
1

Project Number: IIH-0002

Optimization of an Autonomous Underwater Vehicle

A Major Qualifying Project
submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Joseph Baker, Robotics Engineering

Christopher Frumento, Mechanical Engineering

Jacob Grzyb, Robotics Engineering

Taylor North, Mechanical Engineering

 Date: May 30, 2011

 Approved:
Professor Islam Hussein, Major Advisor

Keywords

 Professor William Michalson, Co-Advisor
1. Autonomous
2. Submarine
3. Hydrodynamics

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a
degree requirement. WPI routinely publishes these reports on its web site without editorial or peer

review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

2

Figure 1: AUV with Ballast Holder

Figure 2: Leak Test Fall 2010

3

Abstract

With autonomous vehicles becoming more prevalent in ocean applications, a necessity

for affordable autonomous underwater vehicle (AUV) research is clear. The 2010-2011 WPI

AUV MQP continued the work of previous project groups in optimization of AUV systems and

control algorithms. This project also focused on upgrading the onboard control electronics, as

well as the implementation and integration of an acoustic modem for tether-less underwater

communication. An external ballast holder was designed, constructed and installed to increase

diving performance and reliability of the AUV. A focus late in the project was underwater

communication and networking.

4

Executive Summary

The overall goal of this project is to develop a fleet of autonomous vehicles to operate

cooperatively on an acoustic network. The use of acoustic signals for underwater applications

is still a developing field. Acoustic signals are a convenient way to send data from one point to

another underwater without the use of tethers.

The MQP teams at WPI have been tasked with the construction and implementation of

an Autonomous Underwater Vehicle or AUV. The 2010-2011 MQP team focused mostly on

optimizing the current AUV built by the previous teams. The team put the most effort in the

implementation of new electronic hardware. The old PCB and MSP430 were replaced with a

new designed daughter card and PIC32.

Other work went into the control and maintenance of current systems. Simple dynamic

equations were developed and programmed so an open loop control was established. The

acoustic modems were delivered and are ready to be implemented into the AUV. A new static

ballast holder was designed and built for ease of moving the sub.

Additional work is required in integrating a sensor system in the vehicle. Once complete,

the closed loop code can be completed and the vehicle will be fully autonomous. These

additional efforts will eventually allow the vehicle to perform more complex missions such as

searching for foreign objects and mapping seafloors, lakebeds and riverbeds. This will also

allow communicating with other autonomous vehicles thus completing the overall goal of the

project.

5

Acknowledgements

We would like to thank Professor Islam Hussein and Professor William Michalson for their

guidance throughout the duration of this project. We would like to thank Pat Morrison, Tom

Angeliotti, Joe St. Germain, Adriana Hera, and Neil Whitehouse for their technical assistance.

We would also especially like to thank Professor Fischer for his guidance in the design of our

new controller PCB.

6

Nomenclature

ANx PIC32 ADC Input x
A Amperes
AFL Front-left actuator
AFR Front-right actuator
ARL Rear-left actuator
ARR Rear-right actuator
AUV Autonomous Underwater Vehicle
MHz Megahertz
MCU Microcontroller Unit
PCB Printed Circuit Board
kB Kilobyte
ADC Analog to Digital Converter
DAC Digital to Analog Converter
SPI Serial Peripheral Interface
I2C Inter Integrated Circuit
IMU Inertial Measurement Unit
I/O Input/Output
ksps kilo samples per second
PWM Pulse-Width Modulation
Rxn PIC32 I/O Port x, Pin n (i.e. RB5 = Port B, Pin 5)
SFE SparkFun Electronics
SVM Supply Voltage Monitor
USB Universal Serial Bus
UART Universal Asynchronous Receiver/Transmitter
V Volts
W Watts
WPI Worcester Polytechnic Institute

