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Abstract

This project sought to determine whether Amazon EC2 is an economically viable environment
for scientific research-oriented activities within a university setting. The methodology involved
benchmarking the performance of the cloud servers against the best systems available at the WPI
ECE department. Results indicate that the newest ECE server outperformed the best EC2 instance
by approximately 25% in most cases. A comprehensive cost analysis suggests that EC2 instances
can achieve up to 60% better cost to performance ratios in the short-term when compared against
the ECE servers. However, a long-term projected cost analysis determined that the overall cost of
owning a large set of reserved instances comes out to almost 60% more than the cost of comparable
in-house servers.
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1 Introduction

Most private institutions run lengthy simulations and calculations in the process of
conducting scientific research. To meet their computing needs, they typically invest in state of the
art supercomputers and servers designated for general use by faculty and students. Owning a
server generates a cumbersome amount of overhead costs, including the initial cost of purchasing
the machine, the procurement of physical space, annual power and cooling costs, hard disk and
power redundancy, and various other maintenance costs. In addition to the monetary costs,
servers also carry certain usage and time constraints. During peak usage, public servers are
exposed to high traffic situations which hamper the performance of all users. Utilizing task
prioritization can help to mitigate this effect, but it is often either used incorrectly or is not an
option. In addition to periods of heavy traffic, servers also experience extended stretches of time
when they have nothing else to do but idle, which results in a waste of resources.

Rather than purchasing in-house servers, some institutions opt to either lease remote
servers or purchase virtual computing resources; the latter, and the focus of our research, is
known as cloud computing. Modern cloud computing services allow anyone with a credit card to
rent out whatever scale of computational resources they require for almost any period of time.
Amazon, Google, and Microsoft are just a few of the corporations that currently provide this form
of computing. Their cloud computing services include the Amazon Elastic Compute Cloud (EC2),
Google Apps, Microsoft Azure respectively.

Amazon’s cloud resources are elastic, meaning that it is possible to modify the amount of
resources being allocated at any given time. Rather than being charged for wasted use of
processing power—or idle CPU time—the user is only charged for the time that the cloud is in
use. Clouds also transfer the burden of providing physical space, power, cooling and disk backups
from the institution onto the service provider. There are no wait periods or maintenance costs,
and the cloud services are equipped with a large variety of instance types that provide a wide
array of computing power. Instances range from small and trivial instances—which could be used
for simple web servers—to larger instances with more resources, used for heavier scientific
computation.

A considerable amount of prior research has focused on utilizing Amazon EC2 for cluster
computing, while relatively few studies have investigated using the service for single-node
applications. The few analyses that have been conducted on single-node computing state that
EC2 shows a small yet acceptable virtualization overhead—the amount of resources that are
wasted in providing a virtual environment—when compared to physical servers [1, 2]. There has
been little notable examination into the use of EC2 as a replacement to permanent servers, with
one of the few exceptions demonstrating that EC2 is capable of providing a cost benefit of
approximately 37% for an enterprise-level IT system. [3]. Another relevant analysis involved
comparisons between desktop grid computing and cloud computing, which proposed that the
latter could provide a cost benefit of almost 40% or more [4]. However, this sort of analysis
remains relatively uncommon in past work.

The focus of this project was to run a selection of benchmarks on EC2 that would emulate
single-node applications, due to the inadequate documentation in prior work on EC2’s capabilities
in this respect—particularly in university-based environments. The benchmarks that were
employed included single and multi-threaded CPU and memory-intensive applications, as well as
a real-world research program. Each was run across every relevant type of on-demand instance
and physical computer in order to develop a complete set of data. We also worked to create a
comprehensive cost analysis which examines the different costs associated with owning an
in-house server versus purchasing virtual resources. We also supplement this analysis by
examining the cost versus the time to solution for several different scenarios on EC2.

We found that the physical server used for our testing outperformed the most comparable
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EC2 instance by approximately 25% across all of the benchmarks that were run. We then
compared the costs associated with maintaining a full deployment of in-house servers versus
virtual resources from EC2 at an the institutional level, and found that that the cost difference
between the two for a 9 year lifespan was sizable. The analysis showed that EC2 is about 57%
more expensive, given almost identical computing resources. However, a noteworthy aspect about
EC2 that we investigated is that the service can be used to minimize the time to solution—to a
certain extent—with no increase in cost in the case of massively parallel applications. We discuss
other aspects of cloud computing that must be taken into consideration prior to making a
longterm investment in cloud services like EC2 throughout the entirety of our report.
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2 Background

The purpose of this section is to provide the reader with a general overview of cloud
computing as well as an introduction to Amazon EC2 and the services it provides. We then
explore prior studies that researchers have conducted on the EC2 service and discuss the gaps
that were found in their work. Finally, we discuss in detail the benchmarks that were used in this
study, and their relevance to our project goals.

2.1 Cloud Computing

The idea of cloud computing, a virtual form of network-based processing, was first
introduced in the 1960s in the hopes that computing could someday become a public utility.
Rather than investing heavily in a physical computing infrastructure, users could instead purchase
virtual resources in the same way that one would pay for any other public utility, such as gas or
electricity. Cloud computing is essentially made up of a set of data centers located at different
geographic locations that provide users with scalable remote computational resources. These data
centers can be either private or public—the former is commonly reserved for organizations or
corporations for private use, and the latter is widely available to the general public for personal
use [5]. The on-demand nature of these services allows immediate acquisition of any amount of
computing power, without requiring any commitment to the resources by the customer.

2.2 The Amazon Elastic Compute Cloud

Amazon was one of the first companies to become interested in the development of cloud
computing, and officially launched their flagship service in 2008. EC2 currently offers a wide
array of instances, each of which is priced differently depending on its grade of computing power.
The computing power is expressed in terms of EC2 Compute Units (ECUs), which are each
equivalent to 1.0-1.2 GHz of a 2007 Xeon or Opteron processor [6]. These instances (excluding the
cluster computing resources) are shown in Table 1.

Type Grade Architecture CPU Cores Memory Storage
Price [Linux]

(USD/hour)

Micro Micro 32/64-bit < 2 ECU < 2 613MB EBS only $0.020

Standard Small 32-bit 1 ECU 1 1.7GB 160GB $0.085

Large 64-bit 4 ECU 2 7.5GB 850GB $0.340

XLarge 64-bit 8 ECU 4 15GB 1690GB $0.680

High
XLarge 64-bit 6.5 ECU 2 17.1GB 420GB $0.500

Memory

Double
64-bit 13 ECU 4 34.2GB 850GB $1.000

XLarge

Quadruple
64-bit 26 ECU 8 68.4GB 1690GB $2.000

XLarge

High
Medium 32-bit 5 ECU 2 1.7GB 350GB $0.170

CPU

XLarge 64-bit 20 ECU 8 7GB 1690GB $0.680

Table 1: Instances offered by Amazon EC2 (As noted on 2/15/2011)
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EC2 provides customers with many different customizations, such as user-adapted operating
systems, multiple storage options and real-time Graphical User Interface (GUI) based resource
monitoring consoles. This Amazon Web Services (AWS) interface grants the user the ability to
fully control each aspect of their systems’ resources [6]. Investing in EC2 frees the user from the
maintenance, cooling, powering and location costs associated with private servers while
simultaneously granting them access to almost any amount of easily scalable computing power
with the AWS console’s user-friendly GUI.

Guilbault and Guha [7] praised the ease of use and resource acquisition via Amazon EC2
during their experiment, for which they required hundreds to thousands of computers at a time.
The virtual resources offered by Amazon EC2 were ideal for the experimenters to acquire a
considerable amount of computational power without resorting to a large number of physical
machines to accomplish the same goal. There are, however, certain disadvantages that must be
taken into consideration when determining the viability of using the EC2 systems.

It was determined in the early stages of the project that the newly introduced Micro
instance was not suitable for scientific applications due to its highly reduced capabilities. Because
of this, we chose not to include the instance in our benchmarking process. In addition to the
Micro instance, we were also unable to employ the Standard Small and High-Compute Medium
instances, due to their incompatibility with 64-bit operating systems.

2.3 In-House Servers

The Electrical and Computer Engineering (ECE) Department at Worcester Polytechnic
Institute (WPI) granted us access to a Dell PowerEdge R610 server (Tesla) and a Sun
Microsystems Sunfire X2200 M2 server (Henry). These servers are scientific computing devices
that are publicly available to students and faculty members for research purposes, which is why
they were chosen as a baseline for benchmarking against the EC2 instances. The specifications of
the two servers are shown in Table 2.

Server Operating System Architecture CPU Cores Memory

Tesla

Red Hat Enterprise

64-bit

2.93 GHz

8 48GBLinux Server 5.5 Intel Xeon

X5570

Henry

Red Hat Enterprise

64-bit

2.81GHz

4 20GBLinux Server 5.5 AMD Opteron

2220

Table 2: WPI ECE Department Server Specifications (As noted in March 2011)

2.4 Prior Work

This section discusses relevant prior work that has been published in regards to EC2,
presents the gaps observed therein and then explains how our research has filled these gaps.

2.4.1 Cluster vs. Single-Node Computing

A considerable amount of previous research has suggested that EC2 is not advisable for use
in I/O-based or tightly-coupled applications [8, 9]. I/O-based applications are generally
applicable to cluster computing, and due to EC2’s reduced performance in this area, it has been
observed that its cluster computing capabilities have also been compromised [2, 8, 9, 10].The
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research conducted by Akioka and Muraoka [8] employed a high-performance linpack (HPL)
benchmark, which solves linear equations by using a specific form of Gaussian elimination. The
researchers took the specifications of the instances, calculated their theoretical performance and
compared it to the actual performance. For the HPL benchmark, they found that the instances
vastly underperformed compared to their baseline machine, with results showing performance
that was up to 50% below what was expected. Additional studies that evaluated the performance
of Amazon EC2 as a cluster computing resource have shown comparable results [9, 10, 11, 12].

Relatively little research has examined single-node computing using Amazon EC2. The
study conducted by Berman et al [1] examined the performance of CPU, memory and
I/O-intensive aspects of workflow applications. Their results show that EC2 performed between
1% and 10% worse than the capabilities of a supercomputing physical server. They also
conducted a brief cost analysis that detailed the expenses incurred while running their
benchmarks. The study did not specifically mention any cost-benefit analysis for the specific
instances used or provide any type of cost comparison with a physical server.

Research conducted by Rehr et al [2] tested both the serial and parallel performance of
three EC2 instances versus single and multiple nodes of a supercomputing cluster. The Athena
cluster, a networked computing environment developed and used by MIT, was selected for this
purpose [13]. The benchmark they used is known as Gasoline, which simulates various
astronomical phenomena including the interaction of gravitational forces and galaxy/planet
formation [2]. This benchmark was run on the Standard Small, High-Compute Medium and
High-Compute Extra Large instances on EC2, as well as a single node of the Athena
supercomputing cluster. Their results indicated that the performance of the Small instance was
slightly hindered by virtualization overhead, while the performance of the High-Compute
instances was more or less identical to that of the Athena node. There was no cost analysis of any
kind described in this study.

2.4.2 Physical vs. Virtual Resources

As mentioned earlier, there has been limited research examining the migration from
in-house servers to virtual computing. This type of comparison would look at not only the
differences in the performance of a physical machine and the cloud, but also the overall cost
involved with either route. This would lead to an evaluation determining the most viable option
in terms of both cost and performance. The following studies, while relevant to this kind of
analysis, are limited in scope and fail to completely address both sides of the equation.

A case study conducted by Greenwood et al [3] looked into the migration of an
enterprise-level IT system to the cloud—more specifically, EC2. Their goal was to determine the
various cost and maintenance benefits that could be readily observed by corporations and
businesses due to such a migration. Three sets of EC2 instances were used—two Small, one Small
and one Large, and two Large—to simulate the infrastructure for a particular oil and gas
company. The overall cost benefit of migrating to each of these sets of instances, as well as the
types of support issues that resulted thereof, were then examined quantitatively. They found that
migrating the IT system to EC2 provided a 37% cost benefit over a span of 5 years (assuming the
Small and Large instance set was used) as well as reducing the number of support issues by 21%.
Despite these advantages, they also stated that there could be issues—including a lower quality of
service and customer dissatisfaction, overall downsizing of the technology staff and reduced
support resources—that would make migrating an enterprise-level infrastructure to EC2 an
undesirable option.

Anderson et al [4] published research that illustrates, to a certain extent, a performance and
cost comparison between physical computing resources and cloud computing. The study compares
volunteer desktop grid computing to cloud computing, and tests whether the EC2 service is more

5



cost-efficient. Volunteer desktop grids are essentially physical computing resources that are
donated by computer owners over a network for a group of individuals to use for scientific
problems or research [14]. The study found that cloud computing, specifically EC2, was actually
more cost-effective than developing a network of computer donors for the same computational
purpose, with a cost-benefit in the range of 40-95%. Additional studies that compared cloud
computing to desktop grids had similar findings, showing that the benefits of the former typically
outweigh those of the latter [15, 16]. These studies suggest that despite some usability constraints,
the scalability and on-demand nature of the EC2 resources are necessary for dealing with the
rising need for flexible computing, which cannot always be provided by physical resources.

2.4.3 Cost Evaluation

While there exist some cost analyses in previous work that break down the cost of using
EC2 for the purposes of the experimenters’ testing [1, 5], there has been little research that
quantitatively evaluates the cost of physical servers versus cloud computing. This lack of research
was also noted by Greenwood et al [3], who stated that there has not been much information
published on the risks involved in migrating enterprise-level IT systems to the cloud. Klems et al
[17] provide some basic conceptual suggestions for steps to follow when conducting cost
comparisons between IT infrastructures in cloud and non-cloud environments. These include
identifying business needs, comparison metrics and analyzing costs based on performance
comparisons. However this report did not publish any numerical results as the study was still in
its early stages of planning [3, 17]. Similarly, Bibi et al [18] also provided a framework involving
the hardware and software aspects of IT infrastructure—such as business premises, driver, and
software costs—which must be considered when performing a cost analysis between on-site
services and cloud computing. This study was also in its planning stages, and therefore did not
provide any quantitative results.

Amazon EC2 has documentation on performing cost comparisons between the AWS cloud
and privately owned IT infrastructure [19]. The document describes the costs that should be
considered when comparing the two types of systems, including resource usage, hardware cost,
power, redundancy, security, and staffing. The aspects of this documentation that directly apply
to our comparison between university servers and EC2 have been taken into consideration in the
analysis detailed in this report.

There is a numerical cost comparison provided by the EC2 website itself on the differences
between investing in its various instance types and dealing with a privately owned machine [20].
This analysis takes into account the costs of owning a “do-it-yourself” computer versus investing
in 1-year or 3-year reserved instances at 100% capacity. The on-demand instances used for this
analysis were 35 Standard Small and 10 Standard Large instances. According to Amazon, the cost
of using any of these EC2 instance types is more cost-effective than purchasing and maintaining a
privately owned server, with a worst-case cost difference of about 62%. It is important to note
that the comparison done by Amazon in this case emulates the expenses experienced by larger
parties such as corporations or businesses that purchase a large number of servers and either lease
server space or collocate their servers, thereby increasing facility costs. Large server labs in turn
can incur more powering and cooling expenses. This sort of comparison does not directly apply to
the servers in the ECE Department at WPI, since the university owns all buildings on campus
and handles server space and maintenance in-house, rather than leasing space or collocating.

Finally, Amazon also provides a Cost Comparison Calculator that compares the cost of
physical IT infrastructure with EC2 [21]. Due to inaccuracies associated with the costs of using
reserved instances, this calculator has not been used.

From the background information that has been covered to this point, it can be seen that
there has been limited cost comparison in prior work between utilizing EC2 instances as opposed
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to maintaining in-house servers for single-node computing applications. In addition, there has
been no in-depth analysis between the money spent versus the time that EC2 takes to perform a
benchmark (cost-to-solution vs. time-to-solution). This analysis would aid in determining the
instance best suited for a certain computing need, while supplying the expected cost and time
required to solve the problem. These are the gaps observed in the past literature that will be
examined in further detail in this report.

2.5 The Science of Benchmarking

Benchmarks are scalable computer programs that encompass a wide range of applications,
and are generally used as a means of comparing the performance of computing systems by
mimicking a user’s average workload [22, 23]. Benchmarks can be designed to test various
components of a machine, such as CPU, memory or I/O devices. In order to compare two specific
aspects, it is necessary to control all other variables to ensure the accuracy of the results. This
can be accomplished by keeping software constant across systems, making it possible to measure
differences in hardware performance between platforms. In the case of inconsistent software, the
results obtained from a benchmark on one machine can differ greatly from another machine,
simply because the version of a compiler used by that benchmark was different on the two
systems. The software that must be kept constant consists of the operating systems, compilers
and applications, thereby allowing a fair comparison between the different machines being
benchmarked.

2.6 Benchmarks and Case Study

Given that our research focused on single-node applications, we chose CPU and memory
intensive benchmarks that were not I/O or network dependent. The CPU aspect was tested by
the SPEC2006 and Pystone benchmarks, while the memory was tested using the RAMSMP
benchmark. A third benchmark that involved matrix manipulation in MATLAB was selected in
order to evaluate both of these performance factors simultaneously. Finally, we performed a case
study in MATLAB, obtained from a researcher within the WPI ECE Department, in order to
simulate “a real world application” that essentially mimics the load experienced by the servers
found in the ECE department.

The Pystone and MATLAB benchmarks were particularly useful for the theoretical
applications of our research, as they were also be used to simulate massively parallel applications
(MPAs). MPAs are essentially large programs that can be split into smaller parts, where each
section can be run on a separate machine, instance or thread. Once each individual section has
completed execution, the final results can be queried and compiled via network connections
between the machines, providing a quicker and possibly more economical means of solving a large
problem. Due to difficulties in obtaining such a program, as well as the fact that MPAs stray into
the realm of networking and I/O—which is not one of the focuses of this research—it was
determined that a suitable simulation could be created with the Pystone and MATLAB
benchmarks. This will be explained in further detail in Section 5.

The purpose of this project was to conduct research on EC2’s single-node computing
capabilities without replicating the few prior studies that have done the same. Our intention was
to find new information that supported the research that has already been completed on this
topic, while filling some of the gaps that previous work has not covered. Due to time and
monetary constraints, it was not possible to obtain some of the benchmarks used in prior work,
and so most of the benchmarks used for this project (other than the SPEC2006 suite) were not
taken from previous studies. Instead, they were researched by the group in order to ensure they
fit the scope of our research.
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2.6.1 Pystone

The Pystone benchmark, written in Python, determines how many “pystones” or iterations
of the main loop of the benchmark can be completed in one second. The main code—which
executes a series of functions that each perform string, integer or array manipulations—loops
through ten million times during its execution. The code for this benchmark is available on the
Python Core Development website [24], and is also shown in Appendix A as there were some
minor manipulations made to it by the group—mainly to have the program supply us with a
more consistent execution time. The importance behind selecting Pystone was its ability to
provide stable and consistent CPU-intensive results.

Ideally, faster machines are able to complete this benchmark in less time. A key limitation
of the Pystone benchmark is that it is not multi-threaded and thus a single instance of the
process can only run on one core at a time. However, it can be executed on multiple cores
simultaneously, by simply starting multiple instances of the process, which allowed it to be used
to simulate a massively parallel benchmark (as was mentioned in Section 2.6). Pystone’s runtime
was also long enough that a useful cost estimate could be derived from the results.

2.6.2 MATLAB benchmark

The MATLAB benchmark was originally meant to be run in GNU Octave, an open-source
software similar to MATLAB. However, due to issues standardizing the versions of Octave across
all machines being used, the benchmark (a .m file) was run in MATLAB instead. This benchmark
is a CPU and memory intensive benchmark that goes through three different sets of matrix
manipulations. The three sets are called Matrix Calculations, Functions and Programmations
respectively. The source code for this benchmark originally ran for a few seconds, which returned
results that were too small in scope to compare between machines. To counter this, a variable was
added to the code which acts as a multiplier for the size of the matrices. At the end of every
computation, the clock time is recorded by the program in order to determine the time taken to
evaluate the each step, as well as the overall time taken to run the program.

The first set, Matrix Calculations, consists of five different manipulations that the program
performs on matrices of varying size. The first matrix computation involves the creation,
transpose and deformation of a matrix whose size can be obtained by multiplying the variable
mentioned above by the given matrix size (calculated size: 6000 x 6000). The second takes a
normal-distributed random matrix (size: 3200 x 3200) and raises each element to the 1000th
power. The third sorts through a matrix of random values generated by the program (size:
8,000,000). The fourth evaluates the cross-product of two matrices (size: 2800 x 2800), and the
fifth evaluates the linear regression over a matrix (size: 2400 x 2400).

Once these steps have been completed, the program moves onto the second set of matrix
calculations, called Matrix Functions. The first function in this set calculates the Fast Fourier
Transform (FFT) over a set of random values (size: 800,000). In the second, the program
calculates the eigenvalues of a matrix (size: 320 x 320). The third calculates the determinant of a
matrix (size: 2600 x 2600). The fourth performs a Cholesky decomposition of a matrix (size: 3600
x 3600). Lastly, the fifth calculates the inverse of a matrix (size: 1600 x 1600).

The last set of problems also consists of five computations called as Matrix
Programmations. The first goes through and calculates the Fibonacci sequence (size: 3,000,000).
The second creates a Hilbert matrix (size: 9000 x 9000). The third problem calculates the grand
common divisors of 70,000 pairs of numbers. The fourth creates a Toeplitz matrix (size: 880 x
880), and lastly, the fifth creates calculates Escoufier’s equivalent vectors.

At the end of all of these calculations, the program provides the total amount of time taken
(in seconds) for all calculations to complete. Ideally, the system will finish the benchmark in the
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least amount of time possible, and the CPU performance of different machines can then be
analyzed by using the total execution time.

The MATLAB benchmark was particularly important not only because it combines both
main aspects of system performance (CPU and memory), but also because it effectively emulates
the software that is most widely used within the WPI ECE Department. It also represents a large
set of scientific calculations that deal primarily with floating-point and matrix manipulations. A
detailed version of the code for the MATLAB benchmark can be found in Appendix B.

2.6.3 RAMSpeed (RAMSMP)

RAMSMP is a cache and memory intensive benchmark written in C, that determines the
bandwidth of a system’s various memory components. Research conducted by Stefan Appell et al
[25] at the Darmstadt University of Technology utilized the RAMSMP benchmark, stating that
its results were comparable to the STREAM benchmark (another memory intensive benchmark),
as well as commending its capability to automate testing and collect results. This research, along
with its constituent RAMSMP results, was also presented at the International SPEC Benchmark
Workshop 2010 held in Germany [26].

The RAMSMP benchmark allows the user to run one of 18 memory-intensive tests at a
time, each of which determines a different aspect of the system’s memory performance. Although
each test executes differently, they all focus on testing either the reading, writing or data
manipulation bandwidth of memory operations on the system. The tests that were run using this
benchmark focused on floating-point and integer operations, since the majority of scientific
applications use these data types.

To test memory bandwidth with respect to calculations using large blocks of data, the
FLOATmem and INTmem tests first copy either floating-point or integer data from one memory
location to another. They then perform numerical operations on both sets of data including
scaling, adding and a combination of these two operations, while storing results in the memory.
The bandwidth obtained at the end of all of these operations shows the rate at which the memory
is able to manipulate different blocks of numerical data.

When testing the reading and writing bandwidths of the system’s memory, the
FLOATmark and INTmark tests read and write blocks of increasing data sizes to the memory.
The blocks begin at 2 kilobytes and increase exponentially by a factor of two until the maximum
size of the data has been reached, which is provided by the user. The bandwidth at which each
block of data was written or read from memory allows distinction between each cache level and
RAM present on the system being benchmarked, as well as the bandwidth at which integer and
floating-point data is typically written to memory. The fastest bandwidths are typically observed
in the L1 cache, while the slowest bandwidths are prevalent when dealing with reading or writing
data to and from the RAM.

One of the key limitations of the RAMSMP benchmark was that we had to be careful when
specifying the size of data to be either manipulated or written to the different levels of memory.
This was because it is possible to provide a block of data that exceeds the size of the physical
memory present on the machine, causing the system to overload its resources and force a shut
down. This could pose as a serious problem for shared servers such as Tesla and Henry that are
actively used by students and faculty. Not only could the other students’ usage of the servers
affect the amount of free memory available for testing, but a shut down of the entire server could
cause significant inconvenience or loss of data to the individuals involved. Therefore, only a small
block of memory was provided for each test—small enough such that it would not hamper other
processes, but large enough to write the data to RAM.
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2.6.4 SPEC2006 Benchmarks

The entire suite of SPEC2006 benchmarks was obtained by the group from a faculty
member at WPI. The SPEC2006 benchmark suite is designed to be a set of computationally
intensive benchmarks, primarily focusing on the processor, memory system and compilers [27].
SPEC2006 consists of the CINT2006 and CFP2006 suites, which are the integer and
floating-point benchmark suites respectively, altogether comprising 29 total benchmarks.

Due to compiler constraints, only the integer suite (SPEC CINT2006) and a few additional
floating-point benchmarks from the floating-point suite (CFP2006) could be run. This was due to
the fact that many of the floating-point benchmarks were written in the archaic programming
language Fortran, which the group was not able to implement. The suite was still beneficial as
the instances and machines were still tested using a widely accepted standard set of benchmarks.

It was our goal to run the SPEC suites on both the ECE servers as well as EC2, but due to
lack of administrative privileges on the former, we were only able to run the benchmarks on our
set of EC2 instances. Fortunately, the SPEC organization had in its repository the results
obtained from benchmarking a Dell PowerEdge R610 server, which could be used in place of
running the benchmarks on Tesla. However, the repository did not contain the results for the
model of the Sunfire X2200 server that the ECE department uses as Henry, and so we could not
include this server in our overall comparison of the SPEC results.

The SPEC CINT2006 suite consists of computationally and memory intensive benchmarks
using integer data types. The types of benchmarks include an email indexer, C compiler, a gene
sequence searching benchmark, and several others, all written in either C or C++. Brief
descriptions for each of the benchmarks are as follows.

The 400.perlbench benchmark, written in C, consists of scripts that run spam-checking
software, HTML email generation, as well as a program part of the CPU2006 tool set that uses
the email generator. Next, the 401.bzip2 benchmark compresses and decompresses various files
(including JPEG images, source codes, HTML files, and so on) to different compression levels,
and compares the results to the original files. This benchmark is also written in C. The 403.gcc
benchmark emulates a C compiler for an AMD Opteron device and by using various optimization
levels, runs though a series of preprocessed C code files. The 429.mcf benchmark simulates a
single depot public transportation service, including costs, scheduling, stop locations, and other
such aspects. Like most of the integer benchmarks, this program is also written in C. The
445.gobmk benchmark, also written in C, plays a game of Go by executing a series of commands
and then examining the results. The 456.hmmer benchmark sorts through and statistically
analyzes a series of pre-provided gene sequences. Similar to the 445.gobmk benchmark, the
458.sjeng program attempts to solve a game of Chess by finding the best move given a set of
conditions in a game. The 462.libquantum simulates a quantum computer by creating a basic
register and gate structure. The 464.h264ref benchmark evaluates video compression for purposes
such as DVDs, based on two different types of encoding techniques provided and computed by the
program. The next benchmark (written in C++) is the 471.omnetpp, which simulates the
functioning of a vast Ethernet network while encompassing various networking protocols as well.
The 473.astar benchmark essentially acts as a path-finding algorithm, used to evaluate artificial
intelligence for gaming purposes. These include various types of terrains, moving speeds, graphs,
and so on, all written in C++. Finally, the 483.xalancbmk (written in C++) program converts
XSL sheets into HTML or other XML forms [27].

The floating-point benchmarks in the SPEC2006 set consists of programs that are written
in C, C++, Fortran, or a combination of these languages. Since we were unable to implement
Fortran, the seven benchmarks that were written in C and C++ were run by the group in order
to account for the use of floating-point numbers in scientific calculations. These benchmarks
encompass the fields of quantum chromodynamics, linear programming optimization, fluid
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dynamics, and several other computationally-intensive floating-point applications.
The first CFP2006 benchmark that was used was the 433.milc, which simulates complex

four-dimensional lattice designs. The 444.namd, written in C++, is a parallelized biomolecular
system generator. The 447.dealII uses a C++ program library aimed at developing algorithms,
while solving through complex mathematical problems including partial differential equations.
The 450.soplex simulates a linear programming problem solver, written in C++. The final C++
benchmark is the 453.povray, which simulates a camera used to observe the behavior of light in
various environments and surroundings, which can be specified by the user. The 470.lbm, a C
program, deals with fluid dynamics and examines the behavior of incompressible liquids and gases
by using the Lattice-Boltzmann Method. Finally, the 482.sphinx3 is essentially speech recognition
software developed by Carnegie Mellon University, which processes a preprogrammed set of
sounds [27].

The purpose of the SPEC benchmarks is to standardize performance comparisons for
different computers. In order to do so, the results output by these benchmarks are ratios obtained
by comparing the performance of the machine being tested to that of a standard set of computers
used by the SPEC corporation. A higher ratio indicates that the processor is better at handling
the given test’s data set than the baseline machine, or machines with a lower ratio for that test.

2.6.5 MATLAB Case Study

Apart from using typical benchmarks, it was important to evaluate the performance of
real-world programs that would generally be run in the WPI ECE department. In order to
accomplish this, a computationally intensive MATLAB program was obtained from a researcher
within the ECE department which would better emulate the typical loads experienced by their
servers. This program was run ten times on all EC2 instances as well as Tesla and Henry, but was
not considered a “benchmark.” The program was instead used along with our MATLAB
benchmark, in order to test for similarities in the behavior of MATLAB across the different
machines.

The program itself calculates the passing of radiation through the 3-dimensional model of a
human body, essentially mimicking a body scanner. The program is provided a time frame during
which it depicts a human body being subjected to electromagnetic waves that slowly move
towards and through the body within a simulated period of a few nanoseconds. When running
MATLAB in GUI mode, the program displays the movement of the radiation and provides plots
that display the intensity thereof. The output for fractions of each simulated nanosecond are
written to data (.mat) files. This data is then analyzed by the experimenter in more detail, which
is beyond the scope of our research.

It was decided earlier on, based on the above researcher’s guidance, that this MATLAB
program need not be run in GUI mode despite its several visual outputs. This was due to the fact
that the visual illustrations were simply for the sake of understanding what was happening at a
given point in time in the program, and not crucial to the data that was obtained at the end of
the program’s execution. Another important reason was that the GUI mode ran extremely slowly
on the Linux-based systems that we were benchmarking, which posed an issue in terms of the
monetary and time constraints being faced by the group. Therefore, it was decided that the
program would only be run using the command-line mode of MATLAB, and the corresponding
execution times were used for the analysis.
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3 Methodology

A set of viable resources and standard benchmarking techniques were determined prior to
proceeding with this study. This section discusses the process used to set up the EC2 instances, a
comparison between the selected operating systems as well as the manner in which the
aforementioned systems were benchmarked.

3.1 EC2 Configuration

In order to benchmark EC2, Tesla and Henry, it was necessary to make all of their
environments the same. There were restrictions on the compilers and software that were already
installed on Henry and Tesla that prevented them from being changed; as a result, the EC2
instances were modeled after the two ECE servers. Due to a version discrepancy with the Python
interpreter, an updated version had to be installed and run from a local directory on the ECE
machines. A list of the compiler and software versions can be seen in Table 3.

