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ABSTRACT 

 

       Recently, there has been some good interest in the field of Dynamic Materials, also referred 

to as Spatio-Temporal Composites. These materials have been theoretically attributed to show 

ability to switch their electromagnetic properties in time, as contrast to the spatial variations 

shown by regular materials of non-dynamic nature, existing naturally. Though there is no 

exhibition of dynamic material in nature yet, there are suggestions for its synthesis. This paper 

follows the idea of using standard lossless transmission line model approximating a material 

substance. Such a material though not truly homogeneous, could be made to vary its properties 

in time. The aim of this work is to test this idea for its functional efficiency in comparison to 

analytical results obtained from earlier works on the subject. We make use of Spice simulation 

for this. 

      An important aspect of this work is to facilitate the dynamic operations in a static 

environment. Almost all the simulators available today like Spice, ADS, etc intrinsically provide 

no ability for parameter variations in time. Nonetheless, we make use of certain popular tricks 

to implement circuits imitating the dynamic circuit components we need. Such 

implementations are separately tested to demonstrate their success in providing us with the 

dynamic environment we desire. Finally, within the limitations of the computing capabilities, 

we could successfully show an agreement between the results obtained and the existing 

theory. 
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1. Energy Accumulation in Waves Travelling through a Checkerboard Dielectric Material 

Structure in Space-time 

 

1.1. Introduction 

          With advancement in the material technology seen in the recent years, there has been 

some good attention in the field of Metamaterials. Metamaterials are artificially engineered 

materials exhibiting properties which may not be readily available in nature. These materials 

usually gain their properties from structure rather than composition, using the inclusion of 

small inhomogeneities to enact effective macroscopic behavior [1]. Even though the term 

metamaterials have been predominantly used to suggest the materials with negative refractive 

indices, the actual term encompass variety of synthetic materials including dynamic materials. 

         Dynamic materials as the name suggests posses the ability to switch their material 

properties in time. Even though the concept is so very apparent in our day to day lives, there is 

no natural material exhibiting such a property. As with all metamaterials, the characteristic of 

this material comes by arrangements at smaller structured blocks comprising the material. 

There have been certain suggestions for methods to implement dynamic materials. One such 

method is to model the material using a standard lossless transmission line model with variable 

circuit elements [2]. We, in this paper, make use of this idea to imitate a dynamic material 

varying its electromagnetic properties in time, and study its interaction with electromagnetic 

waves. Dynamic materials when thus arranged in space gives a 2D structure on space-time 

planes, hence often referred to as spatio-temporal composites. Already some good amount of 

theoretical work has been done in the subject by Prof. K. A. Lurie and Prof. S. L. Weekes 

[3][4][5][6][7][8][9][10][11]. The numerical analysis predicts a certain behavioral pattern for 

interaction of EM waves with such composite structures. There is a curiosity to verify these 

results with practical implementation of such spatio-temporal material composites. To this end, 

as a first step we test a transmission line approach by simulating it on a software environment, 

and get a better idea about the practical considerations before diving into physical 

construction. 

        This work aims to verify the analytical results of interaction between EM wave and spatio-

temporal material composite by running simulations in Spice. LTspice is freely available and 

standard software for such electrical circuit simulations, but just like any other simulator in 

market, it falls short of providing the dynamic environment we desire for our application. We 

aim to construct a transmission line with elements which can vary their property value in time. 

But no simulator has intrinsic provisions to vary the parameter value in time. It allows us to 

define the values of such parameters before the beginning of the execution, and cannot be 
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varied once the execution begins. This was the first and the most intriguing challenge towards 

building a code which imitates the dynamic material structure. As a solution to this we have 

made use of existing tricks to model variable elements in Spice [12][13][14]. Such a technique 

mimics the behavior of standard static elements, and provides a convenient way to vary the 

properties as many times we desire during the same execution. Later in the paper, such 

techniques have been elaborated for inductor and capacitor modeling.  

Beside the main goal of verification of the predictions from the numerical computations using 

electrical circuit simulations, this work also serves to set ideas for a real-world physical 

implementation of the spatio-temporal structure. It gives us a hint towards the practical 

constraints and problems we might face while developing a real world prototype of our 

structure. Even though the parameter values we have worked with are chosen to aid computer 

simulations, and may not be feasible for practical constructions, we did verify the principle and 

can be positive about the actual hardware construction.  

Maxwell’s equations written for a dielectric medium with variable properties have the form 

[15]  

                                                    ∇ × 𝑬 =  −𝑩𝑡  ,      ∇ ∙ 𝑩 = 0 ,  

                                                    ∇ × 𝑯 =  −𝑫𝑡  ,     ∇ ∙ 𝑫 = 0 , 

where 𝑬, 𝑯 are the electric and magnetic field vectors linked with 𝑫, 𝑩 through the material 

relations 

                                                         𝑫 = 𝜖𝑬,            𝑩 = 𝜇𝑯, 

in which 𝜖 =  𝜖 𝑥, 𝑦, 𝑧, 𝑡 , 𝜇 =  𝜇(𝑥, 𝑦, 𝑧, 𝑡) are, respectively, the dielectric permittivity and the 

magnetic permeability of the immovable substance; these parameters can vary in both space 

and time.  

In what follows, we consider plane electromagnetic waves propagating along the z-axis; for 

such a wave 

                                   𝑬 = 𝐸𝒋,       𝑩 = 𝐵𝒊,       𝑫 = 𝐷𝒋,      𝑯 = 𝐻𝒊,                                              (1) 

and the Maxwell’s equations take the form 

                                                    𝐸𝑧 =  𝐵𝑡  ,          𝐻𝑧 =  𝐷𝑡  ,                                                              (2)   

              with        

                                                    𝑫 =  𝜖𝑬 ,           𝑩 =  𝜇𝑯 .                                                              (3) 
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We assume that the material properties 𝜇, 𝜖 depend on 𝑧, 𝑡. Specifically, we will allow for two 

immovable material constituents: material 1 with properties 𝜇1, 𝜖1, and material 2 with 

properties 𝜇2, 𝜖2. Throughout the text, we will assume that the wave impedance 

                                                           𝛾 =  
𝜇

𝜖
 

is the same for both materials: 𝛾1 =  𝛾2. The materials therefore differ only in the values of the 

phase velocity 

                                                          𝑎 =  
1

 𝜇𝜖
 , 

so that 𝑎1 ≠ 𝑎2. We will chose 𝑎2 > 𝑎1.   

 

1.2      Spatial Interface: 𝒛 =  𝒛𝟎 

If materials 1 𝜇1, 𝜖1  and 2 𝜇2, 𝜖2  are separated by the interface 𝑧 =  𝑧0, then on such an 

interface the electric and magnetic fields are continuous: 

                                                      𝐸1 =  𝐸2,             𝐻1 =  𝐻2,                                                       (4) 

                          

                                Figure 1.  Wave propagation through a spatial interface 
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Once 𝛾1 =  𝛾2, there is no reflection on the spatial interface, so the incident wave gives birth to 

only one secondary wave which is a transmission wave travelling through adjacent material 

with different wavelength but the same frequency. 

 

1.3       Temporal Interface: 𝒕 =  𝒕𝟎 

Consider a wave train entirely trapped in material 1 (may be infinitely extending in space), and 

travelling with a velocity determined by the material parameters 𝜇1,𝜖1, and a frequency 

determined by the source. If such a medium is step-transformed (“switched”) to another 

medium with parameters 𝜇2,𝜖2, then it is interesting to study the wave behavior at the instant 

of switching, as shown. 

  

                    

                                      Figure 2. Wave propagation through a temporal interface 

 

As before, only the phase velocity is affected as the medium parameters are changed in time. 

This phenomenon is very different than the spatial transfer of wave from one medium to 

another. The EM wave in the material responds to change in 𝜇 and 𝜖, but since this change is 
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temporal, the compatibility conditions for the fields at time 𝑡 =  𝑡0  differ from 𝑒𝑞𝑛𝑠. (4) that 

hold on a spatial interface. At the temporal switching of the medium, we observe the continuity 

of 𝐷 and 𝐵: 

                                                                𝐷1 =  𝐷2,               𝐵1 =  𝐵2.                                          (5) 

 

Similarly to a spatial transition, a temporal switching gives birth to only one secondary wave 

if 𝛾1 =  𝛾2. This wave will be of different frequency but same wavelength, and will travel in 

material 2 once it emerges after the moment of switching [16][17]. 

 

1.4. Energy transformation at the Temporal Interface 

A temporal switching in the medium properties induces changes in 𝐸 and 𝐻; as a consequence, 

the wave energy density 𝑤 is also changed [16][17]. The exact relation, proven later, says that 

                                                                               𝑤2 = ( 
𝑎2

𝑎1
 )𝑤1 , 

where 𝑎1, 𝑤1,𝑎2, 𝑤2 are the velocities and energy densities of the waves in material 1 and 

material 2, respectively. This is the most impressive feature of temporal switching which can be 

used for practical applications. The apparent deviation from energy conservation law is 

resolved when we consider the work done by an external agent at the moment of switching, 

against the electromagnetic forces. 

 

2. Temporal Laminate 

Assume that we maintain successive alternation of two materials in time. The material 

assembly would then take the form of a temporal laminate, as shown here: 
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                                               Figure 3.  A temporal laminate structure 

 

From the figure 3, we observe that the temporal material period is 𝜏. Each material has its own 

share in the temporal period; material 1 𝜇1, 𝜖1  is maintained from 𝑡 = 0  𝑡𝑜  𝑡 =  𝑛𝜏, while 

material 2 𝜇2, 𝜖2  stays active from 𝑡 = 𝑛𝜏  𝑡𝑜  𝑡 =  𝜏. It can be easily seen that, after one 

period, the net energy becomes 

                                                                𝑤3 = (
𝑎1

𝑎2
)𝑤2  

                                                                      =  
𝑎1

𝑎2
  

𝑎2

𝑎1
 𝑤1 

                                                                      =  𝑤1 . 