7

Table of Contents

Abstract ... 3

Executive Summary ... 4

Acknowledgements ... 5

Nomenclature ... 6

List of Figures .. 12

List of Tables ... 13

Introduction .. 14

Background ... 16

AUV History ... 16

Submarine Ballast .. 17

Acoustic Underwater Communication .. 17

Methodology ... 19

Ballast Holder Design .. 19

Electronics Enclosure for WPI AUV ... 21

AUV Dynamics Equations and Simulation ... 22

Horizontal .. 23

Pitch ... 23

Roll ... 23

Yaw .. 23

Vertical ... 24

Electronics Refit ... 26

Controller PCB Revision 2.0 ... 26

Microcontroller Selection .. 27

Power Systems ... 29

Sensor Systems .. 31

Motion Control systems .. 33

Communications Systems .. 35

Silkscreen Labels .. 36

8

Revision 2.0 Errata ... 36

Atmel AVR644/STK500 Coprocessor ... 36

Controller PCB Revision 2.1 and 2.2 .. 37

Programming/Control ... 39

AUVLib ... 39

2009-2010 Final Mission Rewrite .. 43

Results ... 44

Simulations .. 44

Electronics ... 45

Programming ... 47

Modem Operations ... 47

Recommendations .. 49

Hull Redesign ... 49

Ballast System ... 50

Appendix A: PCB Design and Fabrication Guide ... 51

Accessing the Eagle Files in SVN .. 51

Eagle Setup .. 52

PCB Fabrication ... 52

Appendix B: Vehicle Operation Guide .. 54

Vehicle Power and Battery Charging... 54

Programming Options ... 55

MPLAB and C32 Compiler .. 55

MPLAB X ... 55

Setting up Eclipse for AUV Development .. 55

Downloading Code .. 61

Warning ... 61

Software Considerations ... 62

Electrical Subsystem Connections ... 62

Sealing the Vehicle .. 62

9

Transporting the Vehicle ... 63

Appendix C: Modem Operation Guide ... 64

Modem Setup .. 64

PuTTY Setup ... 66

Modem Modes of Operation .. 68

Sending and Receiving Commands ... 69

Troubleshooting .. 70

Appendix D: MATLB Code for Motion Simulations ... 71

Simple Motions ... 71

Vertical Maneuver ... 72

Ballast .. 72

Ballast ODE .. 75

Dive Maneuver Lookup Table Generator .. 76

Appendix E: Controller Revision 2.0 Schematics .. 78

PIC32 Connector (upper half) .. 78

PIC32 Connector (lower half) .. 79

Compass Amplifiers ... 80

Compass and Compass Set/Reset Circuit .. 81

External Communications ... 82

Gyro ... 83

Motors ... 84

Power Connections ... 85

Pump ... 86

Solenoids and Actuators ... 87

Temperature and Pressure Sensors .. 88

Voltage Reference Amplifier and 5V Regulator .. 89

Appendix F: AUVLib Documentation .. 90

File List ... 90

auv.h File Reference .. 91

10

Detailed Description .. 91

system.h File Reference .. 92

Defines ... 92

Functions ... 92

Variables .. 92

Detailed Description .. 93

Define Documentation .. 93

Function Documentation ... 93

communication/acoustic_modem.h File Reference ... 95

Defines ... 95

Functions ... 95

Variables .. 95

Detailed Description .. 95

Define Documentation .. 95

Function Documentation ... 95

communication/uart.h File Reference .. 96

Functions ... 96

Detailed Description .. 96

control/base_control.h File Reference ... 97

Defines ... 97

Functions ... 97

Detailed Description .. 99

Define Documentation .. 99

Function Documentation ... 99

control/open_loop_maneuvers.h File Reference ... 105

Defines ... 105

Functions ... 105

Detailed Description .. 105

Function Documentation ... 105

11

sensors/analog_sensors.h File Reference ... 108

Defines ... 108

Functions ... 108

Variables .. 108

Detailed Description .. 108

Define Documentation .. 108

sensors/gyro.h File Reference ... 109

Functions ... 109

Detailed Description .. 109

Function Documentation ... 109

References .. 110

12

List of Figures

Figure 1: AUV with Ballast Holder ... 2
Figure 2: Leak Test Fall 2010 ... 2
Figure 3: MIT Odyssey IV... 16
Figure 4: Acoustic Modem .. 18
Figure 5: Final Ballast Holder Assembly .. 20
Figure 6: CAD Rendering of Electronics Enclosure ... 21
Figure 7: Coordinate System ... 22
Figure 8: PIC32 Starter Kit (Top) ... 29
Figure 9: PIC32 Starter Kit (Bottom) ... 29
Figure 10: Horizontal Maneuver (3 meters) ... 44
Figure 11: Dive Maneuver (5 meters) ... 45
Figure 12: PCB Top .. 46
Figure 13: PCB Bottom .. 46
Figure 14: Command Window .. 47
Figure 15: Current modem setup.. 47
Figure 16: Prototype Fiber Glass Hull ... 50
Figure 17: Improved SVM Circuit ... Error! Bookmark not defined.
Figure 18: TortoiseSVN Checkout ... 51
Figure 19: Eagle Configuration .. 52
Figure 20: 12V 3A battery charger for the AUV batteries .. 54
Figure 21: Adding SVN Repositrory to Eclipse .. 57
Figure 22: New Eclipse Project .. 58
Figure 23: Eclipse Project Include Paths ... 59
Figure 24: Eclipse Project Library Paths .. 60
Figure 25: PIC32 Starter Kit power input schematic ... 61
Figure 26: First modem ... 64
Figure 27: Second modem .. 65
Figure 28: Modem transducers ... 65
Figure 29: Hydrophones .. 66
Figure 30: PuTTY Configuration .. 67
Figure 31: PuTTY Serial Configuration .. 67
Figure 32: Modem Switches ... 68
Figure 33: Modem startup .. 69
Figure 34: Modem transmission ... 69
Figure 35: Modem Reception ... 70

13

List of Tables

Table 1: Eagle Custom Device Library ... 27
Table 2: Comparison of MSP430 and PIC32 ... 28
Table 3: Current Load Distribution ... 30
Table 4: Fuses .. 31
Table 5: 3-Axis Compass ... 32
Table 6: Thruster Connections .. 33
Table 7: Ballast System Connections .. 34
Table 8: Motor Connections ... 34
Table 9: PCB Revision 2.2 Changes ... 39
Table 10: Acoustic Communication Control ... 41
Table 11: System Health Checks ... 42

14

Introduction

The 2010-2011 Autonomous Vehicle (AUV) Major Qualifying Project (MQP) team began

the third year of work on the WPI AUV during A-Term of 2010. The previous project groups had

designed and built an AUV. At the culmination of the 2009-2010 project team’s work resulted in

preliminary autonomous mission testing of the WPI AUV at the WPI pool. The 2008-2009 AUV

project team designed and built many of the components and systems of the AUV. The 2009-

2010 project team worked to optimize the onboard systems of the AUV and work towards

complete autonomy of the AUV. This year’s project team began by focusing on the problems

that became evident in the final mission testing of the AUV in the spring of 2010. As work

began, further room for optimization was discovered and the goals of the project shifted to

further optimization, replacement, and design of AUV components.

An initial goal of the project team was to recreate the final mission of the 2009-2010

MQP and to troubleshoot and remedy the problems with the mission test in the spring of 2010.

During that test the AUV failed to submerge below the surface. The 2010-2011 project team

focused on the ballast system itself as well as the electronic control module. These two areas

were the main focus of the 2010-2011 project group.

One early goal of the group was to have the AUV operating autonomously by the end of

A-term such that the group would have video of the mission test to present at the Workshop on

Underwater Networks (WUWNet) at Woods Hole Oceanographic Institute (WHOI). It became

clear early in the project that a full scale water test would not be possible during a-term

because of electronics problems. However, the group did present the WPI AUV at WHOI and

learned a great deal from touring the facilities there.

