
FPGA-Based Co-processor for
Singular Value Array Reconciliation Tomography

Jack Coyne

September 5, 2007

Abstract

This thesis describes a co-processor system that has been designed to accelerate computations

associated with Singular Value Array Reconciliation Tomography (SART), a method for lo-

cating a wide-band RF source which may be positioned within an indoor environment, where

RF propagation characteristics make source localization very challenging. The co-processor

system is based on field programmable gate array (FPGA) technology, which offers a low-cost

alternative to customized integrated circuits, while still providing the high performance, low

power, and small size associated with a custom integrated solution. The system has been

developed in VHDL, and implemented on a Virtex-4 SX55 FPGA development platform.

The system is easy to use, and may be accessed through a C program or MATLAB script.

Compared to a Pentium 4 CPU running at 3 GHz, use of the co-processor system provides a

speed-up of about 6 times for the current signal matrix size of 128-by-16. Greater speed-ups

may be obtained by using multiple devices in parallel. The system is capable of computing

the SART metric to an accuracy of about -145 dB with respect to its true value. This level

of accuracy, which is shown to be better than that obtained using single precision floating

point arithmetic, allows even relatively weak signals to make a meaningful contribution to

the final SART solution.

1

Acknowledgements

I would like to thank my advisor, Professor Jim Duckworth for giving me the opportunity

to partake in research that is as useful, interesting, and groundbreaking as the Precision

Personnel Locator project. I would like to thank all the PPL team members for making this

research effort possible. Each member plays a vital role, and I am confident that the fruits of

their labor will help to save the lives of many. I would like to pay my respects to emergency

responders who have given their lives in the line of duty, and to those who continue to risk

their own lives despite these tragedies, and despite the lack of adequate tracking technology. I

would like to thank the Department of Justice for funding this project, and helping to provide

the best possible safety measures for those who protect the public. Most importantly, I would

like to thank my family for providing love, support, and encouragement throughout my life,

and for being so understanding during the times when I have neglected all things other than

this work. I dedicate this work to my grandfather, John William Wolf, who seeded my

interest in engineering.

2

Contents

1 Introduction 10

1.1 Indoor Tracking . 11

1.2 The Precision Personnel Locator System . 12

1.3 Outline . 13

2 Singular Value Array Reconciliation Tomography 14

2.1 Overview . 14

2.2 Signal Propagation . 17

2.3 The SART Signal Matrix . 18

2.4 SART Scan Rephasing . 19

2.5 Singular Value Decomposition . 20

2.5.1 QR Decomposition . 22

2.5.2 Householder Method . 22

2.5.3 Givens Rotations . 24

2.5.4 The CORDIC Algorithm . 27

2.5.5 Bidiagonalization . 28

2.5.6 Diagonalization . 30

2.6 Quantified SART Computational Requirements 30

3 System Platform 34

3.1 Field Programmable Gate Arrays . 34

3.2 Prototyping Platform . 35

3.3 Virtex-4 FPGAs . 36

3.3.1 Configurable Logic Blocks . 36

3.3.2 Digital Signal Processing Blocks . 38

3

3.3.3 Block RAM . 39

3.3.4 Resource Availability Constraints . 39

4 SART Co-processor Architecture 41

4.1 Design Approach . 41

4.2 Algorithm Partitioning . 42

4.3 Top-Level Architecture . 44

4.4 Fundamental Operations . 45

4.5 Vector Processing Unit . 46

4.5.1 Multiply-Add Module . 48

4.6 CORDIC Module . 53

4.6.1 Implementation Considerations . 54

4.6.2 CORDIC Implementation . 56

4.7 Host Interface . 61

4.8 Rephasing Stage . 61

4.8.1 Rephasing Matrix Compression . 62

4.8.2 Input Interface . 63

4.8.3 Rephasing Matrix Decompression and Application 63

4.9 QR Decomposition Stage . 65

4.9.1 Algorithm . 67

4.9.2 Processing Element Architecture . 68

4.9.3 Receive stage . 71

4.9.4 Measure and Compare stage (CORDIC stage) 73

4.9.5 Processing stage (VPU stage) . 75

4.9.6 Output Stage . 78

4.10 Bidiagonalization Stage . 80

4.10.1 Top-Level . 82

4.10.2 Bidiagonalization Module Architecture 83

4.10.3 Processing Program and Command Sequencing Macro 84

5 Operation 87

5.1 Loading the Scan-Grid . 87

5.2 Loading a Signal Matrix . 88

5.3 Triggering SART Calculations . 89

5.4 Retrieving the Results . 90

4

5.5 Diagonalization . 92

6 Performance 93

6.1 Accuracy . 94

6.1.1 Vector Processing Unit . 94

6.1.2 CORDIC Module . 97

6.1.3 Rephasing . 100

6.1.4 SART Metric Solution . 101

6.2 Speedup . 108

6.2.1 Vector Processing Unit . 108

6.2.2 CORDIC Module . 108

6.2.3 QR Decomposition Stage . 108

6.2.4 Bidiagonalization Stage . 110

7 Conclusion 111

7.1 Future Work . 112

5

List of Tables

1 List of acronyms used in this document . 9

2.1 Operation and data output counts for SART processing stages 32

3.1 Available Resources in Virtex-4 Family FPGAs 40

4.1 Address ranges for various memory mapped system elements 61

5.1 Memory layout: scan-grid rephasing matrices 88

5.2 Memory layout: signal matrix data . 89

5.3 Control and status register layout . 90

5.4 Memory layout: result buffer addresses . 91

6.1 SART metric accuracy: RMS error, test one 102

6.2 SART metric accuracy: relative error (dB), test one 102

6.3 SART metric accuracy: error standard deviation, test one 102

6.4 SART metric accuracy: RMS error, test one 103

6.5 SART metric accuracy: relative error (dB), test two 103

6.6 SART metric accuracy: error standard deviation, test two 104

6

List of Figures

2.1 Operation count graph for SART processing stages 32

2.2 Data count graph for SART processing stages 32

3.1 Diagram of prototyping platform . 36

3.2 Structure of FPGA configurable logic block (CLB) 37

3.3 Structure of FPGA arithmetic (DSP) block 38

4.1 Top-level diagram of the SART co-processor system 44

4.2 Top-level diagram of vector processing unit (VPU) 48

4.3 Parallel sum of products . 49

4.4 35-bit multiplication by sum of 18-bit partial products 50

4.5 35-bit multiplication mapped to four DSP blocks 51

4.6 35-bit multiply-add mapped to eight DSP blocks 52

4.7 Generation of a unit vector using coordinated CORDIC rotations 54

4.8 Resource consumption of Xilinx IP CORDIC module 55

4.9 CORDIC shift-accumulate operation implemented using two DSP blocks. . . 56

4.10 CORDIC rotation circuit implemented using two shift-accumulate circuits. . 57

4.11 CORDIC module input multiplexing . 58

4.12 Resource consumption of custom CORDIC module 59

4.13 Processing schedule for CORDIC module . 60

4.14 Rephasing stage input interface . 64

4.15 Rephasing stage decompression and application circuit 65

4.16 QR decomposition stage: resource sharing 68

4.17 QR decomposition stage: processing element top-level 70

4.18 QR decomposition processing element: processing schedule 70

4.19 QR decomposition processing element: Receive stage 72

7

4.20 QR decomposition processing element: Measure and compare stage 74

4.21 QR decomposition processing element: Processing stage 76

4.22 Processing stage state-flow diagram . 77

4.23 Processing stage resource sharing schedule 77

4.24 QR decomposition processing element: Output stage 79

4.25 Bidiagonalization reduction-operation ordering 80

4.26 Bidiagonalization module processing schedule 81

4.27 Bidiagonalization stage: Top-level . 82

4.28 Bidiagonalization module . 83

4.29 Bidiagonalization module: Data flow diagram 84

5.1 Mapping of bidiagonalized matrix into the result buffer 91

6.1 VPU accuracy: rotate operation, real component 95

6.2 VPU accuracy: rotate operation, imaginary component 95

6.3 VPU accuracy: output operation, real component 96

6.4 VPU accuracy: output operation, imaginary component 96

6.5 VPU accuracy: feedback operation, real component 96

6.6 VPU accuracy: feedback operation, imaginary component 96

6.7 CORDIC accuracy: unit vector magnitudes 98

6.8 CORDIC accuracy: vector rotation . 99

6.9 CORDIC accuracy: vector magitudes . 99

6.10 Effect of power disparity on metric value relative fluctuation 105

6.11 SART metric accuracy: power disparity test, using co-processor 106

6.12 SART metric accuracy: power disparity test, using single precision 106

6.13 SART metric accuracy: power disparity test, using double precision 107

6.14 Efficiency curve for QR decomposition stage 109

7.1 Next-generation SART processing system . 114

8

Table 1: List of acronyms used in this document
ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
BRAM Block RAM
CLB Configurable Logic Block
CORDIC Coordinate Rotation Digital Computer
CPU Central Processing Unit
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
DSP Digital Signal Processing
FFT Fast Fourier Transform
FIFO First-In First-Out memory structure
FPGA Field Programmable Gate Array
LSB Least Significant Bit
MAC Media Access Controller
PC Personal Computer
PCI The Peripheral Component Interconnect
PPL The WPI Precision Personnel Locator project
RAM Random Access Memory
RF Radio Frequency
RMS Root Mean Square
SART Singular Value Array Reconciliation Tomography
SDRAM Synchronous Dynamic RAM
SRAM Synchronous RAM
SVD Singular Value Decomposition
SX55 A specific FPGA device sold by Xilinx Inc.
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VPU Vector Processing Unit
WPI Worcester Polytechnic Institute

9

Chapter 1

Introduction

The ability to track the locations of personnel deployed within a building is desirable in

many situations, especially those wherein individuals may become lost or debilitated and

require assistance in egress. In an emergency first-response situation, rescue operations often

must be carried out within a very short time frame. This is particularly true during fire

fighting missions, when a person in need of assistance will almost certainly be located in

an environment without breathable air, where temperatures can exceed 300 degrees Celsius,

and where the integrity of the surrounding structure is deteriorating rapidly. These factors

can reduce the time available for rescue to just minutes. Tracking must therefore occur in

real time, with location updates occurring at least every second, regardless of the size of the

structure. Furthermore, location estimates must be very accurate such that, for example, a

person under egress assistance may be guided to the correct door when presented with many

adjacent avenues, and subject to zero-visibility conditions. Obtaining this level of accuracy

has been the goal of many efforts world wide, and is the main objective of the project for

which this work serves as a component. The goal of this particular component is to obtain the

aforementioned real-time performance despite the computational complexity of the proposed

location estimation algorithm.

10

1.1 Indoor Tracking

Tracking of personnel located within a building using a system that requires no preexisting

infrastructure is a goal that has been addressed by research teams from academic, govern-

ment, and commercial institutions all over the world [1] [2] [3] [4] [5]. Despite these efforts

and the millions of dollars invested, no system with the required accuracy, reliability, and

affordability has been demonstrated, let alone brought to market. Many tracking techniques

have been investigated, but the two most promising are radio-based tracking and inertial

navigation.

Radio based systems attempt to extract time-of-flight information from radio signals that

have propagated through a building, from the object being tracked to externally located

reference units, or visa versa. The major challenge posed by this technique results from

the fact that radio-frequency electromagnetic waves are reflected and diffracted by metallic

structural members and metallic objects within the building. These phenomena result in a

received signal that can be defined as the sum of the direct-path component and the reflected,

“multi-path”, components. Solving for the range to the object being tracked requires isolating

the direct-path component. Separating this component from the undesired portion of the

received signal is not a trivial task and presents the most significant challenge to research

teams developing radio-based location systems [5].

Inertial navigation systems rely on sensors capable of measuring linear and rotational ac-

celeration in order to determine velocity and position. The adoption of this technique is

inhibited mainly by the cost of a functional system, as well as regulations that control the

availability of high-precision sensors. Affordable inertial sensors do not have the accuracy

required for long-duration tracking. Small amounts of bias and drift in the outputs of these

sensors lead to the accumulation of large errors as these outputs are integrated over time to

obtain the final position estimate [4]. Highly accurate sensors are not only larger and more

expensive, but they are also subject to export restrictions imposed by the government due

to their suitability to weapons applications, such as missile guidance systems [6].

11

1.2 The Precision Personnel Locator System

The Worcester Polytechnic Institute Precision Personnel Location (PPL) project began in

December, 1999, prompted by the tragic loss of six firefighters in the Worcester Cold Storage

Warehouse fire. The deaths of these men have been attributed in part to the inability to

determine their locations within the burning structure [7]. The goal of the PPL project is to

develop a system capable of providing sub-meter accuracy in the location and tracking of per-

sonnel situated within hazardous indoor environments. The system is primarily radio-based

due to the limitations of available inertial sensors, and requires no pre-existing infrastructure

so that it may be used in any location [8].

Over a dozen faculty and student team members, participating in seven years of research

efforts, have produced four generations of prototype hardware, and many more generations

and refinements of the signal processing algorithms developed for estimating location using

the received radio signals. The performance of the system has matured from coarse outdoor

tracking using 15 MHz of bandwidth [9], to a 150 MHz system that enables indoor tracking

with errors on the order of one meter [8]. In early 2006 it was apparent that the final project

goal was within reach, and the time came to consider the deployment of the system, and how

this would be made feasible.

One of the most evident obstacles on the path towards deployment was the burden imposed

by the computational complexity of the position estimation algorithm, known as Singular

Value Array Reconciliation Tomography (SART). The amount of computation associated

with the SART algorithm is so great that scanning a 20m by 20m room for a single target

takes approximately 1 second using a Pentium 4 CPU running at 3GHz. Using this figure,

and assuming that a structure consists of many rooms and many floors, and that there could

potentially be dozens of personnel that need to be located or tracked, a complete scan could

easily take many minutes.

Acceleration of the SART algorithm could be accomplished using a cluster of PCs working

in parallel, but this solution would be physically too large for a mobile application, and

needlessly power hungry. A smaller more efficient solution would be one that uses custom

hardware instead of the generalized architecture of a personal computer. For customizable

high-speed signal processing, Field Programmable Gate Arrays (FPGAs) are the industry

12

standard hardware. They are second in performance only to Application Specific Integrated

Circuits (ASIC), which can easily cost millions dollars to design and test, yet FPGAs cost

only a few thousand dollars [10]. An FPGA-based system was chosen as the platform for the

SART accelerator system described here.

1.3 Outline

This thesis begins with the presentation of the SART technique for indoor tracking in Chap-

ter 2. The algorithm is broken into stages so that it may be easily partitioned into tasks that

are appropriate for hardware and software implementation. The number of computations

involved in each stage are quantified to motivate the need for hardware-based acceleration,

and provide a basis for intelligent partitioning decisions. The FPGA development platform,

which was used for prototyping, is described in Chapter 3. An overview of FPGA technology

and the architectural details of the selected FPGA are presented, along with some important

architecture related design considerations. The implementation of the SART co-processor

system is presented in Chapter 4. Chapter 5 contains a description of how the SART co-

processor system is operated. In Chapter 6, the performance of the SART co-processor system

is analyzed in terms of accuracy, and speedup. The final chapter presents conclusions, and

avenues for future work.

13

Chapter 2

Singular Value Array Reconciliation

Tomography

This chapter contains a description of a new technique for radio-based indoor location. The

technique was developed at WPI for the purpose of tracking first-response personnel such as

firefighters. An overview of the technique is presented first. Later sections provide a more

detailed description of the algorithm, and quantify the number of computations associated

with each processing stage.

2.1 Overview

Singular value Array Reconciliation Tomography (SART) [11] is a source localization tech-

nique developed as part of the PPL project. The SART algorithm was developed as a means

for locating the origin of a wide-band multi-tone signal using a receiver array with arbitrary

recieve-element geometry. The performance of the SART technique is described only briefly

here, because ultimately, this thesis is not concerned with why or how well SART works,

but only with accomplishing it quickly. A more through explanation and performance anal-

ysis of SART can be found in documents that deal specifically with algorithm development

[12].

14

The location process begins with the transmission of a multi-tone signal by the device that

is to be located. The transmission is recorded at multiple receiving elements, which ideally

surround the transmitter. For the PPL project application of SART, these receiving elements

correspond to antennas located on fire-trucks and other vehicles located around the outside

of a building in which personnel are being tracked. The received signals are digitized using

an analog to digital converter and stored in memory so that they may be used as inputs to

the SART algorithm. The remaining inputs to the algorithm are the relative coordinates of

the receive elements, which are assumed to be known.

The SART algorithm is an imaging technique (hence the use of the term tomography). Given

the algorithm inputs at any given instance, the physical area of interest is scanned at regular

spatial intervals, where it is assessed in terms of the SART metric. This set of scan locations

is known as the scan-grid. The location of maximum metric value indicates the estimated

location of the transmitter. Scanning is accomplished by applying negative time delays to

the received signals. These delays corresponding to the light-speed travel time between the

current scan location and each receive element. Because the locations of the receive elements

are known, these time delays can be easily calculated for each location on the scan-grid.

Time delay application is accomplished by imposing a linear (with frequency) phase shift to

the signals from each receive element.

If the exact location of the transmitter is scanned, then the application of the negative time

delays will counter-act the actual time delays associated with the propagation of the multi-

tone signal from the transmitter to the receive elements. The result of this will be temporal

alignment of all of the received signals, thereby maximizing their linear dependence in the

ideal, zero multi-path case. For this reason, the imaging metric chosen for SART is the level of

linear dependence between the rephased signals. The level of linear dependence is measured

by assigning each rephased input signal to a different column in a matrix, performing singular

value decomposition of that matrix, and observing the first singular value[12].

Using the process of Singular Value Decomposition (SVD), any matrix can be broken down

into a set of unitary column and row vectors, and a corresponding set of scalar values. These

components contain all of the information necessary to reconstruct the original matrix. The

singular vectors serve as an orthonormal basis for the matrix, while the singular values

contain information about the amplitudes of these vectors in their role as components within

the original matrix. Together, the singular values provide an indication of matrix rank [13].

15

For example, if a matrix is composed of multiple linearly dependent columns (or rows), then

the matrix is said to have a rank of one (i.e. all but the first singular value will be zero).

If there are small dissimilarities between columns then the SVD will reveal more non-zero

singular values, with magnitudes corresponding to the amplitudes of the components that

impart these dissimilarities. Larger dissimilarities will be reflected in larger rank supporting

singular values.

If dissimilarities arise due to the application of linear phase, as they do in the SART scanning

procedure, then the increase in the lesser singular values occurs with a corresponding decrease

in the first (largest) singular value. This is because the Frobenius norm of a matrix (which

can be calculated as the square-root of the sum of the squares of all the singular values) is

maintained during such an operation [12]. Leveraging this property of singular values, the

SART algorithm uses singular value decomposition to obtain a measure of linear dependence

between columns of the signal matrix in the form of the first singular value.

In SART, the assumption is that each receive element will see the direct-path component

of the transmitted signal and various multi-path components. The hope is that different

receive elements will collect multi-path components that are of lower linearly dependence

and/or amplitude than the collected direct-path components, when analyzed according to

the scanning procedure. If this assumption holds, then the SART metric will be maximized

in the region of the transmitter. Many rounds of simulation and live testing have been

conducted, producing good results that have verified the validity of the SART method [12].

The major disadvantage of the SART algorithm is its computational complexity, most of

which arises due to the application of the SVD.

The following sections provide a detailed description of the SART algorithm in an attempt

to reveal the large computational burden it presents, and partition it into a manageable

set of tasks. This will serve to motivate and outline the work described in this document,

which represents an effort to accelerate this algorithm using custom digital signal processing

hardware. The description will include an enumeration of the singular value decomposition

process because it represents a substantial portion of SARTs computational complexity, and

because (as will be revealed in later sections) the partitioning of the algorithm between the

accelerator and the host PC was chosen such that the SVD is computed partially in each

partition.

16

2.2 Signal Propagation

As mentioned in the SART overview section, any person being tracked using the PPL system

must wear a radio transmitter that broadcasts a multi-tone signal. The signal is generated in

baseband by playing a predefined waveform through a digital-to-analog converter (DAC), up-

converted to radio frequency (RF), and then filtered to obtain a single side-band transmission

of the form

s(t) =
m∑
i=1

ej(2πfit+θi) (2.1)

where fi and θi represent the frequency and initial phase of the ith RF tone (or subcar-

rier).

The RF signal propagates from the transmitter, through the building, to each of the receivers.

The travel-time associated with propagation can be calculated from the distance of travel and

the speed of light in the propagation medium. Assuming the propagation occurs primarily

in air, the propagation velocity may be approximated with the propagation velocity in a

vacuum, 299,792,458 meters per second. If multi-path components are ignored, then the

received signal is identical to the transmitted signal, but delayed by the travel-time. The

signal received at a distance, d, from the transmitter can be represented as

s(t) =
m∑
i=1

ej(2πfi(t− d
c

)+θi) (2.2)

where c is the speed of propagation.

