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Abstract 

ASSISTments is a web-based intelligent tutoring system that can provide students with 

immediate feedback when they are doing math homework. Until now, ASSISTments required 

internet access in order to do nightly homework.  Without ASSISTments, students do their work 

on paper and are not told if they are correct or given help for wrong answers until the next 

morning at best. We’ve developed a component that supports “offline-mode”, enabling students 

without internet access at home to still receive immediate feedback on their responses. Students 

with laptops download their assignments at school, and then run ASSISTments at home in 

offline mode, utilizing the browser’s application cache and Web Storage API. To evaluate the 

benefit of having the offline feature, we ran a randomized controlled study that tests the effect of 

immediate feedback on student learning. Intuition would suggest that providing a student with 

tutoring and feedback immediately after they submit an answer would lead to better 

understanding of the material than having them wait until the next day.  The results of the study 

confirmed our hypothesis, and validated the need for “offline mode.” 
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1. Introduction 

With the use of technology in grade school education becoming more and more mainstream, 

educators are faced with the economic challenge of providing high-tech educational solutions 

that are available to all students.  ASSISTments is a web-based intelligent tutoring system that is 

free to use by anyone, provided that they have internet access.  As part of the Maine Learning 

Technology Initiative (MLTI), Maine’s department of education provided all 7
th

 and 8
th

 grade 

students and teachers with laptop computers for use at home and school.  We have developed a 

new component of the ASSISTments platform, called “offline mode”, that allows all students in 

the Maine laptop program to benefit from ASSISTments, even without home internet access. 

 ASSISTments(www.assistments.org) was developed in 2003 by Neil Heffernan.  It is a 

free service that has been developed and maintained since then by graduate students of Prof. 

Heffernan. The service has stayed free through grants by various organizations including the 

National Science Foundation and the Department of Education.  The site is used by about 2,500 

students each day, primarily middle school math students in Massachusetts. Our number of 

active users has approximately doubled every year for the last four years. “ASSISTments” as a 

word is a combination of “assistance” and “assessment”, blending the benefits to students with 

the data collection for teachers [14]. This research focuses on the “assistance” aspect of the 

system, and how the ASSISTments platform can improve student learning.  This assistance 

comes in three main forms. Immediate feedback tells the student whether or not they were 

correct after they enter an answer, hints can be requested giving the student extra information 

about solving the problem, or scaffolding will break the main problem into sub-steps giving the 



student a step-by-step approach to the problem.  The evaluation portion of my research focuses 

on the benefits of immediate feedback. 

 Maine’s one-to-one laptop program hopes to bring the benefits of educational technology 

to its middle school students and teachers.  We believe that ASSISTments will make a perfect 

complement to this program.  In 2009, Mendicino and Razzaq reported significant learning 

improvement in ASSISTments web-based homework when compared to traditional “paper and 

pencil” homework [12].  With evidence that computer based educational tools are effective, we 

set out to implement “offline mode,” so that all students in Maine would have access to 

ASSISTments for nightly homework even without home internet access.  The offline mode 

provides students with all of the features of regular ASSISTments, provided they can download 

their assignments at school. So we are making the claim that the immediate feedback provided 

by “offline-mode” leads to better learning, so therefore with ASSISTments and offline mode, we 

can benefit all students in the Maine one-to-one laptop program, regardless of internet access. 

  



2. Offline Tutor Design 

In order for us to study its effectiveness, we needed to actually implement the new 

ASSISTments client with support for “offline mode.”  Due to various issues with the existing 

client, and the general desire for a more extensible piece of software, we decided to develop an 

entirely new client-side application. We believe the investment of time in redesigning the client 

was worth it because of the future benefits of being able to make additions to a more stable and 

well-architected system[16]. 

For the new client-side component, or the “Offline Tutor” as it became referred to in 

development, we decided to use the Google Web Toolkit (GWT). GWT is a toolkit that allows 

for development using Java source code that compiles into optimized JavaScript.  It allows us to 

do the vast majority of our development in Java, which is helpful because we find that generally 

new developers joining the ASSISTments team are more comfortable using Java than JavaScript. 

GWT also provides automatic cross-browser support, so we don’t need to worry about the 

frustrating differences between web browsers.  Lastly, it provides easy-to-use abstractions for 

some key HTML5 features which make “offline mode” possible.  The two essential features 

being the Application Cache, which makes our JavaScript client available offline, and persistent 

Local Storage, which allows us to store information about a student’s progress in the web 

browser until it can be uploaded to the ASSISTments servers. 

2.1 The Persistence Manager 



At the core of our new client’s architecture is the abstraction we refer to as the Persistence 

Manager. It is a component that handles all transactions involving persistent entities. These 

include content objects like Problems and Problem Sets as well as student progress, which is 

stored as a list of Student Actions. We wanted our new 

tutor to be able to seamlessly transition between online 

and offline modes, so our persistence manager is a 3-

tier component that stores data on both the client and 

the server when possible.  The first tier is an in-memory 

key-value mapping of our persisted objects.  The 

second tier is the client-side Local Storage, which 

persists key-value strings even after the web browser is 

closed.  The final tier is the server side database, where 

the teacher can view data. 

