

ELODU: ENTITY RESOLUTION IN BIG
DATA

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in
partial fulfillment of the requirements for the Degree of Bachelor of Computer Science

Submitted by:

Duc M. Pham

Thanh Long X. Vu

December 18, 2015

APPROVED:

Advisor: Professor Mohamed Y. Eltabakh

 2

1. ABSTRACT

 Today, with the rapid development of technology, human entered a new era of

Information Technology. Computer appears in every aspects of life. Data is being

transfer from paper to digital. Therefore, the demand of data storage is increasing

quickly. Human need a new technique to handle Big Data, that’s why Hadoop was

born. “The Apache™ Hadoop® project develops open-source software for reliable,

scalable, distributed computing. The Apache Hadoop software library is a framework

that allows for the distributed processing of large data sets across clusters of computers

using simple programming models” – Apache [1]. However, the conflicts and duplicates

of data is still happen in many cases. In this report, we will illustrate a new technique for

entity resolution in big data. This technique is based on Hadoop, using one join target

field along with the help of supporting fields, and a method for similarity join from

University of California, Irvine called “Efficient Parallel Set-Similarity Joins Using

MapReduce”. [2]

 3

TABLE OF CONTENTS

1. Abstract ... 2

2. Introduction .. 5

2.1 Overview ... 5

2.2 Goals and Objectives .. 6

2.3 Hadoop ... 7

3. System Overview .. 10

3.1 Work flow ... 10

3.2 Use Cases Work Flow .. 11

3.3 Problems, Limitation And Solutions ... 12

3.4 Entity Resolution Configuration ... 14

3.4.1 Target Field ... 15

3.4.2 Supporting Fields .. 15

3.3.3 Matching Type ... 15

3.3.4 Threshold ... 16

4. System Implementation ... 17

4.1 Token Ordering - Part 1 - Counting Frequency ... 17

4.2 Token Ordering - Part 2 – Order Token ... 18

4.3 Join Part 1 – Join Two Datasets ... 19

4.4 Join Part 2 – Deal with multiple aitrubutes and Discard exact match 21

4.5 Custom Input Format ... 21

4.6 Aggregation .. 22

5. Evaluation ... 23

5.1 Dataset .. 23

5.1.1 Dataset 1 .. 23

5.1.2 Dataset 2 .. 24

5.2 Performance ... 24

5.2.1 ELODU Input format (CUStom) Vs. Standard Input Format ... 27

6. Conclusion .. 30

7. Related Works ... 31

7.1 Efficient Parallel Set-Similarity Joins Using MapReduce – University of California, Irvine 31

 4

Appendix .. 33

Appendix A: Counting Frequency Java Code .. 33

Appendix B: Ordering Tokens Java Code ... 33

Appendix C: Similarity Join Java Code ... 34

Appendix D: Enhance Result Java Code .. 35

Appendix E: JoinTest Java Code .. 36

AppenDix F: Custom Input Format Java Code .. 37

AppenDix G: Custom Record Reader Java Code .. 37

Citations .. 39

 5

2. INTRODUCTION

2.1 OVERVIEW

 Big Data is becoming a persistent problem in the field of Computer

Science. With the rapid increase in demand of Data Storage everywhere, traditional

data processing methods are starting to look inefficient. They are inadequate to handle

Big Data. Data is expanding so fast and the amount of data increases rapidly means

controlling is becoming harder. With old ways of handling data, operations on it cannot

be done so quickly anymore. Every second that passes, there are billions of megabytes

of data transferred through the Internet. Moreover, data formats are not standardized.

Data formats differ from place to place. This leads to data conflict and duplications. For

example, in Vietnam names are stored as Last Name first, then Middle Name and finally

First Name, but many other countries in the world use different formats (for example First

Name, Middle Name and then Last Name). Therefore, we need a new technique to

handle this problem. Hadoop is created to help people storing and processing Big Data.

This report will present a new technique based on Hadoop to process large datasets with

the same entities but stored in different formats. We developed a custom input format to

automatically correct the wrongly formatted attributes into the standard format. We

tested our code by comparing the results given when the default TextInputFormat is

used and when our CustomInputFormat is used. In the next part, we will talk about Goals

and Objectives of this project.

 6

 2.2 GOALS AND OBJECTIVES

 This project has six goals:

1. Creating Configuration File that gives information about the target field,

supporting fields, matching type of these fields and the threshold for similarity join.

