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Abstract 
There exists a need for inexpensive and efficient methods to isolate single cells, 

especially single tumor cells for single cell analysis to improve treatment methods. We 

developed a microfluidic device that traps single beads ranging from 38 to 45 um, similar 

to mammalian cells. Our results suggest our device could trap single beads in 60 um 

microwells, indicating this device could allow isolation of similarly-sized cells. Our device 

could be used for pharmacological testing for personalized medicine and other 

applications. 
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Chapter 1: Introduction 
Despite all of the major technological advances over the last century, basic 

laboratory and cell culture techniques have remained nearly the same. Scientists are 

comfortable with the techniques they are using, they are well understood and they have 

been standardized to make results easier to produce, interpret, and share with scientists 

around the world. Despite the advantages of using these techniques, the tremendous 

opportunities to improve upon them should not be ignored.  

                Current cell analysis techniques have two issues that must be addressed in order 

for more accurate cell analysis to be performed: cells are cultured in heterogeneous 

populations and data is recorded on bulk properties of these cell populations. Both bulk 

analysis and heterogeneous population samples add a layer of complexity to cell culture. 

Bulk analysis only presents the average behavior of the cells and nuanced behaviors may 

be misrepresented or masked. While a population may appear homogeneous, rare cell 

types may exist within the population that display many interesting and unique properties 

and their behaviors may be masked (Tibbett and Anseth, 2009). If these cells cannot be 

studied individually, we are unable to understand these behaviors, which may hold the key 

to understanding the human body at its simplest level. For example, in tumor biopsies, 

there are many different types of cells present. By studying the cell population as a whole, 

the average behavior of the cells is studied rather than the behavior of the individual cells. 

Specific cells like cancer stem cells and certain aggressive cancer cells may have very 

different behavior from a typical cell in the population, but their behavior is being 

shadowed by the other cells. Therefore, single-cell analysis is a technique to overcome the 

inaccuracy of the current methods (Carlo, 2012). 
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The most common single-cell separation and analysis method is flow cytometry. 

Flow cytometry is currently the gold standard because it is incredibly high throughput, 

some 10,000 cells per second can be analyzed, but flow cytometry was not designed to 

perform multiple assays on the same cell (Carlo, 2012). Flow cytometry is able to collect 

data from a single cell at a single time point, but after the assay is complete cells are 

discarded as waste. This makes it difficult to identify which cells are behaving abnormally 

to study them further and determine the cause of their behavior. Flow cytometry is also a 

very expensive method of single cell isolation, which limits its use to labs that can afford or 

have access to the equipment.  

In order to create a low-cost device for single cell analysis, the team was tasked with 

creating a microfluidic device to isolate single cells. Since single cells should be trapped 

within micron-sized devices using low flow rates that prevent cell damage and allow the 

cells to be cultured after isolation. Microfluidics can be used as a high throughput method, 

which is ideal for single cell analysis applications. If rare cell types are of interest, there is 

likely only a few in the cell population, so the more cells that are isolated, the higher the 

chance of seeing the individual cells of interest.  

Our ranked objectives are that the device must be: compatible with common cell 

culture techniques, compatible with common microscopes, accurate, precise, inexpensive, 

and high throughput. 

This device requires single cells to be trapped in order to study each cell 

individually. Media must also be delivered to the cells as they are studied in the device. To 

fabricate these devices, a Computer Aided Design program called DraftSight and standard 
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photolithography techniques are used to transfer the designs to a silicon wafer from which 

PDMS (polydimethylsiloxane) devices can be fabricated.  

                To perform proof of concept testing, Cospheric© polyethylene fluorescent beads 

were used in a suspension of mineral oil in the device. The beads were approximately the 

same size as PANC1 cells in suspension, we believe the behavior of the bead suspension 

would mimic the behavior of cells within the device.  

                In the remainder of the report, we will provide background into the different 

methods of single-cell isolation and how they compare to each other. We will also provide 

some background into microfluidics. We will discuss our objectives, constraints, and 

functions, and then explain the approach of our project. We will then provide alternative 

designs and the reasons behind our design choices. Later, we will explain the experiments 

that we ran and discuss the results. Finally, we will draw conclusions from our experiments 

and discuss the overall functionality of our device. 
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 Chapter 2: Literature Review 
2.1 History of Cell Culture 
 Tissue culture was first introduced in the early 1900’s, and has been widely used 

ever since. Initially, it allowed scientists to maintain cells and tissues in vitro so they could 

perform experiments and study them over time, which was imperative to understanding 

basic biology and living systems. Today, cell culture is a universally accepted practice that 

influences many different industries and has enabled us to do things that wouldn’t have 

been imaginable 100 years ago.  

                Traditionally cells are both cultured and analyzed as an entire population, and the 

results are the average behavior of all the cells within that population. This requires the 

assumption that the average response is representative of a typical cell in the population, 

which is not necessarily accurate. For example, an average of 50% protein expression in a 

cell population can represent either a 100% response in half the cells or a 50% response in 

all cells and therefore averages can be misleading due to the difficulty of differentiating 

between the two scenarios (Yin and Marshall, 2012). There is mounting evidence regarding 

the cellular differences that are found in isogenic and clonal populations, which were 

previously assumed to be identical throughout.  

                The population of cells present in tumors shows vast heterogeneity, which makes 

them a particularly important application of single cell analysis. Cancerous cells exhibit 

rapid changes in their genetic make-up due to either genetic drift, the rate of replication 

and age of that cell, or the processes occurring and proteins that cell is expressing (Yin and 

Marshall, 2012). Individual cells exhibit unique behavior in regards to protein expression 

and metabolic activity. Therefore, the oversimplification of bulk analysis is problematic 
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because it neglects this cell to cell variability. In order to understand the heterogeneity and 

inner workings of a cell population, each cell has to be analyzed individually. This enables 

researchers to study the factors that influence individual cell behavior and understand 

what causes the fundamental differences between cells. These differences dictate cell to cell 

interactions and it is important to see how the behavior of one cell can influence those 

around it and how that affects the overall health and function of the entire population (Yin 

and Marshall, 2012). 

2.2 Growing field 
Single cell analysis is a field that has developed rapidly in the last decade, but it still 

needs significant improvement and development before it can reach its full potential. At 

this point people are taking many different approaches in order to determine what works 

best, but there are still many unmet needs. The importance of single-cell analysis has 

caught the attention of the US National Institutes of Health (NIH). The agency launched a 

program to fund advances in single-cell research, with a budget of $90 million over five 

years. The NIH recognizes the current shortcomings and challenges that come along with 

single cell analysis, but they also recognize the importance of this research and the 

potential that it has to improve our understanding of cell responses which will aid in better 

detection and treatment of diseases. This program funds research in a wide array of 

disciplines and applications and is geared toward changing the field of single cell analysis 

from a small highly specialized group of researchers, and making it more widely used and 

accessible by promoting commercialization (Single Cell Analysis Program, 2015).  
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2.3 Applications 
 In order to further improve single cell analysis, simple and reproducible techniques 

should be developed. There also exists a need to develop a method for culturing and 

expanding single cells for an extended period of time. If rare cells are captured and 

expanded, cell lines of rare cell types can be created. Rather than performing experiments 

using existing cell lines, which may be easy to grow but do not demonstrate the behavior 

found in rare cells, these cell lines could be used in order to create a more realistic cell 

culture where specific conditions need to be met in order for the experiment to be 

successful. Another application is cell-cell interactions. By isolating individual cells, certain 

cell types can be forced to interact in order to see their behavior and the way the cells 

interact with each other. Further experimentation can be done by co-culturing the 

individual cells together in hopes of advancing tissue engineering. By studying how the 

cells interact with each other, it can help to determine what cells types and environmental 

conditions are necessary for organ growth. Another limitation is that some methods 

depend on the size of the cell, but whether the cells are in in the process of dividing or 

already divided, the cell is always changing its size, which makes it difficult to use some 

methods (Carlo, 2012). 

A promising application that stems from single cell analysis is personalized 

medicine. Personalized medicine tailors drug regimens to a specific patient based on how 

their cells respond to certain therapies. While personalized medicine is not the creation of 

novel drugs for individuals, it is the classification of individuals to sub populations who will 

most benefit from preexisting and defined therapies, especially cancer therapeutics. Ideally, 

a patient’s tumor sample would be isolated into single cells then exposed to different drugs 
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so doctors can determine which treatment is most effective for that patient and the specific 

type of cancer cells present. Cancers vary widely because of their rapidly changing genome. 

Cancer cells, even within the same tumor biopsy sample display distinct molecular 

differences which lead to the development of different assays to provide prognoses (Bates, 

2010). Tailoring treatments to patients who are most likely to respond to them has 

incredible potential for improving cancer prognosis and patient outcomes.  

2.4 Current single cell analysis devices 
2.4.1 Gold standard 
 Currently, a majority of single cell analysis is done using flow cytometry. With flow 

cytometry, hundreds of thousands of cells can be analyzed per minute. The cells can be 

sorted by their size, granularity, and fluorescence properties (Carlo, 2012). The method of 

flow cytometry does not require a lot of time and is easy to perform. 

Though many researchers, scientists, medical workers, etc. use flow cytometry, for 

the goals of our project, a combination of other methods seem to be more beneficial. Flow 

cytometry requires expensive devices and the cells are discarded after each test, so the 

cells cannot be studied over a more relevant period of time or beyond a single experiment. 

2.4.2 Single Cell Isolation Methods  
The different methods of isolating single cells span a diverse spectrum. There are a 

number of mechanisms utilized and the processes vary greatly in complexity. A general 

overview of the methods that have been used successfully in the past will highlight the 

main advantages and limitations of each method to exemplify how they are selected for 

specific applications. Here, we present a sampling of common single cell isolation 

techniques. A more detailed list can be found in Appendix A. 
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One of the earliest and simplest methods of single cell isolation is serial dilution. 

This process entails repeatedly diluting a cell suspension until only single cells remain. 

Serial dilution is not a complicated process and requires only basic lab equipment such as 

micropipettes, microtiter well plates, and a microscope. Since the process results in cells 

contained within microwells, the cells are accessible and are compatible with many assays 

and standard cell culture techniques (Ishii, 2010). Despite the simplicity of this method, 

many of its limitations derive from its lack of automation. This process is done manually 

and is therefore very labor intensive and time consuming. The technique has very low 

throughput as a result, which reduces the probability of finding target cells especially if 

they are rare cell types (Ishii, 2010).  

