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1. ABSTRACT 

  

 Today, with the rapid development of technology, human entered a new era of 

Information Technology. Computer appears in every aspects of life. Data is being 

transfer from paper to digital. Therefore, the demand of data storage is increasing 

quickly. Human need a new technique to handle Big Data, that’s why Hadoop was 

born. “The Apache™ Hadoop® project develops open-source software for reliable, 

scalable, distributed computing. The Apache Hadoop software library is a framework 

that allows for the distributed processing of large data sets across clusters of computers 

using simple programming models” – Apache [1]. However, the conflicts and duplicates 

of data is still happen in many cases. In this report, we will illustrate a new technique for 

entity resolution in big data. This technique is based on Hadoop, using one join target 

field along with the help of supporting fields, and a method for similarity join from 

University of California, Irvine called “Efficient Parallel Set-Similarity Joins Using 

MapReduce”. [2] 
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2. INTRODUCTION 

 

2.1 OVERVIEW 

 

  Big Data is becoming a persistent problem in the field of Computer 

Science. With the rapid increase in demand of Data Storage everywhere, traditional 

data processing methods are starting to look inefficient. They are inadequate to handle 

Big Data. Data is expanding so fast and the amount of data increases rapidly means 

controlling is becoming harder. With old ways of handling data, operations on it cannot 

be done so quickly anymore. Every second that passes, there are billions of megabytes 

of data transferred through the Internet. Moreover, data formats are not standardized. 

Data formats differ from place to place. This leads to data conflict and duplications. For 

example, in Vietnam names are stored as Last Name first, then Middle Name and finally 

First Name, but many other countries in the world use different formats (for example First 

Name, Middle Name and then Last Name). Therefore, we need a new technique to 

handle this problem. Hadoop is created to help people storing and processing Big Data. 

This report will present a new technique based on Hadoop to process large datasets with 

the same entities but stored in different formats. We developed a custom input format to 

automatically correct the wrongly formatted attributes into the standard format. We 

tested our code by comparing the results given when the default TextInputFormat is 

used and when our CustomInputFormat is used.  In the next part, we will talk about Goals 

and Objectives of this project. 
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 2.2 GOALS AND OBJECTIVES  

 

  This project has six goals: 

1. Creating Configuration File that gives information about the target field, 

supporting fields, matching type of these fields and the threshold for similarity join. 

2. Writing java program to extract the data for testing purpose from two real big 

datasets: DBLP and CiteseerX. 

3. Implementing “Efficient Parallel Set-Similarity Joins Using MapReduce” - University 

of California, Irvine for similarity joining method. 

4. Enhancing our join results by removing duplications. 

5. Developing a custom Input Format using the output we acquired to automatically 

format the wrong attributes. 

6. Testing our input format by joining and doing an aggregation to group the 

records by target field and count the number of records grouped 

And the most important goal is the 5th goal. In the end we want to create a 

new input format to replace the default TextInputFormat, which will be able to 

detect wrongly formatted attributes and fix them. 
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2.3 HADOOP 

 

  Hadoop is an open source software project from Apache that “allows for 

the distributed processing of large data sets across clusters of computers using simple 

programming models. It is designed to scale up from single servers to thousands of 

machines, each offering local computation and storage. Rather than rely on hardware 

to deliver high-availability, the library itself is designed to detect and handle failures at 

the application layer, so delivering a highly-available service on top of a cluster of 

computers, each of which may be prone to failures” [1] 

 Apache™ Hadoop® system consists of 4 modules: 

1. The first part is Hadoop Common: “The common utilities that support the other 

Hadoop modules” [1] 

2. The second part is Hadoop Distributed System: “A distributed file system that 

provides high-throughput access to application data” [1] 

3. The third part is Hadoop YARN: “A framework for job scheduling and cluster 

resource management” [1] 

4. The final part is Hadoop MapReduce: “A YARN-based system for parallel 

processing of large data sets” [1] 

 

The graphs below will show the Architecture of Apache™ Hadoop®: 
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Figure 1: Hadoop Architecture 

 Hadoop uses master-slave, shared-nothing architecture. It has a Master node as a 

single node and many slave nodes. Each node will have main layers. The first layer is 

MapReduce functions layer. This layer will handle the methods used for processing data. 

