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Abstract 

Electrohydrodynamic (EHD) conduction pumping technology offers a unique way to 

control flow distribution in multi-scale environments. In EHD conduction, the interaction 

between an applied electrical field and dissociated electrolyte species in a dielectric fluid 

generates a net body force within the fluid, resulting in a net flow in the desired direction. EHD 

conduction pumps have remarkable potential due to their lack of moving parts, simple designs, 

low power consumption, and ability to operate in microgravity. The performance of these pumps 

increases at small scales and they have been previously proven effective for heat transfer 

enhancement, with possible applications in electronics cooling and more, both terrestrially and in 

space. Flow distribution control using EHD conduction pumps was previously examined in a 

macro-scale configuration. This experimental study examined flow distribution control among 

three 1 mm-diameter parallel tubes utilizing EHD conduction pumps in meso-scale. The 

resulting data supports the application of EHD pumping to flow distribution control by 

exemplifying the system performances at various overall induced flow rates. The EHD pumps 

were able to successfully correct maldistributed flow in other branch lines as well as being able 

to introduce maldistribution in branch lines where even flow was initialized, including depriving 

other channels of flow.  The micro-scale EHD pumps were operated between 0V and 1500V, 

with supply flow rates between 3mL/min and 25mL/min. 
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Chapter 1: Introduction 

 

1.1 Overview 

Electrohydrodynamics (EHD) is the field of study associated with the motion of charged 

fluids under the influence of electric fields. The most valuable application of EHD is pumping, the 

ability to generate flow in an electrically charged fluid. There are three major types of EHD 

pumping: conduction, induction, and ion-drag, the difference between which is the technique used 

to produce charges in the fluid. 

The goal of this Major Qualifying Project was to study the capability of EHD conduction 

pumping to control flow distribution in parallel meso-scale branches using micro-scale pumps. A 

loop was assembled in order to show the successful generation of flow and pressure. Using a 

complex system of sensors and data acquisition modules, it was established that the flow could be 

redistributed and manipulated by varying the electric field imposed on the EHD pumps. A set of 

experiments provided proof that micro-scale EHD conduction pumps are able to control the flow 

in parallel meso-scale branches. The conclusions from this study could be directly applied to solve 

a wide range of fundamental problems in the engineering industry. Applications in thermal system 

flow control, microelectronic cooling and microgravity orbital heat transfer enhancement are a few 

of the examples where EHD micro-scale conduction pumping could potentially revolutionize 

performance and maximize efficiency. 

 There are certain known advantages of EHD conduction pumps over standard mechanical 

pumps. The pumps are typically lightweight, have a simplistic design with no moving parts, and 

need minimal to no maintenance. They have the ability to operate in microgravity conditions due 

to their operational independence from gravity [7] and their low power requirement. EHD 
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conduction pumps provide intelligent control by varying the electric field applied to its 

electrodes and are applicable to single and two-phase flow [1].  

 This study is a continuation of the research conducted by Feng, Patel, and Seyed-

Yagoobi. The importance of the results is related to the potential application of EHD conduction 

pumping in micro-scale, which would eventually lead to efficient flow distribution control and 

heat transfer enhancement in cutting-edge technology. 

 

1.2 Theoretical Basis 

 

1.2.1 Mathematical Basis 

The study of Electrohydrodynamics (EHD) investigates the flow of electrically charged 

fluids by examining the interactions between electric fields and the forces related to the resulting 

fluid flow. Under EHD pumping, the flow of the fluid is triggered by charge transport. Each of 

the three major EHD pumping mechanisms uses a distinct method of injecting charges into the 

working fluid. As a result of the presence of an electric field, the charges displace and carry the 

fluid, which summarizes the EHD pumping effect. Even though EHD pumping is an innovative 

method of generating fluid flow, fluid electrokinetic properties were first theoretically described 

over a century ago. After a variety of experiments were conducted throughout the 20th century to 

test and establish its capabilities, the EHD pumping phenomenon can be defined by an electric 

field resulting in fluid pumping and flow control.  

The Coulomb force caused by the high voltage, along with the Dielectrophoretic (DEP) 

force and Electrostriction force are the three most dominant EHD forces under consideration. 

The Coulomb force is based on Coulomb’s Law, a well-known phenomenon in 
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electromagnetism. Coulomb’s Law describes a directly proportional relationship between electric 

field (E) and body force on a point charge (F). The Dielectrophoretic (DEP) force occurs when 

there is a non-uniform electric field present, which evokes dielectrophoretic behavior in all fluid 

particles regardless of their charge. This dielectrophoretic behavior is described by the 

polarization of the fluid particles causing the dipoles to experience the DEP force along the lines 

of the electric field. The Electrostriction force is represented by the ion displacement within the 

structure of the fluid particles, which describes changes to the shape of each particle. Even 

though it is somewhat insignificant to the overall body force, the Electrostriction force 

contributes to the fluid flow on an infinitesimal level. As a result of both mathematical analysis 

and testing, in single-phase dielectric liquid flow, the DEP and Electrostriction forces could be 

neglected when estimating the total electric body force due to their insignificant magnitudes and 

effects [2].  

In order to understand the EHD phenomenon in depth, research has uncovered a thorough 

mathematical study of the forces acting of the fluid particles. Knowing that there is an overall 

flow rate generated by an EHD pump, it can be concluded that there is a net force applied to the 

fluid. Eliminating all other non-EHD forces that could be imposed on the fluid, the net body 

force experienced by the fluid is a sum of the Coulomb force caused by the applied electric field, 

the Dielectrophoretic (DEP) force caused by the non-uniformity in the electric field, and the 

Electrostriction force caused by the ion displacement within the structure of the fluid particles. 

This statement is summarized by the following equation: 

𝐹𝐸
⃗⃗⃗⃗ = 𝑞𝐸⃗ −

1

2
𝐸2∇𝜖 + ∇[ρ

E2

2
(
𝜕𝜖

𝜕𝜌
)

𝑇

] 
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According to Coulomb’s law, 𝐸 =
𝐹

𝑞
→ 𝐹 = 𝑞𝐸, where E is the strength of the applied 

electric field, F is the Coulomb force and q is the charge density of the fluid particle. The DEP 

force is described by the strength of the electric field and a gradient of ε, the fluid permittivity. 

The permittivity of an electromagnetic medium is a constant property describing the resistance to 

an applied electric field. The Electrostriction force is described by the fluid density, magnitude of 

the applied electric field, and a gradient in permittivity [2].  

In a single-phase liquid with no change in temperature however, there would be no 

gradient in permittivity or infinitesimal change in density. Thus, the net force experienced by the 

fluid would only be a result of the Coulomb force. Therefore, assuming the EHD pump system 

uses an isothermal single-phase liquid, the equation simplifies to:  

𝐹𝐸
⃗⃗⃗⃗ = 𝑞𝐸⃗  

  

1.2.2 Types of EHD Pumping Mechanisms 

EHD pumping is based on the presence of an electric field and its interaction with a 

working fluid. However, EHD pumping is divided into three distinct types based on the 

technique used to introduce charges to the fluid. 

