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ABSTRACT 

Recently, it became possible to detect single motor units (MUs) noninvasively via 

the use of spatial filtering electrode arrays.  With these arrays, weighted combinations of 

monopolar electrode signals recorded from the skin surface provide spatial selectivity of 

the underlying electrical activity.  Common spatial filters include the bipolar electrode, 

the longitude double differentiating (LDD) filter and the normal double differentiating 

(NDD) filter. In general, the spatial filtering is implemented in hardware and the 

performance of the spatial filtering apparatus is measured by its common mode rejection 

ratio (CMRR).  High precision hardware differential amplifiers are used to perform the 

channel weighting in order to achieve high CMRR. But, this hardware is expensive and 

all channel weightings must be predetermined. Hence, only a few spatially filtered 

channels are typically derived.  

In this project, a distinct software equalization filter was cascaded with each of the 

hardware monopolar signal conditioning circuits to achieve accurate weighting and high 

CMRR. The simplest technique we explored was to design an equalization filter by 

dividing the frequency response of a “reference” (or “ideal”) channel by the measured 

frequency response of the channel being equalized, producing the desired equalization 

filter in the frequency domain (conventional technique).  Simulation and experimental 

results showed that the conventional technique is very sensitive to broadband background 

noise, producing poor CMRR.  Thus, a technique for signal denoising that is based on 

signal mixing was pursued and evaluated both in simulation and laboratory experiments. 

The purpose of the mixing technique is to eliminate the noise as much as possible prior to 

equalization filter design.  The simulation results show that without software equalization, 
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CMRR is only around 30 dB; with conventional technique CMRR is around 50~60 dB. 

By using mixing technique, CMRR can be around 70~80 dB.  
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CHAPTER 1 INTRODUCTION 

1.1 Project Objectives 

In recent years, surface electrode arrays have been developed to monitor the activity 

of motor units (MUs) — the smallest controllable portion of a skeletal muscle. There is 

an increasing interest in detecting single MU activity. Since it is hard to separate the 

activity of a single MU from the simultaneously active adjacent ones, the method of 

spatial filtering is used [Reucher86]. A spatial filtering is the weighted sum of several 

electrode recordings (or detection sites). Typically, spatial filtering is preformed in 

hardware. The accuracy of the weighting is measured in terms of common mode rejection 

ratio (CMRR). Ideally, the CMRR is infinite, but because of nonlinear characteristics and 

because components can never be exactly matched, typical CMRRs range from 60 to 120 

dB at the fundamental power line frequency [Webster83].   

With a hardware implementation, each different combination of detection sites 

requires a distinct hardware channel to apply precise weights. In such systems, the 

number of possibly useful derived signals can be too large for practical precision 

implementation in hardware. Since it is impossible to match the hardware characteristics 

of the distinct analog hardware channels, the number of electrode montages is limited for 

research. The objective of this project is to achieve high CMRR and flexible electrode 

combination via the use of software channel equalization. Similar equalization filters 

have been used in applications such as communication systems and radar. 

As will be presented later, a bench-top prototype electrode array system with 5 

channels and a printed circuit board prototype electrode array system with 28 channels 
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have been developed. Each channel in each array is designed with an identical analog 

signal conditioning circuit. Because of the component tolerances, the electrical 

characteristics for each hardware channel are necessarily different.  These characteristics 

have been carefully measured to design the equalization filters. A distinct software 

equalization filter is cascaded with each hardware channel to correct for the channel 

difference. The software equalization filter is designed in the frequency domain. As will 

be shown in chapter 3, the issue with a conventional equalization technique is that it is 

very sensitive to noise. In this report, a new equalization design technique, termed our 

“mixing technique,” has been evaluated to achieve high CMRR. 

 

1.2 Thesis Outline 

The rest of thesis is organized as follows: 

Chapter 2 provides some background information about the electromyogram (EMG) 

and its detection. This chapter focuses on the standard EMG detection system. 

Additionally, this chapter gives some details regarding existing high resolution spatial 

filters, the operating principle of spatial filters and their limitations in achieving high 

CMRR in hardware. 

Chapter 3 gives the system model of the software channel equalization procedure. 

Section 3.1 explains the simple conventional technique to implement the equalization 

filter and provides simulation results to explain why it is necessary to find an improved 

technique. Section 3.2 gives the details of the new equalization filter implementation 

technique – the mixing technique used in the thesis – including the mixing algorithm, the 

low pass filter used in the system and the model for measuring CMRR. 



 

 3  

Chapter 4 describes laboratory evaluation of the mixing technique using a five-

channel prototype array system. Signal test sources are generated from a signal generator, 

passed through the analog signal conditioning circuits, and recorded using an A/D 

converter.    

Chapter 5 introduces the 28-channel electrode array hardware system that is used to 

record the surface EMG signal from human subjects, including its hardware testing. 

Moreover, the chapter provides pilot experiment results of performing equalization on 

this array via the mixing technique.  

Chapter 6 concludes the thesis with a discussion and summary. Some other possible 

methods to implement the equalization filters are described. 
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CHAPTER 2  BACKGROUND 

This chapter provides fundamental information about EMG signals and the standard 

EMG detection systems. Additionally, different combinations of spatial filtering are 

introduced as well as the concept of CMRR measurement 

2.1 EMG Introduction 

In a skeletal muscle, a motor unit (MU) is the smallest functional unit, consisting of 

a single motor nerve and several muscle fibers. Under normal conditions, an action 

potential propagating down a motor neuron activates all the branches of the motor neuron 

[DeLuca79]; this action results in activating all the muscle fibers in that MU. When the 

postsynaptic membrane of a muscle fiber is depolarized, the depolarization propagates in 

both directions along the fiber; an electromagnetic wave is generated in the vicinity of the 

muscle fibers by the membrane propagation [DeLuca79]. An electrode located in this 

field can be used to detect the potential. This signal is called the electromyogram (EMG). 

Figure 2-1 models how the motor unit action potential (MUAP) is generated and recorded 

by electrode apparatus. The recorded EMG represents the superposition of MUs 

generated by each of the myofibrils. For standard surface recording of the EMG signal, 

its amplitude can range from 0 to 10 mV (peak to peak) or 0 to 1.5 mV RMS and most of 

the energy of the signal is limited from DC to 500 Hz with the dominant energy in the 

range of 15-150 Hz [DeLuca02]. 
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Figure 2-1 Schematic representation of the generation of 

the motor unit action potential [DeLuca79] 

 

To detect single MU activity, high spatial resolution is required, because single MU 

activity has to be separated from the simultaneous activity of adjacent MUs 

[Disselhort98]. There are different approaches to detect the single MU activity. The most 

common approach is using a needle or a wire electrode. With this technique, the 

electrodes can be inserted into the muscle close to the desired location. Because of the 

short distance between the MUs and the small size of the electrode, a needle/wire 

electrode has high spatial resolution and single MU activity can be detected [Stalberg80]. 

But the insertion causes discomfort and creates the risk of infection [Disselhort98]. 

Additionally, the conventional needle/wire EMG techniques gain no information about 

the excitation spread across a muscle and long time monitoring is not possible 
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[Disselhort98]. Moreover, the inserted needle/wire disturbs the electrical field which is 

generated by the MU. 

For these reasons, the detection of the single MU activity at the skin surface 

becomes increasingly attractive. The conductive electrode which is used to detect the 

surface EMG is much larger than the needle electrode and can be placed a long distance 

away from the desired sites, but this causes the conventional surface EMG signal to be a 

superposition of a large number of MUs [Rau97]. So, the conventional surface EMG has 

a limited spatial selectivity. 