For most of the duration of the project, the team split the work into three major

categories: an electronics group, a mechanical systems group, and a controls group. The

electronics group spent a majority of the time working on the trouble shooting of the onboard

electronics and the eventual redesign of the onboard computer board. The mechanical systems

group focused on the optimization and repair of onboard systems and the development of an

external ballast holder. While the controls group focused on simulating the motion of the AUV

15

as well as the program coding for AUV maneuvers. The project team found this to be a very

productive way to accomplish many tasks in an efficient manner.

In the future, the goal for the WPI AUV project is to have an operational fleet of AUVs

which can operate together autonomously and share information to accomplish a mission.

With this being the overarching goal, there is great opportunity for AUV development and

experimentation using the WPI AUV as a cost effective platform as the project moves forward.

The 2010-2011 project team made significant progress in ensuring that the WPI AUV is a

reliable tool for future teams to complete further experiments and testing.

16

Background

AUV History

AUV development began in the 1960s at the University of Washington and made very

large leaps in the early 1990s with the backing of Massachusetts Institute of Technology (MIT)

and the Office of Naval Research (ONR). The MIT AUV Lab created the “Odyssey Class” AUV

which could be out-fitted for numerous underwater missions. MIT is has now developed the

Odyssey IV, their latest iteration of AUV. Woods Hole Oceanographic Institute (WHOI) has also

played a large role in the development of AUV’s. Their fleet of AUVs are the cutting edge of

underwater autonomy and with the worldwide capability WHOI has, their work is some of the

most highly respected oceanographic research in the world. This important research drives

AUV development forward every year and with more sophisticated electronics the range of

what these vehicles can do increases multifold.

Figure 3: MIT Odyssey IV

AUVs have numerous purposes. Most involve research but others can involve search

and rescues, object identification, water sampling, mapping, or for our purposes here at WPI,

communication and control research. AUVs can go places where is to too dangerous or

expensive for humans to go. They can take numerous samples for research without human

17

interaction. Although AUVs are expensive pieces of hardware, the information they gather can

be invaluable.

Submarine Ballast

In order for a submarine to operate in an efficient manner, its overall density must be

equal to that of the surrounding water. Most submarines can control their density through the

use of a dynamic ballast system. Water ballast is taken aboard or deposited into the

surrounding water to change the density and allow the submarine to manipulate its depth.

Ideally, a submarine should be designed such that its natural density is slightly less that the

density of the water it is in, such that it does not require a substantial amount of dynamic

ballast to submerge. Static ballast, or dead weight, can also be utilized to change the natural

buoyancy of the submarine so that the size of the submarine’s ballast takes can be reduced,

opening up more room inside the submarine for other systems.

Acoustic Underwater Communication

The use of acoustic signals for underwater applications has been around for many years

however the use of acoustic signals for communication and data transfer is still a developing,

dynamic field. These signals can be a convenient way to send data from one point to another

underwater. Applications of this technology are diverse. Acoustic communication can be

utilized to communicate from ship or buoy to a submarine, data transfer from unmanned or

autonomous underwater vehicles, or for a group of AUV’s to communicate with each other to

work cooperatively to accomplish a task as is the eventual, long term goal for this project.

There are some drawbacks to acoustic communication in water versus traditional

terrestrial communication. Overall, subsurface communication is slow due to the speed of

sound in water which is approximately 1500 meters per second while communications above

the surface can travel at the speed of light (3x108 meters per second). The relatively slow speed

of sound in water limits the amount of data that can be transferred in a given time, resulting in

a low rate of data transfer. However these sacrifices in performance are well worth the

advantages of being able to transfer data without tethers underwater.

18

The AUV team has received two acoustic modems and two pairs of hydrophones from

Professor Hussein’s colleagues at the University of Connecticut. The modems take data input

from a computer, convert the data into acoustic signals and transmit them through the

hydrophones. The modems work both as transmitters and receivers so that the modem in the

AUV will be able to receive acoustic signals as well as transmit data back to a receiving station.

Figure 4: Acoustic Modem

The eventual goal of this project is to have a fleet of AUV’s that will be able to work

cooperatively to accomplish a task. This will require a sophisticated communication based

heavily on acoustic underwater signals. Needless to say, the acoustic modems are an integral

part of this goal.

19

Methodology

Ballast Holder Design

For the WPI AUV, the project team decided to design an external static ballast system.

The large interior volume of the AUV requires over 100lbs of lead ballast to achieve neutral

buoyancy; where the weight of the submarine is equal to the buoyant force of the submarine

when it is just submerged at the surface. Previously, the lead ballast was placed in bags and

latex balloons, which had to be placed at specific locations within the hull. This confined the

space within the AUV for other systems and interfered with wiring and plumbing for the current

infrastructure. Therefore there was a need for a new static ballast design. It was decided that

most of the static ballast weight should be affixed semi-permanently to the exterior of the hull,

while about 10lbs would remain inside of the submarine and will be easily removed such that

the amount of static ballast can be easily changed with the addition of new components to

keep the natural density of the AUV constant.

The ballast holder design consists of three components:

1. Ballast Holder Bracket-Attaches to Hull and supports Ballast Holder

2. Ballast Holder- Connect to both ballast holder brackets and support both ballast tubes.

3. Ballast Tubes-2” Diameter, 4’ Long lead shot filled tubes

20

Figure 5: Final Ballast Holder Assembly

The assembly was designed in such a way so that all of the parts could be quickly made

using a laser cutter. Quarter-inch clear Acrylic was the material of choice because of its

compatibility with the laser cutter, esthetic qualities and low cost.

Other important design qualities were the ease of attaching/removing the ballast tubes

to the AUV. The tubes sit in semicircular grooves in the ballast holder. The force of gravity

keeps the tubes secure during all normal operation and then can be easily lifted off of the

holder to make launching and retrieval of the AUV from the water easier.

1

2

21

Electronics Enclosure for WPI AUV

Previously, the control electronics were simply suspended from the inner frame of the

hull by zip ties. With a great deal of expensive and complicated electronics now being onboard

the WPI AUV, there was a definite need for a way to protect and properly mount these crucial

components inside the hull of the AUV. The enclosure houses an acoustic modem and control

electronics securely to the internal framework of the AUV. The enclosure reduces the chances

of electronics damage in the event of minor water intrusion. Please note, however, this

enclosure was not designed to protect the onboard electronics from catastrophic hull failure

and therefore is not completely waterproof.