Software
Version on

Version on Henry Version on EC2
Tesla

C Compiler 4.1.2 4.1.2 4.1.2

Java Compiler 4.1.2 4.1.2 4.1.2

Python (Actual: 2.4.3) (Actual: 2.4.3)
2.5.1

Interpreter 2.5.1 2.5.1

MATLAB 2009a 2009a 2009a

Table 3: Software versions used

The instances used in this project were created in December 2010, during which period
Fedora 8 was the best available alternative to Red Hat Linux 5.5. The first instance that was
created was used as a template for all of the others, to ensure that each future instance would
have the same starting conditions. The 64-bit version of the Fedora 8 operating system, which
was pre-installed on the instance, already had GCC (the standard open-source C compiler) and
the Python interpreter. It did not, however, have the appropriate compilers for Java or C++,
which were installed by the group. Finally, after installing MATLAB 2009a on the server, the
cloning process to duplicate the instance template was initiated via the AWS console. Once the
image creation was complete, six copies of the primary instance were created on each possible
64-bit instance. A detailed description of the steps followed when we created the instances on
Amazon EC2 can be found in Appendix C.

3.2 Determination of the Performance Comparison Ratio

At the time that this analysis began, Fedora 8 was one of the standard operating system
options on EC2. Both Fedora 8 and Red Hat Linux Enterprise 5.5 are designed by the Red Hat
Corporation, and because of complications in setting up a Red Hat license on the EC2 servers, it
was decided that Fedora 8 would be our target operating system. Although the two operating
systems are both created by the same company, there are small dissimilarities between them—and
it was for this reason that a Performance Comparison Ratio (PCR) was designed.
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3.2.1 Purpose

The purpose of the PCR segment of this project was to minimize the differences between
the two test systems (Red Hat and Fedora) by determining an accurate ratio of their relative
performances for a given benchmark. Ideally, the results produced by the benchmarks on each
system should not be affected by the fact that they ran on different operating systems. Therefore,
the difference in performance between the two operating systems was quantitatively evaluated
and used to compare the results obtained on EC2 and Tesla.

For each benchmark that was run on EC2 and Tesla (or Henry), over each trial j where
j = 1, 2, 3, . . . n, the resulting PCR was determined by the following formula, where RH(j, i) and
F (j, i) are the functions that return the jth result for the ith benchmark for Red Hat and Fedora
respectively:

PCR(i) =

1
n

n∑
j=1

RH(j, i)

1
n

n∑
j=1

F (j, i)

(1)

This would give us a ratio in terms of Red Hat over Fedora, which means that if we multiply
our Fedora results by the PCR, we will receive a ratio of Red Hat over Red Hat—leaving us with
a “pure” ratio of their performance. To account for the differences between bandwidth rates and
execution times—where a lower value for the former and a higher value for the latter are
indicative of better performance—which are the two main types of results that our benchmarks
returned, we used the inverse of Equation 1 handle rates. This gave a PCR value which
represented the true difference in performance between operating systems, regardless of the data
type. We then divided, rather than multiplied, the Fedora results by the PCR to adjust them.

For example, during the computation of the PCR for “Benchmark A,” if Tesla or Henry
(running Red Hat) were to observe a final execution time of 100s for the benchmark, and EC2
(running Fedora) was to observe a time of 100s as well, multiplying the Fedora result by the PCR
for the benchmark—say the PCR was 0.95 in this case — would yield a final ratio of

100
100×0.95 = 100

0.95 = 1.0526. This would mean that Tesla’s (or Henry’s) results were approximately
5.26% better than EC2’s for “Benchmark A”. The average PCR for each benchmark was
multiplied with the values of our final results in order to yield a PCR-adjusted value — thereby
standardizing all benchmarking results regardless of the operating system.

3.2.2 Methods

It is possible for the PCR to vary depending on the hardware specifications of the machine
that it is derived from. In order to get around this issue, two separate machines with differing
hardware specifications were chosen to run the benchmarks. Table 4 illustrates the hardware
specifications of the two computers used for calculating the PCR.

System CPU RAM CPU Type

Computer 1 3.0 GHz Dual Core 8GB DDR2 Intel

Computer 2 2.99 GHz Core 2 Duo 4GB DDR2 Intel

Table 4: System Specifications

By holding the hardware constant for both operating systems, it was possible to gather
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data that directly compares the performance of both operating systems. Our approach was to
install Fedora 8 and Red Hat 5.5 on one hard drive and use this hard drive for each test
computer. When setting up the hard drive, it was necessary to create specific Linux partitions for
each operating system, with each requiring its own swap, boot, and home partitions. Red Hat 5.5
and Fedora 8 were installed on the drive, and all of the system’s libraries were updated to the
most recent versions using the Red Hat / Fedora shell command: yum update all.

It was important to ensure that no extraneous processes were running in the background
while the benchmarks were executed, as they would directly impact our results. To overcome this
issue, the systems were booted directly into terminal mode from the GRUB menu, which cut out
all of the GUI processes that could affect the performance of the system by congesting the CPU
and memory. Fedora and Red Hat are both capable of booting directly into terminal mode from
the GRUB boot loader. This was accomplished by creating a boot command in GRUB that
makes the “runlevel” for the operating system to be “text only” as opposed to starting the
operating system with the entire GUI loading when it boots. The command used is shown below.
The ‘3’ at the end of the command signifies that the operating system should boot in “runlevel”
3, which makes it boot directly into terminal mode.

kernel /vmlinuz-2.6.23.1-42.fc8 ro root=LABEL=/1 3

Linux shell scripts were written to streamline the process of executing benchmarks. The
benchmarks were run by creating a loop that executed the benchmark on each iteration and
dumped the output to a file. The following shell script is one of the scripts used to run the
RAMSMP Float Reading benchmark, and demonstrates how the benchmarks were executed 50
times.

j=1

for ((j = 1; j <= 50; j++)

do

echo "RAMSMP: 5 @ 1024:+ Test $j Started +:"

time ./ramsmp -b 5 -m 1024 >> Results/Fedora8/ResultRamSMPFloatRead.txt

echo "Test $j Done"

done

Due to variances amongst operating systems, such as kernel optimizations, that could affect
each benchmark in different ways, it was necessary to calculate the ratios for each benchmark
separately. This allowed for a more precise understanding of any differences that may have arisen
in terms of the way Red Hat and Fedora handle the same test.

3.2.3 Results

In order to produce a ratio of the two operating systems, the results for Red Hat 5.5 were
divided by the results for Fedora 8 for each benchmark. The ratios obtained are shown in Table 5
below.
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i Benchmark
PCR on PCR on Percent

Computer 1 Computer 2 difference

1 Pystone 0.908 0.909 0.044

2 MATLAB Benchmark 1.060 1.058 0.216

3 RAMSMP FLOATmem 1.023 1.008 1.505

4 RAMSMP Float Reading (average) 0.996 0.993 0.295

5 RAMSMP Float Writing (average) 1.002 0.992 0.952

6 RAMSMP INTmem 1.019 1.005 1.409

7 RAMSMP Int Reading (average) 0.996 0.996 0.035

8 RAMSMP Int Writing (average) 1.003 0.998 0.485

9 SPEC

int 400.perlbench 0.991 1.000 0.893

int 401.bzip2 1.000 1.006 0.576

int 403.gcc 1.348 1.340 0.528

int 429.mcf 0.961 0.983 2.244

int 445.gobmk 0.995 1.000 0.542

int 456.hmmer 0.991 0.983 0.881

int 458.sjeng 1.000 1.000 0.000

int 462.libquantum 1.037 1.010 2.722

int 464.h264ref 1.012 1.008 0.387

int 471.omnetpp 0.992 0.985 0.772

int 473.astar 1.000 1.008 0.791

int 483.xalancbmk 0.990 0.985 0.512

float 433.milc 0.970 0.969 0.095

float 444.namd 1.000 1.000 0.000

float 447.dealII 1.004 0.996 0.765

float 450.soplex 1.075 1.028 4.434

float 453.povray 1.034 1.019 1.478

float 470.lmb 1.005 1.055 4.852

float 482.sphinx3 1.045 1.013 3.120

10 Case Study 1.025 1.025 0.000

Table 5: Overall Summary of PCR Results

The above results demonstrate the almost negligible differences between Red Hat 5.5 and
Fedora 8 across each benchmark, with the majority of the results differing by less than 1.5%. A
few of the SPEC benchmarks extend beyond this range, but none differ by more than 5%. The
overall PCR for each benchmark is an average of the values found on each system, which accounts
for differences across both operating systems and hardware types. The PCRs obtained for each
benchmark are analyzed in greater detail in the subsequent sections.

3.2.3.1 Pystone Results

From Table 6, it can be seen that the standard deviations observed for the Pystone
benchmark were less than 2% in the case of both computers, which showed that the benchmark
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runs fairly consistently on a single machine. The two PCRs were extremely close to each other,
signifying that the benchmark results were reproducible across different computers as well. The
PCRs show the general trend that Red Hat runs the Pystone benchmark considerably
faster—almost 10%—than Fedora 8, which will be taken into account when analyzing the Pystone
results obtained from the EC2 instances running Fedora.

Red Hat Fedora

Computer 1

Result Average STDEV % STDEV Average STDEV % STDEV PCR

Execution

106.778 1.766 1.654 117.429 1.553 1.322 0.909Time

(Seconds)

Pystones

94845.205 1540.567 1.624 86034.022 1139.796 1.325 0.907per

Second

Average: 0.908

Computer 2

Result Average STDEV % STDEV Average STDEV % STDEV PCR

Execution

107.470 1.797 1.672 118.131 1.873 1.585 0.910Time

(Seconds)

Pystones

94263.764 1560.671 1.656 85538.758 1345.585 1.573 0.907per

Second

Average: 0.909

Table 6: Pystone Benchmark PCR Results

3.2.3.2 MATLAB benchmark Results

As we can see from Table 7, the standard deviation for the MATLAB results was less
than 1% for both Fedora and Red Hat, demonstrating the consistency of the benchmark as a
whole. The average PCR from the two machines, however, was almost 6%, which indicates that
the MATLAB script was executed noticeably faster by Fedora than by Red Hat. This is contrary
to what was observed in the case of Pystone, where Red Hat finished the benchmark significantly
faster than Fedora. This difference was important to take into account when we compared the
overall results obtained from running this benchmark, as it was possible for the EC2 instances to
run these programs faster simply by virtue of their operating system.
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Red Hat Fedora

Average

STDEV % STDEV

Average

STDEV % STDEV PCRExecution Time Execution Time

(Seconds) (Seconds)

Computer 1

12.876 0.050 0.391 12.144 0.063 0.522 1.060

Computer 2

12.967 0.041 0.313 12.257 12.257 0.064 1.058

Average: 1.059

Table 7: MATLAB Benchmark PCR Results

3.2.3.3 RAMSMP FLOATmem Results

The RAMSMP FLOATmem benchmark tests a system’s performance with respect to
memory bandwidth by completing mathematical operations on floating-point matrices stored in
memory. Table 8 contains a summary of all the FLOATmem results with their respective PCRs.
The ratios that were calculated for both Computer 1 and Computer 2 are very close to one
another, with a relative standard deviation of about 1.32%, and an average PCR of 1.015. As was
the case with previous benchmarks, this shows consistency on and across each system, and that
the differences between Red Hat and Fedora in this case were almost negligible.

Red Hat Fedora

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

4522.771 5.527 0.122 4627.131 2.410 0.052 1.023

Computer 2

4320.456 3.121298 0.072 4354.504 3.256174 0.075 1.008

Average: 1.015

Table 8: RAMSMP FLOATmem PCR Results

3.2.3.4 RAMSMP Float Reading Results

The Float Reading benchmark tests a system’s performance with respect to memory
access bandwidths by reading stored floating-point matrices that are stored in memory. Table 10
illustrates the results obtained in the PCR calculation process. Due to the nature of the Float
Reading results, the geometric mean of the standard deviations was used in place of the normal
standard deviation, to give a more accurate representation of the actual data set. The resulting
PCR values for the Float Reading benchmark in Table 10 are extremely consistent across both
computers, with a relative standard deviation of only 0.2%. The average PCR itself, 0.994,
indicates that the two operating systems show almost identical performance for this benchmark.
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Red Hat Fedora

Average Average Average Average Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

18355.120 64.750 0.353 18276.268 22.302 0.122 0.996

Computer 2

18356.068 31.164 0.170 18223.048 23.617 0.122 0.993

Average: 0.994

Table 9: RAMSMP Float Reading PCR Results

3.2.3.5 RAMSMP Float Writing Results

The RAMSMP Float Writing benchmark tests a system’s performance with respect to
memory speeds by writing floating-point data to various sizes of memory. As was the case with
the previous RAMSMP benchmark, the PCRs for both systems were extremely similar, with an
average of 0.997, as seen in Table 10. This further demonstrates the similarities across the
operating systems, especially in regards to floating-point memory operations.

Red Hat Fedora

Average Average Average Average Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

10925.590 25.813 0.236 10942.719 62.746 0.122 1.002

Computer 2

10755.972 40.435 0.376 10666.934 64.684 0.122 0.992

Average: 0.997

Table 10: RAMSMP Float Writing PCR Results

3.2.3.6 RAMSMP INTmem Results

RAMSMP INTmem stores integer values in arrays in memory and then performs
mathematical operations on those arrays to determine the overall average memory bandwidth for
these operations. The results from running INTmem on Computer 1 and Computer 2 show that
Red Hat was between 0.5% and 2% slower than Fedora for integer memory operations, resulting
in a PCR of 1.012. The relative standard deviation between computers was only 1%, which
further illustrates the accuracy of these results.
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Red Hat Fedora

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

3985.977 6.868 0.172 4060.879 2.556 0.063 1.019

Computer 2

3792.181 1.262 0.033 3809.450 1.176 0.031 1.005

Average: 1.012

Table 11: RAMSMP INTmem PCR Results

3.2.3.7 RAMSMP Int Reading Results

When the RAMSMP Int Reading benchmark is run, it returns the bandwidth for reading
different sized blocks of integers in memory. The average PCR over both systems was 0.996,
which indicates that there is no practical difference in operating systems, or across the hardware,
for reading integer values from memory.

Red Hat Fedora

Average Average Average Average Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

18350.542 39.220 0.214 18283.736 52.097 0.114 0.996

Computer 2

18407.856 35.701 0.194 18332.991 91.457 0.114 0.996

Average: 0.996

Table 12: RAMSMP Int Reading PCR Results

3.2.3.8 RAMSMP Int Writing Results

The RAMSMP Int Writing benchmark results reflect the bandwidth at which each
system can write integers to memory. The average PCR was 1.000, which implies that the results
were consistent across each operating system. Although the individual PCRs were reverse ratios,
their relative standard deviation was 0.35%, which indicates that they are extremely consistent.
The results for this test are shown in Table 13.
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Red Hat Fedora

Average Average Average Average Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Computer 1

11776.319 28.034 0.238 11805.731 25.099 0.114 1.003

Computer 2

11486.470 9.483 0.083 11458.292 138.774 0.114 0.998

Average: 1.000

Table 13: RAMSMP Int Writing PCR Results

3.2.3.9 SPEC Results

The SPEC2006 benchmark suite gives a user the option of selecting an operating
system-specific tool set when installing the benchmarks. This is meant to reduce the overhead
associated with running the benchmarks on different operating systems. However, for the sake of
ensuring consistency across all of our results, we ran each of the SPEC benchmarks on our PCR
machines as well; almost every PCR obtained was identical across both machines. The largest
percent difference between the two sets of PCRs for the SPEC CINTtests was approximately
3.500%, which demonstrates the extreme accuracy of the benchmark suite. It is important to note
that the 403.gcc benchmark, which emulates an optimizing C compiler, experienced a large
difference between Red Hat and Fedora (almost 340%). This difference was consistent across both
machines, with the difference in PCRs for this test being about 0.500%. This PCR could be
attributed to the fact that the benchmark is designed to generate code for an AMD Opteron
processor and all of the machines used in this study used Intel processors. The SPEC
floating-point benchmarks were slightly less consistent on both computers, with two of the tests
reaching a percent difference of about 4.500%. The average percent difference of the entire suite
was approximately 1.200%, and the median was 0.752%, which further supports the consistency
of these benchmarks. Tables 14 and 15 show the complete set of integer and floating-point
benchmarks respectively.
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Computer 1 Computer 2

Test
Fedora Red Hat

PCR
Fedora Red Hat

PCR
Ratio Ratio Ratio Ratio

400.perlbench 22.5 22.3 0.991 22.3 22.3 1.000

401.bzip2 17.4 17.4 1.000 17.3 17.4 1.006

403.gcc 14.1 19 1.348 14.1 18.9 1.340

429.mcf 18.1 17.4 0.961 17.8 17.5 0.983

445.gobmk 18.5 18.4 0.995 18.4 18.4 1.000

456.hmmer 11.5 11.4 0.991 11.5 11.3 0.983

458.sjeng 18.3 18.3 1.000 18.2 18.2 1.000

462.libquantum 21.4 22.2 1.037 21 21.2 1.010

464.h264ref 25.6 25.9 1.012 25.6 25.8 1.008

471.omnetpp 13.3 13.2 0.992 13.2 13 0.985

473.astar 12.8 12.8 1.000 12.6 12.7 1.008

483.xalancbmk 19.8 19.6 0.990 19.8 19.5 0.985

Average: 1.026 Average: 1.026

Without GCC: 0.997 Without GCC: 0.997

Table 14: SPEC CINT2006 PCR Results

Computer 1 Computer 2

Test
Fedora Red Hat

PCR
Fedora Red Hat

PCR
Ratio Ratio Ratio Ratio

433.milc 13.4 13 0.970 13 12.6 0.969

444.namd 15.1 15.1 1.000 15 15 1.000

447.dealII 26.2 26.3 1.004 26.1 26 0.996

450.soplex 17.4 18.7 1.075 17.8 18.3 1.028

453.povray 20.4 21.1 1.034 20.9 21.3 1.019

470.lbm 20.1 20.2 1.005 18.2 19.2 1.055

482.sphinx3 22 23 1.045 22.5 22.8 1.013

Average: 1.019 Average: 1.012

Table 15: SPEC CFP2006 PCR Results

3.2.3.10 MATLAB Case Study Results

The PCRs obtained for our MATLAB case study are shown in Table 16. The difference
between the two PCRs is almost negligible, and the standard deviations of the 10 runs on both
computers is less than 1.5%. These results show that not only is the PCR reproducible for this
particular program, but also that the case study tends to run consistently on different kinds of
machines. We note that the results from the case study PCR are different from those for the
MATLAB benchmark PCR, with the difference between the two operating systems for the former
being approximately 2.5%, compared to approximately 6% for the latter. This may be attributed
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to the different forms of executions or functions called in each program—the MATLAB
benchmark runs purely mathematical operations, while the case study runs more complex,
3-dimension simulating algorithms. However, the general trend of Red Hat running MATLAB
slower than Fedora is once again seen in these results, which must be taken into consideration
when evaluating the results of both MATLAB programs in our final analysis.

Red Hat Fedora

Average

STDEV % STDEV

Average

STDEV % STDEV PCRExecution Time Execution Time

(Seconds) (Seconds)

Computer 1

259.4906 3.0803 1.1871 253.0496 3.2384 1.2797 1.025

Computer 2

272.3272 2.1640 0.7946 265.7577 2.8922 1.0883 1.025

Average: 1.025

Table 16: Case Study PCR Results

3.3 Procedure

In this section we will describe in detail the procedure that was followed while
benchmarking each of our machines and instances. Additionally, the methods used in the
performance comparison as well as cost analyses have also been described.

3.3.1 Benchmarking

Prior to documenting our results, we must first discuss the process that was used to
benchmark each instance with our set of benchmarks.

3.3.1.1 Pystone and MATLAB benchmarks

The most efficient and consistent way to run a series of benchmarks is to construct a shell
script that runs each test in an automated loop. Our scripts were designed to run each benchmark
50 times and pass the results from each iteration to a text file. The UNIX “time” command was
also used to record the overall execution time of each program, which was passed into a different
text file. The scripts that handled the Pystone and MATLAB benchmarks only needed to control
the number of times that each benchmark would be run, since neither benchmark received
command-line arguments. An example of the Pystone shell script is shown below.

echo "Pystone benchmark for EC2 Large instance" >>

/home/final_results/Pystone.txt

for (( i = 1; i < 51; i++))

do

echo "Pystone benchmark $i Started +:" >> /home/final_results/Pystone.txt

(time python pystone.py) >> /home/final_results/Pystone.txt 2>> /home/\

final_results/Pystone_time.txt

echo "Test $i Done"

done
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The main focus of these two benchmarks was on their runtime, so clock time—or real-world
time—was originally calculated based on the results of the “time” command. However, the source
code for the Pystone and MATLAB benchmarks (Appendices A and B) was later modified so that
it would output the clock time taken by each test at the end of its execution—thereby eliminating
the need to use the “time” command.

3.3.1.2 RAMSMP

While the RAMSMP benchmark suite offers a variety of different tests, our main focus
for the scope of this project was on integer and floating-point operations. A total of 6 tests from
the suite were chosen, making up our RAMSMP test set: Floating-point Reading/Writing
(FLOATmark Read/Write), Integer Reading/Writing (INTmark Read/Write), Integer Memory
(INTmem) and Floating-point Memory (FLOATmem). As with the Pystone and MATLAB
benchmarks, each of these tests had a corresponding shell script that was used to execute it.

The benchmark suite was initially acquired from its source website [28]. The entire set of
source code was contained in a compressed file, along with licensing information and the relevant
README file. Upon extracting the container, the suite had to be built and installed by running
the install script, “build.sh.” By executing the benchmark suite with no additional command-line
arguments—ie. issuing the command ./ramsmp in the suite’s root directory—it was possible to
view which tests were available. The output was as follows:

RAMspeed/SMP (Linux) v3.5.0 by Rhett M. Hollander and Paul V. Bolotoff, 2002-09

USAGE: ramsmp -b ID [-g size] [-m size] [-l runs] [-p processes]

-b runs a specified benchmark (by an ID number):

1 -- INTmark [writing] 4 -- FLOATmark [writing]

2 -- INTmark [reading] 5 -- FLOATmark [reading]

3 -- INTmem 6 -- FLOATmem

7 -- MMXmark [writing] 10 -- SSEmark [writing]

8 -- MMXmark [reading] 11 -- SSEmark [reading]

9 -- MMXmem 12 -- SSEmem

13 -- MMXmark (nt) [writing] 16 -- SSEmark (nt) [writing]

14 -- MMXmark (nt) [reading] 17 -- SSEmark (nt) [reading]

15 -- MMXmem (nt) 18 -- SSEmem (nt)

-g specifies a # of Gbytes per pass (default is 8)

-m specifies a # of Mbytes per array (default is 32)

-l enables the BatchRun mode (for *mem benchmarks only),

and specifies a # of runs (suggested is 5)

-p specifies a # of processes to spawn (default is 2)

-r displays speeds in real megabytes per second (default: decimal)

-t changes software prefetch mode (see the manual for details)

The set b of benchmarks that we chose to execute, as previously mentioned, was therefore
the following: b = {1, 2, 3, 4, 5, 6}. An example of the command used in order to run the
Floating-point Writing benchmark, as was used on Tesla, can be seen below. Each number in the
command is preceded by a letter that denotes which parameter it modifies; the list of possible
parameters can be seen in the output above.

./ramsmp -b 4 -m 512 -p 8
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The array size supplied to each benchmark was kept constant across each test system, but
the number of processes was modified so that each system would use its maximum number of
physical cores. For example, 8 processes were used in the case of the HM4XLarge instance, since it
has 8 cores, while 2 processes were used for the Large instance, which has 2 cores; the array sizes
across both systems, however, were 512MB for the Reading and Writing tests, and 256MB for the
INTmem and FLOATmem tests. In this way, it was possible to ensure that each system would
write to RAM but would not exceed its total amount. All other variables were left as default.

3.3.1.3 SPEC2006 Benchmark Suite

We followed the instructions found on the SPEC website that detailed the installation of
the suite for a Linux system. To expedite the process of sending all of the benchmarks on the
DVD to the EC2 instances, a compressed bzip2 file was used, which allowed for much faster data
transfer. The bzip2 file was extracted to the local directory by using the command:

tarxjvf cpu2006.tar.bz2

The suite was then installed using the following command:

./install.sh -e linux-suse101-AMD64 linux-suse101-i386

As was previously mentioned, during the installation process for the SPEC2006 suite, the
user can select an operating system that is most like the one it is being installed on in order to
optimize the execution. For our instances, we chose “linux-redhat62-ia32” for x86, IA-64, EM64T,
and AMD64-based Linux systems with GLIBC 2.1.3+. The other two system choices,
“linux-suse101-AMD64” and “linux-suse101-i386” were therefore manually excluded from the
installation process. The configuration was then finally completed using the command “./shrc”.

The following command was obtained from the installation documentation, and was used in
order to run each benchmark, depending on the name given to it by the suite.

runspec --config=Config.cfg --size=ref --noreportable --iterations=1 (benchmark)

This command was used to run all of the constituent benchmarks of the SPEC2006 suite.
As mentioned earlier, the entire integer benchmark suite was run on all the EC2 instances, while
only a few of the floating-point benchmarks could be run due to the absence of Fortran on our
systems. It is also important to note that installing and running the SPEC2006 benchmarks
required administrative privileges on the ECE department servers, which is against department
policy for students to obtain; as a result we were unable to run these benchmarks on Tesla and
Henry. In Section 2.6.4 we mentioned that while we were able to find both CINT2006 and
CFP2006 results for the Dell PowerEdge R610 server in the SPEC results repository, we were
unable to find CFP2006 results for the Sunfire X2200 M2 server. Therefore, the server equivalent
for Henry has been excluded from the SPEC results.

The results output by the SPEC benchmarks were essentially ratios that were obtained by
comparing the benchmarked system’s performance against the baseline machines that the SPEC
organization used. A higher ratio indicates better performance, and thus a more powerful
machine in terms of its computing power [23, 27].
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3.3.1.4 MATLAB Case Study

The case study that was obtained from the WPI ECE Department was run on each
instance and machine a total of 10 times, and, as with many of our benchmarks, a shell script was
employed to do so. Due to the “real-world” nature of this program, and the analysis that we
performed thereof, we chose to only run the case study 10 times on each system. The program
was run through MATLAB’s command line mode, which was accomplished by using the following
command:

matlab -nodisplay -nosplash -r (case study filename)

The case study consisted of a few individual MATLAB files of type .m and .mat. In order
to run the main function 10 times through a shell script, we had to modify the MATLAB code to
allow the program to exit once it was completed. As such, a new .m file was created that only
had the name of the function we needed to execute, followed by “exit.” This file was then used in
the shell script created to run the program 10 times, so that each time the program ran, it would
open MATLAB, execute, and exit out of MATLAB. This allowed each run of the test to be
isolated from every other run, and ideally should have minimized the effects of data and
instruction caching on the results.

The output of the program itself was the execution time for every step of the program. By
taking the sum of these values, we were able to compute its total execution time. As with all
time-based results, the machine that provided the smallest execution time had the best
performance and therefore best handled our simulation of a real world application.

3.3.2 Analysis

In this section we will cover the process used to analyze all of the benchmarking results, as
well as a brief explanation of the cost analysis.

3.3.2.1 Benchmarks

The performance for the Pystone and MATLAB benchmarks was based on the average
clock time taken to run each test. The PCR-adjusted average of their execution times and their
relative standard deviations were used to compare not only the average performance of the
systems, but also any inconsistencies that were discovered. The machine that executed the
program in the smallest amount of time therefore had the best performance.

While the Pystone benchmark also returns a value for the processing power per second
(Pystones/second), the MATLAB benchmark does not. For the purposes of an overall analysis,
we required the values to be in the same relative dimension—in this case, processing power per
second—so we calculated an additional value for the MATLAB benchmark: tests per second. For
this value, we simply used the total number of tests, I = 15, and divided it by the total execution
time, T , giving us the processing power P = I

T .
For the RAMSMP benchmarks, the values returned were always the bandwidths associated

with the targeted levels of memory. By using the average of these numbers, we were able to give
an accurate representation of the different cache and RAM bandwidths achieved by the systems.
In the case of the INTmem and FLOATmem benchmarks, the average bandwidth for each run
was already calculated and returned by the programs. Since the results from the different tests in
the RAMSMP suite were used in different ways, the values that they returned also had to be
handled differently; the Read/Write bandwidths were used to graphically represent the different
performances of the systems’ cache levels, while the INTmem and FLOATmem tests were used to
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give a big-picture representation of the system. As a result of this, the average bandwidths that
were obtained from the latter two benchmarks across the total set of 50 runs were averaged and
used as a general comparison. The machine with the highest bandwidth has the fastest cache and
RAM speeds for integer or floating-point data manipulation.

The INTmark and FLOATmark benchmarks were examined by taking the average for each
individual data point obtained. These values, along with their standard deviations, were used in
order to differentiate the various cache levels present on the machine being benchmarked. To
verify our findings, the cache information was also obtained from the systems themselves. The
machine with the highest bandwidths once again demonstrated the best performance, although
this was dependent on the level of cache.

The SPEC benchmarks returned both the ratio of the test system against the baseline
machine as well as the total execution time for the benchmark. A larger ratio indicated better
performance against the baseline, while a smaller execution time represented the same. The ratios
obtained from these benchmarks were graphed and compared alongside Tesla’s results in order to
illustrate their relative performances.

Finally, the case study was analyzed in a manner similar to the MATLAB benchmark. This
program, as mentioned earlier, ran 10 times and then its average execution times and overall
standard deviations were used to analyze the data set. The machine or instance that had the
smallest execution time with the least amount of standard deviation demonstrated the best
performance overall.

With the analysis complete, the next task was to determine the Cost vs. Time to solution
comparison. The Pystone and MATLAB benchmarks were used in order to evaluate the time
versus dollar to solution analysis, as they can also be used to simulate massively parallel
programs. This means that the cost vs. time solution can be estimated for both single and
multi-threaded applications using these benchmarks. The analysis compared the number of hours
versus the cost of running 1000 runs of each benchmark. This was used to find which instance
would provide the quickest solution at the lowest cost for each type of benchmark.

Each of the benchmarks took between one and three minutes to fully run once. This was
not a long enough period of time that would allow us to reasonably estimate the hourly cost of
running such programs. In order to overcome this issue, the analysis was carried out by
calculating the amount of time and money it would take to run each benchmark 1000 times,
which would allow a large enough figure for both time as well as money. A detailed explanation of
the cost versus time to solution portion of this report has been shown in Section 5.

3.3.2.2 Costs

In order to determine the overall practicality of choosing EC2 over in-house servers, a
comprehensive analysis was conducted on all of the costs associated with purchasing and
maintaining the current servers in the ECE department at WPI. These costs included the cost of
purchasing, powering, and cooling all of the servers in the department. After speaking with a
member of the department who maintains these servers, we determined that unlike average
corporate servers, the lifespan of the ECE servers was around nine years. Also, all server
maintenance is completed in-house in our department, so the costs that are typically associated
with maintaining server infrastructure were not taken into account. Using this as our projected
lifespan, the total cost of owning all of the servers was computed for the duration.

The next step was to calculate the cost of replacing all of the current servers with the most
comparable EC2 instances over the same period of time. Using the reserved pricing for instances
on EC2, we made a nine-year cost projection. What this cost analysis does not take into account
is that the servers currently housed at WPI were all purchased when they were top of the line. It
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is also safe to assume that Amazon will eventually upgrade their server hardware and lower the
price per ECU for current instances.

We did not take software costs into account in our analysis because these will likely be the
same in either scenario. The relevant analysis in this case is to find out if investing in EC2
instances for a period of 10 years or more would be more economically feasible than purchasing
and utilizing physical servers for the same amount of time. In order to effectively evaluate this
standpoint, the cost of purchasing and maintaining each of the primary ECE department servers
was first determined. Following this, the number of instances that equated to each server being
used in the department were determined, and their corresponding reserve costs were calculated.
For example, one Tesla server is more or less equivalent to one HM4XLarge instance. Therefore,
the cost of reserving one instance of the HM4XLarge was used to compare against the cost of
purchasing and maintaining Tesla. Additionally, this analysis was extended to a period of 9 years,
which is typically how long the ECE department maintains the servers that it purchases. The
total costs would help in determining whether EC2 is advisable in the long run for well
established research institutions such as WPI, that require a large number of servers to deal with
their computational needs.
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4 Results

As stated in Section 3, each benchmark was run a total of 50 times and the performance
metrics for each benchmark were evaluated. In addition to the raw average results, we have also
included two PCR-adjusted values: the averages and a ratio comparing each system’s
performance against Tesla.