 

2.2 Standard EMG Array Detection System 

For technical reasons, the recording electrode for the typically EMG is bipolar and the 

signal is amplified differentially [DeLuca79]. A standard EMG recording system is 

shown as Figure 2-2. 

 

Figure 2-2 Standard EMG recording system 

 

Electrode and Amplifier 

Electrode 
and 

Amplifier 

Signal 
Conditioner 

Data 
Recorder 

EMG 

Isolated Grounded Earth Grounded 
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In general, conductive electrodes are used to detect EMG. They can be either a 

surface electrode, which is located on the skin surface overlying the muscle, or an 

indwelling electrode, which is inserted into the muscle. There are two kinds of indwelling 

electrodes: needle and wire. 

Needle electrodes are used to penetrate the skin and tissue to reach the desired sites. 

As stated above, the advantage of using needle electrodes is that, due to the short distance 

between the MU and the recording sites, the spatial resolution is high enough to detect 

the single MU activity [Disselhort98]. It also can be repositioned within the muscle. The 

disadvantage of this technique is the discomfort and risk of infection because of the 

insertion. Figure 2-3 shows typical needle electrodes.  

 Lead Wire 

Hub 

Insulating 
coating

Sharping metallic 
point

Coaxial lead wire 

Hypodermic needle 

Central electrode 
Insulation 

(b) (c) 

 

Figure 2-3 Needle electrode [Neuman] 

Wire electrodes are smaller than needle electrodes. A hypodermic needle is used to 

hold the wire electrode and insert it through the skin into the muscle at the desired site. 

The advantage of using a wire electrode is that it can access deep musculature and detect 

the single MU activity with little cross-talk (the absence of cross-talk means that the 

signal sources close to the electrode will dominate the recorded EMG signal [Scott]) 
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concern. The disadvantage is that it is extremely sensitive and it may require medical 

personnel for insertion. Additionally, it is almost impossible to reposition wire electrodes 

back in their original site once they are moved or removed. Due to their small size, the 

detection area may not represent the entire muscle. Figure 2-4 shows an example of this 

other type of electrode: the wire electrode. 

Coiled fine wire 

Uninsulated barb 
 

Figure 2-4 Wire electrode [Neuman] 

Because of the limitations of the needle technique, the surface electrode becomes 

more and more attractive. A surface electrode is considerably much larger than an 

indwelling electrode, so it has a limited spatial resolution and detects the superimposed 

activity of a large number of MUs. The advantage of using a surface electrode is that it 

can be easily applied without any pain and doesn’t require medical supervision.  

In recent years, due to the use of spatial filtering, the separation of single MU 

activity from simultaneously active adjacent MUs has become possible. The new 

technique uses surface electrode arrays in combination with different spatial filter 

processing to improve the spatial resolution. In this way, detecting single MU activity can 

be achieved in a noninvasive manner [Reucher87].  

The principle of spatial filtering is based on the fact that the potential distribution 

on the skin surface has a spatially steep gradient [Rau97]. Any spatial filtering must have 
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an inverting and a noninverting part, and the sum of the channel weights must equal zero 

to eliminate the powerline interference. Figure 2-5 shows the potential contributed by 

MUs located close to the skin surface. It shows a bipolar lead with small sized electrodes 

separated by a few millimeters and arranged parallel to the muscle fibers. It forms the 

lowest order spatial filter — the bipolar configuration — which differentiates the 

potential distribution in the direction of the electrode configuration. The operation of the 

bipolar filter is very simple. It differentiates the potential distribution generated on the 

skin surface, and then amplifies the difference. Thus, it is also called a pre-amplifier.  A 

schematic of this configuration is shown as Figure 2-6. The EMG signal is represented as 

“m” and the common interference signal is represented as “n”. 

 

Figure 2-5 MUs located close to the skin surface (1) produce a spatially steep  

potential gradient (A) in the recording area; (2) a flat potential course. Using a  

bipolar lead with a small interelectrode distance the flat potential course  

contributes only with a small part (∆U2) to the measured total value (∆U) [Rau97] 
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Figure 2-6 A schematic of the differential amplifier configuration [DeLuca02] 

Due to the spatial filtering, the bipolar lead can detect the single MU activity at a 

very low contraction level [Rau97]. It is not sufficient to detect the single MU activity at 

high level contractions. Therefore, the spatial filtering approach has been extended one or 

more dimensions, such as the longitudinal double differentiating filter (LDD-filter) and 

the normal double differentiating filter (NDD-filter).  

The LDD filter performs spatial double differentiation of the potential distribution 

[Reucher87] [Reucher87b]. It is formed by three successive electrodes, which are 

arranged equidistant along a line with weighting coefficients (+1, -2, +1). Figure 2-7 

shows the performance of the LDD filter. In this experiment, a longitudinal array with 

equidistant electrodes (distance 2.5mm) is placed on the skin. This figure demonstrates 

the advantage of using the LDD filter instead of bipolar or monopolar montages.   The 

signals show the differences in the selectivity of different sizes of pickup area. In the 

upper two traces, the filter output signal shows a sharp positive peak when the negative 

maximum of the potential wave accompanying a MU excitation is at the center electrode 
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at the LDD filter [Reucher87]. In spite of the high contraction level, the impulses of four 

different MU’s (labeled A, B, C and D in the figure) can be distinguished by their 

amplitude and their direction of propagation [Reucher87]. In the lower two traces, single 

MU’s cannot be separated because many MU’s are simultaneously discharging. This 

figure shows the advantages of recording with selective spatial filters.  

 

Figure 2-7 LDD filter of pin electrodes placed on the skin [Reucher87] 

The NDD filter (a.k.a. a Laplace filer) is well suited for the detection of edges 

perpendicular to the direction of the differentiation [Disselhorst97]. It is formed by a 

weighted summation of five crosswise-arranged electrodes. The weighting factors of each 

electrode are represented by the filter mask [Disselhorst97] 
















−=

010
141
010

NDDM . 

The rows and the columns of the filter mask are identical to the rows and columns of the 

electrode array.  
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Figure 2-8 compares the performance for four different EMG spatial filters using 

data recorded from the m. abductor pollicis brevis muscle at maximum voluntary 

contraction. It shows that the bipolar electrode does not sufficiently distinguish individual 

MU activity at high contraction level but the NDD can separate the single MU activity. 

As the spatial filtering extended to three or more electrodes, the spatial selectivity 

improved. The NDD filter improves the spatial selectivity in all directions and can detect 

single MU activity even at maximum voluntary contraction. 

 

 

Figure 2-8 Four different EMG leads recording [Rau97] 

 

Signal Conditioner 

Figure 2-9 shows a system-level diagram of a signal conditioner. In general, the 

signal conditioner consists of a high pass filter, which attenuates motion artifact and any 

offset potentials; selectable gain, which magnifies the signal up to the range of the data 

recording/monitoring instrumentation; electrical isolation, which prevents injurious 
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current from entering the patient; and a low pass filter, which prevents anti-aliasing and 

attenuates noise out of the physiologic frequency range. 