EHD conduction pumping is a result of applying a high voltage electric field across an 

organized set of electrodes on to a dielectric fluid to achieve flow [1]. On a molecular level, when 

subjected to an electric field, the working fluid experiences dissociation and recombination of ions. 

According to the basic property of chemical equilibrium for reversible reactions, the dielectric 

impurities in the fluid constantly separate into charged ions and recombine back into neutrally 

charged molecules at an equal rate [1]. These equal rates result in overall charge equilibrium. 
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Under high-voltage electric fields, however (e.g. greater than 103 V/cm) [3], the rate of 

dissociation increases, whereas recombination remains relatively constant. Thus, above this 

critical voltage threshold, the rate of the field-enhanced dissociation is greater than the rate of 

recombination, which results in non-equilibrium conditions. As a result, a uniformly charged layer 

of ions, referred to as the heterocharge layer [1], forms along each of the electrodes. These 

heterocharge layers attract to the oppositely charged electrodes (e.g. positively charged layers 

attract towards the ground electrodes and negatively charged layers attract towards the positively 

charged high voltage electrodes). Since the Coulomb forces would usually balance each other if 

the electrodes were identical in size, the high voltage electrodes are specifically designed to form 

drastically larger heterocharge layers and thus create non-equilibrium forces.  

 

EHD Ion-Drag Pumping 

The oldest known EHD flow generation phenomenon is EHD Ion-Drag pumping, which 

includes a charge-injecting emitting source electrode and a collecting electrode. The emitting 

source provides charge injection through a corona discharge. The corona discharge forms in the 

presence of a very high voltage source imposing a localized electric field, which ionizes the 

surrounding fluid. As a result, charges are periodically pumped into the fluid, which then shift 

forward along the lines of the electric field formed between the emitter and the collector. Thus, 

fluid flow is generated. A drawback to EHD Ion-Drag pumping is the drop in pumping 

performance over time. The additional charges introduced to the fluid degrade its overall 

electrical properties and the emitter electrode loses its high localized electric field at the tip. As a 

result, the behavior of the fluid electrical properties declines, becoming unsteady, which reduces 

its efficiency and could pose safety issues [1]. 
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EHD Induction Pumping 

According to the EHD pumping phenomenon, working fluids initially possess no charge; 

however, when a high voltage electric field is applied, dipoles are formed. EHD Induction 

pumping is an EHD flow generation technique, where the flow is based on the dielectrophoretic 

(DEP) force. It is characterized by a non-uniformity (a gradient) in the electrical conductivity of 

the working fluid [1]. Given the presence of an interface between liquid and vapor, a temperature 

gradient, or a specific molecular composition of the fluid, the electrical conductivity within the 

fluid varies. As a result, an applied AC electric wave attracts and repels those induced charges 

and, in turn, generates flow. Previously studied applications include enhancing heat transfer of 

two-phase flow pumping for boiling and condensation as well as liquid film pumping [3]. 

 

 

EHD Conduction Pumping 

EHD Conduction pumping is a result of dissociated charged particle motion under the 

effect of a strong electric field within a dielectric working fluid. The dielectric impurities in the 

fluid separate into charged ions and recombine back into neutrally charged molecules at an equal 

rate. This equal rate results in overall charge equilibrium. When a high-voltage electric field is 

applied across an organized set of electrodes placed in the fluid however, much greater amounts 

of neutral fluid particles exhibit electrolytic properties. Under high-voltage conditions, the rate of 

dissociation increases, whereas recombination remains relatively constant. Thus, much larger 

quantities of the fluid experience dissociation and recombination into ions. Consequently, above 

a critical voltage threshold, the rate of the field-enhanced dissociation is greater than the rate of 

recombination, which results in non-equilibrium conditions [1].  
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Figure 1: Molecular Dissociation/Recombination 

 

As a result, a uniformly charged layer of ions, referred to as the heterocharge layer [1], 

forms along each of the electrodes. These heterocharge layers attract to the oppositely charged 

electrodes (e.g. positively charged layers draw towards the ground electrodes and negatively 

charged layers draw towards the positively charged high voltage electrodes). Since the Coulomb 

forces would balance each other if the electrodes were identical in size, the high voltage 

electrodes are specifically designed to form drastically larger heterocharge layers and thus create 

non-equilibrium forces. As a result, an overall flow is generated, caused by ions dragging fluid 

along as they move toward the adjacent oppositely charged electrode. It can be noted that if the 

dielectric fluid is purified and remains uncharged, the application of an electric field would not 

result in a pumping effect. For the purpose of this study, in single-phase, assuming no change in 

temperature, there is no permittivity or density gradient. Thus, the most significant body force 

the fluid experiences is the Coulomb force.  

 

 

Figure 2: EHD Pump Electrode Configuration 

 

The flow of Novec 7600 in this micro-scale EHD pump is entirely based on the EHD 

conduction pumping phenomenon. Overall, EHD conduction pumping was chosen over the other 

(

1) 
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EHD pumping mechanisms due to its high efficiency, durability, and proven efficiency 

throughout the experiments and studies done prior to this one. 

 

 

1.2.3 Method of Operation 

EHD conduction pumps operate entirely as a result of the EHD conduction phenomenon: 

the formation of a heterocharge layer in a dielectric liquid subjected to a high-voltage electric 

field. In order to make use of the EHD phenomenon however, the pumps require major design 

considerations. Prior research has concluded that precise electrode configuration and positioning 

is of utmost importance when attempting to generate flow. Another important detail is the 

working fluid selection, often based on the properties of the fluid. In fact, research shows that a 

low viscosity, high dielectric constant and low electrical conductivity fluid produces the highest 

flow rates with the highest pump efficiency [4]. Specific electrical conductivity of the fluid must 

be low (approaching zero, as otherwise, the circuit between the electrodes would be shorted, and 

the pump would not function. The last major consideration is the electric field applied to the 

fluid. At a low voltage, the critical threshold of the dissociation-recombination cycle would not 

be exceeded and an overall flow would not be observed. Under ultra-high voltages however, the 

pump electrodes might experience arching due to the high electric field tearing the fluid 

molecules apart during fluid breakdown. This results in a spike in fluid conductivity, which in 

turn, creates a large current through the fluid medium. In its attempt to ground, the large current 

strikes the electrodes, which might result in the electrode melting and physical deformations. 

One EHD pump electrode configuration type, used by Feng and Seyed-Yagoobi, is the 

perforated disk high-voltage electrode and the ring ground electrode combination [6]. It is an 
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asymmetric stack up, which includes a perforated disk high-voltage electrode and a ring ground 

electrode. When voltage is applied, an asymmetric electric field is created, resulting in 

heterocharge layers along both electrode types. The key difference is in the resultant electric 

force each charge experiences. The charges formed along the perforated electrode experience a 

force along the axial direction, while the ring heterocharges experience a force along the radial 

direction [6]. Thus, a net axial force drives the liquid flow and creates a pressure head. 