When objects need to be retrieved, the system looks 

in the first tier.  If it doesn’t exist there, it looks in the 

second tier.  If it doesn’t exist in either of the client-side tiers, it makes a request of the server.  

When storing objects, the client attempts to write to all three tiers.  If the server side tier is 

unavailable because the application doesn’t have internet access, then the persisted data is stored 

in a pending queue, which is sent as soon internet access is restored. 

With this persistence model, as long as the client receives all of the content it needs for an 

assignment before it loses internet access, it can be a fully functioning tutor with no access to the 

web.  That is to say, that the student experience of doing problem sets in “offline mode” will be 

FIGURE 1: DESIGN OF THE 

"PERSISTENCE MANAGER" 



identical to the online experience.  They will receive immediate feedback and tutoring help.  The 

student’s teacher will also be able to see all of the work the student completed in offline mode 

once the student “hands in” their work at school. 

2.2 Usage model for “Offline Mode” 

The way students will use “offline mode” has been designed to be as simple as possible.  We 

wanted “offline mode” to be as similar as possible to the classic ASSISTments usage model.  In 

classic ASSISTments, the students log into their class, and click on an assignment.  They then 

enter the answers for the problem set in the browser.  When they are finished, they navigate back 

to the assignments page, and can close their browser.  Offline mode requires two more simple 

steps in order to do homework without internet access. 

 

FIGURE 2: STANDARD USE CASE FOR ASSISTMENTS "OFFLINE MODE" 

First, the student must download the required assignments.  They do this by simply clicking the 

“Download” button, which now appears under each assignment link in the student’s assignments 

page. After the downloading dialog completes, the students will see the “Download Complete” 



notification underneath the downloaded assignment.  We expect that the student will download a 

few different assignments that are due the following day, so that he can work on them that night. 

 

 

FIGURE 3: UI FOR DOWNLOADING ASSINGMENTS FOR USE IN "OFFLINE MODE"  

(BEFORE AND AFTER DOWNLOADING) 

After downloading his assignments, the student takes his laptop home to do his homework. 

During the download process, our application will have already stored itself in the browser’s 

application cache. This way, when the student goes to www.assistments.org/offline, which is a 

URL we instruct them to use, their browser will load our application out of the application cache. 

The student will then pick from the downloaded assignments.  When doing the assignments, the 

user experience will be identical to the online tutor.  We have downloaded all of the questions, 

the answers, and also the tutoring help if it exists. Once the student finishes the work, he can 

close his browser. 

The final step in the offline usage model is “handing in” the offline work.  The student 

does this by logging onto their ASSISTments account at school where they have internet access. 

On their landing page, if they did offline work, there will be a prominent link that reads, “You 

have offline work to hand in.” Clicking on this sends all of the work they did since their last hand 

in to the server.  At this point, the teacher can view everything they did the night before with the 

same level of detail as if they had done the work online. 

2.3 Additional Design Decisions 

http://www.assistments.org/offline


There were other considerations made during the design of the tutor that we believed would 

allow us to make a more extensible and robust application. 

2.3.1 Separation of problem set structure and content 

When downloading problem sets, the application must be aware of the entire structure of the 

problem set.  If it is a “Random Child Order” problem set, the application needs to know about 

every problem that it has to choose from.  However, we did not want our application to have to 

download every single problem body, every piece of tutoring, and every correct and incorrect 

answer just to be able to start the problem set.  For this reason, we separated the definition of 

FIGURE 4: MANIFEST STRUCTURE 



problem set structure and problem content.  We define structure to be which problems are part of 

a problem set, as well as what order those problems will be presented in.  Content, on the other 

hand, is the actual text and html of the problem body, and any tutoring that may be included.  

This division of data is outlined in Figure 4.  Each assignment consists of a tree of “manifests”, 

which describe the structure.  Every node of this tree also has a pointer to “content” objects, 

which include the problems and the tutoring. 

With this manifest and content structure, our application can start by just downloading the 

manifest tree.  This tells the application everything it needs to know about traversing the problem 

set.  Then the application can request content as it needs it.  If the user is downloading the 

assignment to run offline, then of course the application must download the manifest tree as well 

as every piece of content on the nodes of that tree.  Because of the abstraction of the persistence 

manager, whether the content is downloaded initially or only when needed does not affect the 

general behavior of the tutor. 