4.1 Pystone Benchmark

The Pystone benchmark provides for an excellent comparison of the processing power of
each system, based on both the execution time and number of Pystones per second that are
returned. Due to the synthetic nature of “Pystones,” their performance is in every way identical
to the average execution time. Lower execution times indicate better performance by the test
system. Table 17 displays the average results obtained from the entire set of machines that were
benchmarked.

System

Average Relative Standard PCR-Adjusted

Single-Threaded Devation of PCR-Adjusted Performance

Execution Time Execution Time Average Time Compared

(seconds) (%) to Tesla

Tesla 91.811 0.531 - 1.000

Henry 135.56 1.09 - 0.677

Large 175.375 2.35 159.311 0.576

XLarge 174.947 2.396 158.922 0.578

HMXLarge 126.347 0.939 114.774 0.800

HM2XLarge 126.053 0.672 114.507 0.802

HM4XLarge 126.235 1.027 114.672 0.801

HCXLarge 151.521 2.414 137.642 0.667

Table 17: Summary of Pystone Benchmark Results

From the above table, it was calculated that Tesla outperformed the fastest instance (in this
case, the HM2XLarge) by approximately 20%. The standard deviations observed by all of the test
systems were extremely low, which supports the consistency of this data set. Henry performed
significantly worse than both Tesla and the high-memory instances. Finally, the slowest instances
were the Large and XLarge, which took nearly twice as long to complete as Tesla.

In addition to showing that Tesla is superior with CPU-intensive processing, our results also
display three distinct tiers of performance: the standard instances are the worst, followed by the
HCXLarge in the middle, and then high-memory instances at the top. Even though the three
high-memory instances vary in cost, their processing power is almost identical. We also note that
the HCXLarge instance does not appear to perform as well as the other instances despite the
computational nature of this benchmark. While the high-compute instance may have a much
larger number of ECUs, they are spread out over 8 cores—leaving fewer ECUs per core. Since
Pystone is a single threaded benchmark, the HCXLarge is not able to make full use of its 7
additional cores, so it hangs up in the execution. Along with the results from the high-memory
instances, the results for the high-compute instance will be explored in further detail in Section 5.
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4.2 MATLAB benchmark

The completion times obtained from running the MATLAB benchmark on Tesla, Henry,
and the EC2 instances are shown in Table 18. As in the case of the Pystone benchmark, better
performance is determined by finishing the benchmark with a lower average execution time.

System

Average Relative Standard PCR-Adjusted

Single-Threaded Devation of PCR Adjusted Performance

Execution Time Execution Time Average Time Compared

(seconds) (%) to Tesla

Tesla 9.225 2.915 - 1.000

Henry 16.571 1.912 - 0.557

Large 22.544 2.663 23.875 0.386

XLarge 23.460 6.880 24.845 0.371

HMXLarge 16.248 15.539 17.207 0.536

HM2XLarge 14.991 6.666 15.876 0.581

HM4XLarge 14.086 13.852 14.918 0.618

HCXLarge 18.592 9.193 19.690 0.469

Table 18: Summary of MATLAB benchmark Results

The above results once again demonstrate Tesla’s overall superiority of processing power.
The next best system, HM4XLarge, is outperformed by nearly 40%, which is a significant increase
from the Pystone results. This increase between performances suggests that Tesla is far superior
to the EC2 instances at undertaking heavy matrix calculations, which are both computationally
and memory intensive. Both HMXLarge and HM4XLarge experienced a large standard deviation,
demonstrating the significant variabilty of performance on EC2. While the HM4XLarge had the
best average execution time, it also had the second highest standard deviation, which could have
pushed its results in either direction. Given a best case scenario, the HM4XLarge could not have
achieved an execution time under 14.086× 13.852

100 = 12.135 seconds, which would only have been
0.760, or 76%, of Tesla’s performance.

As in the case of the Pystone results, all of the high-memory instances appear to have
almost identical performance for this particular benchmark, along with a considerable amount of
standard deviation. We also note that the HCXLarge instance once again does not appear to
perform as well as the other instances despite its large amount of computing power. This may
also be attributed to the fact that this benchmark runs on only a single core of the machine,
which has been examined later in this report. Finally, the Large and XLarge instances continue to
perform worst than the rest of the rest of the systems, with average execution times around 62%
worse than Tesla’s.

4.3 RAMSMP

The RAMSMP benchmark consisted of various memory tests that allow for the analysis of
the systems’ cache, memory levels and bandwidths. These tests consisted of the reading and
writing as well as manipulation of both integer and floating-point numbers. For this benchmark,
the recorded bandwidths represent how fast each system is able to perform specific memory
operations, where higher rates are indicative of better systems.
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4.3.1 FLOATmark and INTmark

The cache and RAM speeds were determined by the FLOATmark and INTmark Reading
and Writing portions of the RAMSMP benchmarks. These benchmarks distinguish between the
different cache levels (L1, L2, L3) and RAM available to the systems, with L1 being the fastest
and smallest and RAM being the slowest and largest. Figures 1 through 4 show the speeds of
the operations at each level of cache for each system. Rather than congesting this section of the
report, the numerical results have been tabulated in Appendix E.3 for each of the figures shown
below.

From the L1 cache results (Figure 1), we see that Tesla is much faster in reading and writing
in all the benchmarks, followed by Henry, which is almost equally as fast. Tesla outperforms the
fastest EC2 instance (HM4XLarge) by approximately 28% in terms of bandwidth. Henry is the
closest to Tesla in terms of performance, with its bandwidths being on average approximately
80% that of Tesla’s. The fastest EC2 instances are HM4XLarge and HCXLarge, performing at an
average of approximately 70% and 65% of Tesla’s performance respectively for the four tests.
These instances are followed by much lower bandwidths for the remaining instances, with the
slowest instance (Large), performing at an average of about 18% of Tesla’s capabilities.

There is a sharp reduction in the bandwidth observed on Henry when dealing with
floating-point values, which is not observable on Tesla or any of the the EC2 instances. Henry is
the only machine being benchmarked that has an AMD Opteron processor. It was found in the
AMD Opteron Software Optimization Guide that the processor contains a Load/Store unit, that
loads data into the L1 cache (and if necessary, the L2 cache and system memory), depending on
the data size. The unit is capable of performing up to 64-bit or 16-byte stores of data per clock
cycle [29]. From the RAMSMP source code, it was found that the integer data type being used
for INTmark was 32 bits, while the floating-point type being used for FLOATmark was 64 bits.
Given this size discrepancy, it can be understood that more integer data can be loaded and stored
as compared to the amount of floating-point data, given the rate of loading to be 64 bits per clock
cycle. This can cause a decrease in the bandwidth associated with writing and reading of
floating-point data as compared to integer data, resulting in the sort of behavior displayed by
Henry in the figure below.

Figure 1: RAMSMP L1 Cache Results
Similarly, for the L2 Cache levels (Figure 2), Tesla once again dominates the rest of the

instances in terms of bandwidth, followed by HM4XLarge, and not Henry. The bandwidth for
some of the instances was drastically lower for the L2 cache, while Tesla remained relatively high.
Unlike its L1 cache, Henry’s L2 cache is extremely slow, with an average bandwidth that is less
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than 30% of Tesla’s. This is most likely due to the fact that Henry does not have an L3 cache, so
this is essentially the boundary between RAM and cache. The only other instance that is
remotely close in performance to Tesla is the HM4XLarge instance, which averages between 60%
and 80% of Tesla’s performance. The rest of the instances show a considerable slowdown in terms
of L2 cache speeds, with the slowest instance (Large) showing a bandwidth on average about 12%
that of Tesla.

Figure 2: RAMSMP L2 Cache Results
The L3 cache (Figure 3) is not present on all instances, and was only found on six of the

eight test systems. As with the prior two cache levels, Tesla outperforms the other instances in
both of the reading tests, while it trails only slightly behind the HM4XLarge and HCXLarge
instances in both of the writing tests. The HM4XLarge outperforms Tesla by approximately 9%
on both of the writing tests, while its performance is significantly worse on the reading
tests—averaging only 75% of Tesla’s performance. This sort of behavior is also seen in the case of
the HCXLarge instance, which outperforms Tesla by about 17% for the integer writing, and 5%
for the floating-point writing. However, the reading bandwidths for this instance reduces sharply
in comparison with Tesla, settling on average at about 60% of Tesla. The rest of the instances,
once again, show a significant drop in reading and writing bandwidths compared to Tesla.

It can also be seen that there is a sharp decrease in writing speeds in the L3 cache in the
case of all instances. This, however, can be explained by the fact that the writing operation is
slower than the reading operation. This is because the system must select the right size of
memory to allocate for the data being written before actually accessing the memory and writing
to it (while reading only does memory accesses). Additionally, it is well known that bandwidth
decreases while memory size increases, and the L3 cache, if it exists, is typically the largest cache
level.
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Figure 3: RAMSMP L3 Cache Results
After the cache comes the system’s main memory: RAM (Figure 4). Once again Tesla

clearly outperforms all of the other systems in every one of the tests. Henry’s average bandwidths
are around 27% of Tesla’s, which is a significant difference in total bandwidth. While the
HM4XLarge performs extremely close to Tesla in the two writing tests, it is overshadowed by
Tesla’s reading performance by nearly 25%. The rest of the instances appear significantly slower
than Tesla and HM4XLarge, which further demonstrates both systems’ superior memory handling
capabilities. Of the remaining instances, the HCXLarge had a significant reduction in its relative
performance between the L3 cache and RAM, hovering around 21% of Tesla on average.
Surprisingly, the HM2XLarge is the only other instance that even remotely stands out, and its
read speeds are barely above the HM4XLarge’s write speeds.

Each of the plots in this section have demonstrated Tesla’s dominant memory performance
at every level, ranging from L1 cache to RAM. While Henry’s L1 cache had comparable
performance to Tesla’s, Henry failed to deliver at the higher memory levels. The only two EC2
instances that stand out are the HM4XLarge (for all levels of memory), and the HCXLarge
(primarily for the three cache levels). It was no surprise the the HM4XLarge performed as well as
it did, since its memory structure is extremely similar to Tesla. The HCXLarge instance is also
able to provide excellent bandwidths for every cache level, most likely due to its multi-core design;
unfortunately, the instance greatly slows down when it reaches RAM.

Figure 4: RAMSMP RAM Results
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4.3.2 FLOATmem and INTmem

The FLOATmem test performed a series of manipulations on a specified amount of
floating-point data by copying, scaling and writing the data into different memory locations.
From the results in Table 19, Tesla once again outperformed the most comparable EC2 instance
(HM4XLarge) by over 30% in terms of overall memory bandwidth. The execution times for the
FLOATmem test are a function of the system’s total memory, as well as the number of processes
used to analyze it. Even though Tesla’s execution time is about 21% greater than that of the
HMXLarge instance, it is important to note that the bandwidth of the HMXLarge instance is
significantly lower, at about 29% of the rate that Tesla achieves. Because the FLOATmem test
performs various manipulations on the RAM, the HCXLarge instance—which we previously
showed has terrible performance in RAM—is not even remotely comparable with Tesla, with an
average performance around 20% of Tesla’s.

System

Average Relative Average Relative PCR Performance

Execution Standard Memory Standard Adjusted Compared

Time Deviation of Bandwidth Deviation of Average to Tesla

(seconds) Execution (MB/s) Bandwidth Bandwidth

Time (%) (%)

Tesla 28.481 18.089 28308.01 0.234 - 1.000

Henry 46.565 18.09 7975.794 0.455 - 0.282

Large 56.753 5.090 3213.911 4.043 3164.976 0.112

XLarge 54.157 13.370 7758.458 9.040 7640.327 0.270

HMXLarge 22.479 1.544 8222.597 1.143 8097.399 0.286

HM2XLarge 31.602 15.625 11961.620 5.960 11779.491 0.416

HM4XLarge 47.437 3.510 19413.844 2.851 19118.247 0.675

HCXLarge 141.611 4.722 5967.505 10.030 5876.643 0.208

Table 19: Summary of results for RAMSMP FLOATmem Test

The INTmem test was similar in function to the FLOATmem test, except that all of the
operations were carried out on integer data rather than floating-point data. The results in Table
20 show that Tesla outperforms the HM4XLarge instance by about 28%. It should also be noted
that as in the case of the FLOATmem results, the HCXLarge instance does not perform as well as
the other instances, with its bandwidth measuring up to about 23% of Tesla’s. On average, Tesla
beat out all of the other test systems by between 30%-90% for memory performance. Both the
INTmem and FLOATmem results will be used in an comprehensive analysis at the end of this
section.
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System

Average Relative Average Relative PCR Performance

Execution Standard Memory Standard Adjusted Compared

Time Deviation of Bandwidth Deviation of Average to Tesla

(seconds) Execution (MB/s) Bandwidth Bandwidth

Time (%) (%)

Tesla 31.285 3.830 27533.830 0.727 - 1.000

Henry 50.193 0.227 7433.762 0.401 - 0.27

Large 56.753 5.090 3205.385 3.493 3168.381 0.115

XLarge 43.780 3.970 8943.317 1.880 8840.073 0.321

HMXLarge 19.966 9.137 9481.861 6.121 9372.400 0.34

HM2XLarge 30.442 5.520 12442.310 1.820 12298.673 0.447

HM4XLarge 46.897 3.248 19837.154 3.815 19608.149 0.712

HCXLarge 146.664 5.013 6382.179 11.453 6308.501 0.229

Table 20: Summary of results for RAMSMP INTmem Test

It should be noted that in most cases the floating-point operations are slightly slower than
the integer operations. This is because the FLOATmem and INTmem tests perform
mathematical operations during execution. Arithmetic operations for floating-point and integer
data types are carried out by separate hardware units, with the Floating Point Unit (FPU) being
used for the former, and the Arithmetic Logic Unit (ALU) being used for the latter. ALUs are
typically much faster, since they are used by the CPU for almost every single operation, while the
FPU is specifically designed for the more complex floating-point operations.

4.4 SPEC2006

The SPEC2006 benchmark suite was used to measure the computational performance of
every test system. Each test in the suite returns both a ratio—which compares the performance
of the test machine against a baseline system chosen by SPEC—and a total execution time. As
was previously mentioned, a higher ratio and lower execution time are indicative of better
performance.

We were unable to acquire the SPEC2006 results for the Sunfire X2200 M2 server (Henry),
and therefore could make use of Henry in our comparisons of the SPEC results. These tests
primarily test the CPU performance of a single core of the system. The results obtained from the
integer and floating-point suites have been plotted in Figures 5 and 7, and tabulated in Tables
21 and 21.
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SPEC CINT2006 Tests

Results
400 401 403 429 445 456

perlbench bzip2 gcc mcf gobmk hmmer
T

e
sl

a
SPEC Ratio 25.5 19.9 24.7 42.2 24.2 46.8

Runtime 384 484 326 216 433 199

PCR-Ratio - - - - - -

PCR-Runtime - - - - - -

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000

H
e
n

ry

SPEC Ratio - - - - - -

Runtime - - - - - -

PCR-Ratio - - - - - -

PCR-Runtime - - - - - -

Tesla Ratio - - - - - -

L
a
rg

e

SPEC Ratio 12.04 8.17 7.07 8.78 10.6 5.63

Runtime 811.128 1181.429 1138.466 1038.733 989.451 1656.633

PCR-Ratio 12.040 8.217 9.477 8.632 10.600 5.532

PCR-Runtime 811.128 1188.258 1526.029 1021.226 989.451 1627.822

Tesla Ratio 0.473 0.323 0.252 0.376 0.388 0.236

X
la

rg
e

SPEC Ratio 19.56 15.13 9.84 14.22 16.31 10.24

Runtime 499.484 637.864 818.155 641.326 643.075 911.099

PCR-Ratio 19.560 15.217 13.190 13.980 16.310 10.062

PCR-Runtime 499.484 641.551 1096.676 630.517 643.075 895.254

Tesla Ratio 0.769 0.599 0.350 0.609 0.597 0.429

H
M

X
L

a
rg

e SPEC Ratio 20.88 14.5 13.5 17.7 17.81 9.35

Runtime 467.935 665.622 596.228 515.335 588.938 997.503

PCR-Ratio 20.880 14.584 18.096 17.402 17.810 9.187

PCR-Runtime 467.935 669.470 799.199 506.650 588.938 980.155

Tesla Ratio 0.821 0.574 0.480 0.758 0.652 0.392

H
M

2
X

L
a
rg

e SPEC Ratio 21.68 14.92 13.72 18.17 18.08 9.37

Runtime 450.726 646.626 586.831 502.027 580.067 995.359

PCR-Ratio 21.680 15.006 18.391 17.864 18.080 9.207

PCR-Runtime 450.726 650.364 786.603 493.566 580.067 978.048

Tesla Ratio 0.852 0.590 0.488 0.778 0.662 0.393

H
M

4
X

L
a
rg

e SPEC Ratio 21.08 14.88 13.77 18.27 18.1 9.37

Runtime 463.377 648.425 584.775 499.24 579.647 995.55

PCR-Ratio 21.080 14.966 18.458 17.962 18.100 9.207

PCR-Runtime 463.377 652.173 783.847 490.826 579.647 978.236

Tesla Ratio 0.829 0.589 0.490 0.782 0.662 0.393

H
C

X
L

a
rg

e SPEC Ratio 16.29 11.1 11.2 12.35 14.12 7.47

Runtime 599.711 869.557 819.483 738.226 742.999 1248.538

PCR-Ratio 16.290 11.164 15.013 12.142 14.120 7.340

PCR-Runtime 599.711 874.583 1098.456 725.784 742.999 1226.824

Tesla Ratio 0.640 0.439 0.350 0.529 0.517 0.313

Table 21: SPEC CINT2006 Results

35



Results
458 462 464 471 473 483

sjeng libquantum h264ref omnetpp astar xalancbmk
T

e
sl

a
SPEC Ratio 25.9 477.0 37.1 21.6 20.0 36.1

Runtime 468 43 96 290 350 191

PCR-Ratio - - - - - -

PCR-Runtime - - - - - -

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000

H
e
n

ry

SPEC Ratio - - - - - -

Runtime - - - - - -

PCR-Ratio - - - - - -

PCR-Runtime - - - - - -

Tesla Ratio - - - - - -

L
a
rg

e

SPEC Ratio 10.360 14.630 11.880 5.090 5.550 9.670

Runtime 1168.364 1416.168 1863.604 1227.754 1265.458 713.778

PCR-Ratio 10.360 14.769 11.973 5.013 5.594 9.523

PCR-Runtime 1168.364 1429.655 1878.163 1209.152 1275.501 702.963

Tesla Ratio 0.401 0.030 0.051 0.240 0.274 0.272

X
L

a
rg

e

SPEC Ratio 15.950 15.930 22.620 9.850 9.970 15.510

Runtime 758.438 1300.477 978.441 634.717 703.764 444.782

PCR-Ratio 15.950 16.082 22.797 9.701 10.049 15.275

PCR-Runtime 758.438 1312.862 986.085 625.100 709.349 438.043

Tesla Ratio 0.617 0.033 0.097 0.464 0.493 0.436

H
M

X
L

a
rg

e SPEC Ratio 17.360 26.720 27.220 12.290 11.800 19.810

Runtime 697.088 775.453 812.873 508.371 594.762 348.324

PCR-Ratio 17.360 26.974 27.433 12.104 11.894 19.510

PCR-Runtime 697.088 782.838 819.224 500.668 599.482 343.046

Tesla Ratio 0.671 0.055 0.117 0.579 0.584 0.557

H
M

2
X

L
a
rg

e SPEC Ratio 17.530 27.290 27.410 12.690 12.080 20.630

Runtime 690.245 759.124 807.289 492.553 581.222 334.538

PCR-Ratio 17.530 27.550 27.624 12.498 12.176 20.317

PCR-Runtime 690.245 766.354 813.596 485.090 585.835 329.469

Tesla Ratio 0.678 0.057 0.118 0.598 0.597 0.580

H
M

4
X

L
a
rg

e SPEC Ratio 17.510 27.310 27.490 12.670 12.040 20.660

Runtime 690.838 758.729 804.898 493.304 583.118 334.007

PCR-Ratio 17.510 27.570 27.705 12.478 12.136 20.347

PCR-Runtime 690.838 765.955 811.186 485.830 587.746 328.946

Tesla Ratio 0.677 0.057 0.118 0.597 0.595 0.581

H
C

X
L

a
rg

e SPEC Ratio 13.910 18.700 21.780 8.870 8.900 13.720

Runtime 870.091 1108.004 1016.248 704.988 788.413 503.054

PCR-Ratio 13.910 18.878 21.950 8.736 8.971 13.512

PCR-Runtime 870.091 1118.556 1024.187 694.306 794.670 495.432

Tesla Ratio 0.538 0.039 0.094 0.418 0.440 0.386

36



Figure 5: SPEC CINT2006 Results

Figure 6: SPEC CINT2006 - Libquantum Results
The previous figures and tables show that Tesla is able to outperform every EC2 instance in

all the benchmarks run from the integer benchmark suite. Each of the benchmarks ran differently
on each instance, with the performance of the HM4XLarge instance ranging from almost 83% for
the 400.perlbench benchmark, to only 6% of Tesla’s performance for the 462.libquantum
benchmark; it is important to note, however, that Tesla experienced a phenomenally high ratio
for the libquantum benchmark, as such it has been displayed separately in Figure 6. The Large
instance routinely performed worse than the other test systems, with performances ranging from
47% for the 400.perlbench benchmark, to 3% for the 462.libquantum benchmark, when compared
to Tesla’s performance. In general, the high memory instances, as well as the XLarge, are closest
to Tesla in terms of their adjusted performance ratios.
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SPEC CFP2006 Tests

Results
433 444 470 447 450 453 482

milc namd lbm dealII soplex povray sphinx3
T

e
sl

a

SPEC Ratio 34.3 19.1 54.7 33.9 28.2 28.6 40.6

Runtime 267 420 252 337 296 186 480

PCR-Ratio - - - - - - -

PCR-Runtime - - - - - - -

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H
e
n

ry

SPEC Ratio - - - - - - -

Runtime - - - - - - -

PCR-Ratio - - - - - - -

PCR-Runtime - - - - - - -

Tesla Ratio - - - - - - -

L
a
rg

e

SPEC Ratio 7.18 10.13 5.09 16.41 9.88 14.23 14.16

Runtime 1278.12 791.369 2701.489 697.305 844.086 373.804 1376.54

PCR-Ratio 6.959 10.130 5.070 16.871 10.069 15.012 14.349

PCR-Runtime 1238.797 791.369 2691.138 716.892 860.241 394.343 1394.889

Tesla Ratio 0.216 0.531 0.093 0.483 0.351 0.498 0.349

X
L

a
rg

e

SPEC Ratio 9.45 9.38 14.2 14.26 12.11 13.03 12.44

Runtime 971.491 854.925 967.925 801.985 688.852 40.441 1567.03

PCR-Ratio 9.159 9.380 14.146 14.661 12.342 13.746 12.606

PCR-Runtime 941.599 854.925 964.216 824.513 702.036 42.663 1587.927

Tesla Ratio 0.284 0.491 0.260 0.420 0.430 4.599 0.306

H
M

X
L

a
rg

e SPEC Ratio 13.63 14.19 28.37 22.11 21.83 19.72 25.67

Runtime 673.592 565.371 484.265 517.526 381.96 269.824 759.357

PCR-Ratio 13.211 14.190 28.261 22.731 22.248 20.804 26.012

PCR-Runtime 652.866 565.371 482.410 532.063 389.270 284.649 769.482

Tesla Ratio 0.409 0.743 0.520 0.651 0.775 0.689 0.632

H
M

2
X

L
a
rg

e SPEC Ratio 13.57 13.88 28.06 22.19 21.42 19.71 24.85

Runtime 676.541 577.724 489.731 515.445 389.364 269.952 784.453

PCR-Ratio 13.152 13.880 27.952 22.813 21.830 20.793 25.181

PCR-Runtime 655.724 577.724 487.855 529.924 396.816 284.785 794.912

Tesla Ratio 0.407 0.727 0.515 0.654 0.760 0.689 0.612

H
M

4
X

L
a
rg

e SPEC Ratio 13.72 14.2 28.41 22.17 21.86 19.68 25.56

Runtime 668.879 564.982 483.647 516.075 381.562 270.376 762.64

PCR-Ratio 13.298 14.200 28.301 22.793 22.278 20.761 25.901

PCR-Runtime 648.298 564.982 481.794 530.571 388.865 285.232 772.809

Tesla Ratio 0.412 0.743 0.521 0.653 0.776 0.688 0.629

H
C

X
L

a
rg

e SPEC Ratio 11.2 11.32 14.49 17.17 14.21 15.74 16.28

Runtime 819.483 708.52 948.551 666.14 586.877 338.095 1196.99

PCR-Ratio 10.855 11.320 14.434 17.652 14.482 16.605 16.497

PCR-Runtime 794.268 708.520 944.917 684.852 598.109 356.672 1212.946

Tesla Ratio 0.336 0.593 0.266 0.506 0.504 0.550 0.401

Table 22: SPEC CFP2006 Results
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Figure 7: SPEC CFP2006 Results
Figure 7 shows the results obtained for the floating-point tests that were run from the

SPEC suite. As was previously mentioned, none of the Fortran benchmarks were used, and our
results only show those tests that were written in C and C++. Similar to our findings with the
integer tests, Tesla’s performance was the best out of the entire set of systems. The HM4XLarge’s
performance ranged from about 83% for the 450.soplex benchmark, to about 38% for the 433.milc
benchmark, when compared with that of Tesla’s. The other two high memory instances showed
similar results for the floating-point benchmarks, followed by the HCXLarge instance and lastly
by the Large instance.

4.5 MATLAB Case Study

The MATLAB case study was run a total of 10 times on each instance in order to simulate
a real world application. The results of this case study have been shown in Table 23.
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System

Average Relative Standard PCR-Adjusted Performance

Execution Deviation of Average Compared

Time Execution Time Execution Time to

(seconds) (%) (seconds) Tesla

Tesla 209.134 7.452 - 1.000

Henry 522.78 14.89 - 0.400

Large 367.83 3.23 377.058 0.555

XLarge 392.89 1.66 402.746 0.519

HMXLarge 221.61 0.35 227.169 0.921

HM2XLarge 218.92 0.21 224.412 0.932

HM4XLarge 220.44 0.25 225.97 0.925

HCXLarge 371.13 2.23 380.44 0.550

Table 23: Execution Times of MATLAB Case Study

As with most of the benchmarks, Tesla outperformed the fastest instance, in this case, the
HM2XLarge, by a little over 6%. There was a considerable amount of variance in the execution
times of Tesla and Henry, which was not observed in any of the EC2 instances. This can be
attributed to the fact that at the time these tests were being run, there was one other member of
the research community utilizing both Tesla and Henry, at approximately 700% and 350% of CPU
respectively. The CPU usage of 700% for Tesla indicates that the program that was being run
was multi-threaded, and was running over 7 cores. Since Tesla only has 8 physical cores, this
likely caused a buildup of processes schedule to run on the one “available” core, resulting in
sporadic and inexplicable program execution. We determined that our case study required a little
over 1 full core (the program utilized about 105% CPU). It is not surprising that our results
showed so much deviation, since the total amount of available resources was less than what our
program required to properly execute.

Similarly, Henry consists of 4 physical cores, and with one person running their program at
350% CPU usage, our program was left with about half a core. Due to the relatively high
variance with these results, we decided to wait until the servers were both empty to run the case
study again. Table 24 summarizes the results.

System

Execution Time Standard Deviation PCR Adjusted Performance

(seconds) (%) Average Compared to

Tesla

Tesla 160.350 4.770 - 1.000

Henry 411.037 10.670 - 0.390

Table 24: Case Study Results on Tesla and Henry (no load)

As the results of this second test show, the standard deviation for Tesla was reduced to
about 5%, while Henry only fell to 11%. Even though a 5% deviation is still quite high compared
to the results obtained from EC2, the accuracy that was gained in the second run helped to
support the observed increase in performance of almost 13%. Regardless of the server’s CPU
usage, Henry’s performance was still significantly worse than Tesla’s.

While it is noteworthy that EC2 was able to run this case study much more consistently
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than the ECE servers, it is extremely impressive that Tesla was capable of surpassing the EC2
instances despite already having a heavy processor load. Tesla’s performance increased even
further when it experienced no load, although there was still a noticeable amount of deviation in
its results which could be attributed to various factors such as latencies associated with the
campus license server, background tasks, and so on.

It is important to note that in all of the CPU-intensive benchmarks, Henry did not perform
as well as the EC2 instances, let alone Tesla. This, however, can be explained by the fact that the
hardware for Henry was purchased four years ago, as opposed to Tesla which was purchased
about a year ago. It is possible that the processing units that support the EC2 instances are
running newer hardware than Henry, which would account for this difference.

Although Tesla experienced inconsistent results for the case study, these variances did not
skew the conclusions that were drawn from the result; this was ensured by the second case study
execution. It should also be noted that the case study is not a formal benchmark, and has simply
been included to determine whether or not our other findings are relevant for real-world
applications.

4.6 Comprehensive Analysis

At this point, each individual component of the test systems that has been benchmarked
has been discussed in detail without making any global judgments on system performance. With
the exception of extremely specialized applications, real-world problems rarely rely on solely one
aspect of a computer system. The purpose of this section is to present the overall findings from
our benchmarks, and draw definitive conclusions about the relative performance of each system.

As was previously discussed, most of our computationally-heavy benchmarks returned
execution times upon completion, while our memory benchmarks supplied the bandwidths
associated with the given memory levels. In order to compare these different metrics, it was
necessary to create uniform synthetic performance indicators based upon the execution times of
the benchmarks. Unfortunately, even though Pystone already returned the number of Pystones
per second, their values were inconsistent with the clock times. To amend this issue, a new value
for Pystones per second was calculated based on the correct time value. In addition to the Pystone
benchmark, the MATLAB benchmark and the case study also only returned an execution time.

For the MATLAB benchmark, the total number of tests that were executed was constant,
and as such this was used as a base for calculating the computing power. The exact equation has
already been documented in Section 3.3.2.1, and the resulting values are shown in Table 25.
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System

Average Calculated

Single-Threaded PCR-Adjusted PCR-Adjusted

Execution Time Average Time Computing Power

(seconds) (tests/second)

Tesla 9.225 - 1.626

Henry 16.571 - 0.905

Large 22.544 23.875 0.628

XLarge 23.460 24.845 0.604

HMXLarge 16.248 17.207 0.872

HM2XLarge 14.991 15.876 0.945

HM4XLarge 14.086 14.918 1.006

HCXLarge 18.592 19.690 0.762

Table 25: Synthesized MATLAB benchmark Performance

A similar process was used for converting the execution times of the MATLAB case study
into a suitable metric for comparing computing power. Due to the nature of the case
study—which returns over a thousand values—a large constant, I = 10000, was chosen to replace
the number of tests used for the previous calculations. This ensured that the resulting metric
would be larger than one, and because I is a constant, it will affect all of the results by the same
amount. The values for each system are shown in Table 26.