At each receive element the received signal is down-converted to baseband, digitized using an

analog-to-digital converter (ADC), and stored for processing. This is where the application

of the SART algorithm begins.

17

2.3 The SART Signal Matrix

The first step in the SART algorithm is to obtain the frequency-domain representation of the

received signal. This allows the sub-carrier tones to be isolated from each other, and from

noise components at other frequencies. The conversion is accomplished using the Discrete

Fourier Transform (DFT), implemented using the Fast Fourier Transform (FFT) algorithm.

The sub-carrier tones are placed at even intervals, which coincide with the frequency bins of

the transform. This prevents leakage of the sub-carrier energy into adjacent frequency bins

[12]. The output of the FFT is an array of complex values that represent the amplitudes and

phases of the frequency components that comprise the input time-domain signal. The values

that correspond to the transmitted sub-carrier frequencies are saved. Values from other

frequency bins represent noise and interfering signals and are therefore discarded.

The transmitted signal can be represented as an array of complex values that encode the

magnitude and phase each of the sub-carrier tones. Each received signal can be represented

as this same signal with the application of a time delay associated with propagation. In the

frequency domain, this time delay appears in the form of a phase shift that decreases linearly

with frequency. If the transmitted signal is represented in the form

S =
[
s1 s2 s3 ... sm

]
(2.3)

where m equals the number of sub-carrier tones, and si encodes the arbitrary phase of the

transmitted signal for the ith sub-carrier, then the received signal at a distance, d, from the

transmitter can be represented as

S =
[
s1e
−j2π∆f d

c s2e
−j4π∆f d

c s3e
−j6π∆f d

c ... sme
−j2mπ∆f d

c

]
(2.4)

where ∆f represents the frequency spacing between sub-carrier tones (and for convenience

the frequency of the first tone), and the exponential factors encode the frequency-dependent

phase shift undergone by each of the m sub-carriers due to propagation delay. Since there

are many receivers, each at a different distance from the transmitter, the group of received

signals can be formed into a matrix, with each column representing the signal recorded at

18

one receive element. The SART signal matrix has the form

S =

s1e
−j2π∆f

d1
c s1e

−j2π∆f
d2
c · · · s1e

−j2π∆f dn
c

s2e
−j4π∆f

d1
c s2e

−j4π∆f
d2
c · · · s2e

−j4π∆f dn
c

s3e
−j6π∆f

d1
c s3e

−j6π∆f
d2
c · · · s3e

−j6π∆f dn
c

...
...

. . .
...

sme
−j2mπ∆f

d1
c sme

−j2mπ∆f
d2
c · · · sme

−j2mπ∆f dn
c

(2.5)

where dk represents the distance from the transmitter to the kth receiver. It is this signal

matrix that is rephrased according to the scan-grid and evaluated in terms of the SART

metric.

2.4 SART Scan Rephasing

After the signal matrix has been constructed, the SART scanning procedure begins. It is this

exhaustive imaging approach that leads to the immense number of computations required

to produce a single location estimate. The spatial resolution, or density, of the scan-grid

is chosen based on bandwidth [12], and is typically 0.25 to 0.5 meters for the current 150

MHz implementation. Therefore, even a modest 20m-by-20m-by-20m volume will contain

8000 scan locations. As a more realistic example, a standard street block in the Manhattan

has a footprint of about 80m-by-270m, and assuming a modest height of about 25m, this

volume would contain over 500,000 scan locations. It is true that the number of locations

being scanned can be reduced if the previous location of a target is known, and only the

surrounding region is searched. However, the number of scan locations will remain high

when tracking dozens of independent targets, and will grow larger when using the higher

bandwidths needed for better accuracy.

Scanning is accomplished by applying a linear phase shift to each column of the signal

matrix. The phase slope is calculated according to the propagation delay between the receiver

corresponding to that column and the current scan location. This delay is easily obtained,

if the geometry of the receivers is known, by calculating the Euclidean distance between the

receiver and the scan location and then dividing by the speed of propagation. Using the

19

received signal matrix form from (2.5), the rephrased signal matrix has the form:

S =

s1e
−j2π∆f

d1
c ej2π∆f

ds1
c s1e

−j2π∆f
d2
c ej2π∆f

ds2
c · · · s1e

−j2π∆f dn
c ej2π∆f dsn

c

s2e
−j4π∆f

d1
c ej4π∆f

ds1
c s2e

−j4π∆f
d2
c ej4π∆f

ds2
c · · · s2e

−j4π∆f dn
c ej4π∆f dsn

c

s3e
−j6π∆f

d1
c ej6π∆f

ds1
c s3e

−j6π∆f
d2
c ej6π∆f

ds2
c · · · s3e

−j6π∆f dn
c ej6π∆f dsn

c

...
...

. . .
...

sme
−j2mπ∆f

d1
c ej2mπ∆f

ds1
c sme

−j2mπ∆f
d2
c ej2mπ∆f

ds2
c · · · sme

−j2mπ∆f dn
c ej2mπ∆f dsn

c

(2.6)

where dsk is the distance between receiver k and the scan location.

If the distance to the scan location equals the true distance between a receiver and the

transmitter (i.e. dsk = dk), then the two exponential factors will cancel for that receiver.

Furthermore, if the true location of the transmitter is scanned, then cancellation will happen

for all receivers. In this case, the columns of the rephrased signal matrix will become identical,

apart from any multi-path or noise components. Ideally, this will lead to a maximization

of the first singular value at the scan location corresponding to the true location of the

transmitter.

2.5 Singular Value Decomposition

Through the process of singular value decomposition, a matrix, A, is broken-down into two

orthonormal matrices, U and V, and a diagonal matrix Σ, such that

UΣVH = A

where VH indicates the complex conjugate transpose of V.

The columns of U and V contain the left and right singular vectors for A, which form

an orthonormal basis for A. The diagonal of Σ contains the singular values of A, which

hold magnitude or scaling information. In this way, the SVD allows A to be re-expressed

as a diagonal matrix through a change of basis, revealing important information about the

composition of A [13]. In the SART application, the singular values reveal information about

the rank of the signal matrix.

20

The SART imaging metric is the first singular value of the rephased signal matrix. Therefore,

singular value decomposition must be performed once for each location on the scan-grid. The

complexity of the SVD algorithm for an m-by-n matrix is O(4nm2 + 22n3) operations [13],

so the computational burden presented by this workload is quite large, and grows rapidly

with the size of the matrix. Fortunately, because the SART algorithm requires only the

singular values, and not the singular vectors, this work load can be substantially decreased

to O(2mn2 + 2n3) operations [13]. The process of computing the singular values of a matrix

is described below.

The singular values of a matrix may be obtained through the process of diagonalization,

where all but the diagonal elements of the matrix are reduced to zero (or annihilated). This

is typically accomplished through unitary transformations, which preserve matrix rank and

the energy possessed by each linearly independent component. Most frequently, these are

either Householder transformations, or Givens rotations [13]. The diagonalization process

can be divided into three stages [13]:

• QR decomposition, wherein the matrix, A, is factored into an orthogonal matrix, Q,

and an upper triangular matrix, R, such that QR = A. The matrix R retains the

same singular values as A while having fewer total non-zero elements.

• Bidiagonalization of the matrix R, such that the resulting matrix, B, contains non-zero

values in only its diagonal elements, and the elements just above the diagonal. The

singular values of A are still retained.

• Diagonalization of B is the final step of reducing the input to its diagonal form, Σ, in

which the singular values of the original input matrix lie along the diagonal.

This is a convenient division of the process for two reasons.

• For rectangular matrices, especially where m � n or n � m, the QR decomposition

stage results in a substantial reduction in the total size of the input matrix, particularly

when only singular values are desired and Q can be discarded. This is advantageous

because it reduces the amount of computer memory needed to store the matrix elements,

and eliminates needless computations during bidiagonalization.

• QR decomposition and bidiagonalization both require a deterministic number of op-

21

erations, which can be calculated based on the size of the input matrix. Diagonaliza-

tion, on the other hand, is an iterative process which terminates based on convergence

conditions. Therefore diagonalization has a non-deterministic run-time, which is in-

fluenced by the content of the matrix. Separating the deterministic stages from the

non-deterministic stages is an important design consideration when partitioning the

SVD process between custom parallel hardware and the sequential host CPU.

2.5.1 QR Decomposition

QR decomposition is the process of factoring a matrix, A, into an orthogonal matrix, Q, and

an upper-triangular matrix, R, such that QR = A. When performing the decomposition in

order to compute the singular values of A, only R is needed [13]. In this case it may be more

appropriate to call the process triangularization, or unitary triangularization [14]. The term

QR decomposition is maintained here because its use appears to be more widespread. Two

common methods for obtaining the QR decomposition are by use of Householder reflections

and by use of Givens rotations.

2.5.2 Householder Method

Using a Householder transformation [14], a vector may be reflected about an arbitrary plane

(in the 3-dimentional case), or hyperplane in the N-dimensional case. If this hyperplane is

chosen correctly, then the resulting vector can be made to lie directly along one axis of the

coordinate system, or have components along some dimensions but not others. This kind of

transformation can also be applied to a matrix, where each column of the matrix corresponds

to a different vector. In this case all vectors are reflected about the same hyperplane, and

because the orientations of the vectors relative to each other are maintained, the singular

values of the matrix will be preserved.

In order to perform QR decomposition, a group of vectors comprising a matrix may be

successively reflected about a sequence of hyperplanes. The first hyperplane may be chosen

such that the reflection operation causes the vector corresponding to the first column of the

matrix to be aligned along the dimension corresponding to the first row of the matrix, thereby

22

causing all elements in the first column that lie below the first row to be annihilated. Likewise,

the second Householder transformation may be chosen in a way that causes the vector in

the second column to be reflected such that it has components in only two dimensions,

those corresponding to the first two rows of the matrix. This process may continue until all

sub-diagonal elements in the matrix are zero, and the matrix is upper-triangular [14].

In terms of implementation, the Householder method is typically considered the most efficient

for implementation on a sequential processor, because it involves fewer total operations than

methods using Givens rotations [15][16]. Unfortunately the algorithm involves data depen-

dencies and other characteristics that make the method difficult to implement using parallel

processing techniques [13]. Consideration of the Householder method for use in the SART

co-processor system revealed two such problems that would have hindered an FPGA-based

QR decomposition implementation employing this method.

The first problem lies in the fact that one reflection operation must be performed before the

Householder transformation matrix for next reflection operation can be computed, thereby

forcing a linear sequence of: compute Householder matrix, perform transformation, compute

Householder matrix, perform transformation, et cetera. In some cases, a dependency such

as this can be overcome through pipelining techniques, whereby the first transformation is

applied to the input matrix while the second transformation is being applied to the previous

input matrix, and the third transformation is being applied to the matrix before that, et

cetera. Unfortunately there are problems with this approach towards the Householder method

on an FPGA.

The main concern relates to the amount of memory available to each stage in the pipeline.

That is, each stage must store the entire contents of the matrix, apart from the elements

annihilated by previous stages. This may not be a problem for multiprocessor computer

systems, but even in modern FPGAs, memory resources can be quite limited. The use of

off-chip memory may be a solution, but this would lead to a requirement for very large IO

bandwidth, which is impractical. The second flaw in the pipeline solution is a lack of balance

between the loads on each stage. The nature of the Householder method is such that each

stage would be required to work on a smaller matrix than the previous stage, meaning that

some stages would finish their computations more quickly than other stages, and would be

left idle for some time, wasting hardware resources.

23

Another characteristic of the Householder method that makes its implementation less prac-

tical is its requirement for the computation of square-roots and division operations when

calculating vector norms, and unit vectors. While not impossible to implement on an FPGA,

these operations typically involve more hardware and latency than multiplication and addi-

tion operations, and should be avoided. For the reasons outlined above, QR decomposition

methods involving Givens rotations are typically preferred for parallel implementations, de-

spite the fact that the Householder method requires fewer total operations.

2.5.3 Givens Rotations

During a Givens rotation, an N-dimensional vector is rotated such that its components in only

two dimensions are changed. Similar to a Householder transformation, the Givens rotation

angle may be chosen such that the vector being rotated is left in an orientation where one of

its components is zero, while its overall length remains unchanged. If the vector is part of

a matrix, and all vectors in the matrix are rotated by the same angle, then one element of

the matrix may be reduced to zero without effecting the singular values of the matrix. The

Givens method for QR decomposition of a matrix involves a sequence of rotations, with each

rotation eliminating one element of the matrix [15].

A Givens rotation is performed by premultiplication with a rotation matrix of the form

G =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

(2.7)

Because the rotation matrix is sparse, the entire matrix multiplication need not be im-

plemented. Instead, only the rows or columns involved in the operation are altered. For

24

example,
a11 a12 a13 a14

a′21 a′22 a′23 a′24

a31 a32 a33 a34

a′41 a′42 a′43 a′44

 =

1 0 0 0

0 cos(θ) 0 − sin(θ)

0 0 1 0

0 sin(θ) 0 cos(θ)

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 (2.8)

becomes[
a′21 a′22 a′23 a′24

]
= cos(θ)

[
a21 a22 a23 a24

]
− sin(θ)

[
a41 a42 a43 a44

]
and

[
a′41 a′42 a′43 a′44

]
= cos(θ)

[
a41 a42 a43 a44

]
+ sin(θ)

[
a21 a22 a23 a24

]

(2.9)

For the Givens rotation to eliminate a42, θ must be chosen such that

cos(θ)a42 = −sin(θ)a22 (2.10)

Therefore,

θ = tan−1(
−a42

a22

) (2.11)

A Givens rotation may also be applied by post-multiplication with a rotation matrix. In this

case, the operation involves two columns of A instead of two rows.

In the case of a matrix containing complex values, the phase of one or both rows must

be adjusted such that element annihilation still occurs. For example, the previous result

25

becomes[
a′21 a′22 a′23 a′24

]
= cos(θ)e−jφ22

[
a21 a22 a23 a24

]
− sin(θ)e−jφ42

[
a41 a42 a43 a44

]
and

[
a′41 a′42 a′43 a′44

]
= cos(θ)e−jφ42

[
a41 a42 a43 a44

]
+ sin(θ)e−jφ22

[
a21 a22 a23 a24

]

(2.12)

where φ22 is the phase angle of a22 and φ42 is the phase angle of a42.

Order is critical when implementing the sequence of rotations. Rotations must be performed

in a manner that avoids reintroducing energy into a matrix element that was reduced to zero

by a previous rotation. This can be accomplished by performing the rotations starting from

the left most column of the input matrix, and moving to the right only after all sub-diagonal

elements in the current column have been eliminated. For example if the input matrix is

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2.13)

and a rotation is performed to move energy from element a31 to element a11, then the top

and bottom rows must be altered, and the result is

A =

 a′11 a′12 a′13

a21 a22 a23

0 a′32 a′33

 (2.14)

If the next rotation attempts to move energy from element a′32 to element a′12, then the

bottom row will again be altered. In the process, energy from a′11 may be transferred back

to the lower left element. Instead, energy from a21 should be transferred to element a′11, in

order to obtain

A =

 a′′11 a′′12 a′′13

0 a′22 a′23

0 a′32 a′33

 (2.15)

26

Now, energy from a′32 may be moved to element a′22. Because the two sub-diagonal elements

in the left column are both zero, there is no danger of reintroducing energy into either of

them. After this rotation, the example 3-by-3 matrix will be triangular. This process may

be extended to perform triangularization of larger matrices. The total number of rotations

required is equal to the number of sub-diagonal elements in the matrix.

The most attractive aspect of the Givens rotation method of QR decomposition is its suit-

ability for parallel implementation. Because only two rows or two columns of the matrix are

altered during any one rotation, multiple rotations may occur in parallel provided they do not

involve any of the same matrix elements. Furthermore, square-root and division operations

may be avoided in a hardware implementation by employing the COordinate Roatation DIg-

ital Computer (CORDIC) algorithm for calculating 2-D vector magnitudes, and unit-length

rotation vectors.

2.5.4 The CORDIC Algorithm

The COordinate Rotation DIgital Computer (CORDIC) algorithm is widely used for digital

signal processing systems implemented in hardware [17]. The algorithm allows trigonometric

functions to be computed without square-root or division operations. Instead, the algorithm

employs a series of shift and add operations to iteratively rotate an input vector to zero, or

through some arbitrary angle [18].

Consider a two-dimensional rotation of the form[
a′1

a′2

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
a1

a2

]
(2.16)

Division by cos(θ) gives

1

cos(θ)

[
a′1

a′2

]
=

[
1 −tan(θ)

tan(θ) 1

] [
a1

a2

]
(2.17)

If the rotation angle is chosen such that tan(θ) = 2−n, then multiplication by tan(θ) can be

27

implemented as a binary shift, and a vector rotation becomes

1
cos(atan(2−n))

a′1 = a1 ∓ a2(2−n)

and

1
cos(atan(2−n))

a′2 = a2 ± a1(2−n)

(2.18)

where the ± operations are used to encode the direction of rotation.

Using this method for rotation, an input vector may be rotated by successively smaller angles,

until the desired angle is reached. Rotation towards zero may be achieve by observing the

sign of x and y, and choosing the rotation direction accordingly. Correction for the 1
cos

scale

factor may be neglected until the end of the series of rotations, at which time the compounded

correction factor may be applied as multiplication by a pre-computed constant

K(n) =
n∏
i=0

cos(atan(2−i)) (2.19)

where n is the number of so called mirco-rotation iterations. Typically, one micro-rotation is

needed for each bit of angular precision.

2.5.5 Bidiagonalization

After QR decomposition has been performed in order to obtain an upper-triangular matrix,

bidiagonalization may begin. The purpose of bidiagonalization is to bring the matrix as

close its diagonal form as possible while still employing an algorithm with a deterministic

run-time. Another benefit of bidiagonalization is the elimination of phase information. That

is to say, a complex matrix may be bidiagonalized such that all non-zero elements are strictly

real. This simplifies the subsequent diagonalization process, and reduces the amount of data

transferred between the two processing stages.

The bidiagonalization is very similar to the QR decompositon process in that it can be per-

formed using a sequence of Givens rotations to reduce all but the diagonal and superdiagonal

28

elements to zero. As in the QR decomposition case, reintroduction of energy into previously

annihilated elements must be avoided. This may be accomplished by alternating between

column elimination and row elimination.

The process of bidiagonalizing a upper-triangular matrix begins with the elimination of the

upper-rightmost matrix element using a Givens rotation from the right. This corresponds

to an operation involving two matrix columns. The energy from the upper-right may be

rotated into any column other than the left-most column, which contains zeros below the

diagonal (due to the QR decomposition stage) that should not be corrupted. Unfortunately,

rotation operations that seek to eliminate elements in the first row will re-introduce energy

into the sub-diagonal elements of other columns of the matrix, but this counter-productivity

is unfortunately necessary. Rotations continue in this fashion until all elements in the top

row, apart from the two leftmost elements, are annihilated. At this point the matrix should

have the form

A =

a11 a12 0 · · · 0

0 a22 a23 · · · a2n

...
...

...
. . .

...

0 am2 am3 · · · amn

 (2.20)

The next phase is the elimination of the sub-diagonal elements in the second column. When

these elements have been annihilated, the second row may be targeted. All elements in the

second row apart from the diagonal element and the element just to the right of the diag-

onal element may be eliminated without introducing energy into the previously annihilated

elements. The algorithm proceeds with the elimination of sub-diagonal elements in column

three and elements to the right of the super-diagonal in row four, and continues until the

matrix is bidiagonal.

29

2.5.6 Diagonalization

Diagonalizing the bidiagonal matrix is the final step in determining the singular values of

the original input matrix. Many methods may be employed, but the simplest one involves

the same Givens rotations as the QR decomposition and bidiagonalization algorithms. More

efficient methods have been developed in [19], [20], and others. Regardless of which method

is used, diagonalization is an iterative process. Each time an off-diagonal is annihilated, a

non-zero value is reintroduced into a previously annihilated element. Fortunately, the process

converges after several iterations [13].

2.6 Quantified SART Computational Requirements

The computational burden associated with the SART algorithm may be described as the

number of arithmetic operations required for a single SART scan. This figure can be itemized

into a list of operation counts for each stage. Another important metric is the amount of

data transferred between stages, which has implications related to memory and interface

bandwidth requirements. These operations counts and bandwidth requirements, which are

discussed below, will be functions of the size of the signal matrix, m-by-n, where n is the

number of receive elements, and m is the number of sub-carrier tones in the transmitted

signal. Some of them will also be functions of the number of locations in the SART scan-

grid, G, or the number of ADC samples, N , collected at each receive element.

Fast Fourier Transform (FFT): The FFT algorithm for performing a Discrete Fourier

Transform (DFT) has a complexity of O(Nlog2(N)) [21], where N is the length of the input

array. For the SART application this length is equal to the number of time samples collected

at each receive element. Because an FFT must be performed for each receiver, a factor of n

must be included, resulting in a total complexity of O(nNlog2(N)). The amount of data that

flows into this stage of the algorithm is nN . Because only the frequency bins corresponding

to sub-carrier tones are used, the amount of data flowing out of this stage equals the number

of elements in the signal matrix, mn.

