ELODU: ENTITY RESOLUTION IN BIG
DATA

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in
partial fulfilment of the requirements for the Degree of Bachelor of Computer Science

Submitted by:

Duc M. Pham

Thanh Long X. Vu

December 18, 2015

APPROVED:

Adyvisor: Professor Mohamed Y. Eltabakh

1. ABSTRACT

Today, with the rapid development of technology, human entered a new era of
Information Technology. Computer appears in every aspects of life. Data is being
transfer from paper to digital. Therefore, the demand of data storage is increasing
quickly. Human need a new technique to handle Big Data, that's why Hadoop was
born. “The Apache™ Hadoop® project develops open-source software for reliable,
scalable, distributed computing. The Apache Hadoop software library is a framework
that allows for the distributed processing of large data sets across clusters of computers
using simple programming models” — Apache [1]. However, the conflicts and duplicates
of data is still happen in many cases. In this report, we will illustrate a new technique for
entity resolution in big data. This technique is based on Hadoop, using one join target
field along with the help of supporting fields, and a method for similarity join from
University of California, Irvine called “Efficient Parallel Set-Similarity Joins Using

MapReduce”. [2]

TABLE OF CONTENTS

| N o111 (@ T3 P O O T P SO O TSSOSO PSP OPPPRPP 2
2. INTFOAUCTION 1ttt ettt et e e ettt e e et e e e esbaeeeestaeeeanbaeeeassaeeesseeeenssaeeanssaeeanssaesansseesnnsees 5
2.1 OVEIVIEW ..uiiiiiiiiee ettt ettt ettt e ettt e e s tae e e e tbeeeeatb e e e assaeeeesssaeeassseeeansseeeanssaesansseesasssaeeasssaesasssaesanses 5
VA Clele | el ale N @] o3 [=Tox 1177 TSR 6
PRGN o (o Te LoTe] o JUuUu USSP 7
NN =10 a W @AV =T AV LAV U TTTUTN 10
ST WOTK FIOW 1ttt ettt et e e et e e e st e e e e eteeeestbeesensbeeeansaaeeassaeeessaeesnsseeeasseeennsees 10
3.2 USE CASES WOTK FIOW ..ottt et 11
3.3 Problems, LIMitation ANd SOIUTIONScc.ciriiiiiiiiiieiicecce e 12
3.4 Entity Resolution CONfIGUIGTION ...cciiieiiiiiee ettt e e e st re e e e e atrbae e e s e esenreeas 14
I B Ko g I ol T=1 [IR SO U PPUUUUUUUUUPUPRUROt 15
I N Ul ol oTe] 5 1TaTe T =] o - USRS PRUSR 15
.33 MATCIING TYPE ettt e et e e e e et e e e e e et aeeeeeeeeaaaeeeeeenans 15
3.3 A TRMESNOIA ..ttt ettt et ettt et st s s s seneesene s 16

4, SYSTEM IMPIEMENTATION. ...ttt e e e e e e e e e eeeeeeeeeeenenan 17
4.1 Token Ordering - Part 1 - Counting FrEQUENCY ...ccceviiiiiiiicieeee et e 17
4.2 Token Ordering - PArt 2 — Order TOKENciicviiieciieeeite e eteeeeiteeeette e e etteeeetae e estee e snveeseareeeenees 18
4.3 JOIN Part 1T = JOIN TWO DOTASETS ..couiiiiiiiieiieieeecc ettt 19
4.4 Join Part 2 — Deal with multiple aitrubutes and Discard exact matCh.......ccccccvvvvevveeeeeneennn... 21
4.5 CUSTOM INPUT FOIMMIQT oottt e et e e e e e e e e e eeeeeeeaaeeeeas 21
4.6 AQOIEOTION ...t e e e e e e e e e b— e e e e e e e etabeaaaeeaattbaaeeeeaatbbaaaeeeannearees 22
I =Y e | U e | o] o I PP PRUUPPRRUPPSRIOt 23
ST DATASET .ttt et et e ettt s s e st es 23
ST T DATASET T ettt et et et et et et sar e sanee s e saneeseneesaneen 23

S.T. 2 DATASET 2 ettt et et et ettt st st st sab e saneenaneen 24

5.2 PEITOIMIONCE .ttt e bt e bt e sbb e e bt et e st e sabeesabeesabeesabeenaaean 24
5.2.1 ELODU Input format (CUStom) Vs. Standard Input FOrmat.......ccccveeeeiiieeiiieeecieeeeiee e 27

6. CONCIUSION .ttt et ettt e et et st e st e st e e saneesaneeseneesaneesanees 30
7. REIATEA WOTKS...eiiiiiiiiie ettt ettt ettt e et et et et st e st e seneesaneesaneeseneesaneenanees 31

7.1 Efficient Parallel Set-Similarity Joins Using MapReduce - University of California, Irvine 31

AAIENTIX «eetiiiiiee ettt eeeeet et e e e e ettt e e e eeettbe e e e e eeeettaaeaeeeaattaaaaaeeaattbaaaaeeaatabaaaaeeaaataaaaaeeaaatbraaeeeaaatraaeaaans 33