System

Average PCR-Adjusted Calculated

Execution Average PCR-Adjusted

Time Execution Time Computing Power

(seconds) (seconds) (10000/second)

Tesla 175.768 - 56.893

Henry 522.78 - 19.129

Large 367.83 377.058 26.521

XLarge 392.89 402.746 24.830

HMXLarge 221.61 227.169 44.020

HM2XLarge 218.92 224.412 44.561

HM4XLarge 220.44 225.97 44.254

HCXLarge 371.13 380.44 26.285

Table 26: Synthesized MATLAB Case Study Performance

These synthetic representations of computing power, along with the results from the
previous sections—including the overall memory bandwidths returned by the INTmem and
FLOATmem benchmarks, and the performance ratio returned by SPEC—were used to form the
comprehensive data set. An overall metric was computed by taking the geometric mean of all
values within a given system’s data set, and from this metric we developed a ratio of true
performance for each system. Table 27 shows the the raw performance metrics that were used to
calculate the ratios in Table 28.
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Average Performance Metrics

System
Pystone MATLAB INTmem FLOATmem SPEC MATLAB

(Pystones) Benchmark (Ratio) Case Study

Tesla 108918.604 1.626 27533.830 28308.010 34.187 175.768

Henry 72668.997 0.905 7433.762 7975.794 12.137 522.780

Large 62763.356 0.628 3131.805 3116.785 9.470 367.830

XLarge 62917.024 0.604 8738.021 7523.995 13.024 392.890

HMXLarge 87118.363 0.872 9264.203 7974.107 18.133 221.610

HM2XLarge 87321.409 0.945 12156.694 11600.135 18.424 218.920

HM4XLarge 87195.271 1.006 19381.787 18827.150 18.541 220.440

HCXLarge 72168.110 0.762 6235.674 5787.165 13.392 371.130

Table 27: Average Performance Metrics by System

Geometric Mean Overall Performance

of Performance Metrics Compared to Tesla

Tesla 969.320 1.000

Henry 539.824 0.557

Large 332.068 0.343

XLarge 483.521 0.499

HMXLarge 531.505 0.548

HM2XLarge 600.576 0.620

HM4XLarge 712.435 0.735

HCXLarge 463.076 0.478

Table 28: Overall Performance Comparison

As the above data clearly demonstrates, Tesla is by far the best performing server in the
entire set of test systems. Even by comparing every aspect of their performance, the next closest
machine, HM4XLarge, has a best-case performance that is only 73.5% of Tesla’s, followed by
HM2XLarge at about 62%.

For most institutions, server selection comes down to more than just raw performance;
there is usually a price tag. So, in addition to determining the difference in performance, an
analysis was conducted to determine the cost per computing performance (CCP) for each of the
test systems. The CCP was calculated by taking the annual cost of operating a given system and
dividing it by the system’s overall performance (as computed for Table 28). For the EC2
instances, all that was necessary to compute the annual associated costs C was to determine the
price of running an instance for one year—which is function of the price per instance-hour P , the
number of years Y , and an initial fee F charged by Amazon—such that
C = Y × (24× 365× P ) + F . Determining the annual costs for Tesla and Henry was slightly more
complicated, and draws from calculations made in Section 6 [Note: The following analysis
assumes initial investments are made at the start of the one or three-year term]. The resulting
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CCPs for each system are summarized in Tables 29 and 30, where a lower cost per computing
performance is more desirable.

System
Annual Geometric Mean Cost per Relative

Cost (USD) of Performance Metrics Performance Performance

Tesla 13507.42 969.320 13.935 1.000

Henry 7064.90 539.824 13.087 0.939

Large 1961.20 332.068 5.906 0.424

XLarge 3922.40 483.521 8.112 0.582

HMXLarge 2814.20 531.505 5.295 0.380

HM2XLarge 5628.40 600.576 9.372 0.673

HM4XLarge 11256.80 712.435 15.800 1.134

HCXLarge 3922.40 463.076 8.470 0.608

Table 29: Cost per Performance Unit for 1-year Reserved Instances

For 1-year reserved instance pricing against the initial purchase and costs of an in-house
server, look to Table 29. The CCP for Tesla is higher than all of the other systems except for the
HM4XL, and is approximately 62% more expensive than the cheapest instance—HMXLarge.
Tesla’s exorbitant costs stem from the fact that this is based on an initial investment model,
wherein the server hardware was just purchased, and its cost is reflected as a large percentage of
the total annual cost. Not surprisingly, Henry also has a large CCP compared to the other
servers. Some interesting features of the costs associated with the HMXLarge instance will be
explored further in Section 5.

System
Annual Geometric Mean Cost per Relative

Cost (USD) of Performance Metrics Performance Performance

Tesla 5507.42 969.320 5.682 1

Henry 2844.90 539.824 5.270 0.928

Large 1517.87 332.068 4.571 0.804

XLarge 3035.73 483.521 6.278 1.105

HMXLarge 2155.87 531.505 4.056 0.714

HM2XLarge 4311.73 600.576 7.179 1.264

HM4XLarge 8623.47 712.435 12.104 2.130

HCXLarge 3035.73 463.076 6.556 1.154

Table 30: Cost per Performance Unit for 3-year Reserved Instances

An interesting and slightly unexpected aspect of our analysis was found after doing a
three-year CCP comparison. As Table 30 shows, Tesla is actually a much better option over an
extended duration. The relative performance for each of the EC2 instances was nearly doubled,
while Henry remained about the same. It is important to note that while the relative performance
for each instance went up, the actual CCP for all of the systems were reduced between the 1-year
and 3-year analyses. As with the 1-year analysis, the HMXLarge still has a lower CCP than
Tesla, by almost 30%, and could be a viable investment based on these results. These analyses
will not cover active server replacement via Amazon EC2, as that will be described in great detail
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in Section 6. Due to the drastic differences in the potential CCP between fully utilized and
under-utilized EC2 instances, we conducted an extended cost analysis on the time that it takes to
find a solution versus the cost to get to that point, which will be further documented in Section 5.
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5 Cost vs. Time to Solution

Our goal for this section was to determine which instances were most cost effective for
multi-threaded and single-threaded applications and to give an accurate representation of the cost
associated with each possible scenario. This analysis will also demonstrate the most cost-effective
way to run massively parallel applications on the Amazon EC2 service.

We derived a formula to compute the simplified cost C to run E executions of a benchmark
B as a function of time T for each instance I, where X(B, I) is the execution time in minutes for
a given benchmark on an instance, P (I) is the price per instance-hour, and N(I) is the number of
threads that a given instance has. The equation can be seen below:

C(E,B, T, I) = P (I) ·
⌈
E ·X(B, I)

T ·N(I)

⌉
·
⌈
T

60

⌉
(2)

The equation can be split into the products of three parts: the leftmost represents the price
per instance-hour, the center represents the number of instances needed, and the rightmost
represents the total number of hours that are charged. This equation represents the ideal case,
where all instances will be launched at exactly the same time at the start of the trial. For
single-threaded applications, N(I) will return 1, rather than the number of threads that a given
instances contains.

5.1 Single Threaded Applications

We first examine the time vs. dollars to solution for single-threaded applications using the
Pystone and MATLAB benchmarks, as well as the MATLAB case study. By computing the cost
at every available point in time using Equation 1 above, it was possible to graphically represent
the cost to compute a given amount of benchmarks—in our case 1000—in different amounts of
time. Our results for the Pystone benchmark can be seen in Figure 8 below.

Figure 8: Single-Threaded Pystone Benchmark Cost vs. Time (1000 Runs)
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Unless a solution is needed in under an hour, the most cost and time efficient choice of
instance will always be the instance that has the lowest price just prior to the one-hour mark. In
Figure 8, it is difficult to determine whether the HMXLarge or the Large instance is more
cost-effective, as such either would be a suitable choice for single-threaded Pystone applications.
Figure 9 below shows the MATLAB benchmark results.

Figure 9: Single-Threaded MATLAB benchmark Cost vs. Time (1000 Runs)

Similar to the Pystone results, the HMXLarge and Large instances were once again the
most cost-effective solutions for the MATLAB benchmark. An interesting component to each of
the single-threaded plots is the grouping of the instance types into three different cost-efficiency
tiers. HM4XLarge is always in the highest—and therefore least efficient—tier; HCXLarge,
HM2XLarge and XLarge are always in the middle tier; HMXLarge and Large are always in the
lowest tier, making them the most cost-efficient single-threaded instances. This is because they
are wasting the lowest number of available cores when they are using a single thread, as they each
only have two cores. Figure 10 shows this trend in the most detail for the MATLAB case study.
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Figure 10: Single-Threaded MATLAB Case Study Cost vs. Time (1000 Runs)

The three tiers are most discernible in the results for the MATLAB case study, which shows
that even for real-world applications the most cost-efficient single-threaded instance will be either
the HMXLarge or Large. For the MATLAB case study, the HMXLarge actually had a lower
absolute cost than the Large instance. This could imply that the HMXLarge is actually a more
suitable choice for single-threaded applications, but the results for the other two single-threaded
applications have been too close to declare either one as being the most cost-effective choice.

5.2 Multi-threaded Applications

The downside to the single-threaded analysis is that it is rarely more cost effective to use a
single core of a machine, which is why we will now examine the costs associated with the same
three applications running on multiple threads. The first case is the Pystone benchmark, running
1000 multi-threaded trials, as shown in Figure 11. Unlike the results obtained from the
single-threaded applications, there is clearly one instance that out-performs all others:
HCXLarge. With eight cores, and the same price as the XLarge instance (USD 0.68/hour), it is
no surprise that even with its inferior execution time it is the most cost-effective instance. It costs
$4.08 to complete 1000 trials in one hour on the HCXLarge, and the next most efficient instance
is the Large at $8.50 to accomplish the same feat. Each of the plots in this section further
demonstrates HCXLarge’s superior multi-threading capabilities.
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Figure 11: Multi-threaded Pystone Benchmark Cost vs. Time (1000 Runs)

Figure 12: Multi-threaded MATLAB benchmark Cost vs. Time (1000 Runs)
In the case of a multi-threaded MATLAB benchmark, shown in Figure 12, HCXLarge once

again outperforms all of the other instances. Please note that the increase in cost after one hour
is a result of the HCXLarge’s ability to complete 1000 trials of the MATLAB benchmark in a
single hour; after that point, the instance will not utilize all of its cores, and will therefore be
wasting efficiency.

49



Figure 13: Multi-threaded MATLAB Case Study Cost vs. Time (1000 Runs)

As with the previous two benchmarks, the HCXLarge is also the most cost-efficient choice
for the MATLAB case study (Figure 13). It also completes the execution of 1000 trials at a lower
price earlier than most of the other instances reach their lowest cost. For real-world MATLAB
applications, it would be most cost effective to choose the HCXLarge, provided that the
application is multi-threaded.

5.3 Cost vs. Time to Solution Discussion

The analysis shown in Section 5.2 can help determine which of the various on-demand
instances are suited to solving a given problem. Although much of the focus was on massively
parallel applications, all of the concepts that were discussed can be applied to any single or
multi-threaded program.

In the case of single-threaded applications, the Large and HMXLarge had by far the lowest
cost to solve a given problem. As was previously mentioned, unless a problem is needed
instantaneously, it is always advisable—and cheapest—to complete a task in one hour. This is
due to the way that costs are associated with EC2. Every hour that an instance is in use, it costs
a certain amount of money, and that instance can complete a given number of tasks. By
offloading some of those tasks to an additional instance, it is possible to lower the time to solution
proportionally to the number of instances used, while simultaneously keeping the cost constant.
While this may seem counterintuitive, it is actually quite simple to prove.

Take, for example, the following scenario: an instance typically takes 5 hours to complete a
batch of 50 tasks, and it costs $0.50 per hour to run the instance. According to this information,
it will cost $0.50× 5hours× 1 instance = $2.50 to complete the execution of all 50 tasks on a
single instance. Suppose that we decided to create 4 new instances, and offloaded 10 tasks to each
of them; the resulting cost to complete the problem set in 5hours

5 instances = 1hour would be
$0.50× 1hour × 5 instances = $2.50. This fixed cost per problem is the basis for the entire
analysis in the previous section, due to its unique nature.

For multi-threaded applications, the HCXLarge instance was almost twice as cheap as the
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next best instance. This is due to the fact that the HCXLarge instance provides the user with a
large amount of computing power spread over 8 cores, all at the nominal rate of $0.68 per hour;
this gives the HCXLarge a cost per core per hour of only $0.68

8 = $0.085. Similar resources are
offered by the HM4XLarge instance, but the marginally shorter execution times are almost never
worth the associated costs.

The plots in section 5.2 can also be used to determine the best option for researchers based
on their need. For example, if cost is not a concern but time to solution is of highest priority, the
HM4XLarge instance would definitely finish in the least amount of time. The issue here is that
the cost is exponentially greater as the time approaches its minimum value. It is always possible
to complete a set of similar tasks in the execution time of the longest task, and while this may
initially seem like a good idea, it is best to look at the cost.

Using the same sample as above, it will take each task approximately 5hours
50 tasks = 6minutes

to complete. If it was necessary to have the entire batch completed in 6 minutes, then it would
cost $0.50× 1hour × 50 instances = $25.00 to complete. The minimum cost can only be achieved
on hourly intervals, because it minimizes the amount of time wasted for each instance; in this
way, even though it only takes 6 minutes to complete the execution, we are still charged for a full
hour of usage for each instance that we started.

It is due to this concept, that problems have a certain minimum cost associated with them,
that EC2 becomes an interesting option for embarrassingly parallel applications. There is no need
to bog down in-house servers for a week at a time if it is possible to finish the same task on the
cloud in an hour, for the absolute minimum price. These ideas will be further evaluated in Section
6.
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6 Cost Analysis

The purpose of our cost analysis was to determine whether there are any benefits associated
with using EC2 as a replacement to in-house servers. As discussed earlier, there has been limited
research conducted in prior work that involves such a cost comparison. Both performance and
cost had to be taken into consideration in order to fairly evaluate the advantages and
disadvantages of migrating current resources to EC2.

6.1 Cost Comparison: EC2 vs. Tesla

We first consider whether there is an actual cost-benefit when using EC2 compared to a
single physical server such as Tesla. The annual as well as long term costs pertinent to this
analysis are calculated in this section.

6.1.1 Amazon EC2

The EC2 service has two primary costs associated with it: instance usage and storage costs.
The instance-usage cost stems from the hourly rate that is applied to all instances, wherein
partial hours are charged as full hours. It is possible to quickly exceed a budget if care is not
taken when using the on-demand EC2 instances.

The storage cost is for the use of the Simple Storage Service (S3) and the Elastic Block
Storage (EBS) provided by Amazon for the EC2 instances. In the event that large amounts of
data are not being handled by this storage, the cost for using S3 is trivial. The standard rate for
using EBS volumes is $0.10 per GB-month of provisioned storage, and $0.10 per million I/O
requests [6]. Storage of EBS snapshots in S3 is charged at a rate of $0.15 GB-month of data
stored. Data transferred “into” Amazon EC2 is charged at $0.10 per gigabyte transferred, while
data transferred “out” of Amazon EC2 is charged based on the amount of data in gigabytes being
transferred.

If one were to use the on-demand HM4XLarge instance on EC2 throughout the year instead
of using Tesla, the cost would amount to approximately $17,520 per year. Although not obsolete,
Tesla will likely be replaced by a newer server after 2 years, so the argument stands that if EC2
can be equal or lesser in value to Tesla’s combined costs, it would be financially viable to invest
in. We began our analysis by adding the initial cost of Tesla—about $12,000[30]—to the cost of
cooling and powering the server for 2 years—which was $1508 per year. The cost of power was
calculated by multiplying the server’s wattage, 717 Watts as obtained from the Energy Star
specifications sheet [31], by the amount that WPI currently pays for electricity ($0.12/kW-hr).
Similarly, the BTU output of Tesla (2446.5 BTU/hr) was converted to watts and also multiplied
by WPI’s hourly cost for power. These methods used to calculate Tesla’s yearly costs have been
described in the following section as well. Both of these amounts came out to $754 per year,
each—giving us the total 2 year cost for Tesla of $15,014.84. For the same amount of money, the
largest on-demand instance of EC2 can be run for about one year, which indicates that it costs
about twice as much as Tesla, or approximately $35,040. However, this is only the case for
on-demand instances, like the ones used for our research.

Amazon also provides special reserved instances for 1 or 3 year contracts at reduced rates;
they are identical to the on-demand instances in terms of computing power, but have significantly
lower hourly rates. With reserved instances, it is possible to reserve an HM4XLarge instance and
continually run it for one year for the price of $11,256.80 or three years for a price of $25,870.40.
The three year cost of Tesla was estimated at $16,522.25, as shown in Section 6.2. We now see
that there is a significant difference in terms of cost between Tesla and EC2 (with EC2’s costs
being approximately 1.566 times that of Tesla’s), and even factoring in the costs of additional
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hardware and floorspace will not tip the scale in favor of EC2. This supports the analysis of
Section 4.6, which showed that the cost per compute unit of HM4XLarge was higher than that of
Tesla. It is apparent, based on the above analysis, that the initial one-year cost of EC2 is cheaper
than the one-year cost of purchasing an in-house server, but this is simply a result of the
investment cost of buying the server. There are several managerial concerns that must be
considered before considering migrating to the cloud, which will be discussed later in this section.

6.2 Cost Comparison: EC2 vs. Physical Servers

Of more relevance to the academic and institutional environments is the analysis presented
in this section. We have examined the various costs associated with maintaining a large network
of servers, much like those used by the ECE department at WPI. After speaking with a member
of the department, we found that the ECE department purchases and uses its servers for periods
of up to or exceeding 10 years for a variety of purposes, from remote login for students and faculty
to mail servers to extreme computation. Based on this information, we developed a 9-year cost
projection that accounted for all of the relevant costs associated with owning these servers and
compared it to the costs associated with owning comparable EC2 servers for the same duration.

6.2.1 The ECE Department Servers

The ECE department owns a total of 21 servers in its building (including Tesla and Henry),
each of which has been purchased and used for various purposes, such as those mentioned above.
We selected a total of 10 servers that were being actively employed by the department for some
form of public use.

The first step upon obtaining this list of servers was to estimate the amount that the ECE
department spent at the time of purchasing these servers. It must be noted that some of these
servers were purchased as far back as 10 years ago, and records for most of the machines were
either lost or forgotten. We also had to account for various institutional discounts that the
university received upon purchasing these servers. Once all of the prices had been researched, we
then went into the specifications of each of the servers and found the wattage W required to
power the unit as well as the thermal dissipation K in BTU/hour. The thermal dissipation was
converted to watts in order to estimate how much it cost to cool each server. Once the wattage
for both powering and cooling the servers was obtained, it was converted to kilowatts and
multiplied by the rate that WPI pays for electricity ($0.12 per kW-hr), in order to estimate the
total cooling and powering costs associated with each server. These costs were then multiplied by
the number of hours in a year in order to estimate the total amount paid each year to cool and
power the servers. To finish the cost projection, these costs were then multiplied by 9 to calculate
the 9 year cost of cooling and powering the servers. Table 31 summarizes all of the costs
calculated towards this effect, and Equation 3 shows how these values were acquired.

MC =

(
W

1000
+

K

3412.1416

)
× 0.12× 24× 365× 9 (3)
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Server

Price Thermal 9-Year 9-Year 9-Year

When Power Dissipation Power Cooling Projected

Purchased (Watts) (BTU/hr) Cost Cost Cost

(USD) (USD) (USD) (USD)

Tesla 12000.00 717.00 2,446.50 6,783.39 6783.38 25566.77

Hertz 6330.00 450.00 850.00 4,257.36 2356.78 12944.14

Henry 6330.00 450.00 850.00 4,257.36 2356.78 12944.14

Ohm 6330.00 450.00 850.00 4,257.36 2356.78 12944.14

Mho 6330.00 450.00 850.00 4,257.36 2356.78 12944.14

Amp 25600.00 760.00 1,228.00 7,190.21 3404.86 36195.07

Dot 8376.00 500.00 614.30 4,730.40 1703.26 14809.66

Volt 5200.00 465.00 1,100.00 4,399.27 3049.96 12649.23

Maxwell 3866.00 275.00 1,033.00 2,601.72 2864.19 9331.91

Hutt 21006.00 270.00 1,796.00 2,554.42 4979.75 28540.16

Projected Server 12671.00 478.70 1161.78 4,528.88 3221.25 20421.14

Total: 114039.00 49817.73 35433.77 199290.51

Table 31: ECE Department Server Costs

You will notice that in addition to the 10 department servers, we have also included costs
for a “Projected Server,” to anticipate future costs. To calculate the purchase cost of this
“server”, we took the sum of all of the server purchase costs and divided it by the number of years
between the deployment of the oldest and newest servers. This gave us an average cost per year
spent on buying new servers, which we multiplied by the number of additionally projected years,
which in this case was 1 (since the span from the oldest to newest server was 8 years). From the
above table, we calculated the total purchase costs for these 10 servers to be approximately
$114,039.00. According to our estimations, the total powering and cooling costs for 1 year are
approximately $5,535.30 and $3,937.09 respectively, and the corresponding costs for 9 years are
approximately $49,817.73 and $35,433.77 respectively. We initially factored maintenance costs
into the analysis, but after speaking with a member of the department who maintains the servers,
we were informed that because all maintenance is done in-house, there are no real costs associated
with maintaining the servers. Although this faculty member’s salary could factored into the total
cost, it would be unnecessary because the department would require their services just as much
for maintaining network connections to the EC2 instances, as well as configuring and setting up
new terminals to access the service.

We were also informed that the department makes use of its 3 or 4 year warranty that
generally comes along with the purchase of the servers, and so if any maintenance is needed, it is
normally covered by these. Since they house redundant systems, any other maintenance is
generally done in-house without causing much impact to the students and faculty. Using all of
these numbers, the total minimum expenses borne by the ECE department for purchasing and
maintaining the above servers for 9 years is approximately $199,290.51. The cost does not include
aspects such as storage costs or additional hardware, as these are typically much lower than the
other associated costs.

In order for it to be financially viable to migrate over to the cloud, the minimum total cost
of EC2 would have to be lower than the total cost of owning an in-house system.
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6.2.2 EC2 Reserved Instances as Servers

We now examine the cost of reserving instances that equal the computing power currently
provided by network infrastructure in the ECE department. This was done by first estimating
which instance, or combination thereof, would align most closely with each of the physical servers.
During our primary analysis we made the mistake of matching servers directly on their current
hardware specifications. It is important to remember that each of the servers in the ECE
department were purchased when they were some of the best on the market, and as Table 31
shows, we paid a premium. The cost analysis for this section is greatly complicated by Moore’s
law, which states that the number of transistors on an integrated circuit will double roughly every
two years[32]. What this implies is that while the cost for high-end servers will remain about the
same, their performance will double; a 2.8GHz dual-core processor in 2007 cost the same amount
as a 2.8GHz quad-core processor in 2009.

What this meant for our analysis was that, for our server-instance estimates, we needed to
determine which servers would have been considered top-of-the-line, and which would have been
only average. Table 32 depicts the pairings of servers to historically comparable instances.

Calculating the initial 3-year cost was simply a matter of multiplying the cost per
instance-hour by the number of hours in 3 years and adding the one-time fee. The cost for the
second 3-year term should be significantly lower than the cost for the first term, and the best
estimate of the costs for each server was to “downgrade” each server to the next lowest instance.
This is the closest approximation to Moore’s law, while staying within the EC2 pricing structure.
In order to represent this data in an easily understandable format, we have divided a page into a
flowchart of sorts which depicts the cost of each three year deployment of EC2 instances.
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Server

Comparable 3-Year Cost per Cost Total

Instance Initial Instance After Cost

Type Cost Hour 3 Years (USD)

(USD) (USD) (USD)

1st Term:

Tesla HM4XLarge 8000 0.68 25870.4

Hertz HM2XLarge 4000 0.34 12935.2

Henry HM2XLarge 4000 0.34 12935.2

Ohm HM2XLarge 4000 0.34 12935.2

Mho HM2XLarge 4000 0.34 12935.2

Amp HM4XLarge 8000 0.68 25870.4

Dot HM2XLarge 4000 0.34 12935.2

Volt HMXLarge 2000 0.17 6467.6

Maxwell HMXLarge 2000 0.17 6467.6

Hutt HM4XLarge 8000 0.68 25870.4

Projected Server HM4XLarge 8000 0.68 25870.4

Total: 181092.8

2nd Term:

HM2XLarge 4000 0.34 12935.2

XLarge 2800 0.24 9107.2

XLarge 2800 0.24 9107.2

XLarge 2800 0.24 9107.2

XLarge 2800 0.24 9107.2

HM2XLarge 4000 0.34 12935.2

XLarge 2800 0.24 9107.2

Large 1400 0.12 4553.6

Large 1400 0.12 4553.6

HM2XLarge 4000 0.34 12935.2

HM2XLarge 4000 0.34 12935.2

Total: 106384

3rd Term:

XLarge 2800 0.24 9107.2

HMXLarge 2000 0.17 6467.6

HMXLarge 2000 0.17 6467.6

HMXLarge 2000 0.17 6467.6

HMXLarge 2000 0.17 6467.6

XLarge 2800 0.24 9107.2

HMXLarge 2000 0.17 6467.6

S 350 0.03 1138.4

S 350 0.03 1138.4

XLarge 2800 0.24 9107.2

XLarge 2800 0.24 9107.2

Total: 71043.6

Overall Total: 358520.4

Table 32: EC2 to In-House Server Pairings
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The previous table was a best case scenario, demonstrating the extreme prices associated
with leasing out EC2 instances. No data transfer costs were taken into consideration, and the
cheaper Linux pricing was used for all hourly instance costs. The total cost over the 9-year period
was approximately $358,520, which was significantly greater than the costs associated with the
in-house servers. It should also be noted that the step down from the HM2XLarge went to the
XLarge, and likewise the XLarge stepped to the HMXLarge, instance, as it was the next lowest
price.

6.3 Discussion

There are several aspects that must be taken into consideration when attempting to utilize
the EC2 service as a cost-effective form of computing. This section discusses the significance of
both of the analyses completed above, providing a better understanding of the overall cost-benefit
of EC2.

6.3.1 Tesla vs. EC2

Prior to commencing our cost analysis, our group was informed that the annual server
budget for the ECE department is roughly $12,000, which would later support our estimate of
$12,600 for the average annual purchase costs of servers—as demonstrated by the initial cost of
the projected server in Table 31. We also stayed in close contact with members of the department
in order to verify the accuracy of different cost estimates, and ensured that all of the costs that
we factored into our analysis were actually relevant to the department.

The most important point that must be considered when replacing a physical server with
online instances is the overall cost-benefit to the department, since this analysis is directly aimed
at educational research institutions such as WPI. From our analysis we note that it is much more
cost effective to invest in private servers, rather than migrating to the cloud—regardless of
whether or not there is already a server infrastructure in place. Although our findings indicate
that it would not be advantageous to completely transition to the EC2 servers, by budgeting a
certain percentage of department funds towards EC2-related activities it would enable researchers
to quickly complete time-critical applications without completely locking up the department
servers.

While it is still economical to do so, there are several usage constraints that can make such
an option difficult. In the case of the ECE department, all servers are connected via the WPI
network, not only to thousands of student and faculty accounts, but also to license and backup
servers located on campus. The university currently allows access to most of these services, the
licenses in particular, over only the WPI network due to various license agreement terms with
software providers. Adding in one instance outside of the WPI network to the set of servers in the
ECE department may cause difficulty in acquiring licenses for the instance reserved, as well as
adding this external instance to the WPI network. Additionally, the data within the ECE
department that is stored in its servers is backed up on a daily basis onto the department’s
privately owned storage servers. While backing up the information stored in the reserved instance
is certainly possible using EC2’s storage options such as S3, it could pose issues such as security
of the information, as well as the fact that this backing up is occurring outside of WPI’s realm of
control.

An additional inconvenience posed by reserving instances is the limited 3 year contract
which could potentially make it difficult for the department to back up data or provide continuous
service throughout the year for several years at a time. It is necessary for the department to have
servers up and running 24 hours a day all year due to the load that it experiences year round, not
only from graduate students or professors running their research programs, but also
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undergraduate students using the servers for their coursework. Finally, we must also not overlook
the fact that the performance of the EC2 instances was still sub-par when compared to Tesla’s
performance. Apart from the usage convenience offered by purchasing one’s own servers, the
performance provided by the physical server may still be far more favorable than the EC2
instances, which can be a big deciding factor for research-intensive environments.

Based on these issues, it is important to note that while reserving an EC2 instance can not
only provide very little cost-benefits, it may not be the best solution for well established research
institutions such as WPI, that already have server labs and secured private networks set up. In
order to examine this further, we extended our analysis to determining the costs associated with
replacing an entire set of physical servers rather than only one, using reserved instances.

6.3.2 Server lab vs. EC2 instances

Our second cost analysis dealt with understanding the various expenses associated with
investing in EC2 as a replacement to the all of the computational resources offered by the servers
currently owned by the ECE department. We found that the overall costs associated with
purchasing and maintaining a set of 10 servers for a period of 9 years is about 43% less than that
of reserving a set of EC2 instances for the same purpose. From this very large difference, we
observe that there are indeed little to no cost benefits that can be observed when reserving a large
set of instances that provide the same amount of computational resources as physical servers.

As with the earlier analysis, there are usage constraints that could cause EC2 to be a less
desirable option for research bodies with well established server setups. As mentioned earlier,
WPI has access to a large set of software licenses that are specific to its secure and private
network. If the ECE department alone was to migrate to the EC2 service for its computing needs,
it would pose an issue with the campus-wide license agreements with various software distributors.
Additionally, daily backups of the all the servers containing ECE department data could result in
exorbitant amounts of storage (much more than only backing up one instance) that might not
necessarily cost as much if physical storage was purchased along with physical computing
resources. As we mentioned earlier, our server administrator stated that the ECE department
spent about $1200 on the purchase of additional disk drives that were mainly used for disk failure
backups, which does not add a significant amount to the total cost observed for all the servers.
ind We must also keep in mind, as with the previous analysis, that the performance of the EC2
instances based on our benchmarks has not been as commendable as that of our most powerful
(and newest) physical server found in the ECE department. There is always the concern that
computing space provided by EC2 is shared with other users due to the very nature of the virtual
machine usage. This can not only cause a reduction in performance and inconsistency of results,
but can also bring the issue of information security. If the ECE department were to migrate
entirely to EC2 for its computing and storage purposes, there lies a substantial risk of loss or
sharing of data which can be problematic for researchers handling sensitive material or intellectual
property matters. These issues could potentially hamper interest on the part of professors
working on confidential material, as well as WPI’s own policies about information security overall.

Based on these analyses, it would make sense to use EC2 in order to offset the extreme
loads often experienced by the ECE department servers, rather than moving entirely to the EC2
service for all of our computing needs,. For example, there are times where the ECE department
servers are loaded up to such a point that either their use is prevented or their performance is
greatly compromised. In such cases, researchers can choose to invest in the on-demand instances
offered by EC2, which could allow them to obtain their results far quicker than an overloaded
campus server. Finally, our analysis shown in section 5 describes the instance that is best suited
for different kinds of applications based on cost as well as time, which could help researchers pick
the appropriate instance for their specific workloads.
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An additional use of the EC2 reserved instances could be for smaller businesses or
organizations, such as start-ups, that may not necessarily have the physical space or
infrastructure to accommodate a large amount of servers. In such cases, it would prove useful for
them to invest in the EC2 reserved instances, which would provide them with sufficient
computing power and storage at potentially agreeable cost. These businesses would also benefit
with the cloud environment’s overall advantages, such as freedom from hassles dealing with server
space, powering, maintenance and so on.

EC2 is therefore observed to be an excellent option for those who do not have access to
powerful computing servers, or whose applications are not as intensive that they may require
computation for large periods of time. In simpler terms, applications that are smaller and less
intensive in nature can be effectively run on EC2, for a reasonable cost and rivaled performance.
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7 Overall Discussion

Our primary focus with this research was to evaluate the feasibility of the Amazon EC2
service to address the computational needs experienced by scientific research-oriented
environments, such as universities. In order to accomplish this in an impartial manner, it was
important to take into account the performance as well as various costs associated with owning
and maintaining a physical machine versus purchasing on-demand or reserved EC2 instances
online. The results obtained from this report, and performance as well as cost evaluations have
helped us in developing an overall conclusion on the usability of EC2.