2.3.2 Performance considerations: Look-ahead & Asynchronous Logging 

The new tutor can run with offline-mode either on or off. If offline mode is not being used, the 

client doesn’t need to download every single bit of content before starting. I did, however, want 

the tutor to run smoothly, and not make the user wait every time the tutor needs to request a new 

problem from the server.  In order to accomplish this, we implemented a look-ahead policy.  This 

takes advantage of our layered persistence manager.  As soon as you start a problem, the look-

ahead policy tells the persistence manager to request the next problem from the server.  This 

way, when the user completes the problem they are currently working on and the tutor asks for 

the next one, it is already downloaded to the client.  Because the client-server distinction is 

abstracted by the persistence manager, the component that requests the problem doesn’t need to 



know where it is.  The request is automatically fulfilled by data that has been saved on the client. 

The look-ahead policy makes it so that as soon as the first problem is loaded, the client will run 

without any delays from making requests of the server. 

 The other action that could potentially have a negative impact on performance is logging 

student progress at the server. If we had to wait for the server to respond after sending our 

progress at every problem, there would be an irritating pause after submitting each answer.  To 

avoid this, we log progress asynchronously.  We maintain a queue of student actions, and based 

on a time interval, and also specific student actions, we send these to the server in a background 

thread of our application.  This way, the server is always up to date to within 10 seconds of the 

student’s progress, and the client application never has to wait on the server’s response.   

  



3. Evaluation – Feedback Immediacy Study 

The task of evaluating the need and effect of the offline tutor is a difficult one.  The offline 

functionality is intended to only affect a small fraction of the students that use the redesigned 

tutor.  For this reason, it seemed unfeasible to run a randomized controlled study on students who 

do not have access to the internet at home.  We simply didn’t have access to a large enough 

group of students without internet access.   

We decided instead to evaluate the benefits of having offline tutor access.  Before the 

offline tutor, teachers would use ASSISTments with their classes, and if students didn’t have 

internet access, they would have to create some alternative for those students.  Usually this 

consists of giving the students a worksheet to fill out at home.  When the student returns to 

school, he can either hand in the worksheet to be corrected by the teacher, or he can use a school 

computer to enter his answers in ASSISTments.  We believe that this student is at a disadvantage 

without the offline tutor.  If he enters his answers at school he is still receiving feedback on his 

answers, but the feedback is delayed a day.  We think that students with access to the internet, 

and who do their work in ASSISTments will benefit from the immediate feedback, and therefore 

learn more from their homework. 

3.1 Overview of the Feedback Immediacy Study 

The motivation for the Feedback Immediacy study came from a question that a parent asked of 

Kim Kelly, a middle school teacher in Grafton, MA.  The parent, who preferred the more 

traditional “pen and paper” homework style, asked, “Is it okay if my student does his work on a 

piece of paper, and then just enters the work in ASSISTments after?”  Mrs. Kelly’s intuitive 

reaction to the question was “No!” because that would deprive the student of ASSISTments’ 



immediate feedback.  We wanted to figure out if this intuition is correct.  Does getting feedback 

as you go lead to better learning than receiving the same feedback after you have already worked 

through the problems on your own? 

 This study will serve as method of evaluating the need for the offline tutor as well.  With 

“offline mode”, a student with no internet access can still receive immediate feedback. The tutor 

was specifically designed to provide the offline user with the same user experience when doing 

homework.  Since the offline tutor provides this immediate feedback, the question of “Is 

immediate feedback important?” will also lead us to know if there is a true need for the offline 

tutor. 

3.2 Study Design 

3.2.1 Participants 

The study was run with 8
th

 grade middle school students from Grafton Middle School in Grafton, 

MA.  Their teacher was Kim Kelly.  The students were from 3 separate class periods, but they 

were all part of the same Pre Algebra course.  The work was done in class using the 

ASSISTments system, or a worksheet and pencil. 

3.2.2 Subject Matter 

There were two separate homework assignments given to the students.  The first covered Surface 

Area of 3 dimensional figures, and the second assignment covered Volume of 3 dimensional 

figures.  Mrs. Kelly believes that the difficulty of the two assignments were approximately the 

same, however our data analysis accounts for the possible effect of the different assignments. 

3.2.3 Procedure 



The overall goal of the study is to evaluate student knowledge of a subject before their 

homework, then have the students do their homework either with immediate feedback, or with 

delayed feedback, and then we will evaluate their knowledge of the subject again after 

homework.  To do this we will provide the students with three different problem sets for each 

assignment: 

Surface Area: 

 Surface Area Pre-Test (4 questions) 

 Surface Area Homework (15 questions) 

 Surface Area Post-Test (4 questions) 

Volume: 

 Volume Pre-Test (5 questions) 

 Volume Homework (14 questions) 

 Volume Post-Test (5 questions) 

We will then break the students into two separate conditions, and then switch the conditions as 

part of a crossover design.  Group A will be the ASSISTments condition, evaluating the standard 

ASSISTments use case, and Group B will be the Worksheet condition.  The point of the 

worksheet condition is to simulate the scenario where a student doesn’t have internet access at 

home, but is assigned ASSISTments work by their teacher.  The best they can do is to do the 

work on a printed worksheet, and then enter their answers in ASSISTments the next day. 

 In Figure 5 you can see the basic breakup of conditions across assignments. 