Appendix A: Counting FrequenCy JAVA COAE ittt e e e e 33
Appendix B: Ordering TOKENS JAVA COUE . .ciiiiiiiiiiiiii ettt ettt e e e e srreee s s e senreeeessensesneeas 33
Appendix C: Similarity JOIN JOVA COAE ...ttt e e e s e e e s e earrae e e s e esenreeas 34
Appendix D: Enhance ResUlt JAVA COAE. .ottt e etrva e e e s e 35
AppendiX E: JOINTEST JAVA COUB....iiiiiiiiiiiee ettt e et e e e e ettt a e e e e e eeaeareeas 36
AppenDix F: Custom Input FOrmat JOVA COAEccviiiiiiiiiiciieeeeeeetee ettt vee e 37
AppenDix G: Custom Record Reader JOVA COAEocuiviiiiiiiiiiiiee ettt 37

(O] (o 1[0 o 1 RUTT T TTPRURN 39

2. INTRODUCTION

2.1 OVERVIEW

Big Data is becoming a persistent problem in the field of Computer
Science. With the rapid increase in demand of Data Storage everywhere, traditional
data processing methods are starting to look inefficient. They are inadequate to handle
Big Data. Data is expanding so fast and the amount of data increases rapidly means
conftrolling is becoming harder. With old ways of handling data, operations on it cannot
be done so quickly anymore. Every second that passes, there are billions of megabytes
of data fransferred through the Internet. Moreover, data formats are not standardized.
Data formats differ from place to place. This leads to data conflict and duplications. For
example, in Vietham names are stored as Last Name first, then Middle Name and finally
First Name, but many other countries in the world use different formats (for example First
Name, Middle Name and then Last Name). Therefore, we need a new technique to
handle this problem. Hadoop is created to help people storing and processing Big Data.
This report will present a new technique based on Hadoop to process large datasets with
the same entities but stored in different formats. We developed a custom input format fo
automatically correct the wrongly formatted attributes into the standard format. We
tested our code by comparing the results given when the default TextinputFormat is
used and when our CustominputFormat is used. In the next part, we will talk about Goals

and Objectives of this project.

2.2 GOALS AND OBJECTIVES

This project has six goals:

Creating Configuration File that gives information about the ftarget field,
supporting fields, matching type of these fields and the threshold for similarity join.
Writing java program fo extract the data for testing purpose from two real big
datasets: DBLP and CiteseerX.

Implementing “Efficient Parallel Set-Similarity Joins Using MapReduce” - University
of California, Irvine for similarity joining method.

Enhancing our join results by removing duplications.

Developing a custom Input Format using the output we acquired to automatically

format the wrong attributes.

. Testing our input format by joining and doing an aggregation to group the

records by target field and count the number of records grouped
And the most important goal is the 5t goal. In the end we want to create a
new input format to replace the default TextinputFormat, which will be able to

detect wrongly formatted attributes and fix them.

2.3 HADOOP

Hadoop is an open source software project from Apache that “allows for
the distributed processing of large data sets across clusters of computers using simple
programming models. It is designed to scale up from single servers to thousands of
machines, each offering local computation and storage. Rather than rely on hardware
to deliver high-availability, the library itself is designed to detect and handle failures at
the application layer, so delivering a highly-available service on top of a cluster of
computers, each of which may be prone to failures” [1]

Apache™ Hadoop® system consists of 4 modules:

1. The first part is Hadoop Common: “The common utilities that support the other
Hadoop modules” [1]

2. The second part is Hadoop Distributed System: “A distributed file system that
provides high-throughput access to application data” [1]

3. The third part is Hadoop YARN: “A framework for job scheduling and cluster
resource management” [1]

4. The final part is Hadoop MapReduce: "A YARN-based system for parallel

processing of large data sets” [1]

The graphs below will show the Architecture of Apache™ Hadoop®:

Hadoop Architecture

* Distributed file system (HDFS)
» Execution engine (MapReduce)

hadoop-namenode

MapReduce JobTracker

Layer L__ Master node (single node)

e

~

/
e

J |\

|}
MapReduce | | TaskT;'acker |
Layer g

\
\

\ TaskTracker

/ \

HDFS
Layer DataNode r | DataNode

— T — Many slave nodes
hadoop-datanode1 hadoop-datanode2 P

Figure 1: Hadoop Architecture
Hadoop uses master-slave, shared-nothing architecture. It has a Master node as a
single node and many slave nodes. Each node will have main layers. The first layer is
MapReduce functions layer. This layer will handle the methods used for processing data.
MapReduce tasks will have JobTracker to manage nodes in the cluster. If the JobTracker
is failed, all the jobs will be halted. The second main layer is the HDFS layer. HDFS layer

helps storing large volumes of data. Data storage in HDFS is scalable and reliable.

The graph below illustrates how Apache™ Hadoop® Map-Reduce executes:

Input blocks Produces (k, v)
on HDFS @,n
LI

s
o 00

]

.

.’
.i..:-':..'

™

- o a |

.D Ci-' —> M
" s ms Y I
s = @

. {“}. .. C- . i

] |]] |]

8 - B — Map
.L.} 80 g

. ®Es [I
s = ®»

Map-Reduce Execution Engine
(Example: Color Count)

Shuffle & Sorting
based on &

v

r g

v

> Parse-hash

Consumes(k, [v])
@ ,[1L,LLLL1.])

Produces(®’, v’)

TR (@, 100)
Reduce —)
Reduce =~ ——>
Reduce '—>

Users only provide the “Map” and “Reduce” functions

Figure 2: Color Count example

Data storage in HDFS will be divided into smaller chunks. They are usually
separated by size. These data chunks will randomly go to Mappers, and from them The
Mappers produce key and value pairs. The key-value pairs are then shuffled and sorted
based on their keys. Data is then passed to reducers such that the pairs that have the

same key will go to the same reducers. Reducers then combine, reduce data or do any

kind of processing on it before the final result is given.

