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Welcome!

Welcome to the mini journal, where we embark on an illuminating exploration of probabil-
ity modeling and its transformative applications in various domains. In this concise journey,
I endeavor to shed light on the multifaceted nature of statistical concepts acquired from our
Probability for Application class. These concepts, far from being confined to the realms of the-
ory, emerge as dynamic tools with tangible implications across a spectrum of fields, including
but not limited to Computer Science, Engineering, Marketing, and Biology.

At the heart of probability lies the science of uncertainty; a fundamental pillar for quantifying
the likelihood of events in an unpredictable world. Through meticulous study and practical
application, we’ve sharpened our skills to develop models that not only forecast outcomes but
also serve as guiding beacons amid the complexities of decision-making in ambiguous scenarios.

As avid students of Probability for Applications, we recognize the paramount importance of
data in shaping our perceptions and actions. Yet, within the vast expanse of information,
uncertainty looms ominously. Herein lies the power of probability models—they offer clarity
amidst the fog of unpredictability, providing actionable insights and paving the way forward in
the face of uncertainty.

Throughout this journal, we’ll delve into concrete examples that showcase the invaluable role
of probability modeling in our respective fields. From assessing risk in financial markets to
predicting patient outcomes in healthcare settings, the applications are as diverse as they are
impactful. Through meticulous analysis and insightful interpretation, we’ll witness firsthand
how probability models empower us to navigate the intricate landscapes of our domains, foster-
ing informed decision-making and driving meaningful change.

I invite you to join us on this captivating journey as we unravel the mysteries of probability
modeling. Together, let’s embark on a quest for not only theoretical enlightenment but also
tangible insights with real-world implications, forging a path towards innovation and excellence
in our chosen fields.

Thank You!

I.M.L. Nadeesha Jayaweera
Co-authors: Probability for Application Students (Spring D term, 2024)
Department of Mathematical Sciences
Worcester Polytechnic Institute (WPI)
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Quality Assurance in Software Engineering Using Binomial Distribution
Tanya Ali

Introduction:

Ensuring the quality of software products is paramount in software engineering. A useful statis-
tical approach in this domain is the binomial distribution. This distribution serves as a robust
tool for modeling the occurrence of defects within samples extracted from software releases. In
this project, we aim to construct a probability model employing the binomial distribution to
scrutinize quality assurance in software engineering practices.

Background Information:

Let’s envision a scenario where a software development team is working on a new application.
To uphold software quality standards, a subset of features or lines of code is systematically
chosen from each release for meticulous inspection. The presence or absence of defects within
each feature or line of code can be effectively represented using the binomial distribution. This
distribution characterizes the count of successful outcomes (defective features or lines of code)
within a predetermined number of independent trials (individual inspections), where each trial
possesses an identical probability of success (probability of encountering a defective feature or
line of code). Probability Model: Consider X as the variable denoting the count of defective
features or lines of code within a sample of size n, each with a probability p of being defective.

Probability Model:

The probability mass function (PMF) of the binomial distribution is articulated as follows:

P (X = k) =

(
n

k

)
· pk · (1− p)n−k; k = 0, 1, . . . , n.

where:

• k represents the count of defective features or lines of code.

• n signifies the sample size.

• p indicates the probability of a feature or line of code being defective.

Probability Calculation:

Let’s assume we randomly select a sample of 50 lines of code from a software release, and the
known probability of a line of code being defective is 0.02. Our objective is to determine the
probability of exactly 3 lines of code in the sample being defective. Utilizing the binomial
distribution, we can compute this probability utilizing the PMF:

P (X = 3) =

(
50

3

)
· 0.023 · (1− 0.02)50−3 = 0.1857.
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Conclusion:

This project endeavors to establish a probability model leveraging the binomial distribution
to scrutinize quality assurance practices in software engineering, particularly in assessing the
likelihood of encountering a specific count of defective features or lines of code within a sample.
By employing the binomial distribution, we computed the probability of observing precisely 3
defective lines of code within a sample of 50 lines. Such a probability model holds significant
implications for software development teams in enhancing product quality and reliability.

Reference:

Montgomery, D. C., & Runger, G. C. (2013). Applied Statistics and Probability for Engineers
(6th ed.). John Wiley & Son.
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Predicting Cyber Attacks Using Binomial Distribution
Jivan Baghsarian

Introduction:

Every year, IBM produces a cyber threat intelligence report that shows statistics about real
cyber-attacks that occurred during the reported year. These reports are statistics from the past
and they are not predictive. However, they are one of the best tools we have to predict what
the future may look like. In this project, we will calculate the probability that future attacks
are specifically phishing, to give us some insight into predicting future attacks. We will use the
Binomial model to achieve this.

Information:

Based on the IBM report, 30% of all cyber attacks last year were phishing. A company uses
this information and needs to know the probability of this same outcome occurring for the fol-
lowing year, so they can adjust their cyber defense infrastructure cost effectively. The binomial
distribution shows the probability of getting a phishing attack given that 30% statistic.

Probability Formula:

P (X = k) =

(
n

k

)
· pk · (1− p)n−k; k = 0, 1, . . . , n.

where n is the sample size, p is the probability of a phishing attack, and k is the number of
phishing attacks.

Probability Calculation:

A company has been attacked 100 times in the past month by various cybercrime. 30% of those
attacks were phishing. What is the probability that exactly 30 of those attacks were phishing.

P (X = 10) =

(
100

30

)
· (0.3)30 · (1− 0.3)(100–30) = 0.08678

Conclusion:

Our binomial distribution calculations showed that there is an 8.68% chance that there will
be exactly 30 phishing attacks. Companies can use this information to more accurately design
their cyber security infrastructure in a more cost-effective manner based on the probability of
this exact scenario occurring.

References:

1. https://en.wikipedia.org/wiki/Binomialdistribution

2. https://www.ibm.com/reports/threat-intelligence
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Probability Model for Electronic Devices
Claire Bitner

Introduction and Background Information:

Electronic devices play a significant role in everyday life for many people. These devices allow
us to continue making progress in the fields of science, engineering, business, etc. Since these
devices are so important to our society, it is also important to know what their lifetimes look like
as well as their probability of failure. A model that is commonly used to study and summarize
these ideas is the exponential model. Looking at the exponential model and other probability
distributions along with their modifications allows for an analysis of the reliability for each
different electronic device based on its own unique characteristics. The exponential distribution
model with no modifications is not entirely accurate for each electronic device since it does not
include increasing and decreasing failure rates. The exponential distribution can still provide
data that can help give a rough summarization of reliability for these cases though.

Probability Model:

The exponential distribution will model the time between when the electronic device was man-
ufactured and when it fails. Let X, a continuous random variable, represent the time between
the creation and failure of the electronic devices. The average time of failure will be 1/λ, and
λ represents the rate parameter. That is X ∼ Exp(λ): Then the pdf of X is:

f(x) =

{
λ · e−λ·x ;x ≥ 0

0 ; otherwise

Probability Calculation:

Suppose the time between when a phone is manufactured and when it dies is modeled using
the exponential distribution model, and the average time between those two events is 5 years.
To find the probability that the phone will last 4 to 6 years can be calculated using the PDF of
the exponential distribution.

E(X) = 5 = 1/λ =⇒ λ = 0.2. So,

P (4 ≤ X ≤ 6) =

∫ 6

4

0.2 · e−0.2x = 0.1481.

Reference:

Ali, S., Ali, S., Shah, I., Siddiqui, G. F., Saba, T., & Rehman, A. (2020). Reliability Analysis for
electronic devices using generalized exponential distribution. IEEE Access, 8, 108629–108644.
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Analysis item acquisition rate in gacha games using geometric distribution.
Qiushi Chen

Introduction:
A gacha game is a video game that implements the gacha mechanism. Similar to loot boxes,
gacha games entice players to spend in-game currency to acquire random in-game items. In this
case, the acquisition rate of rare items is often very low, but the low single extraction price will
drive the player to spend money to extract, and in the end, it will often cost a lot of money to
obtain rare items.

Background Information: In certain gacha games, players can ”pull” from a character pool
to obtain virtual characters of varying rarity. One of the most sought-after categories are charac-
ters rated as the highest rarity, which are typically the rarest and most powerful. The mechanics
of these pulls can be modeled using a geometric distribution. In this model, each pull is an in-
dependent trial with a fixed probability of success, which is the chance of drawing a character of
the highest rarity. This probability is usually low, for example, 1%. The geometric distribution
effectively captures the number of trials needed to achieve the first success in such scenarios,
making it a suitable mathematical representation for analyzing the likelihood of obtaining rare
characters in gacha games.

Probability Model: Let X represent the number of trials required to achieve the first success
in a sequence of independent Bernoulli trials. Each trial has a fixed probability p of success,
representing an event such as drawing a character of the highest rarity from a gacha pool. The
probability that the first success occurs on or before the k trial is given by the formula:

P (X ≤ k) = 1− (1− p)k

• k is the number of trials until the first success

• p is the probability of pulling a character of the highest rarity from the available pool of
characters in a single draw

Probability Calculation:

Suppose probability of pulling a character of the highest rarity from the available pool of char-
acters in a single draw is 2%. We want to find the probability we gain a character of the highest
rarity in 50 pulls. We can calculate this probability using the equation below:

P (X ≤ 50) = 1− (1− 0.02)50 = 0.6358.