30

Signal Matrix Rephasing: The rephasing stage involves element-wise multiplication of

the signal matrix with a different rephasing matrix for each scan-grid location. Assuming

each complex multiplication requires 6 operations, the complexity of this stage is O(6Gmn).

The amount of data in is mn. The amount of data out is Gmn.

QR Decomposition: Using a figure from [13], the complexity of QR decompositon using

Givens rotations is O(12n2(m− n/3)). Multiplying by the number of locations in the SART

scan-grid gives a total complexity of O(12Gn2(m − n/3)). The amount of data in is Gmn.

The amount of data out is less, due to the elimination of the lower portion of the matrix.

The amount of data flowing out of this stage is G multiplied by number of non-zero elements

in an n-by-n upper triangular matrix, G(n2 + n)/2.

Bidiagonalization: The number of operations required to compute bidiagonalization using

Givens rotations is approximately twice the complexity of QR decomposion of an equally sized

matrix. The total complexity of the bidiagonalization stage is O(16Gn3). The amount of

data in is G(n2 + n)/2. The amount of data out is equal to one diagonal and one super

diagonal for each scan-grid location, or G(2n− 1).

Diagonalization: According to [13], the complexity of diagonalization is O(54n) per it-

eration, assuming single precision, and approximately 12 operations per square-root (Intel

processors generate 2 bits of precision each clock cycle for square root calculations [22]).

For a scan-grid with G scan locations, and assuming a conservative 20 interations, the total

complexity is O(1000Gn). The amount of data in is G2n − 1. The amount of data out is

Gn.

Totals

In the current implementation of SART, sixteen receive elements are used, and 103 sub-

carrier tones are transmitted. The signal matrix therefore has dimensions m-by-n equals

103-by-16. A moderately sized scan-grid, perhaps for a small home, consists of G = 10, 000

points. The number of samples collected for each receive element is N = 8192. Using these

31

figures, the operation and data counts from above can be calculated. Table 2.6 summarizes

these values, which are also represented visually in Figures 2.1 and 2.2.

Processing Stage Name Operations [millions] Data Out [MB]

Fast Fourier Transform 0.1065 0.0132
Rephasing 19.78 26.37
QR Decomposition 600.1 2.176
Bidiagonalization 131.1 0.496
Diagonalization 32.00 0.256

Table 2.1: Operation and data output counts for SART processing stages

FFT Rephasing QR Decomp. Bidiagonalize Diagonalize
0

200

400

600

800

Processing Stage Name

O
pe

ra
tio

n
C

ou
nt

[m
ill

io
ns

 o
f o

pe
ra

tio
ns

]

Figure 2.1: Operation count graph for SART processing stages

FFT Rephasing QR Decomp. Bidiagonalize Diagonalize
0

10

20

30

Processing Stage Name

O
ut

pu
t D

at
a

C
ou

nt
[M

B
]

Figure 2.2: Data count graph for SART processing stages

32

It is clear that the processing associated with the FFT is negligible compared to the rest

of the algorithm. This is mainly because FFT computations only happen once per SART

scan, whereas all other operations happen once for each scan location. The rephasing stage

also has a relatively low complexity. However rephasing generates a lot of output data,

which could lead to data transfer bottlenecks. The QR decomposition stage presents the

largest computational burden because of the large signal matrix height, m, and is an excellent

candidate for accelertion. The bidiagonalization stage is less complex than the QR stage, but

still has high relative complexity and is a good candidate for acceleration. The diagonalization

stage has lower complexity, and a good speed up (of 600/30 = 20 times) could be obtained

even if its implementation remains in software.

These figures will be used in Section 4.2, when the SART algorithm is partitioned between

hardware and software. The following chapter describes the hardware platform, which was

selected for prototype development.

33

Chapter 3

System Platform

This chapter provides a description of the platform that was used to develop the SART co-

processor system prototype. The benefits of field programmable gate array (FPGA) technol-

ogy are discussed in general terms. The selected development platform is then presented, fol-

lowed by more detailed description of the FPGA device on which the platform is based.

3.1 Field Programmable Gate Arrays

The highest performance digital signal processing systems available today are based on cus-

tom manufactured application-specific integrated circuits (ASICs). Photo lithographic man-

ufacturing processes provide complete flexibility, allowing almost any digital circuit to be

implemented using raw semi-conductor materials. These structures may be highly optimized

so that very high clock rates, in the gigahertz, may be achieved. Unfortunately, ASIC man-

ufacturing costs currently reach into the millions of dollars for complicated digital signal

processing ICs [23].

Field programmable gate arrays (FPGAs) provide a lower cost solution for custom digital

signal processing systems, and are often used for ASIC prototyping. FPGAs are produced

using the same manufacturing process employed for application specific circuits, but are de-

signed such that the function of the IC is not fixed. Each FPGA contains many small blocks

34

of digital logic that may be configured and interconnected by specifying the contents of the

FPGAs configuration memory. In this way an FPGA provides a general purpose platform for

constructing custom digital systems, which may consist of many sub-systems that operate

in parallel. Unfortunately, FPGAs cannot achieve the same clock rates as ASICs; they are

typically about 10 time slower [24]. This is because the routing network that provides inter-

connection amongst the elements within an FPGA is reconfigurable and not optimized like

the routing within an ASIC. Furthermore, digital logic functions that would be implemented

in an ASIC using logic gates must be implemented using small look-up tables (or memory

elements) within an FPGA. Because these memory elements are slower than the equivalent

combinations of gates, this also limits the clock rate of an FPGA implementation. Despite

these limitations, FPGAs are widely used for implementation of digital signal processing

systems, especially when the flexibility of a reconfigurable platform is advantageous. FPGAs

are particularly popular in the production of specialized systems, when only a few units are

produced and ASIC manufacturing costs cannot not be recouped.

3.2 Prototyping Platform

Although the final version of the SART co-processor will be implemented on a custom printed

circuit board, an off-the-shelf development platform was selected for prototyping. The chosen

platform is sold by Alpha Data, and is based on the Xilinx Virtex-4 SX55 FPGA. The SX55

is the largest in the SX series, which is geared towards digital signal processing applications.

The Alpha Data platform is designed for compatibility with a standard PCI or PCI-X in-

terface, and can be installed directly into a host PC. Alpha Data provides drivers and a

programming interface that allow access to the FPGA using a memory-mapping scheme. In

addition to the FPGA, the platform includes a PCI bridge for the host interface, and multiple

banks of SRAM for data storage. A diagram of the platform is shown in Figure 3.1. The

Alpha Data platform is relatively expensive, at about $5000. However, this is because it is

general purpose, and contains components that will not be necessary in the final co-processor

system. For example, the high-speed SRAM ICs cost a few hundred dollars each. Because

the co-processor system was designed to minimize external memory requirements, this could

be replaced with one inexpensive SDRAM IC.

35

High-Speed
SRAM Banks

Clock
Generation

Configuration
Memory

External IO

Local Bus

Virtex-4 SX55 FPGA

Control FPGA
(not user configurable) PCI Bridge IC Host

PCI Bus

Figure 3.1: Diagram of the general purpose FPGA development platform from Alpha Data.

3.3 Virtex-4 FPGAs

When designing for an FPGA target, the architectural details of the device must be constantly

considered, as they will heavily influence the final design. For example, the amount of memory

available within the device will limit data storage and buffering, and the number of internal

RAM banks will limit the rate at which internally buffered data can be accessed. The Virtex-

4 series FPGAs are based on three types of building blocks: configurable logic blocks (CLBs),

digital signal processing blocks (DSPBs), and memory blocks or “block RAM” (BRAM). In

this section, these architectural elements are described. Various design challenges that arise

due to the nature of these elements are noted along the way.

3.3.1 Configurable Logic Blocks

CLBs comprise the fundamental fabric of the FPGA. They can be used to implement all types

of digital logic, including: logic gates, flip-flops, registers, state machines, and arithmetic

functions. Each CLB contains four smaller blocks, known as “slices”. Every slice contains

two small 4-input look-up tables (LUTs), and two flip-flops. At runtime, the LUTs are

configured in order to define their desired logic functions. For example, if a 4-input AND-

gate is desired, then one LUT should be configured such that it outputs a logic-1 for an

input consisting of four logic-1s, and a logic-0 for all other input combinations. The flip-

flops may be used to register the output of the LUTs, or one of the slice inputs. Each

36

slice also contains additional logic for implementing a high-speed carry chain, which may be

used in the implementation of binary adders or counters, and multiplexer circuitry for signal

selection and dynamic routing. Multiple CLBs may be connected, using configurable routing

resources, to form larger logic functions. The structures of a CLB and a logic slice are shown

in Figure 3.2. The SX55 FPGA contains more than 55,000 CLBs.

In practice, the configurations of individual CLBs are almost never manually assigned. In-

stead, an engineer may use hardware description language (HDL) code to describe a digital

circuit behaviorally or at a register transfer level. Powerful synthesis tools provided by the

FPGA manufacturer, or third-party vendors, may be used to ‘compile’ the HDL code so

that each function is automatically mapped into CLBs. However, despite this automation,

the designer must always be considering the CLB architecture, and predicting how each line

of code will be mapped to these functional blocks. For example, in an ASIC design, a 5-

input AND-gate will have a propagation delay that is only fractionally larger than that of

a 4-input gate. Whereas in an FPGA, the larger gate must be implemented using multiple

LUTs, combined with multiplexer circuit to select one of the two LUT outputs. If more than

two LUTs are needed for some logic function, then multiple slices or CLBs will be required,

and additional routing delays must be considered.

LUT

FX

G
inputs

FXINA MUXFX

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

Y

YQ

F5
MUXF5

X
LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQInterconnect
to Neighbors

SLICEM
(Logic or Distributed RAM or Shift Register)

SLICEL
(Logic Only)

CIN

SLICE (2)
X0Y1

SLICE (0)
X0Y0

Switch
Matrix

COUT

CLB

COUT

CIN

SLICE (3)
X1Y1

SLICE (1)
X1Y0

SHIFTIN

SHIFTOUT

(a) (b)

Figure 3.2: (a) Structure of a configurable logic block (CLB) [25]. Each CLB contains four
logic “slices” which are connected to neighboring slices, and to the routing network through
a reconfigurable switch matrix. (b) Structure of a logic slice. Each slice contains two 4-input
look-up tables, two flip-flops (or latches), multiplexers, and other supporting logic.

37

3.3.2 Digital Signal Processing Blocks

FPGA based designs typically involve arithmetic operations. This is especially true for signal

processing applications. For this reason, Virtex-4 FPGAs contain arithmetic circuit blocks, so

that CLBs need not be used to implement arithmetic operations. These so called DSP blocks

are highly optimized, and may be operated at higher clock rates compared to functionally

equivalent CLB-based circuits. Each DSP block contains a 18-bit signed multiplier circuit,

and a 48-bit adder/subtractor/accumulator circuit. Each circuit has a selectable output

register, and various multiplexers and control lines are available for controlling the over-all

behavior of the DSP block. Multiple DSP blocks may be cascaded to implement higher-

precision operations. A simplified diagram of the Virtex-4 DSP block is shown in Figure

3.3. The SX55 contains 512 of these blocks, making it capable of highly-parallel signal

processing.

±

ZEROC_IN

A

B

PC_INBCIN

P
18

18

48

1848

18

48 48

48

48

36

48

48

48

Y

X

BCOUT PC_OUT

Z

72

18

18
36

36

48

48

Wire Shift Right by 17 Bits

SUBTRACT

CIN

X

Figure 3.3: Structure of a DSP Block [26]

38

3.3.3 Block RAM

In order to allow storage and buffering of data, each Virtex-4 contains multiple blocks of

dual-port SRAM. Each block has a capacity of 18kbits, and has configurable data port

widths of up to 36 bits. The dual-port nature of the RAM allows simultaneous access to

two memory locations, enabling the construction of first-in first-out (FIFO) type buffers, and

shared memories. In fact, all necessary FIFO logic is included in each block so that CLBs

need not be used. The SX55 contains 320 blocks of RAM, giving it a total of more than 5 Mbit

of storage capacity, and an internal memory bandwidth greater than 9,000 Gbit/sec.

3.3.4 Resource Availability Constraints

The resources available in an FPGA are fixed in both quantity and location. This leads to

an additional challenge when designing a digital system that targets an FPGA. The design

must be a good match to the constraints imposed by resource abundance and distribution

within the targeted device. For example, if a design targeted for the SX55 consists of two

sub systems, one of which consists mostly of DSP blocks, and one that is composed purely

of CLBs, then each subsystem is potentially wasting half of its available resources. This is

because the DSP blocks are distributed amongst the CLBs, and a module consisting only of

CLBs will potentially surround one or more DSP blocks, obscuring access to their ports. It is

therefore beneficial to seek a match between the resource availability ratio, and the resource

consumption ratio. Achieving this balance in the SX55 can be difficult because it contains

many DSP blocks, and mapping functions into these blocks can be difficult and is not fully

automated in the synthesis tools.

The SX55 was selected because of its suitability to high-performance DSP applications. How-

ever, due to tight constraints on CLB resources, this selection may not be completely ap-

propriate. Section 7.1 contains a discussion about how other devices may be used in future

versions of the SART accelerator. Table 3.1 contains information about the resource availabil-

ity on various Virtex-4 devices. The current low-volume cost per device is also shown.

39

Resources Available
Device DSP Blocks CLBs BRAM Approx. Cost

LX60 64 60k 160 $600
LX80 80 80k 200 $1000
LX100 96 110k 240 $1600
LX160 96 152k 288 $3200
LX200 96 200k 336 $6000
SX35 192 35k 192 $550
SX55 512 55k 320 $1100
FX40 48 41k 144 $600
FX60 128 56k 232 $1000
FX100 160 94k 376 $2000
FX140 192 142k 552 $4800

Table 3.1: Available resources on various devices in the Xilinx Virtex-4 family FPGAs. Note:
the FX series devices include additional features such as PowerPC processing cores, Ethernet
MACs, and high-speed IO transceivers.

40

Chapter 4

SART Co-processor Architecture

The purpose of this work was to design a digital system capable of accelerating computations

associated with the SART algorithm. The system needed to provided a solution that was

compact and low-power compared to a cluster of general purpose computers. The accuracy of

the output needed to be comparable to the existing solution, which employs single-precision

floating point arithmetic. The system also needed to be scalable in order to accommodate

larger signal matrices in the likely event that the number of receive elements or sub-carriers

was increased. This chapter begins with a discussion of the design approach that was used to

meet these goals. The SART algorithm is then partitioned into tasks suitable for hardware

and software implementations. Remaining sections contain a description of the SART co-

processor system, and all of its sub components.

4.1 Design Approach

The power and size requirements were satisfied by selecting FPGAs as the main processing

elements. FPGAs consume less space and power than a PC with equivalent signal processing

capabilities [24]. Like PCs, additional FPGAs may be used in parallel to obtain any process-

ing performance required. An FPGA-based design also has the added benefit of being readily

portable to an ASIC process [23]. Once optimized and implemented as an ASIC the design

will run at clock frequencies up to 10 times higher, and consume even less power. Almost any

41

numerical precision can be implemented on an FPGA, so obtaining the required accuracy is

possible. However, sometimes trade-offs between accuracy and resource consumption lead to

compromise in this area. For example, FPGA designs often employ fixed point arithmetic

because floating point operations require more hardware.

In order to obtain good scalability of the design, such that larger matrices could be processed

by simply extending the same design, a modular approach was taken. The QR decomposition

stage was implemented as a linear processing array (or systolic array), consisting of multiple

identical array elements each of which processes only part of the input matrix. The size of

the processing array many simply be increased for larger matrices. Because processing power

scales up with the matrix size, array designs have speedup performance that increases with

matrix size. The approach also promotes design reuse, which results in faster development

and debugging [27].

In a processing array, data and control signals should flow from one array element to the

next, being registered at least once in each element. This prevents “broadcasting”, where a

single signal must travel to many sub-systems during a single clock cycle. Because these sub-

systems may reside on opposite sides of the FPGA, broadcasting uses more routing resources

and results in lower clock frequencies. For the same reason, resource sharing should be

limited to between adjacent modules. Limiting resource sharing also helps to avoid resource

consumption associated with the implementation of large multiplexers.

Additional design goals were adopted based on the limitations and characteristics of the

chosen FPGA. Within the SX55, there is only a limited amount of RAM. The memory

available to each module was limited to a fraction of that amount. Similarly, the SX55

has many DSP blocks, and fewer CLBs than other FPGAs, so each processing element was

designed to obtain most of its functionality from DSP blocks.

4.2 Algorithm Partitioning

The SART algorithm was partitioned such that a portion of the associated computations are

conducted using custom co-processor hardware, while the remaining portion are conducted in

software on the host PC. Three factors were considered when choosing the partition bound-

42

aries:

• the number of computations associated with each processing stage

• the amount of data flowing in and out of each stage

• the suitability to parallel implementation of each stage

The first factor is critical because the number of operations assigned to the host PC must be

small, so that a sufficient speed-up may be obtained. The amount of data flow between stages

is an important consideration because data that flows between the host and the co-processor

should be limited. This will help to avoid data transfer bottlenecks, and minimize the number

of memory transactions in the host so that its processing is not impaired. Though difficult to

quantify, the suitability of each processing stage to parallel implementation is an important

metric because implementation of highly sequential algorithms is typically less efficient and

more difficult on a parallel platform such as an FPGA.

Using the results from Section 2.6, it was clear that the QR decomposition and bidiagonal-

ization stages represent the bulk of the SART computational burden, and were therefore

the prime targets for hardware implementation. The rephasing stage, though not computa-

tionally intensive, produces many rephased signal matrices for each input signal matrix. In

order to reduce the amount of data transfered from the host to the co-processor system, the

rephasing stage was also selected for hardware implementation. The remaining portions of

the SART algorithm were assigned to the host PC, but could so be assigned to a general

purpose DSP type processor. The FFT stage was assigned to the host in order to allow for

manipulation of the frequency domain signal data before SART processing. This allows for

various calibration and synchronization corrections to be applied by the host. The diago-

nalization stage was assigned to the host PC because it involves algorithms that are both

sequential and iterative, and therefore better suited to a sequential processor. Using this par-

titioning, the number of operations assigned to the host PC was reduced by more than 95%.

This corresponds to a potential speed-up of more than 20, if the co-processor performance is

sufficient.

43

4.3 Top-Level Architecture

The main components of the SART co-processor system are the:

• Host PC interface

• Rephasing stage

• QR decomposition stage

• Bidiagonalization stage

The host interface allows the user to load configuration information and signal data into the

co-processor. A memory mapping scheme is used, which allows access to the co-processor from

any C or MATLAB program. The rephasing stage uses the data from the user to generate

rephased signal matrices for all points on the chosen scan grid. These matrices are passed

through the QR decomposition stage, which has been implemented as a linear processing

array. Results from the QR decomposition stage are passed to the bidiagonalization stage.

The bidiagonalization stage has been implemented as multiple identical processing modules,

which work in parallel, but independently.

Host
Interface

QR Decomposition Stage

Bidiagonalization Stage
Rephasing
Stage

Figure 4.1: Top-level diagram of the SART co-processor system

The system description will begin with a discussion of the two fundamental operations that

must be performed by the co-processor. This is followed by descriptions of the two processing

modules, the “vector processing unit (VPU)” and the CODRIC module, which are used

repeatedly throughout the system to implement theses fundamental operations. Subsequent

sections will provide descriptions of the four sub-systems listed above.

44

4.4 Fundamental Operations

QR decomposition and bidiagonalization are accomplished by repeatedly performing Givens

rotations in order to zero out all but the diagonal and super-diagonal elements of the complex

signal matrix. The equations that a describe a Givens rotations involving two matrix row

vectors, ~aj and ~ak, that annihilates the jth element in row k, akj, are:

φj = angle(ajj) (4.1)

φk = angle(akj) (4.2)

θ = tan−1(
−|akj|
|ajj|

) (4.3)

~aj
′′ = cos(θ)e−jφj ~aj − sin(θ)e−jφk ~ak (4.4)

~ak
′′ = cos(θ)e−jφk ~ak + sin(θ)e−jφj ~aj (4.5)

These may be broken down and rearranged into an equivalent set of operations:

uj =
a∗jj
|ajj|

(4.6)

uk =
a∗kj
|akj|

(4.7)

u0 =
|ajj| − j|akj|√
|ajj|2 + |akj|2

(4.8)

<{~aj ′} = <{uj}<{~aj} − ={uj}={~aj} (4.9)

45

={~aj ′} = <{uj}={~aj}+ ={uj}<{~aj} (4.10)

<{ ~ak ′} = <{uk}<{ ~ak} − ={uk}={ ~ak} (4.11)

={ ~ak ′} = <{uk}={ ~ak}+ ={uk}<{ ~ak} (4.12)

<{~aj ′′} = <{u0}<{~aj ′} − ={u0}<{ ~ak ′} (4.13)

={~aj ′′} = <{u0}={~aj ′} − ={u0}={ ~ak ′} (4.14)

<{ ~ak ′′} = <{u0}<{ ~ak ′}+ ={u0}<{~aj ′} (4.15)

={ ~ak ′′} = <{u0}={ ~ak ′}+ ={u0}={~aj ′} (4.16)

where a∗ represents the complex conjugate of a, <{a} represents the real part of a, and ={a}
represents the imaginary part of a.