 

FIGURE 5: CONDITIONS BREAKUP ACROSS ASSIGNMENTS 

At the start of the assignment, all students will take a pre-test on the subject.  That night, 

the ASSISTments condition will be presented with an ASSISTments homework assignment in 

the regular “Tutor mode”, in which they will be presented with helpful feedback whenever they 

answer incorrectly. The Worksheet condition will be given the same homework assignment, but 

in the form of a paper worksheet.  They will not have access to ASSISTments. The following 

day in class, the students who were not given feedback on the homework will be presented with a 

paper version of the feedback that the other group received. On the following day in class, 

students in the Worksheet condition are given an opportunity to enter their answers in 

ASSISTments.  At this time, they will see the same assignment that the ASSISTments condition 

saw on the previous night. In this way, the students who didn’t receive immediate feedback will 

still receive “delayed” feedback.  We will then give the students a post-test on the next day of 

class, evaluating what they had learned doing the homework. We hypothesized that students who 

receive their feedback immediately will improve more on the post test than students who 

received delayed feedback. 

Below is the schedule for the study: 



TABLE 1: STUDY SCHEDULE 

Time:  ASSISTments Condition  Worksheet Condition  

Monday in class  All students Pre-test on “Surface Area”  

Monday night 

homework  

Students do the “Surface Area” 

assignment on ASSISTments.  

Students do the same “Surface Area” 

assignment as a paper and pencil 

worksheet.  

Tuesday at the  

beginning of 

class  

Students do unrelated activity.  

Students are given a short period of 

time in which they can enter their 

answers into ASSISTments, getting 

the same correctness feedback and 

answer hints that the ASSISTments 

group got the night before.  

Tuesday during 

class  
All students Post-test on “Surface Area”  

 

We then reversed the conditions as part of the crossover design, making Group A the Worksheet 

condition, and Group B the ASSISTments condition, and ran the same study schedule with the 

Volume assignment. This way we had data points for both conditions for every student. 

3.3 Study Results 

The focus of our data analysis was on the student’s pre-test and post-test scores. Below is a 

sample of our data results (full results can be found in the appendix).  The table shows all of the 

data points for 3 students.  The actual results included data for all 64 students involved in the 

study. 

 



TABLE 2:SAMPLE RESULTS DATA 

Student Name Condition Assignment Pre-test Post-test 

student_1 ASSISTments Surface Area 0% 100% 

student_2 ASSISTments Surface Area 25% 75% 

student_3 ASSISTments Surface Area 0% 75% 

… 

student_35 Worksheet Surface Area 25% 75% 

student_36 Worksheet Surface Area 25% 0% 

student_37 Worksheet Surface Area 0% 50% 

… 

student_1 Worksheet Volume 0% 40% 

student_2 Worksheet Volume 20% 80% 

student_3 Worksheet Volume 0% 60% 

… 

student_35 ASSISTments Volume 0% 80% 

student_36 ASSISTments Volume 0% 40% 

student_37 ASSISTments Volume 0% 60% 

… 

 

With the study design that crosses over the conditions across two assignments, we were unable to 

simply evaluate the gain scores from the pre-test to the post-test.  In order to account for the 

possible effect of the assignment as well as the student’s pretest score, we decided run an 

ANCOVA using SPSS to test which of the variables had an effect on student performance. 

The ANCOVA fits a linear model to predict a dependent variable of student post-test 

scores based on the independent variables of individual student effect, the student’s pretest score, 

the condition, and the assignment.  The result of this analysis provides us with parameter 

estimates and their significance.  The table below shows the parameter estimates for Condition, 

Assignment, and Pre-test score.  The effect of the individual students vary and while they are 

important to the integrity of the model, their values are not important to our analysis. 



TABLE 3: PARAMETER ESTIMATES FROM ANCOVA 

Parameter Estimate Value P-value 

Condition = ASSISTments 0.098 0.021 

Condition = Worksheet 0  

Assignment = Surface Area 0.123 0.026 

Assignment = Volume 0  

Pre-test Score 0.143 0.639 

 

The estimate for the condition parameter supports our hypothesis.  It suggests a 9.8% 

improvement in post-test scores for students in the ASSISTments condition.  The assignment 

parameter also has a significant effect.  It says that the Surface Area assignment will lead to 

12.3% percent post test score increase, suggesting that the assignments are not equal in 

difficulty.  The ANCOVA reports that pre-test scores do not have a reliable effect on post-test 

scores.  This is likely either due to the fact that our pretest scores are very low, and have little 

variance, or that the effect of pretest is accounted for in the individual student effect. The average 

pretest score across the entire data set is 9.18%, with a standard deviation of 12.56%.  With such 

low scores, there is no observable effect from the pre-test scores in our data set. 