 

 

Figure 3:EHD conduction pump electrode design: (a) schematic and (b) picture from Feng and Seyed-Yagoobi [3]. 

 

Another configuration, used by Patel and Seyed-Yagoobi [3], makes use of an electrode-

spacer stack up along two bus lines: a high-voltage carrier and a grounded line. All electrodes 

have a circular shape and include cutouts for the bus lines and a central hole for fluid flow. The 

configuration follows a pattern: the high-voltage electrode (a thicker metal piece) is followed by 

a thin Teflon spacer, which is followed by the grounded electrode (a thinner metal piece), then 

followed by a thicker Teflon spacer. Electrode spacing is arguably the most important major 

consideration for EHD pumping, as it directly influences pump operation, behavior, and 

efficiency. In order to keep the performance of the pump constant, the distance between electrode 

pairs is always the same. If the electrodes are too close together, the localized electric fields 
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would be too high, which would result in fluid breakdown. This is explained by the electric field 

and its direct relation to the imposed voltage across the electrodes and the distance between 

them.  On the contrary, if the electrodes are too far apart, the applied voltages must be very high 

in order to achieve flow. Hence, the high voltages might pose a safety hazard and additional 

design constraints. As a general rule, the width of the space between the electrodes is the same as 

the thinner (ground) electrode. The high-voltage electrode is often designed to be a few times 

thicker in size compared to the ground [5]. The space in between electrode pair is usually 

designed to be as much as five times the thickness of the thinner (ground) electrode, so that the 

electrode pairs do not interfere with each other’s electric fields.  

 

Figure 4: Electrodes and spacers (top) and assembled EHD pump (bottom) with 10 electrode pairs 

 

A variety of electrode configurations could be designed following the major design 

considerations: electrode positioning and configuration, working fluid selection, and magnitude 

of voltage to be applied. Those configurations result in measurable output, such as flow rate and 

pressure drop across the pump or flow channels. With EHD conduction pumping systems, the 

number of electrodes in series corresponds to the achievable magnitudes of pressure drop and 

flow rate performance increasing it nearly linearly [3]. 
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1.4 Potential Applications 

There are a number of advantages to EHD conduction pumping with regards to mass 

transport (control and distribution) and efficient heat transfer. Most industrial applications 

include a special constraint, which has to be overcome by controlling the liquid flow in order to 

enhance heat transfer.  

The major advantage to EHD pumping is its flexibility. The EHD conduction pumping 

phenomenon is responsive, i.e. pumping changes almost instantaneously when changing the 

imposed electric field [1]. EHD pumps have a simplistic and light design, as well as no moving 

parts, which makes them both silent and ideal for environments beyond human reach (Earth orbit 

or micro-scale applications). The phenomenon is applicable to both single and two-phase flow 

[1]. Since the current is low (in the mA), when supplied with voltage (in the kV), EHD pumps 

have a significantly lower power consumption compared to traditional mechanical pumps. Most 

working fluids in thermal systems happen to be dielectrics, which makes flow distribution and 

control using EHD conduction pumps entirely achievable.  

The major disadvantage to EHD conduction pumping is the requirement of a high voltage 

electric field supply, which poses risks and overall system design constraints.  

One particular application is in weightless environments, where the scarcity of gravity 

and human reach overall requires dependable technology and, preferably, no moving parts. 

Similarly, in a standard refrigeration cycle, the two-phase working fluid undergoes heat transfer 

in the form of condensation and evaporation, the efficiency of which could be greatly improved 

[Viral]. In some forms of cooling for instance, the working fluid could be redistributed to match 
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local heat transfer needs and preserve efficient system operation. EHD pumping is a modern age 

field of study and research has not fully explored its full capabilities yet.  

 

1.5 Previous Experiments 

Previous efforts to characterize EHD flow distribution and pressure generation have resulted 

in a variety of experiments designed to determine the effect of EHD conduction both analytically 

and empirically. Feng and Seyed-Yagoobi [6] have investigated single and two-phase flow control 

utilizing EHD conduction pumping in two parallel pipe channels. These experiments resulted in 

effective control of flow distribution in both liquid and vapor phase between channel lines.  Patel 

and Seyed-Yagoobi [3] have investigated single-phase flow along a single channel.  

The results from previous studies proved the ability to control single and two-phase flow in 

single and two branch piping configurations. Feng’s [6] work focused on establishing control of 

two-phase distribution between two branch lines, while Patel’s [3] work showed desirable pressure 

and flow generation in single-phase. Patel [3] confirmed flow generation of up to 7 cm/s and a low 

power requirement (0.2 W) for the micro-scale EHD pump in a meso-scale tube setup. 

This study is a continuation of the work done by Feng, Patel, and Seyed-Yagoobi. The micro-

scale EHD conduction pump used by Patel has been implemented due to its reliability. The 

equipment in the flow control loop assembled in this experiment can be used for future work in 

two-phase flow. 

 

1.5.1 Control of Liquid Flow Distribution Utilizing EHD Conduction Pumping 

Feng concluded that the flow distribution among the channels is somewhat analogous to 

the electric current distribution in a parallel circuit [6]. The mass conservation law states that the 
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the sum of mass flow entering each branch should be equal to the total flow rate. Therefore, flow 

rate for branch 1 can be calculated from measurement: 

321 mmmm total    

From the Darcy–Weisbach equation, the pressure drop along the pipe flows can be 

expressed as 

   D

L

D

m
fP

224/2 




 

where  

 

for Re<2300. If the total mass flow rate remains constant and EHDP varies with the pressure head 

generated by EHD pumps, the relationship between mass flow rate and EHD pumping pressure 

can be expressed as 
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
 , 

assuming that the pressure drops along each branch channel are identical. If the length and 

diameter of each channel is kept identical, the equation could be simplified to 

      D

L

D

mm
f

D

L

D
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fPEHD

2222 4/24/2

3121



 



 , 

which implies a linear relationship between pressure generation from EHD pumps and flow rate 

difference in branch channels.   
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Chapter 2: Methodology and Experimental Setup 

 

2.1 Overview 

The purpose of this series of experiments was to investigate the flow distribution 

capabilities of EHD conduction driven systems, which includes applications such as 

misdistribution correction, interchannel control, and intentional channel draining. Specifically, 

the experiments were designed with the intention of determining the power inputs required for 

each of the pumps to both correct and cause maldistribution in the other channels. Also an 

important focus was to determine the amount of power needed for one or more of the pumps to 

drain the remaining channel(s). In order to accomplish these goals, the following task 

specifications were developed to allow for adequate phenomena exemplification and system 

study: 

 The experiments must display the flow distribution characteristics of as many pumping 

configurations as possible. This includes the control of one channel’s flow using two 

pumps, the control of one channel’s flow using one pump with the third channel closed to 

flow, and so on.  

 The experiments must produce meaningful data. This is accomplished through 

appropriate measurement device positioning, device calibration, programming logic, and 

data post-processing. 