 

Figure 2-9 Signal conditioner diagram 

 

 

2.3 Common Mode Rejection Ratio (CMRR) 

2.3.1 Definition 

CMRR is defined as the ratio of the magnitude of the differential gain to the 

magnitude of the common mode gain of two channels. Often, CMRR is expressed in dB 

as  

)(log20 10
c

d

G
G

CMRR =  Equation 2-1 

where dG is the magnitude of the differential signal and cG is the magnitude of the 

common signal. Ideally, the CMRR is infinite, but for the existing equipment, because of 

nonlinear characteristics and because components can never be exactly matched, typical 

CMRRs range from 60 to 120 dB at the fundamental power line frequency [Webster83].   

 

High Pass 
Filter 

Selectable 
gain  

Electrical 
Isolation  

Low Pass 
Filter  
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2.3.2 Measurement of CMRR 

Differential Amplifier [Hambley] 

For two input signals, an ideal differential amplifier is shown in Figure 2-10. 

 

Figure 2-10 Differential amplifier with input sources [Hambley] 

The difference between the input voltages is amplified by gain Gd, giving the output 

voltage (Vo) as: 

( ) 2121 ididiido vGvGvvGv −=−=  Equation 2-2 

The difference between the input voltages Vi1 and Vi2 is known as the differential 

signal idv . 

21 iiid vvv −=  Equation 2-3 

We refer to the gain dG as the differential gain. So, the output of the ideal differential 

amplifier can be written as  

iddo vGv =  Equation 2-4 

The input sources 1iv and 2iv can be replaced by the equivalent sources icmv  and idv , 

where icmv  is the common mode signal and is given by 
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( )212
1

iiicm vvv +=  Equation 2-5 

 

Measurement of differential gain 

A practical measurement of differential gain is shown in Figure 2-11 

 

Figure 2-11 Measurement of differential gain 

According to Equation 2-4, the differential gain can be calculated from  

id

o
d v

v
G =  Equation 2-6 

 

Measurement of common-mode gain 

The practical measurement of common-mode gain is shown as Figure 2-12 

 

Figure 2-12 Measurement of common-mode gain 

The common-mode gain can be calculated from  
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icm

o
c v

v
G =  Equation 2-7 

where icmv can be calculated from Equation 2-5. 

The higher the CMRR, the better the performance of the subtraction process within 

the amplifier. For bipolar electrodes, CMRR is the ratio of the common-mode 

interference voltage at the input of a circuit, to the corresponding interference voltage at 

the output. As shown in Figure 2-6, the signals are detected at two sites, subtracted by the 

differential amplifier and gain amplified. With this operation, any signal that is 

“common” to both sites will be removed and any signal that is different will be amplified. 

Thus, relatively distant power line interference signals (which appear as common signals 

at each electrode) will be removed and relatively local EMG signals will be amplified 

[DeLuca02]. In practice, it is very difficult to remove the common signal perfectly. In 

general, the subtraction is performed in hardware. Currently, we can achieve CMRRs as 

high as 120 dB with hardware.  But there are limitations with hardware implementations, 

such as high expense, the requirement to build a separate circuit for each spatial channel 

desired, and that power line interference does not present an exactly common signal to 

each electrode site.  
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CHAPTER 3 Simulation of Equalization Filters 

The purpose of this project is to implement equalization filters in software to 

achieve high CMRR. Figure 3-1 shows the general system configuration. For the 

hardware system, a 5-channel bench-top prototype and a 4x7 equal-spaced rectangular 

array prototype have both been developed. For both, each channel is designed with an 

identical analog circuit design. All of the resistors have 1% tolerance and the capacitors 

have 5% tolerance. A distinct software equalization filter is cascaded with each signal 

conditioner circuit. 

 

Figure 3-1 System schematic configuration [Clancy01] 

In general, the equalization filter is determined by measuring the frequency-

dependent gain and phase of each analog signal conditioning channel. The desired 

(“ideal”) frequency response divided by the measured frequency response gives the 

frequency response of the equalization filter. After the frequency response of the 
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equalization filter eH is achieved, a FIR filter with order 12 +L  is designed (to be used to 

implement the filter in the time domain). 

Note that the impulse response of the equalization filter, using the transfer function 

approach, must be real-valued.  To prove this assertion, begin by assuming that the output 

of the reference channel is ( )tx  and the output of the equalized channel is ( )ty . By using 

the transfer function approach, the frequency response of the equalization filter ( )wH  can 

be written as in Equation 3-1.  

( ) ( )
( )wX
wYwH =  Equation 3-1 

Notice that both ( )ty  and ( )tx  are real signals.  For real signal ( )tx , its transform must be 

of the form 

( ) ( ) ( )wjXwXwX IR +=  Equation 3-2 

where ( ) ( )∑
∞

−∞=
=
n

R wnnxwX cos and ( ) ( )∑
∞

−∞=
=
n

I wnnxwX sin [Proakis96, P287]. It follows that  

( ) ( )
( ) ( )wXwX

wXwX

II

RR

−=−

=−  

Similarly with the reference channel,  

( ) ( )
( ) ( )wYwY

wYwY

II

RR

−=−

=−  

The transform  

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )wXwX
wXwYwXwYj

wXwX
wXwYwXwY

wjXwX
wjYwY

wX
wYwjHwHwH

IR

RIIR

IR

IIRR

IR

IR

IR

2222 +
−

+
+
+

=

+
+

=

=+=

 

So, we get that 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )wXwX

wXwYwXwYwH

wXwX
wXwYwXwY

wH

IR

RIIR
I

IR

IIRR
R

22

22

+
−

=

+
+

=

, 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )[ ] ( )[ ]
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )wH
wXwX

wXwYwXwY
wXwX

wXwYwXwY
wXwX

wXwYwXwYwH

R

IR

IIRR

IR

IIRR
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Thus, we can say that the impulse response ( )nhe  of the equalization filter must be real. 

In this report, two filter design methods will be introduced to form the FIR filter 

based on the frequency response.  The first method is the windowing technique. Figure 

3-2 shows the diagram of this method. 

 

Figure 3-2 The flow chart of equalization filter design 

In general, the coefficients of the (2L+1)th order FIR filter can be obtained by truncating 

the sequence ( )nhe  at point 12 +L . Truncation of ( )nhe  to a length 12 +L  is equivalent to 

using a “rectangular window” [Proakis96]. Other window functions can also be used in 

this stage such as a “hamming window” or “hanning window”.  Thus, the time-domain 

filter, b(n) can be formed as 

eH IFFT Truncate by 
12 +L  
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( ) 12,,2,1 +=⊂ Lnnhb en K  Equation 3-3 

 

The second method consists of implementing a linear shift (advance) of the input 

sequence by half the FIR filter order before the frequency response of the equalization 

filter is calculated. The reason for this shift is that the signals propagating through a 

physical hardware channel can either lag or lead the phase of a signal propagating 

through an ideal channel.  Without this linear shift, significant power can result at the end 

of the impulse response (due to the frequency response representing a non-causal signal 

propagation), but will be discarded with the simple windowing technique. Later, we will 

show the results using these two equalization filter designs. 

 

3.1 Conventional technique  

To determine the frequency response of the equalization filter using our 

“conventional” technique, the desired (“ideal”) frequency response is divided by the 

measured frequency response. In this section, we will illustrate the simulation results for 

this conventional technique and show that this technique is not sufficient to achieve high 

CMRR. Also, we will present the new technique – a mixing technique – comparing these 

two techniques. First, we will introduce the conventional technique. 