 

3.4 Study Conclusions 

The effect of the condition parameter supports our hypothesis.  We suspected that having 

immediate feedback when doing homework would lead to better learning than only receiving 

delayed feedback. The results from our dataset suggest that there is a 9.8% post-test score 

increase from having immediate feedback as opposed to doing all of the work on a worksheet 

and then getting delayed feedback. Our intuition for this result is that immediate feedback helps 

to correct misconceptions in student learning as soon as they are made.  In the work sheet 



condition, it is possible for a student to reinforce a misconception of the content by making the 

same mistake over and over without being corrected by ASSISTments’ immediate feedback. 

 Since immediate feedback leads to increased learning gains, we can say that there is a 

genuine need for the offline tutor where it can be used. The work-around of giving students a 

worksheet in place of ASSISTments is an inferior alternative.  If these students were given 

access to the ASSISTments “Offline Mode”, they would have full access to ASSISTments 

tutoring and immediate feedback, giving them the same advantage seen in the ASSISTments 

condition of our study. 

  



4. Response Tabling Experiment 

Along with the direct benefits to student learning that have already been discussed, 

ASSISTments also provides a platform for educational research. Whereas the experiment in 

chapter 3 was a study on two different teaching techniques, the following is a study of a new 

student behavior model that can be used to predict student responses.  I assisted in the research of 

Qing Yang Wang, a MS student in Computer Science at WPI, running the residual analysis of 

our results, and writing up our findings. We had the following paper accepted into the KDD 2011 

Workshop on Educational Data. 

4.1 Introduction 

Intelligent Tutoring Systems (ITS) aim to improve student learning using reliable assessment, 

while providing students and teachers immediate feedback on student performance. The fine-

grained data produced by these tutoring systems provide an opportunity to model student 

behavior using various methods. One of the most proven and accepted methods in the ITS field 

is Knowledge Tracing [6] which uses a Dynamic Bayesian Network to track student knowledge. 

Knowledge tracing provides both the ability to predict future student response values, as well as 

providing an addition parameter: the probability of student knowledge. For this reason, KT 

provides insight that makes it useful beyond the scope of simple response prediction. However, 

KT can be computationally expensive. Model fitting procedures, which are used to train KT, can 

take hours or days to run on large datasets [15][2][11]. Is this extra computation necessary or can 

performance be as effectively predicted by calculating simple percent correct features of past 

response data? This approach was shown to be effective when based on past hint count and 

response time information [18]. We propose an alternative to KT that matches KT’s predictive 



accuracy with minimal computational cost. We suggest that if the task at hand is strictly 

prediction such as predicting end of year student outcomes or within tutor responses (KDD Cup), 

our simple tabling model, which ensembles percent correct response predictions, offers a fast and 

effective solution. 

 

4.2 Dataset Description 

The dataset used in this paper came from the ASSISTments Platform, a web-based tutoring 

system developed at Worcester Polytechnic Institute and used with 4th to 10th grade math 

students. The responses are all taken from Skill Building problem sets worked on by students in 

a suburban middle school in central Massachusetts during the 2009-2010 school year. Skill 

Building is a special type of problem set, where students are presented with problems from a 

large pool of problems from a single skill. The student completes problems until he either 

answers 3 questions correct on the first attempt in a row or completes 10 questions in a given day 

without getting 3 questions correct in a row, in which case he has “exceeded his daily limit” and 

must return on a different day. Teachers are also able to change the number of correct problems 

the student must complete in a row as well as the daily limit. For most of our data the number 

correct in a row was set to either 3 or 5 but a few teachers set this to as many as 15. 

The dataset we used includes student responses from 14 different skill types which are each 

separated into their own dataset. The skills had an average of 800 student responses per skill. 

Each data point describes whether the student answered correctly or incorrectly on their first 

attempt of the question. In each skill, we split the student responses into 5 groups in order to run 

5-fold cross validation by student. We trained our table model and a KT model on data from 4 of 



the folds, and then tested the prediction accuracy of our models on the fifth fold. We did this for 

all 5 folds. The final results reported are combined from all 5 test folds. 

Table 1 shows example rows from our dataset. 

TABLE 4: EXAMPLE SKILL BUILDING DATA 

 

 

4.3 Knowledge Tracing Model Description 

 
FIGURE 6: KNOWLEDGE TRACING MODEL 

The Knowledge Tracing model has been widely used with ITS to model student knowledge and 

performance. As shown in Fig 1, Knowledge tracing is a typical 2-variable Hidden Markov 

Model, with one latent and one observable. There are 4 parameters for each skill. The 

transmission parameters are comprised of the probability that the student knows the skill before 

starting, P(L0), and the probability of learning the skill from one problem to the next, 

P(Knowledget+1=T | Knowledget=F) or P(T). The emission parameters are the probability of 



answering correctly while the student doesn't know the skill, “guessing” P(G), and the 

probability of answering incorrectly when the student does know the skill, “slip” P(S), which can 

be described as P(Performancet|Knowledget). 