 

So, there is no energy change over a period in a temporal laminate, hence the net energy 

change over any duration of time involving multiple periods is zero. This discourages us from 

employing a temporal laminate structure for practical use.  

We want, however, to change this situation by offering a different (non- laminate) material 

structure in space-time - a structure capable of managing the energy accumulation. A temporal 

laminate has failed to secure such accumulation because the travelling wave loses its energy at 
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the moment when the wave enters material 1, with slower phase velocity. So to avoid this 

energy loss, the wave should find some other way into material 1, and that may become 

possible if the wave would enter material 1 across the spatial, not temporal interface. So, we 

arrive at the idea of testing a rectangular material structure in space-time; specifically, we try a 

checkerboard geometry. 

 

3. Checkerboard 

We aim for ‘wise’ arrangement of two materials in space, and for an appropriate switching of 

them from one to another, such that, “wave always enters material 1 from material 2 through 

a spatial interface ( with no energy change), and it always enters material 2 from material 1 

through a temporal interface (when it gains energy)”. Such arrangement leads to a double 

periodic structure on a space-time plot, known as checkerboard pattern. This pattern would 

provide a net gain over one temporal period, which is also over a spatial period (double 

periodicity). As a result, contrary to the case of temporal laminates, we could harness the 

advantage of checkerboard for practical applications. The key problem is whether a 

checkerboard structure is capable of supporting the required characteristic pattern in space-

time. We will see below that this question can be given a positive answer. 

                                                                                                                      

 

                                                Figure 4.  A checkerboard structure 
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The checkerboard structure is double periodic, with temporal period similar to that in a 

laminate, while in the spatial period 𝛿, material 1 occupies a segment from 𝑧 = 0  𝑡𝑜  𝑧 = 𝑚𝛿, 

and material 2 - a segment from 𝑧 = 𝑚𝛿  𝑡𝑜  𝑧 =  𝛿. As seen in the figure above, this double 

periodic structure repeats itself in space, as well as in time.   

 

3.1.      Mathematical Treatment of Wave Motion through the Checkerboard 

𝐸𝑞𝑛𝑠.  2  will be satisfied if we introduce potentials 𝑢 and 𝑣 through the relations 

                                      𝐸 =  𝑢𝑡  ,        𝐵 =  𝑢𝑧  ,       𝐻 =  𝑣𝑡  ,       𝐷 =  𝑣𝑧  .                                  (6) 

𝐸𝑞𝑛𝑠.  3  then reduce to the system 

                                                          𝜖𝑢𝑡 =  𝑣𝑧  ,        𝑢𝑧 =  𝜇𝑣𝑡   .                                                    (7) 

We now eliminate 𝜖 and 𝜇 from 𝑒𝑞𝑛𝑠.  7  by using the wave impedance 𝛾 and phase velocity 𝑎, 

defined as 

                                                                      𝛾 =   
𝜇

𝜖
   , 

                                                                      𝑎 =  
1

 𝜇𝜖
  . 

Hence, 𝑒𝑞𝑛𝑠.  7  can be written as  

                                                                𝑢𝑡 =  𝛾𝑎𝑣𝑧 ,            𝛾𝑣𝑡 = 𝑎𝑢𝑧 . 

If 𝛾1 =  𝛾2, then this system is same as 

                                                           𝑅𝑡 +  𝑎𝑅𝑧 = 0,             𝐿𝑡 −  𝑎𝐿𝑧 = 0,                                          (8) 

where 

                                                              𝑅 = 𝑢 −  𝛾𝑣,               𝐿 = 𝑢 +  𝛾𝑣, 

are the Riemann invariants for the right moving wave, and the left moving wave, respectively. 

Since 𝛾1 =  𝛾2, in 𝑒𝑞𝑛𝑠.  8  we apply 𝑎1 for material 1, and 𝑎2 for material 2. We will get back 

to 𝑒𝑞𝑛𝑠.  8  later. 
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3.2.      Wave Behavior at the Spatial Boundary 

Consider an EM wave travelling in material 1(𝜇1,𝜖1) in a checkerboard. When the wave hits the 

spatial boundary separating this material from material 2(𝜇2, 𝜖2), we generally observe a wave 

reflected back into the material 1, and another wave transmitted into material 2, as shown 

below: 

                                                

                            Figure 5.  Refracted and reflected wave at the spatial boundary 

From 𝑒𝑞𝑛𝑠.  7  the wave 𝑢1 in material 1 can be represented as –  

                                               𝑢1 =   𝑢𝑖 + 𝑢𝑟                                                                                                                                                           

                                            =  𝐴𝐼𝑒
𝜆(𝑡− 𝑧 𝑎1)  +  𝐴𝑅𝑒

𝜆(𝑡+ 𝑧 𝑎1)  ,                           

where  𝑢𝑖  and 𝑢𝑟  are the incident and reflected waves, respectively. Note the sign of space 

variable z in the above solution. The transmitted wave can similarly be written as – 

                                                                  𝑢2 =  𝑢𝑇 =  𝐴𝑇𝑒
𝜆(𝑡− 𝑧 𝑎2) . 

To find the relation between the amplitudes of 𝐴𝐼 , 𝐴𝑅  and 𝐴𝑇 , we use the conditions (4) on the 

interface 𝑧 = 0. These conditions together with 𝑒𝑞𝑛𝑠.  7 ,  8 , yield 

                                                    −
1

𝛾1
𝑢𝑖 + 

1

𝛾1
𝑢𝑟 =  −

1

𝛾2
𝑢𝑇    ,                                     (i) 

                                                                 𝑢𝑖  +  𝑢𝑟 =  𝑢𝑇    .                                            (ii) 

By solving (i) and (ii), we get 

                                      𝑢𝑟 =    
𝛾1−𝛾2  

𝛾1+𝛾2
 𝑢𝑖  ,             𝑢𝑇 =    

2𝛾2

𝛾1+𝛾2
 𝑢𝑖  . 
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 Thus, the reflected wave is given by 

              𝑢𝑟 =   
𝛾1−𝛾2  

𝛾1+𝛾2
 𝐴𝐼𝑒

𝜆(𝑡+ 𝑧 𝑎1)    ,       𝑣𝑟 =  
1

𝛾1
 
𝛾1−𝛾2  

𝛾1+𝛾2
 𝐴𝐼𝑒

𝜆(𝑡+ 𝑧 𝑎1)   ,         (9a) 

and the transmitted wave is given as      

               𝑢𝑇 =    
2𝛾2

𝛾1+𝛾2
 𝐴𝐼𝑒

𝜆(𝑡+ 𝑧 𝑎1)    ,       𝑣𝑇 =  −
1

𝛾1
 

2𝛾2

𝛾1+𝛾2
 𝐴𝐼𝑒

𝜆(𝑡+ 𝑧 𝑎1)   .     (9b)  

From, 𝑒𝑞𝑛 .  9𝑎  we can see there is no reflected wave if 𝛾1 =  𝛾2, which is the case for our 

checkerboard materials. We thus confirmed what has been said before about the absence of 

reflection. 

 

3.3.       Wave Behavior at the Temporal Boundary 

We have already stated that, at the temporal boundary, there also will be only one secondary 

wave if the wave impedances of both materials match [16]. Now, it’s time to show this 

mathematically. 

                       

             Figure 6. Forward moving and backward moving wave at the temporal boundary 

The wave 𝑢1 in material 1(𝜇1, 𝜖1), is given by 𝑒𝑞𝑛𝑠.  7  as  

                                                     𝑢1 =  𝑢𝑖 =  𝐴𝐼𝑒
𝜆1(𝑡− 𝑧 𝑎1)  , 

while the wave in material 2(𝜇2, 𝜖2) can be represented as  
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                                                     𝑢2 =   𝑢𝐹 + 𝑢𝐵                                                                                                                                                                     

                                                            =  𝐴𝐹𝑒
𝜆2(𝑡− 𝑧 𝑎2)  + 𝐴𝐵𝑒

𝜆2(𝑡+ 𝑧 𝑎2)  . 

Here,  𝑢𝑖  is the incident wave in material 1, while 𝑢𝐹  and 𝑢𝐵  are the forward-moving wave and 

backward-moving wave in material 2. Note, that by forward-moving and backward-moving, we 

mean spatial movement, since no wave can move back in time.   

 

To find relation between the three waves, we use the boundary conditions (5). These 𝑒𝑞𝑛𝑠. 

together with (6) and (7), yield 

 

                                                     
1

𝛾1
𝑢𝑖 =  

1

𝛾2
𝑢𝐵 +

1

𝛾2
𝑢𝐹   ,                                         (iii) 

                                                          𝑢𝑖 + 𝑢𝐵 =  𝑢𝐹  .                                                (iv)   

By solving (iii) and (iv), we get 

                                                        𝑢𝐵 =    
𝛾2−𝛾1  

2𝛾1
 𝑢𝑖  , 

                                             𝑢𝐹 =    
𝛾1+𝛾2  

2𝛾1
 𝑢𝑖  .       

 

Hence, the wave solution in material 2 is given as – 

  

                                                                    𝑢2 =   𝑢𝐹 + 𝑢𝐵  ,                                                                                                                                                                                

 

                        𝑢2 =  
𝐴𝐼

2
  

𝛾1+𝛾2  

𝛾1
 𝑒𝜆2(𝑡− 𝑧 𝑎2)  +   

𝛾2−𝛾1  

𝛾1
 𝑒𝜆2(𝑡+ 𝑧 𝑎2)        ,                  (10a) 

                       

                        𝑣2 =  
1

𝛾1

𝐴𝐼

2
  

𝛾1+𝛾2  

𝛾1
 𝑒𝜆2(𝑡− 𝑧 𝑎2)  −   

𝛾2−𝛾1  

𝛾1
 𝑒𝜆2(𝑡+ 𝑧 𝑎2)      .                (10b) 

 

But, for our application, the checkerboard materials have equal wave impedance, so 𝛾1 =  𝛾2, 

and from 𝑒𝑞𝑛𝑠. (10a) and (10b), we conclude that, similarly to the spatial case, there is no 

reflection from temporal interface, i.e. there is no backward-moving wave in the checkerboard.  