 

3.1.1 Equalization Filter Frequency Response 
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To simplify the problem in simulation, we suppose there are three channels. All the 

simulations are performed in Matlab. The third channel is our reference channel (“ideal” 

channel), and the first two channels are equalized to the reference channel. These two 

channels simulate the bipolar electrode. Each channel has the same characteristics: a  

Figure 3-3 calibration data simulation model 

 

fourth-order Sallen-Key high pass filter [Texas] with cut-off frequency at 15 Hz cascaded 

with a four-order Sallen-Key low pass filter with cut-off frequency at 1800 Hz. Both the 

low pass and high pass filters have unit gain. All of the components in the three channels 

have the same mean value with a 5 percent tolerance. To measure the frequency response 

of the equalization filter, the three channels are excited with a cosine chirp signal which 

ranges in frequency from 0 to 2K Hz.  Figure 3-3 shows the simulation configuration.  

For each simulation, the cosine chirp is always ( )21002cos3 t∗π  V and a sampling 

frequency of 4096 Hz is used.  The A/D converter is modeled as an ideal signal sampler.  

The noise input is white Gaussian noise. 

For this simulation, y3 is our “ideal” signal. For the other two channels, the 

frequency response of the software equalization filter He can be calculated by Equation 

Linear Cosine 
chirp 

Sallen-Key 
Filter #1 

Sallen-Key 
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Sallen-Key 
Filter #3 

+

Noise
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+

Noise
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+

Noise

x3 
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y2 A/D 
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3-4, where i is the channel number. In this project, the length of the data sequence is 

409600. 

( ) ( )
( )i

i
e yfft

yfft
H 3=  Equation 3-4 

 

3.1.2 CMRR Measurement 

3.1.2.1 Equivalent CMRR Measurement  

The CMRR measurement model in this report is shown in Figure 3-4 

 

Figure 3-4 simulation model of CMRR measurement 

Here we assume that, 

 Every channel is a linear system at frequency 0w . 

 Signal X ,Y , 'X  and 'Y  are voltage phasers. 

 Both xG  and yG are complex number gains. 

Note that our CMRR measurements are made at a fixed frequency. 

Measurement of common-mode gain in simulation 

We apply cV (voltage phaser, i.e., a sinusoid) to both channels X and Y . Thus the 

common mode gain is 
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c
c V

W
G =  Equation 3-5 

The summation in Figure 3-4 takes the difference of its inputs. Therefore 

( )yxcycxc GGVGVGVYXW −=⋅−⋅=−= ''  Equation 3-6 

Applying Equation 3-6 to Equation 3-5, we can get the common-mode gain 

( )
yx

c

yxc
c GG

V

GGV
G −=

−
=  Equation 3-7 

 

 

Measurement of differential gain in simulation 

To measure the differential gain, we apply 
2
dV to input X and 

2
dV− to inputY . Then the 

differential gain can be written as 

d
d V

W
G =  Equation 3-8 

where W can be written as  

( )yx
d

y
d

x
d GG

V
G

V
G

V
W +=⋅+⋅=

222
 Equation 3-9 

Substituting Equation 3-9 into Equation 3-8, we can get the common-mode gain 

( )
yx

d

yx
d

d GG
V

GG
V

G +=
+

=
2
12  Equation 3-10 

Applying Equation 3-10 and Equation 3-7 to Equation 2-1, we can get 















−⋅

+
=

yx

yx

GG

GG
CMRR

2
log20 10  Equation 3-11 
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Because we use a single-ended amplifier in our simulation, if we apply a common signal 

cV in,  

cyyc

cxxc

VYGGVY
VXGGVX

/''
/''

=⇒⋅=

=⇒⋅=
 Equation 3-12 

Substituting Equation 3-12 into Equation 3-11, we get 

 










−⋅

+
=

''2
''

log20 10 YX
YX

CMRR  Equation 3-13 

 

3.1.2.2 CMRR Measurement Model  

After obtaining the coefficients of the equalization filter in the time domain for each 

channel, we evaluated their performance by measuring the CMRR. Figure 3-5 shows the 

CMRR measurement configuration. Since the dominant interference from the power lines 

is at 60 Hz (or 50 Hz in some regions outside of North America) [DeLuca02], the CMRR 

at 60 Hz is measured. In this simulation, we excite the first and second channel with a 60 

Hz sine waveform, which then passes through the Sallen-Key filter and the equalization 

filter.  The signals ye1 and ye2 are the equalized channel outputs.  With ideal equalization 

(infinite CMRR), the signals would be zero-valued at all times (at least in the absence of 

any noise). Using Equation 3-13, we can measure the CMRR.  



 

 25  

Figure 3-5 CMRR measurement configuration 

By using Equation 3-13, the CMRR between the two outputs 1ey  and 2ey  can be written 

as  












⋅
=

c

d

A
A

CMRR
2

log20 10  Equation 3-14 

where dA is the magnitude of the sum of the two output signals 1ey  and 2ey at 60Hz and 

cA is the magnitude of the difference between the two output signals at 60Hz. Define 

( ) ( ) ( )tytyts ee 21 +=  and ( ) ( ) ( )tytytc ee 21 −= . In practice, for the sum of the two signals 

( )ts , it is easy to measure its magnitude at 60 Hz. But, if the two signals are matched 

precisely, it is hard to measure the magnitude of the difference of the signals ( )tc , 

particularly in the presence of noise. 

One way to measure the amplitude of the signal ye1(t)-ye2(t) is via direct measure of 

its power at 60 Hz from the power spectral density of the differential signal ( )tc . The 

drawback of this technique is that in order to accurately measure the PSD at 60 Hz, the 

noise level must be significantly lower than the signal level at this frequency.  For 

CMRRs above 40–50 dB, which means the difference between the two channels are 

smaller, the noise is lager than the 60 Hz signal when we subtract the two channels.  

60 Hz sine 

Sallen-Key 
filter #1 

Sallen-Key 
filter #2 

 
bn(1) 

 
bn(2) 

 
ye1 

 
ye2 

+
 

A/D 

Noise 

Noise 

 
A/D +
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However, the power spectrum technique was sufficient for CMRR measurement for 

conventional equalization. 

3.1.3 Simulation Results For The Conventional Technique 

In this section, we present the simulation results for the conventional equalization 

technique. We will show that the main problem is its sensitivity to noise. In this 

simulation, we will vary the noise level to see how the noise affects the performance of 

the system. 

Absent noise 

In this simulation, we set the noise level to zero. After the frequency response of the 

filter is measured, a FIR filter is designed using the simple windowing technique (i.e., 

absent the linear shift operation). Figure 3-6 shows the difference between the two 

equalized channel outputs. From the previous discussion, the major issue that affects 

CMRR is the background noise. Since the noise level is zero, the CMRR should be 

infinite (ideally). There is no quantization noise in this simulation since an all pass filter 

is used instead of a quantizer.   
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Figure 3-6 Equalized channel outputs (absent noise) 

 

 

1 percent noise 

Next, we set the standard deviation of the background noise level to 1 percent of the 

input signal amplitude. The resulting CMRR is around 40 dB.  Plots showing this 

simulation, following the format described above, are shown in Figure 3-7. 
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Figure 3-7 Equalized channel outputs (1% noise) 

 

3 percent 

Lastly, the noise standard deviation was increased to 3 percent of the input signal 

amplitude. The resulting CMRR is around 25 dB.  Plots showing this simulation, 

following the format described above, are shown in Figure 3-8. 
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Figure 3-8 Equalized channel outputs (3% noise) 
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Figure 3-9 CMRR vs noise level 

 

Figure 3-9 shows CMRR becomes lower and lower when the noise level is 

increasing. From these results, we can see that absent noise, an excellent CMRR is 

achieved. However, even a small amount of noise severely degrades the CMRR 

performance.  Since state-of-the art EMG hardware has noise at or above the levels tested 

here, this technique is too sensitive to the noise level. It is not a practical method for 

achieving high CMRR, thus an alternative equalization filter design technique was 

explored. 