 The system must be controllable through LabVIEW Virtual Instrumentation software. 

Considering LabVIEW was the most applicable and available software and that similar 

experiments have been performed using this same software, this is appropriate for the 

purposes of consistency and simplicity.  
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 The applied EHD voltages must be able to produce pressures and flow rates that are 

measurable above the main flow produced by the mechanical pump. Due to the 

integration of multiple scales within the same system, the meso-scale pumps must be able 

to produce measurable results considering that they are the main focus of this series of 

experiments. Additionally, the system must be built to accommodate the amount of 

pressure that the EHD pumps can generate. Larger systems may contain pressure drops 

that are too large for the EHD pumps to overcome, leading to negligible changes and 

immeasurable results. For this reason, the pressure drops in the system were reduced 

using larger diameter tubes outside of the EHD pumps. 

 

 In order to test the full scope of options regarding EHD pump application, this series of 

experiments involves three meso-scale EHD pumps in parallel channel configuration, which is a 

system configuration that has not yet been investigated. This particular setup will provide the 

level of insight necessary to design and examine any EHD pumping configuration that may 

involve multiple pumps and channels.  

For our chosen configuration, pressure transducers, flow meters, and power sensors were 

used to determine the pumping capabilities of each of the system components. LabVIEW virtual 

instrument programs and National Instruments data acquisition boards were used as user 

interfaces for measurement, control, and data management purposes. These systems, combined 

with the system of sensors, allow for the study of the EHD flow distribution capabilities by 

allowing one to acquire quantitative data on pressure and flow generation as a function of input 

electrical power. This particular relationship is, in part, the focus of the series of experiments; 
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from here, one is able to determine the relationship between user input power and the pumps’ 

abilities to control flow throughout the system.   

 

2.2 Physical Components 

The most notable components operating within the experimental setup were the three 

meso-scale EHD pumps and the upstream mechanical pump. The three meso-scale pumps were 

in parallel configuration and the mechanical pump was positioned upstream in order to drive the 

majority of the flow in the parallel lines. Once adequate flow was achieved in the system by the 

mechanical pump, the flow in each branch line was adjusted through use of both needle valves 

and the meso-scale EHD pumps depending on the desired outcome for each experiment. For 

example, in the latter experiments performed the needle valves in each branch line were used to 

intentionally maldistribute flow such that the correction capabilities of the micro-scale EHD 

pumps could be examined. Additionally, various flow sensors, differential pressure transducers, 

and voltage/current monitors were used either in series (in the cases of the flow sensors) or in 

parallel (in the cases of the pressure transducers and the power monitors) with the flow of the 

system. The system configuration can be seen below.  
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Figure 5: Diagram of 2-Scale EHD Pumping System Configuration 

Also included is a photograph of the final experimental setup. It can be seen that the 

evaporator lines and pressure transducers (shown in the red box on the photograph) were not 

included in the previous diagram. This is because they had no effect on the experiments that were 

performed other than adding internal volume. Additionally, the evaporator pressure transducers 

were not activated for the experiments performed. Additional sections and devices, however, 

come to play a role in the future adaptation of the system to two-phase flow. 
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Figure 6: Photograph of EHD Pumping System Configuration 

 

2.2.1 In-Line Loop Components 

The most influential apparatus used in this series of experiments was the meso-scale 

mechanical pump. More specifically, a Cole-Parmer Model 75211-10 50-5000 RPM 0.07HP 

mechanical pump was used to produce overall system flow rates of between 5 mL/min and 30 

mL/min. This pump can be seen in Figure 3 below. 
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Figure 7: Cole Parmer Model 75211-10 Mechanical Pump 

This generated flow was fed directly into a manifold that will effectively be considered a 

reservoir for analysis purposes. This manifold consists of a ¼ inch-diameter fluid intake and 

three 1mm-diameter exit channels (as seen in Figure 4). Due to mass conservation:  

𝑚̇𝐼𝑁 = 𝑚̇1 + 𝑚̇2 + 𝑚̇3 

where 𝑚̇𝐼𝑁 is the flow rate into the manifold, 𝑚̇1 is the flow rate out through Channel 1, 𝑚̇2 is 

the flow rate out through Channel 2, and 𝑚̇3 is the flow rate out through Channel 3.  The volume 

of the manifold is significant, as it stores a certain volume of fluid before outputting flow into 

each branch line. This effect is also incredibly significant to the flow control of each branch line, 

which will be seen later in this report.  
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Figure 8: Distribution Manifold Assembly 

 

Each of the three branch lines consisted of mechanical needle valves, plastic and copper 

piping, and the three EHD pumps studied. The needle valves were positioned closest to the 

manifold outputs such that flow into each individual line could be modified. In this study, 

intentional maldistribution was introduced using these valves, which could be closed to a certain 

degree to reduce flow that would be subsequently corrected using the EHD branch pumps. 

Additionally, many of the experiments conducted concerned one or two of the branch lines. For 

example, multiple experiments were performed where the flow control characteristics of two 

channels using one pump were examined. In these cases, one of the branch lines was closed 

entirely using the needle valve. This same technique was used when examining the individual 

performances of each of the pumps. Following the valves in Channels 2 and 3 were Sensirion 

Model SLQ-HC60 flow sensors (which will not be discussed further in this section). Channel 1 

did not require a flow sensor, as its flow could be determined through knowledge of the flows in 

the other two lines and the overall flow produced by the mechanical pump. This was 

advantageous due to the high costs associated with the branch flow sensors. Since Channel 1 did 
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not contain a sensor a longer plastic tube was used at the outlet of the manifold to Channel 1. 

Between these sensors and the adjacent components were 1mm-diameter plastic tubes, which 

were required due to the interfaces of the flow sensors. The tubes that either followed the sensors 

(in Channels 2 and 3) or the manifold (in Channel 1) were then fed into each of the 3 micro-scale 

EHD pumps. Considering the entire pump assemblies consisted of copper, plastic-to-metal 

interfaces did exist at the inlets to each of the pumps. Although this was undesirable, it was 

necessary and advantageous due to the desire for the accuracy and precision provided by the 

Sensirion flow sensors. The micro-scale pumps, when activated through varying voltage 

application, increased or decreased flow and pressure in each of the branch lines according to the 

desired study. An image of the system pump assembly can be seen in Figure 5.  

 

 

Figure 9: Micro-scale EHD Pump Configuration 

Following the EHD pumps was a second manifold (again, considered a reservoir for all 

intents and purposes) that merged the flow in the branch lines back into a single main line (seen 

in Figure 6). 
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Figure 10: Merging Manifold Assembly 

The final component in the loop was the actual fluid reservoir (see Figure 7), which was 

positioned vertically and left open to the system in order to ensure not only that the fluid 

permeated throughout the system, but also to ensure that any fluctuation in fluid volume within 

the loop due to temperature variation would cause the reservoir to fill rather than causing the 

loop hardware to expand. The outlet port of the reservoir interface was then input back into the 

mechanical pump, completing the loop.  