The electronics enclosure for the WPI AUV was completed in the middle of C-Term 2011.

The interior of the rectangular case measures 10x9x3 inches which allows ample room for the

acoustic modem, the AUV’s control electronics board, and clearance for all wire connections.

The enclosure was made of ¼ inch clear acrylic for simple fabrication using WPI’s laser cutter.

The seams were bonded using a special acrylic adhesive. The top is held in place with two

elastic shock chords and has a plastic gasket to ensure a good fit. The shock cord lid system

allow for the top of the enclosure to be removed entirely to allow for complete access to the

enclosure’s contents. The box will be mounted vertically in the AUV. The fore and aft faces of

the enclosure have slots, such that all the necessary ports on the modem and board may be

accessed. One end of a slotted side

features a 1.7 x 1.7 inch cut-out to

allow for large serial port connectors to

be connected. After the electronics are

mounted permanently within the

enclosure, acrylic inserts may be

bonded into place in the slots to

further reduce the chances of water

intrusion.

Figure 6: CAD Rendering of Electronics Enclosure

22

AUV Dynamics Equations and Simulation

Basic motion equations were derived to

allow for open-loop control of the AUV. Using

these equations the AUV could be controlled

both autonomously and remotely. A coordinate

system with the z-axis acting on the

gravitational axis allows the AUV can be

positioned in the water, while the equations will

be simulated in an orthogonal coordinate

system.

Using Newton’s second Law it is possible to derive equations for the distance in terms of

time. The force and mass remains constant thus the acceleration would also be constant.

Every motion can be solved this way with the exception of the Z-motion. By integrating the

acceleration with time twice, a simple distance verse time equation achieved.

𝐹
𝑚

= 𝑎

�𝑎 𝑑𝑡 = 𝑎𝑡 + 𝐶1 = 𝑣

�𝑣 𝑑𝑡 =
𝑎𝑡2

2
+ 𝐶1 𝑡 + 𝐶2 = 𝑥

Each motion is broken into two phases, an acceleration from zero velocity and a

deceleration back to zero velocity. Using initial conditions each phase can be broken down and

analyzed. In the first phase, the constants of integration would be zero. In the second phase C1

would be the velocity at the end of the first phase, and C2 is the distance at the end of the first

phase. The only difference between each motion is the acceleration. The MATLAB code for

each motion can be found in Appendix D.

Figure 7: Coordinate System

23

Horizontal

The two main thrusters mounted on the side of the AUV are able to provide horizontal

motion. Firing them simultaneously will create the force necessary to propel the AUV. The first

phase will have the AUV propelled either forward or backwards from a stationary position. In

the second phase, the thruster will be fire in the opposite direction to slow the AUV back down

to rest.

𝑋 = 𝑚
𝑑2𝑥
𝑑𝑡2

Pitch

Pitch is controlled by firing the two water jet thrusters located on the bow or the stern

of the AUV. The maneuver is done by firing the ones located on one side, and then firing the

others located on the opposite side. Pitch could also be achieved by filling one of the ballast

tanks, though the ballast tanks are hard to model.

𝑀 = 𝐼𝑦
𝑑𝑞
𝑑𝑡

Roll

Roll is achieved almost exactly the same way as pitching. The only difference is that the

two thrusters to be used have to be located on either port or starboard side of the AUV.

Though this motion can be achieved it recommended that it not be purposely attempted.

Rolling the sub would put strain on the Lexan hull and possibly break it apart. Rolling and

pitching should be used solely for maintaining proper orientation of the sub.

 𝐿 = 𝐼𝑥 𝑑𝑝
𝑑𝑡

Yaw

Yaw is performed by firing the main thrusters in opposite directions. Firing the thrusters

in this fashion will turn the AUV. The first phase will initiate the turn by speeding the sub clock-

24

wise or counter-clockwise. The second phase the thruster will be fire in the opposite direction

so the rate of AUV rotation will return to zero.

𝑁 = 𝐼𝑧
𝑑𝑟
𝑑𝑡

Vertical

The vertical maneuver is simulated in MATLAB to determine the timing of several

components. Unlike the other motions the vertical down motion combines the pump and the

water-jet thrusters to position the vehicle at a desired depth. The maneuver is fairly

complicated to calculate. Some of our assumptions were to neglect disturbances in the water

and head-loss through the pipes. An important assumption that is made is that the water the

AUV moves through is an incompressible fluid. This assumption holds true for the depths that

this AUV is designed for (12ft or bottom of WPI pool). The density of water at these depths is

assumed to be constant.

To start the maneuver, first the ballast tanks must be filled; this will increase the density

of the sub. Next, the ballast tanks are emptied using the pressure in the ballast tank. Finally,

the thrusters fire to reduce downward velocity to zero. To analyze this maneuver, start with

the force equation used in the other maneuvers, but here there are two forces that make up

the buoyant force. The pump has a constant mass flow rate so we can assume the sub sinks

relatively in line with the pump. The pressure calculation was done in MATLAB but is not

necessary. Then the equations that determine the mass flow rate in and out of the sub are

used.

All the equations relate to each other: Eqn. 1 requires Eqn. 2 (mass flow rate); Eqn. 2

requires Eqn. 3 (velocity); Eqn. 3 requires Eqn. 4 (Pressure); and Eqn. 4 requires Eqn.1

(distance.) The most effective means to solve this is to use numerical methods by integrating

and then interpolating to an answer. After running through multiple calculations it was

determined that if the ballast tanks are pressurized enough the ballast tanks will empty

relatively quickly and are fairly constant. The final phase of this motion use water-jet thrusters

to slow to a stop.

25

Eqn.1 𝑚 𝑑
2𝑧
𝑑𝑡2

= 𝐵𝑦 = 𝑚 𝑔 − 𝜌𝑔 (𝑉𝑜𝑙.)