In this form, it is clear that there are two fundamental operations required to achieve a Givens

rotation. Firstly, as described by Equations 4.6, 4.7, and 4.8, computation of unit vectors

must be performed. Second, apart from a few sign changes, Equations 4.9 through 4.16 have

identical ‘sum-of-products’ forms, so this operation also must be implemented. Because these

two operations are so fundamental to the SART co-processor design, the following sections

describe how they were mapped into the architecture of the SX55 FPGA.

4.5 Vector Processing Unit

The vector rotation operations described by Equations 4.9 through 4.11 were implemented

in a module which has been labeled the vector processing unit (VPU). The module was

constructed using 16 DSP blocks, and performs four 35-bit multiplications and two 35-bit

addition/subtractions in parallel in order to produce a result for two of the equations simul-

taneously. It is completely pipelined to provide a throughput of one result per clock cycle

after a latency of 10 cycles. An opcode input is used to select which two operations are to

be performed on the current set of input vectors.

46

Given the inputs:

• a+ jb

• c+ jd

• cos(θ) + jsin(θ)

the VPU can produce the following outputs:

• x = acos(θ)− bsin(θ) [Equation 4.9 or Equation 4.11]

y = bcos(θ) + asin(θ) [Equation 4.10 or Equation 4.12]

• x = acos(θ)− csin(θ) [Equation 4.13]

y = bcos(θ)− dsin(θ) [Equation 4.14]

• x = ccos(θ) + asin(θ) [Equation 4.15]

y = dcos(θ) + bsin(θ) [Equation 4.16]

The equations have the same basic form involving two multiplications, whose products are

either summed or subtracted. This operation was implemented as a “multiply-add” sub-

module, which is described in the next section. As shown in Figure 4.2, each vector processing

unit contains two of these multiply-add modules.

One multiply-add module computes the real component of the result, while the other com-

putes the imaginary component. The inputs to the modules are selected from the six inputs,

based on the operation input code, op. The op-code is also used to generate the sub1 and

sub2 signals, which control the product sign inversions. The valid-input, vin, and operation

code, op, signals are delayed according to the latency of the multiply-add module, generating

valid-out, one-cycle-early valid-out, operation-out, and one-cycle-early operation-out signals,

which are used to propagate control information.

47

x

vout

vout_e

op_out

op_out_e

y

sub1

sub2

vin

vout

vout_e

a

xb

c

d

a

b

c

d

sin

cos

op

vin

sub1

sub2

vin

vout

vout_e

a

xb

c

d

operation
decoder

Multiply-Add X

Multiply-Add Y

z
-9

z
-1

Figure 4.2: Vector Processing unit consisting of two multiply-add modules, operation decoder,
and input multiplexers

4.5.1 Multiply-Add Module

The multiply-add module is used repeatedly throughout the SART co-processor architecture.

It accepts four 35-bit, two’s-complement formatted input values, a, b, c, and d, and two 1-bit

sign values, sub1 and sub2. From these values, the circuit computes two products which are

then summed with optional sign inversions, specified using the two sign bits. This operation

is described in Equation 4.17.

x(a, b, c, d, sub1, sub2) = ac(−1)sub1 + bd(−1)sub2 (4.17)

A simple, high-level diagram illustrating this function as a parallel system is shown in Fig-

ure 4.3. Two modules that perform multiplication are connected to two adder/subtracter

modules. A register stores the output of each module to reflect the normal pipelining method

for achieving maximum clock frequencies. This system would produce a new result on each

48

clock cycle, and have a latency of 3 clock cycles.

b

sub2

d

a

x

c

0

sub

sub

sub135

70 70

70

35

35

35

Figure 4.3: Diagram of a simple parallel system for computing a sum of two products

Because of the restrictions imposed by the architecture of the SX55 FPGA, the system

depicted in Figure 4.3 can not be implemented as a circuit directly. The sum of products

function must be mapped into the target architecture such that it makes efficient use of

the available resources. The SX55 FPGA is intended for signal processing applications,

and therefore contains many DSP blocks that are optimized for arithmetic operations. The

structure of a DSP block is shown in Figure 3.3. The module contains an 18-bit signed

multiplier circuit, and a 48-bit adder/subtractor/accumulator circuit. Therefore, the 35-bit

multiplication implemented in the multiply-add module cannot be implemented using a single

block.

In order to obtain higher precision, multiple DSP blocks must be combined. As shown in

Figure 3.3, each DSP block includes auxiliary outputs and inputs, PC OUT and PC IN, which

allow results from one DSP block to be passed to an adjacent DSP block where the value

may be added to the multiplier output in that block. Furthermore, the PC IN value may

be optionally right-shifted by 17 bits. This allows inputs corresponding to lower significant

digits to be appropriately adjusted in magnitude. For example, in order to multiply two 35-

bit numbers using 18-bit operations, the high and low words from one operand must each be

multiplied by the high and low words of the remaining operand. The products corresponding

to the multiplication of a high word with a low word must be right shifted by 17 bits. The

product of the two low words must be right shifted by 34 bits. The four partial products

may then be added to obtain the final result of the 35-bit multiplication. This is illustrated

in Figure 4.4.

49

0

0

[34:17]

Operands

Partial

Products

Full

Product

[16:0]

X

+
X

X

X

0

High Word

High Word

Low Word

Low Word

Figure 4.4: A 35-bit multiplication can be implemented using 18-bit multipliers by generating
18-bit partial products, which can be shifted and summed to obtain the full product

Using this technique, four DSP blocks can be used to implement each multiply operation in

the multiply-add module, as shown in Figure 4.5. Each of the four DSP blocks computes

a partial product, which is passed vertically using the PC IN and OUT ports, shifted if

necessary, and added to the other partial products. The first partial product is computed

after a 3 cycle latency in DSP block 0. The inputs to DSP block 1 are delayed by an additional

cycle, such that the second partial product arrives at the adder in block 1 during the same

cycle as the first partial product. The inputs to DSP blocks 2 and 3 are delayed by two and

three cycles, respectively, for the same reason. The result of the multiplication is available

six cycles after the operands are presented to the circuit’s input registers. The circuit is fully

pipelined to generates one new result per clock cycle.

In order to implement the sum of products operation, two of these multiplier circuits could

be connected to another DSP block that performs the addition operation. However, use of an

additional DSP block can be avoided by interleaving two 35-bit multipliers, and performing

the addition as part of the partial product summation. The least significant partial products

must be computed at the bottom of the DSP block chain, so they may be properly shifted

as they propagate upwards to be combined with partial products of higher significance. The

final 4-input multiply-add circuit is shown in Figure 4.6. The latency of the circuit is 10

cycles.

The presented configuration also provides the required sign inversion capability. Each DSP

slice in the FPGA includes a control bit that allows for selection of a subtraction operation

instead of addition. In this design, the subtraction control bits for the blocks that perform

50

sub

SUB

0

PC_OUT
18

48

PC_OUT

48

35 48

18

sub

PC_IN_SHIFT

PC_IN_SHIFT

SUB

18

35 48

18

18

18

A [34:18]

B [34:18]

A [16:0]

B [34:17]

18

18

sub
35 48

PC_OUT

48

sub

PC_IN

SUB

SUB

35 48

>> 17

>> 17

A [34:17]

B [16:0]

A [16:0]

B [16:0]

DSP Block 0

DSP Block 1

DSP Block 2

DSP Block 3

Figure 4.5: 35-bit multiplication mapped to four DSP blocks

multiplication of inputs a and c are connected to the s1 input signal. The DSP blocks

that generate the product of b and d are connected to the s2 control bit. In each case, the

control signals are delayed to match the pipeline latencies at each DSP block. By invert-

ing the individual partial products, either of the full products may be inverted during the

summation.

The multiplication of two 35-bit values produces a 70-bit result. However, because only the

top 35-bits are desired, the result must be rounded. This is accomplished by adding 1/2 of

an LSB (least significant bit with respect to the desired 35-bit value) to the 70-bit result,

and then truncating. This rounding constant is applied to the C IN port of DSP block 0

and included in the sum of partial products. The final sum-of-products result is truncated

to 35-bits.

51

PC_OUT

48

PC_IN_SHIFT

PC_IN

35 48

18

18

B [34:18]

D [16:0]

A [16:0]

C [34:17]

18

18

B [16:0]

D [34:17]

18

18

35 48

PC_OUT

48

PC_IN

C_IN

35 48

>> 17

PC_IN_SHIFT

sub

SUB

PC_OUT
18

35 48

18

B [16:0]

D [16:0]

SUB1

SUB2

DSP Block 0a

DSP Block 1a

DSP Block 1b

48

18

18

A [16:0]

C [16:0]

PC_OUT

48

PC_IN

35 48

DSP Block 0b

DSP Block 2a
PC_IN

A [34:18]

C [16:0]

18

18

35 48

DSP Block 2b

48

B [34:18]

D [34:18]

18

18

35 48

DSP Block 3a
PC_IN

A [34:18]

x [34:1]

x [0]

C [34:18]

18

18

35 48

DSP Block 3b

48

>> 17

0x0000FFFFFFFF

sub

SUB

sub

SUB

sub

SUB

sub

sub

SUB

sub

SUB

sub

SUB

SUB

Figure 4.6: 35-bit multiply-add mapped to eight DSP blocks

52

4.6 CORDIC Module

The COrdinate Rotation Digital Computer (CORDIC) algorithm may be used to implement

vector rotations and related trigonometric functions. Using the CORDIC technique, vector

rotations are computed using only shift, and add operations. That is, if the rotation angle,

θ, is chosen such that tan(θ) = 2−n, where n is a positive integer, then a vector rotation

operation can be reduced to the form shown in Equations 4.18 and 4.19.

kx′ = x∓ y2−n (4.18)

ky′ = y ± x2−n (4.19)

This simplificaiton is obtained at the expense of an introduced gain factor, k, which can be

compensated for at the end of series of these rotations, by multiplying by the inverse gain

factor, K(p), shown in Equation 4.20

K(p) =

p−1∏
i=0

cos(atan(2−i)) (4.20)

where p is the number of compounded rotation operations, and usually equal to numerical

precision of the arithmetic. For rotations vectors beyond the first quadrant, coarse rotations of

90, 180, and 270 degrees can be performed by manipulating the signs of the real and imaginary

vector components and/or swapping these components before CORDIC processing.

In the context of the CORDIC algorithm, the operation described by Equations 4.18 and 4.19

is known as a micro-rotation. By applying a sequence of these micro-rotations, with each

rotation angle smaller than that of the previous rotation, any rotation angle may be achieved.

When the CORDIC algorithm is used for rectangular to polar conversion, each rotation is

chosen to be in either the positive or negative direction such that the y-component of the

vector is reduced in magnitude, and the corresponding rotation angles (stored in a small look-

up table) are accumulated. If the desired operation is vector rotation by an arbitrary angle,

then this angle can be converted to a boolean vector corresponding to the rotation direction

for each micro-rotation. If a unit vector is desired, two CORDIC rotations may be performed

together, with the second rotation sequence mimicking the first. In this way, a unit vector

lying along the x-axis may be rotated to an orientation that is parallel to the conjugate of the

input vector. Furthermore, the unit vector may be pre-scaled by K(p) in order to eliminate

53

the gain compensation step at the end of the rotation. Unit vector calculation using this

technique is illustrated in Figure 4.7. In any case, the CORDIC algorithm converges to a

machine precision, of p bits, after p rotations.

Input Vector

Pre-scaled Vector

Rotated Vector

Unit-Vector

Conjugate

Figure 4.7: Generation of a unit vector using coordinated CORDIC rotations

4.6.1 Implementation Considerations

Xilinx, the manufacturer of the SX55 FPGA, includes a CORDIC module in their freely-

available design library. Unfortunately, this implementation was not well suited to the SART

co-processor system. As will be discussed in Section 4.9, the QR decomposition stage was

implemented as a linear processing array, which is intended to be very modular. Each element

in the array requires the ability to perform two CORDIC rotations simultaneously. It was

found that both CORDIC implementations provided by Xilinx were too large for the modular

approach. The sequential algorithm implementation, which uses one circuit to perform all

micro rotations in sequence, occupied too many of the CLB resources allotted to one array

element, as shown in Figure 4.8. The parallel implementation, which uses a pipeline with P

stages to perform P rotations simultaneously, was far to large to fit inside a single module.

The parallel implementation may have been appropriate if resource sharing was employed, but

this would have violated the modular design approach, and complicated the overall design.

The main problem with the Xilinx CORDIC module is due to the fact that it is constructed

from configurable logic blocks only. No DSP blocks are employed. This makes sense in the

context of many systems, especially when remembering that the CORDIC algorithm was

designed to avoid multiplication operations. Because each DSP slice contains a multiplier,

it may seem wasteful to implement CORDIC using them. However, sequential CORDIC

54

Figure 4.8: The Xilinx CORDIC implementation consumes a large portion (dark regions)
of the total resources allotted to one element in the QR decomposition processing array
(rectangle).

algorithms can be difficult to implement efficiently because each micro-rotation involves a

shift-add operation. In a parallel implementation, the output of one stage is may simply be

connected to the input of the next stage such that the shift is implemented using wires. In

a sequential CORDIC implementation, however, a shift-by-n circuit must be constructed. If

the shift is to be performed in one clock cycle, then this circuit becomes quite complex. This

may account for the large size of the Xilinx module.

The design presented here employs the DSP-block multiplication circuit to perform the shift-

by-n operation, because the shift operation is essentially a multiplication by a power of two. In

order to obtain the desired precision, multiple DSP slices must be cascaded as for the multiply-

add circuit in Section 4.5. Figure 4.5 shows a 35-bit multiplier structure. Unfortunately, some

challenges arise due to the pipelining of the DSP blocks, and the data dependency in the

CORDIC algorithm. That is, for each successive micro-rotation, a decision about rotation

direction must be made. This decision is made based on the sign of the y-component of

the rotated vector, which is dependent on the previous micro-rotation. Therefore, a result

from one rotation must exit the pipeline, before the data for the next rotation may enter

the pipeline. In order to use the pipeline efficiently, multiple CORDIC rotations may be

performed simultaneously, such that the pipeline is fully occupied.

55

4.6.2 CORDIC Implementation

Implementation of the CORDIC module began with the design of a shift-accumulate circuit

using DSP blocks. As noted, a shift operation may be viewed as a multiplication operation,

where one of the operands is a power of two. The four-block multiplier shown in Figure 4.5 was

simplified to a shifter composed of two DSP blocks. This is possible because the operand that

is a power of two contains only one bit that is set, and all other bits are zeros. Therefore,

either the high word, or low word of this operand is zero, and need not be factored into

the calculation. Multiplexers were used to select the appropriate word from the operand

to be shifted. The accumulation defined by Equations 4.18 and 4.19 was accomplished by

connecting the output of the shifter to the C IN port of the bottom DSP block. This feedback

value is shifted to the left by 17 bits in order to compensate for the left-shift that occurs

between the lower and upper DSP blocks. A register was inserted into the feedback path to

add one cycle of delay. This results in a match between the latency of the shift operation

and the latency in the feedback propagation. The subtraction control line allows the shifted

value to be either added or subtracted from the accumulated value. The shift-accumulate

circuit is shown in Figure 4.9.

PC_SHIFT_IN

[30:0]

[16:0]

35 48

sub

SUB

C_IN

sub

SUB

PC_OUT

18

35 48

18

48

48

<< 17

>> 17

input high word

input low word

input high word

shift vector high word

shift vector high word

shift vector low word

Figure 4.9: CORDIC shift-accumulate operation implemented using two DSP blocks.

In order to implement a CORDIC operation, two shift-accumulate circuits were combined.

One serves to compute the x-component (real component) of the rotated vector, while the

56

other computes the y-component (imaginary component). For coarse vector rotation, which

may involve swapping of the x and y components, multiplexers were added to the feedback

paths in the shift-accumulate circuits. One multiplexer input maintains the feedback loop,

while the second allows selection of the output of the other shift-add circuit. Using the

multiplexer control line, either feedback or swapping may be selected. The circuit is shown

in Figure 4.10.

PC_SHIFT_IN

[30:0]

[16:0]

35 48

sub

SUB

C_IN

sub

SUB

PC_OUT

18

35 48

18

48

48

<< 17

>> 17

PC_SHIFT_IN

[30:0]

[16:0]

35 48

sub

SUB

C_IN

sub

SUB

PC_OUT

18

35 48

18

48

48

<< 17

>> 17

SHIFT

VECTOR

X

Y

Figure 4.10: CORDIC rotation circuit implemented using two shift-accumulate circuits.

The latency of the CORDIC circuit is four cycles. In order to use the circuit efficiently, the

pipeline should be filled completely. This means that the circuit will compute four CORDIC

rotations simultaneously. In order to supply these inputs, some form of input multiplexing

was necessary. In order to save on CLB and routing resource consumption, additional DSP

slices were used as large multiplexing circuits, as shown in Figure 4.11. The inputs to the

CORDIC circuit are connected to these blocks. When the CORDIC process is triggered, these

57

values are shifted up and into the CORDIC processing circuitry. This is accomplished by

selecting the PC IN input instead of the C IN input on the bottom DSP block in the CORDIC

circuit. After the values are loaded, the circular pipeline is closed by switching back to the

C IN input and processing begins. The subtraction control lines on the multiplexer DSP

block are used to perform sign inversion required for coarse rotation at the beginning of the

CORDIC rotation procedure.

PC_SHIFT_IN

[30:0]

[16:0]

35 48

sub

SUB

C_INPC_IN

sub

SUB

Input Vector 1

Input Vector 2

PC_OUT

18

35 48

18

48

48

<< 17

>> 17

PC_IN

35

48

sub

SUB

0

0

C_IN

35

48

sub

SUB

0

0

Prescaled

Unit Vector

A:B

A:B

Figure 4.11: Inputs to the CORDIC circuit are selected using a wide multiplexer imple-
mented with two DSP slices. Inputs are connected to ports A and B, which are internally
concatenated. The operand multiplexers within the DSP slice allow selection of either the
input or zero, such that only one non-zero input is passed to the adder circuit. Inputs are
shifted up into the CORDIC circuit sequentially. The bottom DSP slices is also used to shift
a pre-scaled unit vector into the circuit, as in suggested in Figure 4.7

58

As will be discussed in the QR decomposition section, each CORDIC circuit performs com-

putations on two input vectors. For both input vectors, the circuit calculates a unit vector

with a phase angle equal to that of the complex conjugate of the input vector. For the first

input vector, the circuit also calculates the vector magnitude. Two of the four pipeline slots

are used for rotating the input vectors to a phase angle of zero. The other two pipeline slots

compute the unit vectors by mimicking theses rotations, as depicted in Figure 4.7. At the

end of the micro-rotation sequence, the scaling factor from Equation 4.20 is applied to the

first vector, which now lies along the x-axis. Compensation for the CORDIC gain factor is

necessary for obtaining the magnitude of the first input vector. The scaling factor is applied

using the DSP blocks, in the same manner as a shift operation, but requires two pipe cycles

because both the high and low words of the scale factor operand contain non-zero bits.

The shift vector input to the CORDIC circuit, which is either a power of two or the afore-

mentioned scale-factor, is stored in a block RAM (BRAM) module. An address counter

connected to the BRAM increments on every cycle after the CORDIC computation has been

triggered. This BRAM is also used to store the control signals that dictate the operation

modes of the four DSP slices on each clock cycle. The processing schedule for the CORDIC

module is shown in Figure 4.13.

By mapping the CORDIC algorithm into DSP blocks as described here, the footprint of the

CORDIC module was greatly reduced. Figure 4.12 shows its footprint in relation to the size

of one element in the QR decomposition array, so that it can be compared to the footprint

of the Xilinx CORDIC module in Figure 4.8.

Figure 4.12: The footprint of the CORDIC implementation (dark regions) was reduced com-
pared to the Xilinx implementation (lighter regions), and occupies only a small portion of the
total area allotted to a single element in the QR decomposition processing array (rectangle).

59

Processing
Block Top

x

x

Input 1

Unit Vect 1

Input 2

Unit Vect 2

Input 1

Unit Vect 1

Input 2

Unit Vect 2

Input 1

Unit Vect 1

...

x

Input 1

x

x

x

Input 1

Processing
Block Bot.

x

Input 1

Unit Vect 1

Input 2

Unit Vect 2

Input 1

Unit Vect 1

Input 2

Unit Vect 2

Input 1

Unit Vect 1

Input 2

...