3. SYSTEM OVERVIEW

3.1 WORK FLOW

Work Flow

Entity
Countin Orderin Jo'in JOin POSt ReSOIUtion
Frequenfy Tokensg Pl'OCéSSi n g output

Token Ordering » Similarity Similarity »

Figure 3: Work Flow of Project

Overall, to build our custom input format, we first use four main Map-Reduce jobs:
Counting Frequency, Ordering Tokens, Similarity-Join and finally Similarity-Join Post
Processing. Each of these jobs is a separate java class with different mappers and
reducers. The first job (Counting Frequency) takes a data file stored in HDFS as input. It
finds the join field in each record in the dataset, divides it into tokens, counts the
frequency of each token and writes the tokens along with their frequency counts to

output. The second job (Order Tokens) swaps key and value position and sorts the

tokens. The third job (Similarity-Join) takes the two datasets and the token ordering as
input. It uses the order of tokens to find the candidate records, then checks the
candidate records to find the records that do join fogether. The fourth job (Similarity-Join
Post Processing) filters the output from the previous job to get cleaner result. The return

values of post processing job will then be used to make the custom input format.

3.2 USE CASES WORK FLOW

Use Cases Work Flow

Enhanced Entity Resolution Output

ELODU Input Format (Custom)

Figure 4: Diagram of Use Cases Work Flow

In this project, we will write two program with different use cases for testing and
evaluation. The first use case is joining two datasets, and the second use case is doing

aggregation, in which records are grouped by the target field and the records grouped

together are counted. Both use cases will be processed once with the default Text Input
Format and once with our custom ELODU Input Format to evaluate the efficiency and
accuracy between the two. The enhanced entity resolution output is the final result of

this project.

3.3 PROBLEMS, LIMITATION AND SOLUTIONS

Doing this project, we had to face many problems and limitations. The first
challenge that we had to face is building the two datasets. At first we wanted to write a
java program to build two big sample datasets by randomizing strings. This idea is
feasible, but unreal and meaningless data did not seem very helpful in test cases.
Therefore we decided to use real datasets and we found the datasets that were used in
the “Efficient Parallel Set-Similarity Joins Using MapReduce” paper [2]. These datasets are
called DBLP [3] and CiteseerX [4]. They consists of publications along with their author
names, publish years, abstracts, links and so on. The DBLP dataset is 1.67 GB large and
the CiteseerX dataset is 7.6 GB large. They are both in XML format, therefore we needed
to write java programs to remove the tags and extract the useful parts inside the files.
The DBLP data file is not hard to convert since the format is clear for the most part.
However, the CiteseerX data file has many records with faulty format, so to serve our

purpose the best we divided the file and extracted the parts that were in good form.

The second challenge for us is studying Hadoop. Since we did not know about

Hadoop before starting the project, we needed quite some effort to research and study

to understand how it works and to be able to write Map-Reduce jobs. We went through
sample codes both from the Internet and inside the system, and since there are codes
that use different versions of Hadoop and different Map-Reduce APIs everywhere,

sometimes we found it a bit confusing choosing the correct path to follow.

The third problem that we faced was running out of disk space. The data files are
quite large and we had to write a lot of draft lines fo console when debugging the
programs. This caused the Map-Reduce Administrator site to freeze or Terminal shell

exploded occasionally.

3.4 ENTITY RESOLUTION CONFIGURATION

Config (4).xml

>
>
>/user/hadoop/datal/</
>

>Title</ >
>1</ >
>

>
>Year</ >
>3</ >

>

>
>Author</
>2</ >
>
>

>

>/user/hadoop/data2new/</
>3

>Title</ >
>1</ >
>

>
>Year</ >
>2</ >
>

>
>Authors</
>3</ >

>

>similar</
>exact</
>similar</

Figure 6: Configuration file structure

The image above shows the configuration file that we used throughout this project. Each
field is stored along with its column number for easy access and manipulation of data. The
matching type section specifies the type of matching for each field, for example the supporting
field number 1's matching type is exact so anything not exactly the same is considered not a

match.

3.4.1 TARGET FIELD

Target field is the first part in configuration file. The target field is to point out the
field that the datasets will be joined on, and therefore is the field that is the most
important and needed the most processing. The test datasets that we used consists of
records about publications. There are many fields inside one record such as author, fitle,
publisher and so on. The target field we use for testing is the article name. As stated
above, the “field” attribute gives information about the target field's location (Column

number).

3.4.2 SUPPORTING FIELDS

Supporting fields is the second part of the configuration file. In this project we
have two supporting fields: the publish year and the author name. These fields help us
identify the entities with better accuracy because of the additional checking done on
them besides the target field check. The matching type for supporting field can be

exact match or similarity match.

3.3.3 MATCHING TYPE

Matching type is the third part of configuration file. It enables our program to
identify which kind of matching will be suitable for which field. This project will focus on

two kinds of matching: similarity match and exact match. Exact match means the

values for that field have to be exactly the same to match, while similarity match means

the values for that field just need to be similar to a specific degree.

3.3.4 THRESHOLD

Threshold is the limit value that is used for similar match. The similarity of two values
will be computed and compared against this threshold, and if it's larger than or equal to

the threshold, the two values will be considered the same.