In all the tests that were performed, whether they were compute intensive, memory based,
or both, it was found that Tesla outperformed all the instances almost every single time. This is
commendable as Tesla was quite often being used by other students that added a considerable
load on to it. Although it was observed that there were times when Henry did not perform as well
as Tesla in certain tests, it must be taken into account that Henry was purchased approximately 2
years prior to Tesla; the ECE department purchased Tesla about a year before the commencement
of our research. Factoring in current technology trends, namely Moore’s law, it is no surprise that
Henry’s hardware was slower than the hardware that supports the EC2 instances, let alone Tesla.

We also observed that despite lagging in performance, EC2 is capable of providing
reasonable costs for the services it offers on a smaller scale. Computational power could be
acquired from EC2 at a reasonable rate, provided the type of investment was confined to a single
or a couple of instances, mostly of the reserved kind. Larger scale use of EC2, particularly to
replace server facilities, would not be advisable based the economic analysis conducted in Section
6. We then noted the various managerial and usage issues that could come into play when using
EC2 within a secure networked environment such as WPI, and found these as important aspects
to take into account when evaluating one’s need to migrate to cloud computing.

We now highlight some of the issues that came up while we benchmarked all of the systems
chosen for this project. These are issues that one must be aware of when working with both types
of resources, physical as well as virtual.

7.1 Issues

During the course of this project, it was realized that apart from the various performance
drawbacks on the part of the EC2 instances, there was also a considerable amount of
inconvenience associated with the on-demand instance use. For example, the AWS console
repeatedly restarted instances on its own, that were previously shut down after being used. This
glitch resulted in an unnecessary expenditure on the part of the group for resources that were not
even used.

Another issue that arose was the selection of operating systems supplied by EC2 for
launching instances. Although it is wise of Amazon to constantly upgrade the systems and
software that they offer, it was particularly inconvenient when the Fedora 8 operating system that
was offered was suddenly replaced without warning with SUSE Linux Enterprise. This was a
problem as the group had already commenced work on the Fedora 8 instances that had been
created while the operating system was being offered. Additionally, it was difficult to upload our
own operating system onto their servers, causing greater inconvenience when setting up our
instances. However, this issue was overcome by cloning the Fedora 8 image that was originally
used, and generating other instances based off of this image in order to maintain uniformity of
operating systems.

Occasionally there were instances that appeared to be “unavailable” in the geographic
region specified by the group, although EC2 offers a 99.9% availability guarantee [6]. While the
service does present to the user the option to open the instance in an alternative region, opting for
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this alternative did not seem to launch the instance, thereby causing a standstill in benchmarking
processes until the desired instance was once again available in our specified region. Additionally,
there is always the possibility of sharing resources with other virtual instances on the EC2
machines. This is most commonly the reason behind inconsistent results of benchmarks due to
large loads on physical machines that are being shared amongst various people’s virtual machines
– and can also lead to insecurity of information being utilized or stored on the virtual machine.

There were also issues present when using the ECE servers which were not observed on the
EC2 instances. For example, when first attempting to run RAMSMP, the group accidentally
exceeded the memory specifications of Tesla causing the server to force itself to shut down. This
caused considerable inconvenience to those individuals that were currently running various
academic-related workloads on the server. However, it was observed that when this sort of test
was run on EC2, the instance could either recover from the situation on its own, or could be
restarted via the AWS console thereby reloading the entire instance without causing anyone else
any loss of information. It must be noted, though, that the restarting of the instance was possible
only because the instance was privately owned by the group, and therefore was not being used by
any outside entity whose work could be disrupted. This capability of EC2 was also particularly
useful in testing the RAMSMP benchmark in order to establish appropriate boundaries when
testing memory limits.

It was also not possible for the group to run the SPEC benchmarks on the ECE servers, as
the installation of the benchmark required administrative privileges which the group was not
permitted to obtain. It is fortunate that the SPEC repositories contained the results for the entire
suite for the Dell PowerEdge R610 server (but not the Sunfire X2200 M2 2.80GHz server), that
could be used when comparing Tesla to EC2.

Lack of administrative privileges also posed an issue when attempting to standardize all
software versions across the instances and machines, as the versions that were installed on Henry
and Tesla cannot be changed. The software versions that were found on the ECE servers were
older compared to compiler and application versions that are currently in the market. Therefore,
care had to be taken to find and install older versions of the software onto the EC2 instances in
order to maintain uniformity when benchmarking.

Given these issues with the department servers, it was certainly convenient to have a
machine that was dedicated only to the group, rather than be shared with several other users and
their heavy workloads. This allowed much greater flexibility in terms of resource usage,
administrative privileges, and so on, despite the instances’ lacking in performance.

7.2 Cost Comparison

The cost analysis estimated by the group as well as the Amazon EC2 calculator both show
that the cost of purchasing and running Tesla for 3 years is much less than purchasing a reserved
instance of similar computing capabilities on EC2. These costs did not include any other
additional expenses that may be incurred during the life-span of both the servers as well as the
instances, but as far as the initial purchase and maintenance costs go, EC2 certainly provided the
least economical results for the usage of a single reserved instance.

As part of our cost analysis, we compared the cost of maintaining not only one physical
server, but also a complete server lab against purchasing reserved instances online to provide the
same computing resources. It was found that purchasing and maintaining the ECE servers cost
much less (by about 43%) when compared to purchasing and renewing contracts for reserved
instances that could be put in place of the servers currently used by the ECE department.
Following this cost-benefit analysis, we delved deeper into understanding the various factors that
must be considered (other than expenses) when migrating the ECE department load to the EC2
service.
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We discussed the managerial concerns associated with EC2 reserved instances, which could
make its overall benefit appear less appealing. For example, permission to access licenses,
personal network accounts as well as large scale data storage over EC2 may not be an option that
institutions such as WPI would like to undertake. This can be for various reasons, mostly due to
preservation of information security and intellectual property, as well as abiding by the terms of
various software license agreements. It is much more preferred for the university to maintain its
information within their secured network’s protection, as well as more convenient for the various
departments to have their servers in-house, rather than being concerned about external network
connections, unknown power or system failures, limited support staff, and so on.

Despite these advantages, it may not always be possible to invest in a large server,
particularly for small businesses, individual workers or researchers. In such cases, the cost vs.
time to solution analysis plays a key role in helping the individual or organization in determining
which instance would best suit their need. The cost versus time analysis provides the reader with
the opportunity to set boundaries as to what sort of cost they are able to manage, or what kind
of wait period they are willing to bear. The instances most suited for both single as well as
multi-threaded applications at the most economical value were found using this analysis. As a
result, the user can choose an instance that delivers the solution relatively quicker, with the
trade-off being a large amount of money, or vice versa. This sort of comparison is particularly
helpful for individuals that are limited on budget or time, be it for time sensitive research or
cost-efficient results.

Overall, it appears as though that the EC2 service is more suited for sporadic use rather
than continuous long term use. It would make more sense for a researcher to invest in on demand
instances as and when their workload demands urgent response which may or may not be
facilitated by on-campus servers. In such cases, the researcher could easily purchase an instance
online for as long as they need, obtain their solution and close down the instance with no
commitment to the same, and with adequate performance. Such flexibility was therefore the
strongest point observed about the EC2 service.
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8 Conclusion

This project was designed in order to identify the key differences between investing in cloud
computing versus a physical machine to address the needs of a scientific research-based institution
such as WPI. With the amount of flexibility and the wide variety of usage options offered by
modern cloud computing providers such as Amazon EC2, it was important to evaluate whether
this new, upcoming form of computing was in fact capable of replacing traditional means of
processing information and complex problems. In addition to evaluating its performance, it was
also important to take into account the various costs associated with cloud computing, specifically
the EC2 service, and compare them against those expected from investing in physical servers.

It was found, as a result of the various analyses conducted in this project, that it is
currently more practical to invest in a large computing server rather than in on-demand or
reserved EC2 instances, specifically for research-oriented environments such as the WPI ECE
department. This can be attributed to the much more reasonable costs, considerable performance
boost observed in physical computing resources, along with the security that it provides for
information, as well as flexibility in terms of networking with the rest of the university campus
and using campus-wide shared utilities and software.

There are still issues with privately owned servers in terms of availability, load, and
administrative privileges (or the lack thereof), which may hamper time-sensitive research, or skew
results because of erratic performance by the server due to large loads. In times like this, it may
be useful for the researcher to invest, for a brief period of time, in EC2 instances that can provide
them their results at a quicker rate and at rivaled performance, rather than waiting until the
physical server is able to process more load, thereby delaying research.

It is also important to take into consideration the various other resources that EC2 has to
offer, that were not looked into by this project. These resources include the various cluster
computing instances, the GPU instances, Spot instances, and so on. Looking into these instances
can potentially provide additional insight as to whether the EC2 service is still capable of
providing acceptable, if not better results when using any of these instance types, for a reasonable
cost. Additionally, the aforementioned GPU instances were only a recent addition to the EC2
resources, thereby making them fair game for further performance and cost analysis of EC2’s
cluster computing resources.

Apart from this, given a long enough research period, it may be wise to invest in reserved
instances in order to estimate the kind of performance one can expect. This includes aspects such
as overall availability, frequency of system failures if any, network behavior and security, and
various other concerns raised in this report about cloud computing overall. This could then be
used to measure the similarities in behavior between the reserved instances as well as physical
servers, in order to estimate which option provides a better quality for its price.

Future work can also take into account the costs associated with cloud computing versus
those faced by different organizations, such as larger corporations or businesses. These
establishments tend to face a larger cost when dealing with on-site servers, due to maintaining
large server labs, leasing office space, and other such details that need not be taken into
consideration when evaluating WPI’s cost benefits. This sort of analysis can aid in determining
whether there are conditions under which EC2 is in fact a viable computational resource for its
associated costs. For example, in the case of a small private company, there may not be a largely
established network (such as the WPI campus), that one would need to worry about in terms of
licensing or networking issues. In such cases, EC2 would be ideal in terms of providing reasonable
computing services at modest costs.

The results detailed in this project report were able to answer several questions that
address the overall feasibility or performance comparison of EC2 versus a large dedicated physical
server, based on single-node computing. We were also able to further endorse our results by using
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the standardized and widely accepted SPEC benchmarks. Overall, we were able to demonstrate
the differences in performance as well as cost between the EC2 instances and physical machines.

64



References

[1] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and P. Maechling,
“Scientific Workflow Applications on Amazon EC2,” 2009 5th IEEE International Conference
on EScience Workshops, pp. 59–66, 2010. [Online]. Available: http://arxiv.org/abs/1005.2718

[2] J. Rehr, F. Vila, J. Gardner, L. Svec, and M. Prange, “Scientific Computing in the Cloud,”
Computing in Science and Engineering, vol. 99, no. PrePrints, 2010.

[3] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud Migration: A Case Study of
Migrating an Enterprise IT System to IaaS,” in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, 2010, pp. 450 –457.

[4] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, “Cost-benefit analysis of
Cloud Computing versus desktop grids,” in Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1–12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1586640.1587662

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” ACM, vol. 53, no.
No.4, pp. 50–58, 2010.

[6] Amazon Web Services, “Amazon Elastic Compute Cloud,” 2011. [Online]. Available:
http://aws.amazon.com/ec2/

[7] N. Guilbault and R. Guha, “Experiment setup for temporal distributed intrusion detection
system on amazon’s elastic compute cloud,” in Proceedings of the 2009 IEEE international
conference on Intelligence and security informatics, ser. ISI’09. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 300–302. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1706428.1706496

[8] S. Akioka and Y. Muraoka, “HPC Benchmarks on Amazon EC2,” in 24th IEEE
International Conference on Advanced Information Networking and Applications Workshops.

[9] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early observations on the
performance of Windows Azure,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ser. HPDC ’10. New York, NY, USA: ACM,
2010, pp. 367–376. [Online]. Available: http://doi.acm.org/10.1145/1851476.1851532

[10] J. Napper and P. Bientinesi, “Can cloud computing reach the top500?” in Proceedings of the
combined workshops on UnConventional high performance computing workshop plus memory
access workshop, ser. UCHPC-MAW ’09. New York, NY, USA: ACM, 2009, pp. 17–20.
[Online]. Available: http://doi.acm.org/10.1145/1531666.1531671

[11] C. Evangelinos and C. Hill, “Cloud Computing for parallel Scientific HPC Applications:
Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2,” 2008.

[12] E. Walker, “Benchmarking Amazon EC2 for High-Performance Scientific Computing,” Login,
vol. 33, pp. 18–23, October 2008.

[13] MIT Information Services & Technology, “Athena at MIT.” [Online]. Available:
http://ist.mit.edu/services/athena

65

http://arxiv.org/abs/1005.2718
http://portal.acm.org/citation.cfm?id=1586640.1587662
http://aws.amazon.com/ec2/
http://portal.acm.org/citation.cfm?id=1706428.1706496
http://doi.acm.org/10.1145/1851476.1851532
http://doi.acm.org/10.1145/1531666.1531671
http://ist.mit.edu/services/athena


[14] D. P. Anderson and G. Fedak, “The Computational and Storage Potential of Volunteer
Computing,” Cluster Computing and the Grid, IEEE International Symposium on, vol. 0,
pp. 73–80, 2006.

[15] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good, “On
the Use of Cloud Computing for Scientific Workflows,” in ESCIENCE ’08: Proceedings of the
2008 Fourth IEEE International Conference on eScience. Washington, DC, USA: IEEE
Computer Society, December 2008, pp. 640–645. [Online]. Available:
http://dx.doi.org/10.1109/eScience.2008.167

[16] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-Degree
Compared,” in 2008 Grid Computing Environments Workshop. IEEE, November 2008, pp.
1–10. [Online]. Available: http://dx.doi.org/10.1109/GCE.2008.4738445

[17] M. Klems, J. Nimis, and S. Tai, “Do Clouds Compute? A Framework for Estimating the
Value of Cloud Computing,” in Designing E-Business Systems. Markets, Services, and
Networks, ser. Lecture Notes in Business Information Processing, W. Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, C. Szyperski, C. Weinhardt, S. Luckner, and J. Ster, Eds.
Springer Berlin Heidelberg, 2009, vol. 22, pp. 110–123. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01256-3 10

[18] S. Bibi, D. Katsaros, and P. Bozanis, “Application development: Fly to the clouds or stay
in-house?” in Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE), 2010 19th IEEE International Workshop on, 2010, pp. 60 –65.

[19] Amazon Web Services, “The Economics of the AWS Cloud vs. Owned IT Infrastructure,”
2009. [Online]. Available: http://media.amazonwebservices.com/
The Economics of the AWS Cloud vs Owned IT Infrastructure.pdf

[20] ——, “Amazon EC2 Reserved Instances,” 2011. [Online]. Available:
http://aws.amazon.com/ec2/reserved-instances

[21] ——, “User Guide: Amazon EC2 Cost Comparison Calculator,” 2011. [Online]. Available:
http://aws.amazon.com/economics/

[22] J. Gustafson, D. Rover, S. Elbert, and M. Carter, “The design of a scalable, fixed-time
computer benchmark,” J. Parallel Distrib. Comput., vol. 12, pp. 388–401, August 1991.
[Online]. Available: http://portal.acm.org/citation.cfm?id=115832.115846

[23] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fourth Edition:
The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture
and Design). Morgan Kaufmann, 2008. [Online]. Available: http:
//www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938%
3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%
3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123744938

[24] “Python Core Development.” [Online]. Available: http://coverage.livinglogic.de/index.html

[25] S. Appel and I. Petrov, “Performance Evaluation of Multi Machine Virtual Environments,”
in Proceedings of the 2010 SPEC Benchmark Workshop, Paderborn, Germany, 2010. [Online].
Available: http://www.dvs.tu-darmstadt.de/publications/pdf/ApPeBu2010.pdf

[26] “International SPEC Benchmark Workshop 2010.” [Online]. Available:
http://www.spec.org/workshops/2010/paderborn/program.html

66

http://dx.doi.org/10.1109/eScience.2008.167
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1007/978-3-642-01256-3_10
http://media.amazonwebservices.com/The_Economics_of_the_AWS_Cloud_vs_Owned_IT_Infrastructure.pdf
http://media.amazonwebservices.com/The_Economics_of_the_AWS_Cloud_vs_Owned_IT_Infrastructure.pdf
http://aws.amazon.com/ec2/reserved-instances
http://aws.amazon.com/economics/
http://portal.acm.org/citation.cfm?id=115832.115846
http://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123744938
http://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123744938
http://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123744938
http://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123744938
http://coverage.livinglogic.de/index.html
http://www.dvs.tu-darmstadt.de/publications/pdf/ApPeBu2010.pdf
http://www.spec.org/workshops/2010/paderborn/program.html


[27] “Standard Performance Evaluation Corporation (SPEC),” [SPEC CPU2006]. [Online].
Available: http://www.spec.org/cpu2006/

[28] “RAMSpeed - A RAM and Cache Benchmarking Tool.” [Online]. Available:
http://alasir.com/software/ramspeed/

[29] AMD, “AMD Software Optimization Guide for AMD64 Processors,” 2005. [Online].
Available: http://support.amd.com/us/Processor TechDocs/25112.PDF

[30] Dell, “Server, Storage and Networking.” [Online]. Available: http://www.dell.com/

[31] Energy Star, “ENERGY STAR Power and Performance Data Sheet: Dell PowerEdge R610
feaaturing High-output 717W Power Supply.” [Online]. Available: http://www.dell.com/
downloads/global/products/pedge/Dell PowerEdge R610 717W Energy Star Datasheet.pdf

[32] Intel, “Moore’s Law: Made by real Intel Innovations.” [Online]. Available:
http://www.intel.com/technology/mooreslaw/

67

http://www.spec.org/cpu2006/
http://alasir.com/software/ramspeed/
http://support.amd.com/us/Processor_TechDocs/25112.PDF
http://www.dell.com/
http://www.dell.com/downloads/global/products/pedge/Dell_PowerEdge_R610_717W_Energy_Star_Datasheet.pdf
http://www.dell.com/downloads/global/products/pedge/Dell_PowerEdge_R610_717W_Energy_Star_Datasheet.pdf
http://www.intel.com/technology/mooreslaw/


A Pystone Code

”””
”PYSTONE” Benchmark Program

Version : Python /1.1 ( corresponds to C/1.1 p l u s 2 Pystone f i x e s )

Author : Reinhold P. Weicker , CACM Vol 27 , No 10 , 10/84 pg .
1013.

Trans la ted from ADA to C by Rick Richardson .
Every method to p r e s e r v e ADA−l i k e n e s s has been used ,
a t the expense o f C−ness .

Trans la ted from C to Python by Guido van Rossum .

Version His tory :

Version 1.1 c o r r e c t s two bugs in v e r s i o n 1 . 0 :

F i r s t , i t l e a k e d memory : in Proc1 () , NextRecord ends
up having a p o i n t e r to i t s e l f . I have c o r r e c t e d t h i s
by zapping NextRecord . PtrComp at the end o f Proc1 () .

Second , Proc3 ( ) used the opera tor != to compare a
record to None . This i s r a t h e r i n e f f i c i e n t and not
t r u e to the i n t e n t i o n o f the o r i g i n a l benchmark ( where
a p o i n t e r comparison to None i s in tended ; the !=
opera tor a t tempts to f i n d a method cmp to do v a l u e
comparison o f the record ) . Version 1.1 runs 5−10
percent f a s t e r than v e r s i o n 1 .0 , so benchmark f i g u r e s
o f d i f f e r e n t v e r s i o n s can ’ t be compared d i r e c t l y .

Modi f ied f o r the purposes o f the Amazon
EC2 Benchmarking Team @ WPI

”””

LOOPS = 10000000

from time import c l o ck
from time import time

v e r s i o n = ” 1 .1 ”

[ Ident1 , Ident2 , Ident3 , Ident4 , Ident5 ] = range (1 , 6)

class Record :
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def i n i t ( s e l f , PtrComp = None , Discr = 0 , EnumComp = 0 ,
IntComp = 0 , StringComp = 0) :

s e l f . PtrComp = PtrComp
s e l f . Di scr = Discr
s e l f .EnumComp = EnumComp
s e l f . IntComp = IntComp
s e l f . StringComp = StringComp

def copy ( s e l f ) :
return Record ( s e l f . PtrComp , s e l f . Discr , s e l f .EnumComp,

s e l f . IntComp , s e l f . StringComp )

TRUE = 1
FALSE = 0

def main ( ) :
mstartt ime = time ( )
benchtime , s tone s = pystones ( )
mdi f f t ime = time ( ) − mstartt ime
print ” Pystone(%s ) time f o r %d pas se s = %g , %g” % \

( v e r s i o n , LOOPS, benchtime )
print ”Clock time = %g” % mdi f f t ime
print ” This machine benchmarks at %g pystones / second ” % stones

def pystones ( l oops=LOOPS) :
return Proc0 ( loops )

IntGlob = 0
BoolGlob = FALSE
Char1Glob = ’ \0 ’
Char2Glob = ’ \0 ’
Array1Glob = [ 0 ]∗5 1
Array2Glob = map(lambda x : x [ : ] , [ Array1Glob ]∗5 1 )
PtrGlb = None
PtrGlbNext = None

def Proc0 ( loops=LOOPS) :
global IntGlob
global BoolGlob
global Char1Glob
global Char2Glob
global Array1Glob
global Array2Glob
global PtrGlb
global PtrGlbNext

s t a r t t i m e = c lock ( )
for i in range ( loops ) :

pass
nu l l t ime = c lock ( ) − s t a r t t i m e
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PtrGlbNext = Record ( )
PtrGlb = Record ( )
PtrGlb . PtrComp = PtrGlbNext
PtrGlb . Discr = Ident1
PtrGlb .EnumComp = Ident3
PtrGlb . IntComp = 40
PtrGlb . StringComp = ”DHRYSTONE PROGRAM, SOME STRING”
Str ing1Loc = ”DHRYSTONE PROGRAM, 1 ’ST STRING”
Array2Glob [ 8 ] [ 7 ] = 10

s t a r t t i m e = c lock ( )

for i in range ( loops ) :
Proc5 ( )
Proc4 ( )
IntLoc1 = 2
IntLoc2 = 3
Str ing2Loc = ”DHRYSTONE PROGRAM, 2 ’ND STRING”
EnumLoc = Ident2
BoolGlob = not Func2 ( Str ing1Loc , Str ing2Loc )
while IntLoc1 < IntLoc2 :

IntLoc3 = 5 ∗ IntLoc1 − IntLoc2
IntLoc3 = Proc7 ( IntLoc1 , IntLoc2 )
IntLoc1 = IntLoc1 + 1

Proc8 ( Array1Glob , Array2Glob , IntLoc1 , IntLoc3 )
PtrGlb = Proc1 ( PtrGlb )
CharIndex = ’A ’
while CharIndex <= Char2Glob :

i f EnumLoc == Func1 ( CharIndex , ’C ’ ) :
EnumLoc = Proc6 ( Ident1 )

CharIndex = chr ( ord ( CharIndex )+1)
IntLoc3 = IntLoc2 ∗ IntLoc1
IntLoc2 = IntLoc3 / IntLoc1
IntLoc2 = 7 ∗ ( IntLoc3 − IntLoc2 ) − IntLoc1
IntLoc1 = Proc2 ( IntLoc1 )

benchtime = c lock ( ) − s t a r t t i m e − nu l l t ime
return benchtime , ( l oops / benchtime )

def Proc1 ( PtrParIn ) :
PtrParIn . PtrComp = NextRecord = PtrGlb . copy ( )
PtrParIn . IntComp = 5
NextRecord . IntComp = PtrParIn . IntComp
NextRecord . PtrComp = PtrParIn . PtrComp
NextRecord . PtrComp = Proc3 ( NextRecord . PtrComp)
i f NextRecord . Discr == Ident1 :

NextRecord . IntComp = 6
NextRecord .EnumComp = Proc6 ( PtrParIn .EnumComp)
NextRecord . PtrComp = PtrGlb . PtrComp
NextRecord . IntComp = Proc7 ( NextRecord . IntComp , 10)
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else :
PtrParIn = NextRecord . copy ( )

NextRecord . PtrComp = None
return PtrParIn

def Proc2 ( IntParIO ) :
IntLoc = IntParIO + 10
while 1 :

i f Char1Glob == ’A ’ :
IntLoc = IntLoc − 1
IntParIO = IntLoc − IntGlob
EnumLoc = Ident1

i f EnumLoc == Ident1 :
break

return IntParIO

def Proc3 ( PtrParOut ) :
global IntGlob

i f PtrGlb i s not None :
PtrParOut = PtrGlb . PtrComp

else :
IntGlob = 100

PtrGlb . IntComp = Proc7 (10 , IntGlob )
return PtrParOut

def Proc4 ( ) :
global Char2Glob

BoolLoc = Char1Glob == ’A ’
BoolLoc = BoolLoc or BoolGlob
Char2Glob = ’B ’

def Proc5 ( ) :
global Char1Glob
global BoolGlob

Char1Glob = ’A ’
BoolGlob = FALSE

def Proc6 (EnumParIn ) :
EnumParOut = EnumParIn
i f not Func3 (EnumParIn ) :

EnumParOut = Ident4
i f EnumParIn == Ident1 :

EnumParOut = Ident1
e l i f EnumParIn == Ident2 :

i f IntGlob > 100 :
EnumParOut = Ident1

else :
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EnumParOut = Ident4
e l i f EnumParIn == Ident3 :

EnumParOut = Ident2
e l i f EnumParIn == Ident4 :

pass
e l i f EnumParIn == Ident5 :

EnumParOut = Ident3
return EnumParOut

def Proc7 ( IntParI1 , IntParI2 ) :
IntLoc = IntParI1 + 2
IntParOut = IntParI2 + IntLoc
return IntParOut

def Proc8 ( Array1Par , Array2Par , IntParI1 , IntParI2 ) :
global IntGlob

IntLoc = IntParI1 + 5
Array1Par [ IntLoc ] = IntParI2
Array1Par [ IntLoc +1] = Array1Par [ IntLoc ]
Array1Par [ IntLoc +30] = IntLoc
for IntIndex in range ( IntLoc , IntLoc+2) :

Array2Par [ IntLoc ] [ IntIndex ] = IntLoc
Array2Par [ IntLoc ] [ IntLoc −1] = Array2Par [ IntLoc ] [ IntLoc −1] + 1
Array2Par [ IntLoc +20] [ IntLoc ] = Array1Par [ IntLoc ]
IntGlob = 5

def Func1 ( CharPar1 , CharPar2 ) :
CharLoc1 = CharPar1
CharLoc2 = CharLoc1
i f CharLoc2 != CharPar2 :

return Ident1
else :

return Ident2

def Func2 ( StrParI1 , StrParI2 ) :
IntLoc = 1
while IntLoc <= 1 :

i f Func1 ( StrParI1 [ IntLoc ] , StrParI2 [ IntLoc +1]) == Ident1 :
CharLoc = ’A ’
IntLoc = IntLoc + 1

i f CharLoc >= ’W’ and CharLoc <= ’Z ’ :
IntLoc = 7

i f CharLoc == ’X ’ :
return TRUE

else :
i f StrParI1 > StrParI2 :

IntLoc = IntLoc + 7
return TRUE

else :
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return FALSE

def Func3 (EnumParIn ) :
EnumLoc = EnumParIn
i f EnumLoc == Ident3 : return TRUE
return FALSE

i f name == ’ ma in ’ :
main ( )
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B MATLAB Benchmark Code

% Modif ied f o r the purposes o f the Amazon EC2 Benchmarking Team @ WPI
% Octave Benchmark 2 (8 March 2003)
% v e r s i o n 2 , s c a l e d to g e t 1 +/− 0.1 sec wi th R 1 . 6 . 2
% us ing the standard ATLAS l i b r a r y ( Rblas . d l l )
% on a Pentium IV 1.6 Ghz wi th 1 Gb Ram on Win XP pro
% Author : P h i l i p p e Grosjean
% eMail : phgros jean@sc iv i ews . org
% Web : h t t p ://www. s c i v i e w s . org
% License : GPL 2 or above at your convenience ( see : h t t p ://www. gnu . org )
%
% S e v e r a l t e s t s are adapted from :
%

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗ Matlab Benchmark program v e r s i o n 2.0
∗

%∗ Author : S te fan Ste inhaus
∗

%∗ EMAIL : s t s t @ i n f o r m a t i k . uni−f r a n k f u r t . de
∗

%∗ This program i s p u b l i c domain . Fee l f r e e to copy i t f r e e l y .
∗

%
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Escouf ier ’ s e q u i v a l e n t s v e c t o r s ( I I I . 5 ) i s adapted from Planque &
Fromentin , 1996

% Ref : E s c o u f i e r Y. , 1970. E c h a n t i l l o n n a g e dans une p o p u l a t i o n de
v a r i a b l e s

% a l e a t o i r e s r e l l e s . Publ . I n s t . S t a t i s . Univ . Paris 19 Fasc 4 , 1−47.
%
% From the Matlab Benchmark . . . on ly cosmet ic changes
%
% Type ”cd (’/< dir > ’)” and then ” source ( ’ Octave2 .m’ ) ” to s t a r t the t e s t

clc

f a c t = 4 ; %numb
runs = 3 ; % Number o f t imes the t e s t s are

executed
t imes = zeros (5 , 3) ;

disp ( ’ Octave Benchmark 2 ’ )
disp ( ’ Modif ied f o r Amazon EC2 Benchmarking , WPI MQP 2010 ’ )
disp ( ’ ==================’ )
disp ( [ ’Number o f t imes each t e s t i s r u n : ’

num2str( runs ) ] )
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disp ( ’ ’ )

disp ( ’ I . Matrix c a l c u l a t i o n ’ )
disp ( ’ −−−−−−−−−−−−−−−−−−−−− ’ )

% (1)
cumulate = 0 ; a = 0 ; b = 0 ;
for i = 1 : runs

t ic ;
a = abs (randn (1500 , 1500) /10) ;
b = a ’ ;
a = reshape (b , 750 , 3000) ;
b = a ’ ;

t iming = toc ;
cumulate = cumulate + timing ;

end ;
t iming = cumulate / runs ;
t imes (1 , 1) = timing ;
disp ( [ ’ Creation , transp . , de formation o f a 1500 x1500 matrix ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (2)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = abs (randn(800∗ f ac t , 800∗ f a c t ) /2) ;
t ic ;

b = a . ˆ 1 0 0 0 ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (2 , 1) = timing ;
disp ( [ ’ 800 x800 normal d i s t r i b u t e d random matrix ˆ1000 ( sec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (3)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(2000000∗ f ac t , 1) ;
t ic ;

b = sort ( a ) ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (3 , 1) = timing ;
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disp ( [ ’ So r t ing o f 2 ,000 ,0000 random v a l u e s ( s ec ) : ’
num2str( t iming ) ] )

clear a ; clear b ;

% (4)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(700∗ f ac t , 700∗ f a c t ) ;
t ic ;

b = a ’∗ a ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (4 , 1) = timing ;
disp ( [ ’ 700 x700 cros s−product matrix (b = a ’ ’ ∗ a ) ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (5)
cumulate = 0 ; c = 0 ;
for i = 1 : runs

a = randn(600∗ f ac t , 600∗ f a c t ) ;
b = 1:600∗ f a c t ;
t ic ;

c = a\b ’ ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (5 , 1) = timing ;
disp ( [ ’ L inear r e g r e s s i o n over a 600 x600 matrix ( c = a \\ b ’ ’ ) ( s e c ) : ’

num2str( t iming ) ] )
clear a ; clear b ; clear c ;

t imes = sort ( t imes ) ;
disp ( ’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

disp ( [ ’ Trimmed geom . mean (2 extremes e l im inated ) : ’
num2str(exp(mean( log ( t imes ( 2 : 4 , 1 ) ) ) ) ) ] )

disp ( ’ ’ )

disp ( ’ I I . Matrix f u n c t i o n s ’ )
disp ( ’ −−−−−−−−−−−−−−−−−−−− ’ )