Conclusion:

In this study, we developed a probability model using the geometric distribution to analyze
the dynamics of rare event occurrences in gacha games, specifically the drawing of characters
of the highest rarity from a pool of characters. We calculated the probability of drawing at
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least one character of the highest rarity within 50 pulls, using a success probability of 2%.
This probability model provides valuable insights for players and game developers alike, aiding
in understanding and optimizing the gacha mechanics to balance player satisfaction and game
profitability.

Reference:
Toto, Serkan. ”Gacha: Explaining Japan’s Top Money-Making Social Game Mechanism”.
Serkan Toto: CEO Blog. Kantan Games. Retrieved 10 April 2020
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Probability Model in the Stock Market
Gabriel D’Amour

Introduction:

Analysis of the stock market is all about trends and probability. As a data scientist, this is
where I will have to thrive. Investing in the stock market is a great way to let your money
work for you over time. One of two things can happen in the market. The market can either
have a bullish trend (upward trend), or a bearish trend (downward trend). The more ideal
situation would be the bullish trend, signifying that your investment is increasing in value while
bullish trend signifies a decrease in value. While there are many factors at play to whether a
stock increases in value or decreases in value, we will not worry about them for the sake of this
project. It has been proven multiple times by many investors that the best way to increase
your odds in gaining profit from the market is to have portfolio diversification. This essentially
means that you do not put all your money into one stock and instead spread your wealth.

Example / Probability Model

Let’s consider this example: An investor is diversifying their portfolio between Stocks and
Bonds. They put 50% of their portfolio capital into Stocks and 50% portfolio capital into
Bonds. Given some historical data about the market, there is a 60% chance that the STOCK
market will perform bullishly and a 40% chance that it performs bearishly. Additionally, there
is a 70% chance that the BOND market performs bullishly and a 30% chance that it performs
bearishly. What is the probability that the investor’s portfolio performs bullishly?

Probability Model:

Let A1, A2, . . . , An be a partition of Ω. Then for any event B,

P (B) =
n∑

i=1

P (B|Ai) · P (Ai)

where

• B is any event

• n is the sample size

• Ai represents the different events forming a partition of the sample space

Probability Calculation:

In this case the sample size is 2, representing investing in Stocks or Bonds. The conditional
probability that the portfolio performs bullishly given that the investor has chosen to allocate
their portfolio to Stocks is 0.60. The conditional probability that the portfolio performs bullishly
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given that the investor has chosen to allocate their portfolio to Bonds is 0.70.

Let W = Bullish, S = Stocks, and B = Bonds

P (W ) = P (S) · P (W |S) + P (B) · P (W |B)

= 0.50 · 0.60 + 0.50 · 0.70 = 0.65

Conclusion:

In this project we developed a probability model using the Total Probability Theorem to analyze
the change of success in an investors investment portfolio. We calculated the probability that
the investor’s portfolio performs bullishly. This probability model provides valuable insights for
investors investing.
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Reliability Analysis in Electrical and Computer Engineering
Jeremy De La Cruz

Background of Electrical and Computer Engineering

Electrical and Computer Engineering (ECE) encompasses a broad spectrum of disciplines, fo-
cusing on the principles and applications of electricity, electronics, and electromagnetism. This
field is instrumental in designing and optimizing electrical systems, electronic devices, and com-
puter technologies. Probability is a critical aspect of ECE, as engineers need to ensure sustained
functionality and performance of systems over time.

Probability Model

The following probability model I developed centers on evaluating the reliability of systems com-
prising multiple independent components. The model uses foundational probability concepts
and Bayes’ theorem to facilitate the computation of the system’s probability of functioning
given the individual probabilities of component reliability.

Key components of the probability model include:

• Component Reliability Probabilities: These probabilities represent the likelihood of each
system component functioning or failing independently, where the reliability of one com-
ponent does not influence the reliability of another. In the model, we assign reliability
probabilities to the CPU, memory module, and power supply. It’s important to mention
that real-world scenarios may exhibit inter-dependencies among components.

• Bayes’ Theorem Application: Bayes’ theorem serves as the mathematical framework for
computing the conditional probability of system functionality based on the states of indi-
vidual components. It facilitates the integration of new information, such as component
states, into the probability assessment. At its core, Bayes’ theorem relates the conditional
probability of an event A given event B, P (A|B) to the conditional probability of event
B given event A, P (B|A). This is represented in the following formula:

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)

In the subsequent section, we will illustrate the application of this probability model through a
specific example involving a computer system with multiple critical components.

Model:

You have a computer system with three critical components: CPU, memory module, and power
supply. The probabilities of each component being functional (F) or nonfunctional (NF) are as
follows:
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• P (FCPU) = 0.8 (CPU functioning)

• P (FMemory) = 0.85 (Memory module functioning)

• P (FPower) = 0.9 (Power supply functioning)

Given that all three components (events) are independent and functioning, we want to calculate
the overall probability that the system is not functioning: P (NFSystem) · P (A|B).

• First, we calculate P (B), the probability that all three components are functioning simul-
taneously.

P (B) = P (FCPU) · P (FMemory) · P (FPower) = 0.8 · 0.85 · 0.9 = 0.612.

• Next, we calculate P(A), the probability that the system is not functioning, which is the
complement of the system functioning:

P (A) = 1− P (B) = 1− 0.612 = 0.388.

• Now, we use Bayes’ Theorem to find P (A|B), the probability that the system is not
functioning given that all 3 components are functioning:

P (A|B) =
P (B|A) · P (A)

P (B)
=

1 · 0.388
0.612

= 0.633

since if all the components are functioning, then the system is functioning is P (B|A) = 1.

Therefore, given that all three components are functioning and independent, the probability
that the system is not functioning is approximately 0.633 or 63.3%.

Conclusion:

This project delved into probability models and Bayes’ theorem’s application in Electrical and
Computer Engineering’s reliability analysis. Through this study, we’ve gained insights into
assessing system reliability, emphasizing the value of probabilistic approaches in engineering
decision-making and system design.

Reference:

Devore, J. L. (2018). Probability and statistics for engineering and the Sciences. Nelson.
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A probability model for determining fraudulent bank transactions
Vivek Jagadeesh

Introduction:

One application of probability in the computing industry comes in the form of computer-
generated models which determine wheter or not a credit card or banking transaction is fraud-
ulent. Banks utilize a binomial distribution with a particular parameter p, which is determined
based on a massive amount of data collected by both Banks and government officals on bank
fraud. They then apply the distribution to understand how often it is for a transaction to be
fraudulent, allowing the bank to perform audits accordingly, and to recuperate any money lost
due to fraudulent activity.

Background Information:

Consider a bank with 25customers, each performing 2 bank transactions on an ordinary day.
In an effort to reduce fraud, the bank wants to understand the probability of there being a
fraudulent transaction. Each bank transaction can be represented as a binomial distribution,
with each transaction either ebing fraudulent, or legitimate. The distribution models the num-
ber of fraudulent transactions in a given day, assuming that 1% of transactions at the bank are
fraudulent based on historical data. All of the bank’s customers are of the same character, and
each trial is identical to the others.

Probability model:
Let the discrete random variable X be the number of fraudulent transactions in a sample size of
400 transactions, and P be the probability that any one of the transactions is fraudulent. This
yields the following probability mass function for the distribution:

P (X = x) =

(
n

x

)
· px · (1− p)n−x; x = 0, 1, . . . , 400.

• n is the number of transactions in a single day

• x is the number of fraudulent transactions in a single day

• p is the probability of a fraudulent transaction.

Calculation:

Suppose the bank wants to find the probability that there were exactly 4 fraudulent transactions
in an ordinary day where there were 50 transactions(so that it can report it to the authorities).

P (X = 4) =

(
50

4

)
· 0.014 · (1− 0.01)50−4 = 0.00145

Therefore, the probability that four out of 50 bank transactions are fraudulent is, using a bino-
mial distribution with the probability of success set to 0.001450.
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Conclusion:

In this project, I developed a probability model which models the number of fraudulent bank
transactions using the binomial distribution. The binomial distribution was an easy choice,
since each trial is identical and has the same chance of success. We calculated the probability
of exactly four out of fifty bank transactions being fraudulent. This probability model will pro-
vide critical information to both banks and authorities to understand the nature of fraudulent
transactions.

Reference:

Bobbitt, Zach. “5 Real-Life Examples of the Binomial Distribution.” Statology, 14 July 2021,
www.statology.org/binomial-distribution-real-life-examples/
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Probabilistic models in the neural action potential timing
Sophia Kouznetsov

Introduction

In the field of neuroscience, one application of probabilistic models is in the neural action po-
tential timing. Neurons communicate with each other through electrical impulses called action
potentials or spikes. These spikes are brief, rapid changes in membrane potential (rapid depolar-
ization) that propagate along the neuron’s axon. The timing of these spikes carries information
about the particular stimulus the neuron is responding to, as well as the neuron’s role in neural
circuits.

Probabilistic application
The timing of neural spikes follows a Poisson distribution, particularly in spontaneous firing
rates. Models of neural coding often incorporate Poisson distributions to describe the stochas-
tic nature of spike timing (that is, involving randomness or variability). The stochastic nature
arises from various sources, including the random arrival of synaptic inputs, the stochastic open-
ing and closing of ion channels, and intrinsic noise within the neuron.

In a Poisson distribution, events occur randomly and independently over time, with a constant
average rate of occurrence defined as parameter λ. In the context of neural spike timing, the
Poisson distribution can be used to model the probability distribution of spike times, where λ
corresponds to the average firing rate of the neuron in response to sensory stimuli. It is impor-
tant to note that neural spike trains often exhibit deviations from strict Poisson statistics due
to various factors such as refractory periods, burst firing behavior, and circuit interactions.