Another method that is relatively straightforward and fits the capabilities of most 

labs is micropatterning. Micropatterning can utilize a variety of techniques, material 

combinations, and surface treatments depending on the application. Micropatterning uses 

different surface modification mechanisms to create cytophilic and cytophobic regions that 

guide cell attachment. By designing cytophilic regions only large enough to permit a single 

cell to adhere, single cell isolation is achieved. An advantage of this method is that the cell 

containing regions can be made into any size or shape to adjust to specific cell types and 

the pattern can be scaled up to achieve desired throughput. Another attractive feature of 

this methodology is that the cells are accessible and therefore easily maintained. Media and 

other supplemental nutrients can be flowed over the immobilized cells for convenient 

exchange, but one must consider the shear stress caused by media perfusion and ensure it 

will not result in cell lysis. Different techniques of micropatterning vary in complexity. For 

example, this process can be simplified so that it doesn’t require a microfabrication process 
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and can be done with standard laboratory materials as described by Lin et al, 2009 in a 

Microscale Oil-Covered Cell Array (MOCCA). In this process, a glass slide is treated to make 

it hydrophobic. It is then plasma treated while covered with a micropatterned aluminum 

screen that created small hydrophilic circles where cell containing drops will form on the 

slide. A cell suspension is poured over the treated glass slide, followed by mineral oil that 

forms and seals droplets as it moves across the slide. This process is done manually, 

without the requirement of controlled flow rates that require significant background 

knowledge and planning to achieve. This makes the process extremely practical, and it 

appeals to more users (Lin et al, 2009). Micropatterning can also incorporate 

photolithography to create more intricate patterns. For example, McDevitt et al (2001) 

used laminin coatings on polystyrene tissue culture plates to encourage cardiomyocytes to 

assemble single file and form multinucleated myofibrils. A linear pattern was designed and 

soft lithography was used to create a PDMS stamp of the device. Laminin was applied to the 

stamp and the design was then transferred to a polystyrene tissue culture plate. Individual 

cardiomyocytes were able to adhere to only the laminin patterned areas that were one cell 

wide. The researchers then saw cell fusion and coordinated contractile activity (McDevitt et 

al, 2001). Here, micropatterning was used to manipulate individual cells to form complex 

arrangements typically found exclusively in vivo to create a more accurate platform for 

studying cardiac activity at the cellular level. Using photolithography and soft lithography 

significantly elevates the complexity of the process and creates a need for more expensive 

and complicated equipment. A limitation of these methods is that they are only compatible 

with adherent cells that are capable of binding to the surface. Once cells are in the array it 

is not possible to remove particular cells of interest or to manipulate single cells since all 



 
 

 

19 
 

cells are exposed to the same factors. Lacking the ability to move or target specific cells 

restricts the possibility of further processing or expansion. 

Microdroplets are an additional method of single cell isolation. Droplets can be 

generated using multiple techniques, and usually result in a single cell that is encapsulated 

in an aqueous solution surrounded by a carrier oil. Microdroplet formation allows for high 

throughput; some have been shown to generate droplets at rates exceeding 10,000,000 per 

second. However, not all of these droplets contain single cells and the percentage of 

successful single isolation may be lower than is desirable (Lindstrom and H. Andersson-

Svahn, 2010). The volume of microdroplets usually ranges from several nanoliters to 

microliters (Mazutis et al, 2013), and allows the droplet to function as a microreactor for 

the encapsulated cell. The small volume allows the cell’s secretions to quickly change the 

concentration within the droplet to detectable levels, and this information can in turn be 

used to analyze or sort cells (Mazutis et al, 2013). The individual droplets don’t allow cross-

contamination between drops and do not allow cells to influence each other as long as 

coalescence is prevented. In order to lower the risk of coalescence, drops need to be 

stabilized, usually with the use of a biocompatible fluorinated surfactant. These surfactants 

can be very expensive, around $1,000/mL. One of the most appealing characteristics of cell 

containing microdroplets is that they can be sorted and manipulated in many ways while 

still maintaining integrity and isolation. Droplets are compatible with cell culture and are 

shown to survive for several days without being removed from their original droplets 

(Clausell-Tormos et al, 2008). All of these characteristics make this method versatile and 

give it great potential in current and future applications. 
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2.4.3 Limitations of Current Single Cell Analysis Techniques 
                Limitations of some previous techniques are that they are not high throughput. 

Only a few cells can be tested at a time, so a large number of tests have to be performed one 

after another. This is much less efficient than running parallel experiments where all cells 

can be tested at once under the same conditions. Another limitation is that cells are not 

able to be analyzed over a long period of time. Often, cells are discarded, mixed, and not 

cultured in media, so they will not survive long enough to be analyzed further. Also, since 

many experiments are done on a larger-scale, on 96 or 364 well plates, the environment is 

much larger than the size of the cell, so it’s hard to control the environment of the cell. The 

experiments and assays that can be performed are also limited because of the single-cell 

analysis method. Another disadvantage to some techniques is that they do not prevent 

contamination between different cell types. For accurate single cell analysis techniques, 

this is essential. During the process of some separation techniques, the cells can be exposed 

to residues or chemicals and this adds an uncontrolled variable that could influence cell 

behavior, which is another disadvantage (Carlo, 2012). 

2.5 Microfluidics 
2.5.1 Why use microfluidics 
 The goal of our project is to create a device that is inexpensive, reproducible and 

marketable to scientists and researchers. The device should also be able to view the cells 

over a biologically significant time period. A method that has a high throughput is a 

necessity for our device. The device needs to trap cells in a way that allows further 

experimentation to be performed. Microfluidics is a technique that has been proven to 

successfully isolate single cells and expand them over a relevant time period, beyond the 

scope of most single cell analysis techniques 
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Microfluidics is the study of fluids in the scale of nanometers to a few hundred 

microns.  Microfluidic applications were previously restricted to silicon based devices but 

have since expanded to life science applications since the development of soft lithography 

techniques that have allowed for polymer based applications. Microfluidics are appealing 

to those performing research in cell biology because of their small size, customization, and 

diagnostic potential (Streets and Huang, 2013). 

Microfluidics is an emerging field that has been show to effectively isolate single 

cells and culture cells in three dimensional constructs over a period of time. In these 

systems it is easier to control the cells. The suspension flows into the device and the 

geometry and channels arrange the cells to be cultured. These microfluidic devices 

typically incorporate a network of small channels that range from about 10 microns to 200 

microns in width.  The microfluidic systems can have very specific designs for certain 

studies, making them more customizable than a simple petri dish. For example, there can 

be gradients, valves, channels, wells, or pillars incorporated into the device. Microfluidics is 

beneficial for single cell analysis because features like wells or pillars can be used to 

capture the single cells and allow them to stay isolated from each other. 

Microfluidics has the ability to control fluids at a very small scale and can create 

systems with laminar flow rather than turbulent flow. Using different types of flow driven 

by either hydrostatic pressure or syringe pumps gives precise control of flow rates in the 

devices, and allows cells to be processed without being damaged by rapid or uncontrolled 

flow rates (Mehling and Tay, 2014). Like common cell culture techniques, microfluidics can 

allow cells to be maintained over a long period of time, but the system is more automated 
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because there is limited need for pipetting fluids, which reduces user variability and gives 

more predictable and reproducible results. Microfluidics also offers precise control over 

the microenvironment of the cells due to the small volumes of reagents used, and the 

microenvironment can be adjusted to more closely mimic the in vivo environment (Folch, 

2013). Since the volumes of reagents required are on the nanoliter scale, devices are cost 

efficient to run and produce very little waste.  

Another advantage to microfluidics is the high throughput. Microfluidic devices 

allow for parallel experiments, so many cells can be tested at once to yield a large quantity 

of results (Folch, 2013). For example, droplet generation is an efficient method of isolating 

single cells in a microfluidic device while retaining high throughput. This technique 

preserves the viability of cells and allows for cells to be manipulated within the droplet 

rather than having to be removed from the system and manipulated manually with a 

micropipette (Mazutis et al, 2013).                  

We have provided the necessary background for understanding all aspects of our 

project. Single cell analysis by way of single cell isolation and single cell culture has been 

explained in depth. Next, we will talk about the objectives and constraints of our projects 

and the specific functions of our designs. 
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Chapter 3: Project Strategy  
3.1 Initial Client Statement 
After speaking with our advisor, the initial client statement read: 

“The aim of the project would be to develop a system that would isolate and expand single 

cells from tissue biopsies. The system created must be able to trap and expand the cells in 

micron sized hydrogels of varying stiffness representing different tissues. Ideally, the 

system should allow placement and/or arrangement of cell laden microgels to produce 

precise geometries that can facilitate organ engineering, tissue engineering and the study 

and analysis of cell-cell interactions.” 

Our client expressed a desire for a microfluidic device because of the range of 

applications it’s compatible with. Microfluidics is an emerging field and is best suited to the 

resources available here at WPI. There are opportunities to introduce a novel concept to 

the field of single cell analysis using microfluidic devices that are cost efficient. After 

further research, we determined it was necessary to expand the scope of our project.  

3.2 Objectives 
 Using our initial client statement, we established a list of objectives that would need 

to be met in order to successfully complete the project to the satisfaction of our client. 

These objectives can be seen in the objective tree below in Figure 1, and are further 

explained after. 
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FIGURE 1: OBJECTIVES TREE 

Compatible with common cell culture techniques: Since cells are to be flowing through 

our device, we thought that compatibility with cell culture techniques was most important. 

Without the correct cell culture technique, the cells will not survive; therefore our device 

will not be useful. 

Compatible with common microscopes: Once single cells have been isolated, they need 

to be analyzed. In order for our system to be useful in a wide range of labs, it has to be 

compatible with common laboratory equipment. By bonding PDMS to a glass slide it gives 

the system transparency, and the cells inside can be analyzed using a common light 

microscope.  

Accurate: The main function of our system is isolating single cells, so it is important that it 

can do so accurately. If cells clump or if more than one is isolated in the same bubble or 
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pocket, the user can’t analyze them as single cells, and extra steps would need to be taken 

to further separate them.  

Precise: Ideally we want our device to be able to do a large number of tests and analyze a 

large number of cells at once, so the device should be able to isolate a large number of 

single cells. 

Inexpensive: This is most applicable to completing our project while staying within our 

$365 budget. The resulting device is going to be extremely inexpensive compared to other 

single cell separating technologies that are currently on the market, which will be one of its 

key features.  

High Throughput: This objective isn’t essential in order for our device to function, 

however it would be a desirable feature. It would make the device compatible with 

applications that require a large number of cells to be processed and screened and it would 

make it more marketable. However, 100 is the median number of isolated single cells used 

per experiment (Single Cell Technologies Trends, 2014), so this is a realistic number to aim 

for.  

Primary Objectives  

● compatible with common cell culture techniques  

● compatible with common microscopes 

● accurate 

● precise 

● inexpensive 
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● high throughput. 

