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ABSTRACT 
 
This project developed an alternate roof design for WPI’s Life Sciences & Engineering 
Center at Gateway Park to meet the LEED Heat Island Effect criteria, to reduce 
temperature differences between rural and urban areas.  This steel roof design was 
developed using the LFRD and AISC methods, as well as the Massachusetts State 
Building Code.  The project also investigated the cost and feasibility of meeting LEED 
Materials and Resources standards to promote sustainability in the construction industry.   
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CAPSTONE DESIGN 

 In order to meet the capstone design requirement of this project, we redesigned 

the roof of the WPI Life Sciences & Bioengineering Center at Gateway Park to meet the 

roof Heat Island Effect criteria for LEED standards.  We also determined the cost of 

building the Bioengineering Center to meet the Materials and Resources category of the 

LEED New Construction standards.   

Meeting the Heat Island Effect criteria helps to reduce the low-scale temperature 

differences between rural and urban areas. The first step of redesigning the roof was to 

complete a structural analysis of the existing roof which prepared us to design an 

alternative sloped roof.  This required giving special consideration to the roof’s existing 

mechanical systems and accounting for the weight of our specifically selected solar 

reflective material.  Additionally, local building codes were referenced in determining the 

loads the roof is required to bear.   

Meeting the Materials and Resources category of the LEED certification criteria 

helps to promote sustainability within the construction industry.  To determine the cost of 

meeting the criteria laid out in this category, we estimated the cost of the completed 

construction and then estimated the potential cost of the project had it been built to the 

LEED Materials and Resources standards.   

This project addresses economic, environmental, sustainability, manufacturability, 

and health and safety constraints.  We analyzed the costs and benefits of building the 

WPI Life Sciences & Bioengineering Center to LEED standards to determine if it would 

be economically feasible.  Additionally, the new roof design addressed environmental 

and sustainability issues through reducing the building’s energy usage and contribution to 



 v

increased temperatures in urban areas.  In terms of manufacturability, our roof design 

includes materials that are available regionally and can be assembled using standard 

construction methods.  The design addresses health and safety constraints by meeting the 

Massachusetts Building Code and lessening the impact of the heat island effect created 

by the city.   
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1.0 INTRODUCTION 
 

On March 29, 2005, a $2.5 million grant from the U.S. Economic Development 

Administration was secured for the development and construction of Gateway Research 

Park in Worcester, Massachusetts.  Built on eleven acres of redeveloped brownfields 

land, the focal point of this project has become the newly constructed WPI Life Sciences 

and Bioengineering Center. At a cost of approximately $30 million, the Center includes 

124,600 square feet of space on four floors at 60/68 Prescott Street.  Designed by 

Tsoi/Kobus Associates and built by Consigli Construction Co. of Milford, MA, the 

facility has entered its final stages of construction and will soon be occupied by WPI’s 

Bioengineering Institute.  The facility will house many graduate research programs along 

with outside tenants from the life sciences field.  Though the building site was cleaned up 

using the appropriate methods for brownfields sites, it is important to note that the actual 

design and construction of the building was not aimed at meeting any environmental 

construction standard (Worcester Polytechnic Institute 1). 

Building green can help the environment, the economy and the health of the 

community.  According to the U.S. Green Building Council, “in the United States, 

buildings account for 36% of total energy usage, 65% of electricity consumption, 30% of 

greenhouse gas emissions, 30% of raw material use, 30% of waste output and 12% of 

potable water consumption.”  Some examples of the benefits of building green are 

protecting ecosystems and natural resources, reducing waste and operating expenses, and 

improving the quality of air and water. 

The Leadership in Energy and Environmental Design (LEED) standard is a rating 

system designed to define the term "green building" in a quantitative way by establishing 
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a common measurement universal to all green construction.  Standards such as LEED 

help to ensure that construction methods maintain a minimum degree of sustainability in 

order to preserve the environment for future generations (U.S. Green Building Council).   

This project aims to promote sustainability by showing the economic feasibility of 

green design, and has two separate but interrelated goals.  The first goal is to redesign the 

roof of the WPI Life Sciences and Bioengineering Center to meet the roof Heat Island 

Effect criteria in the Sustainable Sites section of the LEED New Construction Standard.  

The second goal is to determine the feasibility of meeting the LEED certification criteria 

within the Materials and Resources category. 

In order to reach these goals, we examined different aspects of the building and its 

construction.  We carried out an analysis of the existing roof construction and designed a 

new roof to meet LEED Heat Island Effect criteria using the engineering techniques 

acquired through coursework at WPI.  Simultaneously, we analyzed the materials and 

resources used in the actual construction of the building and compared them to the 

materials and resources that would have been required to comply with Materials and 

Resources LEED criteria.  Our cost, design and specification information was obtained 

from Consigli Construction Co., RSMeans Cost Estimating guides, and archival research.  

A complete list of sources can be found in the bibliography.  
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2.0 LITERATURE REVIEW 

 In order to meet our first goal of designing a roof to meet the LEED Heat Island 

Effect specification, we needed to have an understanding of the heat island effect and the 

concept of the solar reflectance index (SRI). Additionally, we studied LEED certified 

projects that have met the Heat Island Effect criteria to serve as examples for the 

alternative roof design.  To accomplish our second goal of developing a cost comparison 

of the actual construction and of construction to the LEED standards in the Materials and 

Resources category, it was important to develop a thorough understanding of LEED 

requirements.  Furthermore, we researched and discussed different levels of accuracy of 

cost estimates. 

We also examined the environmental policies at other educational institutions that 

compete with WPI to determine the overall feasibility and benefits of certifying WPI’s 

buildings.  We specifically chose to study schools that compete with WPI to determine if 

construction of LEED certified buildings make WPI more marketable to prospective 

students.  This section provides background information on LEED New Construction 

Standards, the heat island effect, solar reflectance index, examples of LEED certified 

projects that meet roof Heat Island Effect criteria, information on environmental 

sustainability policies at other universities, and a discussion of different types of cost 

estimates.  

2.1 LEED 

The LEED certification program was developed by the U.S. Green Building 

Council (USGBC), a non-profit organization.  It was intended to raise awareness of 

issues related to green construction and to create a standard measurement for “green 
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buildings” in order to increase competition for green construction within the industry 

(U.S. Green Building Council).  Ultimately, the Council hopes that sustainable practices 

will become common practice and a certification program will no longer be necessary to 

motivate green building.   

Building to LEED standards has many advantages.  It reduces the impact a 

building has on human and environmental health by focusing on five major areas of 

sustainability: water conservation, efficient usage of energy, site development, material 

selection, and quality of the indoor environment.  Building to LEED standards can also 

offer direct benefits to the building owner and occupants.   

According to the USGBC, green building techniques can reduce energy usage and 

operating costs by improving the performance of a building.  “Studies show that the 

energy-efficient electrical and HVAC systems in green buildings produce a direct 20-year 

present value energy savings to the facility of approximately $6.00 per square foot to 

$14.00 per square foot” (RSMeans, “Green” 231).  LEED certified buildings also 

improve the asset value of the building and promote the owners dedication to 

sustainability and social responsibility.  Green building techniques can improve occupant 

productivity and reduce absenteeism.  Studies published in RSMeans Green Building: 

Project Planning and Cost Estimating have shown that the improvement of indoor air 

quality and the use of more light contribute to students progressing 20% faster on math 

tests and 26% faster on reading tests.  Other studies show that green buildings contribute 

to higher employee retention rates.   

Obtaining LEED certification can also help the builder to qualify for tax breaks 

and other benefits in many cities (U.S. Green Building Council).  For example, the 
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development of Gateway Park received a $2.5 million grant from the U.S. Economic 

Development Administration, but could have qualified for additional forms of 

government funding had the Bioengineering Center been a LEED certified building.  In 

the past, funding has been provided to other LEED certified projects from sources such as 

the Massachusetts Renewable Energy Trust, Massachusetts Technology Collaborative, 

and the utility NStar.   

A project achieves certification through a process that includes submitting project 

photos, typical floor plans, project descriptions and plans outlining how the project will 

meet the indicated criteria to the USGBC (U.S. Green Building Council).  A new 

construction project is evaluated through six major sections: Sustainable Sites, Water 

Efficiency, Energy and Atmosphere, Materials and Resources, Indoor Environmental 

Quality, Innovation and Design Process.  Each section has a number of specified items or 

tasks necessary to receive points and some have prerequisite items that must be 

completed, but do not offer points toward certification (see Appendix W for a project 

checklist).  There are four different levels of certification: certified, silver, gold, and 

platinum (U.S. Green Building Council, “New Construction”).  Table 1 shows the points 

required for each level of certification.   

Table 1: LEED New Construction Certification Levels 
 

 

 

 

Our project focuses on the Heat Island Effect criteria for roof design outlined in 

the Sustainable Sites and the Materials and Resources categories because these categories 

Level 
Points 

Required 
Certified 26-32 

Silver 33-38 
Gold 39-51 

Platinum 52-69 
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are well suited to being studied through a cost analysis.  Consideration of other areas of 

LEED criteria are less relevant in the context of this project because our intent is to study 

project management and structural design while the other LEED categories deal primarily 

with building performance.  We focused on the Materials and Resources category 

because this area provides an opportunity for a direct cost comparison of conventional 

building materials and materials that meet LEED standards.  Additionally, we redesigned 

the roof according to the Heat Island Effect criteria because this approach does not alter 

the way the building meets the owner’s needs and provides a task for a structural design 

that is achievable within our time constraints.  The following section discusses what a 

heat island is and how its effects can be reduced.  

2.2 Heat Island Effect 

Heat Islands are urban areas that have higher air and surface temperatures than 

nearby rural areas (U.S. Environmental Protection Agency).  Often, the temperature 

differences between cities and suburbs can be as large as ten degrees Fahrenheit.  The 

largest urban-rural temperature differences normally occur three to five hours after 

sunset.  This delay occurs because cities retain heat that is stored in roads and buildings 

and therefore cool off slower than rural areas.  

Heat Islands are formed when natural land cover is replaced with pavement and 

buildings (U.S. Environmental Protection Agency).  Tall buildings and narrow streets 

especially reduce the air flow and heat the air trapped between them.  The removal of 

trees and other vegetation minimizes their natural cooling processes such as shade and 

evaporating water from leaves and soil. The heat island effect is further exacerbated by 

waste heat from vehicles, factories and air conditioners. 
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 Reducing the heat island effect can decrease the community’s electricity usage.  

For example, research performed by the U.S. Environmental Protection Agency shows 

that “In U.S. cities with populations over 100,000 peak utility loads increase 1.5 – 2.0% 

for every 1 degree Fahrenheit increase in summertime temperature” and over the last 

several decades, “3 to 8% of community-wide demand for electricity is used to 

compensate for the heat island effect.”  Worcester, Massachusetts, the location of WPI’s 

Life Sciences and Bioengineering facility, has a population of 176,000 people (City of 

Worcester).  If more buildings in Worcester were built with roofs that meet LEED Heat 

Island Effect criteria, the demand for electricity would be reduced.  

 Cities like Worcester can reduce the heat island effect by installing cooling roofs, 

cooling pavements, and planting trees and other vegetation. The focus of this project was 

to design a cool roof to demonstrate how the WPI Life Sciences and Bioengineering 

center could have helped reduce the Heat Island Effect.  Cool roofs reduce building heat-

gain and save on air conditioning usage, which reduces overall energy usage, greenhouse 

gas emissions and air pollution (U.S. Environmental Protection Agency).  

Most cool roofs have a smooth, white surface that reflects solar radiation reducing 

air conditioning usage and the amount of heat transferred into in the building.  Cool roof 

materials have a high solar reflectance and a high thermal emittance.  According to the 

U.S. Environmental Protection Agency, “Solar reflectance is the percentage of solar 

energy that is reflected by a surface.  Thermal emittance is defined as the percentage of 

energy a material can radiate away after it is absorbed.”   

Thus, solar reflectance and thermal emittance are important factors that affect 

surface temperatures and contribute to the heat island effect.  When a surface has a low 
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solar reflectance it absorbs a high fraction of solar energy, some of which is conducted 

into the building and the ground, and some of which is transferred into the air through 

convection causing temperature rises (ASTM 2).  

By measuring the solar reflectance of a given roof, it is possible to calculate the 

Solar Reflectance Index (SRI), which allows for a direct comparison of the temperature 

of different roof surfaces under the sun.  All SRI measurements are taken with respect to 

standard black roofing with an SRI of 0 and standard white roofing scaled at an SRI of 

100.  Using this scheme all values for SRI are interpolated to fall somewhere between 0 

and 100 (ASTM 1).  Computation of the SRI first begins with a calculation of the steady-

state surface temperature for a surface exposed to the sun when the conduction into the 

material is zero.  Using that information and the steady-state temperature of black and 

white surfaces under standard solar and ambient conditions, the SRI can be calculated 

(ASTM 2). 

 According to LEED standards, a minimum SRI of 78 is acceptable for low-

sloped roofs, less than or equal to 2:12.  Roofs with steeper slopes, greater than 2:12, 

must have a minimum SRI of 29.  The two different requirements come from political 

issues rather than scientific ones.  According to Andre Desjarlais of Oak Ridge National 

Laboratories, “When the rules were initially proposed, the levels were set so that there 

were some products in existence that met the requirements.  Steep slope products tend to 

be much darker in color and therefore of much lower reflectance.  The level was set so 

that some steep slope products could meet the requirement.”  The higher the SRI, the less 

contribution a roof has to the heat island effect (U.S. Green Building Council, “New 

Construction” 23).   
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2.3 Heat Island Effect Examples  

 In order to further understand methods of heat island effect reduction, we 

reviewed case studies from LEED-certified projects in California, Washington, and 

Georgia.  The Robert Redford Building, which was a gut renovation in downtown Santa 

Monica, CA and completed in November of 2003, has several features that conserve 

energy and include the use of photovoltaic energy and wind power.  However, one of the 

most interesting aspects of the building exterior is the roof.  The roof is multi-level, with 

multiple atria, and uses the building’s own rain and gray water treatment system to water 

these plants as well as to flush toilets.  Furthermore, the roof contains monitors that 

diffuse sunlight and fresh air throughout the building (U.S. Green Building Council, 

“Robert Redford”).   

 Another LEED project that features a roof that meets Heat Island Effect criteria is 

the construction of the 14-story Seattle Justice Center.  Completed in October of 2002, 

this facility boasts naturally vented curtain walls that consist of two distinct layers 

separated by a thirty-inch air space, designed to help minimize heat gain.  In addition, this 

building’s “green roof” features low-maintenance plants, making an insulating layer of 

soil a natural feature on this roof that also “removes solar heat gain through 

photosynthesis” (U.S. Green Building Council, “Seattle”). 
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In August of 2003, Georgia Institute of Technology completed their new $40 

million Management Building that is very similar to WPI’s Life Sciences building.  This 

248,000 square foot facility includes an auditorium, classrooms and retail spaces.  While 

the Management Building incorporates several sustainable features such as water-saving 

devices and recycled materials, it also helps reduce the heat island effect by the simple 

use of white heat-reflecting material on the roof (U.S. Green Building Council, 

“Management Building”).  