Eqn.2 𝑑𝑚
𝑑𝑡

= 𝜌𝑉𝐴

Eqn.3 𝑃1
𝜌

+ 𝑉12

2
= 𝑃2

𝜌
+ 𝑉22

2

Eqn.4 𝑃 = 𝑃𝑎𝑡𝑚 + 𝜌𝑔𝑧

26

Electronics Refit

Given the myriad of issues with the existing microcontroller board, it was deemed to not

be a reliable means of controlling the vehicle in its current state of repair. The initial plan at this

point was simply to revise the existing board design to correct the errors in it and order a new

PCB to be populated based on the revised design. Unfortunately, Pads Logic, the program that

was used to design the original controller, is no longer available on the ECE lab computers and

there are no other design programs or converters capable of handling these files. This made it

necessary to recreate the entire board based on the logic schematics in the appendix of the

2008-2009 MQP final report.

Controller PCB Revision 2.0

 The new PCB was designed in the free version of a program called Eagle. The free

version limits PCB dimensions to 4 x 3 inches (the old PCB was 5.5 x 4 inches), which made the

layout of the board more challenging as all component placement had to be optimized for

space reasons. Purchasing a single-user student license ($125) would have increased this

limitation to 6.3 x 3.9 inches had the need arose.

 Not all of the devices used are available in the default devices libraries included with the

program. Some of these could be found in other user-created libraries hosted by Cadsoft (the

company that develops Eagle) as well as a large library supplied by SparkFun Electronics which

contains most of the components they sell. However others had to be created by hand for the

project. A device in Eagle consists of an electrical circuit symbol, a physical package footprint

and a mapping of pin connections between the two. Devices were created using existing

symbols and/or packages when possible, often originating from the SFE library and the included

package reference library. A device and its associated package and symbol have to be located in

the same library file, so a custom library for the AUV components (auv.lbr) was created for this

purpose. A list of custom devices and the source of their packages/symbols is shown below.

Note that in copying devices from one library to another, some extraneous symbols/packages

are copied as well. Anything in the custom library not listed here was not used.

27

Device Symbol source Package source

A3A-12DA-2SV sparkfun.lbr WPI

A3A-12PA-2SV sparkfun.lbr WPI

DMG9926USD transistor-fet.lbr ref-packages.lbr

FDB5800 sparkfun.lbr ref-packages.lbr

FUSE fuse.lbr WPI

FX10A-120S/12-SV(71) conn-hirose-pic.lbr/WPI conn-hirose-pic.lbr

HMC1043 WPI sparkfun.lbr/WPI

IRF7509 transistor-fet.lbr WPI

MSI1451 WPI WPI

OPA358 WPI ref-packages.lbr

DFLS130L diode.lbr WPI

Table 1: Eagle Custom Device Library

Microcontroller Selection

Recreating the entire board opened up a number of design decisions that otherwise

would not have been altered on the previous board. First and foremost among these was the

choice of microcontroller. Had the old Pads Logic files simply been revised, swapping out the

microcontroller would have been out of the question due to the extra time investment required

to properly reroute all of the signal connections. After consulting with Professor Fischer about

various options available (including dropping in one of the new RBE Development Boards), the

decision was made to upgrade the microcontroller to a PIC32. The increased processing power

over the old MSP430 will allow more to be done at the microcontroller level that previously

required the use of the PC/104 stack, the presence of which places an additional load on the

batteries of up to 30W. Shown below are the relevant specifications of the PIC32MX360F512L

and the old MCU, an MSP430F233:

28

Specification MSP430F233 PIC32MX360F512L

Architecture 16-bit 32-bit

CPU Frequency 16 MHz 80 MHz

Program Memory (Flash) 8 kB 512 kB

Data Memory (RAM) 2 kB 32 kB

I/O Pins 40 85

Timers 2 5

PWM Outputs 6 5

UART Channels 1 2

SPI Channels 1 2

I2C Channels 1 2

ADC Inputs 8 16

ADC Sample Rate 200 ksps 500 ksps

ADC Resolution 12-bit 10-bit

Power consumption 1.27 mW 181.5 mW

Table 2: Comparison of MSP430 and PIC32

 A PIC32 Starter Kit was purchased, which is a 2x2” PCB containing a PIC32MX360F512L

MCU, power LED, clock circuitry, and programming circuitry. Two other variants of the Starter

Kit are available which also have a second USB port or Ethernet port respectively. Neither of

these was deemed necessary after confirming that the acoustic modem being developed by the

UConn research group uses an RS-232 serial interface. Rather than being soldered directly to

the controller PCB, this external board has a 120-pin socket which can be connected to anything

with the mating connector. There are two advantages to this configuration. First, the full

controller board does not require physical access to a computer to be programmed; the Starter

Kit board can simply be unplugged and programmed anywhere without removing the daughter

card from the vehicle. Second, any future revisions of the daughter card will not need to

purchase a new MCU or any of the other components on the Starter Kit board. The theoretical

future revision of the daughter card would have the same mating socket connector, and the

29

Starter Kit would be connected in the same fashion as with the current design. The

programming interface is a mini-USB port which requires no external debugger or RS232

adapter.

Figure 8: PIC32 Starter Kit (Top)

Figure 9: PIC32 Starter Kit (Bottom)

Power Systems

 Several revisions were made to the power systems of the controller from the previous

version.

Power Inputs

 The previous controller called for a separate 12V input to each of the four 12V rails as

well as 5V and 3.3V inputs from a Pico-ATX computer power supply. It quickly became

apparent, especially given the incident which damaged the Pico-ATX supply, that this was not

an ideal system. The new controller does not require the Pico-ATX supply at all. There is a single

12V banana clip input and another banana clip input which connects to the ground plane on the

bottom of the PCB. This single 12V input is connected to all four separately fused 12V rails, two

of which are on each side of the board. One of these is connected to the input pin of an

LM7805 voltage regulator, which outputs 5V to the PIC32 Starter Kit and the pump signal

30

amplifier. The onboard circuitry on the PIC32 Starter Kit then outputs 3.3V. The end result is

that six power input connections are replaced with one.