Probabilistic Model using Poisson Distribution

Probability Mass Function (PMF):

P (X = x) =
e−λ · λx

x!
; x = 0, 1, 2, . . . .

• P (X = x): probability of observing ’x’ spikes in a given time interval.

• λ: average rate of spikes per unit time interval.

• x: number of spikes observed in the given time interval.

Example

Suppose a neuron has an average firing rate of 50 spikes per second (50 Hz). The probability
of observing a spike within a small time interval ‘t’ is λ. Consider a specific trial where the
neuron fires spikes at the following times (in seconds) after stimulus onset: 0.02, 0.06, 0.1,
0.15, 0.2, 0.24, and 0.28. We can analyze these spike times using a Poisson model to esti-
mate the neuron’s firing rate and assess whether the observed spike train is consistent with
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a Poisson distribution with E(X) = λ = 50Hz. By calculating the inter-spike intervals and
comparing the observed distribution to the expected distribution from a Poisson distribution
with the expected firing rate, we can evaluate the goodness-of-fit of the Poisson model and gain
insights into the neural coding properties of the neuron. λ= 50 Hz (spikes/second),t = 1 second.

Inter-spike intervals (ISIs): ISIi = ti+1 − ti

ISI1 = t1+1–t1 = 0.06–0.02 = 0.04 seconds

ISI2 = t2+1–t2 = 0.1–0.06 = 0.04 seconds

ISI3 = t3+1–t3 = 0.15–0.1 = 0.05 seconds

ISI4 = t4+1–t4 = 0.2–0.15 = 0.05 seconds

ISI5 = t5+1–t5 = 0.24–0.2 = 0.04 seconds

ISI6 = t6+1–t6 = 0.28–0.24 = 0.04 seconds

Estimated firing rate of this sample,

λ̂ = 1/mean(ISIs) = 1/0.0417 = 24Hz

24Hz < 50Hz (λ̂ < λ) indicates that the observed spike train is not consistent with a Poisson
distribution with λ = 50Hz. Specific implications of slowed neural spike time encompass:

1. Altered information encoding and processing: The stochastic nature of spike timing allows
neurons to encode information in an efficient and effective manner. By modulating the
timing and rate of their spikes – temporal coding -, neurons can convey a wide range of
sensory, cognitive, and motor information efficiently. Slower firing of action potentials may
reduce the rate at which information is transmitted within neural circuits, thereby impact-
ing the speed and accuracy of sensory processing and cognitive function (i.e., attention,
memory, decision-making abilities).

2. Impaired motor function: A decreased firing rate of neurons in motor pathways can result
in impaired movement coordination and slower reaction times. This can manifest as
difficulties in fine motor tasks, decreased muscle responsiveness, and overall deficits in
motor performance.

3. Reduced plasticity: Neural plasticity is the ability of the brain to adapt and change in
response to experience and relies on activity-dependent modulation of synaptic strength.
Slower firing rates may reduce the frequency of synaptic activation, which may result in
decreased levels of synaptic plasticity and, consequently, deficits in learning and memory.

4. Neurological disorders: Abnormalities in neural action potential firing are implicated in
various neurological and psychiatric disorders, including epilepsy, neurodegenerative dis-
eases, schizophrenia, and depression, by way of alterations in neuronal excitability and
firing patterns.
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Conclusion

This example demonstrates how probabilistic models, such as the Poisson distribution, can be
applied to analyze and interpret neural spike timing data, providing valuable information about
the underlying neural mechanisms and information processing in the brain.

References

1. Grider MH, Jessu R, Kabir R. Physiology, Action Potential. [Updated 2023 May 8].
StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538143/

2. Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334-350.
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Probability Model in Data Science/ Business Analytics
Luz Joseph

Introduction:

The analysis and decision-making based on the information analyzed is a major portion of
data science and its conjunction with business analytic. In the context of business, the use of
probability modeling can be complex, requiring the analysis of large amounts of data and its
translation into business value. These translations can come in the form of model improvement
and forecasting, which we will focus on. In the event of predicting or preparing a business
for the situation of allocating a reasonable amount of product or marketing efforts for a new
product, forecasting is used, which is connected to the Poisson Distribution definition of finding
the probability of an event happening within an interval of times for a certain number of times.

Background Information:

Consider a music company like Spottily coming out with a new feature for its Premium users.
To ensure that the number of Premium user account activation may increase for that quarter,
a possible projection of the number of acquired users may be asked of the deployment team to
ensure that its deployment is accurately planned.

Probability Model:

Let X represent the number of acquired Premium users for that quarter given the average, 1,
increases in users after deployment. The Poisson Distribution of X would be:

P (x = x) =
e−λ · λx

x!
; x = 0, 1, 2, . . . .

where λ is the average number of (parameter) and x is the actual number of (random variables).

Probability Calculation:

Suppose the average number of new users after a feature deployment is 50. Let X be the number
of acquired users in the quarter after a new feature deployment is 50.

P (x = 50) =
e−50 · 5050

50!
= 0.056325.

Conclusion:

For this project, we had to develop a model and scenario to of how the Poisson distribution is
used in the context of Data Science/ Business Analytic, specifically for the scenario of Spotify’s
deployment of a new feature. Assuming that all aspects are set for a successful deployment,
we found that there is a 6% probability that there will be exactly 50 newly acquired Premium
users after a month of the new feature being deployed. This probability model provides powerful

23



insight into possible customer projections in assessment of their product deployments.

Reference:

Montgomery, D. C., & Runger, G. C. (2013). Applied Statistics and Probability for Engineers
(6th ed.). John Wiley & Sons.
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Modeling Nonlinear Wind Turbine Oscillations Under Non-stationary Wind
Excitation

Komninos Georgios

Introduction:

Wind turbines, which use wind energy to create electricity, are crucial parts of renewable energy
systems. However, because of the nonstationary nature of the wind and possible nonlinearities
in the system, wind turbines are susceptible to a variety of oscillations. The performance and
lifespan of the turbines may be impacted by these oscillations. In order to study the oscillations
of a nonlinear wind turbine, we will create a probability model in this project by applying the
ideas of equivalent linearization and nonstationary random excitation.

Background Information:

Nonlinearities in the structural dynamics of the wind turbine and the random and non-stationary
character of wind direction and speed are the main causes of oscillations in wind turbines. Using
Priestley’s description of an evolutionary process, we shall characterize the wind excitation as a
nonstationary random process and use equivalent linearization to account for the nonlinearities.

Probability Model:

Consider the equation of motion for a nonlinear wind turbine model with one degree of freedom:

Ẍ + βẊ + ω2
nX + ϵh(X, Ẋ, t) = F (t)

where:

• X is the displacement of the wind turbine’s nacelle.

• β is the linear damping coefficient.

• ωn is the natural frequency.

• ϵ is a small parameter.

• h(X, Ẍ, t) is a nonlinear function.

• F (t) is the non-stationary wind excitation.

We define F(t) as an evolutionary process using the Fourier-Stieltjes integral:

F (t) =

∫ ∞

−∞
AF (t, ω) · exp(iωt)dZ(ω)

The frequency-time modulating function is denoted by AF (t, ω), and the orthogonal-increment
process with certain parameters is represented by dZ(ω).
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Equivalent Linearization:

We apply the analogous linearization technique to account for the nonlinearity. An equivalent
linear term, αeX + βeU̇ , replaces the nonlinear component ϵh(X, ẅ, t). The determination of
αe and βe is achieved by minimizing the mean square error between the original and equivalent
systems.

Response Characterization:

The response of the equivalent linear system to the non-stationary excitation can be obtained
using the Duhamel integral:

X(t) =

∫ t

0

g(t− τ)F (τ)dτ

where g(t) is the impulse response function of the equivalent linear system. The response’s evo-
lutionary power spectral density can be calculated by utilizing the excitation’s frequency-time
modulating function and the analogous linear system’s transfer function.

Conclusion:

In this study, I analyzed the oscillations of a nonlinear wind turbine subjected to non-stationary
wind loads by developing a probability model based on the ideas of equivalent linearization and
non-stationary random excitation. An evolutionary process was used to describe the wind exci-
tation, and equivalent linearization was used to account for the nonlinearity. For wind turbine
builders and operators, this probability model offers important insights into how the system
behaves oscillatorily under actual wind conditions and nonlinearities.

Reference:

1. Ahmadi, G. (1980). Mean square response of a Duffing oscillator to a modulated white
noise excitation by the generalized method of equivalent linearization. Journal of Sound
and Vibration, 71(1), 9-15.

2. Probability Models in Engineering and Science, Haym Benaroya, Seon Mi Han, Mark
Nagurka CRC Press. (ISBN 0824723155, 9780824723156).
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Normal Distribution in Robot Forward Kinematic
Quincy Laflin

Introduction:

Forward kinematics in robotics is the process of calculating the position and orientation of a
robot based on given parameters. This is known as a pose. Given two poses, one being the
current pose and one being a pose in the future, a course can be plotted between the two poses.
For instance, given that our robot starts at (x = 0, y = 0, heading = North), and our desired
pose is (x = 4, y = 5, heading = South), our robot needs to figure out a path from the pose to
the second pose. The process is summarized as,

1. Plan motion from A to B

2. Calculate target wheel speeds

3. Control the wheel speeds

4. Track progress by updating the pose

5. Repeat

Background:

Sensitivity analysis applies specifically to wheeled robots. It is used to understand how varia-
tion in input parameters impacts the output (robot trajectory). Using sensitivity analysis we
can predict the behavior of a wheeled robot moving along a path. To start, sensitivity analysis
helps us understand which variables impact the robot’s final position the most. This allows
us to better model robotic systems, which leads to better robotic designs overall. The process
helps us understand sources of error that would cause a robot to misbehave. These sources
include a stepper motor being faster than the OEM specs, a malfunctioning sensor returning
value outside of the expected range, or even a wheel slipping. Sensitivity analysis can also help
predict how setting the wheels to different velocities affects the robot’s path.