2. Writing java program to extract the data for testing purpose from two real big

datasets: DBLP and CiteseerX.

3. Implementing “Efficient Parallel Set-Similarity Joins Using MapReduce” - University

of California, Irvine for similarity joining method.

4. Enhancing our join results by removing duplications.

5. Developing a custom Input Format using the output we acquired to automatically

format the wrong attributes.

6. Testing our input format by joining and doing an aggregation to group the

records by target field and count the number of records grouped

And the most important goal is the 5th goal. In the end we want to create a

new input format to replace the default TextInputFormat, which will be able to

detect wrongly formatted attributes and fix them.

 7

2.3 HADOOP

 Hadoop is an open source software project from Apache that “allows for

the distributed processing of large data sets across clusters of computers using simple

programming models. It is designed to scale up from single servers to thousands of

machines, each offering local computation and storage. Rather than rely on hardware

to deliver high-availability, the library itself is designed to detect and handle failures at

the application layer, so delivering a highly-available service on top of a cluster of

computers, each of which may be prone to failures” [1]

 Apache™ Hadoop® system consists of 4 modules:

1. The first part is Hadoop Common: “The common utilities that support the other

Hadoop modules” [1]

2. The second part is Hadoop Distributed System: “A distributed file system that

provides high-throughput access to application data” [1]

3. The third part is Hadoop YARN: “A framework for job scheduling and cluster

resource management” [1]

4. The final part is Hadoop MapReduce: “A YARN-based system for parallel

processing of large data sets” [1]

The graphs below will show the Architecture of Apache™ Hadoop®:

 8

Figure 1: Hadoop Architecture

 Hadoop uses master-slave, shared-nothing architecture. It has a Master node as a

single node and many slave nodes. Each node will have main layers. The first layer is

MapReduce functions layer. This layer will handle the methods used for processing data.

MapReduce tasks will have JobTracker to manage nodes in the cluster. If the JobTracker

is failed, all the jobs will be halted. The second main layer is the HDFS layer. HDFS layer

helps storing large volumes of data. Data storage in HDFS is scalable and reliable.

 The graph below illustrates how Apache™ Hadoop® Map-Reduce executes:

 9

Figure 2: Color Count example

Data storage in HDFS will be divided into smaller chunks. They are usually

separated by size. These data chunks will randomly go to Mappers, and from them The

Mappers produce key and value pairs. The key-value pairs are then shuffled and sorted

based on their keys. Data is then passed to reducers such that the pairs that have the

same key will go to the same reducers. Reducers then combine, reduce data or do any

kind of processing on it before the final result is given.

 10

3. SYSTEM OVERVIEW

 3.1 WORK FLOW

Figure 3: Work Flow of Project

 Overall, to build our custom input format, we first use four main Map-Reduce jobs:

Counting Frequency, Ordering Tokens, Similarity-Join and finally Similarity-Join Post

Processing. Each of these jobs is a separate java class with different mappers and

reducers. The first job (Counting Frequency) takes a data file stored in HDFS as input. It

finds the join field in each record in the dataset, divides it into tokens, counts the

frequency of each token and writes the tokens along with their frequency counts to

output. The second job (Order Tokens) swaps key and value position and sorts the

 11

tokens. The third job (Similarity-Join) takes the two datasets and the token ordering as

input. It uses the order of tokens to find the candidate records, then checks the

candidate records to find the records that do join together. The fourth job (Similarity-Join

Post Processing) filters the output from the previous job to get cleaner result. The return

values of post processing job will then be used to make the custom input format.

 3.2 USE CASES WORK FLOW

Figure 4: Diagram of Use Cases Work Flow

In this project, we will write two program with different use cases for testing and

evaluation. The first use case is joining two datasets, and the second use case is doing

aggregation, in which records are grouped by the target field and the records grouped

 12

together are counted. Both use cases will be processed once with the default Text Input

Format and once with our custom ELODU Input Format to evaluate the efficiency and

accuracy between the two. The enhanced entity resolution output is the final result of

this project.

 3.3 PROBLEMS, LIMITATION AND SOLUTIONS

 Doing this project, we had to face many problems and limitations. The first

challenge that we had to face is building the two datasets. At first we wanted to write a

java program to build two big sample datasets by randomizing strings. This idea is

feasible, but unreal and meaningless data did not seem very helpful in test cases.