Secondary Objectives  

● compatible with 2D and 3D cell culture 

● compatible with a variety of cell culture techniques 

● compatible with light/fluorescent microscopes 

● should be transparent 

● should be transportable 

● should fit in a typical slide holder 

● should capture a single cell 

● should be able to capture a large number of single cells at once  

● should not exceed $356 

We then ranked our objectives using a pairwise comparison, shown below in Table 1: 

TABLE 1: PAIRWISE COMPARISON CHART 

Pairwise Comparison Chart 
 Compatible 

with Cell 
Culture Inexpensive 

High 
Throughput Precise Accurate 

Compatible 
with 

Microscopes 

Variety 
of Cell 
Types Score 

Compatible  
with Cell 
Culture 

 1 1 0 0 0.5 1 3.5 

Inexpensive 0  0 1 1 0 1 3 
High 
Throughput 

0 1  0 0 0 1 2 

Precise 1 0 1  0.5 1 1 3.5 
Accurate  1 0 1 0.5  1 1 3.5 
Compatible 
with 
Microscopes 

0.5 1 1 0 0  1 3.5 

Varity of Cell 
Types  

0 0 0 0 0 0  0 
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After identifying each of our objectives, our team utilized a pairwise comparison 

chart to establish a ranking of our objectives according to their importance and relevance 

to our project. In this chart each of the objectives are compared to the others one by one. In 

each comparison, the more important objective receives a 1 and the less important 

objective receives a 0. If the two objectives are of equal importance they each receive a 

score of 0.5. These scores are then totaled horizontally, and their final score determines 

their ranking with the highest scoring being most important and the lowest scoring being 

least important.  

3.3 Revised Client Statement 

Our final client statement reads as follows:  

“The aim of this project is to develop an efficient system to isolate single cells from 

tissue biopsies. Ideally, the device should allow multiple applications such as (a) sorting of 

single cells from cell lines or tissue biopsies for clonal expansion and analysis (personalized 

medicine), (b) high throughput- ability to screen multiple pharmacological agents on 

hundreds of clonally expanded cells.” 
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3.4 Project Approach 

 

FIGURE 2: DESIGN PROCESS 

 

After establishing each of our objectives and ranking them in order of importance, 

we used them to assess different design ideas. A thorough review of current literature on 

microfluidics gave our team an idea of what is currently being done in terms of single cell 

separation with microfluidics and what is possible and realistic. We were able to use some 

of our original ideas in combination with concepts demonstrated in contemporary 

literature to develop a set of preliminary designs.  

 Figure 2 demonstrates a brief outline of our design process. Each cycle begins with a 

basic drawing in DraftSight. In order to determine the effectiveness of each design the 

devices need to be fabricated and tested. After each design is tested, it is either eliminated 

or improved upon, and then the next iteration begins.  

  

Design

Draftsight 
Software

Fabrication

Photolithography 
& Bonding 

Testing

35-48 um beads in 
mineral oil 

Assessment

Eliminate or 
improve designs 
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Chapter 4: Alternative Designs  
4.1 Needs Analysis   

Our device needs to isolate single cells and allow for further analysis of individual 

cells. The single cell isolation would create a homogenous cell population so that the 

behavior of the cells is specific to that individual cell and the testing can take into account 

the different cell types present in a tumor biopsy. We would like the single cells to be able 

to be removed from the device for further testing, but we realize this may not be possible 

due to the time constraints of our project. Our device must create a system to efficiently 

isolate the single cells. It is preferable that the method of separation is a semi-automated 

microfluidic device, based on the client statement. 

Preferred method of separation  

  Separation mechanism must not cause cell lysis 

  Cells must be10 microns apart to be considered isolated  

4.2 Functions (Specifications) 
The function of our device is to capture single cells in wells. To accomplish this 

successfully, the cells must remain isolated and not contact any other captured cells. The 

device must capture single cells so that when treatments are tested using our device, the 

researcher can see the behavior of every individual cell and not just a representative 

behavior of the entire population of cells. A specification of our device is that minimally 

50% of the wells have to be filled with a single cell. Some may have more than one cell or 

no cells. This specification is necessary to create a high throughput system. The single cells 

are the ones that will be studied, so this specification ensures that there will be a higher 

number of single cells to investigate.  
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4.3 Conceptual Designs 
4.3.1 Alternative Design 1 
 The first device we tried was based on the publication Microscale Oil-Covered Cell 

Array (Lin et al, 2009). We created a simple system where a cell suspension would be 

poured over a grid of microwells. The suspension would be manually spread over the top 

surface of the PDMS to ensure cells have spread over the entire surface and reached all of 

the wells. The goal was to have cells fall into wells that were just slightly bigger than the 

size of the cells, so that no more than one cell could fit in each well. After cells are allowed 

to settle into wells and the excess suspension is removed from the top surface, a second 

microfluidic device would be flipped over and placed on top of the grid of wells. The top 

device would have wells much bigger than the cells and would have channels connecting 

the wells that allow media to flow through them. The diameter of the bottom wells ranged 

from 15 to 100 microns whereas the wells on the top device were 800 microns in diameter. 

The top device would be the method of cell culture media perfusion. The larger well size on 

the top would also allow for the cells to expand (Figure 3). 

 

FIGURE 3: ALTERNATIVE DESIGN 1 
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After creating this device and conducting preliminary testing, we discovered the 

difficulty associated with aligning the larger top device above the smaller wells. We 

included square markers in the upper corners of each device to assist with alignment but 

the devices must be placed under a microscope to properly visualize these place-markers. 

This restriction limits the reproducibility and ease of use of this device, because 

misalignment of the two devices is likely to cause malfunction. We were able to capture 

single cells in over 50% of the wells in the bottom device, but another reason we did not 

choose this device is because it would not be sufficient for a mixed cell population. When 

the device is designed, a specific well size is chosen and all the wells are the same size. If 

there were varying cell sizes, only some of the wells would be trapping single cells because 

some may be trapping 2 smaller cells or they would be unable to trap the larger cells. 

Another problem with this device is that cells would not be able to be easily removed from 

the device. A biopsy punch could be used to punch out a cell of interest, but once the cells 

started growing, the cells would become mixed populations if they were to flow out of the 

microfluidic device. Though we liked the simplicity of this device, we decided to pursue a 

different device that would be easier to use and would be useful for a wider variety of 

applications.  

4.3.2 Alternative Design 2 
 We created a device that uses a droplet generator as the mechanism of single cell 

isolation. This design idea came from a recent publication (Chabert, 2008). In this device, a 

cell suspension would flow through the center channel where it is met by two streams of 

mineral oil, one on each side, in a flow focusing channel. This forces the formation of 

droplets, ideally capturing one cell in each droplet. The droplets are then sorted using 
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hydrodynamic flow so that that large, cell containing droplets drift to one side of a barrier, 

while empty droplets move to the other. This leads empty droplets to flow out one outlet to 

be discarded, while cell containing droplets flow to the other outlet where they can be 

removed or put in a second device where further testing and manipulation can occur. This 

device relies on delicate flowrates that dictate how efficiently the system works, and these 

would have to be adjusted and finely tuned for each cell type, which takes away from the 

device’s adaptability. Another drawback of this device is that it required fluorinated oils 

and surfactants to keep droplets from merging together, and these far exceeded the budget 

of this project. We decided this device would not be feasible for our team to use (Figure 4).  

 

FIGURE 4: ALTERNATIVE DESIGN 2 
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4.3.3 Alternative Design 3 
 Next, we designed a device based on a serpentine channel with one well on each 

side of the horizontal portions of the main channel. The wells have a tiny channel 

connecting them, which creates a valve system. In this device, a cell suspension flows from 

the inlet to the outlet, ideally capturing a single cell in each well. When cells pass the wells 

the downward flow through the tiny channel would pull them downwards and trap them in 

the well. Once a cell is trapped it blocks the tiny channel and cuts off the downward flow, 

preventing other cells from drifting into the well with it. This device would allow for media 

perfusion so cells can be cultured within the device, or they could be easily removed by 

reversing the flow from the outlet to the inlet, which would push cells out of the wells. 

When testing the device, we discovered that the channels connecting the wells were too 

wide, so our suspension flowed in a vertical line from the inlet to the outlet rather than 

back and forth through the channels, and nothing was trapped in the wells. Time 

constraints prevented us from redesigning this device with more appropriately sized wells 

and channels, but we do believe this device has potential as a simple method of single cell 

isolation (Figure 5).  

FIGURE 5: ALTERNATIVE DESIGN 3 
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4.3.4 Alternative Design 4 
The next device that was tested was a simple serpentine device. From the inlet to the outlet, 

the device had one channel shaped as a serpentine that was aligned vertically. On the horizontal 

segments of the channel, there were 3 wells that took the shape of a semicircle and were 

approximately 60 microns in diameter. In this device, cells would start in the inlet and flow through 

the single channel towards the outlet. The goal was to have cells fall in the wells as they flowed 

through the device. Since the wells ideally, would only be large enough to hold one cell, single cells 

would be isolated. When watching the flow through the microscope as the device was being tested, 

there were beads flowing over the tops of the wells without being trapped. We determined that the 

flow rate was too high. Once we lowered the flow rate, the beads were still not getting trapped, 

there was nothing pulling the beads from the main channel into the wells. With further testing and 

modifications to the size and shape of the wells, this device could have potential. We were unable to 

establish a method of removing any captured cells or beads, and we eliminated this design because 

of its initial inability to capture any single beads (Figure 6). 

FIGURE 6: ALTERNATIVE DESIGN 4 
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4.3.5 Alternative Design 5  
This brought us to our last design (Figure 7).  

 

Similar to the previous design, it would have wells along the horizontal part of the 

channel. Connecting the well and the next horizontal portion of the channel flowing 

underneath one row of wells would be small rectangles that are smaller than the size of the 

beads. The wells were 60 microns in diameter and the small channels were 20 microns 

wide, designing the pocket in which cells would ideally be captured. These small rectangles 

provided the suction that the beads needed to be isolated in the wells. This design was 

simple and did not require a precise flow rate, so hydrostatic pressure could be used to 

drive fluid flow through the device. A microscope image of this device can be seen in Figure 

8.  

FIGURE 7: ALTERNATIVE DESIGN 5 
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4.4 Feasibility Study/ Experiments 
Based on the complexity of using microfluidic devices, we determined that removing 

the cells from the device would not be feasible for our team. The process of manufacturing 

and testing devices included many steps and took a long time, therefore creating a device 

solely for single cell isolation would be the only process feasible in our timeframe. The next 

step in improving our device would be creating a method to remove the cells from the wells 

and place them in another microfluidic device where they could be cultured for a longer 

period of time in order for long-term studies to be performed.  