The U.S. EPA New England Regional Laboratory, completed in September of 

2001, is a $22 million, 70,400 square 

foot facility located in Chelmsford, MA.  

To meet LEED criteria in areas such as 

Land Use and Materials and Resources, 

the Laboratory includes features such as 

Figure 2: U.S. Environmental Protection Agency 
New England Regional Laboratory, photograph, 

U.S. Green Building Council, 2 Feb. 2007 

Figure 1: Georgia Institute of Technology Management Building, 
photograph, U.S. Green Building Council, 2 Feb. 2007 



 11

shower facilities and bicycle storage for bicycle commuters, access to public 

transportation, the use of steel with the highest possible content of recycled material, and 

a waste management plan provided by the contractor (U.S. Green Building Council, 

“Regional Laboratory”).  The success of this facility in achieving LEED Gold 

certification demonstrates that even laboratory facilities, which are traditionally thought 

of as harmful to the environment, can take steps to reduce their environmental impact.   

The examples above have shown that meeting the Heat Island Effect criteria is 

one way to reduce the environmental impact of buildings and can be used on a variety of 

building types.  Recently, many college campuses across New England recognized the 

benefits of sustainable practices, took steps towards implementing these practices, and 

are now experiencing positive results in terms of energy savings, and occupant morale 

and productivity. 

2.4 Environmental Policies on College Campuses 

Effective environmental policy goes beyond highly reflective roofs and the use of 

recycled materials for construction.  This section discusses research performed on the 

“green” policies of universities in the Northeast that are of a similar caliber and 

reputation, and draw from the same pool of applicants as WPI.  These universities not 

only see the environmental impact and cost savings of green engineering, but also an 

impact on the university’s prestige, which aid in the institutions ability to attract potential 

students (Nitsch).  Therefore, the purpose of this section is to gain some awareness of 

how other universities are approaching green building and to assist WPI in benchmarking 

its own status in this area.  
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2.4.1 University of Connecticut 

The University of Connecticut (UConn) developed an Environmental Policy 

Statement in 2004 (revised May, 2006) that outlines the University’s approach to 

handling their impact on the environment.  The policy is broken down into six categories: 

performance, responsible management and growth, outreach, academics, conservation, 

and teamwork (University of Connecticut).  In order to give focused attention to each of 

these areas, there are three subcommittees that work to develop and evaluate the 

University’s performance.  The Land Use and Sustainable Development subcommittee 

works with the University’s construction program to help facilitate green building 

practices, and also works for open space conservation, natural resource protection, and 

habitat restoration.  The Compliance and Best Practices subcommittee focuses on waste 

management procedures, conserving resources, and the minimization of air and water 

quality impacts.  The third committee, for Environmental Outreach, works to increase 

awareness and personal responsibility, enhance environmental literacy, and to improve 

the university’s reputation and community relations.  

  As an example of the tasks performed by each of these subcommittees, consider 

the Compliance and Best Practices committee.  In the 2004-2005 school year, the 

committee had four workgroups: Greenhouse Gas Emissions, Fleet Fuel Efficiency, 

Biodiesel Initiative and Water Conservation (University of Connecticut).  Each 

workgroup had a set of goals, tracked their progress, and planned for the future.  One 

particular achievement made by the Water Conservation workgroup was the replacement 

of washing machines on campus with high efficiency washing machines, which will 

result in an estimated 2.6 million gallon reduction in water usage per year.  
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 In addition to the Environmental Policy Statement, UConn has a document called 

“Sustainable Design Guidelines,” which uses LEED criteria as a sustainability 

benchmark, but also “tailor[s] LEED to respond to regional issues and campus culture, 

and also integrate[s] it with its existing building delivery process” (University of 

Connecticut).  The Burton Family Football Complex and the Mark R. Shenkman Training 

Center are examples of the success of UConn’s sustainable design guidelines.  This 

athletic facility is the first LEED registered complex in the NCAA. 

2.4.2 Massachusetts Institute of Technology 

The environmental policy at the Massachusetts Institute of Technology (MIT), 

also know as “MIT’s Commitment,” is active at their highest levels of administration and 

is evident throughout their community.  This policy is outlined by three objectives, the 

first of which is “honoring our legacy of leadership in science, technology, and 

innovative problem solving” (Massachusetts Institute of Technology).  The other main 

objectives are promoting research and activities that support MIT’s environmental 

standards that embody stewardship and extend beyond local and federal regulations, and 

protecting the environment and welfare of the community. 

 Three groups were formed in order to work toward these objectives: the Council 

on the Environment, the Environmental Programs Office, and the Environmental Health 

and Safety Council (Massachusetts Institute of Technology).  The Council on the 

Environment develops environmental research and academic programs.  Environmental 

policymaking, coordination of MIT-wide environmental initiatives, and the overall 

environmental, health, and safety management at MIT are the main tasks of the 

Environmental Programs Office.  The application of MIT’s environmental goals of 
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research and administrative operations is the responsibility of the Environmental Health 

and Safety Council.   

 In working toward meeting their environmental objectives, MIT has developed a 

set of measurable goals to facilitate the evaluation of their progress (Massachusetts 

Institute of Technology).  Some of their many goals are as follows: reduce per capita 

energy consumption, improve indoor and urban environment, and educate students in 

sustainable concepts.  MIT has already taken significant steps toward meeting their 

environmental objectives.  For example, all major renovations and new construction will 

be designed to exceed LEED Silver standards. 

Other achievements that benchmark the progress of MIT’s environmental policy 

fall into the categories of recycling and resource conservation.  MIT has increased its 

overall monthly recycling rates from 10.5% to over 35%, as a percentage of total tonnage 

of material recycled compared to total amount discarded.  The Institute also practices 

food composting through collecting food waste from kitchens and turning it into compost 

used at a local nursery.  Scraps from food preparation are handled separately and 

collected by a designated organics hauler.  These practices save money on trash 

collection and reduce rat problems near trash areas since food waste is picked up daily.  

Resource conservation is another area where MIT has taken drastic measures to 

improve.  In one building on campus, a water reclamation and reuse system was put in 

place.  This system cost $140,000 to install, but saves $160,000 annually, and has 

reduced annual water consumption in that building from 27.6 million to 3.6 million 

gallons (Massachusetts Institute of Technology). 
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2.4.3 Carnegie Mellon 

Carnegie Mellon University has an extensive environmental sustainability plan 

involving the entire campus community (Carnegie Mellon University).  The University 

began their environmental sustainability efforts in 1990 with the establishment of a 

formal recycling policy and the hiring of a Recycling and Waste Coordinator.  In 1998, 

the University created the Green Practice Committee, comprised of faculty, staff and 

students, to address environmental issues such as “recycling, purchasing, energy use, 

dining, buildings and construction, transportation and communications and outreach” 

(Carnegie Mellon University).  This committee has started outreach programs and 

developed University policies to “improve environmental quality, decrease waste, and 

conserve natural resources and energy … [to establish] Carnegie Mellon as a practical 

model for other universities and companies” (Carnegie Mellon University).   

Carnegie Mellon now has policies in place to pursue LEED Silver Certification 

for all new buildings on campus, to purchase alternative fuel vehicles for campus use, to 

buy only recycled printer and copier paper, and to buy a portion of electricity from wind 

power.  As a result of these policies, the University now has three natural gas cars, two 

for Facilities Management and one for Campus Security, and one electric vehicle.  It is 

also the largest buyer of wind power in the United States. Within ten years, Carnegie 

Mellon had increased its percentage of recycled waste from 5% to 13% and they also 

have two LEED certified buildings and many roofs of existing buildings are being 

retrofitted to be “green” roofs.   
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2.4.4 Worcester Polytechnic Institute 

Currently, WPI does not have a formal “environmental policy.”  Though the 

University has taken some steps to reduce its environmental impact by working toward 

LEED certification for the construction of the Bartlett Center (2005), WPI is still a long 

way from reaching the level of environmental awareness and active policy production 

that comparable universities have attained.   

The next portion of this report uses the information outlined in this chapter as the 

foundation for determining the feasibility of building the WPI Bioengineering Center to 

LEED Materials and Resources standards and designing an alternative roof to meet 

LEED Heat Island Effect criteria 

2.5 Cost Estimate Levels of Accuracy 

In order to provide a general outline for what a cost estimate should look like, we 

consulted the Means Estimating Handbook.  This section will be used to provide a 

baseline for comparison with the method we used for the cost analysis of this project.  In 

general, there are four different levels of cost estimates that can be performed: Order of 

Magnitude, Square Foot, Assemblies, and Unit Price.  Each type of estimate requires a 

different amount of time and information, and achieves a different level of accuracy.  The 

Means Estimating Handbook describes each of these methods in detail: 

Order of Magnitude Estimate: This type of estimate can be defined as a form of educated guess.  It 
takes only minutes to complete and can be derived from relatively small amounts of information.  
The accuracy to be expected from this type of estimate is -30% to +50% of the project cost.   
 
Square Foot Estimate: Used when only the proposed size and use of the building is known, this 
type of estimate can achieve accuracy ranging from -20% to +30% of the actual project cost.  In a 
typical Square Foot Cost estimate, costs are broken down into different components and then a 
cost per square foot is determined. 
 
Assemblies Estimate: An Assemblies Estimate is typically used as a budgeting tool in the early 
stages of project planning.  It organizes the building into a few major components and prices the 
systems (assemblies) within those components.  An accuracy of -10% to +20% is typically 
achieved through this type of estimate. 
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Unit Price Estimate: The most detailed type of estimate, a Unit Price Estimate requires full 
working plans and specifications and is typically used for bidding purposes.  Accuracy within -5% 
to +10% of actual project cost is typical. 
 
No matter which type of estimate is required, there are some general guidelines 

that should be adhered to.  The Means Estimating Handbook recommends practices such 

as showing the dimensions of each item, checking the plans frequently and carefully for 

changes in scale, using decimals places instead of fractions, and marking items on the 

plan sets as they are measured or “taken off”. 

The quantity takeoff itself has two processes: quantifying and tabulating.  

Quantifying is the process of counting all materials.  Once all materials have been 

quantified, they are tabulated and assigned a cost.  Current software, such as Microsoft 

Excel, allows for the creation of spreadsheets and can facilitate the practice of 

quantifying and tabulating simultaneously.  However, during both parts of the quantity 

takeoff, consistency is the most important consideration.   

Once all materials have been tabulated, the next step is to assign a cost to each 

item.  The four types of project estimates include both direct and indirect costs.  Direct 

costs are linked to the physical construction of the project while indirect costs are 

incurred during project completion, but are not applicable to any specific task.  Examples 

of indirect costs include overhead, profit, salaries, taxes, equipment and contingencies.  

The final step in preparing a cost estimate is to create an estimate summary sheet.  This 

sheet typically lists the total from each category of work, shows the addition of indirect 

costs not already included in the estimate, and presents the total estimated project cost.  

The next chapter outlines the methods used to complete this project and uses the 

information outlined in this chapter as well as additional information obtained from 
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independent research and course work at WPI to describe the steps taken to reach our 

project goals.       
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3.0 METHODOLOGY 

 Through background research, we have verified that constructing a laboratory 

facility that meets LEED standards is not only obtainable, but also beneficial.  In order to 

determine the feasibility of building the WPI Life Sciences and Bioengineering Center to 

the LEED Materials and Resources standards and Heat Island Effect criteria we 

developed five major objectives: 

• Identify materials and resources used in the current design of the WPI Life 
Sciences and Bioengineering Center 

 
• Identify the materials and resources needed to meet LEED specifications 

 
• Conduct a cost comparison and determine availability of materials 

 
• Redesign the roof to meet Heat Island Effect criteria 
 
• Evaluate costs and benefits of meeting the Materials and Resources 

criteria and the Heat Island Effect criteria 
 
Our methods of achieving these objectives are outlined in the following five sections. 
 
3.1 Identify the Materials and Resources Used in the Current Design of WPI Life 

Sciences and Bioengineering Center 
 

We began work on our project through research on the history of Gateway Park 

and its status as a brownfields site. In addition, we visited the site to view the 

construction activity and gain a comprehensive understanding of the project as a whole.  

The extensive custom work and the magnitude of this project made it unfeasible for us to 

identify all of the materials used for the entire building within our time constraints. 

Therefore, to identify the materials used, we divided the building materials into two parts, 

separating the interior finishes from the other building components.  To identify the 

resources used, we consulted with Consigli Construction Company.  
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In order to find the cost of the interior finishes for the entire building, we 

calculated the cost per square foot of the interior finishes for a small, yet representative 

portion of the building and multiplied this square footage cost by the area of the whole 

building, arriving at a total estimated cost for the interior finishes.  We used the Plant 

Systems Lab (Room 4212) as our typical lab space for determining the cost per square 

foot of the interior finishes because we surmised it to be more expensive than some of the 

office spaces in the building, but less expensive than some of the other labs that have 

more equipment.  For the materials that we did not classify as interior finishes, such as 

structural steel members, brick facing and insulation, we performed a quantity takeoff of 

the entire building and added this unit cost to one calculated for the plant lab.  Our 

estimate did not include HVAC, MEP or smaller building components.  For a complete 

list of the building materials that we estimated, see Tables 4 and 5 in Results section 4.2.  

We used drawings and specifications provided by Consigli Construction Company to 

identify the materials included in our cost estimate.   

The Materials and Resources category encompasses not only the materials used, 

but also the amount of waste produced by construction.  Correspondence with members 

of Consigli’s construction management team helped determine how they disposed of 

construction waste and if they recycled any of it. We also maintained our knowledge of 

the progress of construction of the WPI Life Sciences and Bioengineering Center by 

attending weekly owner’s meetings and compiling meeting minutes (see Appendix AA).   
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3.2 Identify the Materials and Resources Needed to Meet LEED Specifications 

 After identifying the materials used in our estimate, we determined if any of those 

materials already met the LEED Materials and Resources standards and researched 

materials that could be substituted for any materials that did not already meet LEED 

standards.  More specifically, we looked for materials that satisfy one or more of the 

following: 

• Made from post-consumer and pre-consumer recycled content 

• Salvaged, reused or refurbished 

• Extracted, processed and manufactured locally 

• Rapidly renewable 

• Certified wood 

3.3 Analysis of Cost and Availability of Materials 

 We compared the cost of the materials used in the design of Gateway Park to the 

cost of using alternative materials that meet LEED specifications.  In order to accomplish 

this, we developed a cost per square foot value for the interior finishes in the existing 

typical lab and applied this unit cost to the entire building to estimate the total cost of 

interior finishes.   