% (1)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(800000∗ f ac t , 1) ;

ix



t ic ;
b = f f t ( a ) ;

t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (1 , 2) = timing ;
disp ( [ ’FFT over 800 ,000 random v a l u e s ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (2)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(320∗ f ac t , 320∗ f a c t ) ;
t ic ;

b = eig ( a ) ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (2 , 2) = timing ;
disp ( [ ’ E igenva lues o f a 320 x320 random m a t r i x ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (3)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(650∗ f ac t , 650∗ f a c t ) ;
t ic ;

b = det ( a ) ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (3 , 2) = timing ;
disp ( [ ’ Determinant o f a 650 x650 random m a t r i x ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (4)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(900∗ f ac t , 900∗ f a c t ) ;
a = a ’∗ a ;
t ic ;

b = chol ( a ) ;
t iming = toc ;
cumulate = cumulate + timing ;
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end
t iming = cumulate / runs ;
t imes (4 , 2) = timing ;
disp ( [ ’ Cholesky decomposit ion o f a 900 x900 m a t r i x ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (5)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

a = randn(400∗ f ac t , 400∗ f a c t ) ;
t ic ;

b = inv ( a ) ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (5 , 2) = timing ;
disp ( [ ’ I nve r s e o f a 400 x400 random m a t r i x ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

t imes = sort ( t imes ) ;
disp ( ’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

disp ( [ ’ Trimmed geom . mean (2 extremes e l im inated ) : ’
num2str(exp(mean( log ( t imes ( 2 : 4 , 2 ) ) ) ) ) ] )

disp ( ’ ’ )

disp ( ’ I I I . Programmation ’ )
disp ( ’ −−−−−−−−−−−−−−−−−− ’ )

% (1)
cumulate = 0 ; a = 0 ; b = 0 ; phi = 1.6180339887498949 ;
for i = 1 : runs

a = f loor (1000 ∗ f a c t ∗ rand (750000∗ f ac t , 1) ) ;
t ic ;

b = ( phi . ˆ a − (−phi ) .ˆ(−a ) ) / sqrt (5 ) ;
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (1 , 3) = timing ;
disp ( [ ’ 750 ,000 Fibonacc i numbers c a l c u l a t i o n ( vec to r c a l c ) ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ; clear phi ;

% (1)
cumulate = 0 ; a = 5500 ; b = 0 ;
for i = 1 : runs
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t ic ;
b = ones ( a , a ) . / ( ( 1 : a ) ’ ∗ ones (1 , a ) + ones ( a , 1) ∗ ( 0 : ( a−1) ) ) ;

t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (2 , 3) = timing ;
disp ( [ ’ Creat ion o f a 5550 x5550 H i l b e r t matrix ( matrix c a l c ) ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ;

% (3)
cumulate = 0 ; c = 0 ;
for i = 1 :3

a = ce i l (1000 ∗ rand (70000 , 1) ) ;
b = ce i l (1000 ∗ rand (70000 , 1) ) ;
t ic ;

c = gcd ( a , b ) ; % gcd2 i s a r e c u r s i v e
f u n c t i o n

t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (3 , 3) = timing ;
disp ( [ ’ Grand common d i v i s o r s o f 70 ,000 p a i r s ( r e c u r s i o n ) ( s ec ) : ’

num2str( t iming ) ] )
clear a ; clear b ; clear c ;
%
% (4)
cumulate = 0 ; b = 0 ;
for i = 1 : runs

b = zeros (220∗ f ac t , 220∗ f a c t ) ;
t ic ;

for j = 1:220∗ f a c t
for k = 1:220∗ f a c t

b(k , j ) = abs ( j − k ) + 1 ;
end

end
t iming = toc ;
cumulate = cumulate + timing ;

end
t iming = cumulate / runs ;
t imes (4 , 3) = timing ;
disp ( [ ’ Creat ion o f a 220 x220 Toep l i t z matrix ( l oops ) ( s ec ) : ’

num2str( t iming ) ] )
clear b ; clear j ; clear k ;

% (5)
cumulate = 0 ; p = 0 ; vt = 0 ; vr = 0 ; vrt = 0 ; rvt = 0 ; RV = 0 ; j = 0 ; k

= 0 ;
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x2 = 0 ; R = 0 ; Rxx = 0 ; Ryy = 0 ; Rxy = 0 ; Ryx = 0 ; Rvmax = 0 ; f = 0 ;
for i = 1 : runs

x = abs (randn (37 , 37) ) ;
t ic ;

% C a l c u l a t i o n o f Escouf ier ’ s e q u i v a l e n t v e c t o r s
p = s ize (x , 2) ;
vt = [ 1 : p ] ; % V a r i a b l e s to t e s t
vr = [ ] ; % Resu l t : ordered

v a r i a b l e s
RV = [ 1 : p ] ; % Resu l t : c o r r e l a t i o n s
for j = 1 : p % loop on the v a r i a b l e

number
Rvmax = 0 ;
for k = 1 : ( p−j +1) % loop on the v a r i a b l e s

i f j == 1
x2 = [ x , x ( : , vt ( k ) ) ] ;

else
x2 = [ x , x ( : , vr ) , x ( : , vt ( k ) ) ] ; % New t a b l e to t e s t

end
R = corrcoef ( x2 ) ; % C o r r e l a t i o n s t a b l e
Ryy = R( 1 : p , 1 : p ) ;
Rxx = R(p+1:p+j , p+1:p+j ) ;
Rxy = R(p+1:p+j , 1 : p ) ;
Ryx = Rxy ’ ;
rvt = trace (Ryx∗Rxy) /( ( trace (Ryyˆ2) ∗trace (Rxxˆ2) ) ˆ 0 . 5 ) ; % RV

c a l c u l a t i o n
i f rvt > Rvmax

Rvmax = rvt ; % t e s t o f RV
vrt ( j ) = vt ( k ) ; % temporary h e l d

v a r i a b l e
end

end
vr ( j ) = vrt ( j ) ; % Resu l t : v a r i a b l e
RV( j ) = Rvmax ; % Resu l t : c o r r e l a t i o n
f = find ( vt˜=vr ( j ) ) ; % i d e n t i f y the h e l d

v a r i a b l e
vt = vt ( f ) ; % r e i d e n t i f y v a r i a b l e s

to t e s t
end

t iming = toc ;
cumulate = cumulate + timing ;

end
t imes (5 , 3) = timing ;
disp ( [ ’ E s c o u f i e r ’ ’ s method on a 37x37 matrix ( mixed ) ( s ec ) : ’

num2str( t iming ) ] )
clear x ; clear p ; clear vt ; clear vr ; clear vrt ; clear rvt ; clear RV;

clear j ; clear k ;
clear x2 ; clear R; clear Rxx ; clear Ryy ; clear Rxy ; clear Ryx ; clear

Rvmax ; clear f ;
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t imes = sort ( t imes ) ;
disp ( ’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

disp ( [ ’ Trimmed geom . mean (2 extremes e l im inated ) : ’
num2str(exp(mean( log ( t imes ( 2 : 4 , 3 ) ) ) ) ) ] )

disp ( ’ ’ )

disp ( ’ ’ )
disp ( [ ’ Total time f o r a l l 14 t e s t s ( s ec ) : ’

num2str(sum(sum( t imes ) ) ) ] )
disp ( [ ’ Overa l l mean (sum of I , I I and I I I trimmed means /3) ( s ec ) : ’

num2str(exp(mean(mean( log ( t imes ( 2 : 4 , : ) ) ) ) ) ) ] )
clear cumulate ; clear t iming ; clear t imes ; clear runs ; clear i ;
disp ( ’ −−− End o f t e s t −−− ’ )

e x i t
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C Setting up EC2 Instances

C.1 Creating Instances

The first step that had to be taken to get onto the Amazon Elastic Cloud Compute (EC2)
system was to set up an Amazon Web Services (AWS) account, via the AWS registration page [2].
After creating an account, it was possible to log into the EC2 system by navigating to the AWS
page, clicking on the Account tab, selecting Amazon EC2, and logging into the management
console. Once logged in, new EC2 systems were created by clicking the Launch New Instance
button in the center of the page.

This launched the Request Instances Wizard shown below:

Figure 14: Request Instances Wizard (RIW)

It is important to note that Figure 14 is a screen shot as of February 2011, which was
different from the original options that were displayed when creating the instances. At that point
in time, Fedora 8 was the best available alternative to Red Hat Linux 5.5, which was why the
64-bit variant of Fedora 8 was chosen to use as the base-instance. In the next page of the wizard,
the desired type of instance to be created was chosen (Large), leaving the availability zone set to
the default (No Preference), and the number of instances to 1.
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Figure 15: RIW: Select Instance Size & Zone
In the following page, all of the options were set to their default states. The Amazon EC2

instances all use specific Linux kernels that match up to RAM disks, and so these settings should
only be adjusted if a custom instance has to be created, and prior research has been done. After
the kernel selection page, an option to name the instance (Large) is provided, which is a useful
feature for distinguishing between multiple instances of the same type. In addition to naming the
instance, it is possible to tie together multiple key and value pairs (that is, key = name, value =
large), which could be useful for managing large numbers of instances.
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Figure 16: RIW: Select Kernel ID & RAM Disk ID
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Figure 17: RIW: Key-Value Pairs
For the first instance that was created, a key pair file had to be created. The key pair file

works much the same way as a key and a lock; only those who have access to the key pair file are
able to connect to the EC2 server. Once a key pair is created, it can be linked with any number of
EC2 instances. At first, a single copy of this key pair file was created, and then manipulated as
necessary for connections to the EC2 server—which will be described in detail in the next section.
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Figure 18: RIW: Create Key Pair
The next image is the firewall configuration for the instance, for which a “blank” security

group was created. Although the default security group would have sufficed, it was important to
ensure that no authorized connections would be lost to the server. After configuring the firewall,
a final review of the instance and the choice to launch the instance was presented.
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Figure 19: RIW: Create Security Group
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Figure 20: RIW: Review Instance
Once the instance was launched, it became available via the instances tab in the AWS

management console. This is where all of the instances that were created could be accessed
throughout the course of the project.

C.2 Connecting to Instances

There were two simple ways to connect to the instances, depending on the type of computer
that is being used. Regardless of the chosen method, the first step was to acquire a copy of the
key pair that was created in the initial instance creation process. Each member of the project
group was provided a copy of the key, as well as the original copy on the secure remote server that
was used for documentation. Prior to connecting, the instances were started by logging into the
AWS management console, choosing Instances, right-clicking on the name of the instance, and
selecting the Start option. Once the status of the instance is running, it is ready to connect.

C.2.1 The Linux/UNIX/Mac OSX Method

This was the simpler method of the two, as it required little to no additional resources. To
connect to the remote EC2 servers, a terminal application was started, and the directory changed
to that containing the key file—wpimqp.pem. Once in the directory and logged into the AWS
management console, the instance was started by right-clicking on its name and then clicking
Start. This brought up a window that displayed an SSH command to connect to the given
instance. The connection is established with the EC2 server by copying the SSH command and
pasting it into the terminal.
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Figure 21: Connect Help—SSH

C.2.2 The Windows Method

Of the two approaches, the initial setup of the Windows system took longer. Using PuTTY
on a Windows machine, it was necessary to create a different kind of secure key to log into the
server—in this case, a “.ppk” file. This file will be used in lieu of the “.pem” file that was used for
the Linux systems, and is compatible with both Putty and WinSCP—a common file transfer
application.

The first thing to be done was to acquire a program that could convert a “.pem” file to
“.ppk,” which was accomplished my PuTTYgen. PuTTY and PuTTYgen were downloaded from
their distribution sites, following which the PuTTYgen executable was launched. This brought up
the main screen, from which we clicked Conversions and then Import key. After the browsing
window appeared, the secure key chosen by the group was selected, in this case “example.pem,”
followed by clicking Open.

Figure 22: PuTTYgen: Import Key
This brought back the main screen, where Save Private Key was originally clicked. The
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appropriate name and directory was entered, set to be saved as a PuTTY Private Key File, and
saved. This generated a secure key, which was used to log into PuTTY.

Figure 23: PuTTYgen: Save Private Key
After setting up the private key file, the PuTTY executable was launched. In the Session

page, the public address for the EC2 instance into the Host Name field was entered. Next,
PuTTY was navigated through in order to get to the Connection ⇒ SSH ⇒ Auth section, and
the Browse button was clicked under Private key file for authentication. The “.ppk” file that had
been saved earlier was selected and opened, in this case “example.ppk”. At this point, the Open
button was clicked, which started the session. The username root was used, as this is the only
account that the EC2 instances come with default.

Figure 24: PuTTY: Select Private Key
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D Performance Comparison Ratio Results

D.1 Pystone

Computer 1

Red Hat Fedora

Result Average STDEV % STDEV Average STDEV % STDEV PCR

Execution

106.778 1.766 1.654 117.429 1.553 1.322 0.909Time

(Seconds)

Pystones

94845.205 1540.567 1.624 86034.022 1139.796 1.325 0.907per

Second

Average: 0.908

Computer 2

Red Hat Fedora

Result Average STDEV % STDEV Average STDEV % STDEV PCR

Execution

107.470 1.797 1.672 118.131 1.873 1.585 0.910Time

(Seconds)

Pystones

94263.764 1560.671 1.656 85538.758 1345.585 1.573 0.907per

Second

Average: 0.909

D.2 MATLAB Benchmark

Computer 1

Red Hat Fedora

Test

Average

STDEV % STDEV

Average

STDEV % STDEV PCR
Execution Execution

Time Time

(Seconds) (Seconds)

1.000 1.999 0.030 1.481 1.513 0.034 2.268 1.321

2.000 0.850 0.001 0.111 0.829 0.000 0.020 1.026

3.000 0.920 0.001 0.123 0.895 0.002 0.258 1.028

4.000 1.162 0.007 0.614 1.136 0.004 0.390 1.022

5.000 0.828 0.009 1.108 0.809 0.007 0.815 1.024

6.000 0.969 0.004 0.404 0.945 0.003 0.268 1.026

7.000 0.361 0.010 2.800 0.315 0.009 2.879 1.147
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8.000 3.377 0.023 0.690 3.394 0.043 1.252 0.995

9.000 0.879 0.002 0.226 0.855 0.002 0.211 1.028

10.000 0.992 0.001 0.067 0.969 0.003 0.352 1.025

11.000 0.582 0.003 0.512 0.580 0.003 0.445 1.005

12.000 0.798 0.001 0.183 0.783 0.002 0.295 1.019

13.000 0.470 0.013 2.797 0.471 0.007 1.537 0.998

14.000 0.195 0.014 7.138 0.129 0.005 3.788 1.510

15.000 - - - - - - -

16.000 0.014 0.001 4.219 0.014 0.000 2.973 1.004

17.000 0.245 0.001 0.338 0.236 0.000 0.125 1.041

18.000 0.087 0.003 2.974 0.075 0.001 1.744 1.164

19.000 12.876 0.050 0.391 12.144 0.063 0.522 1.060

20.000 0.406 0.004 1.030 0.381 0.002 0.644 1.067

Averages 1.474 1.393 1.058

Computer 2

Red Hat Fedora

Test

Average

STDEV % STDEV

Average

STDEV % STDEV PCR
Execution Execution

Time Time

(Seconds) (Seconds)

1.000 2.012 0.010 0.503 1.535 1.535 0.006 1.311

2.000 0.850 0.003 0.317 0.831 0.831 0.000 1.024

3.000 0.923 0.001 0.056 0.898 0.898 0.000 1.027

4.000 1.170 0.006 0.474 1.145 1.145 0.005 1.022

5.000 0.838 0.007 0.852 0.820 0.820 0.006 1.023

6.000 0.972 0.003 0.330 0.949 0.949 0.003 1.024

7.000 0.369 0.009 2.418 0.322 0.322 0.009 1.143

8.000 3.398 0.037 1.095 3.413 3.413 0.060 0.996

9.000 0.892 0.001 0.091 0.869 0.869 0.001 1.026

10.000 1.003 0.002 0.182 0.978 0.978 0.002 1.025

11.000 0.589 0.003 0.489 0.587 0.587 0.003 1.003

12.000 0.808 0.001 0.177 0.793 0.793 0.002 1.018

13.000 0.469 0.009 1.861 0.478 0.478 0.008 0.982

14.000 0.198 0.015 7.347 0.133 0.133 0.004 1.483

15.000 - - - - - - -

16.000 0.014 0.000 1.164 0.014 0.014 0.000 1.000

17.000 0.242 0.001 0.300 0.234 0.234 0.000 1.034

18.000 0.087 0.002 2.566 0.075 0.075 0.001 1.153

19.000 12.967 0.041 0.313 12.257 12.257 0.064 1.058
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20.000 0.408 0.004 0.902 0.384 0.384 0.001 1.063

Averages 1.485 1.406 1.056

D.3 RAMSMP

D.3.1 Float Memory

Computer 1

Red Hat Fedora

Test

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Copy: 3989.932 9.207 0.231 4085.546 4.287 0.105 1.024

Scale: 3995.517 8.778 0.220 4086.738 4.819 0.118 1.023

Add: 5053.435 6.472 0.128 5169.554 6.283 0.122 1.023

Triad: 5052.189 4.296 0.085 5166.678 5.027 0.097 1.023

AVERAGE: 4522.771 5.527 0.122 4627.131 2.410 0.052 1.023

Average: 1.023

Computer 2

Red Hat Fedora

Test

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Copy: 3817.966 2.921225 0.077 3844.573 5.03523 0.131 1.007

Scale: 3819.203 2.812004 0.074 3847.385 6.341245 0.165 1.007

Add: 4823.7 5.94919 0.123 4864.668 6.588147 0.135 1.008

Triad: 4820.951 6.079134 0.126 4861.375 7.099936 0.146 1.008

AVERAGE: 4320.456 3.121298 0.072 4354.504 3.256174 0.075 1.008

Average: 1.008

D.3.2 Float Reading

Computer 1

Red Hat Fedora
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Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 47655.241 786.322 1.650 47927.080 44.886 0.094 1.006

2 Kb 47941.366 36.637 0.076 47927.380 5.861 0.012 1.000

4 Kb 47911.876 74.597 0.156 47928.240 8.991 0.019 1.000

8 Kb 47930.435 43.965 0.092 47930.240 6.137 0.013 1.000

16 Kb 47932.405 42.372 0.088 47929.520 10.092 0.021 1.000

32 Kb 47044.608 52.280 0.111 47034.700 5.665 0.012 1.000

64 Kb 32424.056 20.920 0.065 32408.400 6.636 0.020 1.000

128 Kb 32371.452 128.768 0.398 32380.760 11.809 0.036 1.000

256 Kb 32408.608 22.734 0.070 32395.460 4.165 0.013 1.000

512 Kb 32400.680 25.222 0.078 32391.220 6.673 0.021 1.000

1024 Kb 32387.444 22.232 0.069 32375.210 12.635 0.039 1.000

2048 Kb 30375.091 1921.857 6.327 29903.400 1898.969 6.350 0.984

4096 Kb 7568.574 280.773 3.710 7567.538 342.773 4.530 1.000

8192 Kb 6556.492 38.776 0.591 6491.749 31.904 0.491 0.990

16384 Kb 6558.831 57.961 0.884 6495.715 28.944 0.446 0.990

32768 Kb 6567.572 56.795 0.865 6505.025 34.596 0.532 0.990

65536 Kb 6568.941 59.707 0.909 6509.626 41.948 0.644 0.991

131072 Kb 6600.540 55.786 0.845 6534.415 37.289 0.571 0.990

262144 Kb 6604.244 51.275 0.776 6539.864 27.607 0.422 0.990

524288 Kb 6632.648 34.428 0.519 6553.526 32.704 0.499 0.988

1048576 Kb 6641.208 37.327 0.562 6583.587 30.811 0.468 0.991

Average: 0.996

Computer 2

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 47604.110 398.844 0.838 47511.860 1371.238 0.094 0.998

2 Kb 47826.270 17.538 0.037 47766.390 9.640 0.012 0.999

4 Kb 47822.720 53.907 0.113 47769.220 11.344 0.019 0.999

8 Kb 47830.820 29.144 0.061 47771.410 12.437 0.013 0.999

16 Kb 47827.860 16.930 0.035 47772.230 8.922 0.021 0.999

32 Kb 46959.690 14.130 0.030 46881.320 7.834 0.012 0.998

64 Kb 32351.040 12.633 0.039 32302.180 12.299 0.020 0.998

128 Kb 32325.410 25.172 0.078 32277.880 3.992 0.036 0.999

256 Kb 32339.790 9.590 0.030 32286.820 17.466 0.013 0.998

512 Kb 32337.610 12.074 0.037 32285.180 10.712 0.021 0.998
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1024 Kb 32317.610 11.864 0.037 32272.020 1.815 0.039 0.999

2048 Kb 30391.710 1116.878 3.675 29711.320 2744.431 6.350 0.978

4096 Kb 7633.278 111.486 1.461 7689.616 305.783 4.530 1.007

8192 Kb 6560.193 23.884 0.364 6493.419 21.332 0.491 0.990

16384 Kb 6574.034 20.262 0.308 6496.869 21.692 0.446 0.988

32768 Kb 6602.597 22.305 0.338 6496.130 19.541 0.532 0.984

65536 Kb 6604.867 24.969 0.378 6490.263 19.489 0.644 0.983

131072 Kb 6611.157 21.830 0.330 6506.956 21.887 0.571 0.984

262144 Kb 6612.515 26.131 0.395 6478.888 19.896 0.422 0.980

524288 Kb 6623.563 32.077 0.484 6528.051 22.459 0.499 0.986

1048576 Kb 6629.294 32.980 0.497 6532.071 21.890 0.468 0.985

Average: 0.993

D.3.3 Float Writing

Computer 1

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 46201.650 634.161 1.373 46356.190 1065.308 0.094 1.003

2 Kb 46964.440 40.540 0.086 46767.740 1240.196 0.012 0.996

4 Kb 47153.510 80.182 0.170 47110.180 411.589 0.019 0.999

8 Kb 47237.580 148.555 0.314 47094.860 1135.800 0.013 0.997

16 Kb 47327.410 37.813 0.080 47264.330 397.805 0.021 0.999

32 Kb 46262.360 48.409 0.105 46057.130 1029.894 0.012 0.996

64 Kb 21300.140 18.572 0.087 21268.800 7.662 0.020 0.999

128 Kb 21312.550 15.235 0.071 21270.050 1.625 0.036 0.998

256 Kb 21302.610 19.611 0.092 21231.640 221.608 0.013 0.997

512 Kb 21293.680 16.295 0.077 21227.220 165.011 0.021 0.997

1024 Kb 21289.850 13.662 0.064 21225.430 180.948 0.039 0.997

2048 Kb 20365.430 643.393 3.159 19648.870 1322.322 6.350 0.965

4096 Kb 3192.530 52.336 1.639 3186.670 101.396 4.530 0.998

8192 Kb 2627.613 5.432 0.207 2626.142 6.581 0.491 0.999

16384 Kb 2625.520 6.253 0.238 2626.732 6.437 0.446 1.000

32768 Kb 2623.591 10.059 0.383 2627.242 7.796 0.532 1.001

65536 Kb 2620.585 12.734 0.486 2626.952 11.000 0.644 1.002

131072 Kb 2614.151 11.703 0.448 2626.416 12.534 0.571 1.005

262144 Kb 2606.087 8.705 0.334 2630.822 9.743 0.422 1.009

524288 Kb 2586.935 6.604 0.255 2648.481 7.736 0.499 1.024

1048576 Kb 2545.045 6.527 0.256 2682.871 5.853 0.468 1.054

Average: 1.002
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Computer 2

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 45616.150 1471.976 3.227 45397.89 2247.8170 0.094 0.995

2 Kb 46722.090 789.580 1.690 46799.19 55.7225 0.012 1.002

4 Kb 47016.520 242.890 0.517 47002.36 45.1257 0.019 1.000

8 Kb 47137.280 150.374 0.319 46906.91 1306.0590 0.013 0.995

16 Kb 47218.080 20.206 0.043 47096.76 464.0466 0.021 0.997

32 Kb 46252.080 288.478 0.624 45902.64 1178.1800 0.012 0.992

64 Kb 22617.910 6827.961 30.188 21502.25 3528.4020 0.020 0.951

128 Kb 21262.910 12.775 0.060 21179.76 191.7609 0.036 0.996

256 Kb 21261.110 11.970 0.056 21158.39 291.5292 0.013 0.995

512 Kb 21251.310 8.684 0.041 21164.57 148.7571 0.021 0.996

1024 Kb 21237.290 16.347 0.077 21167.3 161.3955 0.039 0.997

2048 Kb 20198.260 938.995 4.649 20423.87 570.2100 6.350 1.011

4096 Kb 3499.644 4810.118 137.446 3076.583 2514.1060 4.530 0.879

8192 Kb 2514.165 137.113 5.454 2469.011 66.1581 0.491 0.982

16384 Kb 2477.096 1.047 0.042 2460.43 2.3430 0.446 0.993

32768 Kb 2477.183 1.076 0.043 2461.815 1.1056 0.532 0.994

65536 Kb 2475.996 0.940 0.038 2465.134 2.5085 0.644 0.996

131072 Kb 2471.572 1.706 0.069 2468.814 0.9446 0.571 0.999

262144 Kb 2462.975 2.834 0.115 2475.892 1.1759 0.422 1.005

524288 Kb 2445.357 5.196 0.212 2489.342 1.9695 0.499 1.018

1048576 Kb 2414.592 9.129 0.378 2518.077 4.1274 0.468 1.043

Average: 0.992

D.3.4 Int Memory

Computer 1

Red Hat Fedora

Test

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Copy: 3975.610 14.699 0.370 4065.247 5.691 0.140 1.023

Scale: 3972.357 8.472 0.213 4067.983 5.155 0.127 1.024

Add: 3999.469 5.681 0.142 4057.769 3.418 0.084 1.015

Triad: 3996.476 5.774 0.144 4052.514 4.118 0.102 1.014
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AVERAGE: 3985.977 6.868 0.172 4060.879 2.556 0.063 1.019

Average: 1.019

Computer 2

Red Hat Fedora

Test

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

Copy: 3794.1198 2.091277 0.055 3820.1817 1.954316 0.051 1.007

Scale: 3791.8569 1.589752 0.042 3819.7259 2.029807 0.053 1.007

Add: 3792.8253 1.890267 0.050 3799.96 2.098101 0.055 1.002

Triad: 3789.918 1.792579 0.047 3797.9327 2.015338 0.053 1.002

AVERAGE: 3792.1806 1.261712 0.033 3809.45 1.176464 0.031 1.014

Average: 1.006

D.3.5 Int Reading

Computer 1

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 47389.700 342.646 0.723 47263.800 1387.313 0.094 0.997

2 Kb 47558.640 41.375 0.087 47538.720 110.829 0.012 1.000

4 Kb 47544.820 52.249 0.110 47323.830 1280.886 0.019 0.995

8 Kb 47556.260 43.827 0.092 47521.600 247.218 0.013 0.999

16 Kb 47540.740 136.584 0.287 47054.230 2773.283 0.021 0.990

32 Kb 46336.210 50.462 0.109 46242.540 565.306 0.012 0.998

64 Kb 21299.240 31.621 0.148 21546.330 3565.003 0.020 1.012

128 Kb 21307.930 33.102 0.155 21268.850 15.713 0.036 0.998

256 Kb 21300.180 31.581 0.148 21266.490 23.078 0.013 0.998

512 Kb 21288.730 30.957 0.145 21247.540 4.449 0.021 0.998

1024 Kb 21284.390 35.658 0.168 21256.420 26.920 0.039 0.999

2048 Kb 20374.380 900.627 4.420 20261.170 923.302 6.350 0.994

4096 Kb 3132.524 85.894 2.742 3201.734 2540.083 4.530 1.022

8192 Kb 2624.786 9.363 0.357 2635.428 70.637 0.491 1.004

16384 Kb 2626.047 7.808 0.297 2628.842 3.385 0.446 1.001

32768 Kb 2627.056 5.612 0.214 2632.915 4.118 0.532 1.002
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65536 Kb 2625.920 5.677 0.216 2635.873 3.626 0.644 1.004

131072 Kb 2619.925 3.581 0.137 2640.740 4.304 0.571 1.008

262144 Kb 2608.513 3.619 0.139 2647.971 3.880 0.422 1.015

524288 Kb 2587.500 5.330 0.206 2660.407 3.741 0.499 1.028

Average: 1.003

Computer 2

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 47647.320 361.894 0.760 47518.110 1153.128 0.094 0.997

2 Kb 47826.350 26.016 0.054 47691.050 506.776 0.012 0.997

4 Kb 47841.660 11.191 0.023 47667.860 683.449 0.019 0.996

8 Kb 47829.820 19.088 0.040 47750.870 146.501 0.013 0.998

16 Kb 47819.530 91.676 0.192 47769.000 21.267 0.021 0.999

32 Kb 46959.590 16.036 0.034 46745.990 820.251 0.012 0.995

64 Kb 28497.730 33.834 0.119 28396.060 334.295 0.020 0.996

128 Kb 28450.140 34.324 0.121 28306.800 564.115 0.036 0.995

256 Kb 28464.190 32.353 0.114 28417.170 34.527 0.013 0.998

512 Kb 28463.740 66.362 0.233 28426.820 23.326 0.021 0.999

1024 Kb 28457.050 6.305 0.022 28383.240 183.444 0.039 0.997

2048 Kb 27252.500 897.628 3.294 27320.790 765.291 6.350 1.003

4096 Kb 7398.064 111.631 1.509 7345.678 87.767 4.530 0.993

8192 Kb 6373.727 22.045 0.346 6336.512 23.378 0.491 0.994

16384 Kb 6405.545 23.270 0.363 6358.008 19.731 0.446 0.993

32768 Kb 6413.602 22.882 0.357 6390.188 21.073 0.532 0.996

65536 Kb 6433.593 22.236 0.346 6394.373 17.816 0.644 0.994

131072 Kb 6450.704 23.597 0.366 6402.321 16.996 0.571 0.992

262144 Kb 6447.826 18.662 0.289 6399.539 15.980 0.422 0.993

524288 Kb 6453.546 21.133 0.327 6401.160 18.658 0.499 0.992

Average: 0.996

D.3.6 Int Writing

Computer 1

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV
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(MB/s) (MB/s)

1 Kb 47396.500 337.242 0.712 47559.910 9.169 0.094 1.003

2 Kb 47557.330 43.202 0.091 47551.490 13.015 0.012 1.000

4 Kb 47545.390 51.631 0.109 47557.760 7.581 0.019 1.000

8 Kb 47556.380 42.932 0.090 47421.740 889.464 0.013 0.997

16 Kb 47540.140 134.452 0.283 47558.370 6.500 0.021 1.000

32 Kb 46337.340 49.928 0.108 46171.760 817.209 0.012 0.996

64 Kb 21299.760 31.108 0.146 21246.180 152.334 0.020 0.997

128 Kb 21308.280 32.470 0.152 21256.000 93.104 0.036 0.998

256 Kb 21300.650 31.021 0.146 21246.210 127.609 0.013 0.997

512 Kb 21289.230 30.419 0.143 21251.540 2.858 0.021 0.998

1024 Kb 21284.880 35.019 0.165 21235.170 121.419 0.039 0.998

2048 Kb 20314.600 942.334 4.639 19924.870 868.922 6.350 0.981

4096 Kb 3133.732 84.470 2.696 3224.534 64.037 4.530 1.029

8192 Kb 2624.591 9.221 0.351 2625.091 4.583 0.491 1.000

16384 Kb 2625.879 7.692 0.293 2629.364 6.080 0.446 1.001

32768 Kb 2626.880 5.569 0.212 2632.503 5.839 0.532 1.002

65536 Kb 2625.735 5.637 0.215 2633.960 5.043 0.644 1.003

131072 Kb 2619.722 3.652 0.139 2638.413 3.874 0.571 1.007

262144 Kb 2608.370 3.618 0.139 2644.516 4.910 0.422 1.014

524288 Kb 2587.317 5.302 0.205 2658.493 4.223 0.499 1.028

Average: 1.003

Computer 2

Red Hat Fedora

Block Size

Average Average

PCRBandwidth STDEV %STDEV Bandwidth STDEV %STDEV

(MB/s) (MB/s)