4. SYSTEM IMPLEMENTATION

4.1 TOKEN ORDERING - PART 1 - COUNTING FREQUENCY

Token Ordering Part 1 - Counting Frequency

Configuration
File

Article Name
of Dataset 1

B,C,A,D

Figure 7: Data flow of token ordering part 1

The first MapReduce job counts the frequencies of each word that appears in the
target field of the smaller dataset’s records. We take the smaller dataset and the
configuration file as input for the map phase. Using the information of the target field in
the configuration file, the mappers extract only that field in each record, and separate it
into single words (tokens). Each token will be a key, and the value for each key will be

one. That way, all the occurrences of a word will be sent to the same reducer because

key-value pairs are grouped by their keys before they are passed to the reduce phase.
The reducers then add all the values to find the frequency of each token and write the

result to the output file.

4.2 TOKEN ORDERING - PART 2 — ORDER TOKEN

Token Ordering Part 2 - Order Tokens

Reverse

Figure 8: Data flow of token ordering part 2

The second MapReduce job sorts the tokens based on their frequencies. The
mappers swap the key-value pairs received from the first job, so that the keys will be the
frequency of the words and the values will be the words themselves. We use a single
reducer for this job, because when the key-value pairs are passed to the reducer they
will already be sorted on the frequency. The reducer then simply leaves out the

frequency and outputs the words in ascending order of their counts.

4.3 SIMILARITY-JOIN

The first requirement for the join is the Configuration file. Configuration file stores
information about the join target field, the supporting fields, the matching types for each
field and the thresholds to use when the matching type is Similar Match. Moreover, it also
provides the location for each field, which makes accessing specific parts inside the
data so much easier. Another essentfial element of the join is the actual datasets. This
project uses two big datasets that was generated from two real datasets (DBLP dataset
[3] and CiteseerX [4]). We created them by writing a java program to exiract the text
data from XML format and remove unnecessary elements. With the data extracted, first
our program will use the configuration file to identify the target field, supporting fields
and matching type of each field. After that, the program will start checking the data
based on all the acquired information. The result of the join depends on whether the
fields match or not and how they match. The supporting fields give the join better
accuracy so the join result is more correct. Finally, the result will be process through a

filter to be cleaned up.

Similarity-Join

A|DS1-
AXBYCT
A|DS2-
AFBG,CH

AXBYCT
BIDS2-
AEBGCH

AXBYC,Z
ciosz-
AFBG,CH

Figure 9: Data flow of Similarity-Join

The third MapReduce job computes the similarity of the records and compare it
with the thresholds given in the configuration file to decide which record in one dataset
is actually which record in the other dataset. This job takes the tokens ordering, the two
actual datasets and the configuration file as input. The map phase generates (token,
record) pairs. Each record (as the value) will be tagged with the data file it comes from.
The token (as the key) taken from the target field of each record is selected so that it has
the smallest frequency count in the tokens ordering generated above. We take at most
3 tokens for each record. The reducers verify the records that have the same token using
the supporting fields and the thresholds, and write the verified target fields R.a and S.a to

the output file.

20

4.4 OUTPUT ENHANCEMENT

OutputEnhance

Output Join1
AX,B,Y,C,Z
G, H
o , Final Resut
TVH,YKM
z

AX,B,Y,C,Z
AXBYC, W separator
AV,BN,CM - l.m.ﬂ
NXRG,C, o
tipad
N,VR,G,C,
W,E,B,T,C,J

tioad
W,R,B,T,C.X

Figure 10: Data flow of OutputEnhance

The fourth MapReduce job deals with a problem that one record from one
dataset can be matched with multiple records from the other dataset. We take only one

mapping and leave out all the rest.

4.5 OUR CUSTOM INPUT FORMAT - ELODUINPUTFORMAT

Using the result of 4.4 we make a custom input format to read the two datasets.
This will make processing on those datasets more accurate, since whenever the program
reads in R.a it will know that it's actually S.a although the two might be different. With the
default TextinputFormat the program will think that they are two different records, and

processing can give inaccurate results.

21

4.6 AGGREGATION

First we try joining the datasets using the default input format and our custom
input format. Then we try grouping the records by target field and count the number of
records grouped, also with the two input formats. Our custom input format works fine as
the program doesn’t miss records even when the same records appear differently in the

fwo datasetfs.

22

5. EVALUATION

5.1 DATASET

Dataset is the first stage of this project and it is also one of the most troublesome
part of our program. It is a tool for testing our project and guarantee that our solution
can run and process fine with large data. This project will use two big datasets that was

created from real datasets DBLP and CiteseerX.

5.1.1 DATASET 1

[] dblp.txt %

Interactive Support for Non-Programmers: The Relational and Network Approaches. Michael Ley 1974 IBM Research Report, San
Jose, California

Common Subexpression Identification in General Algebraic Systems. Patrick A. V. Hall 1974 Technical Rep. UKSC 0060, IBM
United Kingdom Scientific Centre

The Capabilities of Relational Database Management Systems. E. F. Codd 1981 IBM Research Report, San Jose, California
Principles of Distributed Object Database Languages. Markus Tresch 1996 technical Report 248, ETH Z

Relational Completeness of Data Base Sublanguages. E. F. Codd 1972 In: R. Rustin (ed.): Database Systems: 65-98,
Prentice Hall and IBM Research Report RJ 987, San Jose, California

Further Normalization of the Data Base Relational Model. E. F. Codd 1971 IBM Research Report, San Jose, California
Data Base Sublanguage Founded on the Relational Calculus. E. F. Codd 1971 IBM Research Report, San Jose, California
Derivability, Redundancy and Consistency of Relations Stored in Large Data Banks. E. F. Codd 1969 IBM Research Report,
San Jose, California

Normalized Data Base Structure: A Brief Tutorial. E. F. Codd 1971 IBM Research Report, San Jose, California

Figure 11: Picture of Dataset 1

Dataset 1 is created base on a real big dataset called DBLP. The original dataset
is very big with the size of 1.64 GB and in XML format. It is foo big and have many
unnecessary parts. Therefore, we write a Java program that converts XML format to
normal text format, removes junk parts and makes dataset fit better with our program.
After processing, the final dataset 1 is only 149 MB with more than 1 million records. The

format of dataset 1 is showed on picture above.