We found the unit prices of all interior finishes in the lab space from 2007 

RSMeans reference books and through information from suppliers.  We divided the lab 

into sections in order to better organize the takeoff process. To calculate the cost per 

square foot of the laboratory interiors, we divided the total cost of the interior finishes in 

the lab by the square footage of the lab.  
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Once the cost per square foot of the interior finishes had been calculated, we 

combined it with the total cost of the quantity takeoff of the materials we identified in the 

rest of the building to find an overall cost of the materials we quantified in the existing 

building.  Finally, we substituted materials that meet LEED standards into the design to 

get a new cost of those materials.  We compared the two estimates to determine the 

overall cost difference between the materials actually used in construction and the 

materials that could have been substituted to meet LEED standards.  This analysis also 

verified which materials had the greatest impact on overall cost.  

3.4 Roof Redesign to Meet Heat Island Effect 

The second major task in our project was to redesign the roof to meet the LEED 

Heat Island Effect specifications.  In order to complete this, we performed a structural 

analysis of the existing roof which helped us to identify the sources and magnitudes of 

the applied loads for use in our alternative roof design.  Furthermore, we investigated the 

capacity of the existing members to give us practice in applying the structural 

engineering techniques necessary for the design and analysis of our new roof.  In order to 

determine the applied loads, we used information obtained from the Massachusetts State 

Building Code to determine the design live load and found that for this building, the snow 

load governed.  Information from the specifications, drawings, and manufacturers was 

used to determine dead loads on the roof, including the loads produced by the mechanical 

systems and the roof screen.  

Once we had determined the design loading conditions, we used a plastic capacity 

check to determine if the member sizes were adequate.  Note that we performed a 

calculation to verify that the members had a compact section, could reach plastic 
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capacity, and found that the majority of the members did.  For those members with a non-

compact section, we interpolated between the individual properties of the member and 

the member’s plastic capacity to determine the member’s actual moment capacity.  

In the case of the girders, the methods used to verify member sizes differed from 

the typical calculations for beams in various ways.  For example, girders have fixed-end 

connections while we assumed that the beams have pinned-end connections.  Girders also 

support the weight of beams, so the additional weight of the adjacent members had to be 

taken in to account.  In order to facilitate the girder calculations, we divided the girders 

into three categories: Type I, Type II, and Type III (see Figures 3, 4 and 5).  Type I 

girders are those that support adjacent beams throughout their entire tributary area, and 

includes girders along the edge of the roof that only have beams on one side as well as 

interior girders that support beams on both sides. Type II girders support beams over half 

of their tributary area, and Type III girders support other girders.   

 

 
Figure 3: Type I Girders 
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Figure 4: Type II Girder 

 

 
Figure 5: Type III Girder 

 
While each type of girder required a different calculation to determine design 

moments, we made some assumptions that are common to each type.  The adjacent 

beams were always treated as uniform loads distributed over the length of the girder and 

the average nominal weight of those beams was used in calculating that load.  In order to 

compute the effective distributed load of adjacent beams along a girder, we divided the 

average nominal weight of the beams by their individual tributary widths and multiplied 

that value by the tributary width of the girder in order to find the effective linearly 

distributed load along the girder itself.  Using these values for distributed loads and 

methods outlined by the AISC, we were able to determine if the girders possessed 

adequate shear and moment capacity to support the weight of the roof.  See Appendices E 

through K for a detailed explanation of these calculations.         

After analyzing the existing roof, we evaluated possible ways to meet the LEED 

Heat Island Effect criteria (see Appendix X for LEED Heat Island Effect – Roof 

Criteria).  The biggest obstacle in the alternate roof design was providing adequate 



 25

clearance for the mechanical units.  The mechanical units closest to the edge of the roof 

stand approximately twelve feet above the flat surface.  Overall, the tallest mechanical 

unit is the lab exhaust system that stands eighteen feet above the flat surface of the roof, 

but we used the assumption that the exhaust manifolds would be accommodated by 

penetration through the roof.  With this is mind, we looked at two schemes (see Figures 6 

and 7).   

 

 

 

Figure 6: Scheme 1, Steep-Slope 
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Figure 7: Scheme 2, Low-Slope 
 
 The first scheme was to extend a steep-sloped roof on the existing building. The 

second scheme was to extend the vertical walls before building a sloped roof. Our first 

consideration in comparing the alternatives was the additional height each would add to 

the building.  We verified the zoning requirements and found that there were no direct 

building height limitations for the zone in which Gateway Park is located.  However, 

building height is governed by a lot-to-floor area ratio of one to six, which means that the 

total floor area of the building cannot be more than six times the size of the lot.  We 

determined that neither scheme would exceed this ratio.  

 Another major factor in the comparison of roof designs was cost of construction.  

We estimated the amount of typical materials each roof would require.  We considered 

brick, roofing material and steel to develop a proportional cost for each alternative.  At 

this stage we assumed that the roofing material was the same for each alternative since 
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both slopes fall under the same minimum SRI requirement.  When estimating steel 

quantities, we made several assumptions.  We assumed that all steel members would be 

the same size within each alternative, and that each member in each alternative had the 

same tributary width and dead load for the roofing materials. Using AISC methods we 

sized a typical member for the two roof schemes and used unit price data from RSMeans 

Building Cost Information 2007 to determine their relative prices.  We estimated that the 

steep-sloped roof cost $65,500 and the low-sloped roof cost $63,500 (see Appendix R for 

a breakdown of these costs).  However, the low-sloped roof requires more than twice as 

much brick work, and because we neglected to include mortar or labor costs in our 

estimate, we predict that the steep-sloped roof would actually cost less if a complete 

estimate were completed.  Also, the steep-sloped roof would be more attractive in that it 

does not extend an unaesthetic, windowless brick wall an additional eight feet.  As a 

result of this analysis and comparison, we decided that a steep-sloped roof would be the 

best design.  

Once we decided on the general design of the roof, our first step was to research 

materials that meet the required Solar Reflectance Index.  We selected galvanized steel 

with an SRI of forty-six (Lawrence Berkeley National Laboratory).  Structural 

engineering techniques were used to develop a roof design that supports the alternative 

roofing material with an adequate slope to meet the Heat Island Effect criteria as 

determined by LEED standards.  In addition to supporting the dead and live loads as 

required by the Massachusetts State Building Code, the alternative roof design also 

accommodates the mechanical equipment that is currently located on the roof.  Refer to 
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Table 2 to find which appendices contain further information about the current roof, the 

mechanical units and the new roof design. 

Table 2: Appendices Containing Roof Design Information 
 
Roof Plan Appendix B 
Summary of all Member Capacity Checks  Appendix C 
Typical Beam Calculation Appendix D 
Typical Type I Girder Calculation Appendix F 
Typical Type II Girder Calculation Appendix H 
Typical Type III Girder Calculation Appendix J 
Type III Adjacent Member Dead Load Calculation Appendix K 
Moment Capacity for members with non-compact sections Appendix L 
Mechanical System/ Roof Screen Distributed Load Appendix N 
 

Once the new roof load had been determined, the actual design of the roof began 

to take shape.  Within the steep-sloped roof scheme, we developed structural designs for 

two separate options.  In the first option, beams would be placed parallel to each other in 

a basic rafter layout, perpendicular to the roof ridge much like the roof structure in a 

traditional wood framed building.  In the second option, girders would be laid out like the 

beams in option one except that they would be connected by a series of open-web joists.  

The joists would run perpendicular to the girders and parallel to the length of the roof and 

the sill beams.  Sill beams support the entire weight of the roof and transfer the load to 

the columns. See Figures 8 and 9 for sketches of the two framing options.  
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Figure 8: Roof Design Option 1 

 

Figure 9: Roof Design Option 2 
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Certain assumptions had to be made for each of these two options in order to 

develop a design that was both adequate and cost effective.  Using the AISC Steel 

Manual and the Massachusetts State Building Code requirements for dead, live, and wind 

loads and the weight of the metal roofing material with the required SRI, we determined 

the design loads and in turn the appropriate beam sizes necessary to develop an adequate 

design scheme.   

In the case of the first option, design was fairly straight foreword in the sense that 

the only major design variable became the spacing of the beams.  Therefore, using the 

LRFD method on a sample of different beam spacing options, we were able to calculate 

the minimum required cross-sectional Zx value and, in turn, the beam size necessary to 

withstand the given roof loads.   

We then compared the cost of each of these options of to decide on the most 

economical roof choice.  Special consideration also had to be made for the mechanical 

equipment exhaust vents located near the center of the roof because they extended 

beyond the roof height at that point.  In order to accommodate this twenty-six foot wide 

unit, we were required to define a beam spacing that provided enough clearance on either 

side of the unit, and also add a small girder as a header to support the beams that were 

prevented from extending all the way to the roof peak.  Later on we determined that 

because of the specific steel roofing material that we had chosen, the maximum spacing 

between beams was limited to 3.5 feet, which eliminated a majority of the possible beam 

arrangements and increased the minimum cost of constructing this option.   

As an alternative to this design, we decided to use an open-web joist and girder 

combination.  We decided to use open-web joists to span between the girders because of 
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the maximum unsupported span of 3.5 feet dictated by the steel roof stiffness.  We 

realized that W-sections were too bulky, over-designed and expensive for the 

comparatively short 3.5 foot tributary widths they had to support.   

The use of open-web joists also made the methods behind our design analysis 

simpler because, given the maximum tributary width, even the smallest available joist 

type was capable of easily sustaining the given loading conditions.  Therefore, joist size 

became dependent only on the length dictated by the tributary width of the girders.  By 

fixing the joist tributary widths at their maximum of 3.5 feet, we effectively eliminated 

joist spacing as a design variable allowing the design to be dictated by the desired 

spacing of the girders.  Using the LRFD method on a sample of different girder spacing 

options, we were able to calculate the minimum required Zx for girder design.   

Like option one, option two also dealt with the issue of the protruding twenty-six 

foot wide mechanical exhaust unit.  Given the width of the unit we needed to develop a 

girder spacing that exceeded twenty-six feet.  Without consideration of the unit, the 

unimpeded roofing option with the lowest cost consisted of a twenty-six foot girder 

spacing. For design ease, we decided to try the next lowest cost option, twenty-eight foot 

spacing, and simply remove the joists in the area where we needed to fit the mechanical 

unit.  However, given the location of the exhaust unit, two extra girders would need to be 

installed, effectively making it more expensive than the thirty foot spacing option.  As a 

result, we decided that the option with thirty foot girder spacing would be the most cost 

effective choice to accommodate the mechanical exhaust unit.   

This chapter discussed the steps we followed in order to assess the feasibility of 

building the WPI Life Sciences and Bioengineering Center to meet the criteria of the 
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LEED Materials and Resources Category and the steps taken to design an alternative roof 

that meets the Heat Island Effect criteria.  The next chapter discusses the results of our 

cost analysis and roof design. 
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4.0 RESULTS 

Through setting clear objectives and outlining the procedure required to achieve 

them, we were able to analyze the existing roof, design an alternative roof to meet the 

LEED Heat Island Effect criteria, determine the cost of the materials used in 

construction, and the cost of materials that meet the LEED Materials and Resources 

criteria.  This section describes the results achieved through our roof analysis and design, 

and cost comparisons.   

4.1 Roof Design 

Using the LRFD methods outlined by AISC for steel roof design, we have 

achieved two separate sets of results.  These results reflect calculations and design 

techniques outlined in our methodology and are displayed and discussed below in 

sequential order beginning with the analysis of the existing roof design and concluding 

with the results for the alternative roof design. 

4.1.1 Existing Roof Design 

In order to gain a better understanding of the design process, we performed a 

structural analysis of the existing roof, which helped us to identify the sources and 

magnitudes of the applied loads for use in our alternative roof design.  Furthermore, by 

investigating the capacity of the existing members, we gained experience in applying the 

structural engineering techniques necessary for the design and analysis of our new roof.  

As we had expected, all the members in the existing roof were designed adequately to 

withstand their given loads.  More importantly, we sought to determine the degree of 

adequacy of the roof design.  In the process, we noticed that there were certain trends in 

the design that warranted further explanation.  For example, we found that in general, the 
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actual moment force exerted on the beams divided by the beam capacity was slightly 

greater than one.  See Appendix C for a detailed list of the actual moment values and 

their respective design moment capacities.   

 As Figure 10 and Figure 11 below illustrate, a majority of the design moment to 

actual moment ratios reside slightly above one, indicating that the members were 

designed adequately to resist their loads without being over designed.  However, in some 

cases there are beams and girders with capacities that are significantly greater than their 

actual loads.  Manufacturability is an important reason why this happens.  In an effort to 

maintain consistency in member size, it is not uncommon for engineers to design a 

member for the highest possible load, and then replicate the design through other 

members with smaller loads in order to create uniformity.  Thus, when it comes to 

purchasing, fewer sizes of members can be purchased in larger quantities.  Though some 

of the members may be over designed, it is easier to manufacture and erect more of the 

same size pieces, creating a lower overall cost for the material.  
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Figure 10: Design Moment vs. Actual Moment Ratio for Beams 
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Figure 11: Design Moment vs. Actual Moment Ratio for Type 1 Girders 
 

4.1.2 Alternative Roof Design 

 Once we had analyzed the existing roof, we developed a new roof design for the 

existing WPI Life Sciences & Bioengineering Center that met the LEED roof 

certification requirements for the Heat Island Effect criteria.  In order to meet this 

requirement, the roof must be constructed from a material with a SRI greater than twenty-

nine for the selected slope of our roof.  After considering several types of materials, we 

chose to use the Berridge Zee-Lock Standing Seam System because it exceeds the 

required solar reflectivity and is suitable for use over open purlins (Berridge).  Once we 

decided on this specific product, we developed our roof design accordingly.  As 

discussed in the methodology section, a roof that simply consists of a series of parallel 

beams acting as rafters does not make sense for the minimal loading condition on a 

sloped roof.  A rafter layout does not make sense because it would be too bulky, over 
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designed, and expensive for the comparatively short open spans.  Therefore, we chose the 

open-web joist and girder combination that incurred the lowest cost but still provided 

adequate support for the roofing material and sufficient space between girders for the 

exhaust system to protrude through the roof.   

 After considering several joist/girder combinations, we selected W21x50 girders 

spanning perpendicular to the ridge of the roof and spaced every thirty feet.  Placed every 

3.5 feet and running parallel to the ridge, we chose 16K4 joists spanning the distance 

between the girders.  The roofing material, joists, and girders are supported along either 

eave by two W21x44 sill beams that span the columns in the framing of the building and 

transfer the weight of the roofing and framing to the columns.  See Figures 12 and 13 for 

detailed drawings of the alternative roof design.   