4.5 Modeling 
4.5.1 Design Calculations 

We trypsinized PANC1 cells to determine what size would be required for the wells 

to be able to isolate just one cell. The trypsinized cells were approximately 40 microns, so 

we decided to design the wells to have a diameter of 60 microns. This size would allow 

enough room for a single cell to settle in the well and prevent another from entering. The 

FIGURE 8: ALTERNATIVE DESIGN 5, MICROSCOPE VIEW 
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small vertical rectangular channel underneath the well had a width of 20 microns, so this 

prevents the cell from flowing through.  

4.5.2 Decisions 
Because of our budget, we decided that using the expensive surfactants needed for 

the droplet generator or the design iterations that required a new photomask for the other 

designs were not possible for our team. This left the air pocket design with the wells as the 

primary option for our team.  

4.5.3 Optimization 
We decided to create our device out of PDMS because it would allow us to make 

more devices for a lower cost. We also produced designs with a variety of well sizes on the 

same photomask to reduce cost and increase the chances of success with one of these 

devices.  

4.6 Preliminary Data 
 

TABLE 2: PRELIMINARY DATA (GRID OF WELLS DEVICE) 

 

 This table shows the preliminary data collected from the grid of wells device 

(Alternative Design 1). After pouring the cell suspension over the device and letting the 

cells fall into the wells, the wells were inspected to determine whether there was a cell 

present in the well. Table 2 shows, out of 81 wells, how many wells were empty or filled. 

Though this device had success capturing cells, it could not be determined if there was one 
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cell or more than one cell in each well. As described above, there were other characteristics 

of this device that resulted in discontinuing experiments with the grid of microwells.   
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Chapter 5: Design Verification 
This chapter verifies that we met our ranked objectives, which were: compatibility 

with common cell culture techniques, compatible with common microscopes, accurate, 

precise, inexpensive, and high throughput. Testing our devices with fluorescent beads 

verified compatibility with microscopes, accuracy, precision, and the ability to be high 

throughput. Testing of our devices with fibroblast cells verified the compatibility with 

common cell culture technique.  

5.1 Device Fabrication 
 Devices were created using “DraftSight software. A photomask was created at 

CAD/Art Services Inc. and returned back to us. Using standard photolithographic 

processes, the designs were transferred from the photomask to a silicon wafer, some steps 

are shown in Figures 9 and 10. 

FIGURE 9: SILICON WAFER SPINCOATED 

WITH PHOTORESIST 
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The photomask contained 3 wafers of designs, each wafer containing 12 devices. PDMS was 

poured over the silicon wafer and baked. The devices were then cut from the PDMS mold and 

plasma bonded to a glass slide, shown in Figure 11.  

 

 

 

 

FIGURE 11: SILICON WAFER EXPOSED TO 

UV LIGHT 

FIGURE 10: PDMS DEVICE ON GLASS SLIDE 
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5.2 Device Setup 
 

 In order to start testing the device, a syringe setup needed to be attached to the device. The 

device setup is shown in Figure 12. One vertical syringe was to hold the suspension and the 

horizontal one was to hold fluid in order to flush or prime the device. The tubing from the syringe 

was then inserted into the inlet hole in the microfluidic device. 

5.3 Proof of Concept Testing 
 In order to perform proof of concept testing, we used polyethylene fluorescent beads 

ordered from the company, Cospheric© (Product ID: UVPMS-BR-1.20) with diameters ranging 

between 38 and 45 microns. This size was chosen because they are similar in size to trypsinized 

PANC1 cells. To prevent clumping of the beads in the devices, a solution of Tween surfactant was 

created (Appendix D). The fluorescent beads were added to the Tween and water solution and 

spun.  Depending on the desired density, 0.25g or 0.5g of the beads and Tween were added to 

mineral oil and placed in the vertical syringe. The device was flushed with oil to clear dust or PDMS 

particles and the syringes were primed to remove bubbles. Hydrostatic pressure was created in 

FIGURE 12: DEVICE SET UP 
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the device to initiate flow, and flow from the top syringe was turned on, causing beads to flow into 

the device. Beads flowing through the main channel, and were too small to flow through the small 

vertical rectangular channels, causing some to get trapped in the wells.  

5.4 Cell Testing 
 Fibroblast cells were used to test in the devices to determine if they were compatible with 

cell culture techniques and to determine if the devices were able to capture single cells. Since cells 

were able to go in suspension in the water, water and media were used to flush the device and 

prime the syringes. Since a surfactant wasn’t being added to the solution, Pluronic-127 was 

pipetted into the device and let sit to coat the sides of the device in order to reduce the clumping of 

cells. A suspension of cells at a density of 20,000 cells/ 1 mL was added to the top syringe. Again, 

hydrostatic pressure was created to initiate flow, and cells were allowed to flow through the 

device.  

  



 
 

 

45 
 

Chapter 6: Discussion 
6.1 Proof of Concept Testing 

The results of this device were unique because when using beads, the small channels 

underneath the wells created suction because of the oil flowing in the main channel above as well 

as below the small channels. The suction was able to pull the beads into the wells, causing them to 

get trapped and remain in the wells as others flowed past them in the main channel. The design of 

this device was based on a previous publication On-site formation of emulsions by controlled air 

plugs (Huang, 2014) where they used a similar device to create air bubbles within their device. We 

modified the design and operating protocol to allow us to isolate single beads or cells and then 

contain them individually within droplets.  

By varying the density of the beads in the suspension, the number of beads getting trapped 

in the wells would change. Using 0.5g of beads in the suspension was creating a   density of beads 

that was too high, and multiple beads were getting trapped in one well, usually up to three beads 

per well (Figure 13).  

When the amount of beads was reduced to 0.25g, single beads were trapped in the 60 

micron diameter wells (Figure 14).  

FIGURE 13: BEAD CAPTURE AT 0.5G DENSITY 
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Using one of the bigger devices resulted in beads getting trapped in multiple rows of the 

device, shown in Figure 15.  

Working with an oil suspension for the beads made it very difficult to get flow from 

hydrostatic pressure in the device. Oil had to be used because the beads would not stay in 

suspension when they were in water. The beads wanted to stick to the sides of the syringe, so they 

would not flow into the device. Therefore, we decided to use mineral oil, but because of the change 

in viscosity between the mineral oil and water or media, the flow rate drastically changed and it 

was more difficult to achieve natural flow without forcing fluid into the device. This often caused 

the 3-way valve to get clogged with oil and beads and would prevent anything from flowing into 

the device. 

Another challenge that occurred when flowing fluid through the device was dust or PDMS 

particles clogging the channels. Because we were not in a clean room and not under sterile 

FIGURE 14: MULTIPLE ROWS OF SINGLE 

BEAD CAPTURE 

FIGURE 15: BEAD CAPTURE AT 0.25G DENSITY 
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conditions, dust or remnant PDMS particles were often appearing in the device after it was flushed 

initially with oil. Since the channels were only 80 microns wide, this meant that single particles of 

dust or PDMS would completely clog the channels and not allow beads to get trapped in the wells 

(Figure 16).  

 

FIGURE 16: DUST CLOG 

 We also faced challenges in the proper fabrication of our device. We needed to incorporate 

small features into our device to capture beads and cells but plasma bonding such small features 

posed a problem. In Figure 17, we show a bead that was able to flow under small features that had 

not been plasma bonded to the glass slide. For future work, the aspect ratio (height:width) could 

be adjusted to increase the stability of these features. We developed our silicon wafers with a 

height of 80 microns. A shorter height may increase stability and the likelihood of features bonding 

appropriately to the glass slide.  
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FIGURE 17: POORLY BONDED FEATURE WITH BEAD 

 

Optimization of suspension density and minimization of dust are factors that could greatly 

improve the throughput of our device. Once our device yields a higher throughput, we would be 

able to determine how well the device meets the objectives of accuracy and precision. We were 

unable to obtain numerical data and further testing is required to determine the accuracy and 

precision of this device. To obtain this data we would want to flow bead suspensions through the 

device until wells were filled. We would then calculate the percentage of single beads isolated in 

wells compared to empty wells or wells containing multiple beads. We would run these trials in 

triplicate and then repeat these same tests with a suspension of PANC1 cells.  
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6.2 Cell Testing 
After getting results with the fluorescent beads, we tested the device with cells. To start, we 

used human primary fibroblast cells. When flowing water through the device to start, there were 

air bubbles that were formed in the small rectangular channels underneath the wells (Figure 18). 

The air bubbles were a positive result of this device because these could later be utilized to help 

removed the cells from the device. These were formed because the channels were too small to 

allow any water to enter. After flowing the water, media was flowed through to coat the device 

before flowing cells. When the fibroblasts entered the devices, they were too small to get trapped 

in the wells. The cells would flow into the wells and the small channels and none were getting 

isolated. Because of time constraints, we were not able to change the cell type or the size of the 

device. For future testing of these devices, the first method of testing would be using a larger cell 

type like the PANC1 cells. 

Our device was able to meet some of the objectives we established for this project.  The 

device is able to be used with common microscopes. We have been able to use our devices 

successfully with both a fluorescent and a light microscope. Our device is also compatible with 

common cell culture techniques. It has the ability to be used in the hood and it is able to be 

sterilized by autoclaving which is a common sterilization technique that is available in most labs. 

Microfluidic devices made of PDMS are frequently used for cell culture applications and while we 

FIGURE 18: AIR BUBBLES PRESENT IN CELL 

TESTING 
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did not specifically test for cell viability, we can assume they will be biocompatible. It is also 

relatively inexpensive. The cost to start producing these devices would be expensive because of the 

costs of a clean room and the photomasks, but after those are acquired, the cost is cheap. All that is 

needed to produce the devices would be silicon wafers and the materials to make PDMS. These 

devices, while they have demonstrated potential, have not been high throughput up until this 

point. Optimization of suspension density and minimization of dust are factors that could greatly 

improve the throughput of our device. Once our device yields a higher throughput, we would be 

able to determine how well the device meets the objectives of accuracy and precision. We were 

unable to obtain numerical data and further testing is required to determine the accuracy and 

precision of this device. To obtain this data we would want to flow bead suspensions through the 

device until wells were filled. We would then calculate the percentage of single beads isolated in 

wells compared to empty wells or wells containing multiple beads. We would run these trials in 

triplicate and then repeat these same tests with a suspension of PANC1 cells. 

While we are able to make very preliminary assessments about the success of our device, 

more testing is required and more data must be gathered before any conclusive statements can be 

made. Our trials were not reproducible and adjustments to the device protocol must be made.   

6.3 Design Considerations 
6.3.1 Economics and Society 

Our device provides a low cost method for single cell isolation, leading to the possibility of 

analyzing gene expression or clonal expansion for varied applications such as development of pure 

populations of cells, drug and molecule testing.  The device size can also be increased to lead to 

higher throughput and increased cost-effectiveness.  
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6.3.2 Environmental Impact  
The devices and associated set up are single-use only and would therefore create some 

plastic waste. However, only the research community would be using these devices and the impact 

should remain relatively small. The protocol could be optimized to reduce waste and this would 

also increase the sustainability of the device. 