1 Kb 47268.450 568.637 1.203 45497.370 3627.006 0.094 0.963

2 Kb 47457.100 17.033 0.036 47170.260 580.258 0.012 0.994

4 Kb 47458.550 19.034 0.040 47206.340 375.511 0.019 0.995

8 Kb 47459.270 16.244 0.034 46935.590 1495.163 0.013 0.989

16 Kb 47449.230 24.016 0.051 47092.110 587.033 0.021 0.992

32 Kb 46257.380 15.287 0.033 45629.560 1330.055 0.012 0.986

64 Kb 21254.410 17.718 0.083 21487.590 3535.762 0.020 1.011

128 Kb 21264.870 10.816 0.051 21145.130 197.889 0.036 0.994

256 Kb 21258.760 14.481 0.068 21154.520 115.589 0.013 0.995

512 Kb 21245.810 14.570 0.069 21142.360 86.037 0.021 0.995

1024 Kb 21237.970 16.751 0.079 21148.650 87.157 0.039 0.996

2048 Kb 20002.040 959.456 4.797 19607.150 1620.399 6.350 0.980

4096 Kb 2972.731 57.641 1.939 3151.949 2423.122 4.530 1.060

8192 Kb 2476.401 0.950 0.038 2475.692 82.950 0.491 1.000
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16384 Kb 2476.496 0.931 0.038 2463.470 5.934 0.446 0.995

32768 Kb 2475.616 0.921 0.037 2464.407 5.099 0.532 0.995

65536 Kb 2475.014 0.863 0.035 2466.229 4.918 0.644 0.996

131072 Kb 2471.535 1.577 0.064 2470.068 2.934 0.571 0.999

262144 Kb 2462.696 1.018 0.041 2465.085 12.653 0.422 1.001

524288 Kb 2444.841 0.745 0.030 2484.761 6.970 0.499 1.016

Average: 0.998

D.4 SPEC2006

SPEC CINT2006

Computer 1 Computer 2

Test
Fedora Red Hat

PCR
Fedora Red Hat

PCR
Ratio Ratio Ratio Ratio

400.perlbench 22.5 22.3 0.991 22.3 22.3 1.000

401.bzip2 17.4 17.4 1.000 17.3 17.4 1.006

403.gcc 14.1 19 1.348 14.1 18.9 1.340

429.mcf 18.1 17.4 0.961 17.8 17.5 0.983

445.gobmk 18.5 18.4 0.995 18.4 18.4 1.000

456.hmmer 11.5 11.4 0.991 11.5 11.3 0.983

458.sjeng 18.3 18.3 1.000 18.2 18.2 1.000

462.libquantum 21.4 22.2 1.037 21 21.2 1.010

464.h264ref 25.6 25.9 1.012 25.6 25.8 1.008

471.omnetpp 13.3 13.2 0.992 13.2 13 0.985

473.astar 12.8 12.8 1.000 12.6 12.7 1.008

483.xalancbmk 19.8 19.6 0.990 19.8 19.5 0.985

Average: 1.026 Average: 1.026

Without GCC: 0.997 Without GCC: 0.997

SPEC CFP2006

Computer 1 Computer 2

Test
Fedora Red Hat

PCR
Fedora Red Hat

PCR
Ratio Ratio Ratio Ratio

433.milc 13.4 13 0.970 13 12.6 0.969

444.namd 15.1 15.1 1.000 15 15 1.000

447.dealII 26.2 26.3 1.004 26.1 26 0.996

450.soplex 17.4 18.7 1.075 17.8 18.3 1.028

453.povray 20.4 21.1 1.034 20.9 21.3 1.019

470.lbm 20.1 20.2 1.005 18.2 19.2 1.055

482.sphinx3 22 23 1.045 22.5 22.8 1.013

Average: 1.019 Average: 1.012
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D.5 MATLAB Case Study

Red Hat Fedora

Average

STDEV % STDEV

Average

STDEV % STDEV PCRExecution Time Execution Time

(Seconds) (Seconds)

Computer 1

259.4906 3.0803 1.1871 253.0496 3.2384 1.2797 1.0255

Computer 2

272.3272 2.1640 0.7946 265.7577 2.8922 1.0883 1.0247

Average: 1.0251
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E Benchmark Results

E.1 Pystone

Tesla

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 91.812 0.531 0.579 1.000

Pystones/Second 109930.704 637.231 0.580 1.000

Henry

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 137.610 1.097 0.797 0.667

Pystones/Second 73768.628 587.924 0.797 0.671

Large

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 175.375 2.350 1.340 0.524

Pystones/Second 74808.135 6148.454 8.219 0.681

XLarge

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 174.947 2.396 1.369 0.525

Pystones/Second 73983.666 8236.479 11.133 0.673

High Memory XLarge

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 126.347 0.939 0.743 0.727

Pystones/Second 80010.168 596.063 0.745 0.728

High Memory 2XLarge

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 126.053 0.672 0.533 0.728

Pystones/Second 80201.698 427.310 0.533 0.730
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High Memory 4XLarge

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 126.236 1.027 0.814 0.727

Pystones/Second 80079.743 645.996 0.807 0.728

High Compute XLarge

Average STDEV % STDEV Ratio to Tesla

Execution Time (seconds) 152.521 2.415 1.583 0.602

Pystones/Second 66330.420 1045.005 1.575 0.603

E.2 MATLAB

We created the following key to save space when displaying the MATLAB benchmark
results. The mapping numbers are simply tied to each of the output values from the program,
and the total time for all of the tests will be boldface.

Test Mapping

Creation, transp., deformation of a 1500x1500 matrix 1

800x800 normal distributed random matrix ˆ1000 2

Sorting of 2,000,0000 random values 3

700x700 cross-product matrix (b = a’ ∗ a) 4

Linear regression over a 600x600 matrix (c = a \\ b’) 5

Trimmed geom. mean (2 extremes eliminated): 6

FFT over 800,000 random values 7

Eigenvalues of a 320x320 random matrix 8

Determinant of a 650x650 random matrix 9

Cholesky decomposition of a 900x900 matrix 10

Inverse of a 400x400 random matrix 11

Trimmed geom. mean (2 extremes eliminated): 12

750,000 Fibonacci numbers calculation (vector calc) 13

Creation of a 5550x5550 Hilbert matrix (matrix calc) 14

Grand common divisors of 70,000 pairs (recursion) 15

Creation of a 220x220 Toeplitz matrix (loops) 16

Escoufier’s method on a 37x37 matrix (mixed) 17

Trimmed geom. mean (2 extremes eliminated): 18

Total time for all 14 tests 19

Overall mean (sum of I, II and III trimmed means/3) 20
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Tesla

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.073 0.004 5.217 1

2 0.222 0.010 4.544 1

3 0.956 0.038 3.992 1

4 0.872 0.031 3.54 1

5 0.604 0.014 2.25 1

6 0.489 0.010 1.949 1

7 0.224 0.008 3.471 1

8 2.982 0.239 8.005 1

9 0.622 0.010 1.608 1

10 0.665 0.010 1.491 1

11 0.485 0.009 1.919 1

12 0.585 0.007 1.177 1

13 0.131 0.006 4.47 1

14 0.477 0.019 4.024 1

15 0.585 0.035 6.001 1

16 0.010 0.000 3.986 1

17 0.306 0.028 9.093 1

18 0.268 0.009 3.424 1

19 9.225 0.269 2.915 1

20 0.425 0.006 1.487 1

Average Tests/Sec 1.518 - - 1

Henry

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 2.604 0.169 6.495 0.028

2 0.489 0.008 1.567 0.454

3 1.154 0.050 4.344 0.829

4 1.643 0.011 0.688 0.530

5 1.240 0.060 4.845 0.487

6 1.330 0.033 2.498 0.368

7 0.532 0.060 11.262 0.421

8 5.797 0.439 7.571 0.514

9 1.270 0.043 3.365 0.490

10 1.510 0.030 1.994 0.440

11 0.952 0.029 3.036 0.510
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12 1.222 0.032 2.58 0.479

13 0.286 0.010 3.612 0.459

14 0.197 0.008 4.121 2.419

15 0.015 0.000 1.359 40.081

16 0.335 0.004 1.299 0.029

17 0.094 0.002 2.113 3.265

18 18.039 0.711 3.941 0.015

19 0.534 0.008 1.555 17.272

20 0.425 0.006 1.487 1.000

Average Tests/Sec 26.213 - - 17.272

Large

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.166 0.004 2.631 0.438

2 1.701 0.528 31.015 0.130

3 1.386 0.012 0.868 0.690

4 1.937 0.227 11.702 0.450

5 1.417 0.055 3.891 0.426

6 1.448 0.097 6.666 0.338

7 0.609 0.006 0.91 0.367

8 6.655 0.209 3.143 0.448

9 1.464 0.059 4.043 0.425

10 1.979 0.099 5.015 0.336

11 1.117 0.055 4.905 0.434

12 1.479 0.045 3.072 0.396

13 0.720 0.078 10.839 0.182

14 1.828 0.034 1.875 0.261

15 0.935 0.011 1.171 0.625

16 0.020 0.003 12.494 0.486

17 0.514 0.073 14.236 0.596

18 0.702 0.039 5.539 0.381

19 22.544 0.601 2.664 0.409

20 1.146 0.033 2.848 0.371

Average Tests/Sec 0.621 - - 0.409

XLarge
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Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.160 0.007 4.124 0.455

2 1.468 0.433 29.495 0.151

3 1.381 0.015 1.070 0.692

4 1.719 0.432 25.157 0.507

5 1.510 0.120 7.947 0.400

6 1.414 0.134 9.501 0.346

7 0.659 0.012 1.835 0.340

8 7.471 0.844 11.291 0.399

9 1.534 0.124 8.102 0.405

10 2.007 0.183 9.141 0.331

11 1.217 0.160 13.128 0.399

12 1.553 0.126 8.085 0.377

13 0.641 0.196 30.594 0.204

14 1.795 0.074 4.122 0.266

15 0.940 0.021 2.255 0.622

16 0.020 0.003 12.755 0.490

17 0.722 0.545 75.443 0.424

18 0.754 0.091 12.068 0.355

19 23.460 1.614 6.882 0.393

20 1.183 0.079 6.699 0.359

Average Tests/Sec 0.597 - - 0.393

High Memory XLarge

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.115 0.004 3.647 0.632

2 1.362 0.409 30.014 0.163

3 1.148 0.005 0.450 0.833

4 2.185 0.692 31.673 0.399

5 1.110 0.282 25.385 0.544

6 1.195 0.178 14.927 0.409

7 0.325 0.015 4.550 0.689

8 3.408 0.318 9.343 0.875

9 1.222 0.348 28.461 0.509

10 1.624 0.533 32.794 0.409

11 0.893 0.249 27.857 0.543

12 1.210 0.359 29.645 0.484

13 0.571 0.167 29.267 0.230
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14 1.071 0.051 4.788 0.446

15 0.728 0.011 1.496 0.804

16 0.012 0.000 0.672 0.843

17 0.299 0.049 16.346 1.022

18 0.499 0.045 9.078 0.536

19 16.248 2.525 15.540 0.568

20 0.897 0.123 13.688 0.473

Average Tests/Sec 0.862 - - 0.568

High Memory 2XLarge

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.113 0.003 2.762 0.642

2 1.333 0.372 27.901 0.167

3 1.136 0.002 0.165 0.842

4 1.720 0.328 19.045 0.507

5 1.010 0.081 8.043 0.598

6 1.136 0.101 8.914 0.430

7 0.317 0.014 4.519 0.706

8 3.219 0.185 5.739 0.926

9 1.119 0.097 8.709 0.556

10 1.438 0.208 14.458 0.462

11 0.804 0.133 16.516 0.603

12 1.090 0.125 11.477 0.537

13 0.544 0.083 15.234 0.241

14 1.043 0.036 3.490 0.458

15 0.713 0.011 1.531 0.821

16 0.012 0.000 0.379 0.850

17 0.368 0.093 25.335 0.832

18 0.522 0.054 10.292 0.512

19 14.991 0.999 6.666 0.615

20 0.865 0.065 7.501 0.491

Average Tests/Sec 0.934 - - 0.615

High Memory 4XLarge

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla
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1 0.114 0.003 2.585 0.639

2 1.367 0.305 22.318 0.162

3 1.137 0.001 0.074 0.841

4 1.513 0.470 31.034 0.576

5 0.912 0.281 30.840 0.662

6 1.071 0.188 17.543 0.457

7 0.317 0.002 0.714 0.706

8 3.213 0.365 11.355 0.928

9 0.913 0.281 30.724 0.681

10 1.075 0.400 37.173 0.618

11 0.672 0.204 30.331 0.722

12 0.870 0.269 30.855 0.673

13 0.460 0.149 32.480 0.285

14 1.012 0.053 5.279 0.472

15 0.715 0.011 1.549 0.818

16 0.012 0.000 0.263 0.849

17 0.425 0.109 25.541 0.719

18 0.519 0.069 13.205 0.516

19 14.088 1.951 13.852 0.655

20 0.785 0.140 17.871 0.541

Average Tests/Sec 0.994 - - 0.655

High Compute XLarge

Test
Average Execution

STDEV % STDEV
Ratio to

Time (Seconds) Tesla

1 0.136 0.005 3.395 0.536

2 1.321 0.330 25.008 0.168

3 1.184 0.001 0.100 0.808

4 1.552 0.389 25.056 0.561

5 1.200 0.200 16.661 0.503

6 1.213 0.140 11.518 0.403

7 0.488 0.040 8.177 0.458

8 5.819 0.560 9.621 0.512

9 1.156 0.218 18.837 0.538

10 1.322 0.298 22.547 0.503

11 0.940 0.163 17.322 0.516

12 1.129 0.181 16.024 0.519

13 0.512 0.126 24.554 0.256

14 1.456 0.050 3.466 0.328

15 0.812 0.009 1.071 0.720
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16 0.018 0.000 0.475 0.559

17 0.531 0.152 28.667 0.577

18 0.604 0.080 13.310 0.443

19 18.592 1.709 9.193 0.496

20 0.939 0.104 11.045 0.452

Average Tests/Sec 0.753 - - 0.496

E.3 RAMSMP

E.3.1 Float Memory

Tesla

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 26811.296 156.187 0.583 1.000

Scale: 26827.098 149.121 0.556 1.000

Add: 29829.270 64.634 0.217 1.000

Triad: 29763.706 60.009 0.202 1.000

AVERAGE: 28308.015 66.276 0.234 1.000

Henry

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 7567.733 50.121 0.662 0.282

Scale: 7569.323 46.038 0.608 0.282

Add: 8383.630 59.220 0.706 0.281

Triad: 8382.109 16.563 0.198 0.282

AVERAGE: 7975.794 36.327 0.455 0.282

Large

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 3099.067 135.437 4.37 0.116

Scale: 3106.549 128.886 4.149 0.116

Add: 3325.480 160.062 4.813 0.111

Triad: 3320.193 134.231 4.043 0.112

AVERAGE: 3213.911 112.276 3.493 0.114
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XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 7084.444 699.217 9.87 0.264

Scale: 7227.356 737.715 10.207 0.269

Add: 8315.533 869.029 10.451 0.279

Triad: 8375.658 763.634 9.117 0.281

AVERAGE: 7758.458 701.678 9.044 0.274

High Memory XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 7632.920 96.149 1.26 0.285

Scale: 7759.231 104.441 1.346 0.289

Add: 8740.896 109.482 1.253 0.293

Triad: 8756.819 107.907 1.232 0.294

AVERAGE: 8222.597 94.016 1.143 0.290

High Memory 2XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 12443.641 187.104 1.504 0.464

Scale: 12513.761 539.197 4.309 0.466

Add: 12321.083 134.198 1.089 0.413

Triad: 12377.618 241.457 1.951 0.416

AVERAGE: 12442.312 227.064 1.825 0.440

High Memory 4XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 18392.175 392.422 2.134 0.686

Scale: 18317.267 953.457 5.205 0.683

Add: 20423.929 1137.661 5.57 0.685

Triad: 20476.688 817.531 3.992 0.688

AVERAGE: 19413.844 553.463 2.851 0.686
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High Compute XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 6335.888 679.037 10.717 0.236

Scale: 6253.073 782.520 12.514 0.233

Add: 6074.514 790.595 13.015 0.204

Triad: 5945.458 740.356 12.452 0.200

AVERAGE: 5967.505 598.514 10.03 0.211

E.3.2 Float Reading

Tesla

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 150949.024 35487.900 23.510 1.000

2 Kb 155037.087 21400.002 13.803 1.000

4 Kb 164922.755 22144.399 13.427 1.000

8 Kb 168294.454 19505.457 11.590 1.000

16 Kb 167562.347 20247.290 12.083 1.000

32 Kb 160533.859 21572.459 13.438 1.000

64 Kb 140757.656 19847.639 14.101 1.000

128 Kb 139516.252 19332.246 13.857 1.000

256 Kb 133094.761 16664.532 12.521 1.000

512 Kb 125557.103 14239.994 11.341 1.000

1024 Kb 121651.791 16168.554 13.291 1.000

2048 Kb 78590.105 8182.766 10.412 1.000

4096 Kb 40951.349 1427.093 3.485 1.000

8192 Kb 39231.229 2951.555 7.523 1.000

16384 Kb 38899.364 3047.553 7.834 1.000

32768 Kb 39031.374 2705.305 6.931 1.000

65536 Kb 38831.420 3308.944 8.521 1.000

131072 Kb 38950.614 3157.213 8.106 1.000

262144 Kb 38997.202 3060.449 7.848 1.000

524288 Kb 39118.685 3333.496 8.521 1.000

Henry

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 131005.302 705.116 0.538 0.868

2 Kb 132300.808 25.673 0.019 0.853
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4 Kb 132810.786 19.427 0.015 0.805

8 Kb 133077.242 20.074 0.015 0.791

16 Kb 131813.031 174.431 0.132 0.787

32 Kb 132494.662 24.409 0.018 0.825

64 Kb 131250.485 25.993 0.020 0.932

128 Kb 50418.560 9.489 0.019 0.361

256 Kb 47021.668 5582.941 11.873 0.353

512 Kb 41427.649 7392.155 17.844 0.330

1024 Kb 19874.531 1443.653 7.264 0.163

2048 Kb 11554.638 561.112 4.856 0.147

4096 Kb 10808.572 1013.457 9.376 0.264

8192 Kb 11342.321 626.829 5.526 0.289

16384 Kb 11022.463 896.496 8.133 0.283

32768 Kb 11173.119 686.575 6.145 0.286

65536 Kb 11416.298 385.957 3.381 0.294

131072 Kb 11440.812 242.166 2.117 0.294

262144 Kb 11584.256 50.285 0.434 0.297

524288 Kb 11608.901 61.956 0.534 0.297

Large

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 29190.719 4720.553 16.171 0.193

2 Kb 31508.804 3063.888 9.724 0.203

4 Kb 31689.377 3124.365 9.859 0.192

8 Kb 31369.737 3444.822 10.981 0.186

16 Kb 30896.744 3958.256 12.811 0.184

32 Kb 30156.446 4104.534 13.611 0.188

64 Kb 21348.931 3232.918 15.143 0.152

128 Kb 21187.548 3336.291 15.746 0.152

256 Kb 21362.986 2997.335 14.031 0.161

512 Kb 21335.823 3023.580 14.171 0.170

1024 Kb 21323.939 2973.511 13.944 0.175

2048 Kb 20989.165 2825.751 13.463 0.267

4096 Kb 15931.778 5322.393 33.407 0.389

8192 Kb 4156.852 446.816 10.749 0.106

16384 Kb 3816.750 471.815 12.362 0.098

32768 Kb 3807.691 437.803 11.498 0.098

65536 Kb 3795.106 463.331 12.209 0.098

131072 Kb 3798.868 447.385 11.777 0.098

262144 Kb 3814.332 519.551 13.621 0.098

524288 Kb 3691.799 377.147 10.216 0.094
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XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 56187.126 8393.210 14.938 0.372

2 Kb 62166.956 7183.644 11.555 0.401

4 Kb 61346.898 7048.301 11.489 0.372

8 Kb 62726.913 8072.249 12.869 0.373

16 Kb 62267.404 8068.652 12.958 0.372

32 Kb 59704.511 7216.391 12.087 0.372

64 Kb 51873.813 6717.670 12.950 0.369

128 Kb 50967.348 6942.900 13.622 0.365

256 Kb 46834.659 5320.351 11.360 0.352

512 Kb 42564.101 3559.527 8.363 0.339

1024 Kb 31348.201 5908.298 18.847 0.258

2048 Kb 14066.003 2411.896 17.147 0.179

4096 Kb 11778.819 1152.165 9.782 0.288

8192 Kb 11665.170 995.914 8.537 0.297

16384 Kb 11427.646 659.875 5.774 0.294

32768 Kb 11462.429 945.864 8.252 0.294

65536 Kb 11507.519 815.588 7.087 0.296

131072 Kb 11699.688 1022.213 8.737 0.300

262144 Kb 11543.503 609.875 5.283 0.296

524288 Kb 11757.280 476.898 4.056 0.301

High Memory XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 40471.073 5130.702 12.677 0.268

2 Kb 41451.619 3917.390 9.451 0.267

4 Kb 41403.684 3914.652 9.455 0.251

8 Kb 41312.034 3916.688 9.481 0.245

16 Kb 41410.584 3922.272 9.472 0.247

32 Kb 40443.245 3801.220 9.399 0.252

64 Kb 34997.937 3409.048 9.741 0.249

128 Kb 35063.609 3298.995 9.409 0.251

256 Kb 33949.613 3291.302 9.695 0.255

512 Kb 32795.957 3137.644 9.567 0.261

1024 Kb 32698.692 3133.179 9.582 0.269

2048 Kb 32302.361 3199.585 9.905 0.411

4096 Kb 18779.495 492.826 2.624 0.459

8192 Kb 11107.443 108.764 0.979 0.283

16384 Kb 10780.594 738.224 6.848 0.277
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32768 Kb 10759.854 754.104 7.008 0.276

65536 Kb 10769.082 789.918 7.335 0.277

131072 Kb 10779.037 774.227 7.183 0.277

262144 Kb 10772.703 770.053 7.148 0.276

524288 Kb 10773.774 770.106 7.148 0.275

High Memory 2XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 70483.778 13705.124 19.444 0.467

2 Kb 71962.230 12831.771 17.831 0.464

4 Kb 72187.012 12644.118 17.516 0.438

8 Kb 72327.142 12481.225 17.257 0.430

16 Kb 73780.244 11158.135 15.123 0.440

32 Kb 71809.635 11172.673 15.559 0.447

64 Kb 63167.743 8602.781 13.619 0.449

128 Kb 61580.715 10350.950 16.809 0.441

256 Kb 58920.385 10494.673 17.812 0.443

512 Kb 55855.450 9175.440 16.427 0.445

1024 Kb 56387.530 7698.959 13.654 0.464

2048 Kb 37342.459 8374.611 22.427 0.475

4096 Kb 18735.866 3909.012 20.864 0.458

8192 Kb 15956.081 594.260 3.724 0.407

16384 Kb 16167.784 1348.461 8.340 0.416

32768 Kb 16640.884 2168.819 13.033 0.426

65536 Kb 16985.647 2093.795 12.327 0.437

131072 Kb 17004.445 2263.309 13.310 0.437

262144 Kb 17128.374 2165.121 12.641 0.439

524288 Kb 17132.847 2142.146 12.503 0.438

High Memory 4XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 121189.983 19277.775 15.907 0.803

2 Kb 143905.347 16870.100 11.723 0.928

4 Kb 137161.899 17868.712 13.027 0.832

8 Kb 135241.295 23756.477 17.566 0.804

16 Kb 131679.805 24513.760 18.616 0.786

32 Kb 128545.893 24224.239 18.845 0.801

64 Kb 110414.636 19316.576 17.495 0.784

128 Kb 110238.554 17544.924 15.915 0.790
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256 Kb 103664.853 16575.046 15.989 0.779

512 Kb 101409.038 16745.486 16.513 0.808

1024 Kb 101175.800 17572.298 17.368 0.832

2048 Kb 90715.888 12204.713 13.454 1.154

4096 Kb 38911.506 6718.956 17.267 0.950

8192 Kb 28634.755 1818.407 6.350 0.730

16384 Kb 28565.788 2141.313 7.496 0.734

32768 Kb 27908.568 1786.294 6.401 0.715

65536 Kb 28460.950 1893.375 6.653 0.733

131072 Kb 28159.540 1841.120 6.538 0.723

262144 Kb 29001.204 1687.808 5.820 0.744

524288 Kb 30556.091 2759.657 9.031 0.781

High Computing Xlarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 118583.384 26476.397 22.327 0.786

2 Kb 131339.318 16702.327 12.717 0.847

4 Kb 108564.625 24875.368 22.913 0.658

8 Kb 131300.988 16183.819 12.326 0.780

16 Kb 111793.789 23125.797 20.686 0.667

32 Kb 130587.150 17395.428 13.321 0.813

64 Kb 74677.178 14218.435 19.040 0.531

128 Kb 82653.390 18200.011 22.020 0.592

256 Kb 86996.593 17479.625 20.092 0.654

512 Kb 81704.257 15042.245 18.411 0.651

1024 Kb 93010.086 12547.199 13.490 0.765

2048 Kb 76400.783 16170.675 21.166 0.972

4096 Kb 38141.851 24530.435 64.314 0.931

8192 Kb 8327.210 1513.914 18.180 0.212

16384 Kb 7514.257 1071.826 14.264 0.193

32768 Kb 7366.140 941.453 12.781 0.189

65536 Kb 7464.702 804.408 10.776 0.192

131072 Kb 7071.306 877.504 12.409 0.182

262144 Kb 7392.783 1084.726 14.673 0.190

524288 Kb 7423.085 876.769 11.811 0.190

E.3.3 Float Writing

Tesla
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Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 170699.680 11302.500 6.621 1.000

2 Kb 166888.178 13579.292 8.137 1.000

4 Kb 174930.460 6515.033 3.724 1.000

8 Kb 177447.986 4364.107 2.459 1.000

16 Kb 178501.650 3560.775 1.995 1.000

32 Kb 175560.034 1025.807 0.584 1.000

64 Kb 158780.835 1820.582 1.147 1.000

128 Kb 158254.189 930.801 0.588 1.000

256 Kb 126728.006 7544.802 5.954 1.000

512 Kb 58491.587 1920.338 3.283 1.000

1024 Kb 55427.483 1364.582 2.462 1.000

2048 Kb 38201.083 1670.225 4.372 1.000

4096 Kb 18884.854 3151.541 16.688 1.000

8192 Kb 20576.670 2294.814 11.153 1.000

16384 Kb 21314.625 1554.597 7.294 1.000

32768 Kb 21543.937 938.979 4.358 1.000

65536 Kb 21536.691 833.047 3.868 1.000

131072 Kb 21387.278 872.168 4.078 1.000

262144 Kb 21259.640 600.263 2.823 1.000

524288 Kb 21247.230 448.534 2.111 1.000

Henry

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 89401.884 2160.275 2.416 0.524

2 Kb 89903.789 132.326 0.147 0.539

4 Kb 89907.005 155.545 0.173 0.514

8 Kb 89903.600 130.409 0.145 0.507

16 Kb 89295.888 118.404 0.133 0.500

32 Kb 89595.327 117.526 0.131 0.510

64 Kb 89527.741 122.836 0.137 0.564

128 Kb 44207.599 78.720 0.178 0.279

256 Kb 41788.450 4122.984 9.866 0.330

512 Kb 38472.256 6077.257 15.796 0.658

1024 Kb 13505.104 945.250 6.999 0.244

2048 Kb 5529.737 468.280 8.468 0.145

4096 Kb 5307.456 595.817 11.226 0.281

8192 Kb 5409.749 580.969 10.739 0.263

16384 Kb 5688.192 403.649 7.096 0.267

32768 Kb 5727.449 329.014 5.745 0.266

65536 Kb 5743.094 226.070 3.936 0.267

xlix



131072 Kb 5704.779 83.390 1.462 0.267

262144 Kb 5699.297 37.833 0.664 0.268

524288 Kb 5649.730 21.220 0.376 0.266

Large

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 29151.753 4585.910 15.731 0.171

2 Kb 31709.205 1590.746 5.017 0.190

4 Kb 32031.987 1672.481 5.221 0.183

8 Kb 30481.934 4013.438 13.167 0.172

16 Kb 31101.720 3436.892 11.050 0.174

32 Kb 29605.093 4386.363 14.816 0.169

64 Kb 18452.632 2830.270 15.338 0.116

128 Kb 18571.737 3138.687 16.900 0.117

256 Kb 18421.991 3441.717 18.683 0.145

512 Kb 18626.022 3398.958 18.248 0.318

1024 Kb 18599.774 3166.032 17.022 0.336

2048 Kb 16617.839 2665.645 16.041 0.435

4096 Kb 12362.992 4912.866 39.738 0.655

8192 Kb 2916.307 174.321 5.977 0.142

16384 Kb 2555.292 121.065 4.738 0.120

32768 Kb 2555.730 121.266 4.745 0.119

65536 Kb 2559.344 110.846 4.331 0.119

131072 Kb 2516.822 124.141 4.932 0.118

262144 Kb 2497.306 118.292 4.737 0.117

524288 Kb 2436.319 129.260 5.306 0.115

XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 56037.305 9280.369 16.561 0.328

2 Kb 60458.498 7976.606 13.194 0.362

4 Kb 59514.496 8224.087 13.819 0.340

8 Kb 63098.926 8768.010 13.896 0.356

16 Kb 62113.464 7940.319 12.784 0.348

32 Kb 61444.475 9018.191 14.677 0.350

64 Kb 53177.128 7802.385 14.672 0.335

128 Kb 53284.131 7573.215 14.213 0.337

256 Kb 41765.402 5196.581 12.442 0.330

512 Kb 17658.919 1365.059 7.730 0.302
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1024 Kb 14713.370 2697.779 18.336 0.265

2048 Kb 9415.729 2027.419 21.532 0.246

4096 Kb 7921.425 575.823 7.269 0.419

8192 Kb 7569.497 243.836 3.221 0.368

16384 Kb 7695.381 607.477 7.894 0.361

32768 Kb 7512.110 406.030 5.405 0.349

65536 Kb 7535.495 483.730 6.419 0.350

131072 Kb 7584.972 571.689 7.537 0.355

262144 Kb 7326.014 415.755 5.675 0.345

524288 Kb 7094.219 349.996 4.934 0.334

High Memory XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 39514.220 6259.908 15.842 0.231

2 Kb 39862.597 5909.432 14.825 0.239

4 Kb 39642.626 6065.734 15.301 0.227

8 Kb 39849.421 5985.357 15.020 0.225

16 Kb 39976.102 5822.745 14.566 0.224

32 Kb 40086.597 5391.377 13.449 0.228

64 Kb 35973.019 4705.783 13.081 0.227

128 Kb 35698.720 5004.752 14.019 0.226

256 Kb 35302.448 4579.393 12.972 0.279

512 Kb 24627.305 2271.572 9.224 0.421

1024 Kb 24313.309 2017.209 8.297 0.439

2048 Kb 24058.590 2083.144 8.659 0.630

4096 Kb 15656.755 639.784 4.086 0.829

8192 Kb 9406.808 175.274 1.863 0.457

16384 Kb 8950.184 674.216 7.533 0.420

32768 Kb 8943.709 657.240 7.349 0.415

65536 Kb 8874.987 669.867 7.548 0.412

131072 Kb 8733.066 670.239 7.675 0.408

262144 Kb 8471.884 681.547 8.045 0.398

524288 Kb 7997.946 676.310 8.456 0.376

High Memory 2XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 80728.501 7119.121 8.819 0.473