Aside from beam loading capacity, cost effectiveness also played an important 

role in the selection of the roof member sizes.  Without accounting for the twenty-six foot 

width of the mechanical equipment exhaust units, the lowest cost alternative consisted of 

girders spaced at twenty-six feet and joists at 3.5 feet.   As described in our methodology, 

we ran into some difficulty with this design and were forced to select an option that cost 

slightly more than the unimpeded twenty-six foot design but provided the necessary 

spacing required to sustain the constraints of the units.  Using RSMeans Building 

Construction Costs 2007, we estimate that the framing and roofing materials for this roof 

will cost $127,840 and is the most economical solution adequate enough to meet the 

requirements of mechanical exhaust units and the LEED roof Heat Island Effect criteria.  
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Figure 12: Alternative Roof Plan
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Figure 13: Cross-Section of Alternative Roof Plan 
 

4.2 Cost Analysis 

 In conjunction with designing a roof to meet LEED Heat Island Effect criteria, we 

performed a cost comparison between some of the materials used in construction and 

materials that could have been substituted in to earn the points.  Based on the items 

analyzed in our cost analysis, we have found that it would cost three percent more to 

build WPI’s Life Sciences and Bioengineering Center to the LEED Materials and 

Resources Category.  Table 3 compares the estimated cost of the materials used in 

construction to the estimated cost of meeting the criteria of the Materials and Resources 

Category.  

Table 3: Total Cost Comparison 
Cost of Identified Materials $3,097,118.71  
Cost of Identified Materials with LEED substitutions $3,196,184.25  
Price Difference $99,065.54  
Percent Difference 3% 
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The costs above pertain only to major materials used.  The cost of labor, mechanical, 

electrical, and plumbing work, and minor items such as door hardware, were not 

included.  For a complete list of items included in our estimate and itemized costs, refer 

to Table 4, 5, and 6.  

We used our cost estimate to determine if it was possible for this project to 

achieve all points available in the LEED New Construction Materials and Resources 

category and to determine which items had the largest affect on the cost of the project.  

This section will outline the requirements of each Materials and Resources criteria and 

identify the items that most influence the cost of the project.   
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Table 4: Cost Estimate Interior Finishes Summary of Results Part I  
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Table 5: Cost Estimate Interior Finishes Summary of Results Part II 
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Table 6: Cost Estimate Summary of Results 
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The LEED Materials and Resources category (MR) has one prerequisite and 

thirteen possible points, focusing on selection of materials and recycling (see Appendix Y 

for LEED Materials and Resources Category criteria).  Of the prerequisite and possible 

points in the MR category, there were only ten points that were applicable to our project.   

MR prerequisite 1, Storage and Collection of Recyclables, pertains to recycling efforts 

once the building is occupied.  Since our project focuses on the design and construction 

phases of the facility, we could not evaluate meeting this prerequisite.  MR criterion 1.1, 

1.2 and 1.3 refer to maintaining a certain percentage of floors and walls for a reused 

building.  Our project focused only on the new portion of the Life Sciences and 

Bioengineering Center, which was not eligible for these criteria.   

The construction of the Bioengineering Center already qualifies for MR criterion 

2.1, Construction Waste Management: Divert 50% from Disposal.  According to Steve 

Johnson of Consigli Construction Company, Consigli had recycled approximately 56% of 

the waste produced on the project as of January 31, 2007.  This included sixty-one tons of 

brick, twenty-six tons of wood, seventy-six tons of metal, and sixteen tons of sheetrock.   

MR criterion 2.2 is an extension of criterion 2.1, requiring 75% of the construction waste 

to be diverted from disposal.  It is unlikely that this project will be able to reach this 

percentage as it is nearing conclusion.   

 MR criterion 3.1 requires that reused materials comprise 5% of the total project 

cost, and criterion 3.2 increases this threshold to 10%.  In our estimate, we substituted 

reused brick, which cost less than new brick.  Unfortunately, the cost of the reused brick 

only constitutes one percent of the total project cost. Therefore, we were unable to obtain 

the total percentage of reused materials required by MR criterion 3.1 and 3.2.  We found 
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the unit price for reused and pre-consumer recycled items from ReSource Yard of 

Colorado, an organization dedicated to promoting waste reduction by accepting and 

selling reusable building materials.   

 Our estimate of this project exceeded MR criterion 4.1 Recycled Content: 10% 

(Post-Consumer + ½ Pre-Consumer) and criterion 4.2 requiring 20% before LEED 

substitutions were made.  To achieve these credits, the project must use recycled 

materials that reach the required percentage by adding together the post-consumer 

recycled materials and one half of the pre-consumer recycled materials.  Post-consumer 

recycled materials are defined as materials that require processing to be ready for reuse.  

Pre-consumer recycled materials do not require reprocessing, such as scrap material that 

can be reused in its current form.  The majority of the post-consumer materials were 

metals, and the rest consisted of two types of insulation.  The 3.5-inch thick insulation 

was made of recycled glass, and the 6-inch thick insulation was made of recycled blue 

cotton fibers. The only pre-consumer recycled material was gypsum board, which in our 

analysis, cost less than purchasing new gypsum board. Overall, the percentage of post-

consumer recycled materials plus half of the pre-consumer recycled materials was forty 

percent, or double the maximum percentage for which a project can receive points.  It is 

likely that the project achieved the maximum percentage of 20% because most steel 

products contain post-consumer recycled steel.    

 Aside from reused and recycled materials, regionally extracted materials also 

promote sustainability in construction. MR criterion 5.1 and 5.2, require that materials be 

extracted, processed and manufactured within 500 miles of the construction site.  MR 

criterion 5.1 requires that 10% of the materials be obtained regionally, based on cost, 
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while MR criterion 5.2 requires 20%.  For this project, information about where materials 

were extracted, processed and manufactured was difficult to find.  While many other 

materials used in the project may have local origins, we only considered the concrete.  

The concrete represented 5% of the total cost of the project, which does not meet the 

requirements of MR criterion 5.1 and 5.2.   

 MR criterion 6, Rapidly Renewable Materials, encourages the use of materials 

made from plants that have a ten year or less harvest cycle.  This includes materials such 

as bamboo, linoleum, strawboard and cork.  For this project, strawboard could have been 

substituted for gypsum board, but this substitution would not have provided the required 

2.5% of the total cost of building materials.  It is difficult to substitute other building 

materials into the design of this facility because of the durability a laboratory space 

needs, such as acid proof flooring. Therefore, we chose to substitute pre-consumer 

recycled gypsum board instead of straw board because it was 75% less expensive, as seen 

in Table 7. 

Table 7: Gypsum Board Alternative Prices 
Material Cost/sf 
Standard Gypsum Board  $    0.42  
Reused Gypsum Board  $    0.20  
Straw Board  $    0.80  

 

 Certified Wood, the final criterion of the MR category, requires 50% of all wood 

be Forest Stewardship Council certified wood.  The Forest Stewardship Council, an 

international organization, promotes sustainability through responsibly managed forests 

(Forest Stewardship Council).  By substituting all cabinetry in the project for cabinets 

made of FSC-certified wood, this project is capable of exceeding MR criterion 7 and 

reaching 99% of the cost of all wood products.   
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 Overall, if our estimate is accurate, the project would be eligible for four points 

from the MR category if the substitutions we made were actually implemented.  Table 8 

summarizes the MR criteria and which criteria were met.   

Table 8: Materials and Resources Criteria 

No. MR Criterion Required Estimated Result Pts 

Prerequisite Storage and Collection of 
Recyclables - - Not met - 

1.1 Building Reuse: Maintain 
Walls, Floor & Roof 75% 0% Not met 0 

1.2 Building Reuse: Maintain 
Walls, Floor & Roof 95% 0% Not met 0 

1.3 
Building Reuse: Maintain 

Interior Non-Structural 
Elements 

50% 0% Not met 0 

2.1 
Construction Waste 

Management: Divert From 
Disposal 

50% 56% Met 1 

2.2 
Construction Waste 

Management: Divert From 
Disposal 

75% 56% Not met 0 

3.1 Material Reuse 5% 1% Not met 0 
3.2 Material Reuse 10% 1% Not met 0 
4.1 Recycled Content 10% 40% Met 1 
4.2 Recycled Content 20% 40% Met 1 
5.1 Regional Materials 10% 5% Not met 0 
5.2 Regional Materials 20% 5% Not met 0 
6 Rapidly Renewable Materials 3% 0% Not met 0 
7 Certified Wood 50% 99% Met 1 

 Total 4 
 

 Through our cost analysis, we also investigated what materials had the largest 

effect on the cost of the project.  We first compared the estimated cost of the interior 

finishes to the estimated cost to the other building components.  From Figure 14 it is clear 

that the general building material had the largest impact on the cost.  
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Cost Comparison

$1,535,954 
48% $1,660,230 

52%

Interior Finishes

General Building
Material

 

Figure 14: Cost Comparison Pie Chart 
 
 We then compared the components in each section of the estimate.  We first 

compared the components of the interior finishes.  In our estimate, the laboratory 

casework was sixty-three percent of the cost.  Figure 15 shows the costs of the other 

major components of the interior finishes cost estimate.  

Interior Finishes Cost Comparison

$977,157.44 
63% $76,957.50 

5%

$272,631.70 
18%

$209,207.37 
14%

Casework
Flooring
Countertop
Other

 

Figure 15: Interior Finishes Cost Comparison Pie Chart 
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 To break down the cost of the elements of the building other than the interior 

finishes, we broke the cost down by CSI Masterformat division.  Figure 16 shows that 

Division Five, Metals, is seventy-five percent of the cost of the building materials, 

excluding the interior finishes.   

General Building Material Comparison

10%
2%

75%

6%

6%

1% Division 3: Concrete

Division 4: Masonry

Division 5: Metals

Division 7: Thermal and
Moisture Protection
Division 8: Openings

Division 9: Finishes

 

Figure 16: General Building Materials Cost Comparison Pie Chart 
  
4.3 Consigli Owner/Architect Meetings Results 

Every week, one member of our project team attended the owner/architect 

meeting held on site in the Consigli job trailer.  Through regular attendance at these 

meetings we were able to view the construction process from an insider’s perspective, 

which led us to observe several interesting trends.  In most cases, these trends were 

primarily caused either by the actions of representatives from the various companies and 

organizations involved in the construction of the building, or by the unique nature of the 

project itself.   

 The overall attendance at the owner’s meeting varied each week, but some 

organizations were consistently represented by one or more people.  For example, Steve 
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Hebert and/or John Miller typically represented WPI, Brent Arthaud was there every 

week for the Worcester Business Development Corporation (WBDC), the project 

engineer, John McDermott, attended regularly, and Brian Hamilton and Steve Johnson 

from Consigli led each meeting.  Other key players in the construction process, such as 

VanZelm, the MEP consultant, were typically not in attendance.   

Each organization that was represented at the meeting played a unique role that 

typically corresponded with that organization’s goals for the project.  WPI’s 

representation was heavily involved in making decisions about the building’s details.  In 

some instances, it was surprising how many issues still needed to be resolved as the 

building approached completion.  While WPI was also concerned with budget and 

schedule, representatives of the WBDC, part owner of Gateway Park, paid special 

attention to change orders and their effect on the budget.  They were also very interested 

in issues related to permitting and meeting the building code, possibly because they 

wanted the building to pass inspection with as few setbacks as possible, thus minimizing 

schedule and budget impacts.  The people more directly involved with the construction of 

the project, such as Mr. McDermott, Mr. Johnson, and Mr. Hamilton, were usually 

answering questions from WPI and WBDC representatives and reporting on the overall 

status of the project when they spoke.     

 The nature of the project led to its own set of trends.  These trends were caused 

primarily by the combination of the renovation of a very old building with the 

construction of an entirely new wing in the same project, and the technical nature of the 

laboratory facilities that constitute a large part of the new construction.  The most 
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significant conflict we observed in the combined renovation/new construction aspect was 

with the pouring of the concrete slab flooring in the existing building.   

When the flooring of the existing building was removed and a new concrete slab 

was poured, the wood framing flexed in such a way that caused the slab to crack as it 

dried.  The first attempt to repair the cracking failed because the product would not 

adhere correctly to the concrete and a second contractor was called in to try a different 

method of repair.  After the second attempt to repair the slab, it was deemed acceptable 

and resolved an issue that had been discussed in the owner’s meeting for several weeks.  

However, as workers finished the flooring in the new portion of the building, they 

realized that the flooring they were laying would not match the height of the flooring in 

the existing building, and so the flooring in the existing building had to be sanded down 

to the correct height.   

The characteristics of laboratory construction caused a whole other set of issues.  

For example, laboratories typically have large quantities of casework for storing supplies, 

and this casework was a common topic of discussion at the weekly meetings.  

Representatives from the WBDC and WPI became concerned as the summer came to an 

end and the building was not yet enclosed because the casework had been delivered and 

was therefore subject to the humidity of the outside air.  This was a concern because the 

manufacturer’s warranty on the casework will become void if it is subject to humidity 

levels outside of a designated range.  However, Consigli project managers acted quickly 

and took steps to gauge the humidity inside the building each day and make a record of it 

as a way to ensure the manufacturer that the casework had not been exposed to 

unacceptable levels of humidity.   
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5.0 CONCLUSIONS  

 The summary of our results has led us to develop three sets of conclusions: an 

evaluation of the alternative roof design, a discussion of the feasibility of building WPI’s 

Life Sciences and Bioengineering Center to meet LEED Materials and Resources criteria, 

and discussion of the lessons learned from attendance at the owner’s meetings.   The 

evaluation of the alternative roof design includes a discussion of the design process, 

along with the conclusions that were drawn throughout the course of the project that 

ultimately led us it a new roof design. The discussion of the feasibility of building to 

LEED standards outlines the points in the Materials and Resources that could have been 

obtained through the substitutions we evaluated in our cost analysis. The discussion of 

the conflicts at owner’s meetings led us to highlight some important observations we 

made during this project.  

5.1 Evaluation of Alternative Roof Design 

Based on the results of our alternative roof design and analysis, we have reached 

many conclusions about the design process and the procedure necessary to analyze and 

design a LEED certified roof.  Through careful analysis using structural engineering 

methods established by AISC, we developed a feasible, realistic roof design that is both 

cost effective and practical in meeting the needs of the existing structure and LEED 

certification criteria for the heat island effect.   

Early in the project, we decided that it would not be realistic to design a vegetated 

“green roof” in the traditional sense because of the presence of a large number of utilities 

on the existing roof.  Instead we adapted the design to be sloped with roofing materials of 

an appropriate SRI value.  With that information, we came to the conclusion that a 
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steeper sloped roof would be a better option because it required less brick work and was 

therefore less labor intensive, which would reduce construction costs.  LEED requires 

that a roof with a slope greater than 2:12 have a roofing material with an SRI greater than 

or equal to twenty-nine.  After deciding on a roofing material and slope, we decided on 

the best arrangement for the framing of the roof given the constraints of the selected 

roofing material.  We concluded that a rafter beam design consisting of W-sections would 

be too bulky, over designed, and expensive for the comparatively short open spans 

dictated by the roofing material, so instead, we developed a second option consisting of 

girders and open-web joists.   