6.3.3 Political Ramifications  
This project has very minimal projected political ramifications. This device would be used 

for research purposes and would therefore have limited impact on cultures of other countries even 

though it may affect the culture of scientific research by producing a shift in the paradigm of cell 

analysis and traditional culture techniques.  

6.3.4 Ethics  
Our project follows good ethical practices because it does not require any animal or human 

testing. The only testing done in our devices uses previously established cell lines. When 

eventually using human tumor samples, privacy considerations should be upheld to protect patient 

confidentiality.  

6.3.5 Health and Safety  
 As long as the device is used for the purposes described in the report, we do not see any 

health and safety concerns for users.   

6.3.6 Manufacturability 
 The most expensive part of manufacturing the device is the cost of a clean room. Assuming 

a company already had access to a clean room, the only costs would be printing photomasks and 

transferring the designs onto the silicon wafer. The photomask is approximately $120 including 

shipping and the silicon wafers are approximately $7 per wafer. The photomask makes 3 wafers, 

so each wafer costs about $47. Each wafer will make 12 devices. A company could make the silicon 

wafers for $47 dollars and send them to labs who would only have to pour the PDMS, which would 
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be inexpensive for them. For us to pour the PDMS as well, each device costs around $4.91. But a 

company could sell the silicon wafers instead of manufacturing the PDMS molds, so each device 

would come out to around $3.91, 1 silicon wafer being $47. The device is very reproducible. Once 

the design is made in DraftSight, the steps following are very standard procedures. The photomask 

is made from the computer image and the design is transferred to the silicon wafer. PDMS is then 

poured over the wafer. If the protocols are followed correctly, the device will be very reproducible.   
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Chapter 7: Final Design and Validation  
7.1 Device Fabrication 

1. Devices were created using the “DraftSight” software. Features were dimensioned and the 

polarity was indicated to determine which features were raised and which were channels. 

2. 1 silicon wafer was produced with 12 devices, including some duplicates.  

3. On the photomask, the features that would stay as solid PDMS were clear and the channels, 

wells or inlet/outlet holes were black.  

4. The Designs were sent to CAD/Art Services Inc. in order for a photomask to be produced 

with our devices.  

5. Using the standard photolithography process described in Appendix B, the designs on the 

photomask were transferred to a silicon wafer.  

6. PDMS was then poured over the wafer and baked at 65 degrees C overnight after the wafer 

was fluorinated; the full soft lithography process is described in Appendix C.  

7. The devices were cut out from the PDMS slab, inlet and outlet holes were punched, and the 

device was plasma bonded to a glass slide. The protocol for plasma bonding is also 

described in Appendix C.  

8. Devices were then ready to be tested. 

7.2 Device Setup 
1. A three-way valve was connected to two syringes and a luer valve. The luer valve was then 

attached to plastic tubing. The syringe setup is shown in Figure 19. 
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2. One syringe held about 5 mL of the suspension to flow into the device. The second syringe 

had about 1 mL of a solution used to flush the device to minimize dust before the solution 

would flow into the device.  

3. The plastic tubing connected to the luer valve was inserted using a metal pin into the inlet 

of the device, shown in Figure 20. A second set of tubing and pin was inserted into the 

outlet and ran into a small petri dish to collect the fluid. 

 

FIGURE 20: TUBING AND METAL PINS 

INSERTED INTO DEVICE 

FIGURE 19: SYRINGE SET UP 
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7.3 Proof of Concept Testing 
1. The detailed protocol to make the Tween20 surfactant is described in Appendix D. 

2. About 90 uL of the Tween20 was added to 100 mL of boiling DI water and mixed for about 

30 seconds. This created a 0.1% Tween solution. 

3. About 2.0 mL of the Tween and water solution was added to 5g of the fluorescent beads. 

4. The solution with the beads was spun for 5-10 minutes and the clumped beads from the top 

of the conical tube were removed. 

5. Then 0.25g or 0.5g beads (Depending on the desired density of the suspension) and Tween 

were added to 10 mL mineral oil. 

6. The conical tube was inverted to mix the beads into the oil. 

7. Approximately 5 mL of the solution was added to the top vertical syringe.  

8. Approximately 1 mL of mineral oil from the left horizontal syringe was pushed through the 

device to clean out any dust particles. 

9. The syringes were primed to remove bubbles.  

10. The syringe setup was placed about 12 inches above the device to create hydrostatic 

pressure. For this device, the flow rate did not need to be precise, so the height during each 

trial could vary. The flow from the top syringe was turned on, allowing the beads to flow 

into the device at the inlet hole. 

11. Beads flowed through the main channels but could not pass through the small horizontal 

channels. This would cause some of the beads to get trapped in the wells.  

12. As beads exited the device, they flowed out of the outlet and into a small petri dish as waste.  

7.4 Cell Testing 
1. Water was flowed through the device to reduce particulates in the device, this created air 

bubbles in the small channels underneath the wells.  
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2. Approximately 20 uL of Pluronic-127 was pipetted into the inlet in order to coat the device 

so cells would remain in solution and not get stuck in channels and would be less likely to 

clump. 

3. Media was flowed through the device to coat the surfaces that cells would be in contact with 

and to flush the Pluronic-127.  

4. About 1 mL of media was pulled into the left horizontal syringe. 

5. A suspension of cells at a density of 20,000 cells/1 mL was added to 10 mL of media. 

6. 5 mL of the cell suspension was poured into the top vertical syringe.  

7. The media from the left syringe was manually pushed through the device to clear any of the 

remaining Pluronic-127 and dust.  

8. The syringes were primed and again, hydrostatic flow was created with a height change of 

12 inches between the syringe setup and the device.  

9. Flow from the top device was turned on, allowing cells to flow into the device. 

10. Again cells would flow through the main channel and out the outlet into a petri dish. In our 

test, the cells were too small for our devices and they were able to travel through the small 

horizontal channels.  

 

 We successfully created a microfluidic device that demonstrated potential to isolate single 

beads from a solution. These same principles can be applied to a cell suspension and the device 

could be used to isolate single cells from a tumor biopsy sample.   
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Chapter 8: Conclusions and Recommendations 
 Our device isolated single polyethylene beads. If more design iterations were to be 

performed, we believe there is demonstrated potential to isolate single cells from a cell suspension 

as well. Large-scale pharmaceutical testing could be done on these cells for applications in 

personalized medicine. The cells would remain in their own wells to ensure that their behavior 

was from that one specific cell, making it easier to understand how the patient’s individual cells 

react to the specific drugs.  

 Though our device isolated single polyethylene beads from suspension, the next step in 

development should allow for a retrieval method of these single beads, or eventually cells. Our 

device provides minimal space for the cells to grow and expand, so the cells would not be viable in 

this device for a significant period of time. If the isolated cells are retrieved from our device and 

transferred to a microfluidic cell culture platform, more effective analysis could be conducted.  

 This device or a subsequent device could also be manufactured out of a hydrogel such as 

gelatin. Cell culture would then occur in a three dimensional environment, more closely mimicking 

the way they would grow in vivo. There are existing protocols for creating devices out of a 

hydrogel. After making the PDMS mold, a hydrogel is cast over it to create an entirely hydrogel 

device.  Variable hydrogel stiffness could be obtained to match the tissue of origin of the cells being 

studied.  

 Also it would be beneficial to conduct work in a clean room. Particulate contamination, via 

dust particles, frequently clogged channels within the microfluidic device. Clogging prevented flow 

through the device and caused device failure. Decreasing the likelihood of dust entering the system 

would allow devices to function more successfully and over longer periods of time.  
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 Finally, well size could also be altered to tailor the device to more specific application or to 

isolate more specific cells. A variety of well sizes could also be used to isolate from a 

heterogeneous population as opposed to the homogenous population we used throughout the 

course of this project.  
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Appendices 
 

Appendix A: Single Cell Isolation Methods  
Method  Advantages  Limitations  Process   

Serial Dilution  
(Ishii, 2010) 

Compatible with standard 
microtiter plates, easy to 
culture  

Manual process, labor 
intensive, time 
consuming, low 
throughput, low chance 
of finding rare cells 

Cell suspensions are 
repeatedly diluted until 
only single cells remain 

Microscale Oil-
Covered Cell 
Array (MOCCA)  
 
 

Simple, no microfabrication 
required, inexpensive, array 
formation only takes 2 
minutes, number of droplets 
can be changed, only 
requires common laboratory 
supplies. 

Plasma treatment 
extends beyond the 
micropatterend filter and 
causes larger droplets to 
be formed. Variability in 
droplet size. Most of the 
process is done manually   

Glass slide is treated to 
make it hydrophobic, the 
plasma treated with an 
aluminum screen to make 
small hydrophilic circles 
where drops will form. Cell 
suspension is poured over 
glass, followed by mineral 
oil that forms and seals 
droplets 

Flow Cytometry  ‘gold standard’, High 
throughput (up to 10,000 
cells/s), cells can be sampled 
at multiple time points, semi-
quantitative data  
 
Compatible with FACS 
fluorescence activated cell 
sorting, single cells can be 
encapsulated in droplets and 
cultured  

It wasn’t designed to 
work with single cells, 
one cell can’t be followed 
or identified over time, 
expensive 

Flow cytometry (FCM) is 
an approach to 
quantitatively 
analyze multiple 
characteristics of millions 
of single cells 
and other particulate 
matter from a 
heterogeneous population 
(Brehm-Stecher and 
Johnson 2004) 

Microscopy 
(automated 
microscopy, high 
throughput 
microscopy…ect) 

Time dependent data can be 
collected and a single cell 
can be followed, qualitative 
data regarding cell division 
and expansion 

Low throughput, multiple 
cell parameters can’t be 
analyzed, a lot of time is 
spent collecting data, 
cumbersome process, 
not ideal for single cells, 
difficult to get single cells 
in wells 

Cells are fixed or placed in 
a multi-well plate, and a 
microscope takes 
hundreds of pictures of 
them, then they go through 
automated image analysis 
to find useful information 

Microwells  The number of wells, and 
their shape, size, depth and 
dimensions can be 
customized according to cell 
types and applications. 
Different materials and 
fabrication methods can be 
used. Capable of holding 
cells for a longer period of 
time. Compatible with 
microscopy  

Throughput is limited to 
the number of wells. It is 
difficult to remove cells of 
interest from the array, it 
has to be done manually 

Cells are mechanically 
separated. An array of 
wells is created, each well 
being small enough that 
only a single cell can fit 
within each.  