Input 1

x

x

x

Input 1

x

Mux Block
Top

Input 1

Unit Vect1

Input 2

Unit Vect 2

x

x

x

x

x

x

x

x

...

x

x

x

x

x

x

Mux Block
Bottom

Unit Vect1

Input 2

Unit Vect 2

x

x

x

x

x

x

x

x

x

...

x

x

x

x

x

x

Loading

Data Processed by DSP Block

O
pe

ra
tio

n
P

er
fo

m
ed

 o
n

C
ur

re
nt

 C
yc

le

Swapping

Rotating

Scaling

(Repeats 31 times)

Figure 4.13: Processing schedule for CORDIC unit. The left column shows the operation
begin performed. The remaining four columns show the sources of the data being processed
by each DSP block in a shift-accumulate circuit.

60

4.7 Host Interface

The host PC interfaces with the SART co-processor system through a PCI bridge IC. Alpha-

Data provides all logic descriptions and software necessary for supporting this interface, as

a part of the prototyping platform development package. The included HDL files were used

to instantiate a state machine and logic, inside the FPGA, for controlling the bridge IC via

its “local bus” signals. These components reduce the interface to simple address and data

buses, with additional signals to indicate read and write transactions, and acknowledge data

availability. Memory and control elements within the FPGA are mapped into the memory

space of the host PC using adding additional logic for decoding the value on the address

bus, and placing output of the appropriate module on the data ouput bus. Device drivers

for the Alpha-Data development platform may be installed on any PC that supports the

PCI compatible interface. These drivers allow the included API libraries to be used in C

programs or MATLAB scripts for controlling the SART co-processor system. Table 4.7 shows

the memory mapping assignments for the SART co-processor system.

Table 4.1: Address ranges for various memory mapped system elements

Memory Element or Control Signal Write Read

Reset Signal 0x000000 none
Control and Status Register 0x000004 0x000004

SRAM - Rephasing Vectors 0x200000-0x3FFFFF none
Signal Matrix - Real Component 0x040000-0x043FFC none
Signal Matrix - Imaginary Component 0x080000-0x083FFC none
Result Buffer none 0x0C0000-0x1BFFFF

Bidiagonalize Stage Program RAM 0x1C0000-0x1C03FC none

4.8 Rephasing Stage

Rephasing of the SART signal matrix is accomplished by element-wise multiplication with

a “phase reference” matrix. The phase reference matrix is simply the set of complex expo-

nentials that describe the frequency-dependent phase shifts for the current scan grid location

(see Section 2.4). Since both the signal matrix and the phase reference matrix are com-

61

plex, their multiplication was easily implemented using the multiply-add module described

in Section 4.5. However, storage of large size scan grids presented a problem due to memory

constraints of the system. Even if all four banks of external SRAM were used, there would

only be enough space for a scan grid with about 630 points. A custom system could cer-

tainly contain more memory, but an alternate solution was necessary for producing a useful

prototype system.

4.8.1 Rephasing Matrix Compression

In order to reduce the amount of memory occupied by the SART phase reference data, a

simple compression scheme was adopted. Because the current implementation employs a

signal with sub-carrier tones that are placed on evenly-spaced frequency intervals, the phase

shifts undergone by theses sub-carriers are also evenly spaced. For example, if the first sub-

carrier undergoes a phase shift of θ0, then the second and third sub-carriers with undergo

phase shifts of θ0 + ∆θ and θ0 + 2∆θ. Furthermore, the initial phase shift, θ0, does not

effect the singular values of the signal matrix because it does not effect the linear dependence

between the effected column and other columns in the signal matrix. Ignoring θ0, the phase

shift of the kth sub-carrier may be expressed as

Θk = k∆θ (4.21)

the phase reference vector that encodes this phase shift is

Uk = ejk∆θ =
k∏
i=0

ej∆θ (4.22)

therefore the phase reference vector for any one sub-carrier may be obtained by multiplying

the phase reference vector of the previous sub-carrier with the constant phase step vector,

ej∆θ. This can be expressed as

Uk = Uk−1e
j∆θ, where U0 = 1 (4.23)

By storing only this phase step, the amount of memory consumed by the phase reference

array may reduced by a factor equal to the number of sub-carriers. For the current signal

62

matrix, the storage space is reduced by a factor of more than 100. Using this method, the

current SART co-processor system supports a scan grids of up to 16,384 points with a single

SRAM bank.

4.8.2 Input Interface

The implementation of the rephasing stage input interface is depicted in Figure 4.14. The

host PC accesses the module using the PCI bus interface provided by Alpha Data. The

signal matrix is loaded into to block RAM modules, which store the real and imaginary

components of the data. This RAM is large enough to store two signal matrices, so that a

new signal matrix may be tranfered from the host while the current signal matrix is being

processed. The SART scan-grid rephasing matrices are written to external SRAM in the

compressed format discussed in the previous section. For each location on the scan-grid, two

32-bit value are written for each column of the signal matrix. These values represent the

real and imaginary components of the phase-step vector, ej∆θ, discussed in Section 4.8.1. On

each clock cycle, the SRAM operation alternates between read and write so that the device

may function as a shared resource. Values and memory addresses from the host are buffered

so that they may be written to SRAM when the device is available. The interface to the

SRAM IC also was provided by Alpha Data as part of the development platform support

library.

4.8.3 Rephasing Matrix Decompression and Application

The rephasing matrices are decompressed, as they are needed, using the iterative technique

described in Equation 4.23. One phase step vector, ej∆θ, is retrieved from SRAM for each

column of the matrix, and stored in a pair of FIFOs buffers. An equal number of unit length,

zero-phase vectors are loaded into a second pair of FIFOs, these are the rephasing vectors

for the first row in the signal matrix. In subsequent cycles, calculation of the rephased signal

matrix and decompression of the rephasing matrix happen simultaneously, with one element

of the rephased signal matrix and one element of the rephasing matrix being generated on

each clock cycle.

63

SRAM Interface

data out

address

Signal Matrix Data RAMs

write en

data in

wr addr

rd addr

data out

write en

data in

wr addr

rd addr

data out

data in

write en

RAM Data FIFO

write en

read en

data in data out

RAM Address FIFO

write en

read en

data in data out

empty

Control Logic

SRAM

Host Interface

PCI Bridge IC

Host PCI Bus

local bus

data

address

mtrxdatar en

write en

mtrxdatai en

sram en

control register en

RAM address
RAM FIFO e

PCI data

PCI addr

ctrl reg en

RAM FIFO re

Inside FPGA

Figure 4.14: Rephasing stage input interface

The FIFOs that hold the real and imaginary components of the phase step vectors are read

on each clock cycle. Their outputs are fed back to their inputs in order to form cicular

buffers that will repeat their output once for each row in the signal matrix. As each phase

step vector appears on the outputs of the circular buffers, it is multiplied by the rephasing

vector for the previous row, thus generating the rephasing vector for the current row. Each

newly generated rephasing vector is applied to the appropriate element in the signal matrix

using a second complex multiplier, and also passed to the input of the rephasing vector buffer

for use during the next phase step iteration.

The signal matrix is processed beginning with the bottom row and first column. On each

clock cycle the column number is advanced by one. After the last element in the current

row has been processed, then the row number is decremented, such that processing of the

next row up may begin. The rephased signal matrix is stored in a FIFO buffer so it may be

used when the QR decomposition stage is ready for new data. A diagram of the rephasing

processing circuit is shown in Figure 4.15. It is pipelined such that an m-by-n matrix may

64

be rephased in mn cycles after n phase step vectors have been retrieved from RAM.

The control logic block shown in Figure 4.15 consists of a set of counters and registers. Two

counters are used to keep track of which row and column are currently being processed. A

third counter is used to keep track of which scan-grid point is currently being processed.

Processing occurs in bursts, such that multiple scan-grid points are processed before the host

must retrieve the computation results. The host system may load a control register with the

start and end points for the burst. The maximum burst length is 128 scan grid points, and

is limited by the size of the output buffers in the bidiagonalization stage.

vin

y

vout

a

x

1

0

b

c

d

Complex Multiply

vin

y

vout

a

xb

c

d

Complex Multiply

Phase Reference

FIFOs

write en

data in data out

read en

write en

data in data out

read en

Phase Step

FIFOs

data out

Control Logic

write en

data in data out

read en

write en

data in

read en

PCI data

PCI addr

PCI data

PCI addr

Signal Matrix Data

SRAM

Data

real

imag

Rephased

Signal Matrix

real

imag

stepR FIFO we

stepI FIFO we

step FIFO re

phase FIFO we

phase FIFO re

Figure 4.15: Rephasing stage decompression and application circuit

4.9 QR Decomposition Stage

The QR decomposition stage reduces the rephased signal matrix to upper triangular form.

This operation has the important property of reducing the number of elements in the input

matrix, without altering its singular values (see Sections 2.5.1 through 2.5.3). This introduces

a form of compression for narrow rectangular matrices, which is useful in the context of

FPGA-based processing because it reduces the amount of data that must be stored on-

chip, where memory resources are limited. For example, when processing a signal matrix

with dimensions of 128-by-16, the result is a 16-by-16 upper triangular matrix, and the

65

compression ratio is better than 1:8. In order to retain this benifit of QR decomposition

in a parallel implementation, the operation must be implemented by exploiting low level

parallelism. That is, it is not good enough to simply run multiple, independent, sequential-

type QR decomposition modules in parallel, because each one will require a full-size input

buffer or some other large data memory.

In order to exploit the data compression afforded by QR decomposition, the operation was

implemented using a linear array of processors. Data enters the array in bursts of one

matrix row at a time, and exits the array at the same rate. Each element in the processing

array requires storage space for only three matrix rows. Each array element eliminates

the subdiagonal matrix elements in one column of the input matrix, so n processors are

required for processing an m-by-n signal matrix. The matrix that exits the array is upper

triangular, and requires a smaller buffer than would be needed to store the rectangular input

matrix.

The linear array approach also results in a scalable system. The length of the processing

array may be increased for wider matrices. Widths of up to 265 are easily supported given

on-chip memory constraints. The height of the signal matrix is limited only by the fact

that sub-diagonal energy in the matrix will be concentrated onto the diagonal elements, and

will eventually cause overflow of the fixed-point data representation. Due to DSP and CLB

constraints, a single SX55 FPGA is capable of supporting up to 31 processing elements. For

matrices with more then 31 columns, multiple FPGAs may be used. Because the processing

array is linear, and not two-dimensional, the IO bandwidth requirement between devices is

achievable. Only two 48-bit buses, operated at the processing clock rate, are required to

interconnect one FPGA to both of its neighbors.

Because the number of processing elements grows as the width of the signal matrix is in-

creased, the processing performance of the array also scales up. This means that, when

compared to sequential processing machine, the parallel QR implementation will provide

greater speed-ups for larger matrices than for smaller matrices. In essence, the process-

ing time required for QR decomposition of an m-by-n matrix is reduce from O(mn2) to

O(mn).

66

4.9.1 Algorithm

Recalling the Givens Rotation method for performing QR decomposition in Section 2.5.3,

the algorithm dictates that all sub-diagonal elements in one column should be annihilated

before proceeding to the next column. Viewed from a different perspective, i.e. that of a

parallel system specification, the requirement states: for a processing element that eliminates

sub-diagonal matrix elements in column k, all sub-diagonal matrix elements in column k− 1

that enter this processing element must be zero. This statement is essentially self-fulfilling

assuming that the first processing element eliminates sub-diagonal matrix elements in the

first column, the second processing element eliminates matrix elements in the second column,

et cetera. The only challenge is to determine how eliminate each sub-diagonal element shortly

after it arrives, without knowledge of distant row content, so that only a few rows need to

be stored in each processing element.

The sub-diagonal element annihilation task can be localized to two adjacent rows if the

elimination processing begins at the bottom of the matrix, row m, and if the kth Givens

rotation operation is performed such that it involves moving energy from row m− (k− 1) to

row m+ k. This is exactly the method employed in the QR decomposition processing array.

Each new row that arrives is rephased such that phase of its leftmost non-zero element (the

target element) is set to zero as described by Equations 4.6, 4.9. and 4.10. The magnitude of

this element is then compared to the magnitude the corresponding element in a “feedback”

row, as described by the arctangent operation in Equation 4.3. The Givens rotation described

by Equations 4.13 and 4.14 is then performed in order to rotate the energy of the target

element into the feedback row. The row whose target element has been annihilated is then

passed to the next processing element. When the final target element (which lies on the

matrix diagonal) is reached, the last Givens rotation is performed and the feedback result is

deposited on the diagonal. Rows above the final row are part of the upper-triangular result

and need not be processed.

Because one column is eliminated by each processing element, the number of non-zero ele-

ments that must be processed by subsequent processing elements is reduced. That means

that some processing elements have a lower processing load than other processing elements.

This leads to less efficient use of resources in processing elements located towards the end

of the array. In order to minimize this effect, processing elements with complementary sized

67

loads share a vector processing unit (see Section 4.5). For example, if the width of the matrix

is 16, then the first processor may be considered fully loaded, with 16 non-zeros elements.

The second processor, however, is only loaded with 15 non-zero elements. The last proces-

sor is loaded very lightly, with 1 non-zeros element. Loads of 15 and 1 are complementary

because they sum to 16. Therefore, processing elements 2 and 16 share a VPU. Elements 3

and 15 have complementary loads of 14 and 2, and also share a VPU. The same is true for

processing elements 3 and 14, 4 and 13, 5 and 12, et cetera. If the processing elements are

arranged properly with in the FPGA then the shared resources may be kept close to other

logic within the processing element, keeping signal travel distance short. The appropriate

arrangement is a U shape, as shown in Figure 4.16 [28].

...

...
VPU

shared
VPU VPU

shared

Processing

Element 1Input

Matrix

Output

Matrix

Processing

Element 2

Processing

Element 3

Processing

Element N

Processing

Element N-1

Figure 4.16: Elements in the QR decomposition processing array share vector processing unit
(VPU) resources in order to improve efficiency. The elements are arranged in a U shape so
that elements that share a VPU remain close to each other. This helps to avoid long-distance
signal routing.

4.9.2 Processing Element Architecture

Further parallelization, in addition to that afforded by the array approach, is achieved using

a coarse row-by-row pipeline. That is, the phase angle of the target element in row k is

computed while the rephasing and the arctangent computation for row k + 1 are performed

and while the Givens rotation of row k + 2 is computed. Buffering of the next input row,

k−1, also occurs in parallel with these operations. The architecture of the QR decomposition

processing element is divided into stages that roughly reflect this parallelization. The four

stages, which are described in more detail in following sections, are the

• Receive stage

68

• Measure and compare stage (CORDIC stage)

These stages have been grouped because they share CORDIC resources

• Processing stage (VPU stage)

• Output stage

Because two processing elements share a single VPU (as discussed in the previous section),

complementary elements were grouped into a single processing element design which has

two inputs, and two outputs for connecting to its neighbors. A top-level diagram of this

architecture is shown in Figure 4.17. Data from neighboring processing elements are buffered

in the receive stage. Once a full row has been collected processing begins. The buffered rows

are read from the receive buffers inside the receive stage, and the non-zero elements from

each row are written to the primary buffer. The target elements from each row are observed

by the measure portion of the measure and compare stage as they are passed to the buffer.

For each target element, the measure stage computes a complex-conjugate unit vector that

will be used to rephase the rows such that the target elements have phase angles of zero.

The measure stage also computes the magnitudes of the target elements, which are passed

to the compare stage. The processing stage reads the new row data from the primary buffer,

rephases the row elements using the vector from the measure stage, and stores the results

in its internal buffers. The compare stage computes the arctangent function indirectly, by

generating unit vectors for each row as described by Equation 4.8. These unit vectors are

used within the processing stage to perform the Givens rotations that annihilate the target

elements, and produce feedback rows. The rows whose target elements have been eliminated

are passed to the next processing element; the feedback rows are stored in a buffer within the

processing stage. For rows that lie above the matrix diagonal, no processing is performed,

so these rows must be passed directly to the next stage. This is accomplished by the output

stage, which reads these rows from the receive stage, and buffers them so that they may be

pass along at the appropriate time (i.e. after the pipeline delay). A processing schedule for

the QR decomposition processing array element is shown in Figure 4.18

69

Receive Stage
Processing Stage

Measure &

Compare Stage

Primary Buffer

Output Stage

VPU

(shared)

Figure 4.17: Top-level diagram of an element from the QR decomposition processing array.
Two processing elements, which share a vector processing unit, have been grouped into a
single processing element design with two inputs, and two outputs for connecting to its
neighbors.

Output StageProcessing Stage
Measure and Compare Stage

Receive Stage
Measure Compare

t = 1 buffer row
K

compute unit vector
for row K+1 rephasing

compute unit vector
for row K+2 Givens

rephase row K+2
Givens of row K+3

output row K+3
if above diagonal

t = 2 buffer row
K-1

compute unit vector
for row K rephasing

compute unit vector
for row K+1 Givens

rephase row K+1
Givens of row K+2

output row K+2
if above diagonal

t = 3 buffer row
K-2

compute unit vector
for row K-1 rephasing

compute unit vector
for row K Givens

rephase row K
Givens of row K+1

output row K+1
if above diagonal

...

...

...

...

...

...

Figure 4.18: QR decomposition processing element: processing schedule

70

4.9.3 Receive stage

The receive stage is responsible for buffering row data that arrive from neighboring processing

elements. The receive stage also counts each incoming row and, using information about the

size of the matrix and the target column, classifies each row by type. Subsequent stages

in the QR decomposition processing element use this type information to determine what

kind of processing is required for each row. The row type classifications are: sub-diagonal,

diagonal, and super-diagonal. For a processing element that seeks to annihilate subdiagonal

elements in column k, the classification for row j is

rowtype =

subdiagonal : j > k

diagonal : j = k

superdiagonal : j < k

(4.24)

A diagram of the receive stage is shown in Figure 4.19. Row data arrive from neighboring

processing elements via ports A and B along with corresponding “valid input” signals. The

data are counted and collected in FIFO buffers. When an entire row is received from neighbor

A or B, a corresponding flip-flop is set. Arrival of a new row also causes the row counter

to be decremented. The row counts are decoded to obtain the aforementioned row type

classification. If no new row is available, the row type is set to “invalid”. This designation

is necessary in order to alert subsequent stages in the case that there is a row available from

one neighbor, but not the other. The occurs when the processing pipe is first being filled.

The processing of a received row is triggered when the “go” signal is asserted. If a new row

is available from A, B, or both A and B, then the row types are latched, and the new row

signal is asserted for one cycle. Subsequent stages assert the read enable signals to retrieve

the row data.

71

Row FIFO A

Element Counter A

max

countinc

maxcountwidth

width B

data in A data out A

read enable in A

rowtype A

valid in A

Row Counter A Row Type Decode

countdec

initcount

row type
row

invalidheight

height

>

en
en

set

clr

write en

data in data out

read en

Row FIFO B

Element Counter B

max

count

inc

maxcountwidth

width A

data in B data out B

read enable in Bvalid in B

Row Counter B Row Type Decode

countdec

initcount

row type
row

invalid

>

en

set

clr

write en

data in data out

read en

en

en

en

go

newrow

rowtype B

Figure 4.19: Receive stage of the QR decomposition processing element

72

4.9.4 Measure and Compare stage (CORDIC stage)

The measure and compare stage employs the CORDIC module, described in Section 4.6, to

compute unit vectors and vector magnitudes. Two CORDIC modules are used; one processes

data from processing element neighbor A, while the other processes data from neighbor B.

A diagram of the measure compare stage is shown in Figure 4.20.

For each new subdiagonal or diagonal row that arrives, the measure and compare stage

produces a read enable signal that causes the row data to be retrieved from the receive

stage, and transferred to the primary buffer. The values of the A and B target elements are

registered as they are transfered, so that they may be used to generate a unit vectors for

reducing their phase angles to zero (see Eq. 4.6) . The magnitudes of the target elements are

also computed by the CORDIC module, and registered. These magnitudes are used in the

calculation of unit vectors that will be used during the Givens rotations involving the new

rows (see Eq. 4.8) . The other values required for the calculation of the Givens rotation unit

vectors are generated by the processing stage and arrive at the measure-compare stage via

the feedback A and B inputs. The arrival of these values, which are equal to the magnitude

of the target element in the current feedback row (see Section 4.9.1), are indicated by the

assertion of the “mark A” and “mark B” signals generated by the processing stage.