After completing our design process, we still ran into some difficulty with fitting 

the taller mechanical units through openings in the roof and were forced to modify our 

design slightly.  In the end, we concluded that the best design that meets the requirements 

of the roofing material consists of W21x50 girders running perpendicular to the ridge of 

the roof and spaced every thirty feet. Additionally, we placed 16K4 joists spaced every 

3.5 feet running parallel to the roof’s ridge and spanning between the girders.  Finally, 

two W21x44 sill beams run along the eaves of the roof on either side.  These sill beams 

span the columns and transfer the weight of the roofing and framing to the columns.  We 

estimated the cost of materials for this option to be around $127,840.   

We also came to many conclusions with respect to the design process itself.  All 

of the little pieces of the puzzle do not always fall into place exactly the way you think 

they will.  Sometimes a design option seems to make sense at first, but through careful 

consideration of design restrictions, alternate solutions present themselves.  This project 

was no different.  Throughout the process of design, we learned to approach problems 
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from different angles in order to ensure that we had chosen the most efficient design 

possible to meet the needs of the structure.  Often, certain assumptions have to be made 

in design and these assumptions called for various specific considerations.  Nothing is 

ever standardized and every design project has its own unique characteristics with its own 

needs and idiosyncrasies.   

WPI’s Life Sciences & Bioengineering Center was no exception, particularly 

because of our desire to design the building to LEED specifications, which brought up a 

number of questions.  For example, given the extra cost, would it be practical for WPI to 

have constructed a LEED certified roof?  What are the benefits?  Are there any savings? 

These are important questions to ask.  Had the existing roof been built to the 

specifications laid out in our design, WPI’s Life Sciences & Bioengineering Center could 

have gained one more important point toward LEED certification.  This is important at 

WPI because achieving LEED certification protects the environment and preserves 

natural resources while making a statement to Worcester and the surrounding 

communities.  Complete design and construction of a LEED certified roof like the one we 

designed for this project would also help to significantly reduce the heat island effect in 

the cities, which in turn lowers energy usage and cost long term.   

More importantly, by reducing the amount of energy consumed by a given 

building and the buildings around it, environmental resources necessary to produce that 

energy can be conserved.  Though constructing a new roof on the completed laboratory 

building would not be practical, WPI should consider the effects of conventional roofs on 

energy usage and resource consumption for future projects, and should remain aware of 

the benefits of sustainability in construction both long term and short term. 
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5.2 Feasibility of Meeting LEED Materials and Resources Criteria 

From our cost analysis, we are able to conclude that through careful planning and 

design this project could have received eight of the thirteen points in the LEED Materials 

and Resources Category and could have met the prerequisite requirement of the Materials 

and Resources Category.  We have also concluded that the difficulties in meeting all of 

the LEED Materials and Resources categories lie in the durability required by many of 

the interior finishes and the desire to have a cutting edge facility.  

 Of the points that we were unable to obtain from our cost estimate, we believe all 

but two of them would have been obtainable if the project had been designed and planned 

with LEED objectives in mind.  For example, current recycling efforts have exceeded the 

first LEED goal of 50%.  We believe that 75% recycling would have been achievable on 

this project with the cooperation of all involved parties, which would add an additional 

point.   

 It is unlikely that the Bioengineering Center would be able to achieve MR 

criterion 3.1 and 3.2 regarding reused material.  In our analysis, we substituted reused 

brick.  In order to achieve the required percentage for LEED points, some interior 

finishes would need to be reused materials like cabinets or toilet partitions.  It is unlikely 

that the designers or owners of this facility would want to incorporate used fixtures and 

furnishings into the interior design for aesthetic reasons.   

 Careful planning could provide the Center with the opportunity to achieve MR 

criterion 5.1 and 5.2 concerning regional materials.  Many wood products are extracted, 

processed and manufactured within a five hundred mile radius of Worcester, MA.  
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Planning with this in mind and a commitment to achieving these criteria regardless of 

price would have made it easier for this project to obtain points for these criteria.  

 The final LEED MR criterion that the project would not be able to meet, based on 

our analysis, was rapidly renewable materials.  Based on the way we performed our cost 

estimate, we did not include any hallway, lobby or office areas.  The only interior finishes 

we estimated were of a typical laboratory space.  We then found a cost per square foot of 

the space and projected the cost of the interior finishes over the entire building.  If 

hallway, lobby and/or office areas were taken into account, other flooring options, such 

as bamboo or linoleum could have been used. These rapidly renewable materials could 

have helped achieve MR criterion 7.  

The difficulties in achieving all LEED Materials and Resources criteria were the 

need for high durability materials and the desire to have a cutting edge facility.  In 

laboratory spaces, it is necessary to have highly durable acid proof countertops and 

flooring, and the latest technology.  Overall, the additional cost of building with materials 

that meet LEED specifications was less then we had originally expected, falling just 

under one hundred thousand dollars or three percent of the cost of the materials we 

estimated.  The benefits of using materials that are recycled, reused, rapidly renewable, or 

from responsibly managed forests cannot be measured in cost.  This one time expense 

can be considered the cost for sustainable design and improved quality of life in the 

building.   
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5.3 Consigli Owner/Architect Meetings Conclusions 

The issues discussed in the results of our attendance at the weekly owner/architect 

meetings are only some of the many topics that we frequently observed.  By seeing how 

these issues arise and then witnessing their resolutions, we learned much about the 

construction management process.  Unexpected events that will inhibit the project budget 

or schedule will undoubtedly occur and project managers, owners, and engineers must 

work together quickly and creatively to develop practical solutions. 

Overall, we have found it to be feasible to build the roof of WPI’s Life Sciences 

and Engineering Center to the LEED Heat Island Effect criteria of the Sustainable Sites 

category and of the center to achieve eleven of the thirteen LEED Materials and 

Resources points. However, in order to have made that possible, the goal of LEED 

certification should have been stated at the conception of the project for several reasons.  

One reason is that the design process is complicated and involved, and LEED criteria 

should be used as a guideline accompanying regular design specifications in order to 

avoid costly change orders later in the project.  Also, project managers, owners and 

contractors must be prepared to work together because obtaining LEED certification 

requires more documentation than a typical project. Additionally, the owner must be 

willing to incur extra project costs, with the realization that many mechanical, electrical 

and plumbing alternatives may reap savings in the near future.  The designers must be 

flexible to adapt the design for functionality and material substitutions and the 

construction managers must be careful to reduce waste and recycle whenever possible.   

Issues pertaining to sustainability have come to the forefront of modern concern 

and must be addressed through widespread participation in sustainable practices.  Once 
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LEED certification is obtained, efforts to improve sustainability and reduce the building’s 

environmental impact are not complete.  To maintain the green aspects of the building, 

the occupants must recognize their contributions to energy usage and waste production, 

and take measures to reduce them.  Once sustainable practices become habit, the ultimate 

goal of the U.S. Green Building Council’s LEED program to become obsolete will be 

achieved.   
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APPENDIX A: Proposal 
1.0 Introduction 
 

On March 29, 2005, a $2.5 million grant from the U.S. Economic Development 

Administration was secured for the development and construction of Gateway Research 

Park at WPI.  Built on 11-acres of redeveloped brownfields land, the focal point of this 

project has become the newly constructed WPI Life Sciences and Bioengineering Center, 

which cost around $30 million to build and includes 124,600 square feet of space on four 

floors at 60 Prescott Street.  Built by Consigli Construction Co. of Milford, MA, the 

facility is now entering its final stages of construction and will soon be occupied by 

WPI’s Bioengineering Institute, which will include many graduate research programs 

along with outside tenants from the life science field.  Though the building site was 

cleaned up using the appropriate methods, it is important to note that the actual 

construction of the site was carried out using ordinary construction methods without the 

use of any green standard (Worcester Polytechnic Institute 1). 

The Leadership in Energy and Environmental Design (LEED) standard is a rating 

system designed to define the term "green building" in a quantitative way by establishing 

a common measurement universal to all green construction.  Standards such as LEED 

help to ensure that construction methods maintain a minimum degree of sustainability in 

order to preserve the environment for future generations (U.S. Green Building Council).      

The goals of this project are to examine the WPI Life Sciences and 

Bioengineering Center and determine the feasibility of meeting the LEED certification 

criteria within the Materials and Resources category and to examine and redesign the roof 

of the structure to meet the Heat Island Effect criteria laid out in the Sustainable Sites 

section of the LEED New Construction Standard. 
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In order to reach these goals we intend to follow a step by step procedure that will 

allow us to examine different aspects of the building and its construction.  First we will 

carry out an analysis of the materials and resources used in the actual construction with a 

focus on the cost, availability, and feasibility of their use.  This analysis will include 

developing a cost distribution in order to determine the areas for which the costs are most 

sensitive. We will follow that up with an analysis of the materials and resources required 

by LEED standards and do a side by side comparison of the two, paying particular 

attention to cost and feasibility.  This analysis will also be expanded to include long-term 

maintenance and operation costs.  We will simultaneously focus on the roof structure 

where we will design a new roof that meets LEED Heat Island Effect criteria.  Most of 

our information will be obtained from Consigli Construction Co., archival research, and 

weekly business meetings.  We plan to redesign the roof structure using the engineering 

techniques acquired through coursework at WPI.  

2.0 Literature Review 

While the project received a $2.5 million grant from the U.S. Economic 

Development Administration, there are other forms of government funding that could 

have potentially been available had the Center been a LEED certified building.  The 

LEED certification program was developed by the U.S. Green Building Council and is 

intended to raise awareness of issues related to green construction and to create a 

standard measurement for “green buildings” in order to increase competition for green 

construction within the industry.  A project achieves certification through a process that 

includes sending project photos, plan sets, typical floor plans, project descriptions and 
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plans outlining how the project will meet the indicated criteria to the U.S. Green Building 

Council (USGBC).  

One might argue that because the WPI Life Sciences & Bioengineering Center 

will be a laboratory facility, it would be implausible to meet the criteria for LEED 

certification.  However, a case study of the U.S. EPA New England Regional Laboratory 

suggests otherwise.  The Laboratory is a $22 million, 70,400 Sq. Ft. facility located in 

Chelmsford, MA.  To meet LEED criteria in areas such as Land Use and Materials and 

Resources, the Laboratory includes features such as shower facilities and bicycle storage 

for bicycle commuters, access to public transportation, the use of steel with the highest 

possible content of recycled material, and a waste management plan provided by the 

contractor (U.S. Green Building Council).  Among other LEED certified projects, 

funding has been provided by sources such as the Massachusetts Renewable Energy 

Trust, Massachusetts Technology Collaborative, and the utility NSTAR.  

3.0 Methodology 

 This project will take three terms to complete and will include a capstone design 

segment and a comparative cost analysis.    

3.1 Determine the Materials and Resources Used in the Current Design of WPI Life 

Sciences and Bioengineering Center 

We plan to begin work on our project through research on the history of Gateway 

Park and its status as a brownfields site. We will visit the site to view the current 

construction activity and gain a comprehensive understanding of the project as a whole. 

We plan to examine drawings and specifications provided by Consigli Construction Co. 

to determine the current materials used. With this information, a cost distribution of the 
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materials and labor will be developed to determine the most expensive aspects of the 

project’s construction.  Correspondence with members of Consigli’s construction 

management team will help us to determine how they are currently disposing of 

construction waste and if they are reusing any of it. We will maintain our knowledge of 

WPI Life Sciences and Bioengineering Center by attending weekly owners meetings and 

compiling meeting minutes.   

3.2 Determine the Materials and Resources Needed to Meet LEED Specifications 

After we perform archival research on LEED specifications, our focus will narrow 

to the Materials and Resources category of the LEED Project Checklist. We will research 

the cost and availability of materials meeting LEED specifications and also determine if 

they can be directly substituted into the design or if the building needs to be redesigned 

for LEED compliant materials.  

3.3 Analysis of Cost and Availability of Materials 

 We intend to compare the cost of the materials used in the design of Gateway 

Park to the cost of alternative materials that meet LEED specifications to determine 

which materials are least expensive.  This analysis will also include long-term 

maintenance and operation costs. 

3.4 Redesign Roof to Meet Heat Island Effect 

 We plan to redesign the roof to meet the LEED Heat Island Effect specifications.  

Heat Islands are low-scale temperature differences between rural and urban areas 

(Environmental Protection Agency).  Reducing the Heat Island Effect can reduce energy 

demands, usage and cost of air conditioning, and the level of air pollution.  
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 We will determine the roof slope of the current design and research roofing 

materials that meet the required Solar Reflectance Index.  Structural engineering 

techniques will help us determine if the current design can support the roofing materials 

that meet LEED specification.  If the current design does not provide adequate support, 

we will redesign the structure to support the roof load. We will also experiment with 

altering the roof slope and other methods to reduce the heat island effect.   

 Redesigning the roof will include an analysis of the supporting members and 

require researching the mechanical equipment that is currently located on the roof.  We 

will also evaluate the possibility of moving some equipment to the basement, which may 

reduce the load on the roof and result in the use of smaller members.  

5.0 Project Specification 

In order to complete our project we have identified two goals.  First, we will 

examine the WPI Life Sciences and Bioengineering Center and determine the feasibility 

of meeting all of the LEED certification criteria within the Materials and Resources 

category.  To meet this goal we need to complete the following: 

• Determine the cost of the materials and resources used in the actual 

construction of the Center 

• Determine the availability and cost of materials and resources needed to meet 

LEED specifications 

• Determine the maintenance and operation costs for both sets of materials  

• Complete a side-by-side comparison of the cost and feasibility for the two 

construction methods 
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Secondly, we will examine and redesign the roof of the structure to meet the Heat 

Island Effect criteria laid out in Sustainable Sites section of the LEED new construction 

standard.  To meet this goal we need to complete the following: 

• Analyze the roof structure and materials used 

• Redesign roof to meet LEED Heat island effect criteria  

• Redesign supporting members to adequately support the revised roof design 

 

Capstone Design 

 In order to meet the capstone design requirement of this project we will redesign 

the roof of the WPI Life Sciences & Bioengineering Center at Gateway Park to meet the 

Heat Island Effect criteria for LEED standards.  Meeting the Heat Island Effect criteria 

helps to reduce the low-scale temperature differences between rural and urban areas.   

Redesigning the roof will include a structural analysis of the existing roof, 

compiling information about the materials used in the construction of the roof and the 

purposes they serve.  The alternate roof will be sloped, which will require special 

consideration for the mechanical systems that are currently located on the roof, and 

constructed with solar reflective material.  Additionally, regional codes will be taken into 

consideration to determine the loads the roof is required to bear.   