Therefore we decided to use real datasets and we found the datasets that were used in

the “Efficient Parallel Set-Similarity Joins Using MapReduce” paper [2]. These datasets are

called DBLP [3] and CiteseerX [4]. They consists of publications along with their author

names, publish years, abstracts, links and so on. The DBLP dataset is 1.67 GB large and

the CiteseerX dataset is 7.6 GB large. They are both in XML format, therefore we needed

to write java programs to remove the tags and extract the useful parts inside the files.

The DBLP data file is not hard to convert since the format is clear for the most part.

However, the CiteseerX data file has many records with faulty format, so to serve our

purpose the best we divided the file and extracted the parts that were in good form.

 The second challenge for us is studying Hadoop. Since we did not know about

Hadoop before starting the project, we needed quite some effort to research and study

 13

to understand how it works and to be able to write Map-Reduce jobs. We went through

sample codes both from the Internet and inside the system, and since there are codes

that use different versions of Hadoop and different Map-Reduce APIs everywhere,

sometimes we found it a bit confusing choosing the correct path to follow.

The third problem that we faced was running out of disk space. The data files are

quite large and we had to write a lot of draft lines to console when debugging the

programs. This caused the Map-Reduce Administrator site to freeze or Terminal shell

exploded occasionally.

 14

3.4 ENTITY RESOLUTION CONFIGURATION

 Figure 6: Configuration file structure

The image above shows the configuration file that we used throughout this project. Each

field is stored along with its column number for easy access and manipulation of data. The

matching type section specifies the type of matching for each field, for example the supporting

field number 1’s matching type is exact so anything not exactly the same is considered not a

match.

 15

3.4.1 TARGET FIELD

 Target field is the first part in configuration file. The target field is to point out the

field that the datasets will be joined on, and therefore is the field that is the most

important and needed the most processing. The test datasets that we used consists of

records about publications. There are many fields inside one record such as author, title,

publisher and so on. The target field we use for testing is the article name. As stated

above, the “field” attribute gives information about the target field’s location (Column

number).

3.4.2 SUPPORTING FIELDS

 Supporting fields is the second part of the configuration file. In this project we

have two supporting fields: the publish year and the author name. These fields help us

identify the entities with better accuracy because of the additional checking done on

them besides the target field check. The matching type for supporting field can be

exact match or similarity match.

3.3.3 MATCHING TYPE

Matching type is the third part of configuration file. It enables our program to

identify which kind of matching will be suitable for which field. This project will focus on

two kinds of matching: similarity match and exact match. Exact match means the

 16

values for that field have to be exactly the same to match, while similarity match means

the values for that field just need to be similar to a specific degree.

3.3.4 THRESHOLD

Threshold is the limit value that is used for similar match. The similarity of two values

will be computed and compared against this threshold, and if it’s larger than or equal to

the threshold, the two values will be considered the same.

 17

4. SYSTEM IMPLEMENTATION

 4.1 TOKEN ORDERING - PART 1 - COUNTING FREQUENCY

 Figure 7: Data flow of token ordering part 1

The first MapReduce job counts the frequencies of each word that appears in the

target field of the smaller dataset’s records. We take the smaller dataset and the

configuration file as input for the map phase. Using the information of the target field in

the configuration file, the mappers extract only that field in each record, and separate it

into single words (tokens). Each token will be a key, and the value for each key will be

one. That way, all the occurrences of a word will be sent to the same reducer because

 18

key-value pairs are grouped by their keys before they are passed to the reduce phase.

The reducers then add all the values to find the frequency of each token and write the

result to the output file.

 4.2 TOKEN ORDERING - PART 2 – ORDER TOKEN

 Figure 8: Data flow of token ordering part 2

The second MapReduce job sorts the tokens based on their frequencies. The

mappers swap the key-value pairs received from the first job, so that the keys will be the

frequency of the words and the values will be the words themselves. We use a single

reducer for this job, because when the key-value pairs are passed to the reducer they

will already be sorted on the frequency. The reducer then simply leaves out the

frequency and outputs the words in ascending order of their counts.