 

We again state an important attribute of checkerboard, supported by both observations made 

so far: No reflection from spatial interfaces, and no backward-moving wave originating from 

temporal interfaces. As a result, any wave will travel along its own characteristic path without 
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any branching. And the waves for Riemann invariants introduced above (see 𝑒𝑞𝑛 .  7 ) will 

travel totally independent of each other. 

 

3.4. Previous Work 

 

Now we are ready to answer the key question posted before, i.e., whether a checkerboard is 

capable of supporting the characteristic paths that secure the energy accumulation. As we will 

see in this section, the answer to this question is positive. It has been shown that, for certain 

ranges of material parameters 𝑚, 𝑛, 𝑎1,𝑎2 of a checkerboard, the characteristic paths related to 

the Riemann invariant R, come into distinct groups that approach some selected characteristics 

playing the role of limit cycles [16][18]. The characteristics concentrate into dense arrays that 

enter material 1 across the spatial interface and leave it across the temporal interface, as 

desired to ensure the energy accumulation. An example of this situation is given in figure (7), 

below. Though this illustration is related to the travel of an R-wave, the effect will be word for 

word the same for an L-wave as well.  

              
                            Figure 7. Limit cycles in the checkerboard structure 
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We consider the structure with parameters 𝑚1 = 0.4, 𝑛1 = 0.5, 𝑎1 = 0.6, 𝑎2 = 1.1. The figure 

represents the paths of right-going R-disturbances which originate on the interval [0,2] at time 

0. Time is measured along the vertical axis of this figure. The vertical and the horizontal lines 

define the checkerboard arrangement. It is clear to see that within each period, the group of 

paths in the figure (7) separate into two distinct arrays that each converges to its own limiting 

path (“limit cycle”) after a few time periods. The limit paths ( shown in bold ) are called cycles 

because the trajectory pattern cycles of repeats. Such cycles are parallel to each other and have 

a common average slope equal to 1. Each cycle is stable; it attracts trajectories which originate 

on the initial manifold at the left and right of the point of origination of the cycle itself. In the 

example given, the cycles originate around 𝑧 = 0.5 and 𝑧 = 1.5 at time 0, and are indicated by 

the paths in bold. There is one limit cycle per spatial period. Successive stable limit cycles are 

separated by an unstable limit cycles ( shown punctured ). After close numerical inspection, we 

find that unstable limit cycle originate, at time 0, at points 𝑛 + 0.375 for integers n, contrary to  

𝑛 + 0.4953 for stable limit cycles. 

     
                                      Figure 8.  Evolution of a disturbance through a structure 
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This convergence phenomenon manifests itself through concentration of the initial disturbance, 

and is illustrated in the solution profile sequence of above figure. The vertical axis is 𝑢, and 𝑧 is 

on the horizontal axis. The profiles are computed from system (2) via a finite volume scheme. 

The initial disturbance is a Gaussian; we may regard it as having support on [0.5, 1.5]. We show 

evolution profiles up to time 3; the speed of the disturbance is seen to be 1. As the disturbance 

travels through the checkerboard material, the information that was initially spread over the 

region [0.5, 1.35] has, roughly speaking, by time 3, concentrated within the narrower region 

[3.5, 3.65]. The data is compressed as expected by trajectory behavior illustrated in the earlier 

figure. The information that was initially associated with z values in [1.35, 1.37] has, by time 3, 

been spread over the interval [3.65, 4.4] giving there almost constant state, while the rest of 

the solution changes more rapidly over [4.4, 4.5]. 
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                         Figure 9.    Wave trajectories through checkerboard for n = 0.8 

 

Next we consider the structure with the same values of 𝑎𝑖 , 𝑚𝑖  as before but with 𝑛1 = 0.8. 

Unlike the first structure, the paths in figures above do not demonstrate stable convergence to 

isolated asymptotic routes. Instead, the trajectories engage in a regular pattern of drift towards 

and then away from the would-be limit cycles. This trend is periodic and the wavelength of this 

pattern is about 10 times the period of the structure itself. From the trajectories, we compute 

that the average speed of the disturbances is roughly 0.9. 
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                        Figure 10.  Wave trajectories through the checkerboard for n = 0.1 

 

 

 

                                 

If we then reduce 𝑛1 to 0.1, then we see very little remnants of the existence of limit cycles. The 

wave trajectories more of less occupy the entire strip as seen in the above figure. The average 

asymptotic speed of these paths is roughly 0.77. 
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                                             Figure 11. Graphical observation of plateau 

 

 

The four parameters 𝑎1,𝑎2, 𝑚1, 𝑛1determine the checkerboard material, and hence determine 

the manner in which disturbances travel through such structures. In the three examples 

presented above, 𝑎1,𝑎2 and 𝑚1 were fixed, and by varying the value of 𝑛1 only, we are able to 

see different trajectory behavior and different average speeds. In the above figure, we plot 

graphs of average speed versus 𝑛1 for a sequence of 𝑚1 values. Define the speed in the 

structures as 𝑓 𝑚1, 𝑛1 . Notice that 𝑓 𝑚, 𝑛 =  𝑓 1 − 𝑚, 1 − 𝑛 . This is so because, in space-

time, each period of the structure with volume fraction (𝑚, 𝑛) is made up of an 𝑚 × 𝑛 and an 

 1 − 𝑚 × (1 − 𝑛) rectangles of material 1 and the rest is filled with material 2. Thus, the 

checkerboard structure with volume fraction (𝑚, 𝑛) is the same as that with volume 

fraction (1 − 𝑚, 1 − 𝑛). 

 

In several of the plots, we see intervals of 𝑛1 for which 𝑓(𝑚1, 𝑛1) is constant for a given 𝑚1 

value; we call these “plateaux” and refer to the associated structure as “being on a plateau.” 
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By inspecting the above plots, it is seen that for 𝑎1 = 0.6 and 𝑎2 = 1.1, there are always 

plateaux corresponding to a speed equal to unity. In the first example of this section where we 

observed the existence of stable limit cycles, we had  𝑚1, 𝑛1 = (0.4, 0.5). The propagation 

speed in such a structure is 1 = 𝑓(0.4, 0.5), and this material puts itself on the plateau of the 

fourth plot of the series shown above. The structure shown above, with 𝑛1 = 0.8 and 𝑛1 = 0.1 

are not on a plateau and do not exhibit limit cycles.  

 

                                                    

 
                              Figure 12. Trajectories in material with varying parameter n 
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                                        Figure 13. Graphical representation of a plateau 

 

Figures above give portions of trajectories which originate on [0, 1] at time 0 in twelve 

checkerboard structures distinguished only by their values of 𝑛1. The other parameter values 

are 𝑎1 = 0.6,  𝑎2 = 1.1,  𝑚1 = 0.4. By comparing the values of 𝑛1which yield stable limit cycles 

with the location of the plateau in the velocity - 𝑛1 graph for 𝑚1 = 0.4 in the figure above, we 

propose the following hypothesis: 

 

3.5. Hypothesis:  A structure is on a plateau if and only if the structure yields stable limit 

cycles. 

 

A structure yields two limit cycles, one stable and the other unstable, if and only if the structure 

is on plateau, i.e., the following two pairs of inequalities hold simultaneously [18]: 

 

𝑎1𝜏 +  1 −  
𝑎1

𝑎2
 𝑚 −  𝛿

𝑎1 −  𝑎2
 ≤ 𝑛 ≤   

𝑎1𝜏 +  1 −  
𝑎2

𝑎1
 𝑚 −  𝛿

𝑎1 −  𝑎2
 

𝑚 −  𝑎2𝜏 +  
𝑎2

𝑎1
(𝛿 − 𝑚)

𝑎1 −  𝑎2
 ≤ 𝑛 ≤  

𝑚 −  𝑎2𝜏 +  
𝑎1

𝑎2
(𝛿 − 𝑚)

𝑎1 −  𝑎2
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4. Schematic Circuit Formation: 

In the above description, we studied propagation of a plane electromagnetic wave in one 

spatial dimension through a dielectric material structure that exhibits spatial-temporal property 

change. Now we are going to imitate such propagation by using a transmission line, with 

electrical parameters 𝐿 and 𝐶, variable in space and time. The equations that govern the wave 

propagation along such a line are identical with equations (2) and (3), in which we have to 

change the symbols as follows 

𝐸 ⟶ 𝑉, 𝐵 ⟶ Φ,     𝐷 ⟶ 𝑄,     𝐻 ⟶ 𝐼, 𝜖  ⟶ 𝐶, 𝜇 ⟶ 𝐿. 

In this list, 𝑉 denotes the voltage, Φ denotes the magnetic flux associated with the 

inductance 𝐿 , 𝑄 is the charge across the capacitor 𝐶, and 𝐼 is the current.  

 

We use the following model of a transmission line  

 

           Figure 14. Standard lossless transmission line model with variable elements           

                                                                       

Our application of checkerboard demands switching of the material parameter pairs (𝐿, 𝐶) 

particularly in time. This change should go in accordance with the following  

                                       𝛾1 =   𝛾2         ⟹             
𝐿1

𝐶1
=  

𝐿2

𝐶2
 , 

                                       𝑎1 <  𝑎2        ⟹         𝐿1𝐶1 >  𝐿2𝐶2 .                             (10) 
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4.1.     Concept of Variable Inductors and Capacitors  

 

When we talk about variable passive elements like inductors and capacitors, we have in our 

mind same behavioral characteristic of standard static elements. So basically we need 

something which is behaviorally exactly similar to its static counterpart, while being endowed 

with a special feature of abruptly changing its property value as and when signaled. As such, the 

output of a circuit involving these elements should be exactly same as that of the one involving 

a static element.  