Conducting Sensitivity analysis:

1. Define something that needs to be modeled

2. Identify key parameters

3. Vary parameters

4. Observe changes in output

5. Using the data collected model the variation in a normal distribution

6. Run a Monte Carlo simulation: Randomly sample wheel speed from the normal distribu-
tion and observe the effect on output.
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7. Perform an error propagation analysis. Calculate how errors in velocity analysis affect the
controlling equation.

Probability model:

• Vi = velocity of the wheel I

• µ(i) = average velocity of wheel I

• Σ(i) = standard of deviation of wheel i, represents variability PMF: For each wheel Vi ∼
N(µi, σ

2
i )

– X(t) = X(t) = X(0) +
∫
0t(V 1(s) + V 2(s))ds

– X(0) is the initial position, and V 1(s) and V 2(s) are the velocities of the wheels at
times s.

Example:

Problem: Imagine a differential drive robot (a type of mobile robot with two separately driven
wheels on either side). We want to analyze the effect of the wheel velocities on the robot’s
straight-line travel over a period of time.

• Left wheel (VL): mean (µL) of 5 m/s and a standard deviation (σL) of 0.1 m/s.

• Right wheel (VR): mean (µR) of 5.2 m/s and a standard deviation (σR) of 0.1 m/s.

Calculate the expected position of the robot along a straight path after 10 seconds, taking
into account the variability in wheel velocities. Additionally, estimate the probability that the
difference in velocities leads to the robot deviating from its intended straight path. Calculate
the probability that the difference in velocities exceeds a certain threshold, say 0.2 m/s, which
we assume could significantly affect the robot’s path.

• Foreward kinematics: Vavg = (VL + VR)/2

• Average V = µavg = (µL + µR)/2

• Expected position after 10 sec: X(10) = Vavg × 10

• Deviation: ∆V = VR − VL

• Variance: V aravg = (V ar(VL) + V ar(VR)/2, σavg = (σ2
L + σ2

R)/4
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Solution:

• The expected position of the robot along a straight path after 10 seconds, based on the
average velocities of the wheels, is 50.5 meters.

• The probability that the difference in velocities between the left and right wheels exceeds
0.2 m/s (which could significantly affect the robot’s path) is approximately 23.98% 24%
chance that the robot might deviate significantly from a straight path due to the difference
in wheel velocities.

Mean of variance: µ∆V = µR − µL, σ∆V = σ2
L + σ2

R

P (∆V > threshold) = 1− CDF ( threshold;µ∆V, σ∆V )

Where: ∆V = 0.2m/s and CDF of a normal distribution with the given parameter.

References:

1. Altuzarra, Óscar, and A. Kecskeméthy, eds. Advances in Robot Kinematics 2022. Cham,
Switzerland: Springer, 2022. Print.

2. Di Gregorio, Raffaele, and Raffaele Di Gregorio. Kinematics and Robot Design II (KaRD2019)
and III (KaRD2020). Basel: MDPI - Multidisciplinary Digital Publishing Institute, 2022.
Print.

3. Yan, Ying. “Error Recognition of Robot Kinematics Parameters Based on Genetic Algo-
rithms.” Journal of ambient intelligence and humanized computing 11.12 (2020): 6167–6176.
Web
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Developing a Probability Model for Cyber-security Risk Assessment using
Bernoulli Trials
Alexander Lap

Introduction:

In cybersecurity, probability is essential for evaluating threats and arriving at wise conclusions.
The Bernoulli trial, which is used to model binary outcomes like success or failure in a single
experiment, is one of the basic ideas in probability theory. In this project, we will use Bernoulli
trials to construct a probability model for cybersecurity risk assessment, with a particular focus
on the likelihood of a successful cyberattack under specified circumstances.

Background Information:

In the field of cybersecurity, it is critical for businesses to evaluate the likelihood of a successful
cyberattack in order to put in place appropriate security measures. Bernoulli trials are a useful
tool for modeling the likelihood of a successful cyberattack since they represent individual at-
tacks with a predetermined success rate. Numerous variables, including attacker sophistication,
security protocols, and system vulnerabilities, can affect this chance.

Probability Model:

Let’s refer to the successful cyberattack that occurs during a specific time frame as event A.
With a success chance of p, we can use a Bernoulli trial to model occurrence A. For a Bernoulli
trial, the probability mass function (PMF) is provided by:

P (A) = p if A occurs , P (A) = 1− p if A does not occur

System vulnerabilities, threat intelligence, and historical data can all be used to calculate the
success probability p.

Probability Calculation:

Assume that past data indicates a monthly probability of p = 0.03 for a successful cyberattack
on a system. We wish to determine the likelihood that within the next month, there will be
at least one successful cyberattack.. Using the Bernoulli trial model, we can calculate this
probability as follows:

P (at least one successful cyberattack) = 1− P (No successful cyber attack) = 1− (1− p)n

where n is the number of trials (months) considered.

For example, if we consider n = 30 days in a month, the probability of at least one successful
cyberattack in the next month is:

P (at least one successful cyberattack) = 1− (1− 0.03) · 0.30 = 0.785
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Conclusion:

For the purpose of this study, we created a probability model that employs Bernoulli trials to
evaluate cybersecurity risk. Specifically, we concentrated on the likelihood that a cyberattack
will be effective given a particular success rate. Organizations are better able to assess and
reduce cybersecurity risks by using historical data and probabilistic modeling. This improves
security protocols and increases resistance to cyberattacks.

Reference:

Montgomery, D. C., & Runger, G. C. (2013). Applied Statistics and Probability for Engineers
(6th ed.). John Wiley & Sons.
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Products’ quality control in APPLE company
Yahong Liu

Introduction: APPLE is an American computer and consumer electronics company famous
for creating the iPhone, iPad, and Macintosh computers etc. One common statistical tool used
in quality control is the binomial distribution. This distribution is frequently used to model the
number of defective items in a sample from a production batch, such as products of iPhone,
iPad, and Macintosh computers.

Background Information: Consider an APPLE company producing Mac computers in a
company. To ensure product quality, A sample of Mac computers is selected from each produc-
tion batch and inspected for defects. Quality of production batch can be described by using a
binomial distribution because there are two possibilities: 1) defective 2) good. The binomial dis-
tribution describes the number of successes (defective items) in a fixed number of independent
Bernoulli trials (individual inspections), where each trial has the same probability of success
(probability of a defective item).

Probability Model:

Let X represent the number of defective components in a sample of size n, each with a probability
p of being defective. The probability mass function (PMF) of the binomial distribution is given
by:

P (X = x) =

(
n

x

)
· px · (1− p)n−x; x = 0, 1, . . . , n.

where:

• x is the number of defective components.

• n is the sample size.

• p is the probability of a defective component.

Probability Calculation:

Suppose a company produces only Mac computers in this situation. The probability that Mac
computers produced by the company are defective is 0.01. If 10 Mac computers are produced,
what is the probability that exactly one of them will be defective?

P (X = 1) =

(
10

1

)
· (0.01)1 · (1− 0.01)9 = 0.09135 = 9.135%

Conclusion:

In this project, we developed a probability model by binomial distribution to analyze the quality
of a Mac computer in a manufacturing environment. specifically, the probability of finding a
certain number of defective Mac computers in a sample. We calculated the probability of exactly
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1 defective Mac computer in a sample of 10 Mac computers using the binomial distribution. In
sum, this probability model provides insight for APPLE company faculty in assessing the Mac
computer only. If the APPLE company faculty wanted to assess only the other kind of product
such as iPad or Macintosh computers.

Reference:

https://clubztutoring.com/ed-resources/math/binomial-distribution- definitions-examples-6/
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Data Corruption From Faulty RAM Using Exponential Distribution
Andrew Melton

Introduction:

Random Access Memory (RAM) is a piece of hardware inside a computer made up of millions
of tiny capacitors and transistors. RAM serves as a short term memory system to the computer
as it is used to process and save data that is actively being used by the Central Processing Unit
(CPU). Unfortunately, when RAM fails, the system’s memory and data is corrupted and the
CPU suffers because of this. One of the leading causes of faulty RAM is age. In this model we
will use an Exponential Distribution to model the amount of time (in years) it takes for a stick
of RAM to fail/break.

Background Information:

Let’s consider normal RAM for our example i.e. not performance/gaming RAM, but rather
RAM that would be in a normal office computer. Let’s assume we have a company that pro-
duces this RAM. We want to look into the details of the lifetime of this RAM (how much time
the user has until the RAM fails). An exponential distribution is often used to model the time
until an event occurs in a continuous time frame given a constant failure rate. For our failure
rate, we use λ. E(X) is calculated as such for the exponential distribution, 1/λ. Similarly,
V AR(X) is given by 1/λ2.

Probability Model:

Let T represent the time it takes for a stick of RAM from our company to fail and let λ represent
the inverse of the mean lifetime of a stick of RAM from our company. Thus T ∼ Exp(λ). The
probability density function (PDF) for T is as follows:

f(t) =

{
λe−λt ; t ≥ 0

0 ; otherwise.

where

• t is an input representing the time (in years) since the RAM stick was put into use.