MapReduce tasks will have JobTracker to manage nodes in the cluster. If the JobTracker 

is failed, all the jobs will be halted. The second main layer is the HDFS layer. HDFS layer 

helps storing large volumes of data. Data storage in HDFS is scalable and reliable.  

 

 The graph below illustrates how Apache™ Hadoop® Map-Reduce executes: 
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Figure 2: Color Count example 

 

Data storage in HDFS will be divided into smaller chunks. They are usually 

separated by size. These data chunks will randomly go to Mappers, and from them The 

Mappers produce key and value pairs. The key-value pairs are then shuffled and sorted 

based on their keys. Data is then passed to reducers such that the pairs that have the 

same key will go to the same reducers. Reducers then combine, reduce data or do any 

kind of processing on it before the final result is given. 
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3. SYSTEM OVERVIEW 

 

 3.1 WORK FLOW 

 

 

Figure 3: Work Flow of Project 

 

 Overall, to build our custom input format, we first use four main Map-Reduce jobs: 

Counting Frequency, Ordering Tokens, Similarity-Join and finally Similarity-Join Post 

Processing. Each of these jobs is a separate java class with different mappers and 

reducers. The first job (Counting Frequency) takes a data file stored in HDFS as input. It 

finds the join field in each record in the dataset, divides it into tokens, counts the 

frequency of each token and writes the tokens along with their frequency counts to 

output. The second job (Order Tokens) swaps key and value position and sorts the 
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tokens. The third job (Similarity-Join) takes the two datasets and the token ordering as 

input. It uses the order of tokens to find the candidate records, then checks the 

candidate records to find the records that do join together. The fourth job (Similarity-Join 

Post Processing) filters the output from the previous job to get cleaner result. The return 

values of post processing job will then be used to make the custom input format. 

 

 

 3.2 USE CASES WORK FLOW 

 

 

Figure 4: Diagram of Use Cases Work Flow 

In this project, we will write two program with different use cases for testing and 

evaluation. The first use case is joining two datasets, and the second use case is doing 

aggregation, in which records are grouped by the target field and the records grouped 
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together are counted. Both use cases will be processed once with the default Text Input 

Format and once with our custom ELODU Input Format to evaluate the efficiency and 

accuracy between the two. The enhanced entity resolution output is the final result of 

this project. 

 

 

 3.3 PROBLEMS, LIMITATION AND SOLUTIONS 

 

 Doing this project, we had to face many problems and limitations. The first 

challenge that we had to face is building the two datasets. At first we wanted to write a 

java program to build two big sample datasets by randomizing strings. This idea is 

feasible, but unreal and meaningless data did not seem very helpful in test cases. 

Therefore we decided to use real datasets and we found the datasets that were used in 

the “Efficient Parallel Set-Similarity Joins Using MapReduce” paper [2]. These datasets are 

called DBLP [3] and CiteseerX [4]. They consists of publications along with their author 

names, publish years, abstracts, links and so on. The DBLP dataset is 1.67 GB large and 

the CiteseerX dataset is 7.6 GB large. They are both in XML format, therefore we needed 

to write java programs to remove the tags and extract the useful parts inside the files. 

The DBLP data file is not hard to convert since the format is clear for the most part. 

However, the CiteseerX data file has many records with faulty format, so to serve our 

purpose the best we divided the file and extracted the parts that were in good form.  

 The second challenge for us is studying Hadoop. Since we did not know about 

Hadoop before starting the project, we needed quite some effort to research and study 
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to understand how it works and to be able to write Map-Reduce jobs. We went through 

sample codes both from the Internet and inside the system, and since there are codes 

that use different versions of Hadoop and different Map-Reduce APIs everywhere, 

sometimes we found it a bit confusing choosing the correct path to follow. 