 

Consider a simple differentiator circuit, involving a capacitor as its integral part performing the 

differentiation function. Clearly the quality of the differentiator, and hence the output will be 

affected by any change in the value of C [19]. Below we show the standard RC differentiator 

circuits, with two different values of C and their corresponding outputs. The difference in the 

output waveforms (Blue) is clearly apparent. 

 

 
                            Figure 15. RC circuits and their outputs for different values of C 

                                                       

Looking at the plots above, we do get some idea of what the plots with variable capacitor must 

look like. Assuming the variable capacitor abruptly switches in value from 0.01𝜇𝐹 to 0.001 𝜇𝐹 
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at time instant, say, 4𝜇𝑠𝑒𝑐, we expect the plot before and beyond this time instant to vary from 

each other in accordance with above plots. See the graph below  

 

 
                 Figure 16. Output of an RC circuit with variable C switched at time 4𝜇𝑠𝑒𝑐 

 

And that is exactly what we expect, given the constraint that the charge over the capacitor is 

preserved naturally when the C value undergoes a change. And this is precisely what would 

happen with real elements, since charge and flux preservation is a natural phenomenon upon 

which our application relies. The above plot was obtained from a Spice circuit which behaves 

like a ‘true’ static capacitor, but comes with an advantage of variability in its property value. We 

would discuss about the details of this scheme later, but for the time being we can have a look 

at differentiator circuit involving a variable capacitor. 

 

 
                                                  Figure 17. RC circuit with variable C 
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We can see that the variable capacitor circuit it similar to the static one, except the variable 

capacitor has an extra port CTRL for controlling the capacitance value. There is an additional 

voltage source V2 which generates a dc voltage of 0.01 𝜇𝑉 until 4 𝜇𝑠𝑒𝑐, while later rise to 

0.001 𝜇𝑉 at a rise time of 1 𝑝𝑠𝑒𝑐. Also note how the voltage of V2 assumes the capacitance 

value to be achieved. Why this is the case, will be understood when we establish the variable 

element schemes. 

 

The above discussion also holds true in case of a variable inductor. In the figures below we will 

observe the varying outputs from circuits involving different value of L, and how variable 

inductor circuit achieves same results but with the same unique circuit [20]. 

 

 

 

 
                               Figure 18. LR circuits with their outputs for different values of L 
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And with the variable inductor – 

 

 
                      Figure 19. Output of an LR circuit with variable L switched at time 4.6 𝜇𝑠𝑒𝑐 

 

The inductor value is switched from 0.1 𝑚𝐻 to 1 𝑚𝐻, at time 4.6 𝜇𝑠𝑒𝑐. The circuit is as shown 

below – 

 

 
                                                   Figure 20. LR circuit with variable L 
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Again we note that the value of controlling voltage source assumes the values numerically 

equal to the inductance value to be achieved. The reason for this will be understood later when 

we explain the technique for implementing variable inductor. 

 

4.2.     General Idea about Variable Element Schemes 

 

As already mentioned we plan to implement a lossless transmission line using a standard 

model. The static elements of the standard model would be replaced with the variable ones, 

just as we did in the above circuits. This structure involving variable elements would be 

consisting of two functionally different parts – the transmission line part, over which the signal 

or disturbance travels, and the controlling part which ensures proper switching in the L and C 

values in time.  

 

These two sections, though working independently of each other, interact in a very well defined 

manner to produce the desired outcome. As we will see later the controlling section of the line 

can be seen as a black box, taking input as the currents and the voltages of the disturbances 

travelling on the line. It inherently needs these signals to check the present flux and charge over 

the elements, so that it can enforce the preservation of these quantities by forcing appropriate 

voltages and currents. The scheme is developed by bearing in mind the very basic necessity of 

preserving the charge over C and flux over L. Pictorially, this can be represented in a crude 

manner as shown here –  

                           
                                  Figure 21. Pictorial representation of variable element scheme 

 

Even though the scheme is continuously in action to produce any desirable switching function, 

it needs not only the controlling signal CTRL, but also the current signals over the transmission 

line. This means that even if the circuits function irrespective of the signal travelling on the line, 

we definitely need the presence of signal to testify its efficiency in preserving the charge and 
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flux over C and L, respectively. For example in a real world scenario, inductance could be varied 

by altering the current in the secondary winding of a transformer being used as an inductor 

[21][22]. Even though the controlling current is active, we need current in primary to measure 

the new inductance value. Thus signal on the actual transmission line is essential to have any 

observation and testify the success of the controlling circuit.  

 

5. Spice Simulation 

 

Simulator used – LTspice IV 

Linear Technology, SwCAD III   

 

5.1.    Implementation of Variable Inductor 

 

A static inductor maintains, the following relation between voltage and current across two 

nodes a and b of the circuit;  

                                                      𝑉𝑎𝑏 = 𝐿
𝑑𝐼𝑎𝑏

𝑑𝑡
, 

 

where 𝐿 is the inductance. Any arrangement which simulates such V-I relation across the nodes 

a and b, is essentially behaving as an inductor.  

 

The above equation is the same as      

                                                              𝐼𝑎𝑏 =  
 𝑉𝑎𝑏 𝑑𝑡

𝐿
.                                                                   (11) 

 

The motive of rearranging the equation is to get it in the form of standard capacitor equation:                                            

                                                                𝑉 =  
1

𝐶
 𝐼 𝑑𝑡 , 

                                                                    =   𝐼 𝑑𝑡 ………………………………….( for C = 1F ) 

 

which is similar to numerator of RHS of 𝑒𝑞𝑛 .(11) except current 𝐼 takes the place of 𝑉𝑎𝑏 . This is 

because electrical circuit implementation of integrals is most convenient using capacitors and 

current, hence we will mimic the voltage through current. Thus we can achieve the numerator 

of RHS of 𝑒𝑞𝑛 .(11) by forcing a current 𝐼 numerically equal to 𝑉𝑎𝑏  through a 1F capacitor as 

shown in figure. (22), below. An ‘arbitrary behavioral current source’ BINT is forcing a current 𝐼 

through a 1F capacitor CINT. As mentioned earlier, the voltage V(INT) developed across the 

capacitor at node INT is the numerator of RHS of 𝑒𝑞𝑛 .(11) and  hence 𝑒𝑞𝑛 .(11) becomes –        

                                                                𝐼𝑎𝑏 =  
𝑉(𝐼𝑁𝑇)

𝐿
                                                           (12) 
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                                   Figure 22. Integrating circuit for variable L scheme 

 

 

As seen in figure. (22), the statement to mimic voltage through current is simply I = V(1,2), 

which is like equating two quantities with different units, which is not really true. It is 

worthwhile to mention at this point, that Spice do not need user to specify the unit of the 

quantity. It assumes the standard unit for the quantity defined by the standard symbol. For 

example, 𝐼 is a standard symbol for current in Spice and hence Spice will automatically assume 

the standard MKS unit for it as Amperes. User just needs to specify the numerical value for the 

current, say, 𝐼 = 4 which for Spice means 4 amps. Similarly, a statement like L = 300𝜇 means 

inductance of 300𝜇𝐻. Instead of stating a numerical value we can also assign some variable 

whose value can be arbitrarily assigned and changed during execution. For example, a 

statement like L = V(CTRL), means inductance equal to the present voltage value at some node 

CTRL in the circuit. The unit is naturally assumed to be Henries. Implementing this in 𝑒𝑞𝑛 .(12), 

we get 

                                                                            𝐼𝑎𝑏 =  
𝑉(𝐼𝑁𝑇)

𝑉(𝐶𝑇𝑅𝐿)
                                                   (13) 

 

                                                              
                           Figure 23. Current source implementing the inductor current 

 

As seen in the figure (23) above, the current 𝐼𝑎𝑏  flowing across nodes a and b (designated as 

nodes 1 and 2 in figure (23) above) can be easily achieved and maintained in LTspice using an 
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inbuilt ‘Arbitrary behavioral current source’. Such a current source maintains current through it 

specified by any arbitrary equation, thus enabling the current to be a function of independent 

variables and constants. The generalized syntax is – 

                                                                              𝐼 = 𝐹(. . . )                                                             

Examples: In figure (22), for current source BINT, 𝐼 = 𝑉(1,2), i.e. voltage across nodes a and b.  

                   In figure (23), for current source BC, 𝐼 =  
𝑉(𝐼𝑁𝑇)

𝑉(𝐶𝑇𝑅𝐿)
, i.e. ratio of two node voltages.       

 

As seen earlier, L = V(CTRL) which is the variable voltage at some node CTRL in the circuit. This 

way we can vary the inductance by altering the voltage at node CTRL. To be precise, the 

inductance is numerically exactly the same as node CTRL voltage.  

 

To summarize, it starts with sensing the value of voltage across the inductor, 𝑉𝑎𝑏  and ends up 

adjusting the current through the inductor 𝐼𝑎𝑏 . The flux preservation demands adjustment of 

the inductor current depending on the variation in the inductance value, to preserve the 

product 𝐿 ∗ 𝐼𝑎𝑏 . Hence the black box discussed earlier in section 4.2, has an output of current 

𝐼𝑎𝑏  while the inputs are 𝑉𝑎𝑏  and 𝑉(𝐶𝑇𝑅𝐿). The net circuit for variable inductor is shown in 

figure (24) below. 

  

   
                                            Figure 24.  Variable inductor circuit 

 

                                    

The above circuit ensures the essential flow of current 𝐼𝑎𝑏  through the branch connecting 

nodes a and b (designated as 1 and 2), having voltage 𝑉𝑎𝑏  across it, and related by equation 

(11). Thus the circuit essentially sees an inductor of value L = V(CTRL) connected between the 

nodes a and b. With this inductor assuming value 𝐿1, we obtain  

  

                                                                 𝐼1 =  
1

𝐿1
 𝑉1𝑑𝑡,                                exhibiting material 1, 
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while, switching the value to 𝐿2 would give  

 

                                                                 𝐼2 =  
1

𝐿2
 𝑉2𝑑𝑡,                                exhibiting material 2. 