Micropatterning Large arrays can be made to 
increase throughput, many 

Only compatible with 
adherent cells that will 

A surface is treated to 
make cytophilic and 
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different combinations of 
surface treatments have 
been used, cells can be 
replenished easily by flowing 
media or nutrients over the 
array 

bind to the surface, can’t 
easily remove cells of 
interest, substances 
used to attract and bind 
cells can affect their 
behavior, flowing media 
over cells can cause 
shear stresses.  

cytophobic regions that 
guide cell attachment and 
arranges single cells in an 
array  

Mechanical 
Traps  

Compatible with microscopy, 
high throughput, time 
efficient, cells can be 
organized into arrays of traps  
 
Compatible with cell culture, 
can be transferred out of 
traps  

Not designed for long 
term analysis (<24hrs), 
flow has to be 
considered to prevent 
cell damage,  

Cell suspension flows over 
traps that physically 
separate single cells  

Magnetic Traps Specific cell types of cells of 
interest can be selectively 
sorted out, cells can be 
sorted according to a variety 
of factors 

Sort term analysis, 
magnetic components 
could have an effect on 
cells 

Uses immunomagnetic 
labeling or binds a 
magnetic marker to cells 
so they can be sorted and 
trapped when they interact 
with a magnetic field at 
designated time points  

Hydrodynamic 
Traps  

High throughput, cells can be 
placed in an array, 
compatible with non-adherent 
cells 

Short term analysis, 
potential harm or cell 
damage must be 
considered,  

Most common method of 
cell trapping in 
microfluidics, uses small 
channels or holes next to 
the main channel that 
allow enough flow through 
them to trap single cells as 
they pass by.  

Optical Traps  Very high precision and 
control of cellular 
arrangement, can be used to 
selectively move cells of 
interest, has been improved 
to handle higher throughput  
 
Cells can be moved within 
enclosed chambers bc no 
physical contact is needed, 
compatible w cell culture 

Extremely expensive, 
laser energy can cause 
increased heat and 
photodamage that can 
harm cells. careful, 
complex planning and 
good understanding is 
required to prevent 
photodamage 

Optical tweezers (focused 
laser beams): cells are 
trapped at the focus point 
of the laser beam, where 
they can then be 
repositioned in any 
direction 

Dielectrophoretic 
Traps  

High throughput (10,000 
cells/s), allows heat removal 
that prevent cell damage, 
sensitive enough to detect a 
rare event and sort cells 
according to it  

Controlling more cells 
increases complexity of 
the design 

Cells are moved by forces 
generated in a non-uniform 
electric field that direct 
them 
 
If target cells can be 
labeled and bound to a 
polystyrene bead they can 
be sorted from a 
population 
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Acoustic Traps  Offers dynamic control over 
cell environment  

Only capable of short 
term analysis, need 
thermal control to 
prevent cell damage 

Ultrasonic waves create 
pressure gradients that 
isolate cells 

Droplets  Low risk of cross-
contamination between 
droplets, the small volume of 
droplets allows 
concentrations to reach 
detectible levels quickly, 
droplets can be sorted and 
manipulated, cells can be 
incubated within their 
droplets, drops can be 
merged or split, high 
throughput (>10^7) 

Risk of drops coalescing, 
stabilizing droplets to 
prevent this requires the 
use of expensive 
surfactants, channel 
dimensions and 
microfluidic design must 
be extremely accurate,  

Droplets are formed to 
encapsulate single cells 
typically using an aqueous 
cell suspension 
surrounded by a carrier oil  
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Appendix B: Photolithography Process 
Preliminary Setup. Determine photolithography parameters 
Before beginning any photolithography process, the entire procedure must be planned. The primary 

determinants to spin speeds and duration of baking and development steps are the photoresist material 

and the desired resist thickness. Refer to the photoresist spec sheets for more information. For example, for 

a 80μm thick process using SU8 2035, we find the following information from the data below: 

1. Spin speed: 1600 rpm  

2. Soft-  

3. Exposure energy: 215 mJ/cm2  

4. Relative dose: 1x  

5. Post-  

6. Development time: 7 min  

The bake times directly relate to the experimental plan, but the UV exposure time must be calculated from 

the exposure energy, relative dose, the illumination intensity, and an empirical correction factor. The 

illumination intensity of the UV-KUB should be stable at 23.4 mW/cm2, and the correction factor is 1.5 due 

to the narrow spectrum of UV exposure at 365 nm. For example, from the data above, the UV exposure time 

should be: 215 mJ/cm2 x 1 (multiplier) x 1.5 (correction factor) / 23.4 mW/cm2 = 13.8 s 

 

Procedure 1. Dehydration Bake 
The dehydration bake removes residual water molecules from the wafer surface by heating up the wafer on 

a hot plate or convection oven. Removing residual moisture increases the adhesion of the photoresist on the 

substrate. 

1. Turn on the blower and light on the cleanhood. Let it run for a few minutes before working inside. 

2. Power on the PMC Dataplate hot plate in the clean hood. Ensure the hotplate surface is clean. 

 

Temp" [1], [1], [2], [0], [ENT]. The display cycles between the set temperature and current 
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temperature about once per second. 

4. Place a clean new wafer onto the hotplate surface. The whole wafer should completely fit on the hotplate 

surface so that heat can conduct evenly to the wafer. 

5. Once the plate reaches the desired temperature, heat for 5 min. To set a timer, press the following 

buttons in order: [SET], "Timer (h:m)" [4], [5], [ENT]. Or: [SET], "Timer (m:s)" [5], [5], [0], [0], [ENT]. 

6. Carefully remove from the hotplate with wafer tweezers and allow to cool to room temperature. The 

wafer is now ready for the next procedure. 

 

Procedure 2. Spin-coating 
Spin-coating is a step to apply photoresist onto the wafer. This section will outline the steps of spin coating 

SU-8, a common type of negative photoresist that is used in the MicroFabrication Laboratory. The 

procedure is similar for AZ1512, a positive photoresist, except it is deposited via syringe rather than 

pouring due to its lower viscosity. This step uses the Laurell spin-coater in the fume hood. 

Preparation stage: 

1. Turn on the spin coater using the left power strip switch under the fume hood. If the display does not 

light up, turn on the unit power switch at the back of the unit. 

2. Turn on the two 7" Dataplate hotplates (Figure 5) using the right power strip switch under the fume hood 

 

 

If foil is absent, damaged, or dirty, replace with new foil. 

3. Press [Select Process] and choose the appropriate spin program according to your desired 

parameters. If none exist yet, you must enter a new spin program. Refer to the User Manual or 

Appendix 1 for programming. If you make any changers or additions, note your changes in 
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the MFL logbook. 

Edit Program 10 

Step:001/002 Vac↓req Step:002/002 Vac↓req 

Time:00:10.0 Cpm:00 Time:00:30.0 Cpm:00 

Rpm : +00500 Loop:000 Rpm : +01600 Loop:000 

Acel: 0100 Goto:001 Acel: 0300 Goto:001 

Valv: Valv: 

Sens: Sens: 

The first step is a slow ramp to 500 rpm at 100 rpm/s and is designed to slowly spread the resist across the 

wafer. The second step spins faster to determine the final resist film thickness. Only the spin speed (in rpm) 

needs to be changed for different resist thicknesses; all other parameters should remain unchanged. 

4. Remove the spin-coater lid and verify the presence of a foil liner. If the foil is not present, line the bowl 

with foil to catch photoresist that is removed from the wafer during spinning. Ensure that the bowl 

periphery is covered above the height of the chuck and wafer, and also completely covering the bottom to 

the chuck. Rotate the chuck and ensure that the foil does not touch the chuck or impede rotation. 

5. Select [Run Mode]. 

6. Turn on the N2 supply by opening the main tank valve. Ensure an output pressure of 60-70 psi. If the 

display reads "Need CDA," open the round valve attached to the pressure regulator. 

Open the vacuum valve by aligning the black handle with the tubing  

7. Make sure that the wafer is clean and dry. Visible dust on the wafer can be removed by gently blowing the 

wafer using the nitrogen gun, which is located on the right side of the fume hood. 
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8. Position the 4" wafer alignment tool against the chuck, and using wafer tweezers or your gloved hand, 

touching only the edge, place the wafer on the chuck aligning to the marks on the alignment tool. 

9. Before removing the alignment tool, press the [Vacuum] button. A hiss should be audible, and the display 

should change from "Need vacuum" to "Ready". The wafer should now be held down on the chuck. 

10. Test your alignment by beginning the spin program. Press [START] and observe the edge of 

the wafer as it turns. It should wobble less than 5 mm. If not, press [STOP], then [Vacuum] to 

release the vacuum, realign, and return to step 8. Reset the spin program if necessary by pressing 

[Edit Mode] then [Run Mode] and ensuring the display reads "Ready". 

 

Coating Stage: 

1. Ensure the wafer is centered and the spin-coater is programmed and ready to spin. 

2. For SU8 2035 photoresists and similar high-viscosity materials, pour the resist directly from a 

50 mL conical tube. It will flow very slowly. Pour approximately 8-10 mL of resist onto the 

wafer in one continuous motion, with the tube far enough to avoid contact with the wafer but close enough 

to prevent thin filaments of resist from forming: about 1 cm. Once the resist blob covers about 5cm 

diameter, quickly move the tube toward the edge while tilting the tube upwards and twisting to prevent 

drips on the outside of the tube.  

3. Press the [START] button of the spinner to start spin coating. The spin coating process takes 

about 1 minute, depending on the program. [OPTIONAL:] Near the end of the second spin step, 

use a piece of Al foil, rolled into a rod to collect resist streams that fly off of the wafer. Do not 

touch the edge, but bring the rod close. This will clean up the resist at the edge and somewhat 
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reduce the edge bead, or thicker later at the edge due that forms due to surface tension. 

4. The spinner will stop automatically when spin coating is completed. 

5. Verify that the photoresist has been uniformly coated. If striations and streaks are 

observed, the spin coating was not successful. Some causes may include: 

- dust particles on the surface (clean it better), 

- bubbles in the photoresist (heat the resist tube to 40-  

them; see resist datasheet for more information) 

- insufficient resist volume applied 

6. Press [Vacuum] to release the chuck vacuum. 

7. When the last wafer has been coated, close the vacuum and CDA valves at the N2 tank. 

 

Procedure 3. Prebake (Soft Bake) 
The prebake (Soft Bake) procedure is required to densify the photoresist following spin coating and 

evaporate the solvent. In order to reduce thermal stresses due to the substantial difference in coefficient of 

thermal expansion between Si and resist, the temperature should be raised and lowered gradually in a 2-

 

This step uses the two 7" Dataplate hotplates in the fume hood. 

 

Set the timer for the desired time at this temperature, and cover the wafer with a foil tent. 