 

3.2 Mixing Technique 

Based on the discussion in the previous section, the conventional technique that 

calibrates the equalization filter directly from the measured data is very sensitive to noise, 
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which results in low CMRR. It is necessary to find a new technique that is less sensitive 

to the noise and can be easily implemented in software.  As we have found, the major 

impediment to achieving high CMRR is the broadband background noise which cannot 

be eliminated within the hardware. Certainly, the hardware should eliminate as much 

noise as possible. We focused on a signal processing method, based on a mixing 

technique common in communications engineering, to remove noise from the signals.  

 

3.2.1 Mixing Algorithm 

In using this technique, we assume that the input signal is a linear chirp with a fixed 

magnitude and sweeping rate. The premise of this technique is mixing the measured chirp 

waveform with another chirp waveform that has the same sweep rate and initial 

frequency. The resultant outputs will be the sum of two chirps – one with double the 

sweep rate which can be filtered out by a proper low pass filter, and one with a zero 

sweep rate (DC signal) which contains all the magnitude and phase information of the 

measured chirp waveform. In this section, we will introduce the mixing algorithm and 

how to choose the proper parameters for the mixer. 

Chirp Presentation 

 A linear chirp can be written as 

( )




= ++ θ2

0Re wttwjAechirplinear  Equation 3-15 

By using Euler's identity  

[ ] ( )
2

cosRe
jwtjwt

jwt eewte
−+

==  
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the linear chirp can be re-written as  

( ) ( )[ ]inin wttwjwttwj eeAchirplinear θθ ++−++ −=
2

0
2

0

2
  Equation 3-16 

where 0w , w , θ  are constants. The instantaneous angular frequency is 

( )
wtw

dt
wttwd

w in
inst 20

2
0 +=

++
=

θ  Equation 3-17 

Let awbw ππ 2,20 == , where a (Hz/s), and b (Hz) are scaling constants.  Hence the 

linear chirp can also be written as 

( ) ( )[ ]inin btatjbtatj eeAchirplinear θππθππ ++−++ −= 2222 22

2
  Equation 3-18 

and has an instantaneous frequency of 

bat2f +=  Equation 3-19 

For example, a ten-second linear chirp formed by selecting a = 100 and b = 0 would 

begin at 0 Hz and end at 2 K Hz.  

 More generally, if such a chirp is passed through a linear system, the output ( )ts  is 

also a chirp, but can be modified in magnitude and phase at each frequency and 

embedded in an independent additive noise.  Let the input ( )tw to the linear system be 

written as 

( ) ( ) ( )[ ]inin btatjbtatjin ee
A

tw θππθππ ++−++ −= 2222 22

2
 Equation 3-20 

Since the frequency of the input chirp has a direct (and known) relation to time, the 

magnitude and phase distortion imposed by the linear system can be captured by the time 

variant magnitude ( )tA  and phase ( )tθ of the output, written as 



 

 33  

( ) ( ) ( )( ) ( )( )[ ] ( )tneetAts tbtatjtbtatj +−= ++−++ θππθππ 2222 22

2
Equation 3-21 

where ( )tn  is the additive noise, ( ) ( )
in

out
A

tA
tA =  is the magnitude distortion (a value of one 

for a given time indicates no magnitude distortion, a value greater than one indicates that 

the linear system amplifies the signal, and a value less than one indicates that the linear 

system attenuates the signal) and ( ) ( ) inout tt θθθ −=  is the phase modulation (a value of 

zero radians for a given time indicates no phase distortion, a value greater than zero 

indicates an induced phase lag).   

 

Mixing Algorithm 

Based on the previous discussion, the mixer configuration is shown in Figure 3-10,  

Figure 3-10 Mixer system configuration 

where the input signal ( ) ( ) ( ) ( )tnee
A

tx in
btatjbtatjin inin +



 −= ++−++ θππθππ 2222 22

2
 , ( )wH  is a 

linear system and the mixer ( ) ( )mttjetm θπβπα ++−= 22 2
2  where α (Hz/s), and β  (Hz) are 

scaling constants. 

Using Equation 3-21, the output ( )ts of the linear system is written as  

( ) ( ) ( ) ( )( )[ ] ( )tnee
tA

ts out
tbtatjbtatjout out +−= ++−++ θππθππ 2222 22

2
 

where ( )tnout  is the noise signal after the noise ( )tnin  passing through the linear system. 

x(t) X

m(t) 

H(w) 
ym(t) s(t) LPF sm(t) 
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When the mixer is applied to the linear system output, we produce 

( ) ( ) ( )
( ) ( )( ) ( )( )[ ] ( )
( ){ }
( ) ( ) ( ) ( )( )[ ]

( ) ( ) ( ) ( )( )[ ]

( ) ( )m

mout

mout

m

outout

ttj
out

ttbtaj
out

ttbtaj
out

ttj

out
tbtatjtbtatjout

m

etn

etA

etA

e

tneetA
tmtsty

θπβπα

θθβπαπ

θθβπαπ

θπβπα

θππθππ

++

−+−+−−

+++++

++

++−++

−

+

−=

−⋅







 +−=

⋅=

22

22

22

22

2222

2

2

2

2

22

2

2

2  
Equation 3-22 

where ( )tym is the mixed output.  This resultant signal can be thought of as the sum of 

three signals — one with the sum sweep rate, one with the difference sweep rate and the 

other one with the broadband noise. For the difference signal, the frequency variation 

carries the magnitude and phase information as a function time. By selecting proper 

values for the mixer, we can produce carrier frequencies at DC (for the difference signal) 

and at double sweep rate (for the sum signal).  

For example, by selecting ,a=α  b=β , and 0=mθ  we can get  

( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )bttj
out

tj
out

tbtatj
outm

etn

etA

etAty
out

out

ππα

θ

θππ

22

2222

2

2

2 +

−

+⋅+⋅

−

+

−=
 Equation 3-23 

By applying a low pass filter, the double rate signal can be eliminated, as well as most of 

the noise (except for signal that entered during the start-up transient of the low pass filter). 

Thus, if we ignore the start-up, the following output remains after filtering: 

( ) ( ) ( )[ ]tj
outm

outetAts θ−=  Equation 3-24 

Now we can see that the magnitude of the output is the instantaneous magnitude of 

the measured signal and the phase of the output is the instantaneous phase of the 

measured signal. Then, we can extract the instantaneous magnitude and phase 

information of the measured signal in the time domain. 
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( ) ( )
( ) ( )tst

tstA

mout

mout

−∠=

=

θ
 Equation 3-25 

 

3.2.2 System Configuration 

The simulation processing for this technique also has two steps:  

1. Generate the calibration signal to construct the equalization. 

2. Measure the performance by calculating the CMRR at 60 Hz. 

The simulation model for equalization filter design is show as Figure 3-11. 