• λ represents the inverse of the mean lifetime of a stick of RAM from our company.

Similarly, the Cumulative Density Function (CDF) is as follows:

F (t) = P (T ≤ t) = 1− e−λt
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Probability Calculation (PDF):

Suppose we know that a stick of RAM from our company lasts, on average, 5 years. Thus and
if then it follows that E(X) = 5 = 1/λ =⇒ λ = 0.2. We want to know the probability that a
given stick of RAM lasts for exactly 6 years. We calculate this using our PDF:

P (X = 6) = f(6) = 0.2 · e−0.2×6 = 0.060238.

Probability Calculation (CDF):

Using the same situation from the calculation above, we now want to know the probability that
a given stick of ram lasts for at most 10 years. We calculate this using our CDF;

P (T ≤ 10) = F (10) = 1− e−0.2×10 = 0.864664.

Conclusion:

In this project, we developed a probability model using an exponential distribution to analyze
the lifetimes for RAM sticks inside of a computer. Specifically, calculating these lifetimes in
years from the first time the RAM stick was put into use. We made two calculations using
our PDF and CDF. PDF: Found the probability of a stick of RAM from our company lasting
exactly 6 years (≈6%). CDF: Found the probability of a stick of ram from our company lasting
at most 10 years (≈86%). This model serves to provide information to not just big companies
and industries, but computer users all over the world.
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Probability Modeling used in Manufacturing
Savannah Miller

Introduction and Background

In manufacturing, specificity is important. Product designs need to meet specific requirements
in order to pass assessments. These products are considered and assessed individually to ensure
all products meet the standard. Therefore, if a product that is being manufactured does not
meet the requirements, it will not be considered or will be rejected. One tool used to help
control these rejections is the Third Axiom of Probability. This is often used in manufacturing
to predict the probability of these defects if the events that cause the defect are independent.
In this project, we will make a probability model using The Third Axiom of Probability. This
probability will look at independent events as diameters of a shaft being greater than or less
than the desired or nominal value. In the end, we will be able to determine the probability that
the shaft will be rejected.

Probability Model

(The Third Axiom of Probability) For two events E1, E2, that are mutually exclusive, that is,
E1 ∩ E2 = ∅, the probability of the occurrence of either or both events is given by

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2)

Probability Calculation

Machine shafts are being manufactured. The shaft can be rejected if the diameter is less than
98% or greater than 102% of its nominal value. The “nominal” value is the desired or design
value. The probability that a shaft is being rejected because the diameter is less than 98% of its
nominal value is given as 0.02 and the probability that the shaft is being rejected because the
diameter is greater than 102% of its nominal value is given as 0.015. What is the probability
that a shaft will be rejected?

Solution: Let E1be the event that the diameter of the shaft is less than 98% of its nominal
value, and E2 be the event that the diameter of the shaft is greater than 102% of its nominal
value. The probability of each event is Pr(E1) = 0.02, P r(E2) = 0.015. A shaft will be rejected
if either E1 or E2 occurs. That is, the probability that a shaft will be rejected equals the
probability of the union E1 and E2, that is, Pr(E1 ∪ E2). Since the shaft diameter cannot be
too small and too small at the same time, the events E1 and E2 are mutually exclusive, and
using the third axiom of probability,

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) = 0.02 + 0.015 = 0.035

Reference
Probability Models in Engineering and Science, Haym Benaroya, Seon Mi Han, Mark Nagurka
CRC Press. (ISBN 0824723155, 9780824723156)
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Clustering in Machine Learning Using Gaussian Mixture Model
Matthew Montero

Introduction/Background:

A useful probabilistic model to cluster intricate data patterns is the Gaussian Mixture Model
(GMM). GMMs use multiple Gaussian distributions to cluster – that is, grouping similar data
points in a dataset – to provide probabilistic insights into how different data is spread out. For
example, imagine a two-dimensional graph with a length and width as axes, representing a map
of Earth with individuals as data points. Each person represents a single interest in a social
network. In the real world, people would have different interests in various social networks, but
assume the former for the sake of simplicity and explanation. On the map, many individuals
are spread out in various regions, and it seems visually apparent that various sections of the
Earth represent groups of individuals with the same interest. If a company wanted to effectively
market its product to people whose interests align with their product, instead of marketing to
everyone which may incur more losses due to overextended marketing, they may employ a Gaus-
sian Mixture Model to cluster individuals by their interests and help the company determine
the best areas to market and reach more customers.

Probability Model:

Consider the earlier example with a company selling gaming personal computers (PCs) and the
dataset of people with only two interests: PCs and gaming consoles. Assume those who want
gaming consoles will not buy PCs; the company wants to market in areas of the Earth that
are likely – that is, have a higher density of – to buy their PCs. To use a Gaussian Mixture
Model, a probability density function (PDF) must be set up, in which the following parameters
are initialized.

• mean (µ): mean of the distribution

• covariance (Σ): covariance matrix of the distribution

From these values, create a PDF of a multivariate Gaussian distribution, X ∼ N(µ,Σ),

f(x;µ,Σ) =
1

(2π)k/2 · |Σ|1/2
· e−

1
2
(x−µ)TΣ−1(x−µ)

where:

• x: represents data points

• K: number of components or dimensions of each data point

e.g., when K = 2, each data point has two components. Once this is set up, someone may use
this Gaussian Mixture model to find the probability of a data point that belongs to a cluster,
such as the strength of whether it belongs to PC or console gamers. For example, refer to the
previous example of the company wanting to find people interested in PCs. Assume K = 2; the
following parameters would be assigned these values:
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• µ = [µ1, µ2]

• Σ =

[
σ2
1,1 σ2

1,2

σ2
1,2 σ2

2,2

]
where:

• µi: mean of Xi

• σ2
i,j: covariance of Xi and Xj

After this, the company may use this PDF to find the probability of data points that come from
each distribution or cluster. Note that after the setup of the PDF, it is necessary to refine the
parameters to find the optimal values for the PDF to find more accurate probabilities of the data
points. This requires differentiation of the equation with respect to the mean and covariance,
found in a step named the Maximum Likelihood Estimation (MLE). Otherwise, using the PDF
only after the setup would yield inaccurate probabilities.

Conclusion:

This project gives a general overview of the setup for a Gaussian Mixture Model. GMMs can
be used to cluster data points by how probabilistic a data point is associated with a specific
element of a cluster. Given this, GMMs are useful at associating data points sorted in complex
arrangements or shapes, and they can help remove bias when associating data points to a cluster
by giving a probability than a label to any data point, such as in K-means clustering. GMMs are
useful in many applications such as in medical diagnosis, climate analysis, and image processing.

References:

1. Carrasco, O. C. (2019, June 3). Gaussian Mixture Models Explained. Medium.
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Store Returns in Retail Using Binomial Distribution
Carter Moore

Introduction:

For retail stores around the world, the number of returns they receive can negatively impact
their pro;it. To help test the ef;icacy of their products, we can use the binomial distribution
to model the number of returns customers make. In this project, I will develop a probability
model using the binomial distribution to analyze returns at a retail store.

Background Information:

Consider a large department store that sells a wide range of products. To ensure customers are
happy with their purchases, a sample of products is selected from each week’s sales data and
tracked to see how many are returned. The decision to return an item or not can be modeled
using a binomial distribution. The binomial distribution describes the number of successes (re-
turned products) in a fixed number of independent Bernoulli trials (individual products), where
each trial has the same probability of success (probability of a return being made).

Probability Model:

Let X represent the number of products sold in a sample of size n, each with a probability p of
being returned. The distribution can be written as:

X ∼ Binomial(n, p)

P (X = x) =

(
n

x

)
· px · (1− p)n−x; x = 0, 1, 2, . . . , n.

The probability mass function (PMF) of the binomial distribution is given by: Where: x is the
number of returned products. n is the sample size. p is the probability of a returned product.

Probability Calculation:

Suppose a sample of 50 products from the store are randomly selected from a week of sales
data, and the probability of a product being returned is known to be 2%. We want to ;ind the
probability that exactly 3 products in the sample were returned. Using the binomial distribu-
tion, we can calculate this probability using the PMF:

P (X = x) =

(
50

x

)
· 0.02x · (1− 0.02)50−x; x = 0, 1, 2, . . . , 50.

Then, P (X = 3) =
(
50
3

)
· 0.023 · (1− 0.02)50−3 = 0.0607.
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Conclusion:

In this project, we developed a probability model using the binomial distribution to analyze
product return data in a retail setting, specifically the probability of ;inding a certain num-
ber of returned products in a sample. We calculated the probability of 3 returned products
in a sample of 50 retail products using the binomial distribution. This probability model pro-
vides valuable insights for retailers in analyzing how product returns affect their business model.

Reference:

Bobbitt, Zach. “5 Real-Life Examples of the Binomial Distribution.” Statology, 14 July 2021,
www.statology.org/binomial-distribution-real-life- examples
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Probability Model for Anomaly Detection in Network Traffic
Viet Thanh Nguyen

Introduction:

Anomaly detection is critical to ensuring the security and reliability of computer networks, espe-
cially in an era of increasing cyber threats. Detecting unusual patterns or behaviors in network
traffic can aid in the identification of potential security breaches, malicious activities, or system
failures. In this paper, we present a probability model for detecting anomalies in network traffic,
which employs data science techniques to analyze and identify abnormal network behavior.