This project will address economic, environmental, sustainability, 

manufacturability, and health and safety constraints.  We will analyze the costs and 

benefits of building the WPI Life Sciences & Bioengineering Center to LEED standards 

to determine if it is economically feasible.  Additionally, this design will address 

environmental and sustainability issues through reducing the building’s contribution to 
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increased temperatures in urban areas and energy usage.  In terms of manufacturability, 

our design will include materials that are available regionally and can be assembled with 

standard construction methods.  The design will exceed health and safety constraints 

because it will meet Massachusetts building codes and lessen the impact of the heat 

island effect created by the city.
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APPENDIX B: Roof Plan 
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APPENDIX C: Summary of all Member Capacity Checks  
Beams 
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APPENDIX D: Typical Beam Calculation  
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APPENDIX E: Type I Girder Calculations 
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APPENDIX F: Typical Type I Girder Calculation 
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APPENDIX G: Type II Girder Calculations 
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APPENDIX H: Typical Type II Girder Calculations 
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APPENDIX I: Type III Girder Calculations 
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APPENDIX J: Typical Type III Girder Calculations 
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APPENDIX K: Type III Adjacent Member Dead Load Calculation 
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APPENDIX L: Moment Capacity for Members with Non-compact Sections 
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APPENDIX M: Mechanical System Loads 

60 Prescott Street  
Roof Mechanical Systems 

Unit No Manufacturer Model & Size 
Weight 

(lbs) 
Design 

Area 
Measured 

Area 
RTU-4 MCQUAY RDT045C 12,065  570 
MAU-1 MCQUAY OAH090GDAC 20,943  363 
MAU-2 MCQUAY OAH090GDAC 20,943  373.9 

SCHWP-1 
BELL & 

GOSSETT Series 1510, 4BC 1000  3.1 

SCHWP-2 
BELL & 

GOSSETT Series 1510, 4BC 1000  3.1 

GHRP-1 
BELL & 

GOSSETT 
Series 80, 

4x4x11 1000 
26"x16-

1/8" 

GHRP-2 
BELL & 

GOSSETT 
Series 80, 3x3x9-

1/28 1000 
23"x14-

1/8" 9.7 
EF-6 GREENHECK CUBE-200HP 127 30"x30" 5.4 

Lab Exhaust 
System STROBIC  45,300 20'1"x25' 520 

CH-1 YORK YCAV0247SA46 14,680 
96"x318 

3/8" 168.6 

CH-2 YORK YCAV0247SA46 14,680 
96"x318 

3/8" 168.6 

PCHWP-1 
BELL & 

GOSSETT Series 80, 5x5x7 1000 12"x13" 5.32 

PCHWP-2 
BELL & 

GOSSETT Series 80, 5x5x7 1000 12"x13" 5.32 
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APPENDIX N: Mechanical System/Roof Screen Distributed Load 
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APPENDIX O: Purposes of Mechanical Systems 
 
McQuay RDT045C: 
McQuay RoofPak Unit 

• Outdoor Air Handler 
• Singlezone Unit  
• Draw through cooling coil 
• Cooling capacity of 45 Nominal tons 
• 18,000 CFM 

 
McQuay OAH090GDAC: 
McQuay Skyline Outdoor Air Hander 

• Outdoor Air Handler 
• 90 nominal square foot of coil 
• Draw-through cooling coil location 
• Motor along side of fan housing 
• Standard unit cross section 
• 45,000 CFM 

http://www.mcquay.com/McQuay/ProductInformation/AirHandlerOutdoor/AirHandlerO
utdoor 
 
Bell and Gossett Series 1510, 4BC: 

• Used for hydronic heating and cooling services and other general uses 
• Centrifugal pump 
• Base-mounted 
• End-suction 
• 4000 GPM/ 570GPM 
• Head: 92 ft 

http://www.bellgossett.com/productPages/Parts-Series-1510.asp 
 
Bell and Gossett Series 80: 

• Used for hydronic heating and cooling services and other general uses 
• Centrifugal pump 
• Close-coupled in-line mounted pump 
• 2500 GPM/210 GPM 
• Head: 45 ft 

http://www.bellgossett.com/productPages/Parts-Series-80.asp 
 
Greenheck Cube 200-HP: 

• Roof up-blast fan 
• High pressure model 
• Belt drive roof mounted 
• 2,075 CFM 

http://www.greenheck.com/pdf/fans/SeriesCCatalogJanuary2005.pdf 
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Lab Exhaust Fan: 
• 100,000 CFM 

 
York YCAV0247SA46: 

• Chiller 
• 225 nominal tons 
• 287.3 kw/ton 
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APPENDIX P: Steep-Sloped Roof Preliminary Analysis 
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APPENDIX Q: Low-Sloped Roof Preliminary Analysis 
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APPENDIX R: Comparison of Preliminary Cost Analysis of Low and Steep-Sloped 
Roofs 
 
     

  Unit Cost Unit 
Steep-Sloped 
Roof 

Low-Sloped 
Roof 

Brick  $ 400.00  M  $           4,536.00  $       12,120.00  
Roofing 
Material  $   93.50  square  $         15,455.55  $       13,005.85  
Steel W 14x30  $   31.50  LF  $         45,517.50  -  
Steel W 12x26  $   27.00  LF  -   $       38,340.00  
  Totals  $              65,509  $           63,466  
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APPENDIX S: Summary of Option 1 Design Combinations  

Combination Number Tributary 
Widths 

Member Trib 
Width (ft) 

Roofing Material 
(lb/ft^2) 

Dead Load 
(lbs/ft) 

Snow Load 
(lbs/ft^2) 

Live Load 
(lbs/ft) 

Wind Load 
(lbs/ft^2) 

Distributed Wind 
Load (lbs/ft)  Member L (ft) Fy Φ 

1 10 18.80 1.40 26.4 27.3 513.2 5.5 103.4 44 50 0.9 
2 11 17.09 1.40 24.0 27.3 466.6 5.5 94.0 44 50 0.9 
3 12 15.67 1.40 22.0 27.3 427.7 5.5 86.2 44 50 0.9 
4 13 14.46 1.40 20.3 27.3 394.8 5.5 79.5 44 50 0.9 
5 14 13.43 1.40 18.8 27.3 366.6 5.5 73.9 44 50 0.9 
6 15 12.53 1.40 17.6 27.3 342.2 5.5 68.9 44 50 0.9 
7 16 11.75 1.40 16.5 27.3 320.8 5.5 64.6 44 50 0.9 
8 17 11.06 1.40 15.5 27.3 301.9 5.5 60.8 44 50 0.9 
9 18 10.44 1.40 14.7 27.3 285.1 5.5 57.4 44 50 0.9 

10 19 9.89 1.40 13.9 27.3 270.1 5.5 54.4 44 50 0.9 
11 20 9.40 1.40 13.2 27.3 256.6 5.5 51.7 44 50 0.9 
12 25 7.52 1.40 10.6 27.3 205.3 5.5 41.4 44 50 0.9 
13 30 6.27 1.40 8.8 27.3 171.1 5.5 34.5 44 50 0.9 
14 35 5.37 1.40 7.6 27.3 146.6 5.5 29.5 44 50 0.9 
15 40 4.70 1.40 6.6 27.3 128.3 5.5 25.9 44 50 0.9 
16 45 4.18 1.40 5.9 27.3 114.1 5.5 23.0 44 50 0.9 
17 50 3.76 1.40 5.3 27.3 102.6 5.5 20.7 44 50 0.9 
18 55 3.42 1.40 4.8 27.3 93.3 5.5 18.8 44 50 0.9 
19 60 3.13 1.40 4.4 27.3 85.5 5.5 17.2 44 50 0.9 
20 65 2.89 1.40 4.1 27.3 79.0 5.5 15.9 44 50 0.9 
21 70 2.69 1.40 3.8 27.3 73.3 5.5 14.8 44 50 0.9 
22 75 2.51 1.40 3.6 27.3 68.4 5.5 13.8 44 50 0.9 
23 80 2.35 1.40 3.3 27.3 64.2 5.5 12.9 44 50 0.9 
24 85 2.21 1.40 3.1 27.3 60.4 5.5 12.2 44 50 0.9 
25 90 2.09 1.40 3.0 27.3 57.0 5.5 11.5 44 50 0.9 
26 95 1.98 1.40 2.8 27.3 54.0 5.5 10.9 44 50 0.9 
27 100 1.88 1.40 2.7 27.3 51.3 5.5 10.3 44 50 0.9 
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Combination Wu 
(lb/ft) 

Mu 
(ftk) 

Min Zx 
(in^3) 

Trial 
Member 

Size 

Nominal 
Weight 

Trial 
Zx 

Trial Wu 
(lb/ft) 

Trial Mu 
(ftk) ΦZxFy

Adequate 
Capacity? 

ФZxFy>Trial Mu 
1 935.6 226.4 60.4 W16x40 40.00 73.00 983.6 238.0 273.8 Yes 
2 850.5 205.8 54.9 W18x35 35.00 66.50 892.5 216.0 249.4 Yes 
3 779.7 188.7 50.3 W18x35 35.00 66.50 821.7 198.8 249.4 Yes 
4 719.7 174.2 46.4 W16x31 31.00 54.00 756.9 183.2 202.5 Yes 
5 668.2 161.7 43.1 W16x31 31.00 54.00 705.4 170.7 202.5 Yes 
6 623.7 150.9 40.3 W14x30 30.00 47.30 659.7 159.7 177.4 Yes 
7 584.7 141.5 37.7 W14x30 30.00 47.30 620.7 150.2 177.4 Yes 
8 550.3 133.2 35.5 W14x26 26.00 40.20 581.5 140.7 150.8 Yes 
9 519.8 125.8 33.5 W14x26 26.00 40.20 551.0 133.3 150.8 Yes 
10 492.4 119.2 31.8 W12x26 26.00 37.20 523.6 126.7 139.5 Yes 
11 467.8 113.2 30.2 W12x26 26.00 37.20 499.0 120.8 139.5 Yes 
12 374.3 90.6 24.2 W12x22 22.00 29.30 400.7 97.0 109.9 Yes 
13 311.9 75.5 20.1 W12x19 19.00 24.70 334.7 81.0 92.6 Yes 
14 267.4 64.7 17.3 W12x16 16.00 20.10 286.6 69.4 75.4 Yes 
15 233.9 56.6 15.1 W12x16 16.00 20.10 253.1 61.2 75.4 Yes 
16 207.9 50.3 13.4 W12x16 16.00 20.10 227.1 55.0 75.4 Yes 
17 187.1 45.3 12.1 W12x16 16.00 20.10 206.3 49.9 75.4 Yes 
18 170.1 41.2 11.0 W12x16 16.00 20.10 189.3 45.8 75.4 Yes 
19 155.9 37.7 10.1 W10x12 12.00 12.60 170.3 41.2 47.3 Yes 
20 144.0 34.8 9.3 W10x12 12.00 12.60 158.4 38.3 47.3 Yes 
21 133.7 32.4 8.6 W10x12 12.00 12.60 148.1 35.8 47.3 Yes 
22 124.8 30.2 8.1 W10x12 12.00 12.60 139.2 33.7 47.3 Yes 
23 116.9 28.3 7.5 W8x10 10.00 8.90 128.9 31.2 33.4 Yes 
24 110.1 26.6 7.1 W8x10 10.00 8.90 122.1 29.5 33.4 Yes 
25 104.0 25.2 6.7 W8x10 10.00 8.90 116.0 28.1 33.4 Yes 
26 98.5 23.8 6.4 W8x10 10.00 8.90 110.5 26.7 33.4 Yes 
27 93.6 22.7 6.0 W8x10 10.00 8.90 105.6 25.6 33.4 Yes 
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APPENDIX T: Cost of Option 1 Design Combinations  
 

Combination Member 
Size 

Member 
Length 

Number 
Tributary 
Widths 

Tributary 
Width 

Number 
of 

Beams 

Total 
Linear 
Feet 

Unit 
Cost 
(LF) 

Total 
Cost 

1 W16x40 44 10 18.8 11 968 $42.00 $40,656 
2 W18x35 44 11 17.1 12 1056 $36.50 $38,544 
3 W18x35 44 12 15.7 13 1144 $36.50 $41,756 
4 W16x31 44 13 14.5 14 1232 $32.50 $40,040 
5 W16x31 44 14 13.4 15 1320 $32.50 $42,900 
6 W14x30 44 15 12.5 16 1408 $31.50 $44,352 
7 W14x30 44 16 11.8 17 1496 $31.50 $47,124 
8 W14x26 44 17 11.1 18 1584 $27.00 $42,768 
9 W14x26 44 18 10.4 19 1672 $27.00 $45,144 
10 W12x26 44 19 9.9 20 1760 $27.00 $47,520 
11 W12x26 44 20 9.4 21 1848 $27.00 $49,896 
12 W12x22 44 25 7.5 26 2288 $23.00 $52,624 
13 W12x19 44 30 6.3 31 2728 $20.00 $54,560 
14 W12x16 44 35 5.4 36 3168 $17.00 $53,856 
15 W12x16 44 40 4.7 41 3608 $17.00 $61,336 
16 W12x16 44 45 4.2 46 4048 $17.00 $68,816 
17 W12x16 44 50 3.8 51 4488 $17.00 $76,296 
18 W12x16 44 55 3.4 56 4928 $17.00 $83,776 
19 W10x12 44 60 3.1 61 5368 $12.55 $67,368 
20 W10x12 44 65 2.9 66 5808 $12.55 $72,890 
21 W10x12 44 70 2.7 71 6248 $12.55 $78,412 
22 W10x12 44 75 2.5 76 6688 $12.55 $83,934 
23 W8x10 44 80 2.4 81 7128 $10.45 $74,488 
24 W8x10 44 85 2.2 86 7568 $10.45 $79,086 
25 W8x10 44 90 2.1 91 8008 $10.45 $83,684 
26 W8x10 44 95 2.0 96 8448 $10.45 $88,282 
27 W8x10 44 100 1.9 101 8888 $10.45 $92,880 
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APPENDIX U: Summary of Option 2 Design Combinations 

Combination 
Girder Tributary 

Width/Joist 
Length 

Number of Girder 
Trib. Widths 

Joist 
Tributary 

Width 

Number Joist 
Tributary 
Widths 

Roofing 
Material 
(lb/ft^2) 

Joist 
type 

name 

Joist 
Nominal 
Weight 
(lb/ft) 

Dead Load 
along Joist 

(lbs/ft) 