23

5.1.2 DATASET 2

citeseerx.txt %

Analysis of Human Behavior to a Communication Robot in an Open Field 2008-04-02 C/o Dr. K. Hiraki

Why Teach? A case study investigating the decision to train to teach ICT 2008-04-02 Michael Hammond

FOR THE COPYRIGHT NOTICE 2008-04-02 Robert C. Leif

One right does make a wrong 2006 Thomas Davie

Low-Memory Low-Complexity Inverse Dithering 2008-04-p2 Shiufun Cheung

1. A Topological Framework for Modeling Diagrammatic Reasoning Tasks 2008-04-02 Shiufun Cheung

Threshold Phenomena and Influence -- with some perspectives from Mathematics, . . . 2004 Gil Kalai

A scalable distributed multimedia directory I.W.Marshall BT Labs 2008-04-02 Martlesham Heath

Performance Analysis of the DAR(1)/D/c priority queue under Partial Buffer Sharing Policy 2008-04-02 Gang Uk Hwang A

Figure 12: Picture of Dataset 2

Dataset 2 is created base on a real big dataset called CiteseerX. The original
dataset is large with the size of 7.6 GB and also in XML format. It is bigger than original
DBLP dataset seven times and it has many unclear characters. Therefore, we only take
one of the clearest parts on original CiteseerX dataset to process. We wrote a Java
program that converts XML format to normal text format, removes junk parts and makes

dataset fit better with our program. After processing, the size of final dataset 2is 141 MB.

5.2 PERFORMANCE

After working and testing with two sample datasets (Dataset 1: 149 MB, Dataset 2:
141 MB) that we created base on DBLP and CiteSeerX above, we have achieved some

very good results and this has shown the feasibility of our project.

24

5.2.1 SIMILARITY-JOIN TEST

Result of similarity-join using supporting fields is shown in the image below:

Map-Reduce Framework

Reduce input groups 0 0 533,180
Map output materialized bytes 0 0 550,746,198
Combine output records 0 0 0
Map input records 0 0 1,429,391
Reduce shuffle bytes 0 0 550,746,198
Physical memory (bytes) snapshot 0 01,178,456,064
Reduce output records 0 0 3,937
Spilled Records 0 0 12,302,598
Map output bytes 0 0 540,786,888
Total committed heap usage (bytes) (0] 0 976,736,256
CPU time spent (ms) 0 0 115,580
Virtual memory (bytes) snapshot 0 02,104,082,432
SPLIT_RAW_BYTES 1,044 0 1,044
Map output records (0] 0 4,186,938
Combine input records 0 0 0
Reduce input records o] 0 4,186,938

Figure 13: Similarity-Join result statistics

There are more than 1.4 million records for input. The reduce output records are

the results of the Similarity-Join job. The table shows 3937 records and the job took about

115,580 milliseconds (almost 2 minutes) to run through and process two big datasets.

The picture below will show one part of the result:

25

growth

New results in equal sums of like powers. tioad New results in equal sum
s of like powers '
Approximation of continuous time stochastic processes by a local linearization
ethod. tioad Approximation of continuous time stochastic processes by a local
linearization method _
A literature review and classification of electronic commerce research. tioad A
literature review and classification of electronic commerce research
Considerate home notification systems: A user study of acceptability of notifica
tions in a living-room laboratory. tioad Considerate home notification sy
stems: A user study of acceptability of notifications in a living-room laborator
y .
Lossy source compression using low-density generator matrix codes: analysis and
algorithms. tioad Lossy source compression using low-density generator mat
rix codes: Analysis and algorithms

Using Wide Table to manage web data: a survey. tioad Using Wide Table to mana
ge web data: a survey

Figure 14: Sample of similarity join result

The result is fairly accurate. After doing the similarity join we will process out result
through a filter to deal with duplicate records. The enhanced result after processing
through filter is about 950 records. After testing the join part, we started to test the

ELODUInputFormat against the TextinputFormat.