In our experiments, we used the Bayes Net Toolbox for Student Modeling[5] to implement 

Knowledge Tracing which employs expectation maximization (EM) to fit the model parameters 

to the training data. We set the initial parameters as follow: initial knowledge: P(L0)= 0.50; guess 

P(G) = 0.14; slip: P(S) = 0.09; learning: P(T) = 0.14, which are found to be the average 

parameter values across all skills in previous modeling work conducted using ASSISTments.  

 

4.4 Tabling Model Description 

The tabling method evolved out of the simple intuition that common student response sequences 

may repeat themselves. That is, that overall percent correctness on a problem given a particular 

past response sequence can predict future performance of other students given the same response 

sequence. To generalize this idea we take a sequence of correct and incorrect responses, and look 

at the percentage of correct responses on the next problem. For example, say Student A has 

answered ‘0 1 1’ (0 = incorrect, 1 = correct). We will look at all sequences of student responses 

that match ‘0 1 1’, observing the response that follows this sequence. So, if 72% of student 

responses that are preceded by ‘0 1 1’ are correct, then we can predict 0.72 for Student A’s next 

response. We describe this prediction as the probability of a correct response given a preceding 

sequence of ‘0 1 1’, or P(x=1 | ‘0 1 1’) = .72. Our model becomes a simple table that maps 

sequences of preceding responses to the percent correct of the follow-up response. We input a 

sequence of student responses to the table, and use the percent correct from the row 

corresponding to that sequence as a prediction for the student’s next response. 



4.4.1 Training the Table 

For each skill we train one table. The table has a row for each distinct sequence of preceding 

responses. To best inform our predictions, we used 5 different sequence lengths, observing 0 

through 4 previous responses. The rows are labeled:  ‘ ’, ‘0’, ‘1’, ‘0 0’, ‘0 1’, ‘1 0’, ‘1 1’, ‘000’, 

etc. There are a total of 31 rows in each table (1 of length 0, 2 of length 1, 4 of length 2, 8 of 

length 3, and 16 of length 4). For each row in the table, we record how many instances of this 

response there are, as well as the number of correct and incorrect responses that follow the 

sequence. We use these numbers to then calculate the percent correct of next responses. 

To maximize the number of data points used in training the model, we attempt to use each 

response of all the students trained against each different sequence length. That is to say for each 

student’s first response, we can only train using an empty preceding sequence. For students’ 

second responses, we can train the empty sequence row as well as the 1-response sequence rows. 

Table 2 illustrates how the training works, by showing the results of training a table using only 

one student’s response of ‘0 1 0 1 1’. 



TABLE 5: EXAMPLE FOR A SINGLE STUDENT WITH RESPONSES OF “01011” FOR TRAINING 

 

 The first row of the table shows that given no prior information, all we can do is count the 

number of correct responses to calculate the percent correct. In the second row, where the 

preceding sequence is ‘0’, we see that there are two instances of a ‘0’ sequence in the response ‘0 

1 0 1 1’. Since the response after the ‘0’ is ‘1’ in both cases, we record a percent correct of 1.0 

for that sequence. We continue this process until we have covered all sequence sizes, and all 

possible sequence combinations. By counting the number of sequence instances in the table, we 

see that this single sequence of 5 responses provides our table model with 15 data points. 

 We counted responses in this manner for every student response in each skill, which leaves 

us with a table like Table 3, which shows a fully trained table for one of our skills. 

 

 

 

 



TABLE 6: FULLY TRAINED TABLE FOR SEQUENCE LENGTHS 0-3 

 

 

 

4.4.2 Making Predictions 

To test the predictive power of our tabling method, we made predictions for every student 

response in the test data set. For each response, we used the preceding 4 responses as evidence 

(or fewer if 4 did not exist such as when predicting the first four responses), and made a 

prediction. Figure 2 outlines the full prediction process for a single student’s response. 



 

 

FIGURE 7: TEST DATA PREDICTION PROCESS 

First, we would create up to 5 different evidence sequences based on the student’s preceding 

responses. Then, we would look up each of the 5 sequences in the trained table, yielding 5 

different percent correct values. We then took these 5 prediction values, and combined them to 

come up with a prediction of correctness based on the student’s preceding responses. For the 

combination step of the process, we did a simple average of our table’s predictions. 

4.4.3 Tabling results compared with knowledge TRACING 

Table 4 shows RMSE values for our two models predicting student responses on our test data. 

The table also shows p values from a paired T-Test of each prediction, as well as a T-Test of the 

squares of the residuals. We found an RMSE of 0.4414 for our tabling model, which is reliably 

better than the Knowledge Tracing model for this dataset. 

TABLE 7: RMSE OF OUR TWO MODELS 
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4.5 Ensembling Table Predictions with Knowledge Tracing 

We had the intuition that since our tabling model is so different from the Knowledge Tracing 

approach, there would be a potential improvement from combining our results from tabling with 

the predictions from our KT model. The tabling model takes only the previous four responses 

into account when predicting, and makes a simple mapping of response sequences to percent 

correct, whereas Knowledge Tracing can use a longer sequence of responses and models the 

student’s probability of knowledge while also making predictions. We hoped that the strengths of 

the two methods could be ensemble into more accurate prediction. 