12V Bus Current Requirements

 One of the critical flaws in the original controller was that the 12V bus traces were not

wide enough to carry the required amount of current, resulting in the wire around the edge of

the board soldered to each of the MOSFETs. Careful attention was paid to the width of each

12V trace to ensure that no further burnouts occur. Calculation of the correct minimum trace

widths requires knowledge of not only the current loads being placed on the trace, but also the

fabrication process being used. Cheaper fabrication processes like the one used for the new

controller use a thinner layer of copper on the surface of the PCB, reducing the cross-sectional

area of the trace and thus the amount of current it can carry. All trace width requirements were

calculated for a trace thickness of 1 ounce of copper per square foot, which is the value that

was used for fabrication. With more expensive fabrication processes, trace thicknesses of up to

5 ounces of copper per square foot can be achieved, thus reducing width requirements.

 The four 12V rails on the new controller have been designed to evenly distribute the

current load as much as possible such that no particular bus trace has to be excessively wide.

The loads have been split as shown below.

Bus Connection

12V1 Motors

12V2 Aft ballast solenoids
Aft maneuvering thruster actuators

12V3 Fore ballast solenoids
Fore maneuvering thruster actuators

12V4 Pump
All 5/3.3V systems

Table 3: Current Load Distribution

31

Fuses

 Shortly before ordering the controller PCB, it was discovered that the fuse holders and

matching fuses used on the original controller are no longer sold. Similar Littlefuse 564 series

fuse holders and matching 396 series fuses were chosen as a replacement. The rated current

values for each 12V rail are shown below.

Bus Fuse Value

12V1 (Motors) 6.3A

12V2 (Aft) 5A

12V3 (Fore) 5A

12V4 (Pump/PIC) 5A

Table 4: Fuses

Sensor Systems

Cabin Temperature

 The cabin temperature sensor circuit was unchanged from the original schematics other

than the addition of power filtering capacitors. The need for this sensor was in question given

the results of the heat generation tests in the original report. However, it was decided to keep

the sensor in case of heat building up in the new electronics enclosure. This sensor was

connected to input AN1 on the ADC.

3-Axis Compass

 The original controller schematics called for a HMC1052 2-axis compass. However, if the

board were to be mounted on its side as it is with the new enclosure, this compass would be

crippled. Therefore, it was replaced with a HMC1043, a similar 3-axis model. All three axes are

connected to allow the PCB to be mounted in any orientation as shown below.

32

Signal ADC Input

COMPX AN8

COMPY AN9

COMPZ AN5

Table 5: 3-Axis Compass

6-Axis IMU

The new revision of the controller PCB fully supports the ADIS16354 6-axis IMU which

was purchased by the first MQP group. The two headers on the board (Hirose part # A3A-12PA-

2SV) are the same pin headers on the IMU’s breakout board. Mating connectors were

purchased to be made into two small ribbon cables to connect the controller to the gyro

breakout board. A separate 1-pin header is also connected to the IMU’s ADC input to allow an

external input to be connected to the ADC without interfering with the primary header

connection.

Pressure

 The original controller made provisions for multiple pressure sensors for depth as well

as the ballast tanks. However, these were never implemented. The sensors were never

populated on the original controller PCB, and no design was ever conceived for connecting the

transducers to the ballast tanks. Given this and the size restrictions of the new PCB, the ballast

pressure sensors were removed. Although the depth pressure transducer was also never

connected, a component had been made for the purpose which never had a hole drilled in the

hull for it. The depth pressure sensor output is connected to the AN3 input.

Supply Voltage

 The supply voltage monitor circuit was not placed on the PCB itself for lack of a free ADC

input pin near the 12V rails. However, the circuit was simple enough that it could be mounted

on the prototyping board already in the submarine that the pump relay is mounted on. This

33

location gives easy access to a +12V connection. The analog voltage output is connected to the

gyro ADC input header.

Water Leak Sensor

 Given the incomplete nature of the schematics in the old report and that it would be

ideal to have a different circuit for each transducer; the water leak sensor circuit was not

implemented on the board itself.

Motion Control systems

 With the new revision of the controller, the choice of MOSFETs used to control the

maneuvering thruster actuators and ballast system was once again re-examined with the goal

of optimizing the amount of physical space required on the board by these systems without

compromising the functionality of the design. After researching the detailed specifications of

several candidate components, the DMG9926USD was selected to replace the FDB5800

MOSFETs that were used by the previous group. Each DMG9926USD on the controller takes

over the role of two FDB5800s in a SOP-8L package, which takes up less space than a single

FDB5800.

Maneuvering Thrusters

The maneuvering thruster jet actuators are connected as follows:

Signal Connection

AFL RB14

AFR RB13

ARL RA5

ARR RA4

Table 6: Thruster Connections

34

Ballast System Connections

The ballast solenoids and pump are connected as follows:

Signal Connection

FFS RB12

FDS RB11

RFS RA1

RDS RA0

Pump RA14

Table 7: Ballast System Connections

Motors

 The motor driving circuitry is largely unchanged from the original schematics other than

the addition of power-filtering capacitors for the LMD18200T H-Bridge drivers. Signals to/from

the H-Bridges are connected as follows. Note: For signals that do not use a general-purpose I/O

port (PWM output signals from the PIC32 Output Compare pins and analog voltage inputs from

the motor current sensors), the alternate functions of these pins (general-purpose I/O pins) are

also given when applicable.

Signal Connection

M0DIR RD6

M0BRAKE RD7

M0PWM OC5 (RD4)

M0TMP RD3

M0CURRENT AN15

M1DIR RD2

M1BRAKE RD1

M1PWM OC1 (RD0)

M1TMP RA3

M1CURRENT AN0 (RB0)

Table 8: Motor Connections

35

Communications Systems

 Several interfaces were used on the controller to allow for external communication with

as many different current and future devices as possible.