1 32 6 3.5 13 1.4 16K6 8.1 33.3 
2 30 7 3.5 13 1.4 16K4 7.0 29.4 
3 28 7 3.5 13 1.4 14K4 6.7 28.4 
4 26 8 3.5 13 1.4 14K3 6.0 25.9 
5 24 8 3.5 13 1.4 12K3 5.7 24.9 
6 22 9 3.5 13 1.4 12K1 5.0 22.4 
7 20 10 3.5 13 1.4 10K1 5.0 22.4 
8 18 11 3.5 13 1.4 10K1 5.0 22.4 
9 16 12 3.5 13 1.4 8K1 5.1 22.8 
10 14 14 3.5 13 1.4 8K1 5.1 22.8 
11 12 16 3.5 13 1.4 8K1 5.1 22.8 
12 10 19 3.5 13 1.4 8K1 5.1 22.8 
13 8 24 3.5 13 1.4 8K1 5.1 22.8 
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Combination Snow Load 
(lbs/ft^2) 

Live Load 
along Joist 

(lbs/ft) 

Wind 
Load 

(lbs/ft^2)

Distributed 
Wind Load 

(lbs/ft) 

Girder 
Length

Dead Load 
on Girder 

(lb/ft) 

Live Load 
on Girder 

(lb/ft) 

Distributed 
Wind Load on 
Girder (lb/ft) 

Wu 
(lbs/ft) 

1 27.3 95.6 5.5 19.3 44.0 118.86 873.60 176 1681.19 
2 27.3 95.6 6.5 22.8 44.0 102.00 819.00 195 1588.80 
3 27.3 95.6 7.5 26.3 44.0 92.80 764.40 210 1502.40 
4 27.3 95.6 8.5 29.8 44.0 80.97 709.80 221 1409.65 
5 27.3 95.6 9.5 33.3 44.0 72.69 655.20 228 1317.94 
6 27.3 95.6 10.5 36.8 44.0 62.23 600.60 231 1220.43 
7 27.3 95.6 11.5 40.3 44.0 56.57 546.00 230 1125.49 
8 27.3 95.6 12.5 43.8 44.0 50.91 491.40 225 1027.34 
9 27.3 95.6 13.5 47.3 44.0 45.71 436.80 216 926.54 
10 27.3 95.6 14.5 50.8 44.0 40.00 382.20 203 821.92 
11 27.3 95.6 15.5 54.3 44.0 34.29 327.60 186 714.10 
12 27.3 95.6 16.5 57.8 44.0 28.57 273.00 165 603.09 
13 27.3 95.6 17.5 61.3 44.0 22.86 218.40 140 488.87 
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Combination Mu (lbs/ft) GirderMin 
Zx (in^3) 

Trial Girder 
Size 

Girder Nominal 
Weight (lbs/ft) Trial Zx Trial Wu 

(lb/ft) 
Trial Mu 

(ftk) ΦZxFy Adequate Beam Capacity? 
ФZxFy>Trial Mu 

1 406.85 108.5 W21x55 55 126 1747.2 422.8 472.5 Yes 
2 384.49 102.5 W21x50 50 110 1648.8 399.0 412.5 Yes 
3 363.58 97.0 W21x50 50 110 1562.4 378.1 412.5 Yes 
4 341.13 91.0 W21x44 44 95.4 1462.4 353.9 357.8 Yes 
5 318.94 85.1 W21x44 44 95.4 1370.7 331.7 357.8 Yes 
6 295.35 78.8 W21x44 44 95.4 1273.2 308.1 357.8 Yes 
7 272.37 72.6 W18x40 40 78.4 1173.5 284.0 294.0 Yes 
8 248.62 66.3 W16x40 40 73 1075.3 260.2 273.8 Yes 
9 224.22 59.8 W18x35 35 66.5 968.5 234.4 249.4 Yes 

10 198.90 53.0 W18x35 35 66.5 863.9 209.1 249.4 Yes 
11 172.81 46.1 W16x31 31 54 751.3 181.8 202.5 Yes 
12 145.95 38.9 W14x30 30 47.3 639.1 154.7 177.4 Yes 
13 118.31 31.5 W12x26 26 37.2 520.1 125.9 139.5 Yes 
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Combination 
Plate Beam 

Tributary 
Width 

Plate 
Beam 
Length 

Dead Load on 
Plate Beam 

(lb/ft) 

Live Load on 
Plate Beam 

(lb/ft) 

Distributed Wind 
Load on Plate Beam 

(lb/ft) 

Wu 
(lbs/ft) 

Mu 
(lbs/ft) 

1 44 31.33 239.05 1201.20 242 2402.38 294.83 
2 44 31.33 222.93 1201.20 286 2418.24 296.77 
3 44 31.33 224.40 1201.20 330 2455.20 301.31 
4 44 31.33 211.49 1201.20 374 2474.91 303.73 
5 44 31.33 213.92 1201.20 418 2513.03 308.40 
6 44 31.33 212.46 1201.20 462 2546.47 312.51 
7 44 31.33 212.46 1201.20 506 2581.67 316.83 
8 44 31.33 222.23 1201.20 550 2628.60 322.59 
9 44 31.33 221.96 1201.20 594 2663.48 326.87 
10 44 31.33 235.71 1201.20 638 2715.18 333.21 
11 44 31.33 239.38 1201.20 682 2754.78 338.07 
12 44 31.33 257.71 1201.20 726 2811.98 345.09 
13 44 31.33 268.71 1201.20 770 2860.38 351.03 
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Combination Plate Beam 
Min Zx (in^3) 

Trial 
Plate 
Beam 
Size 

Plate Beam 
Nominal Weight 

(lbs/ft) 

Trial 
Zx 

Trial 
Wu 

(lb/ft) 

Trial 
Mu 
(ftk) 

ΦZxFy
Adequate Beam 

Capacity? ФZxFy>Trial 
Mu 

1 78.6 W21x44 44 95.4 2455.2 301.3 357.8 Yes 
2 79.1 W21x44 44 95.4 2471.0 303.3 357.8 Yes 
3 80.3 W21x44 44 95.4 2508.0 307.8 357.8 Yes 
4 81.0 W21x44 44 95.4 2527.7 310.2 357.8 Yes 
5 82.2 W21x44 44 95.4 2565.8 314.9 357.8 Yes 
6 83.3 W21x44 44 95.4 2599.3 319.0 357.8 Yes 
7 84.5 W21x44 44 95.4 2634.5 323.3 357.8 Yes 
8 86.0 W21x44 44 95.4 2681.4 329.1 357.8 Yes 
9 87.2 W21x44 44 95.4 2716.3 333.3 357.8 Yes 
10 88.9 W21x44 44 95.4 2768.0 339.7 357.8 Yes 
11 90.2 W21x44 44 95.4 2807.6 344.6 357.8 Yes 
12 92.0 W21x44 44 95.4 2864.8 351.6 357.8 Yes 
13 93.6 W21x44 44 95.4 2913.2 357.5 357.8 Yes 
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APPENDIX V: Cost of Option 2 Design Combinations 
 

Combination Joist 
Size 

Total Joists 
Length 

(LF) 
Unit Cost (LF) Total Joist 

Cost 
Girder 
Size 

Girder 
Length 

Girder 
Tributary 

Width 

Number 
of Girders 

Total 
Linear 
Feet 

Unit Cost (LF) 

1 16K6 4512 $5.75 $25,944.00 W21x55 44 32 10 440 $62.00 
2 16K4 4512 $4.91 $22,153.92 W21x50 44 30 12 528 $56.50 
3 14K4 4512 $4.57 $20,619.84 W21x50 44 28 14 616 $56.50 
4 14K3 4512 $4.28 $19,311.36 W21x44 44 26 14 616 $49.50 
5 12K3 4512 $4.06 $18,318.72 W21x44 44 24 14 616 $49.50 
6 12K1 4512 $3.56 $16,062.72 W21x44 44 22 16 704 $49.50 
7 10K1 4512 $3.56 $16,062.72 W18x40 44 20 18 792 $45.00 
8 10K1 4512 $3.56 $16,062.72 W16x40 44 18 20 880 $45.00 
9 8K1 4512 $3.63 $16,378.56 W18x35 44 16 22 968 $39.50 
10 8K1 4512 $3.63 $16,378.56 W18x35 44 14 26 1144 $39.50 
11 8K1 4512 $3.63 $16,378.56 W16x31 44 12 30 1320 $35.00 
12 8K1 4512 $3.63 $16,378.56 W14x30 44 10 36 1584 $34.00 
13 8K1 4512 $3.63 $16,378.56 W12x26 44 8 46 2024 $29.50 
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Combination Total Girder Cost 
Plate 
Beam 
Size 

Total 
Linear 
Feet 

Unit Cost Total Plate 
Beam Cost

Area 
of 

Roof 

Unit Cost of 
Roofing 

Total Roofing 
material Cost Total Cost 

1 $27,280.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $129,078.24
2 $29,832.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $127,840.16
3 $34,804.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $131,278.08
4 $30,492.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $125,657.60
5 $30,492.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $124,664.96
6 $34,848.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $126,764.96
7 $35,640.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $127,556.96
8 $39,600.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $131,516.96
9 $38,236.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $130,468.80
10 $45,188.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $137,420.80
11 $46,200.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $138,432.80
12 $53,856.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $146,088.80
13 $59,708.00 W21x44 376 $49.50 $18,612.00 16544 $3.46 $57,242.24 $151,940.80



 137

APPENDIX W: LEED Project Checklist 
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APPENDIX X: LEED Roof Heat Island Effect Criteria 
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APPENDIX Y: LEED Materials and Resources Criteria 
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APPENDIX Z: Cost Estimate Backup Sheets 
 

Concrete 

Floor 

Thickness 
of Slab 

(ft) 
Area with Concrete 

Slab (ft^2) 
Volume 

(ft^3) 
Basement 0.42 1012 422 

Floor 1 0.42 14642 6101 
Floor 2 0.54 14642 7931 
Floor 3 0.54 14642 7931 
Floor 4 0.54 14642 7931 
Roof 0.54 14642 7931 

   Total (ft^3) 38247 
    Total (cy) 1417 

 
 

Steel Columns 

Size Total LF Unit Cost (LF) Totals 
W14x109 822  $        123.00   $  101,106.00  
W14x159 74  $        180.00   $    13,320.00  
W14x193 543  $        220.00   $  119,460.00  
W12x65 78  $          73.50   $     5,733.00  
W12x53 173  $          60.00   $    10,380.00  
W12x79 163  $          88.50   $    14,425.50  
W12x58 66  $          65.00   $     4,290.00  
W14x145 19  $        164.00   $     3,116.00  

        

    
Total Column 

Cost  $  271,830.50  
 
 
 
 
 
 
 
 
 
 
 

WWF 

Floor 

Area with 
WWF 
(ft^2) 

Basement 1012 
Floor 1 14642 
Floor 2 14642 
Floor 3 14642 
Floor 4 14642 
Roof 14642 
Total 
(ft^2) 74222 

Steel Decking 

Floor 

Area with 
Decking 

(ft^2) 
    

Basement 0 
Floor 1 0 
Floor 2 14642 
Floor 3 14642 
Floor 4 14642 

    
Roof 14642 

Total (ft^2) 58568 
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Steel Beams 

Size 
Total 

LF 
Unit 
Cost Totals Size 

Total 
LF Unit Cost Totals 

First Floor Fourth Floor 
W14x22 110  $  25.00   $    2,750.00 W10x12 7  $   13.55   $        94.85 
W21x50 31  $  56.50   $    1,751.50 W12x14 23  $   15.80   $      363.40 
W12x19 12  $  23.50   $      282.00 W12x16 12  $   17.50   $      210.00 
W12x14 12  $  15.80   $      189.60 W12x19 328  $   23.50   $    7,708.00 

 Floor 1 Total   $    4,973.10 W16x26 66  $   29.50   $    1,947.00 
Second Floor W18x35 1529  $   39.50   $  60,395.50 

W10x12 9  $  13.55   $      121.95 W18x50 46  $   56.50   $    2,599.00 
W12x14 27  $  15.80   $      426.60 W21x44 23  $   49.50   $    1,138.50 
W12x19 303  $  23.50   $    7,120.50 W21x50 215  $   56.50   $  12,147.50 
W16x26 54  $  29.50   $    1,593.00 W24x117 49  $ 132.00   $    6,468.00 
W16x31 31  $  35.00   $    1,085.00 W24x68 430  $   76.50   $  32,895.00 

W16x89 300  $100.00   $  30,000.00 W24x68 207  $   76.50   $  15,835.50 
W18x35 1488  $  39.50   $  58,776.00 W8x10 69  $   11.30   $      779.70 
W18x40 88  $  45.00   $    3,960.00  Floor 4 Total   $142,581.95 
W18x50 46  $  56.50   $    2,599.00 Roof  
W21x50 146  $  56.50   $    8,249.00 C6x8.2 15 $4.87 $74.71 
W24x117 11  $132.00   $    1,452.00 W10x12 13 $13.55 $172.90 
W24x162 65  $185.00   $  12,025.00 W12x14 19 $15.80 $302.73 
W24x94 520  $106.00   $  55,120.00 W12x16 12 $17.50 $210.00 
W8x10 90  $  11.30   $    1,017.00 W12x19 324 $23.50 $7,618.00 

 Floor 2 Total   $183,545.05 W14x22 31 $25.00 $766.50 
Third Floor W16x26 67 $29.50 $1,972.67 

W10x12 8  $  13.55   $      108.40 W16x31 274 $35.00 $9,580.20 
W12x16 12  $  17.50   $      210.00 W18x35 1,334 $39.50 $52,680.36 
W12x19 332  $  23.50   $    7,802.00 W18x40 23 $45.00 $1,020.15 
W12x44 24  $  49.50   $    1,188.00 W21x44 23 $49.50 $1,138.50 
W16x26 66  $  29.50   $    1,947.00 W24x55 744 $62.00 $46,149.08 
W18x35 1499  $  39.50   $  59,210.50 W24x94 49 $106.00 $5,230.04 
W18x50 46  $  56.50   $    2,599.00 W8x10 200 $11.30 $2,260.00 
W21x44 23  $  49.50   $    1,138.50  Roof Total  $129,175.82 
W21x50 184  $  56.50   $  10,396.00         

W24x117 49  $132.00   $    6,468.00   
Total Beam 

Cost  $600,910  
W24x68 637  $  76.50   $  48,730.50         
W8x10 74  $  11.30   $      836.20      

 Floor 3 Total   $140,634.10      
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Insulation 
Interior Walls - Acoustic Batt Insulation 

    Insulation Thickness (in) 
  Wall Height (ft) Wall Length (ft) 
    6" 3.5" None 

Basement 8 - 24 83 
1st Floor 9 29 160 284 
2nd Floor 9 219 908 147 
3rd Floor 9 286 609 130 
4th Floor 9 147 823 133 

  
Total Insulation per 

Thickness
6129 
SF 22692 SF   

         

Exterior Walls - 2" Rigid Insulation   
Floor - 2" Rigid 

Insulation 

  Wall Surface Area (SF)     