Figure 3-11 Equalization filter design model using mixing technique 

To design the equalization filter, the most difficult issue is the design of the low-

pass filter (LPF) that resides after the mixer, since its cut-off frequency should be less 

than 1% of the Nyquist frequency. At first, we attempted to design the LPF in the 

frequency domain using the optimal nonrecursive digital filter presented by Rabiner in 

1970 [Rabiner]. The performance of this filter was not sufficient. Thus, we resorted to a 

filter designed using the windowing method which utilizes a large number (greater than 

3000) of coefficients. The number of filter coefficients is limited by the start frequency 
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and sweep duration of the input chirp signal. The EMG signal contains most of its power 

from 50-150Hz.  Thus, the length of the LPF must be such that the input chirp, which 

sweeps upwards from 0 Hz, is not distorted in the 50–150 Hz range due to the startup 

transient of the filter.  

 

3.2.3 CMRR Measurement 

CMRR measurement with the mixing technique was logically the same as using the 

conventional technique and is re-drawn as Figure 3-12. However, we previously noted 

that CMRR measurement via the power spectrum is impractical for high CMRR 

measurement. In order to measure the PSD of the common mode signal, the noise level in 

the signal cannot be higher than the 60 Hz signal. 

Figure 3-12 CMRR measurement model  

Figure 3-13 shows the PSD plots for simulations resulting in low and high CMRRs. 

The x-axis in this figure is normalized frequency. For the low CMRR case (40 dB), the 

60 Hz signal is visible in the PSD plot. In this case, we can estimate the PSD for the 

common mode signal. While for the high CMRR (90 dB), the 60 Hz signal is unclear 

because the noise dominates the whole signal. By using the mixing technique, the 
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expected CMRR is higher than using the conventional technique, thus we cannot use the 

same method to measure the CMRR. In this section, we describe a method for measuring 

higher CMRRs and point out the limitation of this method. 

0 0.2 0.4 0.6 0.8 1
-41

-40.5

-40

-39.5

-39

-38.5

-38

-37.5

-37

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

(a)

0 0.2 0.4 0.6 0.8 1
-41

-40.8

-40.6

-40.4

-40.2

-40

-39.8

-39.6

-39.4

-39.2

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

(b)

 

Figure 3-13 PSD plots for different CMRR (a) low CMRR, 40 dB, (b) high CMRR, 60 dB 

The CMRR between the two outputs 1ey  and 2ey  can be calculated from Equation 

3-14.  












⋅
=

c

d

A
A

CMRR
2

log20 10  Equation 3-14 

where dA is the magnitude of the sum of the two signals and cA is the magnitude of the 

difference between the two signals.  Define ( ) ( ) ( )tytyts ee 21 +=  and ( ) ( ) ( )tytytd ee 21 −= . 

In general, we can use the PSD estimation technique to measure the magnitude of ( )ts , as 

the magnitude of this signal is well above the noise floor. To measure the magnitude 

of ( )td , a new method was investigated in simulation. 
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NSR (noise – to - signal ratio) 

We define NSR as a measure of signal strength relative to the background noise. 

NSR is the ratio of the standard deviation Nσ  of the noise to the magnitude sAmp  of the 

60 Hz signal, where the noise is white Gaussian noise. 

s

N

Amp
NSR

σ
=  Equation 3-26 

From the definition of NSR, the magnitude cA of ( )td  can be written as  

NSRA Nc /σ=  Equation 3-27 

Substituting Equation 3-27 into Equation 3-14, we get  










 ⋅
=

N

dANSR
CMRR

σ2
log20 10  Equation 3-28 

 

CMRR Measurement 

The simulation model is shown in Figure 3-14. 

 

Figure 3-14 CMRR measurement model  

where ( )td  is the incoming signal, ( )tn  is additive white Gaussian noise and ( )tx  is the 

output of channel x.  To simply this simulation, consider a 60Hz signal ( )td  with large 

additive white Gaussian noise ( )tn  

( ) ( ) ( )tntdtx +=  Equation 3-29 
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We focus on the estimate of the magnitude of ( )td . Because the noise is white and 

Gaussian, noise outside of the frequency region around 60 Hz can be attenuated via the 

use of a notch filter. Letting signal ( )tx  pass through this notch filter, most of the noise 

will be eliminated. The output can be written as  

( ) ( ) ( )tntdtx 11 +=  Equation 3-30 

where ( )tn1  is the residual noise. To estimate the magnitude of ( )td , we use nonlinear 

curve fitting to fit ( )tx1  into a 60 Hz signal ( )tdest  = ( )estest tAmp θπ +∗ 602sin . The 

magnitude estAmp of ( )tdest  is the common signal amplitude.  

Here we show some simulation results. In this simulation, we evaluated 10 second, 

100 second and 200 second signal durations. For each input signal, we let the 60 Hz input 

have unit magnitude and we varied the noise to signal ratio (NSR ). We used this method 

to measure the magnitude and phase of the input signal and compared the measured 

results to the ideal values. We repeated every simulation scenario 1000 times to get 1000 

results and computed the sample mean and sample standard deviation of these 1000 

results.  The results are shown in Figure 3-14 and Figure 3-15. 
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Figure 3-15 The mean and standard deviation of the error between the estimate and ideal  

magnitude and the mean for the estimate magnitude (ideal magnitude = 1) 

 

Figure 3-16 The mean and standard deviation of the error of the estimate  

and ideal phase 

  

Discussion 
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From the result of the experiments, we can see that for 100 second and 200 second 

signal durations, even a NSR is large as 100 still resulted in an amplitude estimate with 

acceptable error. From Equation 3-28 










 ⋅
=

N

dANSR
CMRR

σ2
log20 10  Equation 3-28 

Letting 100=NSR  and 01.02 == NdA σ , we can get  

9.73
02.02
2100log20 10 =





⋅
⋅

=CMRR dB 

Thus, with a 100 second input, we can expect to measure CMRRs up to 73.9 dB if there 

is 0.1% noise in a 1 volt input signal.  In practice, however, this method may measure 

higher CMRRs for two reasons.  

First, the standard deviation of the noise in hardware is not related to the size of the 

input signal. Thus, the magnitude of the input signal can be made as high as possible.  A 

higher CMRR can then be measured since we have increased dA .  If the magnitude of the 

incoming 60 Hz signal can be increased to 4.8 V, the CMRR can increase 

6.13
1
8.4log20 10 =



=CMRR dB Equation 3-31 

 

 Second, using better hardware components can reduce the noise level. For example, 

we compared the noise resulting from two commonly-used amplifiers: the TL084 and 

AD620 arranged in a monopolar configuration in a prototype array system on the bench-

top.  In each configuration, the channel inputs were shorted to circuit ground and the total 

RMS output noise level was measured.  Five distinct prototype hardware channels were 

constructed for each configuration. Each channel was cascaded with a band pass filter 
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with the frequency range from 18 Hz to 1800 Hz.  Recordings were made with a 16-bit 

A/D converter on a PC. We found that most of the noise is generated from the amplifier 

because, arranged as a typical biopotential circuit, these “front-end” amplifiers employed 

a large gain.  Plots of the noise measurements are shown in Figure 3-17.  We can see that 

the AD620-based circuit reduced the noise almost in half.  If the noise is cut in half, the 

CMRR can increase by 

[ ] 62log20 10 ==CMRR dB Equation 3-32 

 Overall, a higher input signal amplitude and lower noise amplifiers permit CMRR 

measurement up to approximately 93.5 dB. 