 

time at this temperature and cover with a foil tent. Use wafer tweezers to lift up the edge, but 
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don't grab the wafer edge, since the resist is still very soft. Instead, slide the "removal tool" underneath and 

lift. 

room temperature. Be sure to place your hand underneath as you move the wafer from the fume hood to 

clean hood: if you drop it, it'll shatter. 

 

Procedure 4. UV exposure 
The UV exposure procedure exposes the photoresist layer to collimated 365 nm UV light via an 

LED source through a photomask. A negative resist becomes cross-linked and insoluble in developer when 

exposed, whereas a positive photoresist becomes soluble in developer when exposed. This procedure 

assumes that a transparency photomask will be used in direct contact with the resist layer. This step uses 

the UV-KUB exposure system in the clean hood. 

Preparation stage:  

1. Turn on the UV-KUB via the power switch at the back left, just above the power cord. Press the silver 

power button on the front panel, lower right. The touchscreen should light up and display "UV-KUB" 

2. Touch the screen to reach the main menu. Touch [Settings] and [Drawer] to unlock the drawer. Wave 

your hand near the door sensor at the lower left to open the drawer. If there is a wafer or mask present, 

remove them. Place the 4"x 5" glass slide on the tray and wave near the door sensor to close it. 

3. Return to the [Settings] menu (touch the [X] in the upper right of the screen). Touch 

[Illumination] to calibrate the UV intensity. It should display about 23.4 mW/cm2 through the 

glass plate. If not, adjust your exposure time calculations in "Preliminary Setup".  

4. Return to the main menu and select [Full Surface] then [New cycle] then [Continuous] 
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5. Program the desired exposure duration and intensity. Enter the time using the touchscreen numbers, 

then a unit ([h], [m], [s] for hours, minutes, seconds), then [v] to confirm. Note that 

decimal values are not permitted, so round to the nearest second. Next enter the intensity in %, usually 

100%, and [v] to confirm. 

6. Test the exposure by touching [Insolate]. The drawer will open. Wave it closed. The display should read 

"Loading in Progress". Touch the screen to start the exposure. Verify that the countdown timer begins at the 

proper duration. 

7. The exposure will end automatically and alert with a loud beep (silence by touching the screen). The 

drawer will open automatically. Remove the glass slide if present. 

 

Mask alignment stage: 

1. Transfer the room temperature, resist-coated wafer to the UVKUB tray, centering it in the circular 

pattern. 

2. Observe the position of any defects in the resist layer. You will try to rotate your photomask such that 

these defects are removed during development; i.e. they are covered with black mask regions if a negative 

resist, or are covered with clear mask region if a positive resist. 

3. Cut out the photomask circle using scissors, taking care not to kink the transparency film. Ensure it is free 

of dust, and gently wipe with a lint-free cleanroom wipe or blow with the N2 gun if necessary. 

4. Place the photomask over the resist-coated wafer and orient it such that any defects will be removed 

during development 

5. Place the 4" x 5" glass slide over the wafer and mask to keep it flat and in direct contact. First tilt the 5" 

side to the back corner supports, then gently move it toward you so it rests on the bottom tray surface. 
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Finally, gently lower the glass plate onto the wafer, ensuring it is fully covering the mask and wafer, and that 

it did not move the mask while lowering. 

 

Exposure stage: 

1. When you are satisfied with the mask orientation and glass plate placement, wave the door closed. Touch 

the screen. 

2. When is asks: "What do you want to do?", touch [Continue] on the screen. 

The last used program will begin automatically after 1-2s. Verify the correct exposure. If anything is awry, 

immediately press the large red button to abort and retry. 

3. The exposure will end automatically and alert with a loud beep (silence by touching the screen). The 

drawer opens automatically. 

4. Gently lift the glass slide with wafer tweezers and set aside. Gently lift the photomask with wafer 

tweezers and set aside.  

5. Observe the resist surface. At this point, no pattern should be easily visible. If it is, the exposure time was 

too long. 

6. Wave the drawer closed when done exposing, then touch the screen and select [Cancel]. 

 

Procedure 5. Post-Exposure Bake (PEB) 
The post-exposure bake completes the process of crosslinking a negative resist or solubilizing a positive 

resist. As in the prebake, a two-step heating and cooling is required to minimize resist layer thermal 

stresses. This step uses the two 7" Dataplate hotplates in the fume hood. 
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1. Transfer the wafer from the UV-

underneath as you move the wafer so it doesn't drop. Set the timer for the desired time at this PEB 

temperature. 

2. Observe the resist surface. With ideal exposure, the mask pattern will become slightly visible in 5-30 s. 

Cover with a foil tent. 

3. Transfer the wafer from the 65 

time at this temperature. 

surface to cool to room temperature. At this point, the mask pattern should be clearly visible. If not, 

exposure and/or baking times were too short. 

 

Procedure 6. Development 
The development step dissolves away the unexposed negative photoresist (or exposed positive 

photoresist). It is performed by immersing the wafer in developer liquid and agitating until the resist is 

dissolved and only the insoluble pattern remains. This procedure uses a glass dish and developer chemical 

in the fume hood. Developers are located in the flammable cabinet below the fume hood, left side. 

1. Ensure the glass dish is clean. Clean and dry with a cleanroom wipe if necessary. Pour developer in the 

dish to about 0.5-1 cm depth. 

2. Immerse the wafer in developer and gently slosh/agitate, taking care not to splash developer out of the 

dish. Start a timer on the hotplate with the desired development time. 

3. Observe the wafer periodically. Bare Si regions will become visible after ~30s - 1 min. The resist at the 

edge is thicker than in the center, and therefore tends to be the last part to dissolve away. 
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4. When all resist appears dissolved, remove it from the developer bath with wafer tweezers and run under 

a gentle stream of water in the hood sink. Grasp the wafer in your hands at the edges to ensure it doesn't fall 

and break! Note the time of development in your lab notebook. 

5. After both front and back sides are rinsed in H2O, dry both sides with the N2 gun. Bring the nozzle close 

to the wafer and sweep side to side, especially in areas with small resist features. 

6. Inspect the wafer as described in Procedure 7 below, and then perform a final cleaning development by 

holding the wafer with tweezers horizontally over the dish and squirting a small amount of fresh developer 

on the wafer. Gently slosh side-to-side for about 15s. Rinse with H2O and dry with a N2 gun. 

 

Procedure 7. Inspection 
Inspection is a step to verify general process quality and the development process. This section 

will outline the main feature distortions that are encountered in photolithography process. The 

Zeiss Stemi-2000 stereo microscope is equipped with a fiber-optic light ring and is used to visualize the 

wafer in reflectance mode. 

 

After initial development and rinsing, the wafer will appear dirty. This is OK! It is due to the resist that has 

dissolved in the developer and will be cleaned to a shiny surface after brief wash with fresh developer. Also, 

sharp corners and large resist fields will likely display surface cracks. This is also OK! It is due to the 

thermal stresses during bakes, which were minimized by gradual heating and cooling but not fully 

eliminated. These cracks will be eliminated with the Post-bake, Procedure 8. 

 

1. Development time. Pay attention to the smallest features in the resist pattern. Lines should be sharp, with 

no evidence of resist material in regions where it should be removed. If not, development is incomplete. 

Return the wafer to the developer bath and repeat for ~30s, then rinse, dry, and re-inspect. Instead, if the 
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resist layer that should remain looks especially cloudy or rough, the wafer may be over-developed. 

Additionally, overdevelopment may narrow a resist feature or widen a resist "hole", and underdevelopment 

may do the opposite. 

2. Bake times and temperatures. The extent to which a feature deviates from its ideal size is a 

function of the exposure time, prebake temperature, prebake time, development temperature and 

development time. Any of these parameters could be the cause for overdevelopment or underdevelopment 

and it is therefore important that one understand some important troubleshooting techniques. The key idea 

troubleshoot the distorted feature is to observe the effect of changing a parameter while holding the other 

parameters at constant. The following example illustrates this idea. 

It can be observed that by changing the exposure time while holding the other parameters at constant, there 

is a time window where the feature size is optimal, i.e. between 15s and 25s in this example. If the changing 

of this parameter does not produce the desired feature size, the problems are most likely to be caused by 

other parameters or combinations of several parameters. Repeated troubleshooting with other parameters 

should be carried out. 

 

Procedure 8. Post-bake 
The Postbake procedure is required to stabilize and harden the developed photoresist prior to 

processing steps that the resist will mask. Typical post-

90-  

 

 

off then the 

timer ends, by pressing "Auto Off" [8]. Cover with a foil tent. 

 



 
 

 

74 
 

~30mins, then turn off and slowly return to room temperature. This will take around 1 hr total. 

4. After the wafer has returned to room temperature, inspect the wafer again and verify that surface cracks 

have disappeared. Document selected microscope fields with a camera. 
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Appendix C-Soft Lithography SOP 
 

PROCEDURE 1: Fluorination of the Micropatterned Substrate  
This procedure facilitates mold release by covalent treatment of Si or glass surfaces with a fluorosilane 

chemical by vapor deposition. The treatment renders the Si or glass hydrophobic, and maintains the 

Micropatterned SU8 features as long as possible without delamination by reducing the forces applied 

during PDMS de-molding.  

1. Set up the vacuum dessicator inside a fume hood. Line the bottom surface with foil if damaged, missing, 

or dirty. Prepare a support ring (cardboard or other material) and line up Si wafers (or glass slides) along 

the inner part of the ring, with the side to be treated facing inwards. 

2. Make aluminum foil boat big enough to hold 40 uL (about 1 drop) and place in the center of the platform.  

CAUTION (Tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (TFOCS; Gelest, SIT8174.0; or United 

Chemical Technology, 6H-9283) is corrosive and toxic! Avoid direct contact and always handle it in the 

fume hood. 

3. Pipette 40ul of the TFOCS chemical directly from stock bottle and place into the aluminum foil boat you 

just made. Remove the pipette tip by hand and gently place into the vacuum chamber (Do not eject it!)  

4. Close the chamber and vacuum for 1 hour.  

5. After 1 hr, remove the treated Si wafers (or glass). If any hazy film appears, remove with 15 - 30s contact 

with isopropanol, rinse with water, and dry in an air stream.  

6. Fluorinated pieces are ready to use right away. Verify hydrophobicity by observing contact angle of water 

drops on the treated surface. Water drops should roll off the surface, leaving it dry.  

7. After a few hours, the chemical liquid will have evaporated. Discard foil boat and pipette tip in hood 

waste bag.  
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PROCEDURE 2: Preparing the PDMS Mixture  
This procedure prepares a PDMS mixture for casting. We use Sylgard 184, which comes as a kit with Part A 

(monomer) and Part B (cross linker). A typical ratio is 10:1 (w/w). For simplicity, we typically weigh out 

the components into a single weigh boat on a balance.  