73

bufwe

Column Counter

max

count

inc

maxcount

newrow
z

-18

measure rowtype A

rxbufreB

bufsel

rxbufreA

valid 1A

rotation vect A

valid 2A

width

initcount1

State

runningset

srst

= subdiagonal

 or diagonal

= subdiagonal

 or diagonal

>

width B

0

2

0

1

measure rowtype B

=1

=width B + 1

CORDIC A

mag 1

mag valid

data 1

data 2

valid in

z
-3

0

1

0

1

0

1

en

en

en

rx data in A

feedback in A

en

mark A

rx data in B

re

im rvect

rvect 1 valid

rvect 2 valid

valid 1B

rotation vect B

valid 2B

CORDIC B

data 1

data 2

en

feedback in B

mark A

re

im rvect

rvect 1 valid

rvect 2 valid

mag 1

mag valid en

valid in

Figure 4.20: Measure and compare stage of the QR decomposition processing element

74

4.9.5 Processing stage (VPU stage)

The processing stage is responsible for performing the vector operations described in Equa-

tions 4.9 through 4.16. Because the phase of the target element in the feedback row is

guaranteed to be zero by the chosen QR decomposition algorithm (see Section 4.9.1), only

three of these operation pairs need to be computed for each new row. These operations have

been designated as

• Rotation:

<{~aj ′} = <{uj}<{~aj} − ={uk}={~aj} (4.25)

={~aj ′} = <{uj}={~aj}+ ={uk}<{~aj} (4.26)

• Output:

<{~aj ′′} = <{u0}<{~aj ′}+ ={u0}<{ ~ak ′} (4.27)

={~aj ′′} = <{u0}={~aj ′}+ ={u0}={ ~ak ′} (4.28)

• Feedback:

<{ ~ak ′′} = <{u0}<{ ~ak ′} − ={u0}<{~aj ′} (4.29)

={ ~ak ′′} = <{u0}={ ~ak ′} − ={u0}={~aj ′} (4.30)

Note that the output and feedback operations together comprise a Givens rotation.

Within the processing stage, the results of these operations are computed sequentially. That

is, to process a row with n elements, 3n clock cycles are required. This splitting of the Givens

rotation into two parts results is a better balance with the processing requirements of the

phase rotation operation, which requires half as many computations as the Givens rotation.

The structure of the processing stage is shown in Figure 4.21.

75

set

dclr

Rotated Row Buffer

Feedback Row Buffer

data outdata in

write enable

read enable

width

1

Column Counter

max

count

inc

maxcount

initcount
State Machine

idle

state

start

next

Control Signal Gen

mux signals

buffer signals

mark signals

mark A

primary buffer
read enable

mark B

vout A

vout B

valid signals

count

vpu signals in vpu signals out

state

time slot A

row types

=width B

data outdata in

VPU

a+jb

c+jd

cos+jsin

valid in

op in

x+jy

valid out

op out

vout early

opout early

0

1

0

1

0

1

2

3

0

1

write enable

output
data

read enable

e

cordicA

0

cordicAv1
cordicAv2

primary
buffer

cordicB

newrow

j0.5π

0

1

e j0.5π

en

en

en

en

cordicAv1
cordicAv2

process rowtype A
process rowtype B

compare rowtype A
compare rowtype B

Figure 4.21: Processing stage of the QR decomposition processing element

76

Computations within the processing stage are triggered by the assertion of the “newrow”

signal, which causes the state machine to move from the idle state, to the feedback stage.

For every cycle that the state is not equal to the idle state, the column counter is incremented.

When the count reaches the number of columns in the signal matrix, width, the counter rolls

over, and the state is updated according to the state-flow diagram in Figure 4.22.

feedback

output
rotate

idle

newrow = 1

count =
width

count =
width

count =
width

Figure 4.22: State-flow diagram for the processing stage

In order to achieve the resource sharing discussed in 4.9.1, each of the processing states is

divided into two time slots, A and B, during which data from the two neighboring processing

elements are processed. This is illustrated in Figure 4.23.

Time Slot B

Target Element B Target Element A

Neighbor B Row Data Neighbor A Row Data

Time Slot A

Figure 4.23: Resource sharing schedule for the processing stage. Row data from neighboring
processing elements, A and B, present complementary loads, which are combined to acheive
better load balancing across all processing elements.

Feedback State: When the processing stage is in the feedback state, partial Givens ro-

tation operations are performed using the row data contained in the “rotated row” and

“feedback row” buffers connected to the a + jb and c + jd input ports of the VPU. The

cos+ jsin port is connected to the Givens rotation unit vectors, which have been generated

by the measure and compare stage, and registered internally. For time slot A, the result

produced by CORDIC module A is used. For time slot B, the result from CORDIC module

77

B is used. The VPU is set to compute Equations 4.29 and 4.30, and the results are queued

in the feedback buffer. As the A and B target elements are written to the feedback buffer,

the corresponding “mark A” and “mark B” signals are asserted. This allows the measure

and compare stage to register these results, so that they may be used for calculating the

next Givens rotation unit vector (described by Equation 4.8). When a diagonal row for A

or B has processed (see Section 4.9.3) the cos+ jsin port is connected to a unit vector with

phase angle of 90 degrees during the appropriate time slot. This causes the feedback row to

be deposited on the matrix diagonal as described in Section 4.9.1.

Output State: The output state is very similar to the feedback state. The same unit

vectors are used, and the remaining portion of the Givens rotation is computed. The only

change is the operation of the VPU, which is set to compute Equations 4.27 and 4.28. The

target elements of the resulting A and B rows are zero. These rows are passed directly to

subsequent elements in the QR decomposition processing array.

Rotate State: When the processing stage is in the rotate state, the newly arrived row

data are rephased such that the A and B target elements have phase angles of zero. This is

accomplished by selecting the unit vectors generated by the A and B CORDIC module in

the measure stage. The rephased data is stored in the “rotated row” buffer as it exits the

VPU, and will be used for the next Givens rotation.

4.9.6 Output Stage

Rows that have been classified as superdiagonal by the receive stage (see Section 4.9.3) do

not need to be processed, because they are part of the upper-triangular output matrix. The

purpose of the output stage is to read these rows out of the receive stage buffers, and store

them until the time is appropriate for them to be sent to the next processing element in the

QR decomposition processing array. In order to match the delay of the processing pipe, the

buffered data are passed along three time-periods after they are received as shown in the

processing schedule (Figure 4.18). The structure of the output stage is shown in Figure 4.24.

78

Bypass Buffer A

data in A data out A

write en

data in data out

read en

measure rowtype A
= superdiagonal

measure rowtype B

Column Counter

max

count

inc

maxcount

newrow

width

initcount1

= superdiagonal

output rowtype A
= superdiagonal

output rowtype B
= superdiagonal

State

runningset

srst

Bypass Buffer B

data in A data out B

rx buffer A read enable

write en

data in data out

read en

rx buffer B read enable

valid out A

valid out B

Figure 4.24: Output stage of the QR decomposition processing element

The output stage becomes active when a new row arrives, as indicated by the assertion of

the new row signal. The row type labels corresponding to the newest row data are used to

determine if the available rows are superdiagonal. If either the A or B row data correspond

to a super-diagonal row, then they are read from the receive stage buffers, and written to the

appropriate “bypass” buffers within the output stage. The row data remain in these buffers

for three time-periods, until the output row type becomes super-diagonal. At this time, the

row data are read from the bypass buffers, and presented on the data output ports of the

output stage, along with corresponding valid signals.

79

4.10 Bidiagonalization Stage

Matrices that have been converted to upper-triangular form by the QR decomposition pro-

cessing array are passed to the bidiagonalization stage. The purposed of the bidiagonalization

stage is to annihilate all but the diagonal and super-diagonal elements of these matrices be-

fore they are passed to the host PC. The chosen bidiagonalization algorithm is similar to the

QR decomposition algorithm discussed in Section 4.9.1 in the sense that the same feedback

accumulation method is employed. In the bidiagonalization stage, however, this technique

is not employed in order to facilitate linear array processing. As discussed in Section 2.5.5,

bidiagonalization involves annihilation operations that alternate between the elimination of

sub-diagonal column elements and the annihilation of row elements to the right of the ma-

trix superdiagonal. These operations will be referred to as row and column reductions. The

ordering of the reduction process is illustrated in Figure 4.25. This necessary ordering results

in a data dependency between subsequent annihilation steps. For example, reduction of row

1 to bidiagonal form involves altering columns 2 and greater. Therefore, reduction of column

2 must be completed after the reduction of row 1 is complete.

1

3

5

2 4 6 ...

...

...

Figure 4.25: The bidiagonalization process alternates between column element and row ele-
ment annihilation (as indicated by the numbers below and to the right of the matrix shown
here). Because each row annihilation alters matrix elements that will be used in subse-
quent column annihilations (and visa versa), there is a data dependency between subsequent
annihilation steps.

Because of this data dependency, the bidiagonalization operation was implemented within

a single processing element, instead of using a linear processing array. In order to match

80

the processing performance of the QR decomposition stage, the bidiagonalization stage is

implemented as a group of bidiagonalization modules, which operate independently, but in

parallel. The current implementation of the SART co-processor system uses four bidiagonal-

ization modules. For signal matrices of different sizes, more or fewer modules may be needed

in order to match the throughput of the QR decomposition stage.

Further data dependencies exist within the bidiagonalization algorithm. Namely, the com-

putation of the unit vectors described in Equations 4.6 and 4.8 must be completed before the

rotation operations described by Equations 4.11 through 4.16 may be performed. In order to

overcome this dependency, and achieve efficient use of logic resources, each bidiagonalization

stage processes two matrices in an interleaved fashion. Unit vector computations for one

matrix are performed while rephasing and Givens rotation operations are computed for the

other matrix, as indicated in the processing schedule in Figure 4.26.

CORDIC Module Input

Phase rotation unit
vector computation

Givens rotation unit
vector computation

Phase rotation
operation

Givens rotation
operations

t = 1 Matrix 1
Row K

_

t = 2 Matrix 2
Row K

_

t = 3 Matrix 1
Row K-1

Matrix 1
Row K

Vector Processing Unit Input

_ _

Matrix 1
Row K

_

Matrix 2
Row K

_

t = 4 Matrix 2
Row K-1

Matrix 2
Row K

Matrix 1
Row K-1

Matrix 1
Row K

t = 5 Matrix 1
Row K-2

Matrix 1
Row K-1

Matrix 2
Row K-1

Matrix 2
Row K

t = 6 Matrix 2
Row K-2

Matrix 2
Row K-1

Matrix 1
Row K-2

Matrix 1
Row K-1

...

...

...

...

...

Figure 4.26: Processing schedule for bidiagonalization module. The highlighted boxes show
the data dependency between operations. By interleaving the bidiagonalization of two ma-
trices no resources are left idle (apart from a three time-period interval, during which the
processing pipeline is filled).

81

4.10.1 Top-Level

As mentioned in the previous section, the bidiagonalization stage of the SART co-processor

system is implemented as a group of processing modules that operate independently and in

parallel. As shown in Figure 4.27 each module contains a dual port data memory that is

connected to the output of the QR decomposition stage. Upper-triangular matrices generated

by the QR decomposition stage are written to these memories in a “round-robbin” fashion, as

orchestrated by a simple scheduling module. Each data memory is large enough to store four

matrices. At any given time, two of these matrices are being processed using the interleaved

technique discussed in the previous section. The remainder of the data memory is reserved so

that two additional matrices may be loaded while the current matrices are being processed.

At their output side, each bidiagonalization module contains a result buffer. The diagonal and

super-diagonal elements produced during the bidiagonalization of 32 matrices can be stored

in each result buffers. This allows the host system to trigger a burst of SART calculations,

perform other calculations locally while the results are gathered, and then retrieve the results

from the SART co-processor when the are ready.

Bidiagonalization Module 1

Host Interface

QR Decomposition

Stage

Scheduler

OUTPUT

data

valid

addr

we n

we 1

Data Memory

PORT 1

data in

addr

write en

data out

data in

addr

PORT 2

Result Buffer

Processing Logic

Bidiagonalization Module N

......

write en

Data Memory

PORT 1

addr

write en

data out

data in

addr

PORT 2

Result Buffer

Processing Logic

write en

PORT 1

data in

PORT 2

data out

PORT 1

data in

PORT 2

data out

Figure 4.27: Bidiagonalization stage of the SART co-processor system

82

4.10.2 Bidiagonalization Module Architecture

The top-level structure of a single bidiagonalization module is shown in Figure 4.28. Upper-

triangular matrices from the QR decomposition are loaded into main memory via the input

data bus, which is controlled by the scheduling module. Unlike the QR decomposition pro-

cessing element, the bidiagonalization module holds matrix data within this local memory

during processing because each matrix element must be accessed many times during process-

ing. After a set of two matrices have been loaded, the “program start” signal is asserted and

processing begins.

Rotated Row Buffer

Feedback Row Buffer

data outdata in

write enable

read enable

Main Memory

data in

address

address

data in data out

write enable

write enable

PORT 1

PORT 2

data outdata in

VPU

a+jb

c+jd

cos+jsin

Data

Input

Bus

valid in

op in

x+jy

valid out

op out

vout early

opout early

0

1

0

1

write enable

read enable

Result Buffer

data out

data in
PORT 1

address

address

read address from host interface

data out

write enable

e

0

j0.5π

0

1en

en

en

en

0

1

CORDIC Module

data 1

data 2

valid in

vector out

valid 1
valid 2

Program Memory Control Signal Gen

en

re

re

im

PORT 2

target addr

op type

continue

pgrm addr
pgrm
start

Program
Counter

addr

inc

rst

cmd retire
mem addr

mem we

buffer signals

cordic vin
mux signals

vpu signals out

vpu signals in
cordic valid

targ addr

op type

latch signalspgrm
reset

Figure 4.28: Bidiagonalization module structure

Just as in the QR decomposition module, target rows and columns are rotated such that

their target elements have a phase angles of zero. Rephased rows and columns are stored

in a buffer that is separate from main memory. This approach is quite benificial, because it

essentially doubles the bandwidth of the working memory. Despite the fact that one port of

the dual-port main memory is reserved for the input interface, two pieces of matrix data are

accessed on each clock cycle. The same is true for the other processing buffer, which holds

the “feedback” row or column that accumulates the energy from each target element that is

83

annihilated. Processing involves the same three operations that were employed in the QR

decomposition processing stage (Section 4.9.5), namely: rotation, output, and feedback. In

this case, however, the output does not involve output to a neighboring processing element,

but rather a write-back to main memory. Figure 4.29 shows how data flow between main

memory and the intermediate result buffers during each operation.

Rotation:

Output:

Feedback:

Main Memory

Main Memory Rotate Buffer

Feedback Buffer

VPU

Rotate Buffer

Feedback Buffer

VPU

Rotate Buffer

Feedback Buffer

VPUMain Memory

Figure 4.29: Data flow diagram for the bidiagonalization module showing how matrix data
flow between main memory and the intermediate result buffers during each operation type

4.10.3 Processing Program and Command Sequencing Macro

Control of the bidiagonalization module was implemented using a programmatic approach.

By employing a program sequence that can be altered, the verification and debugging pro-

cess was better facilitated. For example, the program could be quickly adjusted such that

the module performed one element annihilation, one row or column reduction, or the full

bidiagonalization process.

The format of the bidiagonalization program is very simple. A command specifies which

matrix element should be targeted for anhihilation next, and how the annihilation should

84

occur. One row or column reduction sequence is encoded in multiple commands; the number

of commands is equal to the number of matrix elements which must be annhilated. Each

command contains three pieces of infomation:

• The memory address of the element targeted for annihilation

• The type of Givens rotation (pre- or post-multiplication)

• An end of program indication

Each command that is issued effects the operation of the bidiagonalization module for many

cycles as it is expanded according to the command sequencing macro. As suggested by the

processing schedule from Figure 4.26, the processing pipeline has a depth of four commands.

When a command is issued, the specified target element is read from memory and passed to

the CORDIC module for phase angle calculation. This is the first processing phase. During

the next time period, a new command is issued, unless the end-of-program indicator has

been reached, in which case the program terminates. In either case, the previous command

progresses to the next stage in the processing pipeline.

The second processing phase involves rotating the target column or row so that the target el-

ement phase becomes zero. If the command specified a Givens rotation by pre-multiplication,

then rephasing effects a matrix row. If the command specified post-multiplication, then a

column is effected. The rephased row or column is stored in the rotation buffer.

The third processing phase involves calculating the unit vector that will be used during the

Givens rotation operation that will annihilate the target element. The inputs to the CORDIC

module for this calculation are the magnitude of the target element, which is simply the real

component of the target element after rephasing, and the magnitude of the target element in

the feedback buffer, which starts at zero and increases as a column or row reduction proceeds.

These values are latched in a pair of registers as they appear at the output of the VPU.

During the fourth phase of processing in the bidiagonalization module pipeline, the Givens

rotation is performed. This computation is divided into two halves, just as in the QR

decomposition processing stage. During any given processing period, the VPU performs

a sequence involving each of its three operations: rephasing of the next target row or column

(rotation), half of a Givens rotation that annihilates the target element in the current row,

85

and then the second half of the Givens rotation, which produces the feedback result. If the

operation is the last in a series of operations that implement one row or column reduction,

then the feedback result is written to main memory, and the diagonal and subdiagonal

elements are also written to the result buffer. Each result buffer contains two banks. One

bank is used to collect bidiagonalization results; simultaneously, host system may retrieve

the results of previous computations from the second bank.

As depicted in Figure 4.26, a command that has been expanded according to the sequencing

macro occupies either the CORDIC module or the VPU during the four processing periods for

which it is active. In fact, a command alternates between these resources, and never occupies

both. Because idle resources result in an inefficient design, two matrices are processed in

an interleaved fashion. That is, when elements from matrix 1 are being processed by the

CORDIC module, elements from matrix 2 are being processed by the VPU. This approach

increases the efficiency of the design, however, the processing pipeline must be flushed after

each reduction sequence due to data dependency. For example, the last command in reduction

operation that annihilates subdiagonal elements in column two of the matrix will involve

alteration of row two of the matrix. Therefore, the next reduction operation, which will

eliminate elements to the right of the super-diagonal in row two, may not begin until the

column two reduction operation is complete.

After the final command in the processing program has been completed, the signal matrix

is in bidiagonal form. The non-zero matrix elements are contained in the output buffer,

and may be retrieved by the host system, and diagonalized in order to obtain the singular

values of the signal matrix. Operation of the SART co-processor system, including the final

diagonalization step, is described in Chapter 5.

86

Chapter 5

Operation

This chapter contains information relating to the operation of the SART co-processor system.

The first two sections describe how data are loaded into the co-processor. This includes

loading the scan-grid phase reference matrix into the system’s SRAM, and loading signal

matrices into the FPGA for each SART scan. The third and fourth sections describe how

SART calculations are triggered, and how the results of these computations may be retrieved.

For reference, tables containing the addresses for all memory banks, and control signals with

the SART co-processor system are also provided. The final section in this chapter describes

how the final SART processing stage, diagonalization, may be performed in software once

the bidiagonal signal matrices have been retrieved from the co-processor result buffer.

5.1 Loading the Scan-Grid

The first step in operating the SART co-processor system involves loading the SART scan-

grid rephasing matrices into the SRAM connected to the FPGA. The compression scheme

described in Section 4.8.1 is used to allow for larger scan-grid sizes. The layout of the

compressed matrices in memory is shown in Table 5.1. Each phase-step vector must be

written in the correct numerical format. Individual vector components should be in a 32-bit

two’s complement format, with 30-bits specifying the fractional portion of each value. This

conversion may be obtained by multiplying each value by 230, rounding, and then converting

87

to “int32” format. The scan-grid rephasing matrices only needed to be loaded once, when

the co-processor system is initialized. Configuration of the scan-grid may be accomplished

using the included MATLAB script: hardSART setScanGrid.

Memory Offset (Matrix Column, Scan-point number) Vector Component

0x000000 (Column 1, Point 1) Real
0x000004 (Column 1, Point 1) Imaginary
0x000008 (Column 2, Point 1) Real
0x00000C (Column 2, Point 1) Imaginary

...
...

...
0x000078 (Column 16, Point 1) Real
0x00007C (Column 16, Point 1) Imaginary
0x000080 (Column 1, Point 2) Real
0x000084 (Column 1, Point 2) Imaginary

...
...

...
0x08× X + 0x80× Y (Column X+1, Point Y+1) Real

0x08× X + 0x80× Y + 0x04 (Column X+1, Point Y+1) Imag
...

...
...

0x1FFFF8 (Column 16, Point 16,384) Real
0x1FFFFC (Column 16, Point 16,384) Imag

Table 5.1: Layout of compressed scan-grid rephasing matrices in memory. Memory locations
are listed as byte offsets, relative to the SRAM base address of 0x200000.

5.2 Loading a Signal Matrix

New signal matrix data is loaded for each SART scan, every time the host wishes to perform

a SART location estimate. Signal matrix data should also be loaded in a 32-bit two’s com-

plement format. The location of the binary point is irrelevant, as movement of its location

will only result in a scaling of the singular value magnitudes. However, the signal matrix

data should be scaled such that enough significant bits are maintained, and so that numerical

overflow will not occur. For matrices with elements whose magnitudes are on the order of

1.0, the scale factor should be about 225. The layout of the signal matrix in memory is shown

in Table 5.2.

88

Memory Offset (Column, Row, Bank)

0x000000 (1, 1, 1)
0x000004 (2, 1, 1)
0x000008 (3, 1, 1)

...
...

0x0001FC (128, 1, 1)
0x000200 (1, 2, 1)
0x000204 (2, 2, 1)
0x000208 (3, 2, 1)

...
...

0x001FFC (128, 16, 1)
0x002000 (1, 1, 2)
0x002004 (2, 1, 2)
0x002008 (3, 1, 2)

...
...