 19

 4.3 SIMILARITY-JOIN

The first requirement for the join is the Configuration file. Configuration file stores

information about the join target field, the supporting fields, the matching types for each

field and the thresholds to use when the matching type is Similar Match. Moreover, it also

provides the location for each field, which makes accessing specific parts inside the

data so much easier. Another essential element of the join is the actual datasets. This

project uses two big datasets that was generated from two real datasets (DBLP dataset

[3] and CiteseerX [4]). We created them by writing a java program to extract the text

data from XML format and remove unnecessary elements. With the data extracted, first

our program will use the configuration file to identify the target field, supporting fields

and matching type of each field. After that, the program will start checking the data

based on all the acquired information. The result of the join depends on whether the

fields match or not and how they match. The supporting fields give the join better

accuracy so the join result is more correct. Finally, the result will be process through a

filter to be cleaned up.

 20

Figure 9: Data flow of Similarity-Join

The third MapReduce job computes the similarity of the records and compare it

with the thresholds given in the configuration file to decide which record in one dataset

is actually which record in the other dataset. This job takes the tokens ordering, the two

actual datasets and the configuration file as input. The map phase generates (token,

record) pairs. Each record (as the value) will be tagged with the data file it comes from.

The token (as the key) taken from the target field of each record is selected so that it has

the smallest frequency count in the tokens ordering generated above. We take at most

3 tokens for each record. The reducers verify the records that have the same token using

the supporting fields and the thresholds, and write the verified target fields R.a and S.a to

the output file.

 21

 4.4 OUTPUT ENHANCEMENT

Figure 10: Data flow of OutputEnhance

The fourth MapReduce job deals with a problem that one record from one

dataset can be matched with multiple records from the other dataset. We take only one

mapping and leave out all the rest.

 4.5 OUR CUSTOM INPUT FORMAT - ELODUINPUTFORMAT

Using the result of 4.4 we make a custom input format to read the two datasets.

This will make processing on those datasets more accurate, since whenever the program

reads in R.a it will know that it’s actually S.a although the two might be different. With the

default TextInputFormat the program will think that they are two different records, and

processing can give inaccurate results.

 22

 4.6 AGGREGATION

First we try joining the datasets using the default input format and our custom

input format. Then we try grouping the records by target field and count the number of

records grouped, also with the two input formats. Our custom input format works fine as

the program doesn’t miss records even when the same records appear differently in the

two datasets.

 23

5. EVALUATION

5.1 DATASET

 Dataset is the first stage of this project and it is also one of the most troublesome

part of our program. It is a tool for testing our project and guarantee that our solution

can run and process fine with large data. This project will use two big datasets that was

created from real datasets DBLP and CiteseerX.

 5.1.1 DATASET 1

Figure 11: Picture of Dataset 1

 Dataset 1 is created base on a real big dataset called DBLP. The original dataset

is very big with the size of 1.64 GB and in XML format. It is too big and have many

unnecessary parts. Therefore, we write a Java program that converts XML format to

normal text format, removes junk parts and makes dataset fit better with our program.

After processing, the final dataset 1 is only 149 MB with more than 1 million records. The

format of dataset 1 is showed on picture above.

 24

 5.1.2 DATASET 2

Figure 12: Picture of Dataset 2

Dataset 2 is created base on a real big dataset called CiteseerX. The original

dataset is large with the size of 7.6 GB and also in XML format. It is bigger than original

DBLP dataset seven times and it has many unclear characters. Therefore, we only take

one of the clearest parts on original CiteseerX dataset to process. We wrote a Java

program that converts XML format to normal text format, removes junk parts and makes

dataset fit better with our program. After processing, the size of final dataset 2 is 141 MB.

 5.2 PERFORMANCE

 After working and testing with two sample datasets (Dataset 1: 149 MB, Dataset 2:

141 MB) that we created base on DBLP and CiteSeerX above, we have achieved some

very good results and this has shown the feasibility of our project.

 25

5.2.1 SIMILARITY-JOIN TEST

Result of similarity-join using supporting fields is shown in the image below:

Figure 13: Similarity-Join result statistics

There are more than 1.4 million records for input. The reduce output records are

the results of the Similarity-Join job. The table shows 3937 records and the job took about

115,580 milliseconds (almost 2 minutes) to run through and process two big datasets.

The picture below will show one part of the result:

 26

Figure 14: Sample of similarity join result

The result is fairly accurate. After doing the similarity join we will process out result

through a filter to deal with duplicate records. The enhanced result after processing

through filter is about 950 records. After testing the join part, we started to test the

ELODUInputFormat against the TextInputFormat.