We combined our results in two ways. We first tried taking the simple average of the tabling 

model’s prediction and KT’s prediction for each response. We refer to the second method in the 

results as “Average-Min-Max”, shown in equation 1, motivated by the thought that for each 

prediction, we would use the model that gave the most definitive response. That is to say, if both 

predictions were above 0.5, we chose the higher of the two. If both were below 0.5 we chose the 

lower prediction. If one prediction was above our threshold and the other was below, we chose 

the average of the two predictions. 
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FIGURE 8: "AVERAGE MIN MAX" ENSEMBLING METHOD 

 

4.5.1 Ensembling Results 



After ensembling our predictions, we found that taking a simple average gave us a significant 

improvement in RMSE, while using our AverageMinMax technique gave no reliable 

improvement. 

 

TABLE 8: RMSE OF OUR ENSEMBLED PREDICTIONS 

 

4.6 Residual Analysis 

We wanted to learn more about exactly how our table model was performing better than KT. We 

decided to track residuals and RMSE on a per opportunity basis. Figures 3 and 4 show the two 

graphs for the first 10 student responses. It should be noted that the majority of our student 

response sequences are 5 or 6 responses long. The behavior of the graphs from 7-10 is based on 

fewer data points than the rest of the graph. 



 

 

FIGURE 9: AVERAGE RESIDUAL ANALYSIS 

It is interesting to note from the residual graph in Figure 3 that KT is underpredicting early in the 

response sequence. Our intuition is that KT is more conservative in its likelyhood of learning 

increases, and takes a few responses before it can confidently predict correctness. On the other 

hand, in the later responses of the residual graph, you can see that KT is over predicting, being 

overly convinced that the student has learned the skill, when he still may be answering questions 

incorrectly. This fits with our intuition that tabling, which has no concept of a predecided 

learning curve, would be resistant to drastic over or underpredictions.  

 

FIGURE 10: RMSE ANALYSIS 



 

We see in the graph of RMSE in Figure 4, that tabling has a sharp decrease in error on the 

second response, while KT only has a slight improvement from the first response. This suggests 

again that KT is underpredicting, and cannot confidently predict correctness with only one 

response. Tabling, whose average residual at response 2 is close to 0, has a much more accurate 

prediction for the second response in the sequence. 

4.6.1 Best and Worst Predicted Sequences 

To further examine the performance of tabling versus KT, we found the sequences with the least 

accurate and the most accurate predictions from our two models. We found that the 3 worst 

sequences, and the 4 worst sequences were the same for Tabling and KT. 

TABLE 9: TOP 3 WORST-PREDICTED SEQUENCES FOR TABLING AND KT 

  

Table 6 shows the 3 worst sequences for predicting the next response for Tabling and KT. 

The sequences make intuitive sense, showing responses that have a number of correct responses 

followed by one incorrect response. It makes sense that it would be difficult to predict the next 

response, because the previous response could either be an indication that the student doesn’t 

know the skill, or simply a mistake that would be followed by a correct answer. It is worth noting 

that for these worst sequences, tabling is more accurate than KT. 

 

 

 



TABLE 10: TOP 4 BEST-PREDICTED SEQUENCES FOR TABLING AND KT* 

 

*(ordered by Tabling's top 4, KT had #3 and #4 swapped) 

 

Table 7 shows the best-predicted sequences. As expected, both models are very accurate 

when the student has gotten a few questions correct in a row before the current question. It 

makes intuitive sense that the next question is very likely correct. For the best sequences, KT is 

more accurate than tabling. This is likely because if a student has gotten 6 questions correct in a 

row, he definitely knows the skill and will very likely answer correctly. KT will have a very high 

probability of correctness for this sequence, but Tabling will only look at 4 of the responses, and 

will average the 5 sequence length predictions. The shorter length predictions will generally be 

much lower than a longer sequence of correct responses. 

4.7 Discussion 

What we are suggesting with our Table model is a simple method for doing effective response 

prediction. Unlike Knowledge Tracing, the Table model offers no interpretability or domain 

insight. Knowledge tracing can be used for predicting student responses, but it also models a 

student’s probability of knowledge. Interpreting this parameter can be useful in various 

educational applications. For instance, the Cognitive Tutor uses Knowledge Tracing to determine 

if a student is finished with the current skill and can move on in the curriculum. The Table model 

doesn’t track any parameters, and doesn’t even model students as their own entity. We enter a 



sequence of evidence responses as input into the table model, and it returns a prediction for the 

next response. There is nothing else to be learned from the table. 

For this reason, we see the table model as having a useful yet limited application. It has the 

distinct advantage over Knowledge Tracing of being computationally inexpensive. Both training 

the model and making predictions took seconds, whereas training a dynamic Bayesian Network 

using Expectation Maximization can take hours using a large enough dataset. If there is the need 

for interpretability, where predicting the student’s response is not enough, our model is not 

appropriate. However, when the goal is strictly predicting the next response, we believe we have 

a lightweight compliment to KT that can increase student response prediction accuracy. 