The third problem that we faced was running out of disk space. The data files are 

quite large and we had to write a lot of draft lines to console when debugging the 

programs. This caused the Map-Reduce Administrator site to freeze or Terminal shell 

exploded occasionally. 
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3.4 ENTITY RESOLUTION CONFIGURATION 

 

 

 Figure 6: Configuration file structure 

The image above shows the configuration file that we used throughout this project. Each 

field is stored along with its column number for easy access and manipulation of data. The 

matching type section specifies the type of matching for each field, for example the supporting 

field number 1’s matching type is exact so anything not exactly the same is considered not a 

match. 
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3.4.1 TARGET FIELD 

 

 Target field is the first part in configuration file. The target field is to point out the 

field that the datasets will be joined on, and therefore is the field that is the most 

important and needed the most processing. The test datasets that we used consists of 

records about publications. There are many fields inside one record such as author, title, 

publisher and so on. The target field we use for testing is the article name. As stated 

above, the “field” attribute gives information about the target field’s location (Column 

number). 

 

3.4.2 SUPPORTING FIELDS 

  

 Supporting fields is the second part of the configuration file. In this project we 

have two supporting fields: the publish year and the author name. These fields help us 

identify the entities with better accuracy because of the additional checking done on 

them besides the target field check. The matching type for supporting field can be 

exact match or similarity match. 

 

3.3.3 MATCHING TYPE 

  

Matching type is the third part of configuration file. It enables our program to 

identify which kind of matching will be suitable for which field. This project will focus on 

two kinds of matching: similarity match and exact match. Exact match means the 



 16 

values for that field have to be exactly the same to match, while similarity match means 

the values for that field just need to be similar to a specific degree. 

 

3.3.4 THRESHOLD 

  

Threshold is the limit value that is used for similar match. The similarity of two values 

will be computed and compared against this threshold, and if it’s larger than or equal to 

the threshold, the two values will be considered the same.  
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4. SYSTEM IMPLEMENTATION 

 

 4.1 TOKEN ORDERING - PART 1 - COUNTING FREQUENCY 

 

 

 Figure 7: Data flow of token ordering part 1 

 

The first MapReduce job counts the frequencies of each word that appears in the 

target field of the smaller dataset’s records. We take the smaller dataset and the 

configuration file as input for the map phase. Using the information of the target field in 

the configuration file, the mappers extract only that field in each record, and separate it 

into single words (tokens). Each token will be a key, and the value for each key will be 

one. That way, all the occurrences of a word will be sent to the same reducer because  
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key-value pairs are grouped by their keys before they are passed to the reduce phase. 

The reducers then add all the values to find the frequency of each token and write the 

result to the output file.  

 4.2 TOKEN ORDERING - PART 2 – ORDER TOKEN 

 

 

 Figure 8: Data flow of token ordering part 2 

 

The second MapReduce job sorts the tokens based on their frequencies. The 

mappers swap the key-value pairs received from the first job, so that the keys will be the 

frequency of the words and the values will be the words themselves. We use a single 

reducer for this job, because when the key-value pairs are passed to the reducer they 

will already be sorted on the frequency. The reducer then simply leaves out the 

frequency and outputs the words in ascending order of their counts. 
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 4.3 SIMILARITY-JOIN 

 

The first requirement for the join is the Configuration file. Configuration file stores 

information about the join target field, the supporting fields, the matching types for each 

field and the thresholds to use when the matching type is Similar Match. Moreover, it also 

provides the location for each field, which makes accessing specific parts inside the 

data so much easier. Another essential element of the join is the actual datasets. This 

project uses two big datasets that was generated from two real datasets (DBLP dataset 

[3] and CiteseerX [4]). We created them by writing a java program to extract the text 

data from XML format and remove unnecessary elements. With the data extracted, first 

our program will use the configuration file to identify the target field, supporting fields 

and matching type of each field. After that, the program will start checking the data 

based on all the acquired information. The result of the join depends on whether the 

fields match or not and how they match. The supporting fields give the join better 

accuracy so the join result is more correct. Finally, the result will be process through a 

filter to be cleaned up. 
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Figure 9: Data flow of Similarity-Join 

 

The third MapReduce job computes the similarity of the records and compare it 

with the thresholds given in the configuration file to decide which record in one dataset 

is actually which record in the other dataset. This job takes the tokens ordering, the two 

actual datasets and the configuration file as input. The map phase generates (token, 

record) pairs. Each record (as the value) will be tagged with the data file it comes from. 