1. Set up a paper tower on the balance, ensuring it does not hang over the edges, and a large weigh boat. 

Remove any visible dust.  

2. Determine your desired PDMS volume. Each wafer requires about 50-60g PDMS. Ideally, you should make 

about 80-120 g PDMS per weigh boat, up to three boats at a time.  

3. Tare the weigh boat (set weight to 0.0g). Pour Part A) into the weigh boat until the desired weight (e.g., 

91.2g). Then divide this value by 10 (for 10:1 ratio), tare again to 0.0g, and pour Part B to the desired weight 

(e.g. 9.1g). Within -0.2/+0.5g is ok.  

4. Using a transfer pipette, slowly and gently fold (as in baking) the low-viscosity Part B into the high-

viscosity Part A. Once Part B is no longer visible on the surface, increase your folding speed. Ensure that all 

edges have been mixed. Mixing should take at least 1 min, ideally >2. (Technique is more important than 

time here). There should be lots of bubbles!  

5. Place the weigh boat into the vacuum chamber. If more than one is prepared, invert a second weight boat 

on top, rotated such that the PDMS in the lower boat is visible, and place the second PDMS boat on top. 

Repeat one more time for three total, as needed.  

6. Apply a vacuum and observe bubble enlargement. Release the vacuum after 1 min as necessary if bubbles 

appear as though they may overflow. This pops many of them, and reduces the likelihood of spillage.  

7. Degas for 1 hr. At this point, all bubbles should be gone and PDMS is ready to pour in Procedure 3. Be 

careful when releasing vacuum! Air rushing in could knock over the PDMS boats.  

 
 
 

PROCEDURE 3: Casting and Curing PDMS  
During this procedure, mixed PDMS is poured over the Si/SU8 mold master in a dish or foil vessel, bubbles 

and/or dust particles are removed, and the PDMS is cured by baking at 65C for >3hrs.  
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1. Prepare casting vessels by bending a foil sheet over the bottom of a 500 mL Erlenmeyer flask. Flatten the 

edges until they are about 10 - 15mm high. Ensure the bottom surface is flat.  

2. Set up the masters to be cast on the bench top covered with absorbent mats and a paper towel. If dust is 

visible, blow with the air gun. Weigh the master and vessel, recording the weight.  

3. Once the PDMS mixture has been degassed for 1hr, and surface bubbles are gone, bring them to the 

masters.  

4. Pour PDMS mixture across the wafer, from one side to the other, in a continuous movement. This reduces 

the number of bubbles formed. At this stage only the wafer needs to be covered.  

5. Weigh the PDMS+master+vessel and subtract the master and vessel weight. About 60g PDMS is the target. 

If more is needed, bring the vessel back to the absorbent pad and pour more. Repeat until the desired PDMS 

weight is achieved.  

6. Cover to prevent dust and observe after a few minutes any bubbles or dust remaining.  

7. Surface bubbles can be removed by mouth blowing (from about 10 cm away).Deeper bubbles can be left 

until they rise to the surface. Bubbles adherent to the Si or SU8 surface can be dislodged by tilting the vessel 

back and forth (causing shear forces). Be careful not to spill any PDMS! It's messy, sticky, and hard to clean off  

8. Large dust particles can be moved or aspirated with a disposable transfer pipette.  

9. Once you are satisfied with the casting, place it onto a level shelf in the 65C oven, and bake for at least 3hrs. 

Leaving overnight is also OK.  

 

PROCEDURE 4: Preparing a PDMS device  
This procedure completes a PDMS device, including punching inlet and outlet holes for microfluidic devices.  
1. Demold the cured PDMS from the Si master. Peel off the foil and carefully remove the Si wafer. If PDMS 

coated the underside of the wafer, you may need to cut it out with a scalpel or razor blade. Store the Si master 

in a safe place, ideally a wafer holder.  

2. Set up the rubber cutting pad. Use a straight razor blade to identify the indentation line that separates 

adjacent devices, if present. Then, align the razor vertically and apply pressure to complete the cut. If 
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necessary, move the razor to the next position and cut with downward pressure. Do not slide the razor 

through the PDMS! It will deform as you cut.  

3. Once your device has been trimmed, determine the size of any inlet and outlet holes.  

4. Apply Scotch Magic tape to the micropatterned side. If desired, mark the center of each hole for easier 

viewing.  

5. Flip over the device, tape and channel side on the rubber cutting pad.  

6. Using a dermal punch of desired diameter, punch downward and in a straight line until contact with the 

rubber cutting pad.  

7. Lift up the device, leaving the punch inserted, and a cored PDMS piece should protrude from the 

channel/tape side. Remove it before gently removing the punch.  

8. Repeat steps 6-7 until all holes are punched.  

9. Clean the punched holes by squirting water through each hole with a wash bottle. Repeat with ethanol and 

water again. Then dry in an air stream. This process removes any PDMS particles that may have been left 

behind during punching.  

 
 

PROCEDURE 5: Plasma Bonding  
This procedure covalently binds PDMS to glass, Si, or PDMS by oxygen plasma treatment of clean surfaces. 

After plasma activation, surfaces are brought into contact, forming an instant and irreversible bond. Oxygen 

plasma is also useful for cleaning substrates and vaporizing organic materials. (This is a relatively slow 

process, and it will remove organic thin films, not clean off dust.)  

Materials and equipment needed: glass tray, test slide and scrap PDMS piece, tape, plasma cleaner, vacuum 

pump  

Plasma bonder/cleaner setup:  

(Set-up required only if plasma system has not been used recently)  

1. Turn on the vacuum pump and open the "specialty vacuum" valve on the fume hood (labeled "SV"). A 

hissing noise should be heard in the chamber.  
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2. Close both valves on the round metal door. Align it to the glass vacuum chamber, and after a few seconds 

ensure that it is firmly held onto the chamber. Support it and do not let it drop!  

3. Start a timer. After about 15s, turn on the power and set power level to [High]. A purple glow should be 

visible through the vent holes after a few seconds.  

4. Once a purple-glowing plasma is visible, slowly open the needle valve a very small amount to let in room air 

and oxygen. The plasma should brighten and become more orange. If it dims too much, close the needle valve 

slightly and observe the bright plasma return after a few seconds.  

5. Allow the chamber to clean for 1-2 minutes. 

6. When plasma treatment is completed, turn off the unit power and the vacuum pump power. Slowly open the 

exhaust valve until the vacuum has been released. HOLD ONTO THE DOOR, or it will fall!  

 

PDMS Bonding:  
1. (Optional) Prepare a test bonding sample, such as a scrap of clean PDMS and a clean glass fragment (or two 

PDMS scraps). Remove dust with tape. Then follow Steps 2-10, and if successful, repeat Steps 2-10 with the 

desired parts to be bonded.  

2. Seal the PDMS on the tray slide with treatment side facing up. Next to it, place the glass fragment (or the 

second PDMS piece).  

3. Insert the tray into the chamber. Ensure the door valves are closed, turn on the vacuum pump, and align the 

door until it is held in place.  

4. After ~5s, turn on unit power and wait for purple plasma as described in steps 3-4 above. Start a time when 

it appears and adjust needle valve to generate brighter plasma.  

5. Treat PDMS surfaces for 60s. 

6. Turn off unit power and the vacuum pump power. Slowly open the exhaust valve until the vacuum has been 

released. As before, HOLD ONTO THE DOOR, or it will fall!  

7. Carefully remove the plasma-activated PDMS and glass.  

8. Gently invert the glass onto the activated PDMS surface. Bonding is covalent and instantaneous, so there is 

no opportunity to realign! Make sure you align before any contact, and be as gentle as possible.  



 
 

 

80 
 

9. Once the PDMS is sealed, apply light pressure the remove any air bubbles that may have been trapped 

inside.  

10. Wait about 15 - 30s, and test an edge for bonding by very gently peeling up at the corner. A successfully 

bonded PDMS piece will not peel away from the substrate, and will break internally before debonding!  
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Appendix D- Tween 20 Surfactant 
Preparing Tween Solutions 

● Fill the container for making the solution with desired amount of de-ionized 

water and place it on the heating surface, such as the hotplate. 

● Heat until the water reaches a rolling boil and leave water boiling for ~5 

minutes. 

● While the water is heating, using a precise scale and a pipette measure 

0.10grams of Tween per each 100ml of water. (Example: 1500ml de-ionized 

water, 0.10g x 15 = 1.5g of Tween) 

● Slowly add pre-measured Tween to hot water and mix with immersion mixer 

for about 30 seconds. (Wait until water cools and any bubbles have settled 

before using solution) 

● When finished, the solution should look clear and uniform. 

Using Tween Solutions to Suspend Particles 

The specifics of this section will pertain to creating Cospheric's Density Marker Beads 

(DMB) products which are defined to have 20% solids in 2.5ml. The process is easily 

modified to other situations. 

● Using a 2.5ml vial, add 0.5g of the desired microspheres. (Any container and 

hydrophobic particles may be used). 

● Using a pipette or syringe, dispense 2.0ml of the 0.1% Tween solution on top of 

the spheres. 
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● Weigh the microsphere/Tween solution and add any additional Tween solution 

to each vial to ensure vial weights are equal to better balance the centrifuge 

while it is operation. 

● Secure the cap on the vial. 

● Centrifuge for 5 – 10 minutes to get the spheres wetted and into solution. 

http://www.cospheric.com/tween_solutions_density_marker_beads.htm 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cospheric.com/tween_solutions_density_marker_beads.htm
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Appendix E: BME Educational Objectives 
 

3. An ability to design a system, component, or process to meet desired needs within 

realistic constraints such as economic, environmental, social, political, ethical, health and 

safety, manufacturability, and sustainability (ABET 3c) while incorporating appropriate 

engineering standards (ABET Criterion 5) (need to assess each of these separately, but since 

‘or’ and “such as” not all need to be met separately). 

i) multiple realistic constraints (economic, environmental, social, political, ethical, 
health and safety, manufacturability) – page(s) 54-55 

ii) appropriate engineering standards -  page(s) 23-28 
 

4. An ability to function on multidisciplinary teams (3d).  page(s) 8 

 

6.   An understanding of professional and ethical responsibilities (3f) 

i) Professional – page(s) 23-27 
ii) Ethical – page(s) 54 

 

7.   An ability to communicate effectively (3g). page 24 

 

8.  The broad education necessary to understand the impact of engineering solutions in a 

global, economic, environmental, and societal context (3h). (both economic AND 

environmental need to be addressed) 

i) Economic – page(s) 54 
ii) Environmental – page(s) 54 

 
10.  A knowledge of contemporary issues (3j).  page(s) 13-20 

 

 