26

5.2.2 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN JOIN

| Reduce input groups | 0 ‘ 0 | 1,380,818
| Map output materialized bytes | 0 \ 0 | 165,056,963
|C0mbine output records | 0 ‘ 0 | 0
|Map input records | 0 ‘ 0 | 1,429,391
|Reduce shuffle bytes | 0 \ 0 | 165,056,963
|Physica| memory (bytes) snapshot | 0 \ 0 |1,027,444,736
| Reduce output records | 0 ‘ 0 | 12,657
|Spilled Records | 0 \ 0 | 4,015,809
| Map output bytes | 0 \ 0 | 162,144,989
|T0ta| committed heap usage (bytes) | 0 ‘ 0 | 894,959,616
|CPU time spent (ms) | 0 ‘ 0 | 205,730
| Virtual memory (bytes) snapshot | of 01,972,404,224
| SPLIT_RAW_BYTES | 1,083 | of 1,083
| Map output records | 0 \ 0 | 1,427,651
|C0mbine input records | 0 ’ 0 | 0
| Reduce input records | 0 ‘ 0 | 1,427,651
Figure 15: ELODUInput format - Join result statistics
| Reduce input groups | 0 ‘ 0 ‘ 1,381,615
|Map output materialized bytes | 0 | 0 \ 165,056,046
| Combine output records | 0 ‘ 0 ‘ 0
|Map input records | 0 ‘ 0 ‘ 1,429,391
| Reduce shuffle bytes | o 0| 165,056,046
|Physical memory (bytes) snapshot | 0 | 0 ‘1,056,514,048
| Reduce output records | 0 I 0 ‘ 11,933
|Spilled Records | 0 ‘ 0 ‘ 4,015,809
|Map output bytes | 0 ‘ 0 ‘ 162,144,072
|T0ta| committed heap usage (bytes) | 0 | 0| 937,164,800
|cpu time spent (ms) | 0 | 0 \ 26,160
|Virtua| memory (bytes) snapshot | 0 ‘ 0 ‘1,972,576,256
|SPLIT_RAW_BYTES | 1,081 | o 1,081
| Map output records | 0 ‘ 0 ‘ 1,427,651
|Combine input records | 0 I 0 ‘ 0
|Reduce input records | 0 ‘ 0 ‘ 1,427,651

Figure 16: TextinputFormat - Join result statistics

27

The result of ELODUInputFormat shows that the join takes about 295 seconds to
process, higher than the join using TextinputFormat which takes only 26 seconds to finish.
This because the ELODU input format needs to check the Similarity-Join result to find the
matching formats for all records in the citeseerx data file. However the result of shows
that the ELODUlnputFormat finds more records matching than the default
TextinputFormat since the program is capable of detecting matches even when the

target field is not exactly the same.

5.2.3 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN AGGREGATION

‘ Reduce input groups ’ 0 | 0 ‘ 1,380,818
‘ Map output materialized bytes ‘ 0 | 0 ‘ 165,056,963
‘Combine output records ‘ 0 | 0 ‘ 0
‘Map input records \ 0 | 0 \ 1,429,391
‘ Reduce shuffle bytes] 0 | 0 ‘ 165,056,963
‘Physical memory (bytes) snapshot ‘ 0 | 0 ‘1,003,819,008
‘ Reduce output records ‘ 0 | 0 ‘ 1,380,818
‘Spilled Records] 0 | 0 \ 4,015,809
‘ Map output bytes ‘ 0 | 0 ‘ 162,144,989
‘Total committed heap usage (bytes) \ 0 | 0 \ 871,890,944
\cpu time spent (ms) \ 0 | 0 \ 296,490
‘Virtual memory (bytes) snapshot] 0 | 0 ‘1,976,463,360
| SPLIT_RAW_BYTES | 1,123 || 0| 1,123
‘ Map output records ‘ 0 | 0 ‘ 1,427,651
‘Combine input records ’ 0 | 0 ‘ 0
‘Reduce input records \ 0 | 0 \ 1,427,651

Figure 17: ELODUInputformat - Aggregation result statistics

28

’Reduce input groups ‘ 0 | 0 ‘ 1,381,615
‘ Map output materialized bytes ‘ 0 | 0 ‘ 165,056,046
‘Combine output records ‘ 0 | 0 ‘ 0
]Map input records ‘ 0 | 0 ‘ 1,429,391
‘ Reduce shuffle bytes ‘ 0 | 0 ‘ 165,056,046
| Physical memory (bytes) snapshot | 0| 0]1,045.430,272
’Reduce output records ‘ 0 | 0 ‘ 1,381,615
‘Spilled Records ‘ 0 | 0 ‘ 4,015,809
| Map output bytes | 0| 0| 162,144,072
‘Total committed heap usage (bytes) ‘ 0 | 0 ‘ 895,221,760
]cpu time spent (ms) ‘ 0 | 0] 27,360
| Virtual memory (bytes) snapshot | 0| 0/1,972,736,000
| SPLIT_RAW_BYTES | 1121 | 0| 1,121
]Map output records ‘ 0 | 0] 1,427,651
‘Combine input records ‘ 0 | 0 ‘ 0
‘ Reduce input records ‘ 0 | 0 ‘ 1,427,651

Figure 18: Textinput format - Aggregation result statistics

With the Aggregation use case, the CPU fime to finish the job is quite the same with the

Join. However the program that uses ELODUInputFormat output less records than the one using

TextinputFormat. This is because ELODUInputFormat detected more matchings, so more records

was grouped together.

29

6. CONCLUSION

This project provides a new way to handle the situation of processing data with
redundancy and bad formats which happens so oftenly. Our method can make
processing these kinds of data more accurate. Overall, we accomplished all objectives
for this project. However, for applying to reality the project needs much improvement
especially on the execution speed. We believe that in the very near future, out project

will be a powerful method for Entity Resolution in Big Data.

30

7. RELATED WORKS

7.1 EFFICIENT PARALLEL SET-SIMILARITY JOINS USING MAPREDUCE - UNIVERSITY
OF CALIFORNIA, IRVINE

ldentifying similar pair of records is applied in many applications and our project is
one of them. “Efficient Parallel Set-Similarity Joins Using MapReduce” paper is written by
Rares Vernica, Michael J. Carey and Chen Li — Department of Computer Science in
University of California, Irvine. This paper provides some effective algorithms to dealing
with end-to-end set-similarity-join problems through 3-stage approach, and our Similarity-

Join job is based on the technique presented in this paper.