 

Since V(CTRL) is an independently controlled voltage, which can be set equal to any desired 

value, we can switch the value of 𝐿 form 𝐿1 to 𝐿2, and switch the properties of the materials in 

time.  

 

5.1.1.    Spice Netlist  

 

.subckt variable 1 2 CTRL 

BC 1 2 I=V(INT)/V(CTRL) 

BINT 0 INT I=V(1,2) 

CINT INT 0 1 

R1 CTRL 0 10 

.ends variable 

 

 

5.1.2.    Variable Inductor: A Three-Port Device.  

 

Symbol – 

 

                                                       
                                Figure 25. Symbolic representation of variable inductor circuit. 
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From the circuit in figure (24), and also from the above symbol we see that a variable inductor 

is a three-port device with two usual ports (port 1 and 2 in the above symbol) of a static 

inductor used to connect the device in the network, and a control port ( CTRL in the above 

symbol ) used as a switch/knob to switch the value of inductor. We also understand that the 

inductor value is same as the numerical value of voltage applied to this control port, which we 

mentioned in earlier section, too. For example, to obtain an inductor of 480 𝜇𝐻 we need to 

apply a voltage value as 480 𝜇𝑉 at CTRL port. We will later see how this technique is used to 

implement material substrates with dynamic material properties. 

 

5.1.3. Reliable working of a Variable Inductor (Demonstration of Flux Preservation) 

 

In section 4.1., we have already seen the circuits and their plots demonstrating the faithful 

working of a variable Inductor to produce results exactly similar to its static counterpart. Their 

ability to reproduce the effects of static element can be numerically verified for accuracy. 

Rather, we are more interested in the fact, as mentioned earlier too, that this scheme ensures 

the preservation of flux. A small discussion about this was done in the preceding section 4.1, 

and here we will demonstrate this graphically. 

 

We know that for the variable inductor scheme, L = V(CTRL), numerically. Also the flux linkage 

of the device will be given by 𝜑 =  𝐿 ∗ 𝐼𝑎𝑏 = 𝑉 𝐶𝑇𝑅𝐿 ∗ 𝐼𝑎𝑏 , numerically. For the LR circuit 

shown below, we have plotted the graph of the inductor current 𝐼𝑎𝑏  (Ix(x1:1) in the graph – 

green), and the flux 𝑉 𝐶𝑇𝑅𝐿 ∗ 𝐼𝑎𝑏  (Ix(x1:1)*V(n003) in the graph – blue). A sine voltage with a 

frequency of 100K is applied to the circuit and the simulation is observed for a period of 

100 𝜇𝑠𝑒𝑐. At time 50 𝜇𝑠𝑒𝑐, the inductance in the circuit is made to switch from 1 𝑚𝐻 to 10 𝑚𝐻, 

which is reflected by the immediate change in the inductor current, but the flux curve remains 

unchanged as expected. Note that the unit for the flux is shown as Watts, and not Weber or 

Tesla. This is because we have expressed the L value as voltage, and not in Henries as ideally 

should have been. Nonetheless we do observe the preservation of flux from the graph. 
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                 Figure 26. Demonstration of flux preservation with variable inductor technique 

 

 

  

5.2. Implementation of Variable Capacitor in Spice – 

The idea is exactly similar to that of the variable inductor. Again, the value of C in the capacitor 

equation will be specified by an independent control voltage. 

 

A static capacitor C connected between nodes a and b in a circuit, maintains the following V-I 

relation between it – 

 

                                                             𝐼𝑎𝑏 = 𝐶
𝑑𝑉𝑎𝑏

𝑑𝑡
, 

 

which is same as 

                                                                       𝑉𝑎𝑏 =  
 𝐼𝑎𝑏 𝑑𝑡

𝐶
.                                                   (14) 
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The motive of rearranging the equation is to get it in the form of standard capacitor equation:                                            

                                                                   𝑉 =  
1

𝐶
 𝐼 𝑑𝑡 , 

                                                                       =   𝐼 𝑑𝑡 ………………………………….( for C = 1F ) 

 

which is similar to numerator of RHS of 𝑒𝑞𝑛 .(14) except current 𝐼 takes the place of 𝐼𝑎𝑏 . We can 

achieve the numerator of RHS of 𝑒𝑞𝑛 .(14) by forcing a current 𝐼 numerically equal to 𝐼𝑎𝑏  

through a 1F capacitor as shown in figure. (27), below. An ‘arbitrary behavioral current source’ 

BINT is forcing a current 𝐼 through a 1F capacitor CINT. As mentioned earlier, the voltage V(INT) 

developed across the capacitor at node INT is the numerator of RHS of 𝑒𝑞𝑛 .(14) and  hence 

𝑒𝑞𝑛 .(14) becomes –        

                                                                𝑉𝑎𝑏 =  
𝑉(𝐼𝑁𝑇)

𝐶
                                                           (15) 

 

                                      
                                  Figure 27.  Integrating circuit for variable C scheme 

 

The current seen in figure (27), above, I(VC) is the current through a voltage source VC 

connected in the branch joining nodes a and b. Here the voltage source is used as a current 

sensing device, which senses the current 𝐼𝑎𝑏 . Spice allows using a voltage source as a current 

sensing device if no voltage value or function is specified for it, as shown in figure (28). As 

natural with all current meters, the voltage drop across VC is zero. Just as we did in the case of 

variable inductor, we will assign the capacitance as a arbitrary variable voltage V(CTRL) 

occurring at some node CTRL, and can be altered as many times during execution. The 

capacitance value becomes exactly equal to the V(CTRL), while the units are naturally assumed 

to be in Farads. 

                                                                       𝑉𝑎𝑏 =  
𝑉(𝐼𝑁𝑇)

𝑉(𝐶𝑇𝑅𝐿)
                                                      (16) 
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                   Figure 28. Current sensor and voltage source implementing capacitor voltage 

 

As seen in the figure (28), above, the voltage 𝑉𝑎𝑏  across nodes a and b can be easily achieved 

and maintained in LTspice using an inbuilt ‘Arbitrary behavioral voltage source’. Such a voltage 

source maintains voltage across it specified by any arbitrary equation, thus enabling the current 

to be a function of independent variables and constants. The generalized syntax is – 

                                                                              𝑉 = 𝐹(. . . )                                                             

Examples: In figure (28), for voltage source BC, 𝐼 =  
𝑉(𝐼𝑁𝑇)

𝑉(𝐶𝑇𝑅𝐿)
, i.e. ratio of two node voltages.       

 

As seen earlier, C = V(CTRL) which is the variable voltage at some node CTRL in the circuit. This 

way we can vary the capacitance by altering the voltage on node CTRL. To be precise, the 

inductance is numerically, exactly, the same as node CTRL voltage.  

 

To summarize, it starts with sensing the value of current through the capacitor, 𝐼𝑎𝑏  and ends up 

adjusting the voltage across the capacitor 𝑉𝑎𝑏 . The charge preservation demands adjustment of 

the capacitor voltage depending on the variation in the capacitance value, to preserve the 

product 𝐶 ∗ 𝑉𝑎𝑏 . Hence the black box discussed earlier in section 4.2, has an output of voltage 

𝑉𝑎𝑏  while the inputs are 𝐼𝑎𝑏  and 𝑉(𝐶𝑇𝑅𝐿). The net circuit for variable inductor is shown in 

figure (29) below. 
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                                                 Figure 29. Variable capacitor circuit 

 

The above circuit ensures the essential flow of current 𝐼𝑎𝑏  through the branch connecting 

nodes a and b, having voltage 𝑉𝑎𝑏  across it, and related by equation (14). Thus the circuit 

essentially sees a capacitor of value C = V(CTRL) connected between the nodes a and b. With 

this inductor assuming value 𝐶1, we obtain – 

  

                                                                 𝑉1 =  
1

𝐶1
 𝐼1𝑑𝑡,                                exhibiting material 1, 

 

While, switching the value to 𝐶2 would give – 

 

                                                                 𝑉2 =  
1

𝐶2
 𝐼2𝑑𝑡,                                exhibiting material 2. 

 

Since V(CTRL) is an independently controlled voltage, which can be set to any desired value, we 

can switch the value of 𝐶 form 𝐶1 to 𝐶2, and switch the properties of the materials in time.  

 

5.2.1.    Spice Netlist – 

.subckt  variable  1  2  CTRL 

BC  4  2  V=V(INT)/V(CTRL) 

BINT  0  INT  I=I(VC) 

CINT  INT  0  1 

R2  CTRL  0  10 

VC  1  4 

.ends  variable  

 



35 
 

 

5.2.2.    Variable Capacitor: A Three-Port Device  

 

Symbol – 

                                                
                    Figure 30. Symbolic representation of the variable capacitor circuit 

 

From the circuit in figure (29), and also from the above symbol we see that the variable 

capacitor is a three-port device with two usual ports (port 1 and 2 in the above symbol) of static 

capacitor used to connect the device in the network, and a control port (CTRL in the above 

symbol) used as a switch/knob to alter the value of capacitor. We also understand that the 

capacitor value is same as the numerical value of voltage applied to this control port. For 

example, to obtain a capacitor of 0.48 𝑝𝐹 we need to apply a voltage value as 480 𝑝𝑉 at the 

CTRL port. 

 

5.2.3. Reliable Working of a Variable Capacitor Circuit (Demonstration of Charge 

Preservation) – 

 

Similar to the demonstration of the flux preservation in the case of inductor, here we 

demonstrate the success of the variable capacitor scheme in preserving the charge over the 

capacitor, with varying the value of capacitance. We know that the capacitance C = V(CTRL) 

numerically, and also that the charge over a capacitor is given by 𝑄 = 𝐶 ∗ 𝑉𝑎𝑏 = 𝑉 𝐶𝑇𝑅𝐿 ∗

𝑉𝑎𝑏 .  