4.8 Future Work 

The model used in the paper relied strictly on previous responses to make predictions. The 

tabling idea is a simple idea that could easily be expanded to leverage more features into the 

prediction. We could conceivably have additional rows to our table which show the percentage 

of correct responses where the student took longer or shorter than a certain amount of time to 

answer. We could also calculate the percent correct based on the number of previously answered 

questions on this skill. This way, in our prediction step of testing shown in Figure 2 would 

include the 5 predictions based on previous responses as well as predictions based on additional 

features from the dataset. Wang & Heffernan explored the impact of hints on student 

performance by finding the percent correct on items based on the number of hints requested [18]. 

This is another feature that could be added into our tabling model. 

Another area for improvement of the table modeling is the step of combining our predictions 

from the different table entries. For our results in this paper we simply averaged all of the 



predictions. Perhaps there is a way to better ensemble these predictions so that the more accurate 

predictions end up having more weight. The method used to ensemble would have to allow for 

missing values, because not every response tested will have 4 preceding responses. 
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A.1 New Tutor Specification Documents 

A.1.1 Actions Structure 

 

A.1.3 Actions JSON Specification 

This is the full JSON of each of the actions from the “ASSISTments Tutor Action Sequence” 

Diagram. 

1. ProblemSetStartedAction(PS574434) 

    { 

         "key": "@org.assistments.gwt.student.tutor.event.action.ProblemSetStartedAction/92389-AS374838-1311600IXigqQels", 

        "timestamp": 1311600841937, 

        "isScaffolding": false, 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "manifest": "@org.assistments.core.domain.content.Manifest/PS574434" 

    } 

    

 

2. ProblemStartedAction(PR339440) 

    { 

        "key": "@org.assistments.gwt.student.tutor.event.action.ProblemStartedAction/92389-AS374838-1311600842034", 



        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339440", 

        "timestamp": 1311600842034 

    } 

 

 

3. StudentResponseAction(PR339440) 

    { 

        "key": "@org.assistments.gwt.student.tutor.event.action.StudentResponseAction/92389-AS374838-1311600848009", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339440", 

        "timestamp": 1311600848009, 

        "correct": false, 

        "problemClassName": "org.assistments.core.domain.content.assess.FillInProblem", 

        "response": { 

            "valueParts": [ 

                { 

                    "type": "ALGEBRA", 

                    "value": "3" 

                } 

            ] 

        } 

    } 

 

 

4. StudentResponseAction(PR339440) 

   { 

        "key": "@org.assistments.gwt.student.tutor.event.action.StudentResponseAction/92389-AS374838-1311600850448", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339440", 

        "timestamp": 1311600850448, 

        "correct": true, 

        "problemClassName": "org.assistments.core.domain.content.assess.FillInProblem", 

        "response": { 

            "valueParts": [ 

                { 

                    "type": "ALGEBRA", 

                    "value": "2" 

                } 

            ] 

        } 

    } 

 

 

5. ProblemFinishedAction(PR339440) 

   { 

        "key": "@org.assistments.gwt.student.tutor.event.action.ProblemFinishedAction/92389-AS374838-1311600850451.0", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339440", 

        "timestamp": 1311600850451 

    } 

 

 

6. ProblemStartedAction(PR339441) 



   { 

        "key": "@org.assistments.gwt.student.tutor.event.action.ProblemStartedAction/92389-AS374838-1311600851612", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339441", 

        "timestamp": 1311600851612 

    } 

 

 

7. StudentResponseAction(PR339441) 

  { 

        "key": "@org.assistments.gwt.student.tutor.event.action.StudentResponseAction/92389-AS374838-1311600857991", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339441", 

        "timestamp": 1311600857991, 

        "correct": true, 

        "problemClassName": "org.assistments.core.domain.content.assess.FillInProblem", 

        "response": { 

            "valueParts": [ 

                { 

                    "type": "ALGEBRA", 

                    "value": "4" 

                } 

            ] 

        } 

    } 

 

 

8. ProblemFinishedAction(PR339441) 

  { 

        "key": "@org.assistments.gwt.student.tutor.event.action.ProblemFinishedAction/92389-AS374838-1311600857993.0", 

        "userID": "92389", 

        "assignmentID": "AS374838", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PR339441", 

        "timestamp": 1311600857993 

    } 

 

 

9. ProblemSetFinishedAction(PS574434) 

    { 

        "key": "@org.assistments.gwt.student.tutor.event.action.ProblemSetFinishedAction/92389-AS374838-13116008dqZsxU", 

        "timestamp": 1311600858019, 

        "userID": "92389", 

        "isScaffolding": false, 

        "manifest": "@org.assistments.core.domain.content.Manifest/PS574434", 

        "assignmentID": "AS374838" 

    } 
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