Floor 
Surface 

Area 
(SF) 

Basement 761 SF   Basement 0 SF 
1st Floor 2004 SF   1st Floor 0 SF 
2nd Floor 2045 SF   2nd Floor 0 SF 
3rd Floor 1977 SF   3rd Floor 0 SF 
4th Floor 1977 SF   4th Floor 0 SF 

Roof 0 SF   Roof 
14642 

SF 
Total Wall 
Insulation 8764 SF   

Total Floor 
Insulation

14642 
SF 
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Masonry 
Face Brick 

  

Total 
Surface 

Area 
Area of 

Openings 
Area of 
Brick 

Number 
of 

Bricks*   Mortar** 
South 

Elevation 10067.25 3321.25 6746 44187     
West 

Elevation 2726 843.75 1882.25 12329     
North 

Elevation 5412.36 1237.5 4174.86 27346     
East 

Elevation 2882.04 787.5 2094.54 13720     

      

Total 
Brick 
(EA) 97582     

      
Total 

Bricks (M) 98 
Total 
Mortar (CF) 843 

1/2" Recess Alternative Brick 

  

Total 
Surface 

Area 
Area of 

Openings 
Area of 
Brick 

Number of 
Bricks*   Mortar** 

South 
Elevation 653.94 131.94 522 3420     

West 
Elevation 232 12 220 1441     

North 
Elevation 763.3112 84 679.3112 4450     

East 
Elevation 84.5 0 84.5 554     

      

Total 
Bricks 

(EA) 9865     

      
Total 

Bricks (M) 10 

Total 
Mortar 
(CF) 86 

*Assumed Running Bond      
**8.6 CF per 1000 bricks      
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APPENDIX AA: Consigli Owner’s Meetings Minutes  
 
Consigli Owner’s Meeting Minutes 
September 18, 2006 
 
Schedule 

• Steve J. provided a schedule update on several items, especially the 2nd floor 
• Building enclosure 

o WPI and WBDC have concerns, would like to see enclosure by end of 
September 

o Consigli says it will be enclosed by end of October 
• Casework 

o Brent A. had concerns about humidity 
o Consigli says it should stay between 30-60% humidity and they have a 

way to monitor it 
o For the most part, humidity has been ok but recently it went up to 70% for 

a day 
o Brent A. has additional concerns that doors, etc. will operate correctly 

after building is occupied and today’s high temperatures and the 
possibility of dew collecting inside the building 

• VanZelm 
o Brent A. is concerned that they feel as if they have been “thrown under the 

bus” 
o Steve H. agreed that this is probably the case 
o Brent/Consigli discussed that this is partially due to some 

miscommunication  
• WPI employees are asking for a panic button inside temp. controlled rooms 
• Ice Machines 

o John McDermott pointed out that these ice machines and other changes to 
scope need to be identified as such 

o There have been some issues with design changes that have been written 
off as RFIs 

• Keying 
o Consigli will need to meet with WPI to discuss their needs 
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Consigli Owner’s Meeting Minutes 
September 25, 2006 
 
Credit for light fixtures 

• WPI fit out had temporary lighting 
• Changed to permanent 
• Type D & F fixtures – 1 hour for fixture, charged 1 ½ hours 

 
Glass should be in South East wall by Friday or Monday 
 
WPI needs handicapped access buttons 

• Will get specs for them 
 
National Grid came on Friday to energize transformer 

• 1 more week to permanent power 
 
Mechanical panels going in 
 
Putting ceilings in lab first and then putting in case work 

• Experimented with opposite way 
 
Building inspector coming on Wednesday to look at the above ceiling fire protection 
 
Billing should go to “New Gate Properties LLC” at the WPI address 

• Attention Jeff Solomon 
 
Accident 

• Lost a couple of hours work 
• Man went to the hospital to get stitches 

 
Automatic light shut off system 

• Wont be able to see the screen that displays that the lights are going out with 
current installation plan 

• Will get a sample to see 
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Consigli Owner’s Meeting Minutes 
October 2, 2006 

 
• Design changes discussion 

 Blast wall is an eye sore – ivy, trellis, and brick topics discussed 
 Landscape – Value engineering effects 
 Elevator card swipe 
 Fume hoods changes 
 Emergency power to water chillers if power goes out 

• 2 Week Delivery Delays 
 Glass 
 Screening 
 Air/AC Units  

• Construction 
 Humidity level in building ok 
 Air temperature constant 
 Water proofing delayed because of rain 
 VanZelm response testing on windows, curtain wall, and metal 

panels 
• Discussion to potentially plant grass on MRI roof 
• Detailed discussion and update of the previous weeks minutes 

 VanZelm response 
 Task light switch selection to be visible from work areas 
 Keying 
 2nd floor – seal cracks before sealer is put on 
 Landscaping 
 Retaining Wall at entrance alternatives 

• Symmetry one wall on either side 
• Single wall – no symmetry 
• Brick 
• Retaining wall versa lock 

 Café Marketing, heating, etc 
 RFI - Location of Ice Machine MEP hookups are needed 

• Work Bench surface confirmed  
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Consigli Owner’s Meeting Minutes  
October 9, 2006 
 
Water Drainage: 

• Perforated pipe for water drainage 
• Will need detail soon 

 
Pressure testing the walls 
 
Cracks in the concrete: 

• Concrete mixture may have been too wet 
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Consigli Owner’s Meeting Minutes 
October 16, 2006 
 
Schedule 

• Building is completely closed in except for some cosmetic pieces of the curtain 
wall 

• They are finishing the MRI roof 
o A couple leaks were discovered along the edge 

• They will pressure test the exterior waterproofing later this week 
• There’s a crane coming on the 24th 

o Will this cause workspace issues? 
• Temporary doors have to stay in place in one location in order to get the rest of 

the casework into the building 
• Paving may begin this week 

o Materials will be stacked in the north parking lot 
o This might case more work space issues with the crane 

VanZelm 
• Old issue: not receiving reports from them about the space above the ceiling 

o Consigli had been asking for a “punch list” instead of what they really 
needed 

o The theory is that VanZelm has been looking above the ceiling, they just 
haven’t sent the reports 

Sprinkler Heads 
• NFPA 13 code interpretation 

o They want the engineer to specifically approve an alternative sprinkler 
head, not just say that “it’s ok as long as it meets the code” 

Plumbing Inspector 
• Gas shut-offs 

o In the labs, need to be near the hoods 
o The issue is whether or not the shut-offs are “accessible” enough 

Concrete Floor 
• Hollowness issue 

o Some areas of hollowness near cracks 
o Some owners and Consigli will do a walk-through to double check that the 

hollowness is not excessive, although the guy who tested it said it was ok 
Diesel Tank 

• A guy with the fire department wants them to put a permanent jersey barrier in 
front of the tank in order to prevent a car from driving into it, even though there is 
so much space between the tank and the traveled way that this seems ridiculous 

• Will try an alternative – maybe install bollocks?  
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Consigli Owner’s Meeting Minutes 
October 25, 2006 
 

• Bench Location Discussion 
• Change Request for racks signed by John Miller 
• 2nd floor fume hoods come in today 
• Lights in lab space 
• Current Progress: 

o Fume hoods 
o Catering space in dining area 
o Lights coordinated 

• Punchlist Schedule 
o MEP -  December 7th 
o Basement issues to be worked out in field (location of utilities) 

• Enclosing Building: Most done by end of fall 
• VanZelm Responses 

o Waiting on inspection report 
o Sketches for labs (Fermentation lab) 
o Ice machine Drains 

• Keying: which rooms are to have Separate Keying 
• Generator: Received permit – Spacing Units: 5ft 
• Underlayment: Crack Fix: Still in progress samples in use 

o Still Looking for company to present a solution 
o Specrete Xterior Rock: No Epoxy (too expensive) 
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Consigli Owner’s Meeting Minutes  
November 13, 2006 
 
Roofing: 

• Roofing inspection in late November 
 
MEP Coordination 

• MEP coordination is done 
• Subs signed off 

 
Gas Valve Shut Offs: 

• Inspector came and said they were fine 
 
Keying: 

• Some disagreements about what rooms would be keyed 
• By the end of the month, they will have decided on the level of control for all 

doors 
 
Casework: 

• Consigli and the casework supplier, Gibson, have had similar humidity readings 
• Gibson is comfortable with the readings 
• The warranty is still pending 

 
Landscaping 

• Waiting on hardscaping 
 
MRI: 

• Have not decided on how to finish MRI walls 
 
Lighting: 

• Spacing the outdoor lights 30 feet apart 
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Consigli Owner’s Meeting Minutes 
November 20, 2006 
 
Schedule 

• Started VCT on 4th floor 
• Tile on 3rd floor is next, then back to 4th floor for finishes 
• Ceilings are going in on 2nd floor 
• Screen wall to be finished this week if good weather 

VanZelm 
o Nothing from VanZelm in 2 weeks, need the following from them: 

• Info about the cooler in the tel/data room in the basement 
• Sketches from fermentation 
• Incorrectly routed exhaust duct 

o Issue with bus duct being either over designed or poorly designed – 
VanZelm’s fault? 

Casework 
• Humidity – Consigli received verbal “ok” about the indoor conditions from the 

manufacturer, still waiting on written documentation 
Seminar Room Seating 

• Column cover and platform need to be installed ASAP so that seating can be 
based off of accurate interior dimensions 

Flashing and crack fillings  
• 3rd and 4th floor are done 
• The sub will be back in a couple weeks to finish 

Café  
• The area has been leased and the tenant will do a design 

Freight Elevator 
• The dimensions in the shop drawing were off 
• Solutions: 

o Get a smaller elevator  
 $9000 and 2 weeks to get it 

o Do a lot of work to fix it 
 $10000  

o This is a contingency item 
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Consigli Owner’s Meeting Minutes 
November 27, 2006 
 

• Keying: Still Deciding 
• Freight Elevator: Smaller Basket to replace construction Basket 

o Save hydraulic lift but Capacity Dropped from 5000 to 4500, Shouldn’t 
the capacity go up? 

• Masonry: Spruce Green cornice on exterior landscape 
• Punchlist: MEP for roof screen 
• Detail of Connection of New Floor with Drywall: Floor replaces old cracked floor  
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Consigli Owner’s Meeting Minutes  
December 4, 2006 
 
Interior Finishes: 

• Carpet coming in next week for the 4th floor of the existing building 
• Hanging dry wall in basement 
• Nothing new with the humidity concerning the casework 

 
VanZelm Issues: 

• Need to approve five gallon heaters 
 
Water Leak: 

• There was a water leak during wall testing 
• Think it is a problem with the window and gasket 

 
Elevator: 

• Want the elevator to be 5,000lbs capacity 
 
Mail 

• Concern over how they will get mail into the building once it is open 
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Consigli Owner’s Meeting Minutes  
December 11, 2006 
 

• Discussion of Budget 
o Walkways- Masonry Going to Cost twice the original estimate   

 Fill in cracks – entrance to café 
 9000-31000 big jump: Some things were over looked 
 Craig was upset 

o Sprinkler heads in basement 
 30 to cover depth – efficient? 
 Heat is required because of the sprinklers 

• Curtain wall Caps & Panels 100% 
• Freight elevator: New parts in January 
• Carpet: installation on certain floors 

o Issue with construction next to finished areas 
o Keep those areas blocked off  
o Lock doors 

• VanZelm Response: Behind the 8 ball 
o RFI’s, Difficult to get Response 

• Staging Begins in Seminar Room 
• Last Piece of Parking Garage Thurs @ 11:30 Ceremony 
• Freight elevator 4500 lbs: State Regulations 

o No matter what the strength of the lift, it’s regulated by the size of the 
cage 

o Test for 5000 lbs & see if that works just for future reference 
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Consigli Owner’s Meeting Minutes  
January 22, 2007 
 
VanZelm Issues: 

• Trying to determine if they are doing extra work or doing work that was left  out 
of the plans 

 
Roof Units: 

• York came to work on roof units 1 and 2 
 
Elevator: 

• All pieces are parts are in for the elevator 
 
Interior Finishes: 

• Beginning painting the first floor of the new building 
• Aluminum rail in the lobby should be in by the end of the month 

 
Plant Lab: 

• Changes ordered 
 
Underlayment on 68 Prescott St: 

• Northwest is done except for the 4th floor 
• Consigli thinks there was a bad mark, says it is not Northwest’s fault 
• Chipped out the extra concrete and will be repouring it 

 
Numbering of the Building: 

• The building needs a new number because it cannot stay 60-68 Prescott St. 
• Will apply to the city to get a number  
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Consigli Owner’s Meeting Minutes  
January 29, 2007 
 

• Milestones: 
o 1/15: Final Paint 4th Floor 
o 1/17: Ceiling Grid 1st Floor 
o 1/18: Doors & Windows 4th Floor 
o 1/18: Complete Final Paint 3rd Floor 
o 1/18: Complete Ceiling Grid Basement 
o 1/29: Complete Ceiling Grid 1st Floor 
o 1/31: Complete Final Paint 2nd Floor 
o 2/2: Punchlist 4th Floor 

• 2hr Fire Doors – Not getting label for Fire Protection because of holes due to 
Keycard access 

o Possible Solution: Electric Hinges 
• Thoughts on Dividing Café Area to separate from 24/7 area 
• Emergency Power Capacity: Issue with Transformer to service system 

o Does the transformer service the whole building or just a single floor? 
• Stairwell: Rail Should meet code after conversion 
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APPENDIX AB: Interview with Judith Nitsch 
Judith Nitsch, WPI Class of ’89, Member of WPI Board of Trustees  
Phone Conference Minutes 
November 11, 2006 
 
Reasons for LEED policy at WPI 

• Bartlett Center 
o Extra challenging because design did not begin with LEED in mind 
o Worked toward achieving certification by using alternative mechanical 

equipment that cost more initially but will be paid off in 4 to 7 years, 
depending on oil prices 

• New dorm: they started with LEED in mind so certification should not be difficult 
to achieve 

• Benefits: there is a “huge marketing benefit to the USGBC medallion” and WPI 
wants to send the message that they care about the environment 

Information from a green building presentation by Judith Nitsch 
• Reasons to go “green”: 

o Operational savings 
o Marketing 
o Environmental Consciousness 

• Examples of benefits: 
o Hospital rooms: average recovery time reduced from 4 days to 3 days in a 

“green” room 
o Retail: going green has increased sales by 10% 
o Schools: learning is increased in green buildings 
o Offices: production rates increased so much that additional costs to go 

green were offset 
Green Policies on College Campuses 

• Many college have different budgets for capital and operations, therefore, the 
same party the has to front the capital doesn’t always accrue the benefits and this 
presents a challenge in the initial funding of LEED projects 

• Colleges that “compete” with WPI already have significant environmental 
policies in place 
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