 

Figure 11: Fluid Reservoir Assembly 
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Finally, the working fluid in the system was 3M Novec HFE-7600. This particular fluid 

was chosen due to its properties under the applied pressure as well as its dielectric properties, 

which allow it to dissociate under high-voltage electric fields (the driving principle behind EHD 

conduction pumping). A specifications sheet of its physical properties is attached in Appendix A. 

 

2.2.2 Measurement Equipment 

As mentioned previously, various series and parallel components were used to make the 

appropriate quantitative measurements such that the effects of the EHD pumps on the individual 

branch flows and pressures could be understood. Referring to the previous loop description, a 

main flow meter (seen in Figure 3) was installed following the mechanical pump such that the 

flow in Channel 1 could be calculated without the use of an additional branch flow sensor. 

Moving to the region after the needle valves, a Sensirion Model SLQ-HC60 Liquid Flow Sensor 

was installed in Channels 2 and 3 to accurately measure the flow induced in each of these two 

branches. These sensors can be seen in Figure 8. Considering that these were placed directly 

adjacent to the EHD pumps, the pressure drop between the branch flow sensors and the EHD 

pumps was negligible, providing further accuracy to the flow readings. Differential pressure 

transducers (depicted below) were positioned in parallel with each of the EHD pumps to measure 

their respective pressure generations. The calibration curves of both the flowmeters and the 

pressure transducers are attached in Appendices C and D. 



EHD FLOW DISTRIBUTION CONTROL   

33 

 

 

Figure 12: Undermounted EHD Differential Pressure Transducers 

 

2.2.3 External Components 

The system control was interfaced through LabVIEW Visual Programming and 

Instrumentation Software in conjunction with both a National Instruments SCB-68 Data 

Acquisition Module and a National Instruments USB-6009 Data Acquisition Module. Two 

separate DAQ boards were used for this series of experiments due to a need for one user output 

and eight system inputs. The chart below outlines the port configurations for all system 

measurements taken. Additionally the second board was installed in anticipation for the 

adaptation of the system to two-phase flow and an additional meso-scale EHD pump, which 

would require additional voltage and current monitors, user outputs, and differential pressure 

gauges. Images of both of the data acquisition modules can be seen in Figures 9 and 10 following 

the chart. 
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Table 1: Data Acquisition Configuration for EHD Pumping Experimental Measurement 

MEASUREMENT DAQ BOARD PORT 

Applied EHD Voltage(V123) NI SCB-68 AO-0 

Voltage Monitor (VReal123) NI USB-6009 AI-0 

Current Monitor (C123) NI USB-6009 AI-1 

Channel 1 EHD Differential Pressure Generation 

(DP1) 
NI SCB-68 AI-1 

Channel 2 EHD Differential Pressure Generation 

(DP2) 
NI SCB-68 AI-2 

Channel 3 EHD Differential Pressure Generation 

(DP3) 
NI SCB-68 AI-3 

Total System Flow Generation (FRM) NI USB-6009 AI-2 

Channel 2 Flow Generation (FR2) NI USB-6009 AI-3 

Channel 3 Flow Generation (FR3) NI USB-6009 AI-4 

 

 

Figure 13: NI SCB-68 Data Acquisition and User Output Configuration 
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Figure 14: NI USB-6009 Data Acquisition Configuration 

A LabVIEW virtual instrumentation interface was developed to obtain and process the 

input values (all of which were voltage readings, output from their respective sensors and 

gauges, ranging from 0V to 10V) into more realizable and useful readings. For example, an input 

voltage from a pressure transducer may read 5V, but in order for that information to be useful it 

must be processed through internal LabVIEW logic. Following calibration of the transducer, the 

reading on the instrumentation interface may measure about 300Pa when the input from the 

transducer measures 5V. All measurements and outputs were similarly calibrated and processed 

to provide the desired results. The LabVIEW interface used for the experiments can be seen 

below. Included in Appendix E is the detailed Block Diagram for this virtual instrument panel. 

 

Figure 15: LabVIEW Virtual Instrumentation Front Panel 
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An existing power box was built to provide the high voltages needed to operate the three 

EHD pumps. This power pox (depicted in Figure 12) consists of four switches (one for each of 

the EHD pumps and one for the box as a whole) and a transformer to convert the wall power 

supply (120VRMS AC) into usable power.  

 

Figure 16: Power Supply to EHD Pumps 

Due to the nature of the transformer, all of the voltages output from the box must be 

equal. For example, if a signal is received by the box from LabVIEW that indicates the box 

should apply a voltage of 1kV, all three of the outputs to the pumps will receive 1kV. For this 

reason, the individual channel switches were installed such that one or two of the pumps could 

be turned off while a voltage is applied to the other channel(s).  The switching configuration can 

be seen more clearly in Figure 13. 

 

Figure 17: Power Box Switching Setup 



EHD FLOW DISTRIBUTION CONTROL   

37 

 

 

Lastly, EHD Pump mounts and flow sensor mounts were rapid prototyped to provide 

stability for the pumps and ensure system linearity. This is vital to the future modification of the 

system to adapt it to two-phase flow, as the loop’s height must remain constant to avoid internal 

vapor pressure losses and ensure accurate measurements. The schematics for these mounts can 

be seen in Appendices B-1 and B-2.  

 

 

2.3 Experimental Matrix 

 

2.3.1 Initial Conditions and Ranges 

A set of boundary values were assigned to several parameters according to different 

limitations. These parameter limits are described below. 

The flow rate in each branch should be between 1-15ml/min. This was affected by the 

measurability of flow meter, pressure generation of the main pump, and pump performance of each 

individual branch pumps, because the flow meter in each pump could measure up to 50 mL/min. 

The main pump was able to provide each branch line with consistent flow rates of up to 20 mL/min, 

and each EHD pump in branch line could produce maximum flow rate increase of about 3 mL/min. 

Therefore, to generate consistent flow as well as to ensure no overflow occurs in the branch lines, 

the lower limit was set to 1 mL/min and the upper limit was set to 15 mL/min.  

Due to hardware limitations, the operating voltages in each EHD pump should fall between 

0-1500V. From previous tests, it was proven that the EHD pumps worked best at 1500V, but 

increasing the voltage any higher could result in sparks in the pumps and would lead to potential 
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failure due to fluid break down. For these reasons, the range of the voltage was set to a maximum 

if 1500V.  

Maximum pressure differences in each branch line was found to be 1200Pa based the 

calibration curves of the pressure transducers.  

 

2.3.2 Experimental procedures 

 

Voltage Stepping and Measurement Cycles  

All the experiments  would require taking data sets at each level of EHD pump voltages, 

with the voltage increasing from 0V to 1500 V, decreasing back from 1500 to 0V, and going up to 

1500V the back down again, with a increment of 100V every time.  

The stepping was to guarantee that in each measurement, steady state was achieved, which 

allowed the pump performance to settle between each voltage increase and therefore avoid 

transient effects. The stepping also ensured safety, since it could provide enough time for the team 

to identify whether there exist a sound of spark.  