The token (as the key) taken from the target field of each record is selected so that it has 

the smallest frequency count in the tokens ordering generated above. We take at most 

3 tokens for each record. The reducers verify the records that have the same token using 

the supporting fields and the thresholds, and write the verified target fields R.a and S.a to 

the output file. 
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 4.4 OUTPUT ENHANCEMENT 

 

 

Figure 10: Data flow of OutputEnhance 

 

The fourth MapReduce job deals with a problem that one record from one 

dataset can be matched with multiple records from the other dataset. We take only one 

mapping and leave out all the rest. 

 4.5 OUR CUSTOM INPUT FORMAT - ELODUINPUTFORMAT 

 

Using the result of 4.4 we make a custom input format to read the two datasets. 

This will make processing on those datasets more accurate, since whenever the program 

reads in R.a it will know that it’s actually S.a although the two might be different. With the 

default TextInputFormat the program will think that they are two different records, and 

processing can give inaccurate results. 
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 4.6 AGGREGATION 

 

First we try joining the datasets using the default input format and our custom 

input format. Then we try grouping the records by target field and count the number of 

records grouped, also with the two input formats. Our custom input format works fine as 

the program doesn’t miss records even when the same records appear differently in the 

two datasets. 
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5. EVALUATION 

 

5.1 DATASET  

 

 Dataset is the first stage of this project and it is also one of the most troublesome 

part of our program. It is a tool for testing our project and guarantee that our solution 

can run and process fine with large data. This project will use two big datasets that was 

created from real datasets DBLP and CiteseerX.  

 

 5.1.1 DATASET 1 

 

 

Figure 11: Picture of Dataset 1 

 

 Dataset 1 is created base on a real big dataset called DBLP. The original dataset 

is very big with the size of 1.64 GB and in XML format. It is too big and have many 

unnecessary parts. Therefore, we write a Java program that converts XML format to 

normal text format, removes junk parts and makes dataset fit better with our program. 

After processing, the final dataset 1 is only 149 MB with more than 1 million records. The 

format of dataset 1 is showed on picture above. 
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 5.1.2 DATASET 2 

 

Figure 12: Picture of Dataset 2 

 

Dataset 2 is created base on a real big dataset called CiteseerX. The original 

dataset is large with the size of 7.6 GB and also in XML format. It is bigger than original 

DBLP dataset seven times and it has many unclear characters. Therefore, we only take 

one of the clearest parts on original CiteseerX dataset to process. We wrote a Java 

program that converts XML format to normal text format, removes junk parts and makes 

dataset fit better with our program. After processing, the size of final dataset 2 is 141 MB. 

 

 

 5.2 PERFORMANCE 

 

 After working and testing with two sample datasets (Dataset 1: 149 MB, Dataset 2: 

141 MB) that we created base on DBLP and CiteSeerX above, we have achieved some 

very good results and this has shown the feasibility of our project. 
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5.2.1 SIMILARITY-JOIN TEST 

 

Result of similarity-join using supporting fields is shown in the image below: 

  

Figure 13: Similarity-Join result statistics 

There are more than 1.4 million records for input. The reduce output records are 

the results of the Similarity-Join job. The table shows 3937 records and the job took about 

115,580 milliseconds (almost 2 minutes) to run through and process two big datasets.  

The picture below will show one part of the result: 
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Figure 14: Sample of similarity join result 

 

The result is fairly accurate. After doing the similarity join we will process out result 

through a filter to deal with duplicate records. The enhanced result after processing 

through filter is about 950 records. After testing the join part, we started to test the 

ELODUInputFormat against the TextInputFormat. 
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5.2.2 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN JOIN 

 

 

Figure 15: ELODUInput format - Join result statistics 

 

Figure 16: TextInputFormat - Join result statistics 
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The result of ELODUInputFormat shows that the join takes about 295 seconds to 

process, higher than the join using TextInputFormat which takes only 26 seconds to finish. 