Background Information:

Network traffic refers to the vast amount of data exchanged between devices in a network, in-
cluding communication between servers, clients, routers, and other network devices. This traffic
can be monitored and analyzed to extract a variety of information, including source and destina-
tion IP addresses, port numbers, packet sizes, protocols, and times. Anomalies in network traffic
can appear as deviations from expected patterns in these features, indicating potential security
risks, network failures, or performance problems. Creating an effective probability model allows
for automated detection of such anomalies, which improves network security and operational
efficiency.

Probability Model:

The probability model for detecting anomalies in network traffic assumes that normal network
behavior follows a specific statistical distribution, whereas anomalies deviate significantly from
this distribution. We use a multivariate Gaussian distribution to simulate the probability den-
sity function (PDF) of network traffic features under typical operating conditions. The PDF is
defined as follows:

f(x;µ,Σ) =
1

(2π)d/2 · |Σ|1/2
· e−

1
2
(x−µ)TΣ−1(x−µ)

Where:

• X represents the vector of network traffic features.

• µ is the mean vector of the features.

• Σ is the covariance matrix capturing the relationships between different features.

• d is the dimension of the feature space.

Using this PDF, we can calculate the probability of observing a specific network traffic pattern
X under normal conditions and identify deviations from expected behavior that may indicate
anomalies.
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Probability Calculation:

Given a new observation x that represents a specific network traffic pattern, we can calculate
its probability using the normal operating conditions model. If this probability falls below a
predetermined threshold, the observation is classified as anomalous. The threshold can be ad-
justed to achieve the desired balance of false positives and false negatives, depending on the
network environment.

Conclusion:

In this paper, we have proposed a probability model for anomaly detection in network traf-
fic based on a multivariate Gaussian distribution. By analyzing network traffic features and
comparing them to the modeled normal behavior, anomalies can be detected and flagged for
further investigation or mitigation. This approach leverages data science techniques to enhance
network security, reliability, and performance in modern computer networks.

Reference:
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
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Optimal Maintenance Using Weibull Distribution
Lulu Ouyang

Introduction:

Optimal maintenance strategies are critical in the later stages of mechanical engineering to en-
sure reliable and efficient operation of machinery and equipment and to save costly losses due
to inappropriate maintenance schedules. Probabilistic models are crucial in determining appro-
priate maintenance intervals and predicting the likelihood of failure or breakdown. A widely
used probabilistic model in this regard is the Weibull distribution. Modeling with it allows for
more efficient maintenance scheduling and intervals.

Background Information:

Consider a manufacturing factory that produces industrial machinery and equipment. To en-
sure the damage rate and longevity of these machines. From the first batch of machines in use,
a record of the time of each damage is kept. The data is used to make two probability curves,
β, and α, as well as a histogram. Finally, the pattern of damage can be identified from the
distribution of the data in order to develop an optimal maintenance schedule.

Probability Model:

The Weibull distribution is characterized by two parameters: the shape parameter (β) and the
scale parameter (η). The shape parameter determines the behavior of the failure rate over time,
while the scale parameter represents the characteristic life or the time at which 63.2% of the
components or systems have failed.

f(t) = (β/η) · (t/η)(β−1) · e−(t/η)β

where:

• t is the time or age of the component or system

• β is the shape parameter (β > 0)

• η is the scale parameter (η > 0)

Probability Calculation:

Suppose we have a factory with a Weibull distribution shape parameter β = 3 and scale param-
eter η = 5000 hours. We want to calculate the probability that the component will fail before
4000 hours. The cumulative distribution function (CDF) of the Weibull distribution is given
by:

F (t) = 1− e−(t/η)β

Use the data: F (4000) = 1− e−(4000/5000)3 = 1− e−0.512 = 0.401.
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Therefore, the probability that the component will fail before 4000 hours is approximately 0.401
or 40.1%.

Conclusion:

In this calculation, we find that the probability of a machine breaking down is 40.1% when
used for less than four thousand hours. This probability gives the factory the likelihood that
the machine will continue to work and also gives the factory continuous data on the machine’s
usage so that the factory can decide in real-time if repairs are needed. This will improve the
efficiency of the factory.

Reference:

Modarres, M., Kaminskiy, M., & Krivtsov, V. (2017). Reliability Engineering and Risk Analysis:
A Practical Guide (2nd ed.). CRC Press.
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Predicting Software Bug Counts Using Deep Learning
Aditya Patel

Introduction/Background:

The BCV-Predictor, as described by Sushant Kumar Pandey and Anil Kumar Tripathi, utilizes
deep learning to predict the bug count vector of a software system’s successive version. The
predictor employs metadata created by concatenating different versions of the same software
system. This project aims to provide a simplified probability model using this context, focusing
on the distribution of bug occurrences in the software system.

Probability Model:

Model Setup: Let variable X represent the number of bugs in a given software module.
Assume X follows a Poisson distribution model, which is typical for modeling the count of
occurrences (bugs) that happen independently within a fixed interval (module).

Parameters: λ: the rate parameter, which represents the average number of bugs per module.
This can be estimated from historical big data.

Model Definition: The probability mass function (PMF) for the Poisson distribution is given
by:

P (X = x) =
e−λ · λx

x!
; x = 0, 1, 2, . . . .

where x is the number of bugs, and e is the base of the natural logarithm.

Probability Calculation:

Suppose historical data suggests an average of 3 bugs per version (λ = 3). We can calculate the
probability of observing exactly 4 bugs in the next version as follows:

P (X = 4) =
(e−3 · 34)

4!
= 0.168

which means there’s about a 16.8% chance of encountering exactly four bugs.

Practical Application:

• Risk Assessment: Helps managers decide where to focus testing efforts by showing which
parts of the software might have more bugs.

• Planning: Assists in scheduling the right amount of time for fixing bugs and maintaining
the software, based on predicted bug counts.

• Quality Assurance: Enhances software quality by directing quality checks towards the
areas most likely to have issues.
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Conclusion:

This project developed a probability model using the Poisson distribution to predict the num-
ber of bugs in a software system’s next version. The model provides a framework that software
development teams can use to anticipate potential issues and allocate resources efficiently.

References:

Pandey, S. K., & Tripathi, A. K. (2020). BCV-Predictor: A bug count vector predictor of
a successive version of the software system. Knowledge-Based Systems, 197, 105924. ISSN
0950-7051. https://doi.org/10.1016/j.knosys.2020.105924.
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Modeling Genetic Variation through discrete random variables
Akansha Pathak

Introduction:

To study biological diversity and inheritance of certain traits, bioinformaticians and compu-
tational biologists have studied components of genetic variants in order to actively model
genome-wide genetic variation among individuals. Using Discrete Random Variables to analyze
and quantify genetic variation through differences in alleles provides a powerful framework for
bioinformatics and computational biology.

Background:

Genetic variation encompasses a wide variety of mutations and genotypic/phenotypic differences
with traits, such as height, weight, and biochemical concentration. Some of these variations in-
clude single nucleotide mutations (such as SNP’s), which involve changing one single gene as a
mutation. Others include indel that encompass insertions/deletions within a genomes and copy
number variations (CNV’s) which is when there is a duplicate copy made of a single gene, that
can cause a frameshift mutation during translation. SNP’s involve single base pair mutations
and are commonly studied due to their association with phenotypic traits and diseases. For
this specific probability model we will be looking at a specific population to map a genome
of specific allele frequencies. Developing a probability model centered around discrete random
variables will help researchers analyze distinct allele frequencies and their probabilities for a
specific population represent by n, or the sample size of people in a population.

Probability Model:

Let a genetic variation in this case be at a specific genomic locus, denoted as discrete random
variable X, and all of the possible outcomes are x1, x2, . . . , xk, which represents different alleles
that are present in the population. In this case, the probability mass function (PMF) would
describe the likelihood of observing an allele. This model can also be extended to encompass
the analysis of joint distributions through linkage disequilibrium.

Probability calculation:

Suppose we have the genotype for a population of genes at a specific genomic locus. By utilizing
multinomial distribution, which is the binomial distribution for multiple outcomes, we can
compute probabilities relating to mutated allele outcomes in the population. The multinomial
distribution for this situation is:

P (n1, n2, . . . , nk) =
n!

n1!n2! . . . nk!
· pn1

1 · pn2
2 · · · pnk

k

where:

• n represents the total number of people with either this allele or a different allele in place

47



• nk represents the count of the kth allele

• p represents the probability of an allele being present among the population

Conclusion:

By representing genetic variants using this probability model involving multinomial distribution
by representing genetic variants in a specific population using discrete random variables. This
probability model model can help with getting a bigger picture of variant’s implications on
disease prevention.

References:

The Mathematical Theory of Probabilities: and Its Application to Frequency Curves and Sta-
tistical Methods, Arne Fisher (1915). Macmillan Co., New York. Academic.oup.com. (n.d.).
https://academic.oup.com/bioinformatics/article/32/5/713/1744055.
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Predicting Cybersecurity Breaches Using Poisson Distribution
Brendan Reilly

Introduction:

Cybersecurity breaches pose significant threats to organizations worldwide, with potential con-
sequences ranging from financial loss to reputational damage. Predicting the occurrence of such
breaches is essential for proactive risk management. The Poisson distribution offers a statistical
framework for modeling rare events, making it applicable to cybersecurity breach prediction. In
this project, we explore the application of the Poisson distribution in forecasting cybersecurity
breaches.