  One experiment data sheet would include two cycles that repeats same processes. The 

purpose of cycling was to assure the repeatability of experiments. 

 

Data Recording 

The data taken from the experiment included: the voltage of EHD pump in each branch 

line, the current of EHD pump in each branch line, the flow rate and pressure difference in each 

branch line.  

Before taking the data, a settling time of approximately 30 seconds was allowed. Then the 
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values were taken every second for consecutive 20 seconds, and would be averaged for later 

analysis.  

 

2.3.3 Experiment I: Individual Pump Performance 

In the test for individual pump performance, only the valve in the branch line being tested 

was fully open, the other two were closed. The main pump was turned on to provide certain flow 

rate, and the EHD pump in the corresponding branch line was then turned on, with voltage 

increasing from 0-1500 V. The test was repeated at different overall flow rate level, and for EHD 

pumps in branch 2 and 3.  

Table 2: Experiment matrix for individual pump performance 

Overall Flow 

Rate [mL/min] 
Valve 2 Valve 3 Pump 2 Pump 3 

1.5 Closed Open Inactive Active 

1.5 Open Closed Active Inactive 

 

Existing work for pump performance at different voltage and flow rate level is presented 

in the picture below: 

 

Figure 18: EHD Pump Performance Curve 
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2.3.4 Experiment II: Even Flow Distribution to Forced Maldistribution 

This experiment sought to test the draining effect on branches by operating individual 

pump other branches, and was divided into two cases: two branches open, and three branches 

open. 

In the first case, Valve 1 was kept closed in these set of experiments, so that only flow 

rates in branch 2 and branch 3 were studied. After the main pump was turned on at a desired total 

flow rate, the valves for branch 2 and 3 were adjusted so that the flow rates in both branches 

became equal. Then the EHD pump in branch 3 was turned on, with increasing voltage up until 

1500V, going back to 0V, and repeated. Data were take every 100V increment. Similarly, the 

same test was performed with only EHD pump in branch 2 turned on. This experiment was 

iterated with different total flow rate provided by the main pump.  

 

 

Table 3: Experiment Matrix for: Even Flow Distribution to Forced Maldistribution, Case I 

Overall 

Flow 

Rate 

[mL/min] 

Flow 

Rate 2 

[mL/min] 

Flow 

Rate Valve 

1 

Valve 

2 

Valve 

3  
Pump 1 Pump 2 Pump 3 

3 

10 5 5 close close  open  close inactive  active 

10 5 5 close open  close  close active  inactive 

15 7.5 7.5 close close  open  close inactive  active 

15 7.5 7.5 close open  close  close active  inactive 

20 10 10 close close  open  close inactive  active 

20 10 10 close open  close  close active  inactive 

 

In the second case, all three branches are open and the valves for Branches 1, 2 and 3 

were adjusted so that the flow rates in both branches became equal. Then the EHD pump in both 
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branch 2 and 3 was turned on, with increasing voltage up until 1500V, going back to 0V, and 

repeated. 

Table 4: Experiment Matrix for Even Flow Distribution to Forced Maldistribution, Case II 

Overall 

Flow 

Rate 

[mL/min] 

Flow 

Rate 1 

[mL/min] 

Flow 

Rate 2 

[mL/min] 

Flow 

Rate 3 

[mL/min] 

Valve 

1 

Valve 

2 

Valve 

3 
Pump 1 

Pump 

2 

Pump 

3 

19 3.5 3.5 3.5 Open Open Open Inactive Active Active 

 

The expectation for this experiment was to see that increasing in EHD pump voltage in 

one branch would result in pressure change in its corresponding pressure difference, and 

therefore enhance the flow rate by draining the other branch, while the overall flow rate is 

maintained approximately the same.  

 

2.3.5 Experiment III: Maldistribution to Even Flow Distribution 

This experiment sought to test the controllability in flow rate using EHD pumps, and was 

divided into two cases: one branch controls another one, and two branches control the third one.  

In the ‘one branch controls another one’ case, valve 1 was kept closed. After the main 

pump was turned on, valves were adjusted to yield unequal flow rate in branch 2 and 3, with 

branch 3 less 2 by approximately 1 ml/min. Then the EHD pump in branch 3 was turned on, with 

increasing voltage up until 1500V, going back to 0V, and repeated. Data were take every 100V 

increment. Similarly, the same test was performed with branch 2 less 3 by approximately 1 

ml/min and only EHD pump in branch 2 turned on. This ensnarement was iterated with different 

total flow rate provided by the main pump.  
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Table 5: Experiment Matrix for Maldistribution to Even Flow Distribution, Case I 

Overall 

Flow 

Rate 

[mL/min] 

Flow 

Rate 2 

[mL/min] 

Flow rate 

3 

[mL/min] 

Valve 

1 

Valve 

2  

Valve 

3  
Pump 1 Pump 2 Pump 3 

10 5.5 4.5 close close  open  inactive inactive  active 

10 4.5 5.5 close open  close  inactive active  inactive 

15 8 7 close close  open  inactive inactive  active 

15 7 8 close open  close  inactive active  inactive 

20 10.5 9.5 close close  open  inactive inactive  active 

20 9.5 10.5 close open  close  inactive active inactive 

 

In the ‘two branches control the third one’ case, all valves are open, and were adjusted so 

that branch 2 and 3 share same flow rate, but both less branch 1 than 1 ml/min. Then the EHD 

pump in branch2 and 3 was turned on, with increasing voltage up until 1500V, going back to 0V, 

and repeated. Data are take every 100V increment. 

Table 6: Experiment Matrix for Maldistribution to Even Flow Distribution, Case II 

Overall 

Flow 

Rate 

[mL/min] 

Flow 

Rate 1 

[mL/min] 

Flow 

Rate 2 

[mL/min] 

Flow 

Rate 3 

[mL/min] 

Valve 

1 

Valve 

2 

Valve 

3 
Pump 1 Pump 2 Pump 3 

19 7 6 6 open open open inactive active active 

19 6 7 6 open open open active inactive active 

19 6 6 7 open open open active active inactive 

 

However, due to the unstable power output in branch 1 from power box, experiments that 

would use EHD pump1 were eliminated. 

Furthermore, due to the construction structure of the power box, when both EHD pump 2 

and 3 were on, they shared the same voltage.  

The expectation for this experiment is to see that increasing in EHD pump voltage in one 

branch or two branches would result in pressure change in its corresponding pressure difference, 
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and therefore enhance the flow rate. Eventually, even flow distribution should be acquired by 

adjusting the voltage on each EHD pumps. 

 

Chapter 3: Results and Discussion 

 

Experiment I: Individual Pump Performance 

In order to establish the EHD pumping behavior in each branch line, a thorough analysis 

of the flow rate and pressure generation capabilities of each pump was required. The flow rate 

vs. applied voltage and pressure vs. applied voltage characteristics were obtained for the pumps 

in Branches 2 and 3. The abilities for the individual EHD Pumps to generate flow under certain 

applied voltages were investigated by closing off flow in the remaining channels and measuring 

the flow generated in the channel in question. For example, in order to measure the ability for 

EHD Pump 3 to generate flow under certain applied voltages, Channels 1 and 2 were closed off 

and measurements were taken via the flow sensor and the pressure transducer in Channel 3. The 

curve for EHD Pump 3 can be seen below with applied voltage iterations of 100V. 