0x003FFC (128, 16, 2)

Table 5.2: Layout of signal matrix data in memory. Memory locations are listed as byte
offsets, relative to the base addresses of the RAM blocks that hold the real (0x040000) and
imaginary (0x080000) components of the matrix data. Two matrix banks are provided. One
bank may be loaded while processing of data in the second bank occurs.

5.3 Triggering SART Calculations

Computations within the SART co-processor occur in bursts. During each burst, rephasing,

QR decomposition, and bidiagonalization computations are conducted for up to 128 scan-grid

points. Bursts may be triggered using the control and status register. The contents of the

control and status register may be obtained by reading from memory location 0x000004. Bits

0 through 28 of the control and status register may be altered by writing to memory location

0x000004. Table 5.3 lists the function of all bits in the control and status register. The reset

command should be issued to the SART co-processor before each burst is triggered. A reset

command may be issued by writing any value to memory location 0x000000. Completion of

the reset command may be confirmed by reading the contents of control and status register,

and confirming that bit location 28 contains a 1.

89

Bit Place Function Direction

0 Scan start control Write
1-12 Scan starting-point Read/Write
13-24 Scan end-point Read/Write
25 Result bank selection Read/Write
26 Source bank selection Read/Write
27 Not used -
28 Reset complete indicator Read
29 Not used -
30 Scan complete indicator Read
31 Not used -

Table 5.3: Control and status register layout

In order to trigger a SART scan, control bits 0 through 26 should be written. Bit 0 should

be set to 1. The assertion of this bit triggers the scanning process. Bits 1 through 12 should

be used to indicate which point on the scan-grid should be scanned first. The SART co-

processor will scan this point and all scan-grid points up to (but not including) the end

point, which should be specified using bits 13 through 24. Because the result registers in

each bidiagonalization module contain two banks (see Section 4.10.3), bit 25 should be used

to indicate which bank should be used to store the results of the computations. Likewise,

there are two signal matrix banks (see Section 4.8.2). Bit 26 should be used to indicate which

bank the signal matrix should be read from.

For example, to trigger a scan that starts on scan point 0 and terminates on scan point 127,

and that reads signal matrix data from bank 1 of the input buffer and writes computation

results to bank 1 of the result buffer, the value 0x06100001 should be written to the control

register. When the computations have been completed, bit 30 of the control register will be

asserted.

5.4 Retrieving the Results

Results may be retrieved from the SART co-processor by reading from the result buffers in

the bidiagonalization stage. Because of the round-robbin scheduling in the bidiagonalization

stage, the results for consecutive scan-grid points will be spread across multiple buffers. For

90

example, buffer 1 will contain results for scan-grid points 1,2,9,10,17,18, etc., whereas buffer

2 will contain results for points 3,4,11,12,19,20, etc., and so on. For each scan-grid point, the

result data consists of 31 values, which correspond to the 16 diagonal, and 15 super-diagonal

elements of the bidiagonalized signal matrix. Due to the order in which these values are

computed during the bidiagonalization process, the diagonal and super-diagonal elements

are interleaved within memory. Figure 5.1 depicts how the elements of a bidiagonal matrix

are mapped to the result buffer memory. The base addresses of the result buffers are listed

in Table 5.4.

11 12

0100 00

01

11

12

22

23

33

34

44

45

55

56

66

...

FF

00 Next Matrix

22 23

33 34

44 45

55 56

66 67

77 78

88 89

99 9A

AA AB

BB BC

CC CD

DD DE

EE EF

FF

Bidiagonalized Signal Matrix Result Buffer

Figure 5.1: Mapping of bidiagonalized matrix into the result buffer

Buffer Number Bank Number Memory Offset

1 0 0x0C0000

2 0 0x100000

3 0 0x140000

4 0 0x180000

1 1 0x0C1000

2 1 0x101000

3 1 0x141000

4 1 0x181000

Table 5.4: Layout of result data in memory. Two result banks are provided. Results may
be retrieved from one bank while new results are being generated and stored in the second
bank.

91

5.5 Diagonalization

After a set of SART scan results have been retrieved, the final step in the SART algorithm,

diagonalization, must be completed. This may be accomplished using the linear algebra

library package, LAPACK. More specifically, the LAPACK function SBDSQR is an optimized

function for computing the singular values of a single-precision bidiagonal matrix. A C

program, which uses the SBDSQR function to process a batch of bidiagonal matrices was

written expressly for this purpose. The program, sbdsqr mex, was written using the “mex”

protocol, which allows it to be called directly from MATLAB. The function may be called

using the convention

s = sbdsqr mex(n,D,U)

where n is the number of bidiagonal matrices to be processed, D contains the diagonal

elements, and where U contains the super-diagonal elements of these matrices. The output

of sbdsqr mex, s, is an array containing the first singular value from each matrix. For

example, if n = 2, then D should contain 32 elements and U should contain 30 elements. The

first 16 elements of D and the first 15 elements of U belong to the first matrix and should be

listed starting from its upper left corner. The remaining elements in D and U belong to the

second matrix. D and U should be converted to single precision floating point numbers before

being passed to the function. For the example case, the output array, s, will contain two

single precision numbers. These are the first singular values of the two input matrices.

92

Chapter 6

Performance

This chapter contains information related to the performance of the SART co-processor sys-

tem. There are two important metrics by which the performance of the system should be

judged. Firstly, use of the co-processor system should not negatively impact the position

estimates generated using the SART algorithm. Meeting this requirement implies that the

system is capable of carrying out computations, in all processing stages, to a sufficient nu-

merical accuracy. This would be guaranteed if the system employed the same single-precision

floating point arithmetic that is currently used in the software implementation. However,

because a fixed-point representation is used, and because the design of some stages involved

speed/accuracy tradeoffs, the impact of these decisions must be assessed. In the first sec-

tion of this chapter, the accuracies of arithmetic sub-modules within the system are tested

individually, leading up to a test of metric computation accuracy.

The second important measure of performance relates to how quickly the SART co-processor

system can complete a given set of computations. This rate can be compared to the rate

of computation using a standard CPU, without a co-processor. The ratio of these rates is

typically referred to as the “speedup”. When examining the speedup, and how it might

be improved without the used of additional hardware, the efficiency of the system becomes

important. Anywhere a resource is left idle, e.g. while waiting for data from some other

portion of the system, the efficiency and speedup-per-dollar is reduced. The second section

in this chapter deals with speedup and efficiency performance.

93

6.1 Accuracy

This section presents the results of accuracy performance tests. The first two sub-sections

deal with the accuracy of the arithmetic circuits from which the rest of the system is built.

In the third sub-section, the accuracy to which the system computes the SART metric is

discussed, and related back to the performance of the arithmetic modules.

6.1.1 Vector Processing Unit

In order to generate each component in the result of a vector operation, the VPU performs two

multiplication operations, and then sums the results. This is accomplished using fixed point

arithmetic. Because the multiplication of two fixed point numbers produces a result with

twice as many bits, the result of the computation is rounded such that the output precision

is equal to the input precision. From one perspective, the result of this operation may be

compared to the result of the same operation conducted in floating point. Alternatively, the

accuracy may be compared to the accuracy of a fixed-point computation conducted without

output rounding. The first comparison is good for relating the accuracy of the co-processor to

the accuracy of the software implementation. The second comparison is better for revealing

rounding mistakes, which will appear in the form of errors greater than one half the value of

a least-significant-bit in the rounded result. The test described here was used to insure that

rounding was properly implemented. Examination of the effects of fixed vs. floating point

arithmetic is left to Section 6.1.4.

In order to test the VPU, an automated VHDL testbench was constructed. The testbench

may be run in simulation, because VHDL simulations are bit-for-bit and cycle-for-cycle ac-

curate. Input data are generated in MATLAB, and saved to a file. The VHDL testbench

program loads the test vector file, and applies its contents to the inputs of the VPU. The

corresponding outputs are saved to a second file, which is then imported into MATLAB

for analysis. The testbench exercises each of the VPU operations using input vectors with

uniformly distributed magnitudes and phase angles. The results are compared to the ideal,

un-rounded, fixed point results to insure proper rounding. Figures 6.1 through 6.6 show the

results of the test. These histograms show the distribution of computation errors for 50,000

test vectors per operation. They show a uniform distribution in the interval [-0.5, 0.5], which

94

is the expected result for correctly implemented rounding. Correlation coefficients relating

imaginary and real error components were on the order of 0.002, suggesting that they are

independent, which they should be.

 0.4 0.2 0 0.2 0.4 0.6
0

100

200

300

400

500

600

700

error [LSBs]

oc
cu

ra
nc

es
 p

er
 b

in
Error Histogram VPU Output (real component)

Figure 6.1: Histogram of error in real component of VPU output for “rotate” operation.

 0.4 0.2 0 0.2 0.4 0.6
0

100

200

300

400

500

600

700

error [LSBs]

oc
cu

ra
nc

es
 p

er
 b

in

Error Histogram VPU Output (imaginary component)

Figure 6.2: Histogram of error in imaginary component of VPU output for “rotate” operation.

95

 0.4 0.2 0 0.2 0.4 0.6
0

200

400

600

error [LSBs]
oc

cu
ra

nc
es

 p
er

 b
in

Error Histogram VPU Output (real component)

Figure 6.3: Histogram of error in real component of VPU output for “output” operation.

 0.4 0.2 0 0.2 0.4 0.6
0

200

400

600

error [LSBs]

oc
cu

ra
nc

es
 p

er
 b

in

Error Histogram VPU Output (imaginary component)

Figure 6.4: Histogram of error in imaginary component of VPU output for “output” opera-
tion.

 0.4 0.2 0 0.2 0.4 0.6
0

200

400

600

error [LSBs]

oc
cu

ra
nc

es
 p

er
 b

in

Error Histogram VPU Output (real component)

Figure 6.5: Histogram of error in real component of VPU output for “feedback” operation.

 0.4 0.2 0 0.2 0.4 0.6
0

200

400

600

error [LSBs]

oc
cu

ra
nc

es
 p

er
 b

in

Error Histogram VPU Output (imaginary component)

Figure 6.6: Histogram of error in imaginary component of VPU output for “feedback” oper-
ation.

96

6.1.2 CORDIC Module

The purpose of the CORDIC module is to generate the unit vectors that are used by the

QR decomposition and bidiagonalization stages to perform Givens rotations. Errors in the

angles of these vectors will lead to imperfect annihilation of matrix elements. Error in the

vector magnitudes will produce errors in the magnitudes of rotated rows and columns. Both

of these effects will lead to errors in the singular values computed using the co-processor

system.

During the initial development of the SART co-processor system, a freely available CORDIC

module from the Xilinx IP library was used. Eventually it became evident that this module

consumed too many resources within the FPGA, leading to an overall design that didn’t fit

within a single FPGA. This would have been acceptable if all resources within the device were

efficiently utilized, because additional devices could be added to form the required processing

array size. However, the Xilinx design uses only CLBs, and does not use any DSP blocks.

Because the SX55 FPGA contains many DSP blocks and relatively few CLBs, use of the

Xilinx module would have meant leaving many DSP blocks idle. This would have been a

very inefficient use of the available resources. For this reason, a new CORDIC module was

designed. This module gains almost all of its functionality from DSP blocks, making it well

suited to the SX55.

Each DSP block is pipelined so that maximum clock frequencies may be obtained. Unfortu-

nately, the latency associated with this pipelining leads to a larger latency in the CORDIC

module. Because the CORDIC algorithm is iterative, commencement of each iteration must

be delayed until the result of the previous iteration exits the processing pipe. For this reason,

the length of the pipeline was reduced as much as possible. In order to minimize the pipe

latency, a trade-off was made between speed and accuracy. More specifically, the result of

each shift operation is truncated rather than rounded off. Errors associated with trunca-

tion are minimized by choosing a truncation point that is below the LSB. This allows the

accumulation of the values smaller than one LSB of output precision, which may eventually

overflow into the LSB. This is better than truncating each shift operation to the output

precision, but clearly worse than rounding. In order to obtain an empirical measure of the

CORDIC module’s accuracy a testbench was constructed to test its performance. Vectors of

various magnitudes and phases were generated, and applied as input to CORDIC module.

97

The corresponding outputs were gathered and assessed for accuracy.

The first test of accuracy involved observing the magnitudes of the unit vectors generated

given the testbench inputs. Ideally, these vectors should each have a magnitude of one.

Figure 6.7 shows the errors in the unit vector magnitudes. The accuracy to which the

CORDIC module measures the angles of input vectors was assessed indirectly. This was

accomplished by multiplying the produced the unit vectors with their corresponding input

vectors. The ideal result would be a set of vectors that lie along the real axis, and have

magnitudes equal to their corresponding input vectors. The results of this test are shown in

Figure 6.8 as a scatter plot, with the errors normalized with respect to one LSB. The third

performance metric for the CORDIC module is how accurately it calculates the length of

each input vector. Figure 6.9 shows a histogram of the errors in magnitude measurements

relative one LSB. No attempt was made to analytically determine how any these errors might

effect the overall capability of the co-processor system to compute the matrix singular values.

Instead the accuracy performance of stages that employ the CORDIC module were measured

empirically. These results, which are quite good, may be found in Section 6.1.4.

−3 −2 −1 0 1 2
0

100

200

300
Error Histogram − Unit Vector Magnitude

Error in Magnitude [LSBs]

O
cc

ur
an

ce
s

P
er

 B
in

Figure 6.7: Histogram showing distribution of errors in unit vector magnitudes generated
using the CORDIC module.

98

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Error in Rotated Vector

Error in Real Component [LSBs]

E
rr

or
 in

 Im
ag

in
ar

y
C

om
po

ne
nt

 [L
S

B
s]

Figure 6.8: Scatter plots showing errors in vectors that have been rotated using unit vectors
produced by the CORDIC module.

−3 −2 −1 0 1 2
0

50

100

150

200
Error Histogram − Magnitude Measurement

Error in Magnitude [LSBs]

O
cc

ur
an

ce
s

P
er

 B
in

Figure 6.9: Histogram showing distribution of errors in magnitudes calculated using the
CORDIC module.

99

6.1.3 Rephasing

The rephasing stage takes advantage of the regular spacing of the sub-carrier frequencies

and the linear nature of the phase-frequency relationship to achieve excellent compression of

SART rephasing matrices. The unit vectors used to rephase each sub-carrier are generated

by multiplying a phase-step vector with the rephasing vector from the next lower subcarrier.

Unfortunately, this iterative method leads to the accumulation of error in the rephasing

vector due to the repeated multiplication of rounded numbers. Neglecting further rounding

during the computation, a rough approximation of the worst case error in the magnitude of

a unit-length rephasing vector, during the kth iteration is

Ek = |1− (1 + ε)k| ≈ kε (6.1)

where ε represents a very small error due to rounding. For a two component phase-step vector,

the worst case error has a magnitude of 0.707 LSBs. Therefore, the expected worst case error

in the kth rephased sub-carrier is approximately 0.707k LSBs. For a signal with hundreds of

carriers, this becomes fairly significant, 70 LSBs. The effect of this error on the final SART

metric value was simulated using MATLAB. The phase step vectors were rounded to match

the current precision of the rephasing stage. Erroneous rephasing matrices were generated

from the rounded phase step vectors using the iterative decompression technique. These were

then used to calculate a SART metric image with 4096 points. Other than the intentional

rounding, the calculations were conducted in double precision floating point arithmetic. The

results showed an approximately Gaussian distribution of error, at a RMS level of about

-165 dB with respect to the Frobenius norm of the signal matrix. That is,

20log10

 1

||S||F

[
1

n

n∑
i=1

(σ1 − σ1−TRUE)2

] 1
2

 = −165 (6.2)

where n is the number of points in the SART metric image, σ1 is the erronious approximation

of the actual first singular value, σ1−TRUE, and ||S||F is the Frobenius norm of the signal

matrix, S. The next section will show that this is significantly lower then the errors in the

SART metric solution, caused by inaccuracies in the CORDIC module output.

100

6.1.4 SART Metric Solution

In order to assess the accuracy of the overall SART metric computation, the co-processor

system was used to calculate the singular values of various matrices. In the first two tests,

sets of matrices with known singular values were constructed. In order to obtain statistical

measure of accuracy, many matrices with identical singular values but randomized singular

vectors were generated and analyzed with the SART co-processor. This was accomplished in

MATLAB using the following method.

• Generate a matrix whose elements have uniformly distributed magnitude and phase

• Perform (double precision) singular value decomposition of the matrix to obtain ran-

domized singular vectors U, and V, and corresponding singular values in Σ.

• Alter Σ to contain the desired set of singular values.

• Calculate UΣVH to obtain a test matrix with the new set of singular values.

The first test involved matrices of rank 1, 2, 8, and 16, where all non-zero singular values were

equal. The Frobenius norm of the signal matrix was swept to allow observation of the effect

of input precision. The magnitude values were 216, 220, 224, 228, and 229. The number of test

matrices was 1000 for each rank-magnitude combination. The results, which are displayed

in the Tables 6.1 through 6.3, show that processing of the higher-rank matrices resulted in a

larger error in the SART metric solution (the first singular value). This result makes sense,

as the energy in the higher-rank matrices was spread across a greater number of singular

values, thereby reducing their amplitude with respect to the minimum quantization level.

The sweep in magnitude showed that this effect is reduced for matrices with large norms.

For these matrices, quantization is less significant that internally generated errors . The

source of these errors is the CORDIC module, which calculates rotation vectors to a limited

precision. For singular value magnitudes of 229 and greater, the error is very high. This is

simply due to overflow of the CORDIC arithmetic.

101

Rank
Magnitude 1 2 8 16

216 1.0977 1.7949 5.4940 7.8270
220 1.3610 1.9653 5.9059 8.1779
224 1.6058 2.4559 6.1037 8.2802
226 4.1696 4.2096 6.8713 9.1379
228 15.905 12.600 11.424 12.651
229 25.7e6 4.65e6 17.703 18.320

Table 6.1: RMS error in SART metric (first singular value) for matrices of various rank,
normalized with respect to one LSB. All non-zero singular values of test matrices were set
equal. Their magnitude was varied to allow observation of the effect of input precision.

Rank
Magnitude 1 2 8 16

216 -95.52 -91.25 -81.53 -78.46
220 -117.7 -114.5 -105.0 -102.2
224 -140.4 -136.7 -128.8 -126.1
226 -144.1 -144.1 -139.8 -137.3
228 -144.5 -146.6 -147.4 -146.5
229 -26.38 -41.24 -149.6 -149.3

Table 6.2: Error in SART metric relative to its true value, expressed in decibels.

Rank
Magnitude 1 2 8 16

216 1.1024 1.0687 0.8079 0.8095
220 1.3639 1.1114 0.9447 0.6821
224 1.2115 1.1221 0.8913 0.7786
226 1.3612 1.0284 0.8498 0.8742
228 2.2856 1.5271 1.0209 0.8800
229 10.851 21.839 1.1430 1.0334

Table 6.3: Standard deviation of error in SART metric for test case 1, normalized with
respect to one LSB.

102

For the second accuracy test, the singular values of the test matrices were not set to have

equal magnitudes. Instead, the magnitudes of the singular values started at a maximum

value and then fall off linearly to zero over the span of r singular values, where r is the

matrix rank, such that the resulting Frobenious norm was 216, 220, 224, 228, or 229. The test

results, which are shown in Tables 6.4 through 6.6, demonstrate that for high-rank matrices,

the co-processor calculates the magnitude of the first singular value more accurately if the

singular values have non-uniform sizes. This makes sense, because this implies that more

energy is located in the first singular value, making quantization error less significant. Since

this signal structure is not dissimilar to the structure of a real SART signal matrix, the

results are quite encouraging. They suggest that the accuracy is about -145 dB with respect

to the true value of the SART metric. This means that matrices whose columns exhibit a

large dynamic range may be accurately processed using the SART co-processor system. This

was confirmed in the third test, which is described below.

Rank
Magnitude 1 2 8 16

216 1.3984 1.1794 1.2197 1.4551
220 1.3186 1.2780 1.4646 1.3372
224 1.8986 1.5577 1.3502 1.4726
225 2.2051 2.0950 1.7630 1.3957
226 4.3184 3.7597 2.3955 2.1496
227 7.9616 6.5662 4.3646 3.3639
228 15.106 13.194 8.2097 6.8752
229 25.7e6 32.3e6 17.120 13.737

Table 6.4: RMS error in SART metric (first singular value) for matrices of various rank,
normalized with respect to one LSB. Magnitudes of the non-zero singular values were equally
spaced between 0 and listed magnitude.

Rank
Magnitude 1 2 8 16

216 -93.42 -94.90 -94.60 -93.07
220 -118.0 -118.3 -117.1 -117.9
224 -138.9 -140.6 -141.9 -141.1
226 -143.8 -145.0 -148.9 -149.9
228 -145.0 -146.2 -150.3 -151.8
229 -26.38 -24.39 -149.9 -151.8

Table 6.5: Error in SART metric relative to true value, expressed in decibels, for test case 2.