Background Information:

Cybersecurity breaches encompass a wide range of unauthorized activities, including data theft,
malware infections, and denial-of-service attacks. The Poisson distribution, commonly used to
model the occurrence of rare events, is suitable for estimating the frequency of cybersecurity in-
cidents within a given time interval. This distribution assumes that events occur independently
and at a constant average rate.

Probability Model:

Let X denote the number of cybersecurity breaches occurring within a specified time period t.
The Poisson probability mass function (PMF) is given by:

P (X = k) =
e−λ · λk

k!
; k = 0, 1, 2, . . . .

Where:

• k is the number of breaches.

• λ is the average rate of breaches per unit time.

Probability Calculation:

Suppose an organization experiences an average of 3 cybersecurity breaches per month. We
want to calculate the probability of exactly 2 breaches occurring in the next month using the
Poisson distribution:

P (X = 2) =
e−3 · 32

2!
= 0.224
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Conclusion:

The Poisson distribution serves as a valuable tool for predicting cybersecurity breaches based
on historical data and average breach rates. By understanding the probability of breach occur-
rences, organizations can implement preemptive measures and allocate resources effectively to
enhance their cybersecurity posture.

References:

1. Stallings, W., & Brown, L. (2017). ”Computer Security: Principles and Practice” (4th
ed.). Pearson.

2. Pfleeger, C. P., & Pfleeger, S. L. (2015). ”Security in Computing” (5th ed.). Pearson.
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Probability Model in Health
Emily Rivers

Introduction/Background:

Sickle cell anemia (SCA) is a disease controlled by a single gene. If the gene functions properly
then you will not have any issues producing hemoglobin and have normal shaped red blood
cells. If that gene is non-functional, any red blood cells produced will lack hemoglobin and take
the shape of a sickle. SCA puts its patients at risk for different cardiovascular events such as
strokes. When children develop SCA, their risk of a cardiovascular event such as a stroke is
increased significantly.

Probability model:

About 1.5% of children born in the US have sickle cell anemia (SCA). Their risk of having a
stroke is 30%, and if the patient has already had one stroke, then the chances of having another
stroke are raised to about 70%. The probability of having sickle cell anemia and then one stroke
and then another stroke can be modeled by the following tree diagram.

• Probability of having SCA: 0.015 = 1.5%

• Probability of having one stroke due to SCA: 0.015× 0.30 = 0.0045 = 0.45%

• Probability of having two strokes due to SCA: 0.015× 0.30× 0.70 = 0.00315 = 0.315%

51



References:

• “About Sickle Cell Disease.” National Human Genome Research Institute, 26 May 2020,
https://www.genome.gov/Genetic-Disorders/Sickle-Cell-Disease.

• CDC. “Incidence of Sickle Cell Trait in the US — CDC.” Centers for Disease Control and
Prevention, 4 May 2018, https://www.cdc.gov/ncbddd/sicklecell/features/keyfinding-trait.html.

• “Sickle Cell Disease and Stroke.” Nationwide Children’s Hospital, 2024,
https://www.nationwidechildrens.org/family-resources-education/health-wellness-and- safety-
resources/helping-hands/sickle-cell-disease-and-stroke.

52



Multinomial Distribution in Mechanical Engineering
Katrina Russell

Introduction/Background Information

Probability plays a fundamental role in various aspects of mechanical engineering, and allows
engineers to tackle uncertainty and make informed decisions. As a mechanical engineer, one
of the most important parts of the job is being able to detect when a product is defective.
Mechanical engineers are often dealing with systems that have uncertain inputs and outputs.
Using probability we are able to assess the risk associated with different scenarios, such as failure
of components under various operating conditions. One example of this is multinomial distri-
bution. As demonstrated in the problem below, multinomial distribution can be very useful
in manufacturing and machine use. In manufacturing processes, products often need to meet
certain specifications or quality standards. Multinomial distribution deals with experiments
where there are more than two possible outcomes, and each outcome has a specific probability
of occurring in each trial. These outcomes are mutually exclusive, meaning that only one of
them can happen in each trial. This can be used to model the probability of products falling into
different quality categories during production. By analyzing the probability of defects occuring,
engineers can identify areas for improvement in the manufacturing process, as well as better
identify the likelihood of a product being defective.

Probability Model: Multinomial Distribution:

If we have k possible outcomes for our experiment with probabilities p1, . . . , pk, then the
probability of getting exactly ni outcomes of type i in n = n1 + · · ·+ nk trials is:

P (n1, n2, . . . , nk) =
n!

n1! · · · · · nk!
· pn1

1 · pn2
2 . . . pnk

k

Probability Calculation

The output of a machine is graded excellent 70% of the time, good 10% of the time, and
defective 10% of the time. What is the probability that a sample of size 15 has 10 excellent, 3
good, and 2 defective items?

The total number of trials is n = 15. there are k = 3 categories: excellent, good, and defective.
We are interested in outcomes with n1 = 10, n2 = 3, and n3 = 2. Using the formula we get:

P (n1, n2, . . . , nk) =
15!

10!3!2!
· 0.710 · 0.23 · 0.12

This gives us the exact probability of having the given number of each different quality of prod-
uct.
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Conclusion

In this problem, multinomial distribution is used to determine the probability that in a sample
of 15 products, there will be 10 excellent, 3 good, and 2 defective items. This is just one exam-
ple of how probability can be used to help engineers determine the quality of products and the
effectiveness of of machines.

References

Elementary Probability for Applications, Rick Durrett (2009) (ISBN 978-0-521-86756-6).
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Application of Probability in Data Science: Count Data Analysis
Ian Schneider

Introduction:
Counting is an important source of information and way of data collection. Data science is a
multidisciplinary field, and counting techniques are used in every field. Once you get the data
from the counting, you need to be able to analyze it. A common probabilistic model used in
count analysis is the Poisson distribution, which is employed when the focus of count analysis
is the number of events occurring in a fixed interval of time or space. In this project, we will
develop a Poisson model to model the distribution of the number of patient arrivals at a hospital
every hour.

Background:
Consider a busy suburban hospital that wants to minimize the amount of workers that need to
be in the hospital at one time. One factor contributing to the minimization of workers is the
amount of expected patients in any given hour. We can model the probability distribution of
this statistic using a Poisson distribution. First, we will take counts of patients into the hospital
per hour for every hour, every day of the week. Using this data, optimally from multiple dif-
ferent weeks throughout the year, we can determine if the model follows a Poisson distribution,
and, if it does, determine an estimate for the mean number of incoming patients per hour (λ).

Probability Model:
Let X represent the number of patients arriving at the hospital in 1 hour. Then, the number
of patients per hour could be modeled by the function,

P (X = x) =
e−λ · λx

x!
; x = 0, 1, 2, . . . .

Where λ is the observed average number of patients arriving at the hospital in 1 hour.

Example: Lets say we want to know the probability that 100 patients arrive in an hour where
we have determined the average number of patients per hour to be 87. So, λ = 87 and x = 100,
would find 0.01578707534. There would be around

P (X = 100) =
e−87 · 87100

100!
= 0.01578707534

1.58% chance of this happening according to the model.

Conclusion:

A data scientist would likely write a program capable of calculating for every λ hour (or any
other desired time period), and then automatically update as time passes and more data is
collected in order to keep changing and improving the prediction power. Using this estimation,
a hospital can determine how many workers it needs for each hour of the day. For example, a
1:00 AM shift on a Tuesday is likely to need much less workers than a 1:00 AM shift on a Friday
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would need because of the lesser amount of incoming patients. Ultimately, however, the hospital
would also likely consider many other factors, such as patient discharges, specific department
data (beds available, food available, etc.), etc.
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Probability Model: Kalman Filters in Robotics
Zachary Serocki

Introduction & Background:

Kalman filters are pivotal tools in robotics. They are used to address sensor noise. By using the
inherent probabilistic characteristics of sensor data, these filters play a crucial role in augment-
ing the reliability of sensor information. For instance, within a robotic system equipped with
diverse localization sensors such as odometry and lidar, the Kalman filter adeptly amalgamates
data from these sources to precisely estimate the robot’s position. An illustrative scenario in-
volves robots outfitted with a blend of localization sensor pairs comprising relative and absolute
sensors. This selection is strategic: absolute sensors tend to exhibit lower confidence in their
measurements yet are impervious to drift, whereas relative sensors offer more precise measure-
ments that will drift as time goes on due to noise. Here, the relative sensors constitute the
prediction stage, while the absolute sensors constitute the observational stage. Leveraging their
independence, the optimal estimate is derived by combining their probability distributions as
both variables follow a Gaussian distribution.

f(x) =
1√
2πσ

· e−
1

2σ2 (x−µ)2 ;−∞ < x < ∞,−∞ < µ < ∞

where µ is the mean value and σ is the standard deviation.

Example:

Envision the task of estimating the position of a car. You can collect velocity data from the
speedometer, indicating a speed of 60 mph (constant speed). Additionally, the car is equipped
with a GPS unit capable of estimating position with a standard deviation of 1 mile, while the
speedometer’s standard deviation is 0.5 mph. After 2 hours, the GPS indicates the car is 122
miles from the starting point.