 27

5.2.2 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN JOIN

Figure 15: ELODUInput format - Join result statistics

Figure 16: TextInputFormat - Join result statistics

 28

The result of ELODUInputFormat shows that the join takes about 295 seconds to

process, higher than the join using TextInputFormat which takes only 26 seconds to finish.

This because the ELODU input format needs to check the Similarity-Join result to find the

matching formats for all records in the citeseerx data file. However the result of shows

that the ELODUInputFormat finds more records matching than the default

TextInputFormat since the program is capable of detecting matches even when the

target field is not exactly the same.

5.2.3 ELODUINPUTFORMAT VS. TEXTINPUTFORMAT IN AGGREGATION

Figure 17: ELODUInputformat - Aggregation result statistics

 29

Figure 18: TextInput format - Aggregation result statistics

 With the Aggregation use case, the CPU time to finish the job is quite the same with the

Join. However the program that uses ELODUInputFormat output less records than the one using

TextInputFormat. This is because ELODUInputFormat detected more matchings, so more records

was grouped together.

 30

6. CONCLUSION

 This project provides a new way to handle the situation of processing data with

redundancy and bad formats which happens so oftenly. Our method can make

processing these kinds of data more accurate. Overall, we accomplished all objectives

for this project. However, for applying to reality the project needs much improvement

especially on the execution speed. We believe that in the very near future, out project

will be a powerful method for Entity Resolution in Big Data.

 31

7. RELATED WORKS

7.1 EFFICIENT PARALLEL SET-SIMILARITY JOINS USING MAPREDUCE – UNIVERSITY
OF CALIFORNIA, IRVINE

 Identifying similar pair of records is applied in many applications and our project is

one of them. “Efficient Parallel Set-Similarity Joins Using MapReduce” paper is written by

Rares Vernica, Michael J. Carey and Chen Li – Department of Computer Science in

University of California, Irvine. This paper provides some effective algorithms to dealing

with end-to-end set-similarity-join problems through 3-stage approach, and our Similarity-

Join job is based on the technique presented in this paper.

 Stage 1: Dividing the data into tokens and order them base on their number of

occurences in the datasets. The next stage will use the result of token ordering to

compute the similarity. Our Similarity-Join job used the Basic Token Ordering method,

which consists of two main parts. The first part computes the tokens’ frequencies and the

second part sorts tokens by their frequencies.

 Figure 16: Data flow of Stage One [2]

 32

 Stage 2: Taking two datasets as input, assign record ID for each record from two datasets,

identify the join attribute value of each record. Using the result from Token Ordering part to

identify, pair the RIDs and the join attributes from two datasets. The pairs that are in common will

go to the same reducer. The reducer will compute the similarity of the values (join attribute) and

return RIDs of records that are similar. Our Project used the idea but instead of producing records

IDs, we produced the target field pairs that passed the matching test, because our purpose is to

use this type of result to make a custom input format.

 Figure 17: Data flow of Stage Two [2]

 Stage 3: Using the results from the second stage (pairs of RIDs) to find and build

the actual pairs of records that are similar from the original datasets.

 Figure 18: Data flow of Stage Three using One-Phase Record Join [2]

 33

APPENDIX

APPENDIX A: COUNTING FREQUENCY JAVA CODE

Map function:

Reduce function:

APPENDIX B: ORDERING TOKENS JAVA CODE

Map function:

 34

Reduce function:

APPENDIX C: SIMILARITY JOIN JAVA CODE

Map function:

 35

Reduce function:

APPENDIX D: ENHANCE RESULT JAVA CODE

Map function:

 36

Reduce function:

APPENDIX E: JOINTEST JAVA CODE

Map function:

 37

Reduce function:

APPENDIX F: CUSTOM INPUT FORMAT JAVA CODE

ELODUInputFormat class:

APPENDIX G: CUSTOM RECORD READER JAVA CODE

 38

getCurrentValue() method:

 39

CITATIONS

[1] Apache™. (2014). Welcome to The Apache™ Hadoop®!. The Apache Software
Foundation. https://hadoop.apache.org/index.pdf

[2] Vernica, R. Carey, M. Li, C. (2010). Efficient Parallel Set-Similarity Joins Using
MapReduce. University of California, Irvine. Department of Computer Science.
http://flamingo.ics.uci.edu/pub/sigmod10-vernica.pdf

[3] http://dblp.uni-trier.de/xml/dblp.xml.gz

[4] http://csxstatic.ist.psu.edu/about