2 Kb 82034.776 5923.324 7.221 0.492

4 Kb 82080.070 5897.341 7.185 0.469
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8 Kb 82051.511 5863.716 7.146 0.462

16 Kb 81931.490 5605.320 6.841 0.459

32 Kb 81366.342 5442.467 6.689 0.463

64 Kb 72754.866 5224.679 7.181 0.458

128 Kb 72556.435 5611.730 7.734 0.458

256 Kb 63447.604 4489.591 7.076 0.501

512 Kb 27612.158 1678.962 6.081 0.472

1024 Kb 26236.122 1871.054 7.132 0.473

2048 Kb 19438.233 3705.682 19.064 0.509

4096 Kb 11432.161 1062.611 9.295 0.605

8192 Kb 10878.513 395.189 3.633 0.529

16384 Kb 10869.487 381.026 3.505 0.510

32768 Kb 10832.721 347.658 3.209 0.503

65536 Kb 10753.519 329.292 3.062 0.499

131072 Kb 10866.004 882.906 8.125 0.508

262144 Kb 10585.818 304.559 2.877 0.498

524288 Kb 10309.877 260.681 2.528 0.485

High Memory 4XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 122200.129 10603.494 8.677 0.716

2 Kb 141915.140 12772.982 9.000 0.850

4 Kb 137790.777 13585.060 9.859 0.788

8 Kb 133956.498 20325.247 15.173 0.755

16 Kb 132682.999 19981.956 15.060 0.743

32 Kb 126265.445 16965.435 13.436 0.719

64 Kb 114457.934 12644.362 11.047 0.721

128 Kb 109282.792 13064.547 11.955 0.691

256 Kb 107938.411 11116.527 10.299 0.852

512 Kb 64066.013 2303.008 3.595 1.095

1024 Kb 62304.844 2350.099 3.772 1.124

2048 Kb 58400.524 3935.100 6.738 1.529

4096 Kb 26071.035 5534.754 21.230 1.381

8192 Kb 16482.038 973.042 5.904 0.801

16384 Kb 16987.289 1752.633 10.317 0.797

32768 Kb 16656.161 1474.482 8.852 0.773

65536 Kb 16522.247 1234.182 7.470 0.767

131072 Kb 16272.674 1323.641 8.134 0.761

262144 Kb 16116.035 1025.764 6.365 0.758

524288 Kb 15836.382 1115.831 7.046 0.745
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High Computing Xlarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 107537.342 33060.293 30.743 0.630

2 Kb 128373.905 16526.671 12.874 0.769

4 Kb 103684.734 24577.289 23.704 0.593

8 Kb 132575.328 15936.932 12.021 0.747

16 Kb 107826.546 23859.557 22.128 0.604

32 Kb 129745.757 16322.466 12.580 0.739

64 Kb 55950.243 11498.234 20.551 0.352

128 Kb 61052.230 13493.386 22.101 0.386

256 Kb 71770.950 16891.688 23.536 0.566

512 Kb 58379.311 10919.411 18.704 0.998

1024 Kb 62178.662 14894.915 23.955 1.122

2048 Kb 55009.898 13946.651 25.353 1.440

4096 Kb 29494.205 25010.300 84.797 1.562

8192 Kb 5348.969 1080.394 20.198 0.260

16384 Kb 4835.171 660.402 13.658 0.227

32768 Kb 4867.721 548.189 11.262 0.226

65536 Kb 4775.990 644.289 13.490 0.222

131072 Kb 4795.498 645.913 13.469 0.224

262144 Kb 4925.755 602.319 12.228 0.232

524288 Kb 4767.248 564.328 11.838 0.224

E.3.4 Int Memory

Tesla

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 27420.512 513.351 1.872 1.000

Scale: 27647.866 450.404 1.629 1.000

Add: 27526.623 565.490 2.054 1.000

Triad: 27525.806 442.909 1.609 1.000

AVERAGE: 27533.834 200.232 0.727 1.000

Henry

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 7599.968 55.048 0.724 0.277

Scale: 7492.633 36.316 0.485 0.271
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Add: 7330.112 14.200 0.194 0.266

Triad: 7312.007 22.722 0.311 0.266

AVERAGE: 7433.743 16.897 0.227 0.270

Large

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 3194.812 170.443 5.335 0.117

Scale: 3202.596 123.310 3.85 0.116

Add: 3215.647 134.578 4.185 0.117

Triad: 3206.159 126.915 3.958 0.116

AVERAGE: 3205.385 126.854 3.958 0.116

XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 8863.889 187.382 2.114 0.323

Scale: 9180.613 331.001 3.605 0.332

Add: 8905.891 181.157 2.034 0.324

Triad: 8907.543 241.981 2.717 0.324

AVERAGE: 8934.317 167.827 1.878 0.324

High Memory XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 9713.445 606.023 6.239 0.354

Scale: 9707.500 614.921 6.334 0.351

Add: 9252.426 554.846 5.997 0.336

Triad: 9253.648 551.332 5.958 0.336

AVERAGE: 9481.861 580.425 6.121 0.344

High Memory 2XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla
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Copy: 11311.445 772.289 6.828 0.413

Scale: 11441.751 588.259 5.141 0.414

Add: 12603.741 664.967 5.276 0.458

Triad: 12475.635 948.919 7.606 0.453

AVERAGE: 11961.621 712.735 5.959 0.434

High Memory 4XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 20849.552 1021.750 4.901 0.760

Scale: 19838.194 1348.434 6.797 0.718

Add: 19254.640 1817.860 9.441 0.699

Triad: 19277.745 1199.067 6.22 0.700

AVERAGE: 19837.154 756.844 3.815 0.720

High Compute XLarge

Test Average Bandwidth STDEV %STDEV Ratio to Tesla

Copy: 6314.395 725.529 11.49 0.230

Scale: 6352.578 715.255 11.259 0.230

Add: 6418.422 790.773 12.32 0.233

Triad: 6260.427 683.219 10.913 0.227

AVERAGE: 6382.179 730.958 11.453 0.232

E.3.5 Int Reading

Tesla

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 198018.630 5596.630 2.826 1.000

2 Kb 188728.279 21573.080 11.431 1.000

4 Kb 181163.267 13363.087 7.376 1.000

8 Kb 191648.691 9579.838 4.999 1.000

16 Kb 197018.296 9405.058 4.774 1.000

32 Kb 193899.987 8562.046 4.416 1.000

64 Kb 151474.144 6449.027 4.258 1.000

128 Kb 152701.997 2371.550 1.553 1.000
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256 Kb 143356.156 4091.702 2.854 1.000

512 Kb 135610.031 761.606 0.562 1.000

1024 Kb 133470.482 3322.074 2.489 1.000

2048 Kb 63480.750 1315.308 2.072 1.000

4096 Kb 37802.712 1533.244 4.056 1.000

8192 Kb 37856.541 1138.410 3.007 1.000

16384 Kb 38889.955 1077.240 2.770 1.000

32768 Kb 38907.179 854.610 2.197 1.000

65536 Kb 38953.875 866.367 2.224 1.000

131072 Kb 39133.996 593.272 1.516 1.000

262144 Kb 39269.243 369.593 0.941 1.000

524288 Kb 39350.954 192.872 0.490 1.000

Henry

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 171054.001 1680.315 0.982 0.864

2 Kb 173059.291 221.138 0.128 0.917

4 Kb 173746.444 62.749 0.036 0.959

8 Kb 174077.636 31.753 0.018 0.908

16 Kb 172117.970 50.780 0.030 0.874

32 Kb 173260.698 29.101 0.017 0.894

64 Kb 170853.400 103.346 0.060 1.128

128 Kb 44669.205 57.050 0.128 0.293

256 Kb 42563.061 3569.061 8.385 0.297

512 Kb 38670.987 5400.982 13.966 0.285

1024 Kb 19411.194 1507.770 7.768 0.145

2048 Kb 10941.889 809.367 7.397 0.172

4096 Kb 10750.656 803.730 7.476 0.284

8192 Kb 10834.351 743.622 6.864 0.286

16384 Kb 11112.021 375.529 3.379 0.286

32768 Kb 11078.413 408.768 3.690 0.285

65536 Kb 10970.553 345.182 3.146 0.282

131072 Kb 11073.384 253.523 2.289 0.283

262144 Kb 11202.259 97.977 0.875 0.285

524288 Kb 11215.776 67.458 0.601 0.285

Large

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 31910.111 1882.426 5.899 0.161
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2 Kb 32485.873 319.177 0.983 0.172

4 Kb 32463.335 382.074 1.177 0.179

8 Kb 32443.703 394.518 1.216 0.169

16 Kb 32155.955 1985.735 6.175 0.163

32 Kb 31639.443 1578.853 4.990 0.163

64 Kb 19929.317 1204.306 6.043 0.132

128 Kb 19927.296 976.493 4.900 0.130

256 Kb 19923.989 1000.543 5.022 0.139

512 Kb 19896.101 991.580 4.984 0.147

1024 Kb 19974.409 474.510 2.376 0.150

2048 Kb 19539.485 628.731 3.218 0.308

4096 Kb 14525.234 4615.740 31.777 0.384

8192 Kb 4110.152 222.427 5.412 0.109

16384 Kb 3636.510 120.269 3.307 0.094

32768 Kb 3638.657 118.010 3.243 0.094

65536 Kb 3628.437 127.249 3.507 0.093

131072 Kb 3624.562 138.797 3.829 0.093

262144 Kb 3634.953 121.626 3.346 0.093

524288 Kb 3610.837 147.906 4.096 0.092

XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 51437.362 11079.493 21.540 0.260

2 Kb 58332.823 7985.153 13.689 0.309

4 Kb 58884.120 8585.994 14.581 0.325

8 Kb 58792.857 11979.186 20.375 0.307

16 Kb 55790.268 11757.400 21.074 0.283

32 Kb 56543.777 10381.851 18.361 0.292

64 Kb 43768.080 7628.046 17.428 0.289

128 Kb 42142.597 7747.981 18.385 0.276

256 Kb 39123.444 6688.884 17.097 0.273

512 Kb 37087.420 5990.301 16.152 0.273

1024 Kb 30336.959 5275.493 17.390 0.227

2048 Kb 15021.674 3260.380 21.705 0.237

4096 Kb 11780.031 1127.702 9.573 0.312

8192 Kb 11810.291 1394.300 11.806 0.312

16384 Kb 12126.778 1508.652 12.441 0.312

32768 Kb 12043.654 1648.336 13.686 0.310

65536 Kb 11913.390 1583.062 13.288 0.306

131072 Kb 12396.603 1763.350 14.224 0.317

262144 Kb 12129.478 1441.468 11.884 0.309

524288 Kb 12068.207 1058.256 8.769 0.307
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High Memory XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 40605.553 4717.912 11.619 0.205

2 Kb 41399.142 3938.581 9.514 0.219

4 Kb 41260.022 4048.297 9.812 0.228

8 Kb 41294.204 3909.766 9.468 0.215

16 Kb 41342.799 3910.903 9.460 0.210

32 Kb 40419.759 3807.190 9.419 0.208

64 Kb 31527.565 2993.813 9.496 0.208

128 Kb 31428.213 2998.351 9.540 0.206

256 Kb 29721.733 2882.545 9.698 0.207

512 Kb 28320.708 2759.356 9.743 0.209

1024 Kb 28321.821 2745.052 9.692 0.212

2048 Kb 28073.202 2676.248 9.533 0.442

4096 Kb 17594.238 815.532 4.635 0.465

8192 Kb 11422.539 339.206 2.970 0.302

16384 Kb 11103.424 800.387 7.208 0.286

32768 Kb 11133.299 814.983 7.320 0.286

65536 Kb 11167.214 822.001 7.361 0.287

131072 Kb 11153.675 823.704 7.385 0.285

262144 Kb 11161.950 832.694 7.460 0.284

524288 Kb 11193.759 751.449 6.713 0.284

High Memory 2XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 50809.296 13848.763 27.256 0.257

2 Kb 51890.610 14967.436 28.844 0.275

4 Kb 52376.373 14770.360 28.200 0.289

8 Kb 53998.307 14981.014 27.743 0.282

16 Kb 56480.289 15509.467 27.460 0.287

32 Kb 54986.422 14477.161 26.329 0.284

64 Kb 42923.235 11994.101 27.943 0.283

128 Kb 42185.498 12621.112 29.918 0.276

256 Kb 39870.584 11654.823 29.232 0.278

512 Kb 36101.703 10123.283 28.041 0.266

1024 Kb 39047.024 11394.913 29.183 0.293

2048 Kb 39004.219 12561.563 32.206 0.614

4096 Kb 22408.552 5518.364 24.626 0.593

8192 Kb 16492.824 2995.137 18.160 0.436

16384 Kb 15724.420 3181.643 20.234 0.404
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32768 Kb 17199.105 4127.258 23.997 0.442

65536 Kb 17193.595 4285.527 24.925 0.441

131072 Kb 17529.750 4472.379 25.513 0.448

262144 Kb 17910.893 4520.403 25.238 0.456

524288 Kb 18038.342 4501.417 24.955 0.458

High Memory 4XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 115771.894 12513.284 10.809 0.585

2 Kb 138364.395 17416.962 12.588 0.733

4 Kb 134526.106 17156.508 12.753 0.743

8 Kb 126829.919 20006.416 15.774 0.662

16 Kb 123301.517 24380.086 19.773 0.626

32 Kb 123047.519 21534.979 17.501 0.635

64 Kb 91949.929 12874.221 14.001 0.607

128 Kb 88143.275 11660.953 13.230 0.577

256 Kb 83875.536 11746.480 14.005 0.585

512 Kb 81013.901 10965.785 13.536 0.597

1024 Kb 81150.583 10995.898 13.550 0.608

2048 Kb 81239.069 6952.424 8.558 1.280

4096 Kb 43356.230 4856.559 11.202 1.147

8192 Kb 28881.148 1869.471 6.473 0.763

16384 Kb 29001.475 2101.960 7.248 0.746

32768 Kb 28974.664 1926.799 6.650 0.745

65536 Kb 28890.884 1803.170 6.241 0.742

131072 Kb 29513.331 2017.812 6.837 0.754

262144 Kb 30362.248 1415.824 4.663 0.773

524288 Kb 32333.314 2687.568 8.312 0.822

High Computing Xlarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 115174.747 29394.274 25.521 0.582

2 Kb 135882.471 12522.144 9.215 0.720

4 Kb 116843.841 22006.591 18.834 0.645

8 Kb 136433.215 11000.801 8.063 0.712

16 Kb 116050.238 19884.988 17.135 0.589

32 Kb 131754.416 12624.223 9.582 0.679

64 Kb 67720.921 11675.880 17.241 0.447

128 Kb 71411.713 13454.425 18.841 0.468
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256 Kb 79622.752 9449.330 11.868 0.555

512 Kb 71013.685 12320.521 17.350 0.524

1024 Kb 69706.132 8737.546 12.535 0.522

2048 Kb 71339.236 10746.823 15.064 1.124

4096 Kb 39789.911 23894.617 60.052 1.053

8192 Kb 8551.982 1340.624 15.676 0.226

16384 Kb 7371.077 641.784 8.707 0.190

32768 Kb 7556.404 755.979 10.004 0.194

65536 Kb 7602.567 752.839 9.902 0.195

131072 Kb 7748.740 885.204 11.424 0.198

262144 Kb 7648.946 851.049 11.126 0.195

524288 Kb 7892.440 1210.892 15.342 0.201

E.3.6 Int Writing

Tesla

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 195960.565 14549.605 7.425 1.000

2 Kb 182994.057 25568.087 13.972 1.000

4 Kb 178020.885 16466.275 9.250 1.000

8 Kb 192477.490 8291.741 4.308 1.000

16 Kb 196191.248 7395.624 3.770 1.000

32 Kb 195611.536 7721.859 3.948 1.000

64 Kb 175329.589 9350.220 5.333 1.000

128 Kb 177294.822 3506.821 1.978 1.000

256 Kb 146486.966 7722.077 5.272 1.000

512 Kb 53629.373 591.842 1.104 1.000

1024 Kb 50924.815 477.446 0.938 1.000

2048 Kb 31188.376 548.693 1.759 1.000

4096 Kb 18150.681 3084.447 16.994 1.000

8192 Kb 18267.802 2732.219 14.956 1.000

16384 Kb 20100.745 1058.784 5.267 1.000

32768 Kb 20111.976 686.868 3.415 1.000

65536 Kb 19999.201 667.127 3.336 1.000

131072 Kb 20079.564 515.742 2.568 1.000

262144 Kb 20245.574 339.518 1.677 1.000

524288 Kb 20288.638 161.454 0.796 1.000

Henry
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Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 165559.591 16957.833 10.243 0.845

2 Kb 171731.959 8762.836 5.103 0.938

4 Kb 174627.941 6494.579 3.719 0.981

8 Kb 176393.314 59.293 0.034 0.916

16 Kb 174330.871 295.615 0.170 0.889

32 Kb 174901.834 4984.286 2.850 0.894

64 Kb 170911.348 5697.554 3.334 0.975

128 Kb 44031.233 1137.063 2.582 0.248

256 Kb 39349.159 5741.088 14.590 0.269

512 Kb 35119.780 6383.686 18.177 0.655

1024 Kb 12601.817 2081.756 16.519 0.247

2048 Kb 5236.304 897.843 17.147 0.168

4096 Kb 5046.351 922.508 18.281 0.278

8192 Kb 4941.022 997.430 20.187 0.270

16384 Kb 5127.035 992.843 19.365 0.255

32768 Kb 5314.478 939.823 17.684 0.264

65536 Kb 5343.971 737.093 13.793 0.267

131072 Kb 5330.244 729.676 13.689 0.265

262144 Kb 5432.117 684.986 12.610 0.268

524288 Kb 5384.526 690.716 12.828 0.265

Large

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 31749.811 1110.994 3.499 0.162

2 Kb 32228.768 416.815 1.293 0.176

4 Kb 32243.096 499.417 1.549 0.181

8 Kb 32202.253 572.536 1.778 0.167

16 Kb 32296.375 390.395 1.209 0.165

32 Kb 31497.442 394.580 1.253 0.161

64 Kb 18888.289 2000.646 10.592 0.108

128 Kb 19135.500 2308.658 12.065 0.108

256 Kb 19447.455 2217.512 11.403 0.133

512 Kb 19608.251 2305.376 11.757 0.366

1024 Kb 19354.487 2126.076 10.985 0.380

2048 Kb 17399.303 1679.035 9.650 0.558

4096 Kb 12953.873 4737.382 36.571 0.714

8192 Kb 2968.628 159.102 5.359 0.163

16384 Kb 2632.438 84.763 3.220 0.131

32768 Kb 2628.967 66.723 2.538 0.131

65536 Kb 2617.713 76.462 2.921 0.131
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131072 Kb 2601.436 66.641 2.562 0.130

262144 Kb 2575.644 72.355 2.809 0.127

524288 Kb 2523.837 68.958 2.732 0.124

XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 50551.187 9425.434 18.645 0.258

2 Kb 55704.509 9044.819 16.237 0.304

4 Kb 54997.837 9235.048 16.792 0.309

8 Kb 56511.169 12231.671 21.645 0.294

16 Kb 55287.709 10161.593 18.379 0.282

32 Kb 55544.351 10801.327 19.446 0.284

64 Kb 46949.799 8512.786 18.132 0.268

128 Kb 47190.674 8373.690 17.744 0.266

256 Kb 40590.464 7088.540 17.464 0.277

512 Kb 18094.875 1340.821 7.410 0.337

1024 Kb 16374.072 2336.926 14.272 0.322

2048 Kb 10487.141 2133.149 20.341 0.336

4096 Kb 8123.011 493.148 6.071 0.448

8192 Kb 7753.873 451.014 5.817 0.424

16384 Kb 7738.798 479.521 6.196 0.385

32768 Kb 7744.077 528.620 6.826 0.385

65536 Kb 7682.168 541.378 7.047 0.384

131072 Kb 7688.222 565.864 7.360 0.383

262144 Kb 7590.289 530.816 6.993 0.375

524288 Kb 7276.936 461.022 6.335 0.359

High Memory XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 41207.274 3917.055 9.506 0.210

2 Kb 41202.400 4062.753 9.860 0.225

4 Kb 41323.609 3923.252 9.494 0.232

8 Kb 41292.808 3922.135 9.498 0.215

16 Kb 41299.926 3922.860 9.498 0.211

32 Kb 40888.054 3862.999 9.448 0.209

64 Kb 36732.784 3384.162 9.213 0.210

128 Kb 36574.390 3597.417 9.836 0.206

256 Kb 35920.800 3423.994 9.532 0.245

512 Kb 24924.141 1542.188 6.188 0.465
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1024 Kb 24445.149 1531.048 6.263 0.480

2048 Kb 24303.762 1452.207 5.975 0.779

4096 Kb 15182.900 733.473 4.831 0.836

8192 Kb 9195.665 253.101 2.752 0.503

16384 Kb 8898.616 550.343 6.185 0.443

32768 Kb 8861.416 578.433 6.528 0.441

65536 Kb 8774.797 658.900 7.509 0.439

131072 Kb 8667.144 583.099 6.728 0.432

262144 Kb 8406.469 576.870 6.862 0.415

524288 Kb 7925.990 566.712 7.150 0.391

High Memory 2XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 81918.195 5941.384 7.253 0.418

2 Kb 82269.222 5352.534 6.506 0.450

4 Kb 82480.096 5377.647 6.520 0.463

8 Kb 82360.808 5433.125 6.597 0.428

16 Kb 82578.045 5145.477 6.231 0.421

32 Kb 81649.317 5334.556 6.533 0.417

64 Kb 73059.842 4848.978 6.637 0.417

128 Kb 72870.025 5243.743 7.196 0.411

256 Kb 64095.737 3618.645 5.646 0.438

512 Kb 27490.935 1569.513 5.709 0.513

1024 Kb 26136.281 1712.513 6.552 0.513

2048 Kb 19226.068 3516.301 18.289 0.616

4096 Kb 11411.251 1047.005 9.175 0.629

8192 Kb 10877.069 366.403 3.369 0.595

16384 Kb 10897.930 496.938 4.560 0.542

32768 Kb 10826.775 359.097 3.317 0.538

65536 Kb 10767.430 325.618 3.024 0.538

131072 Kb 10734.812 543.134 5.060 0.535

262144 Kb 10560.848 267.174 2.530 0.522

524288 Kb 10330.636 483.899 4.684 0.509

High Memory 4XLarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 108995.009 26880.239 24.662 0.556

2 Kb 131337.241 28142.124 21.427 0.718

4 Kb 131065.904 25668.028 19.584 0.736
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8 Kb 125659.440 33387.179 26.570 0.653

16 Kb 124452.760 35573.637 28.584 0.634

32 Kb 119160.071 31032.778 26.043 0.609

64 Kb 104208.469 27639.681 26.523 0.594

128 Kb 101247.342 27061.429 26.728 0.571

256 Kb 100055.552 25682.344 25.668 0.683

512 Kb 59122.458 10782.671 18.238 1.102

1024 Kb 57369.448 10192.252 17.766 1.127

2048 Kb 51574.916 10701.134 20.749 1.654

4096 Kb 23881.945 6726.716 28.167 1.316

8192 Kb 15909.417 1717.622 10.796 0.871

16384 Kb 15331.685 2576.194 16.803 0.763

32768 Kb 15503.649 2828.638 18.245 0.771

65536 Kb 15649.229 2397.424 15.320 0.782

131072 Kb 15199.779 2084.049 13.711 0.757

262144 Kb 15388.319 2439.584 15.853 0.760

524288 Kb 15039.421 2297.362 15.276 0.741

High Computing Xlarge

Block Size Average Bandwidth STDEV %STDEV Raw Ratio to Tesla

1 Kb 113232.891 30569.393 26.997 0.578

2 Kb 135267.480 15332.489 11.335 0.739

4 Kb 101643.394 30937.621 30.437 0.571

8 Kb 135271.616 13417.258 9.919 0.703

16 Kb 102578.923 27236.923 26.552 0.523

32 Kb 131133.888 15927.656 12.146 0.670

64 Kb 56942.225 13468.332 23.653 0.325

128 Kb 61955.725 16609.875 26.809 0.349

256 Kb 75058.223 14387.523 19.168 0.512

512 Kb 58778.486 14468.540 24.615 1.096

1024 Kb 61567.866 16323.686 26.513 1.209

2048 Kb 57026.582 14081.136 24.692 1.828

4096 Kb 24283.214 23293.180 95.923 1.338

8192 Kb 4958.236 674.010 13.594 0.271

16384 Kb 4496.934 634.467 14.109 0.224

32768 Kb 4546.730 556.891 12.248 0.226

65536 Kb 4564.510 570.342 12.495 0.228

131072 Kb 4574.956 746.890 16.326 0.228

262144 Kb 4676.805 544.985 11.653 0.231

524288 Kb 4578.970 770.536 16.828 0.226
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E.4 SPEC Benchmarks

SPEC CINT2006 Tests

Results
400 401 403 429 445 456

perlbench bzip2 gcc mcf gobmk hmmer

T
e
sl

a SPEC Ratio 25.5 19.9 24.7 42.2 24.2 46.8

Runtime 384 484 326 216 433 199

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000

H
e
n

ry

SPEC Ratio 10.9 9.14 9.1 11.4 10.4 15.4

Runtime 895 1056 884 804 1009 606

Tesla Ratio 0.429 0.458 0.369 0.269 0.429 0.328

H
M

4
X

L
a
rg

e

SPEC Ratio 21.08 14.88 13.77 18.27 18.1 9.37

Runtime 463.377 648.425 584.775 499.24 579.647 995.55

Tesla Ratio 0.829 0.746 0.557 0.433 0.747 0.200

H
M

2
X

L
a
rg

e

SPEC Ratio 21.68 14.92 13.72 18.17 18.08 9.37

Runtime 450.726 646.626 586.831 502.027 580.067 995.359

Tesla Ratio 0.852 0.749 0.556 0.430 0.746 0.200

H
M

X
L

a
rg

e

SPEC Ratio 20.88 14.5 13.5 17.7 17.81 9.35

Runtime 467.935 665.622 596.228 515.335 588.938 997.503

Tesla Ratio 0.821 0.727 0.547 0.419 0.735 0.199

H
C

X
L

a
rg

e

SPEC Ratio 16.29 11.1 11.2 12.35 14.12 7.47

Runtime 599.711 869.557 819.483 738.226 742.999 1248.538

Tesla Ratio 0.640 0.557 0.398 0.293 0.583 0.159

X
L

a
rg

e SPEC Ratio 19.56 15.13 9.84 14.22 16.31 10.24

Runtime 499.484 637.864 818.155 641.326 643.075 911.099

Tesla Ratio 0.769 0.759 0.398 0.337 0.673 0.218

L
a
rg

e SPEC Ratio 12.04 8.17 7.07 8.78 10.6 5.63

Runtime 811.128 1181.429 1138.466 1038.733 989.451 1656.633

Tesla Ratio 0.473 0.410 0.286 0.208 0.438 0.120
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SPEC CINT2006 Tests cont.

Results
458 462 464 471 473 483

sjeng libquantum h264ref omnetpp astar xalancbmk
T

e
sl

a SPEC Ratio 25.9 477 37.1 21.6 20 36.1

Runtime 468 43.4 96 290 350 191

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000

H
e
n

ry

SPEC Ratio 11.1 32.9 16.9 9.86 9.14 11.1

Runtime 1086 631 1310 634 768 624

Tesla Ratio 0.431 0.069 0.073 0.457 0.456 0.306

H
M

4
X

L
a
rg

e

SPEC Ratio 17.51 27.31 27.49 12.67 12.04 20.66

Runtime 690.838 758.729 804.898 493.304 583.118 334.007

Tesla Ratio 0.677 0.057 0.119 0.588 0.600 0.572

H
M

2
X

L
a
rg

e

SPEC Ratio 17.53 27.29 27.41 12.69 12.08 20.63

Runtime 690.245 759.124 807.289 492.553 581.222 334.538

Tesla Ratio 0.678 0.057 0.119 0.589 0.602 0.571

H
M

X
L

a
rg

e

SPEC Ratio 12.36 26.72 27.22 12.29 11.8 19.81

Runtime 697.088 775.453 812.873 508.371 594.762 348.324

Tesla Ratio 0.671 0.056 0.118 0.570 0.588 0.548

H
C

X
L

a
rg

e

SPEC Ratio 13.91 18.7 21.78 8.87 8.9 13.72

Runtime 870.091 1108.004 1016.248 704.988 788.413 503.054

Tesla Ratio 0.538 0.039 0.094 0.411 0.444 0.380

X
L

a
rg

e SPEC Ratio 15.95 15.93 22.62 9.85 9.97 15.51

Runtime 758.438 1300.477 978.441 634.717 703.764 444.782

Tesla Ratio 0.617 0.033 0.098 0.457 0.497 0.429

L
a
rg

e SPEC Ratio 10.36 14.63 11.88 5.09 5.55 9.67

Runtime 1168.364 1416.168 1863.604 1227.754 1265.458 713.778

Tesla Ratio 0.401 0.031 0.052 0.236 0.277 0.268

SPEC CFP2006 Tests

Results
433 444 470 447 450 453 482

milc namd lbm dealII soplex povray sphinx3
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T
e
sl

a SPEC Ratio 34.3 19.1 54.7 33.9 28.2 28.6 40.6

Runtime 267 420 252 337 296 186 480

Tesla Ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H

e
n

ry

SPEC Ratio - - - - - - -

Runtime - - - - - - -

Tesla Ratio - - - - - - -

H
M

4
X

L
a
rg

e

SPEC Ratio 13.72 14.2 28.41 22.17 21.86 19.68 25.56

Runtime 668.879 564.982 483.647 516.075 381.562 270.376 762.64

Tesla Ratio 0.399 0.743 0.521 0.653 0.776 0.688 0.629

H
M

2
X

L
a
rg

e

SPEC Ratio 13.57 13.88 28.06 22.19 21.42 19.71 24.85

Runtime 676.541 577.724 489.731 515.445 389.364 269.952 784.453

Tesla Ratio 0.395 0.727 0.515 0.654 0.760 0.689 0.612

H
M

X
L

a
rg

e

SPEC Ratio 13.63 14.19 28.37 22.11 21.83 19.72 25.67

Runtime 673.592 565.371 484.265 517.526 381.96 269.824 759.357

Tesla Ratio 0.396 0.743 0.520 0.651 0.775 0.689 0.632

H
C

X
L

a
rg

e

SPEC Ratio 11.2 11.32 14.49 17.17 14.21 15.74 16.28

Runtime 819.483 708.52 948.551 666.14 586.877 338.095 1196.99

Tesla Ratio 0.326 0.593 0.266 0.506 0.504 0.550 0.401

X
L

a
rg

e SPEC Ratio 9.45 9.38 14.2 14.26 12.11 13.03 12.44

Runtime 971.491 854.925 967.925 801.985 688.852 40.441 1567.03

Tesla Ratio 0.275 0.491 0.260 0.420 0.430 4.599 0.306

L
a
rg

e SPEC Ratio 7.18 10.13 5.09 16.41 9.88 14.23 14.16

Runtime 1278.12 791.369 2701.489 697.305 844.086 373.804 1376.54

Tesla Ratio 0.209 0.531 0.093 0.483 0.351 0.498 0.349
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