103

Rank
Magnitude 1 2 8 16

216 1.4028 1.1846 1.2255 1.4615
220 1.3248 1.2833 1.4370 1.3272
224 1.3131 1.2803 1.2181 1.3415
226 1.4910 1.2992 1.3616 1.3897
228 1.9288 1.8031 1.3657 1.6140
229 6.5097 17.9e6 2.0003 1.9269

Table 6.6: Standard deviation of error in SART metric for test case 2, normalized with
respect to one LSB.

In order to observe the effect of quantization and round-off errors, the SART co-processor was

tested using matrices whose columns differed greatly in magnitude. A worst case scenario,

where one matrix column contains far more energy than any of the remaining columns, was

assumed. This corresponds the case where one receive element in the PPL system receives a

much stronger signal than the remaining antennas. This difference in signal strength, which

for the sake of this discussion will be referred to as a power disparity, has the effect of reducing

the relative magnitude of variations the SART metric. More specifically, in the case of a large

power disparity, the fluctuations in the SART metric across different points on the scan-grid

become very small with respect to its nominal value. This relationship was examined through

simulation by computing the relative magnitude of variations in SART metrics, generated

using a double precision floating point SVD in MATLAB, for signal matrices with various

degrees of power disparity,

D = 20log10
||−→s1 ||2
||−−→sk 6=1||2

, (6.3)

where the test matrix, S, has the form

S = [−→s1
−→s2 · · · −→sn] (6.4)

and −→sk is a column vector representing the signal received at the kth antenna. That is, all

columns of S have equal 2-norms apart from the first column, whose 2-norm differs according

the power disparity, D. The results of the simulation are shown in Figure 6.10.

The curve shows that the relative magnitude of fluctuations in the metric decreases as power

disparity increases. It suggests that power disparities above about 60 dB should be a problem

104

0 10 20 30 40 50 60 70 80 90 100
 -200

 -180

 -160

 -140

 -120

 -100

 -80

 -60

 -40

 -20

-0

Power Disparity [dB]

R
el

at
iv

e
M

et
ric

 F
lu

ct
ua

tio
n

[d
B

]

SART Metric Relative Fluctuation VS.
Power Disparity in Received Signals

Figure 6.10: Simulation results showing that the relative magnitude of fluctuation in the
SART metric decreases as the power disparity in the signal matrix increases.

given the -145 dB accuracy of the SART co-processor. This was confirmed by generating

SART metric images from signal matrices with power disparities of 55, 65, 75, and 85 dB,

using the co-processor. The results, which are displayed as contour plots in Figure 6.11, show

that the performance does indeed degrade for power disparities greater than about 60 dB.

This result was compared to a similar test, which employed single precision floating point

computations instead of using the fixed point co-processor. The comparison shows that the

co-processor preforms better than single precision floating point (see Figure 6.12); it can

handle about 10 dB of additional power disparity. This is because the accuracy to which a

numerical format can represent small fluctuations in a large value is limited by its mantissa

length. Single precision floating point numbers have a mantissa of 24 bits. The co-processor

system employs a minimum of precision of 31 bits, in the CORDIC module. Accumulation of

truncation bias results in a performance that is comparable to about 25 or 26 bits of mantissa

precision. Figure 6.13 shows the same test, performed using double precision floating point

arithmetic. Because the double precision format includes 53 bits of mantissa precision, the

performance is much better. The solution does not degrade until the signal matrix power

disparity reaches about 135 dB.

105

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 55 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 65 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 75 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 85 dB

−1 0 1
−3

−2

−1

0

1

2

3

Figure 6.11: Contour plots showing the effect of power disparity between receive elements
when using the SART co-processor. When one receive element (corresponding to one column
in the signal matrix) receives a stronger signal than the remaining elements, fluctuations in
the SART metric become small relative to its nominal value. In the extreme case, where the
power disparity is a greater than about 60dB, quantization errors become significant.

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 55 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 65 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 75 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 85 dB

−1 0 1
−3

−2

−1

0

1

2

3

Figure 6.12: Contour plots showing the effect of power disparity between receive elements
when single precision floating point arithmetic is employed. Because mantissa length is the
limiting factor when representing small fluctuations in a large value, the results are not better
than the accuracy of the fixed-point SART co-processor. In fact, they are worse. The SART
co-processor is capable of tolerating about 10 dB of additional power disparity.

106

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 125 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 135 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 145 dB

−1 0 1
−3

−2

−1

0

1

2

3

y
co

or
di

na
te

 [m
et

er
s]

x coordinate [meters]

Metric Contour
Power Disparity: 155 dB

−1 0 1
−3

−2

−1

0

1

2

3

Figure 6.13: Contour plots showing the effect of power disparity between receive elements
when double precision floating point arithmetic is employed. Because of the increased man-
tissa length associated with double precision, performance degradation does not begin until
the power disparity reaches about 130 dB.

107

6.2 Speedup

In its current configuration the SART co-processor system provides a speed up of about 6 with

respect to a Pentium 4 CPU running at 3 GHz. There are many factors that lead to this result.

In the first sections of this chapter, the performance of the VPU and CORDIC sub-systems

are revealed. This is followed by discussions concerning the performance that is achieved

once these sub-system are combined to form the QR decomposition and bidiagonalization

stages.

6.2.1 Vector Processing Unit

The VPU is a very efficient module. It is fully pipelined, and each DSP block within the VPU

performs a necessary operation on every clock cycle when there is valid data in the processing

pipe. The efficiency is therefore a perfect 1.0. The module is also capable of processing at

high clock rates. The synthesis tools estimate the maximum clock frequency to be about 300

MHz.

6.2.2 CORDIC Module

The CORDIC module contains 8 DSP blocks. As shown in the CORDIC processing schedule

(Figure 4.13), these blocks are used with an efficiency of only about 0.5. This is due to the

fact that half of the DSP blocks are used only as input multiplexers, and are therefore active

only for a few cycles at the beginning of a CORDIC computation. In a future version, this

efficiency should be improved. According to estimates provided by the synthesis tools, the

CORDIC module can be operated at a maximum clock frequency of 266 MHz.

6.2.3 QR Decomposition Stage

The efficiency of the QR decomposition stage is a function of the matrix dimensions. This

is due to fact that the tasks of unit vector generation, in the CORDIC module, and unit

108

vector application (rotation), in the VPU, have differing computational requirements. More

specifically, the CORDIC module requires a fixed number of clock cycles to perform its

computation, whereas the duration of the VPU’s computation depends on the width of the

signal matrix. For the current implementation of the CORDIC algorithm, 150 cycles are

required to perform the necessary calculations. Given the sequencing of calculations in the

processing stage of the QR decomposition processing element, 3n cycles are required to

process each new row of n elements. Therefore, perfect balance is not achieved unless the

matrix width is 50. And even then, due to the 0.5 efficiency of the CORDIC module, the

peak efficiency is only 0.75. For the current matrix width of 16, the efficiency (calculated as

the ratio of active DSP blocks over the total number of DSP blocks in the design) is only 0.41.

If the width of the signal matrix is not increased significantly in future implementations of

the PPL system (i.e. if the number of antennas is not increased), then the balance between

the CORDIC module and VPU should be improved. Figure 6.14 shows the approximate

relationship between the efficiency of DSP block usage in the QR decomposition module and

the width of the signal matrix.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Efficiency of QR Decomposition Stage
VS. Signal Matrix Width

Width of Signal Matrix

E
ffi

ci
en

cy

Figure 6.14: Curve showing the relationship between the efficiency of DSP block usage in
the QR decomposition module and the width of the SART signal matrix.

One possible method would involve increased resource sharing, where each VPU processes

more than a single row. This would require pairing each VPU with additional CORDIC mod-

ules, which would increase the amount of multiplexing required, thus increasing CLB usage.

This may not be possible when targeting an SX series FPGA. If increased resource sharing

was some how implemented on the SX55, and if each VPU processed two rows instead of one,

then the efficiency could be increased to 0.54, and the overall QR decomposition speedup

109

could be doubled for matrices of width 16. This, however, would leave only enough DSP

blocks for implementing bidiagonalization, and none would be left for the rephasing stage.

This solution also neglects the inefficiency of the CORDIC module itself (see Section 6.2.2),

which is why the overall efficiency is not dramatically improved. For these reasons it may

prove beneficial to move to a different FPGA, with a different balance of resources, specif-

ically one with more CLBs. Section 7.1 includes a discussion related to targeting different

FPGAs.

6.2.4 Bidiagonalization Stage

Inefficiencies in the bidiagonalization stage arise for the same reason as in the QR decompo-

sition stage. There is a lack of balance between the duration of the CORDIC computation

and the duration of the operations performed by the VPU. Unlike in the QR decomposition

stage, balance is not achieved for a larger matrix width. This occurs for the same reason that

resource sharing was originally implemented in the QR decomposition stage: as elements in

the matrix are annihilated, there are fewer elements to operate on. Therefore, the load on

the VPU decreases as the matrix nears bidiagonal form, whereas the load on the CORDIC

module remains fixed. This leads to an efficiency of about 0.27, which is quite low. There

are a few possible ways around this.

Firstly, some sort of resource sharing could possibly be devised. For example, if multiple

matrices were processed simultaneously, and if the processing was sequenced such that they

produced complementarily sized loads on the VPU, then load balancing could be achieved.

This, however, would be complicated, and would require more RAM for storing additional

matrices. An alternate approach would be to serialize the computation. If the CORDIC

operations and vector operations were implemented using the same set of DSP blocks, then

they could be performed in sequence, rather than in parallel. This would make the rela-

tionship between their durations unimportant. This approach is certainly possible, because

the CORDIC algorithm is simply a set of vector rotations. Furthermore, because this would

mean that the CORDIC algorithm was being implemented with a full-precision multiplier

(and not just a shifter), then improved algorithms, such as a high-radix CORDIC [29], could

be implemented. The faster convergence of the high-radix algorithm may help offset the

higher latency associated with full-precision multiplication.

110

Chapter 7

Conclusion

Singular Value Array Reconciliation Tomography (SART) is a method for locating a wide-

band RF source which may be positioned within an indoor environment, where RF prop-

agation characteristics make source localization very challenging. SART was developed in

the Electrical and Computer Engineering department at the Worcester Polytechnic Institute

(WPI) for the purpose of locating and tracking first response personnel such as firefighters.

Unfortunately, the SART algorithm is very computationally intensive, due to the application

of singular value decomposition. This thesis describes a co-processor system that has been

designed to accelerate SART computations.

The co-processor system is based on field programmable gate array (FPGA) technology, which

offers a low-cost alternative to customized integrated circuits, while still providing the high

performance associated with a custom hardware implementation. Like custom IC’s, FPGAs

allow implementation of highly parallel systems. The selected Virtex-4 SX55 FPGA from

Xilinx contains many optimized arithmetic circuits which be may operated simultaneously

to obtain very high performance.

The SART co-processor system has been developed in the VHDL, and a prototype system has

been implemented on a SX55 FPGA development platform from Alpha Data. The prototype

system may be connected to the PCI bus of a standard PC. The system is easy to use, and

may be accessed through a C program or MATLAB script. The co-processor is capable of

computing the SART metric to an accuracy of about -145 dB with respect its true value,

111

which means that even relatively weak signals may make a meaningful contribution to the

final SART solution. These results were shown to have slightly better accuracy than that

obtained using single precision floating point arithmetic.

Compared to a Pentium 4 CPU running at 3 GHz, use of the co-processor system provides a

speed-up of about 6 times for the current signal matrix size of 128-by-16. This performance

could likely be doubled through future improvements in efficiency and clock rate. Using a

single FPGA, a 10-by-10-by-10 meter volume may be scanned at 0.3 meter xy-resolution

and 1.0 meter z-resolution at a rate of approximately 3 scans per second. Assuming an

optimized scanning procedure that takes into account the previous location of a target, this

figure roughly corresponds to tracking 3 first responders with a position update interval of

1 second. An arbitrary number of targets may be tracked if multiple FPGAs are used in

parallel.

7.1 Future Work

The system described here represents a large amount of progress toward a final solution for

SART acceleration. However, many improvements must be made before the system is ready

for commercial implementation. Firstly, the system described here is a prototype, and has

limited scalability. It is optimized for a matrix width of 16, and although the code of most

processing stages is parameterized to allow flexibility in this area, some is not. Namely, the

bidiagonalization stage must improved such that its memory structures automatically scale

to accommodate the desired matrix dimensions. Furthermore, in order to process very large

matrices, multiple FPGAs are needed. Although the co-processor was designed with this in

mind, the actual chip-to-chip interface has not been designed.

Performance scalability may be achieved by operating multiple co-processors in parallel.

Implementing this kind of system will not be a large technical challenge, but the manner in

which data will be distributed within a multi-processor system must be considered. Similarly,

the architecture presented here only includes implementations of some of the SART processing

stages, assuming the remainder of the computations will be computed by the host. Despite

the fact that the host performs only a small fraction of the total computations, if very high

performance is necessary, then even this fraction may be more than the host can handle. In

112

this case, the final diagonalization stage should be moved into the co-processor. Alternately,

each co-processor could be paired with a DSP processor, which may be better suited for

performing the iterative task of diagonalization. Either of these improvements would give

the co-processor system truly scalable processing power.

In addition to improvements in the area of scalability, it may be necessary to improve the

accuracy of the SART co-processor. The current implementation of the co-processor produces

metric calculations to an accuracy of about -145 dB with respect to their true value. This

has been found to be sufficient for recently generated data sets, but may not necessarily be

good enough. As the coverage area of the PPL system expands from a few dozen meters to a

few hundred meters, the dynamic range of the received signal power across all receivers will

likely increase. This means that some signals will be much weaker than others. In the case

that one receive element is exposed to a very strong signal, while others receive much weaker

signals, accuracy requirements will become even higher.

Better accuracy can be achieved in many ways. Firstly, various trade-offs were made, dur-

ing the development of the current system, that were necessary to achieve efficient use of

available resources, but which had a negative impact on overall accuracy. Most importantly,

in the current implementation of the CORDIC algorithm, the result of each shift operation

is truncated instead of being rounded. Because truncation bias accumulates over multiple

operations, processing of larger matrices will result in lower accuracy. This module would

make a good candidate for improvement. Another boost in accuracy may easily be obtained

by improving the rephasing stage. As discussed in Section 4.8.1, the scan-grid phase reference

matrices are stored in a compressed form within the co-processor system memory. Unfortu-

nately, the iterative decompression technique magnifies small phase errors in the compressed

data (see Section 6.1.3). This could be improved by increasing the precision of the decom-

pression arithmetic, or by abandoning compression altogether and storing the phase reference

matrices in raw form.

Improvements in the SART co-processor architecture may necessitate the use of a different

FPGA. The SX55 is intended for signal processing applications, and compared to other

devices in the Virtex-4 family, the ratio of arithmetic (DSP) blocks to the more generic

configurable logic blocks is very high. This lead to design challenges. It was difficult to

map certain algorithms to this type of coarse-grain architecture, specifically the CORDIC

algorithm. In contrast, the largest device in the more general-purposed “LX” branch of the

113

Virtex-4 family has four times as many CLBs, but only one fifth as many DSP blocks. This

device may suffer from the opposite problem, lack of arithmetic processing power. The FX

series may achieve the best balance, with three times as many CLBs, and half as many DSP

blocks as the SX55. The FX series devices are more expensive, but they have other enticing

features. Each FX140 device contains 2 PowerPC processor cores, 4 gigabit ethernet MACs,

and 24 high-speed IO interfaces. The processor cores may be used for sequential portions of

the SART algorithm, such as the final diagonalization stage. The ethernet interfaces may be

used to transfer data between the host and one or more co-processors. The high-speed IO

may be used to interconnect multiple FPGAs when large matrices must be processed.

Figure 7.1 depicts a vision for the next generation SART processing system. The host system

is connected to one or more co-processors through a robust and flexible ethernet network.

This allows processing nodes to be located remotely using wired or wireless data links. For

example, each emergency response vehicle might be equipped with enough processing power

to track all of its occupants, yet receive its signal matrix data from a centralized host that

applies pre-processing algorithms, such as synchronization [12]. Individual nodes will be opti-

mized such that available resources are used efficiently, given the signal matrix size. This may

involve a mix of devices. For example, FX series devices may be used to connect to the data

distribution network using their ethernet MAC resources. By equipping their PowerPC cores

with arithmetic accelerators, implemented using CLBs and DSP blocks, serialized portions

of the SART algorithm may be executed rapidly. Remaining resources within the FX devices

may be used to implement the rephasing and part of the QR decomposition processing array.

For large matrices, the processing array may be extended using lower cost devices from the

LX or SX series.

Low-cost
SDRAM

Ethernet Network

Virtex-4 FX Series FPGA

Host System

PPC

Arithmetic

Accelerator

QR

QR

QR

Rephase

LX or SX Series FPGA

QR

QR

QR

QR

QR

QR

QR

QR

Processing Node Addional Processing Nodes

Wireless Link

Figure 7.1: Next-generation SART processing system

114

Bibliography

[1] R. J. Fontana. Recent System Applications of Short-Pulse Ultra-Wideband (UWB)
Technology. IEEE Microwave Theory and Tech., 52(9), September 2004.

[2] A. Brown and Y. Lu. Indoor Navigation Test Results using an Integrated
GPS/TOA/Inertial Navigation System. In Proceedings of ION GNSS 2006, Fort Worth,
TX, September 2006.

[3] M. Rabinowitz and Jr. Spilker, J. J. A New Positioning System Using Television Syn-
chronization Signals. White paper, Rosum Corporation, 301 North Whisman Road,
Mountain View, California 94043, 2001.

[4] L. Ojeda and J. Borenstein. Non-GPS Navigation for Emergency Responders. In In-
ternational Joint Topical Meeting: Sharing Solutions for Emergencies and Hazardous
Environments, Salt Lake City, Utah, USA, February 2006.

[5] B. Alavi and K. Pahlavan. Modeling of the TOA-based Distance Measurement Error
Using UWB Indoor Radio Measurements. IEEE Communications Letters, 10, April
2006.

[6] Zupt, LLC. Export Controls. http://www.zupt.com/export.htm.

[7] E. J. Canty. Six firefighters missing in blaze at vacant building. Worcester Telegram &
Gazette, December 1999.

[8] D. Cyganski. WPI Precision Personnel Location (PPL) System. In Institute of Naviga-
tion, 63rd Annual Meeting, Cambridge, MA, April 2007.

[9] R. J. Duckworth; H. K. Parikh; W. R. Michalson. Radio Design and Performance
Analysis of Multi Carrier-Ultrawideband (MC-UWB) Positioning System. In Institute
of Navigation, National Technical Meeting, San Diego, CA, January 2005.

115

[10] K. Morris. COTS Supercomputing, DRC Harnesses FPGAs. FPGA and Structured
ASIC Journal, July 2007.

[11] D. Cyganski. Patent application 60/934,880 - Singuar Value Array Reconciliation To-
mography, 2007.

[12] V. T. Amendolare. Synchronization in an Indoor Precision Location System. Master’s
thesis, Worcester Polytechnic Institute, Worcester, MA, 2007.

[13] G. H. Gloub and C. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, MD, 1996.

[14] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM,
5(4):339–342, 1958.

[15] W. Givens. Computation of plane unitary rotations transforming a general matrix to
triangular form. Journal of the Society for Industrial and Applied Mathematics, 6(1),
1958.

[16] J. W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997.

[17] R. Andraka. A survey of CORDIC algorithms for FPGA based computers. In FPGA
’98: Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field pro-
grammable gate arrays, pages 191–200, New York, NY, USA, 1998. ACM Press.

[18] J. E. Volder. The cordic trigonometric computing technique. IRE Transactions on
Electronic Computers, EC-8:330–334, 1959.

[19] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis, 2(2):205–224, 1965.

[20] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the bidiagonal svd.
SIAM J. Matrix Anal. Appl., 16(1):79–92, 1995.

[21] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, April 1965.

[22] M. Cornea; J. Harrison; P. T. P. Tang. Intel itanium floating-point architecture. White
paper, Intel Corporation, 2003.

116

[23] D. Bursky. Designers stretched in ASIC, FPGA tug-of-war. EE Times, embedded.com,
2006.

[24] Xilinx Inc. Virtex-4 Data Sheet: DC and Switching Characteristics. Data sheet, Xilinx
Inc., 2006.

[25] Xilinx Inc. Virtex-4 Users Guide. Users guide, Xilinx Inc., 2006.

[26] Xilinx Inc. XtremeDSP for Virtex-4 FPGAs User Guide. Users guide, Xilinx Inc., 2006.

[27] H. T. Kung. Why systolic architectures?, pages 300–309. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1986.

[28] C. M. Rader. Patent 4972361- folded linear systolic array, 1988.

[29] E. Antelo; T. Lang; J. D. Bruguera. Very-high radix CORDIC vectoring with scalings
and selection by rounding. In Koren and Kornerup, editors, Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 204–213, Los Alamitos, CA, 1999.
IEEE Computer Society Press.

117