Stage 1: Dividing the data into tokens and order them base on their number of
occurences in the datasets. The next stage will use the result of token ordering to
compute the similarity. Our Similarity-Join job used the Basic Token Ordering method,
which consists of two main parts. The first part computes the tokens’ frequencies and the

second part sorts fokens by their frequencies.

RID a b Key valug Key Value Key Value Key valug Key Value Tgk.o.:«v RID a b Key Value Key Value Token
1{ABC},., Afl Bl ? B2 2{8 16 G 1{ABC] .. Afl Bi1l G
2iDEF}.. - 811 Bili=|2|«iDi2 -- 2i0D 2|DEF| .. - Bil Bil

e 2iA A A

g s = 2| iz2is B 9 8
10{CF {.. ci2ills] iairi (&) iai2 2iAll|S 2iD D 10{CF | ci2ills All 2] |0
11 {ECD}... -Flba-Al-g-r 4--3r>,-2 Ei=|8|~iE 11 {ECD| .. -rlu,-Al-g--s
wl wl [4 8 [= w2 "

~—/

g = 8] |3ic c & c
20{FG {.. Fl2 ci1l z ci3 3ic 20{FG | .. Fiz cii
21 {BAF,., ‘ Gi1 ci2i=[2|=iEi2 -» 2E aiF F 21 {|BAF| .., - Gi1 ci2 F

[a)
Phase 1 Phase 2 One Phase
Compute token frequencies Sort tokens by fregency Compute token ordering
(a) Basic Token Ordering (BTO) (b) One-Phase Token Ordering

(OPTO)

Figure 16: Data flow of Stage One [2]

31

Stage 2: Taking two datasets as input, assign record ID for each record from two datasets,

identify the join aftribute value of each record. Using the result from Token Ordering part to

identify, pair the RIDs and the join attributes from two datasets. The pairs that are in common will

go to the same reducer. The reducer will compute the similarity of the values (join aftribute) and

return RIDs of records that are similar. Our Project used the idea but instead of producing records

IDs, we produced the target field pairs that passed the matching test, because our purpose is to

use this type of result to make a custom input format.

RID a b] Value Key Value RID1 RID2 Sim, RID a b Key Value Key Value

1iaBC ..} A Al1ABC B! 1ABC z 112105 1iaBC]. .| & X{1ABC Y 1ABC

2{DEF| . — B{1LABC B{21,BAFi~[2|~ 2{DEF|.. ~ Yi1LABC Y 21,BAF |~
[a)

SIb; 9)- 3 =k 9)-

100{CF | A cl10CF £ AlilascC z 1i21:0.5 10iCF | A z!10CF £ X! 1ABC

11 |[ECD] ... — D 1LECD pg|=| A 2LBAF ~| &~ 21105 11 {ECD|.. - Z|11ECD g |~ X | 21BAF =
[a)

: & ; g

20 FG || = G| 20FG “lciiocF E 21105 20iFG | ..|| = Y| 20FG “lzj1ocCF

21/ BAF] .. ~ Ai21,BAF Ei2DEF |=[8]-|..].] .. 21lBAF].. + X{21,BAF Z 2DEF |-
o

(a) Basic Kernel (BK) using individual tokens for rout-

ing

Figure 17: Data flow of Stage Two [2]

routing

i

i

2onpay
i

RID1 RID2 Sim.

1i21:0.5

121
211

. 99
i

2 {11 ;0.5

(b) PPJoin+ Kernel (PK) using grouped tokens for

Stage 3: Using the results from the second stage (pairs of RIDs) to find and build

the actual pairs of records that are similar from the original datasets.

RID1 RID2 Sim.
f

i 2j11i{05
i i
i ." i Entire Record
RID a b E‘, Key Value, . Key Value
1{ABCI..[| A2 1.21 | 1.aBCh.05 2,11 | 2.D EF.....0.5
2| DEF| ... — 2,11 2,.DEF....05 2,11 11,ECD..... 0.5
=S . -
10{CcF .| A 211} 11L,ECD...05{[|E| {1.21]{21.8AF..05
11 { ECD} ... — ‘M= |-i1.2111.a8C...,0.5
~
H .
20(FG .. 1,21} 21,BAF.....0.5
21 {BAF ;.. »

RID1 al bl Sim, RID2 a2 b2
2! DEF 0511 {ECD

(aonpau) (a:npau) [a)npau]

ABC

0.5

21

BAF

Figure 18: Data flow of Stage Three using One-Phase Record Join [2]

32

APPENDIX

APPENDIX A: COUNTING FREQUENCY JAVA CODE

Map function:

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

String whole = value.toString();
string[] line = whole.split("\t",3);
StringTokenizer itr = new StringTokenizer(line[0]);
while (itr.hasMoreTokens()) {
String ntk = itr.nextToken();
word.set(ntk);
context.write(word, one);

1
1

Reduce function:

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

1

result.set(sum);
context.write(key, result);

APPENDIX B: ORDERING TOKENS JAVA CODE

Map function:

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String whole = value.toString();
String[] line = whole.split("\t", 2);

freq.set(Integer.parseInt(line[1]));
word.set(line[0]);
context.write(freq, word);

1

33

Reduce function:

publichvoid reduce(IntWritable key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {

for (Text value : values) {
context.write(null, value);