Figure 3-17 The noise generated by two different amplifiers: TL084 and AD620 

Additionally, we compared the CMRR that we measured using this method with the 

true CMRR in a simulation model. The test model is shown in Figure 3-18. 
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Figure 3-18 CMRR measurement configuration 

In this simulation, we replaced the white Gaussian noise with the measured noise 

from our 5-channel prototype array system. (This prototype system will be presented in 

more detail in the next chapter.)  To perform the simulation, we begin by computing the 

standard deviation of the noise signal.  Then, the 60 Hz signal ( )td   for different NSRs 

was generated from ( ) ( )t
NSR

td N ⋅⋅⋅= 602sin π
σ .  Using Equation 3-28, the ideal CMRR is 

computed and compared to the result found by applying our technique to the simulated 

data.  We let the magnitude of both input signals be 4.8 V, hence vAd 6.9= . The 

simulation results of the ideal vs. computed CMRR for different signal durations are 

shown in Figure 3-19. 

We can see that we can measure CMRR as high as 110 dB. Also, we can see that 

the estimated CMRR is always less than the true CMRR by approximately 3 dB.  The 

limitation of this technique is that CMRRs greater than 120 dB are difficult to measure. 
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Figure 3-19 Estimated CMRR and true CMRR  

In the plots, the lower line is the estimated CMRR and the upper line is the ideal 

CMRR. Since the data are simulated, the ideal CMRR can be calculated. Compared to the 

ideal CMRR, the estimated CMRR is always lower than the ideal CMRR.   
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3.2.4 Simulation Results Using Mixing Technique 

In this section, the CMRR results are compared for different equalization filter 

design techniques.  The three major comparisons utilized: 

• No software equalization, 

• Equalization filter implemented with the conventional technique, 

• Equalization filter implemented using the mixing technique. 

 

Using linear shift technique to design the equalization filter in time domain 

In this simulation, the noise level is 2 percent. The equalization filter is designed by 

using the linear shift technique after the frequency response of the equalization filter is 

determined. For each simulation, CMRR is calculated vs. the length of the FIR 

equalization filter. The figure shows that using software equalization can improve the 

CMRR significantly. With the mixing technique, the CMRR can be as high as 75 dB. 
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Figure 3-20 CMRR using linear shift technique 
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Using windowing technique to design the equalization filter in time domain 

The next simulation is performed using the same conditions as above, except that 

the equalization filter is designed using the simple windowing technique (i.e., absent the 

linear shift). The figure also shows that using software equalization filter can improve the 

CMRR and that the mixing technique achieves the highest CMRRs.  When equalization 

is performed, the linear shift operation produces superior equalization filters. 
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Figure 3-21 CMRR using windowing technique 
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CHAPTER 4      LABORATORY EXPERIMENTS 

4.1 Hardware Introduction 

All the laboratory data described above are recorded from a five-channel prototype 

system. Each channel consists, in sequence, of four stages: 

 Stage 1: Eighth order, unit gain, Sallen-Key, Butterworth filter 

with cut-off frequency at 15 Hz. This stage attenuates motion artifact 

during severe movement conditions. 

 Stage 2: Selectable gain: There are eight selectable values. The 

gain prior to the first high-pass filter stage is 10.  Gain selection resolution 

is a factor of two per step.  Since the electrode-amplifier circuit is 

designed for a gain of 100, the signal conditioning circuit’s gain can range 

from 5–200.  The different gain selections must be discrete in order to be 

reproducible for use in channel equalization.  The available set of gain 

selections is: 2, 4, 8, 16, 32, 64, 128 and 256. 

 Stage 3: Electrical isolation: Provided by a unity-gain circuit 

accepting inputs over the range of ±5 V. 

 Stage 4: Low-pass filter: Fourth-order, unity-gain, Sallen-Key, 

Butterworth design with cut-off frequency at 1800 Hz.   

 

The schematic of the circuits used in this project can be found in the appendix. In 

this project, a Matlab program (capture_data.m [Mark]) is used to record the data via the 

PC and A/D converter board.  

In any hardware system, the most important issue is the inevitable presence of 

broadband background noise in the calibration signal. Before any calibration data are 

recorded, the noise level is measured for our prototype system by grounding the input of 
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each channel. Here we only test the first three channels because we only need three 

channels to test the performance of the mixing technique. After several experiments, the 

measured noise standard deviation is shown in Table 4-1. Because the EMG signal ranges 

from 15 to 500 Hz and the cut-off of the high pass filter stage is 15 Hz, we also measured 

the noise standard deviation over the frequency band from 15 to 500 Hz. From the results, 

we can see that the total noise standard deviation is typically 0.5~0.7 µv, which is similar 

to amplifier circuits described in the EMG literature. For each experiment, by grounding 

the input, the output signal was recorded at the same condition. All the experiments are 

done at the same day. The first three are done in the morning while the last two are done 

in the afternoon. 

Table 4-1 Measured Noise standard deviation (in µv) 

  Channel I Channel II Channel III 

Noise (whole bandwidth) 0.558 0.612 0.627 
Experiment I 

Noise (15~500Hz) 0.301 0.305 0.302 

Noise (whole bandwidth) 0.814 0.864 0.874 
Experiment II 

Noise (15~500Hz) 0.314 0.367 0.373 

Noise (whole bandwidth) 0.621 0.658 0.645 
Experiment III 

Noise (15~500Hz) 0.321 0.314 0.313 

Noise (whole bandwidth) 0.58 0.626 0.677 
Experiment V 

Noise (15~500Hz) 0.291 0.291 0.291 

Noise (whole bandwidth) 0.55 0.585 0.627 
Experiment IV 

Noise (15~500Hz) 0.291 0.294 0.302 

 

For each calibration data recording, a linear chirp signal which is generated from a 

signal generator propagates through the five distinct hardware channels and is recorded in 

Matlab via the A/D converter. For every experiment, the chirp signal frequency ranges 

from 0 to 2 K Hz and is 100 seconds in duration. As we discussed in chapter 3, in order to 

generate the mixer, we need to estimate the frequency sweep rate and the initial 
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frequency for the original chirp signal, so the signal from the generator is also recorded to 

provide the necessary information. Hence for each recording, there are six channels of 

data presented. The first five channels are from the respective hardware channels and the 

sixth channel is a direct sampling of the signal generator output. Because the start time of 

the chirp signal can not be perfectly synchronized, we allotted additional recording time 

beyond the desired recording duration.  This additional recording “buffer” is removed 

prior to any signal processing. 

The voltage range of our A/D converter is ±5V. Our prototype system has a 

minimum gain of 10 and a maximum gain of 2560. Thus, the maximum voltage of the 

input is mvv 95.12560/5 = , while the minimum voltage that the signal generator can 

produce is 50 mV. Therefore, the interface between the signal generator and the input of 

the system is not directly connected. To satisfy the voltage requirement, the output of the 

signal generator was passed through a two-resistor voltage divider circuit, and from there 

into the prototype system. 

The data are saved into a .daq file in the Matlab format. The sampling rate is always 

4096 samples/second. The recording apparatus are arranged as shown in Figure 4-1. 

 

Figure 4-1 Recording processing model 

Figure 4-2 shows an example of the six acquired channels using a 100 second recording 

duration plus a 5 second buffer time.   Figure 4-3 shows the calibration data after the 

Signal 
generator 
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buffer period is removed.  In this project, the buffer period was manually identified for 

each recording. 
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Figure 4-2 Calibration data 
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Figure 4-3 Calibration data after carving out the buffer 

The equalization filter design configuration is shown as Figure 4-4. 

 

Figure 4-4 Configuration for equalization filter design 

Note that the sixth channel that directly comes from the signal generator was used to 

estimate the sweep rate, initial frequency and the phase.   They were estimated using a 
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nonlinear least squares fit to a prototype chirp (Matlab optimization toolbox). A precise 

initial guess should be given when using this method. 
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4.2 Experiment Results 

In this section, we compare the results between using the conventional technique 

and the mixing technique. The data used in this analysis were recorded on July 11, 2004 

(file name: “ch0711.daq”).  

