 

 Wavelength (meters) 

 Base (meters) 

 Thickness (meters) 

 Young's Modulus (Pa) 

 Length of beam (meters) 

 Intensity of Light 

Current (mA) 
 

Distance equal to t/2 in Meters 
 

Cavity length sensing region in Meters 
 

SOLUTION 

 
Max. Force (Newtons) 

 Max. mass in grams 

Knowing the maximum mass that can be applied to the end of the beam allows us to 

calculate the average intensity light output within the range.   

 

 

 
 

  

 830 10
9



b .02552

t .00304

E 68.910
9



L .191

Io 1

i 45

c .00152

Lcavity .007497

Fmaximum
 b t

3
 E 

12 L Lcavity c









1.569831

mgrams

Fmaximum1000

9.81
160.023592

Fmin 0

Fmax 1.569831

F .1

F Fmin Fmin F Fmax

xxF( )
12 c L F( )

b t
3

 E


xx1.569831( ) 1.107109 10

4

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Appendix F: MathCAD Natural Frequency Calculations  

  

INPUT All properties are given by Knovel.com selected material properties 

 Young's Modulus (E) in Psi 

 Density in kg per square meter 

 Metric constant for natural frequency 

 Base in meters 

 Height in meters 

 Length in meters 

SOLUTION 

 Moment of Inertia of the bar 

 Mass per unit length of the beam 

 First Natural Frequency in Hz 

 Second Natural Frequency in Hz 

Third Natural Frequency in Hz  

E 68.910
9



 2700

Cn 3.516

b .02552

h .00304

L .191

Izz
b h

3
 
12

5.975 10
11



m  b h 0.209

wn1
3.516

2 

E Izz 

m L
4













 68.001

wn2
22.0345

2 ( )

E Izz 

m L
4













 426.155

wn3
61.6972

2 ( )

E Izz 

m L
4













 1.193 10
3


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Appendix G : MathCAD – Natural Frequency of Block 

  

INPUT All properties are given by Knovel.com selected material properties 

Assumption:  Although blocks are made from separate components, they act as one 

solid unit.   

 Base in meters 

 Height in meters 

 Length in meters 

SOLUTION 

 Moment of Inertia of the bar 

 Mass per unit length of the beam 

 Natural Frequency in Hz 

b1 .051

h1 .051

L1 .051

I1
b1 h1

3
 
12

5.638 10
7



m1  b1 h1 7.023

wnB Cn
E I1( )

m1L1
4











 1.005 10
5


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Appendix H : Uncertainty Analysis of Strain versus Applied Mass 

  INPUT 

 

 

 

 

 

 

 

 
 

 
 

  

 
 

 

 

SOLUTION 

 

 

 

 

 

   

t .00304

t .000005

b .02552

b .000005

Io 1

L .191

 830 10
9



L .0005
 20 10

9


F 1.57
c .001266

F .0005 c 2.54 10
4



c .00146
E 68.910

9


c .000005

E .5

xx
12 L c F( )

b t
3

 E

1.064 10
4



 xx L
12 c F( )

b t
3

 E










2

F
12 L c( )

b t
3

 E










2

 b
12 c F( )

b
2

t
3

 E










2

 t
36 c F( )

b t
4

 E










2

 E
12 c F( )

b t
3

 E
2












2

 c
12 F( )

b t
3

 E










2












.5

3.358 10
6



%dL

L
12 c F( )

b t
3

 E










2

100

 xx
2

0.687

%dF

F
12 L c( )

b t
3

 E










2

100










 xx
2

0.01
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%db

b
12 c F( )

b
2

t
3

 E










2

100








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