UART 1 Header

 The 3-pin header for UART 1 provides access to basic transmit/receive functionality as

well as a ground pin. No clear-to-send/ready-to-send functionality is available.

UART 2 Port

 The DB9 RS-232 serial port is connected to UART 2. This port is capable of clear-to-

send/ready-to-send functionality. The primary purpose of this port is to interface with the

acoustic modems.

I2C Header

 The I2C header is connected to the I2C1 pins on the PIC32. This header is not currently

used, but is available for future expansion.

SPI 2 Header

 Upon discovering that the PIC32 has two discrete SPI busses, it was decided that the

gyro should be allocated a dedicated bus to itself. While researching all of the components used

in the original controller schematics, it was found shortly thereafter that there are currently no

other SPI devices present in the AUV. To allow for future expansion of the capabilities of the

AUV, a 4-pin header was added to interface with the second SPI bus.

Port E General Purpose I/O

 Pins 0-7 of Port E were allocated a 4x2 pin header for digital I/O. These pins have no

relevant alternate functions. The location of the header is ideal for connection of slave select

lines from external SPI devices connected to the SPI2 bus.

36

Silkscreen Labels

 The previous controller marked the actuator connection headers with the default names

(J16, J17, etc.), which made it necessary to refer to documentation in the previous reports to

connect the actuators to the controller properly. This has been corrected with the new revision.

Every header on the controller has the proper signal name clearly marked on the PCB

silkscreen. To aid in troubleshooting, the status LEDs on each 12V rail have markings on the

silkscreen indicating which components that status LED corresponds to. To prevent compass

malfunctions due to improper mounting of the PCB, simple “FORE” and “AFT” labels were

added to the silkscreen.

Revision 2.0 Errata

Pressure Sensor

 The pressure sensor pad layout is reversed on the PCB as-ordered and the side

mounting pads are missing. A similar mistake was made as with the previous revision of the

PCB.

C35 Label

 The label for C35 is incorrectly marked as C32 on the silkscreen label. The real C32 is also

marked as being C32.

Gyro Slave Select

 Pin 3 of the GYROJ1 header is connected to the PIC32’s SS1 pin, which is the slave select

input that is used to set the PIC32 as an SPI slave. This trace has been rerouted to RG15 in the

Eagle files. As an interim fix, the trace has been ripped up on the current PCB and the gyro SS

pin is wired to RE3 on the external header.

Atmel AVR644/STK500 Coprocessor

 Initial testing of the new controller revealed a design consideration which had been

previously overlooked. The PIC32 Starter Kit generates its clock frequency from an 8.0 MHz

oscillator crystal. Unfortunately, it is not possible to generate a standard RS-232 baud rate from

37

this crystal, resulting in the controller not being able to communicate with the acoustic

modems at the specified 115200 baud. In order to avoid damaging the Starter Kit in an attempt

to replace the oscillator, an Atmel STK500 development board was borrowed from the Robotics

lab. This board is equipped with an Atmel AVR 644 microcontroller and the 18.432 MHz crystal

required for generating the required frequencies for RS-232 operation. The acoustic modem is

connected to the STK500, which then relays data to and from the primary controller over SPI

using the SPI 2 header.

Controller PCB Revision 2.1 and 2.2

 After the Revision 2.0 PCB was populated, two more iterations on the design occurred.

Revision 2.1 corrected the known errata from 2.0 in the section above. Revision 2.2 implements

most of the features previously recommended for future work on the AUV’s electronics as well

as making numerous small improvements to the layout of the board. Efforts have been made to

allow AUVLib to support both revisions with minimal changes required. The schematics for the

revised PCB can be found on the SourceForge repository.

Power Systems
 The four discrete 12V power rails have been replaced with a large 12V plane on the top

layer of the PCB. By flooding a significant portion of the relevant areas of the PCB with copper

for this purpose, trace width concerns are negated.

 The existing systems for generating logic-level voltages for power have been revamped.

Previously, a single LM7805 linear regulator generated 5V, which was input to the PIC32 as well

as other systems requiring 5V. Other components which require a 3.3V input were supplied

from the PIC32 Starter Kit’s onboard circuitry. The new system replaces the LM7805 with a

V7805 switching regulator for the 5V rail and a V7803 switching regulator for the 3.3V rail,

bypassing the Starter Kit’s 3.3V generation. These switching regulators are far more efficient

than linear regulators, generating relatively little heat. The second regulator for the 3.3V rail

also serves to reduce the load on the 5V regulator.

38

 The existing fuses from the 12V rails have been replaced with a system of PTC (Positive

Temperature Coefficient) resettable fuses connected to each of the 12V-powered components.

These fuses automatically reset when the fault condition is no longer present without having to

be replaced by hand after a single fault event.

Supply Voltage Monitor
 The improved SVM circuit previously recommended has been implemented. The I/O

signal required to activate the SVM is connected to RD8. The analog voltage input is connected

to AN2.

Voltage Reference Generation
 The PIC32’s onboard voltage reference generation is no longer in use, which frees up an

ADC input. Previously, 2.5V was being generated from the PIC32 reference, with an operational

amplifier circuit generating a 1.25V reference for other components. This system placed

multiple constraints on the layout of the PCB. The only circuit requiring a 2.5V reference is the

pump, while the pressure sensor and compass amplifier circuits all require a 1.25V reference.

The new system uses a REF3325 voltage reference generation IC for the pump circuit and a

REF3312 IC for the sensor circuits. These components can be powered from either the 5V or

3.3V rails, which reduces layout constraints beyond not needing a trace run from the PIC32

connector.

Communication
 The onboard communication systems have been revised to eliminate the need for the

STK500 to operate the acoustic modem. A MAX3107 discrete UART has been added which

generates its own baud rate independently of the PIC32’s oscillator and is thus capable of

operating at 115200 baud. This is connected to a MAX3225 RS-232 transceiver, which is now

connected to the DB9 connector instead of the PIC32’s UART2. The MAX3107, labeled as

UART3, communicates with the PIC32 over the PIC32’s SPI2 bus with its SS line connected to

RD11. It also has an interrupt request (IRQ) connection connected to RD13 for use with the

CN19 Change Notice interrupt.