 



EHD FLOW DISTRIBUTION CONTROL   

44 

 

 

Figure 19: Flow Rate Generation Characteristic of EHD Pump 3 

 

According to Figure 17, increasing the voltage results in an increased flow rate. This proves the 

EHD conduction phenomenon. There is a slight error in the second measurement, possibly 

caused by the instability in supply of flow rate by the mechanical pump. 

 

 

Figure 20: Pressure Generation Characteristic of EHD Pump 3 
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According to the graph, increasing the voltage results in a drop of pressure across the pump. The 

pressure generation behavior matches the flow rate behavior from the previous graph. It also 

matches the study conducted by Pearson and Seyed-Yagoobi describing the EHD pump 

characteristic shown in Figure 16. Thus, the negative pressure drop of 380Pa shown in Figure 18 

corresponds to an active EHD pump generating pressure.  

The behavior of the two EHD pumps was established to be comparable, with EHD Pump 

in Branch 2 being less effective with regards to pressure generation. The pressure vs. voltage 

characteristics of EHD Pump 2 is displayed in the graph below. 

 

 

Figure 21: Pressure Characteristic of EHD Pump 2 

 

The overall pressure drop in the EHD Pump in Branch 2 is about 300Pa. Compared to the 

pressure drop generated by the EHD Pump in Branch 3 (380Pa), we can conclude that EHD 

Pump in Branch 2 is 25% less effective. 
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Experiment II: Even Flow Distribution to Forced Maldistribution 

 

A. Two Branch Experiments 

For the experiment regarding creating forced maldistribution from an even flow in two 

parallel branches, inactive channel 2 and active channel 3 were utilized. Channel 1 was kept 

closed, while the mechanical valves on Channels 2 and 3 were initially adjusted to equalize their 

flow rate. The purpose of this experiment was to investigate the capabilities of the EHD pump in 

Channel 3 to generate increased flow in order to induce an increased flow rate in channel 3 and 

observe a reduction in flow rate in channel 2 due to conservation of mass, considering a constant 

flow rate entering the distributing manifold. The following plot demonstrated the results obtained 

when the above configuration is utilized and the applied voltage to EHD Pump 3 is increased in 

increments of 100V per minute, peaking at 1500V and decreasing back to zero in a similar step-

size fashion. This was repeated twice to assure continuity and to obtain results that were 

sufficient for analysis. The flow generated by the main mechanical pump was held constant at 

11mL/min. An additional plot with an overall induced flow rate of 3.2mL/min can be seen in 

Appendix F. 
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Figure 22: Flow Maldistribution Characteristics of EHD Pump 3 on Inactive Channel 2 

 

The plot shows that at the maximum applied voltage, the EHD Pump in Channel 3 is able 

to create a flow rate difference of 1mL/min. It can also be seen that at applied voltages of about 

0V, the flow rate in both channels 2 and 3 is equal, much like their initial values. It is also 

important to note that the overall flow rate changes insignificantly throughout the experiment.  

The next plot presents the pressure across each branch plotted against time. The graph 

yields that active Branch 3 generates a higher pressure drop compared to the inactive Branch 2 

when subjected to high voltage.  
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Figure 23: Maldistribution Pressure Generation Characteristics of EHD Pump 3 on Inactive Channel 2 

 

In conclusion, the EHD conduction pumping phenomenon is present and functions 

effectively in meso-scale pumping. 

 

B. Three Branch Experiment 

For the final experiment, the intentional maldistribution capabilities of the three-channel 
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EHD Pump 1 remained inactive. Before applying voltages to EHD Pumps 2 and 3, a main flow 
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equalized using the mechanical needle valves. From there, the voltages in EHD Pumps 2 and 3 
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The following plot demonstrates the results obtained when the above configuration was 

utilized and the applied voltages to EHD Pumps 2 and 3 were increased simultaneously in 

increments of 100V per minute, capping out at 1500V. The flow generated by the main mechanical 

pump was held constant at 10mL/min. 

 

 

Figure 24: Flow Maldistribution Characteristics of EHD Pumps 2 and 3 on Channel 1 

 

The plot shows that at the maximum applied voltage, the EHD Pumps in Channels 2 and 

3 are able to create almost completely drain the flow in Channel 1. It can also be seen that at 

applied voltages of about 0V, the flow rate in all three channels are equal. This is consistent with 

the desired initial condition of the system. Also noteworthy is the fact that the amount of flow 

needed in Channels 2 and 3 to decrease the flow in Channel 1 by 3mL/min is about 1.5mL/min 

per channel, which is consistent with mass conservation.  

 

0

1

2

3

4

5

6

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

F
lo

w
 R

a
te

 [
m

L
/m

in
]

Voltage [V]

EHD Driven Flow Maldistribution using EHD 

Pumps 2 and 3 at 10mL/min Main Pump Induced 

Flow - 0mL/min Initial Line-to-Line Flow 

Difference

Inactive Branch

Active Branch 1

Active Branch 2



EHD FLOW DISTRIBUTION CONTROL   

50 

 

Experiment III: Maldistribution to Even Flow Distribution 

 

A. Two Branch Experiments 

For the first experiment regarding the maldistribution correction capabilities of the EHD 

system, two channels were utilized; Channel 2 was left open to flow with its associated EHD 

pump deactivated, Channel 3 was also left open to flow but had its associated EHD pump 

activated, and Channel 1 was closed to flow entirely. The purpose of this experiment was to 

investigate the capabilities of the EHD Pump in Channel 3 to generate increased flow in order to 

equalize the flow in each of the two channels. Due to conservation of mass and considering that 

the flow going into the distribution manifold is constant, it is implied that increasing the flow in 

Channel 3 will decrease the flow in Channel 2, demonstrating the desired correction capabilities.  

The following plot demonstrated the results obtained when the above configuration is 

utilized and the applied voltage to EHD Pump 3 is increased in increments of 100V per minute, 

capping out at 1500V and decreasing back to zero similarly. This was repeated twice to 

demonstrate continuity and to obtain results that were sufficient for analysis. The flow generated 

by the main mechanical pump was held constant at 11.5mL/min. Intentional maldistribution of a 

1mL flow differential between the channels was introduced through use of a mechanical needle 

valve.  
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Figure 25: Maldistribution Correction Characteristic of EHD3 on Channel 2 

 

On the plot, it is visible that at maximum applied voltages, the EHD pump in Channel 3 is able to 

not only cause even flow distribution between the two channels, but it is also able to create such 

a high flow generation that the flow in active Channel 3 surpasses the flow in inactive Channel 2. 