 

For the RC differentiator circuit shown below, we have plotted the graph of the capacitor 

current 𝑉𝑎𝑏  (V(N001,N002) in the graph – green), and the charge 𝑉 𝐶𝑇𝑅𝐿 ∗ 𝑉𝑎𝑏  

(V(N001,N002)*V(n004) in the graph – blue). A sine voltage with a frequency of 100K is applied 

to the circuit, and the simulation is observed for a period of 100 𝜇𝑠𝑒𝑐. At time 50 𝜇𝑠𝑒𝑐, the 

capacitance in the circuit is made to switch from 0.01 𝜇𝐹 to 0.1 𝜇𝐹, which is reflected by the 

immediate change in the capacitor voltage, but the charge curve remains unchanged as 

expected. Note that the unit for the charge is shown as 𝑉2, and not Coulomb. This is because 
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we have expressed the C value as voltage, and not as Farads, as ideally should have been. 

Nonetheless we do observe the preservation of charge from the graph. 

 

 

 

 
            Figure 31. Demonstration of charge preservation with variable capacitor technique 
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5.3. Transmission Line Unit Using Variable L and Variable C  

 

 
                   Figure 32. A single LC unit of a transmission line with variable elements 

 

Once we have our variable inductor and capacitor ready, we connect them in a standard 

transmission line structure. One such unit of a transmission line is shown above in figure (32). 

There are two independent voltage sources B1 and B2, each controlling the values of variable 

inductor and capacitor individually. Our application demands switching of the inductor and 

capacitor values between two discrete levels, in order to achieve two distinct materials. For this 

we will need to set parameters for the two materials. 

Material 1                                                    Material 2 

𝐿1 = 480 𝜇𝐻/m                                               𝐿2 = 400 𝜇𝐻/m 
𝐶1 = 0.48 𝑝𝐹/m                                               𝐶2 = 0.4 𝑝𝐹/m 
 
To switch between material 1 and 2, we need to switch the voltage at the CTRL port of the 
variable inductor between 400𝜇𝑉 and 480𝜇𝑉. This is achieved by an ‘arbitrary behavioral 
voltage source’ (B1 in figure 32, above), which produces the two desired voltage levels. The 
equation for voltage by B1 is given as – 
 

𝑉 =
(𝑉𝐿1+𝑉𝐿2)

2
 +  

 𝑉𝐿2−𝑉𝐿1 

2
𝑐𝑜𝑠(𝜋 ∗

𝑉 𝐶𝑇𝑅𝐿 

 𝑉𝑘2−𝑉𝑘1 
) ,                                                                 (17) 

 
where, 𝑉𝐿1 = 480 𝜇𝑉, &  𝑉𝑘1 = 0 𝑉 
               𝑉𝐿2 = 400 𝜇𝑉, &  𝑉𝑘2 = 5 𝑉 and 𝑉(𝐶𝑇𝑅𝐿) is an independent voltage.  
 
𝑉(𝐶𝑇𝑅𝐿) acts as a switch to control the voltage of B1 and hence the inductor value. 𝑉(𝐶𝑇𝑅𝐿)  
can be switched between the value of 𝑉𝑘1 and 𝑉𝑘2, i.e. 0 and 5.  
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When 𝑉 𝐶𝑇𝑅𝐿 =  0 𝑉    𝑉 =  𝑉𝐿2 =  400𝜇𝑉     𝐿 =  𝐿2  =  400𝜇𝐻 
When 𝑉 𝐶𝑇𝑅𝐿 =  5 𝑉    𝑉 =  𝑉𝐿1 =  480𝜇𝑉     𝐿 =  𝐿1  =  480𝜇𝐻 
 

Similar to the inductors, we need to switch the voltage at the CTRL port of the variable 
capacitor between 0.4𝑝𝐹 and 0.48𝑝𝐹. This is achieved by an ‘arbitrary behavioral voltage 
source’ (B2 in figure 32, above), which produces the two desired voltage levels. The equation 
for voltage by B2 is given as – 
 

𝑉 =
(𝑉𝐶1+𝑉𝐶2)

2
 +  

 𝑉𝐶2−𝑉𝐶1 

2
𝑐𝑜𝑠(𝜋 ∗

𝑉 𝐶𝑇𝑅𝐿 

 𝑉𝑘2−𝑉𝑘1 
)                                                               (18) 

 
Where, 𝑉𝐶1 = 0.48 𝑝𝐹, &  𝑉𝑘1 = 0 𝑉 
               𝑉𝐶2 = 0.40 𝑝𝐹, &  𝑉𝑘2 = 5 𝑉 
 
With 𝑉(𝐶𝑇𝑅𝐿) taking values as 𝑉𝑘1 and 𝑉𝑘2, we obtain the following 
When 𝑉 𝐶𝑇𝑅𝐿 =  0 𝑉    𝑉 =  𝑉𝐶2 =  0.40𝑝𝑉     𝐶 =  𝐶2  =  0.40𝑝𝐹 
When 𝑉 𝐶𝑇𝑅𝐿 =  5 𝑉    𝑉 =  𝑉𝐶1 =  0.48𝑝𝑉     𝐶 =  𝐶1  =  0.48𝑝𝐹 
 
Notice that V(CTRL) is the common control parameter occurring in the equations for voltages of 
B1 and B2, enabling a single control circuit for switching of L and C. This ensures simultaneous 
switching of the variable L and C, which is absolutely essential for faithful change between 
material 1 and 2.  
 
Also, the voltages are cosine functions of V(CTRL), which provides a smooth transition of B1 and 
B2 voltages and hence the inductor and capacitor values. Avoiding abrupt transitions minimizes 
any high frequency components which could create distortions even at lower operating 
frequencies. This also means there will be some inertia maintained in the system, which can 
almost be neglected. This is because even the highest frequencies of operation do not surpass 
the MHz range, while the switching signal rise and fall at 1 𝑝𝑠𝑒𝑐 duration. 
 
Referring to the circuit above in figure (32), we find three ports for this section – input port <1>, 
output port <2>, and the CTRL port. This three port network forms a single unit of the 
transmission line, and can be symbolically represented as shown below in figure (33) 
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Symbol – 

                                                        

                 Figure 33. Symbolic representation of an LC unit of a transmission line 

 

In the disicussion above, the value of L and C are expressed per meter length, which means one 

such LC unit consisting of 1 L and 1 C of the specified values, correspond to 1 meter length of 

space. Hence the length of the network with many such 3-port units cascaded together would 

exactly be equal to the number of units put together and measured in meters – 𝑙 units cascaded 

together would measure 𝑙 meters in length. 

5.3.1.   Spice Netlist 

.subckt variablelc2 1 2 CTRL 
XX1 1 2 N002 variablel 
XX2 2 0 N001 variablec 
R1 CTRL 0 1K 
B1 N002 0 V=(VL1+VL2)/2 + ((VL2-VL1)/2)*cos(pi*V(CTRL)/(Vk2-Vk1)) 
B2 N001 0 V=(VC1+VC2)/2 + ((VC2-VC1)/2)*cos(pi*V(CTRL)/(Vk2-Vk1)) 
.param VL1 480u 
.param VL2 400u 
.param VC1 0.48p 
.param VC2 0.4p 
.param Vk1 0 
.param Vk2 5 
.ends variablelc2 
 

5.4. Material Substrate modelled as a Transmission Line 

In absence of the CTRL port, we would have the standard LC unit of a lossless transmission line 

with static line parameters. The addition of port CTRL allows control for parameter variations 

and hence suits our demand of material-switching in time. Many such three port units would be 

connected in series to form a single material substrate. For the entire material substrate to 

switch its properties at the same time instant we need to provide the V(CTRL) signal 



40 
 

simultaneously to all the units comprising the material. This needs CTRL ports of all such LC 

units to be connected in parallel to a common controlling circuit, as is shown below – 

 

 

                            Figure 34. Transmission line section with variable LC units 

 

 

5.5. Controlling Circuit for the CTRL Ports  

The voltage source V1 in figure (34) above is an integral part of the control circuit, which takes 

care of the proper timings as prescribed by the specifications of the checkerboard.  

For n = 0.5, and the temporal period of the checkerboard equal to 10 𝜇𝑠𝑒𝑐, we need V1 to 

generate a square wave of amplitude 5V (since Vk2 – Vk1 = 5V), 50 % duty cycle and period of  

10 𝜇𝑠𝑒𝑐. The waveform shown below satisfy these requirements, with rise and fall time of 

0.000001 𝜇𝑠𝑒𝑐 or 1 𝑝𝑠𝑒𝑐.  
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                                         Figure 35. An example of a controlling signal 

 

5.6. Practical Constraints Observed in the Simulation of a Transmission line 

So far we have made the basic ingredients and the recipe ready to construct an actual 

transmission line in Spice. At this point we may ask ourselves a few important questions:  

 What would be the total length spatially and temporally of the checkerboard structure?  

 How many LC units would go in to achieve this desired length?  

 What is the frequency that we may prefer to operate the system at? 

All these question are not independent, rather they are interrelated and their answers need to 

be obtained in a holistic fashion. In an effort to answer them, there appeared to be practical 

contraints involved in the construction of a checkerboard. Let us try to see in this section what 

are they, and how they arise. 

While answering the first question, we need to consider the fact that a single LC unit is a 

complex structure though it looks pretty simple and concise in its symbolic form. For better 

observations of the signal travelling along the transmission line, we may want to go with many 

periods in space and time. But the checkerboard being a 2D structure on paper, the calculation 

complexity squares up, putting a heavy load on the computing system. With an average power 

personal laptops, it was found to be very difficult to manage large lengths of checkeroard.  