4.2.1 Equalization Filter Response 

In this analysis, we implemented the equalization filter using the linear shift 

technique. Figure 4-5 shows the magnitude response of the filter in the frequency domain 

and its zoomed view. In the plot, the blue color presents the equalization filter from the 

conventional technique and the red color presents the equalization filter from the mixing 

technique. In this plot, we can see that there are some distortions at the beginning and the 

end of the filter because of the start transient. Since the dominant energy of the EMG 

signal is in the range of 15-150Hz, the start transient is ignored.   
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Figure 4-5 Magnitude response of the equalization filter 

4.2.2 CMRR Results 

In this section, we only show the results using the linear shift technique. The calibration 

data named “ch0711.daq” is used to design the equalization filter using linear shift 

technique. Two 60 Hz sine wave signal named “sin0711.daq” and “sin0712.daq” are used 

to evaluate the equalization filter. Each recording has 100 seconds duration. Sine it is five 

channel prototype, each 60 Hz sine wave can be perform several bipolar configuration. 

The CMMR is the mean value of all the bipolar configuration. 

 Conventional technique Mixing technique 

CMRR 35dB 72dB 

 

Without mixing 

Zoomed view With mixing 
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CHAPTER 5 PRELIMINARY RESULTS From A 28-

CHANNEL ELECTRODE ARRAY 

5.1 EMG hardware system 

5.1.1 The EMG Array 

In this project, a 28-channel electrode array is also used to recode the EMG signal. 

In this section, the preliminary results using the mixing technique with this array will be 

described. The array was constructed as a 4x7 rectangular grid. Each electrode consisted 

of a stainless steel M2 screw arranged 5 mm center to center from adjacent electrodes.  

Each electrode was connected to a gain of 20, high-impedance differential amplifier 

(Analog Devices AD620 Instrumentation Amplifier).  To achieve a monopolar 

configuration, the second input to each differential amplifier was from a common 

monopolar reference electrode.  An additional electrode served as the isolated power 

supply reference.  These additional electrode contacts were also stainless steel.  The 

electrodes and amplifiers were mounted on a printed circuit board (PCB) which was 

epoxy encapsulated.  Flexible wiring cables connected this pre-amplifier to the signal 

conditioning apparatus. 

A one layer PCB board is designed. There are 14 channels on each side. Figure 5-1 

shows the schematic of the top of the array PCB board and Figure 5-1 shows the 

completed electrode array used in this project. 
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Figure 5-1 The schematic of one side of the array PCB board 

 

Figure 5-2 The electrode array 
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5.1.2 Signal Conditional Circuits 

The design of the signal conditioning circuits is identical to the circuits presented in 

chapter 4. In this research, four conditioning circuits were built into one signal 

conditioning unit via a PCB implementation of the circuit design.  All units were 

powered from two power supplies, one of which maintained electrical isolation from 

earth ground.  

 

5.2 Experiment Results 

Prior to each experiment, conductive electrical gel is applied to the electrode and 

the skin to reduce the electrode-skin impedance. Each EMG recording is 5 seconds long 

and the calibration data are 100 seconds long (plus the buffer duration).  Figure 5-3 

shows a sample EMG recording from our 28-channel array. The x-axis is the time vector 

in seconds and y-axis is the magnitude of the EMG signal. Figure 5-4 and Figure 5-5 

show that equalized EMG signal of one channel wit bipolar and NDD configuration. 

Figure 5-6 and Figure 5-7 show one of the channels with NDD spatial filter before and 

after equalization. The plots show that with equalization, the MU can be easily identified.  
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Figure 5-3 28 channels EMG signal review 

 

 

 

Figure 5-4 Equalized EMG signal (Bipolar) Right side is the zoomed view 

Figure 5-5 Equalized EMG signal (NDD) Lower is the zoomed view 
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Figure 5-6 EMG signal (NDD) before equalized 

 

Figure 5-7 EMG signal (NDD) after equalized 
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CHAPTER 6  CONCLUSIONS AND FUTURE WORK 

6.1 Discussion 

In this section, we briefly summarize the conclusions drawn from this project. In 

recent years, there has been increasing interesting in detecting single MU activity via 

noninvasive spatial filtering techniques.  In general, the spatial filtering is implemented in 

hardware. Due to the limitations in hardware, we sought to achieve high-quality, flexible 

spatial filtering using software channel equalization. We explored different techniques to 

design the equalization filter. Our conventional technique consisted of taking the ideal 

frequency response divided by the measured frequency response to determine the 

frequency response of the equalization filter. We showed that conventional channel 

equalization can improve the CMRR, but not sufficiently so and it is very sensitive to 

noise.  

Since the major problem is broadband background noise, it became necessary to 

eliminate as much noise as possible before implementing the equalization filter. Thus, we 

pursued de-noising via a mixing technique. This new technique is evaluated with both 

simulation and laboratory experiments. From the results shown in chapter 3 and chapter 4, 

it is clearly observed that the mixing technique can improve CMRR more than the 

conventional technique and it is much less sensitive to noise. In this project, we are 

typically achieving a CMRR of 64-85 dB at 60 Hz after mixing and equalization, but less 

than 40 dB with conventional equalization. 
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6.2 Future Work 

First, based on the previous discussion, the premise of our software mixing 

technique has been demonstrated. The mixer requires the initial frequency of the 

excitation chirp and its sweep rate. We found our results to be sensitive to the accuracy of 

determining these parameters via an optimization algorithm. In the future, we can either 

use a new algorithm to estimate them, or produce a better initial guess when using the 

Matlab optimization toolbox. 

Second, to eliminate the noise, we can consider using a linear time-varying band-

pass filter (LTV). By using this technique, there exits a trade-off between the amount of 

noise reduction and the amount of signal distortion. Preliminary simulations for testing 

the noise reduction performance of LTV filters suggested that a smaller passband reduced 

most of the noise, but caused large signal distortion. High-order LTV filters can 

significantly improve these issues, but might result in an unacceptable start up transient. 

But, we could alternatively use a low-order LTV filter cascaded with our mixing 

technique. In the future, we can measure the performance via the use of LTV filters 

together with our mixing technique. 

Third, the most difficult challenge in the mixing technique is the low pass filter 

design stage, since the cut-off frequency of the low pass filter must be set to less than 1% 

of the Nyquist frequency. Currently the order of the low pass filter is greater than 3000. 

In the future, we may investigate a better technique to design the low pass filter. 

Fourth, we find that the achieved CMRR is much better if the calibration data 

duration is longer. Currently, we are using a 100 second chirp signal to calibrate the 

equalization filter. By using longer duration data recordings with a slower frequency 
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ramp, we can use larger order low-pass filters after the mixer to eliminate more noise 

(because a longer filter startup transient can be tolerated). Another possible solution is to 

use two 50 second duration chirps instead of one 100 second duration chirp.  The first 

chirp could ramp in frequency from 0 to 500 Hz and the other one from 500 to 2 KHz. 

Their resulting transfer function could be assembled in the frequency domain to provide 

information over the complete frequency range.  Finally, we might consider upsampling 

the signal prior to the mixing stage to determine if low-pass filters implemented at the 

upsampled rate can reduce the effective startup transient duration. 
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APPENDIX Signal Conditioning Circuit Schematics  
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