¥
¥

APPENDIX C: SIMILARITY JOIN JAVA CODE

Map function:
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String whole = value.toString().trim();
String[] line = whole.split("\t");
TreeMap<Integer, String> tokenMap = new TreeMap<Integer, String=();

StringTokenizer itr = new StringTokenizer(line[8]);

while (itr.hasMoreTokens()) {
String ntk = itr.nextToken().trim();
if (tokensTablel.containsKey(ntk)) {
if (!ntk.equals("\"")) {
tokenMap.put(tokensTablel.get(ntk), ntk);
}

}

if (!tokenMap.isEmpty()) {

String pr = tokenMap.remove(tokenMap.firstKey());

String tup = fileTagl+whole;

context.write(new Text(pr), new Text(tup)); }
if (!tokenMap.isEmpty()) {

String pr = tokenMap.remove(tokenMap.firstKey());

String tup = fileTagl+whole;

context.write(new Text(pr), new Text(tup)); }
if (!tokenMap.isEmpty()) {

String pr = tokenMap.remove(tokenMap.firstKey());

String tup = fileTagl+whole;

context.write(new Text(pr), new Text(tup)); }

Reduce function:

public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {
List<String= fromDS1 = new ArraylList<String=();
List<String= fromDS2 = new ArraylList<String=();
Configuration conf = context.getConfiguration();

int al = Integer.parselnt(conf.get("targetl"));
int bl = Integer.parselInt(conf.get("supportonel®));
int a2 = Integer.parselnt(conf.get("target2"));
int b2 = Integer.parselnt(conf.get("supportonez"));

for (Text value : values) {
String[] whole = value.toString().trim().split("\\~");
if (whole[0].equalsIgnoreCase("DS1")) {
fromDsl.add(whole[1]);

}
if (whole[0].equalsIgnoreCase("Ds2")) {
fromDs2.add(whole[1]);
}
H

if (fromDS2.size() = 0){
for (int a = 0; a < fromDSl.size(); a++) {
for (int b = ©; b < fromDS2.size(); b++) {
if (isJoin(fromDSl.get(a), al, bl, fromDS2.get(b), a2, b2)) {

String[] one = fromDSl.get(a).split("\t");

String[] two = fromDS2.get(b).split("\t");

context.write(new Text(one[al - 1]+" tioad "), new Text(two[a2z - 1]));
context.progress();

APPENDIX D: ENHANCE RESULT JAVA CODE

Map function:
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String whole = value.toString();
String[] line = whole.split(" tioad ");

if (line.length == 2) {
context.write(new Text(line[@]), new Text(line[l]));
}

35

Reduce function:

public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {
String whole = key.toString();

Configuration conf = context.getConfiguration();
String aString = "none";

for (Text value : values) {
String val = value.toString();
if (!(whole.equalsIgnoreCase(val))) {
astring = val;
}

}
if (aString.equalsIgnoreCase("none")) {

}

else {
context.write(new Text(whole+" separatorstring "), new Text(aString));

}

APPENDIX E: JOINTEST JAVA CODE

Map function:

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

Text keytext = new Text();

Text valuetext = new Text();

String whole = value.toString();

String[] line = whole.split("\t",2);

if (line.length == 2) {
keytext.set(line[@].trim());
valuetext.set(line[1]);
context.write(keytext, valuetext);

36

Reduce function:

public void reduce(Text key, Iterable<Text> values,

Context context
) throws IOException, InterruptedException {

Text result = new Text();

int i = 0;

String sum = "";

for (Text val : values) {
sum += "|\t"+val.toString();

1++;
}
if (i >= 2) {
result.set(sum);
context.write(key, result);
}

}

APPENDIX F: CUSTOM INPUT FORMAT JAVA CODE

ELODUInputFormat class:
public class ELODUInputFormat extends FileInputFormat<LongWritable, Text= {

@override
public RecordReader<LongWritable, Texts>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
return new CustomRecordReader();

}

@verride|

protected boolean isSplitable(JobContext context, Path file) {
CompressionCodec codec =

new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
if (null == codec) {
return true;

}

return codec instanceof SplittableCompressionCodec;

}
}

APPENDIX G: CUSTOM RECORD READER JAVA CODE

37

aetCurrenfValuell method:
public Text getCurrentValue() throws IOException, FileNotFoundException{
String[] whole = value.toString().split("\t",2);
if (whole.length == 2)

{
BufferedReader brl = new BufferedReader(new FileReader(urisl[@®].toString()));
String linel = brl.readlLine();
while (linel != null) {
String[] lineSplit = linel.split(" separatorstring ");
if ((whole[targetField - 1].trim()).equalsIgnoreCase(lineSplit[1].trim()))
System.out.println("0ld: "+value.toString()+"...");
String tup = lineSplit[@]+"\t"+whole[1];
value = new Text(tup);
System.out.println("New: "+value.toString()+"...");
break;
}
linel = brl.readLine();
}
brl.close();
}
return value;

}

38

CITATIONS

[1] Apache™. (2014). Welcome to The Apache™ Hadoop®!. The Apache Software
Foundation. https://hadoop.apache.org/index.pdf

[2] Vernica, R. Carey, M. Li, C. (2010). Efficient Parallel Set-Similarity Joins Using
MapReduce. University of California, Irvine. Department of Computer Science.

[3] http://dblp.uni-trier.de/xml/dblp.xml.gz

[4] http://csxstatic.ist.psu.edu/about

39