It can also be seen that at applied voltages of about 0V, there is an interchannel flow differential 

of about 1mL (as was desired). It is also important to note that the overall flow rate changes very 

little throughout the experiment.  

Figure 18 displays the differential pressures obtained under identical conditions and 

through similar voltage iterations.  
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Figure 26: Differential Pressure Generation of EHD Pump 3 and Corresponding Pressure Increase in Channel 2 

 

This plot shows that as flow increases in active Channel 3, the differential pressure drops 

across EHD Pump 3 (consistent with basic fluid mechanics principles and the expected 

performance of the pump). Similarly, the pressure differential in inactive Channel 2 decreased as 

flow decreased considering that the EHD Pump in Channel 2 was not activated. It can also be 

seen that the EHD Pump in Channel 3 was able to produce maximum dynamic pressures of about 

100Pa, which is consistent with its performance curves.  

For the next experiment, the overall flow rate was increased to a level where the active 

EHD Pump in Channel 3 was not able to generate pressures high enough for the flow in Channel 

3 to surpass the flow in Channel 2. Rather, the maximum applied voltage on the EHD Pump in 

Channel 3 generated flow that was just sufficient enough to equalize the flow between the two 

channels. This is demonstrated below. 
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Figure 27: Maldistribution Correction Capabilities of EHD Pump 3 on Channel 2 

 

It can be seen that at an applied voltage of 1500V, the flow generation of EHD Pump 3 is 

just enough to equalize flow in Channel 3. This is because, at higher overall flow rates, the EHD 

pumps have less influence on the flow in each of the channels. Thus, at a certain “threshold flow 

rate,” EHD Pump 3 is able to produce just enough pressure to equalize the flow rates. This is a 

very important inherent characteristic of each of the pumps which is crucial in deciding if the 

EHD pumps are suitable for their particular applications. Similarly, Figure 20 displays the 

pressure generation characteristics at this overall flow rate. It can also be seen here that the 

pressures converge, indicating equalized flow between the branch lines.  
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Figure 28: Differential Pressure Generation Characteristic of EHD Pump 3 and Corresponding Pressure Change in Channel 2 

 

Additional graphs can be seen in the Appendix of this report indicating that at induced 

overall flow rates of more than 16.5mL/min, active EHD Pump 3 is incapable of producing 

pressures that generate flow that is significant enough to cause the flows in the two branch lines 

to converge. This is because pressure generation at high flow rates has a less significant effect on 

the interchannel system while still affecting the active channel. This is also a repeatable 

phenomenon as indicated by the multiple experimental iterations in the graph.  
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conservation of mass and considering that the flow going into the distribution manifold is 

constant, it is implied that increasing the flow in Channels 2 and 3 will decrease the flow in 

Channel 1, demonstrating the desired correction capabilities.  

The following plot demonstrates the results obtained when the above configuration was 

utilized and the applied voltages to EHD Pumps 2 and 3 are increased simultaneously in 

increments of 100V per minute, capping out at 1500V. This was repeated twice to reassure 

continuity and to obtain results that were sufficient for analysis. The flow generated by the main 

mechanical pump was held constant at 17.3mL/min. Intentional maldistribution of a 1.75mL 

flow differential between Channel 1 and Channels 2 and 3 was introduced through use of a 

mechanical needle valve.  

 

 

Figure 29: Maldistribution Correction Capabilities of EHD Pumps 2 and 3 on Channel 1 
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On the plot, it is visible that at maximum applied voltages, the EHD Pumps in Channels 2 

and 3 are  not able to cause even flow distribution due to the high initial flow rate difference 

between active Channels 2 and 3 and inactive Channel 1. Despite the fact that flow rates do not 

even out, the EHD pumps 2 and 3 have a significant effect on the flow rate of Channel 1. At 

1500V, the difference between the flow rates was 1mL/min. Flow rates would converge if EHD 

Pumps 2 and 3 are subjected to a higher voltage, yet this was not tested due to safety reasons 

related to the rated voltages of these particular EHD pumps. It is also important to note that the 

overall flow rate changes insignificantly throughout the experiment.  

The next plot presents the pressure differences across each EHD pump. Plotting each 

pressure difference as a function of time yields that active EHD Pumps 2 and 3 generate higher 

pressure drops compared to inactive EHD Pump 1 when subjected to high voltage.  

 

 

Figure 30: Pressure Generation Capabilities of EHD Pumps 2 and 3 on inactive EHD Pump 2 

 

In conclusion, the EHD conduction pumping phenomenon is present and functions 

effectively in meso-scale pumping.  
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Conclusion 

The research value presented in this Major Qualifying Project is its investigation of an 

advanced and innovative system of fluid flow generation and distribution control and its 

application in a meso-scale single-phase flow experimental setup. This study resulted in 

observing the EHD conduction pumping phenomenon successfully controlling the fluid flow 

along three parallel branches. The size of the assembled loop was far greater than the size of the 

EHD conduction pumps; nonetheless, an EHD pump active branch was able to effectively reduce 

the flow rate in an inactive branch on demand. The setup allowed for easy flow maldistribution 

correction by varying the voltage applied to the EHD conduction pumps. 

Fluid flow was successfully generated and flow distribution control was achieved using 

EHD conduction pumps in parallel branches. It was shown that flow rates and pressure drops 

across the parallel branches were sufficient to affect the flow distribution between the branches. 

In conclusion, EHD conduction driven flow distribution is a successful technology in the meso-

scale domain, capable of functioning in a multi-branch setup. Applications in extraterrestrial 

environments, large industrial thermal systems, and even microelectronics that require 

enhancement in heat transfer could take advantage of an EHD conduction driven fluid circulation 

system. EHD conduction pumping is a promising alternative solution to modern day flow 

distribution control systems using traditional technologies. 
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Appendices 

 

Appendix A: Novec 7600 Engineering Fluid Physical Properties 
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Appendix B-1: Solidworks Drawing of EHD Pumps Support Design  
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Appendix B-2: Solidworks Drawing of Flow Meter Support Design  
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Appendix C-1: Calibration Data and Calibration Curves for Pressure Transducer 1 

 

 

 

Appendix C-2: Calibration Data and Calibration Curves for Pressure Transducer 2 

 

 

 

 

 



EHD FLOW DISTRIBUTION CONTROL   

63 

 

Appendix C-3: Calibration Data and Calibration Curves for Pressure Transducer 3 

 

 

 

Appendix D: Calibration Data and Calibration Curves for Main Flow Meter 
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Appendix E-1: LabVIEW Block Diagram (Overview) 

 

 

 

Appendix E-2: LabVIEW Block Diagram (Section I) 
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Appendix E-3: LabVIEW Block Diagram (Section II) 
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Appendix E-3: LabVIEW Block Diagram (Section III) 
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Appendix F-1: EHD Driven Intentional Maldistribution of Channel 2 using EHD Pump 3  
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Appendix F-2: Two-Channel Pressure Generation and Effects  

 

 

Appendix F-3: Three-Channel Pressure Generation and System Effects 

 

 