The car’s position is initially approximated using the speedometer data: (60 mph) × (2hours) =
120 miles, with the standard deviation propagating to 1 mile. By integrating the distributions
from both sources, the most probable position of the car, factoring in the variability of each
variable, is determined to be approximately 121.385 miles from the starting point.
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Conclusion:

In conclusion, probability distributions serve as invaluable tools in mitigating the impact of
sensor noise, facilitating robust sensor fusion processes that yield high accuracy outcomes. Be-
yond this, alternative noise reduction techniques such as running average filters offer additional
avenues for refining data, these work because they keep a large sample of the previous data and
whenever new data comes in it has a minuscule effect on the output of the filter. Furthermore,
Bayesian Probabilistic Inferences provide yet another dimension, leveraging past state infor-
mation to estimate current states with precision. These multifaceted approaches collectively
contribute to advancing the reliability and efficacy of sensor-based systems in various domains,
including robotics and beyond.
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Probability Model for Malicious Network Traffic Detection using Anomaly
Algorithms Detection

Spencer Trautz

Introduction:
Network security is a critical concern in computer science, particularly with the increasing fre-
quency and sophistication of cyber attacks. Anomaly detection algorithms play a crucial role in
identifying unusual patterns or behaviors in network traffic that may indicate malicious activity.

Background Information:
Anomaly detection algorithms analyze network traffic data to identify deviations from normal
behavior. These algorithms utilize probabilistic models to distinguish between normal and ma-
licious network traffic. One widely used approach is based on Gaussian distributions, where
normal network traffic follows a certain distribution, and deviations from this distribution may
signal an anomaly.

Probability Model:
Let X represent a feature vector representing network traffic characteristics. We assume that
X follows a multivariate Gaussian distribution, where µ represents the mean vector and Σ
represents the covariance matrix:

f(x;µ,Σ) =
1

(2π)d/2 · |Σ|1/2
· e−

1
2
(x−µ)TΣ−1(x−µ); −∞ < x, µ < ∞, σ > 0

Probability Calculation:

Suppose we have collected network traffic data and estimated the mean vector µ and the co-
variance matrix Σ from a training dataset. We want to calculate the probability of observing a
particular network traffic instance X, given our learned model.

Conclusion:
In this project, we developed a probability model for detecting malicious network traffic using
anomaly detection algorithms based on Gaussian distributions. By analyzing deviations from
normal network traffic behavior, these algorithms can help identify potential security threats in
computer networks.

Reference:

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.) Wiley-
Interscience.
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Probability in Robotics
Lehong Wang

Introduction:
A Markov chain is a stochastic process that describes a sequence of events in which the prob-
ability of each event depends only on the state of the system at the previous event. Markov
chains are used to model a wide variety of phenomena, such as weather, stock prices, and traffic
patterns. In Robotics, the Markov chain is used to model a markov process. For example, when
we would like to estimate the current state of a robot, we could use the previous state and the
action taken to predict the next state. This is an essential, and this theory leads to the famous
Kalman filter, that is used widely.

Example:
Here, we will demonstrate the simplest form of this theory, where we have the PMF of current
state, and the PMF of the result of the action, which, combined, will give us the PMF of the
next state.

Problem setup:
A robot (dot) is moving along the integer number line, and it could attempt to move forward
a step (+1), but this action (a) have 30% probability of failing. The PMF of the current state
is: P (X = x) = 0.8x = 0, 0.2x = 1where x is the position that the robot is at.
Question is, what is the PMF of the next state of the robot.

x = 0 → x = 0, a = 0 → 0.8 ∗ 0.3 = 0.24

x = 1 → x = 0, a = 1 or x = 1, a = 0 → 0.2 ∗ 0.3 + 0.8 ∗ 0.7 = 0.62

x = 2 → x = 1, a = 1 → 0.2 ∗ 0.7 = 0.14

So, PMF: P (X = x) = 0.24x = 0, 0.62x = 1, 0.14x = 2 is the next state of the robot.

Reference:

A New Approach to Linear Filtering and Prediction Problems. (1960). Transactions of the
ASME–Journal of Basic Engineering, 82(Series D), 35–45.
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Probability Model in Computer Science
Evelyn Yee

Introduction and Background:

In software development, estimating the time it may take in completing a programming project
is vital in making sure it can be completed in a timely manner. By using previous data, the
normal distribution can be used in order to predict how long a project may take to complete
based on a programmer’s average time to finish projects in the past. In this project, we will use
the normal distribution to estimate the completion time of a programming project.

Probability Model and Calculation

Let X represent the time in hours it will take a programmer to finish one programming project.

f(x) =
1√
2πσ

· e−
1

2σ2 (x−µ)2 ;−∞ < x < ∞,−∞ < µ < ∞

where µ is the mean value and σ is the standard deviation.

Example:

A software development company would like to assign a programming project to an employee
who will take no more than a certain amount of time to complete it. A certain employee’s com-
pletion time is a normal distribution with a mean value of 32 hours and a standard deviation
of 2.4 hours. What is the probability that this employee will, at maximum, take 30 hours to
complete this project?

Using the normal distribution, we can calculate this probability using the probability model.

P (X ≤ 30) = Φ(30− 32/2.4) = Φ(−0.83) = 0.20327.

Conclusion:

The probability that this employee will take, at maximum, 30 hours to complete this particular
project is 20.3%. Using this probability model, the company can decide which employee may
be the best fit for any particular project and improve their project completion efficiency.
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Probability Model in Computer Science Software Engineering and Video Game
Design.

Joseph Caproni

Introduction/Background:

Software applications, especially video games use probability to simulate the chance of certain
events occurring. Games often use Random Number Generators or RNG to determine when
certain events occur, like what might be inside a random loot box that the user purchases for
example. The way that these loot boxes work is that when the player opens them, the com-
puter rolls electronic dice, which return a number. The numbers on the dice correspond with
various items that the loot box then rewards the player with. This has revolutionized the mo-
bile gaming world, as many companies have designed models around chance, assigning various
items in games different rarities (probabilities of opening in loot boxes) to motivate customers
to play and purchase these boxes. To increase the rarity of certain items, designs may use mul-
tiple electronic dice and tie the outcome of the item being dispensed to the combinations of each.

Example/Probability Model:

Say there is a video game in which a player gets a treasure chest and has the chance to get
either a wooden stick, silver, gold, or a diamond from it. Assume that there are two electronic
dice.

P (W ) = 70%, P (S) = 15%, P (G) = 10%, P (D) = 5%

When the player opens the chest, they get two items. Whatever each die decides is what each
item the player gets. Since there are two dice the player will get two random combinations of
items based upon the probabilities listed above.

P (Two Item Output) = P (die 1)× P (die 2)

This is done to ensure that a variety of items are dispensed, with the probability being tied to
multiple independent events, instead of a single one.
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Probability model in Computer Science
Martin Kalo

Introduction:

Sorting algorithms are a very well-known thing in the world of computer science. We use sorting
algorithms all the time in order to handle data in an efficient way. Depending on the different
ways algorithms operate, they may have different completion times and probability distributions
for achieving those times.

Background:

Consider the sorting algorithm Quick Sort. This algorithm sorts the data by choosing a random
value from the data and turning it into a “pivot”. Then, it puts all of the values in the array
which are greater than the pivot to the right, and the values which are smaller to the left. This
process is repeated until the array is sorted. The time to complete a successful sort can be
modeled with a normal distribution, because some values result in a more efficient iteration of
the program and the value chosen as the pivot is random.

Probability Model:

The PMF of a normal distribution can be given as the following:

f(x) =
1√
2πσ

· e−
1

2σ2 (x−µ)2 ;−∞ < x < ∞,−∞ < µ < ∞

where X is the variable which represents the time taken to complete the sorting, µ is the
mean time taken to complete the operation, and σ is the standard deviation of time taken to
complete the operation.
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Probabilistic Latent Factor Models in Recommendation Systems
Abbas Jivan

Introduction/Background:

In many online streaming services such as YouTube, Netflix, and Spotify, recommendation sys-
tems are the core selling point that keep users on the service for hours at a time, providing
them with content that is likely to appeal to the user. Thus, these companies are always look-
ing to improve their recommendations processes and in recent years, with breakthroughs in
machine learning, recommendation systems have only grown become more robust and intuitive.
While traditional recommendation systems use deterministic models such as collaborative and
content-based filtering, these do not account for the uncertainty of user preferences. Instead,
a better method is the use of probabilistic latent factor models such as probabilistic matrix
factorization to account for uncertainties and thus create models that provide more accurate
recommendations.

Example:

To demonstrate, consider an example where a user on Netflix continuously watches romance
movies and generally rates them with a high score. However, another analysis shows that within
the romance genre, the user tends to watch movies where the main love interests end up to-
gether and does not highly rate movies where the main love interests are separated in the end.
To better determine movies that the user may enjoy, we can find the minimum value of the
square of the distance between the original scoring matrix and the scoring matrix of the poten-
tial factors that could impact recommendations. This will help us determine the best scoring
matrix of factors and thus give us more accurate recommendations for the user. This is usually
accomplished through a machine learning model that utilizes a variety of matrix factorization
technologies to best determine movies for the user.

Conclusion:

In conclusion, probabilistic latent factor models such as probabilistic matrix factorization are
better utilizations recommendation systems as they provide more accurate recommendation
due to being able to consider more nuanced factors and uncertainties compared to deterministic
models.

References:

Zhang, Z., Wu, Q., Zhang, Y., & Liu, L. (2023, April 21). Movie recommendation model based
on probabilistic matrix decomposition using hybrid AdaBoost integration. PeerJ. Computer
Science. https://doi.org/10.7717/peerj-cs.1338
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“Probability is not just a math concept; it’s a way of thinking about the world.”

“In every situation, you have a choice—what you do with it is your probability
of success.”

“Probability is the very guide of life.” – Cicero

“The best way to predict the future is to create it.” – Peter Drucker
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