What if we try to keep the structure small? This would need smaller values of L and C per unit 

length. This looks fine until we start thinking about the operating frequency, since smaller 

values of L and C mean higher speed of the wave in the material substrates. At these higher 

speeds we find it difficult to incorporate one full or even half a cycle in the material substrate, 

as the leading egde tends to move out of the material before the trailling end is into it. Now to 
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get a solution to this, we can think of working with shorter wavelengths, or higher frequencies. 

This is not so good as it looks, since large distortions at higher frequencies are observed, making 

the collected data unimpressive. The reason for this lies in the theory of transmission line. In 

the standard model of transmission line, we define the L and C as distributed parameters. The 

smaller are the values of L and C per unit lengths in comparison to the operating wavelengths, 

better is the line modelled. At higher operating frequencies, our L and C start appearing as 

lumped rather than distributed, creating distortion in the output.  

So there is a tradeoff between all the parameters to select. The effort started with a trail and 

error method, starting with higher frequencies trading down to lower ones, while moving 

higher in the lengths of checkerboard from few tens of LC units to reach a large number of 

6000, while the starting frequency provided by the source had to be kept as low as 100K.  The 

complete structure with the LC units and its description is shown in the next section. 

5.7. Physical Construction of the Checkerboard in Space 

 

                                  Figure 36. Physical construction of checkerboard 

In the above structure, we observe 8 spatial periods of checkerboard, each period consisting of 

two material sustrates of unqual lengths. We can decide on the length of material sections 

based on the value of m and the total spatial period we desire in the real space. As an example, 

for a length of 𝛿 = 741 meters as spatial period, and m = 0.4615 we obtain the following – 

Length of material one = m* 𝛿 = 0.4615*741 = 342 units 
Length of material two = (1 – m)* 𝛿 = (1 – 0.4615)*741 = 399 units.  
 
This difference in length is clearly apparent in the above figure (36) in each period. Apart from 
this length difference there is no physical difference in the two materials, since they consist of 
same LC units. In such a case what makes the two materials functionally different is the value of 
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L and C, which is controlled by the V(CTRL) signal. This means for material 1 to have parameter 
values as L1, C1, V(CTRL) would need to be 0, and at same time material 2 needs to have 
V(CTRL) value to be 5V so as to take the parameter values as L2, C2. Thus the controlling signal 
for each material is the inverted copy of the other as shown in figure (37) below along with 
their sources –  

 
                    Figure 37. Controlling circuits with their outputs for two different materials 
 
The signal V(CTRL) is provided to the first 399 cells, while the inverted control signal V(inv_ctrl) 
is provided to the remaining 342 cells in that spatial period, making them behave as two 
different materials at any given instant of time.  
 
For time interval before 10usec, V(CTRL) = 0V provided to the first 399 cells. Therefore from 
equation (13) and (14), we see that for the first 399 cells 𝐿 =  400𝜇𝐻/𝑚 and 𝐶 =  0.4𝑝𝐹/𝑚. 
Hence the phase velocity in this medium and the wave impedance are given as – 
 

                                          𝑣2 =  
1

  400𝜇𝐻 (0.4𝑝𝐹)
= 7.9056942 ×  107 𝑚/𝑠 

 

                                        𝛾 =   
400𝜇

0.4𝑝
 =  31.622777𝐾 

 
Similarly with V(int_CTRL) = 5V provided to next 342 cells, the phase velocity and the wave 
impedance of the wave in this material are given as –  
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                                      𝑣1 =  
1

  480𝜇𝐻 (0.48𝑝𝐹)
= 6.5880785 × 107 𝑚/𝑠 

 

                                        𝛾 =   
480𝜇

0.48𝑝
  =   31.622777𝐾 

 
These figures reiterate the fact that the wave impedance in both the materials is same, while 
the phase velocities are different. Phase velocity in material 2 is greater than that in material 1. 
This is also obvious as in the given time duration of 0 to 10 𝜇𝑠𝑒𝑐, the length of material 2 is 
greater than that of material 1, thus to accommodate the entire wave train of material 2 in 
shorter material 1, it has to shrink in size. This shrinking of size is due to low velocity of the 
leading edge of wave train in material 1, while high velocity of the trailing edge in material 2. 
Thus we see how these figures reassure us of the wave shrinking as the wave move from 
material 2 to material 1 across spatial boundary. This effect can be seen graphically later when 
we provide a plot of wave signal against space, as the wave travels through it. 
 
5.8. Transmission Line Simulation 
 
Let us summarize the system parameters discussed so far – 
 
Length of each unit of transmission line = 1m 
Number of units over spatial period  𝑧 =  0  𝑡𝑜  𝑧 = 𝑚𝛿 ∶ 342  
Number of units over spatial period  𝑧 = 𝑚𝛿  𝑡𝑜  𝑧 =  𝛿 ∶ 399 
 
Inductances and capacitances per meter of the transmission line are – 
𝐿1 = 480 𝜇𝐻/m  
𝐶1 = 0.48 𝑝𝐹/m 
𝐿2 = 400 𝜇𝐻/m 
𝐶2 = 0.4 𝑝𝐹/m 
 
The spatial and temporal period and the velocities of the wave are – 
𝛿 = 399 + 342 = 741 𝑚  
𝜏 = 5 + 5 = 10 𝜇𝑠𝑒𝑐  

𝑣1 =  
1

  400𝜇𝐻 (0.4𝑝𝐹)
= 7.9056942 ×  107 𝑚/𝑠  

𝑣2 =  
1

  480𝜇𝐻 (0.48𝑝𝐹)
= 6.5880785 × 107 𝑚/𝑠   

 
The checkerboard parameters are – 
𝑚 =  342/(399 +  342)  =  0.4615  
𝑛 =  5/(5 +  5)  =  0.5    
 
We know that the spatial period extends to 𝛿 = 741 𝑚 of space, while temporal period 
is 𝜏 = 10 𝜇𝑠𝑒𝑐. Thus using the standard MKS units of space and time gives the velocities of 
waves in two materials as obtained above. As we had discussed earlier, the characteristic path 
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of the waves are not really dependent on the absolute values of spatial and temporal periods, 
but on combined effect of the arrangement of the materials and temporal switching 
represented by the parameters m and n respectively. Hence for a generalized argument we 
would not refer to the absolute values in meters and sec, but will define the spatial period on 
the checkerboard always equal to 1 unit distance, while temporal period of 1 unit time. For 
example in our case, spatial period of 741 meters is equal to 1 unit checkerboard distance, and 
10usecs of time is equal to 1 unit checkerboard time. This scaling results into new values of 
phase velocities, given as: 
 

𝑎1 =  𝑣1
𝜏

𝛿
= 1.067  

𝑎2 =  𝑣2
𝜏

𝛿
= 0.8891  

 
Above circuit consists of 8 spatial periods, each period having 741 units, hence the total number 
of units = 8 x 741 = 5928.  
 
6. Results 
 
6.1. Time Plot 

 
       
                       Figure 38. Time plot of voltage over transmission line at various nodes 
 
 
The source sends half a cycle of sin wave, of frequency 100K. The square wave, which is the 
temporal switching signal V(CTRL) indicates those instances when medium change took place. 
It’s clear that after every temporal switching, the wave frequency increases, and also the 
amplitude. The frequency and amplitude increment is in agreement with the theoretical 
estimates, based on the equation described earlier in this report. Also, some distortion is 
observed as the frequency tends to increase. This is because, at higher frequencies, the discreet 
components become comparable to the wavelengths, and the material is no longer seen as 
homogeneous. Operating at lower frequencies ensure no distortion or reflections.  
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To quantitatively verify the success of the system, we make use of the relations obtained by F. R 
Morgenthaler [17]. According to his work, the relation between initial and final voltage after 
temporal switching is given as 
 

                                                Gain =  
𝑉2

𝑉1
=  

𝜀1

𝜀2
=  

𝜇1

𝜇2

=  
𝐿1

𝐿2
=  

𝐶1

𝐶2
  . 

 
In our case, the ratio L1/L2 = 480/400 = 1.2 or C1/C2 = 0.48/0.40 = 1.2. Clearly after k temporal 
switchings, we must observe the voltage peak to be 
 
                                                                𝑉𝑘 =  (1.2)𝑘𝑉1. 
 
From the plot we observe that there are 7 temporal switchings before the final peak, hence k = 
7 and the original source generates a voltage of 5 V, hence 𝑉1= 5V. 
 
Therefore,                                 𝑉7 = (1.2)7 ∗ 5 = 17.915 𝑉. 
 
This is exactly the value that we observe for the last peak in the above plot. This is an evidence 
for the accurate working of the system as predicted by the theory.  
 
6.2. Verifying the Effects of the Structure Being On/Outside the Plateau  
 
Here we experiment by changing the value of n, the structural parameter for checkerboard 
associated with temporal period, and seeing its effect on the output of the system. From the 
earlier shown result, we already know that the value of n = 0.5 keeps the system very much on 
plateau. Here is one more graph with n = 0.5, with more peaks observed.  
 

 
                                                 Figure 39. Time plot with n = 0.5 
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Let us again obtain the value of 𝑘𝑡ℎ  peak using Morgenthaler’s equations.  
 
                                                         𝑉13 = (1.2)13 ∗ 5 = 53.4966 𝑉. 
 
Clearly we see that the above graph still in accordance with the expected theory [18][16][17]. 
Now, we will vary the value of n and check if still we get the same results. The equation giving 
the condition for structure being on plateau is given as [18] 
 

                                          
𝑎1𝜏+ 1− 

𝑎1
𝑎2

 𝑚− 𝛿

𝑎1− 𝑎2
 ≤ 𝑛 ≤   

𝑎1𝜏+ 1− 
𝑎2
𝑎1

 𝑚− 𝛿

𝑎1− 𝑎2
 , 

                                     
𝑚− 𝑎2𝜏+ 

𝑎2
𝑎1

(𝛿−𝑚)

𝑎1− 𝑎2
 ≤ 𝑛 ≤  

𝑚− 𝑎2𝜏+ 
𝑎1
𝑎2

(𝛿−𝑚)

𝑎1− 𝑎2
 . 