This because the ELODU input format needs to check the Similarity-Join result to find the 

matching formats for all records in the citeseerx data file. However the result of shows 

that the ELODUInputFormat finds more records matching than the default 

TextInputFormat since the program is capable of detecting matches even when the 

target field is not exactly the same. 

 

 

5.2.3 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN AGGREGATION 

 

 

Figure 17: ELODUInputformat - Aggregation result statistics 
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Figure 18: TextInput format - Aggregation result statistics 

 With the Aggregation use case, the CPU time to finish the job is quite the same with the 

Join. However the program that uses ELODUInputFormat output less records than the one using 

TextInputFormat. This is because ELODUInputFormat detected more matchings, so more records 

was grouped together. 
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6. CONCLUSION  

  

 This project provides a new way to handle the situation of processing data with 

redundancy and bad formats which happens so oftenly. Our method can make 

processing these kinds of data more accurate. Overall, we accomplished all objectives 

for this project. However, for applying to reality the project needs much improvement 

especially on the execution speed.  We believe that in the very near future, out project 

will be a powerful method for Entity Resolution in Big Data. 
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7. RELATED WORKS 

 

7.1 EFFICIENT PARALLEL SET-SIMILARITY JOINS USING MAPREDUCE – UNIVERSITY 
OF CALIFORNIA, IRVINE 

 

 Identifying similar pair of records is applied in many applications and our project is 

one of them. “Efficient Parallel Set-Similarity Joins Using MapReduce” paper is written by 

Rares Vernica, Michael J. Carey and Chen Li – Department of Computer Science in 

University of California, Irvine. This paper provides some effective algorithms to dealing 

with end-to-end set-similarity-join problems through 3-stage approach, and our Similarity-

Join job is based on the technique presented in this paper. 

 Stage 1: Dividing the data into tokens and order them base on their number of 

occurences in the datasets. The next stage will use the result of token ordering to 

compute the similarity. Our Similarity-Join job used the Basic Token Ordering method, 

which consists of two main parts. The first part computes the tokens’ frequencies and the 

second part sorts tokens by their frequencies. 

 

 Figure 16: Data flow of Stage One [2] 
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 Stage 2: Taking two datasets as input, assign record ID for each record from two datasets, 

identify the join attribute value of each record. Using the result from Token Ordering part to 

identify, pair the RIDs and the join attributes from two datasets. The pairs that are in common will 

go to the same reducer. The reducer will compute the similarity of the values (join attribute) and 

return RIDs of records that are similar. Our Project used the idea but instead of producing records 

IDs, we produced the target field pairs that passed the matching test, because our purpose is to 

use this type of result to make a custom input format. 

 

 Figure 17: Data flow of Stage Two [2] 

 Stage 3: Using the results from the second stage (pairs of RIDs) to find and build 

the actual pairs of records that are similar from the original datasets. 

 

 Figure 18: Data flow of Stage Three using One-Phase Record Join [2] 
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APPENDIX  

 
 

APPENDIX A: COUNTING FREQUENCY JAVA CODE 

Map function:

 

Reduce function:

 

APPENDIX B: ORDERING TOKENS JAVA CODE 

Map function:
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Reduce function:

 

APPENDIX C: SIMILARITY JOIN JAVA CODE 

Map function:
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Reduce function:

 

APPENDIX D: ENHANCE RESULT JAVA CODE 

Map function:
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Reduce function:

 

APPENDIX E: JOINTEST JAVA CODE 

Map function:
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Reduce function:

 

APPENDIX F: CUSTOM INPUT FORMAT JAVA CODE 

ELODUInputFormat class:

 

APPENDIX G: CUSTOM RECORD READER JAVA CODE 
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getCurrentValue() method:
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