Calculating with the values of other checkerboard parameters, we find the condition on n to be  
 
                                                               0.19119 ≤ 𝑛 ≤ 0.88090. 
 
 
 
For n = 0.6 

 
                                                  Figure 40. Time plot with n = 0.6 
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For n = 0.75 

 
                                                  Figure 41. Time plot with n = 0.75 
 
These plots are all in accordance with the expected behavior. We also note that irrespective of 
what value of n we select, the peaks always corresponds to same values, indication the system 
is on plateau and approaching the stable limit cycle.  
 
Now, let us try to move away from the plateau, by selecting n values outside the range 
permissible by the plateau definition. We would select n values beyond 0.89 and further, as 
shown- 
 
For n = 0.9 

 
                                                    Figure 42. Time plot with n = 0.9 
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Note the highest peak value for this graph. This is clearly not in accordance with the 
Morgenthaler equation, and serves as clear indication of deviation from the stable limit cycle. 
This is just as expected since we have crossed the upper limit on n for a stable limit cycle. Let us 
have one more value of n beyond this limit and see the result – 
 
n = 0.95 

 
                                                  Figure 43. Time plot with n = 0.95 
 
Note how the highest peak voltage fails further to reach the expected value, indicating we are 
further away from the stable limit cycle.  
 
These results are convincing enough to conclude about the expected behavior of the system, 
and encourage us to put out hands to actual construction of a material substrate demonstrating 
similar behavior in real world too.  
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6.3. Space Plot 
 

 
                             Figure 44. Plot of voltage over transmission line against space 
 
 
Spice by default always provides time plots, and we need a space plot to verify the contraction 
of the wave as it travels in space. For this, we had to extract the data from the .raw file from 
Spice to Matlab [24]. In Matlab, we obtain a 2D matrix with voltage at each node for each time 
instant. To obtain space plot, we need to plot voltage at all time instants at a fixed given node. 
All such nodes are represented along the x-axis in the figure (44). The voltage was measured on 
different points along the transmission line, at different times for n = 0.5 and k = 7 switchings, 
as the wave travelled through it. Note that the peak after first switch is missing which should 
have taken the value 𝑉1 = (1.2)1 ∗ 5 = 6𝑉.  This peak is seen in the time plots. The above 
graph demonstrates wave contraction in space. The voltage amplitude is increased as expected 
from the theory. The structure appears to be on a plateau and approaching limit cycle.  

 

7.  Future Work 

 

The results obtained from the simulations though are limited by the computational capacity of 

the processors, nonetheless do suggest correspondence to the results obtained from numerical 

analysis, carried our earlier. This is encouraging enough to make us take the next step of actual 

construction of such spatio-temporal material composite. Clearly, Spice simulation has only 

been able to confirm the principle of working, and do not help us really to start with the real 

implementation. The method employed in Spice by no means can directly be transferred to 

hardcore construction. The technique of voltage and current manipulation to preserve the flux 

and charges at temporal switching, is not meant for real world. In nature these preservations 

are naturally obeyed by the elements given their physics. Thus we are supposed to make use of 
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these natural phenomenon to observe the energy accumulations and wave contractions, rather 

than forcing them. For this we need actual elements offering inductance and capacitance, and 

some means of modulating their values. There are various hurdles in the engineering of 

dynamic materials based on the transmission line models. In this section we will describe the 

possible problems that could be encountered in the engineering process and suggest certain 

approximate solutions for them. 

 

The biggest problem in the engineering of above idea is to make available inductances and 

capacitances variable in time. To understand this better, let us try to see the table (1), below, 

which show the inductance formulas for certain simple inductor constructions in air [25]. 

 
                                 Table 1. Inductance of simple electrical constructions in air. 

 

From the above formulas we see that inductance of a structure large depends on the physical 

attributes like length, diameter, distances, etc. In order to vary inductance in time, the 

technique would primarily depend on the alteration in these physical dimensions, which imply 

mechanical movements. Just like most mechanical systems, such a construction would suffer 

from limited frequency response, restricting the operation are very low frequencies, while 
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optical range remains a distant dream. Similar argument also holds true for capacitors and this 

can be verified from the following table (1) [26]. 

 
                                          Table 2. Capacitance of simple electrical systems 

 

 

 

 

7.1. Selection of the Transformer 

 

Given these concerns, it is really difficult to achieve a true inductance which can be varied in 

time, and show good response at high frequencies. There are certain techniques for 

implementing variable inductors, one of which suggest the transformer’s secondary to be used 

as an inductor. The inductance of secondary is varied by changing the permeability of the core 
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using primary current variations, and B-H relation for the core [21][22]. A general L-I relation for 

such a construction is shown below with some arbitrary operating points. 

 

             
                                                         Figure 45. A typical 𝐿𝐼 curve 

 

This is a typical curve for BH or LI relation, but the actual curve would vary from transformer to 

transformer. For our application it was decided, after discussion with Prof. McNeill, that the 

transformer would need typically low leakage inductance and a stable primary inductance with 

temperature since constant dc current losses in the form of heat shouldn’t deviate the 

operating point at stray. These considerations help us go with ADSL transformers with more 

than or equal to three winding on iron core, and NOT air core. The data sheet of these 

transformers is found on the coil craft website, and is shown below in table (3) [27] 
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                                           Table 3. Datasheet of ADSL transformers 

 

                                          
                               Figure 46. A constructional representation of ADSL transformer 

 

                  

             Figure 47. A generalized system for inductance switching using ADSL transformer 
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Figure (47), above, demonstrates the idea of how a typical ADSL transformer could be used to 

vary the inductance using square waveform of desired period and duty cycle. This variation on 

the controlling current will switch the operating point on the L-I current between two points as 

shown in figure (45), above. First step in engineering the material is to study the various L-I 

curves of these ADSL transformers, and select the curve which suits best. This means we need 

to select the curve and the two operating points such the wave impedances at the two 

operating points are exactly (or nearly to best approximation) the same, and for that we need 

to consider the selection of capacitors. Also note that as the testing phase, we need not be very 

particular about the frequency of operation. Such inductors could be used at RF range and 

hence we can always start here for verification of the principle at least. 

7.2. Selection of the Capacitor 

Varactor diodes used as voltage controlled capacitors are a good point to start with. Select the 

inductors with few hundreds of 𝜇𝐻 as offered by the best available ADSL transformer and then 

select the best match of capacitor to achieve equal impedance condition for both materials. 

This needs a study of CV characteristic of various diodes. We can start using 830 series of silicon 

25V hyperabrupt varactor diodes. These diodes have very close tolerance of CV characteristics, 

absolutely essential for our plan of approach. The datasheet for these are available from the 

Digikey website, and the components could be directly ordered from them [28]. The datasheet 

for this series is shown below in table (4). 

                             

                   Table 4. Datasheet for 830 series, Silicon 25V hyperabrupt varactor diodes. 
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               Figure 48. CV characteristics of 830 series, Silicon 25V hyperabrupt varactor diodes 

 

The selection of the capacitor and the operating region should be based on two considerations. 

Firstly, the wave impedance for both materials should be the same, hence the ratio of L to C. 

And secondly, the characteristics of both should be very closely matched, since during 

transition phase, we must minimize the possible mismatch in the wave impedances and hence 

reflects of waves at the boundaries of checkerboard.  

Once we work our way through this process of component selection, we could possibly model 

the system again in Spice, but this time with the new approach and exact models of these 

selected components. This would give us a picture much closer to reality, since it would reflect 

many practical constraints involved while working with real world components. Hopefully, we 

find some success and step ahead to create a PCB design for this system, which is the ultimate 

goal of manufacturing a dynamic material, and checkerboard structure working as predicted. 
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Appendix A – Spice Netlists for variable passives 

 

Variable Inductor 

.subckt variable 1 2 CTRL 

BC 1 2 I=V(INT)/V(CTRL) 

BINT 0 INT I=V(1,2) 

CINT INT 0 1 

R1 CTRL 0 10 

.ends variable 

 

Variable Capacitor 

.subckt  variable  1  2  CTRL 

BC  4  2  V=V(INT)/V(CTRL) 

BINT  0  INT  I=I(VC) 

CINT  INT  0  1 

R2  CTRL  0  10 

VC  1  4 

.ends  variable 
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Appendix B – Spice Netlist for an LC unit of Transmission line 

 

.subckt variablelc2 1 2 CTRL 
XX1 1 2 N002 variablel 
XX2 2 0 N001 variablec 
R1 CTRL 0 1K 
B1 N002 0 V=(VL1+VL2)/2 + ((VL2-VL1)/2)*cos(pi*V(CTRL)/(Vk2-Vk1)) 
B2 N001 0 V=(VC1+VC2)/2 + ((VC2-VC1)/2)*cos(pi*V(CTRL)/(Vk2-Vk1)) 
.param VL1 480u 
.param VL2 400u 
.param VC1 0.48p 
.param VC2 0.4p 
.param Vk1 0 
.param Vk2 5 
.ends variablelc2 
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Appendix C – LTspice2Matlab code  

 

The Matlab code LTspice2Matlab takes care of extracting the Spice data in binary form from .RAW file to 

Matlab. This file can be downloaded directly from the Mathwork website.  

Link – 

  http://www.mathworks.in/matlabcentral/fileexchange/23394   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mathworks.in/matlabcentral/fileexchange/23394
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Appendix D – Time plots and Spice codes 

 

The time plots obtained from Spice and the codes generating them are uploaded to the esnip 

folder for later referencing, along with the other Spice codes. For the access to these files 

contact –  

Prof. K. A. Lurie @ klurie@WPI.EDU 

Prof. R. Ludwig @ ludwig@wpi.edu 

Prof. S. L. Weekes @ sweekes@WPI.EDU 

G. B. Samant @ gaja.s@wpi.edu or chetnya@gmail.com  
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