39

Signal Connections
 In the process of optimizing the layout of the PCB, several existing connections have

been moved to different pins on the PIC32. Some of these changes were also caused by a desire

to balance the current load between each DMG9926USD powering the ballast system actuators

and maneuvering jets. The changes are detailed below.

Signal Old Connection New Connection

AFL RB14 RB12

ARL RA5 RA4

ARR RA4 RA5

FFS RB12 RB14

RFS RA1 RF12

RDS RA0 RA1

Pump RA14 RA0

Temperature Sensor AN1 AN10

Gyro SS RE3 RA14

Table 9: PCB Revision 2.2 Changes

Programming/Control

AUVLib

 AUVLib is a library of reusable microcontroller code for the AUV which is distinctly

separated from the mission code. It contains functionality to make all of the hardware function,

but does not execute any commands on its own. The full documentation can be found in

Appendix F.

 One of the problems with the existing code for the old controller was that it required

the programmer to have an intimate knowledge of the schematics of the controller board itself.

For example, to control the pump, the programmer had to be aware that the pump, by

40

convention, should be plugged into a header marked J14, which maps to pin 1 of I/O port 2 on

the MSP430. This system made it very easy to make mistakes when writing code. One of the

goals of AUVLib is to provide several layers of abstraction between the programmer writing

mission code and the specific electrical connections on the controller board such that writing

mission code requires no understanding of the electrical circuits and relatively little

programming background. The control functionality of AUVLib was designed from the ground

up so that each level of control functions adds another layer of abstraction.

Basic Control

 The basic control layer provides the most basic abstraction. It consists of a series of

functions that simply turn actuators on and off and nothing more. The importance of this layer

is that these functions are the only ones that directly interact with the I/O pins that control the

actuators.

Open-Loop Maneuvers

 This layer performs single maneuvers (forward movement, yaw, vertical movement). It

uses the basic control functions in conjunction with the calculations used in the Matlab

simulations to allow the AUV to move a specified amount in the given direction. In the case of

the dive maneuver, a lookup table had to be created because the calculations required cannot

be performed in a timely fashion using the microcontroller. The script used to generate this

table can be found at the end of Appendix D.

Closed-Loop Maneuvers

 These functions will use the open-loop maneuver layer as a starting point. They also

implement a software PID controller based on sensor data from the external pressure sensor,

IMU, and compass. The PID controller will then make additional open-loop maneuver function

calls as needed to make corrections.

41

Acoustic Modem Communication

 Text commands sent over the acoustic modem from a base station can be used to

control the AUV. This interface can also be used to transmit sensor data and debugging

information from the AUV back to the base station. The AUV will respond to commands to

perform both open and closed-loop maneuvers, but not basic control functions. The syntax

mimics that of the actual control functions.

Command code Resultant function call

~OH_x; open_horizontal_maneuver(x);

~OS_x; open_surface_maneuver(x);

~OD_x; open_dive_maneuver(x);

~OY_x; open_yaw_maneuver(x);

~OP_x; open_pitch_maneuver(x);

~RO_x; open_roll_maneuver(x);

~CH_x; closed_horizontal_maneuver(x);

~CS_x; closed_surface_maneuver(x);

~CD_x; closed_dive_maneuver(x);

~CY_x; closed_yaw_maneuver(x);

~CP_x; closed_pitch_maneuver(x);

~CR_x; closed_roll_maneuver(x);

Table 10: Acoustic Communication Control

STK500 Modem Interface

 When the STK500 is used as an interface to the acoustic modem, the AVR644 receives

data from the modem’s RS-232 serial port and passes it on to the PIC32 over SPI. In this

configuration, the PIC32 SPI 2 bus is configured in slave mode to accept commands from the

STK500 in real time. In the event of the AUV needing to report a fault condition or otherwise

transmit data without prompting from the modem/STK500, a signal from the REx on the PIC32

will trigger an interrupt on the STK500, causing it to initiate an SPI transfer.

42

System Health Checks

 In order to help prevent/mitigate any problems which may occur within the AUV, the

controller constantly monitors several internal system health sensors. If a problem is detected,

the controller takes action to mitigate the problem where possible and attempts to

communicate the nature of the problem over the acoustic modem. In the event of a critical

failure, the controller will empty the ballast tanks to ensure that the vehicle can be recovered

from the water as quickly as possible.

Fault condition Error text Action(s) Taken
Motor 0 temperature

flag
M0 DRIVER OVERHEATING.

BRAKING M0.
Apply M0 brake

Set M0 duty cycle to 0%
Motor 1 temperature

flag
M1 DRIVER OVERHEATING.

BRAKING M1.
Apply M1 brake

Set M1 duty cycle to 0%

Supply voltage below
10V

BATTERY LOW.
Restrict motors to 50% thrust

(NOTE: This will break open-loop
control)

Supply voltage below
9V

BATTERY CRITICAL, SURFACING. Empty ballast tanks

Cabin temperature
above 75˚C

CABIN OVERHEATING. SURFACING
AND SHUTTING DOWN SYSTEMS.

Empty ballast tanks
Shut down heat-producing

systems

Water leak*
<Report location of leak in the
case of multiple leak sensors>

Empty ballast tanks
Fire maneuvering jets if upright

External pressure
above <unsafe level>

SAFE EXTERNAL PRESSURE LEVELS
EXCEEDED, SURFACING.

Empty ballast tanks
Fire maneuvering jets if upright

Gyro status bit errors To be determined. To be determined.
Gyro over range error To be determined. To be determined.

Table 11: System Health Checks

*Sensor hardware not fully implemented at the time of writing

43

Timing

The code written for the old controller did not make use of any of the MSP430’s

onboard timer circuits for accurate clocking of events, instead making use of a function which

takes roughly the given amount of time to execute by repeatedly performing a mathematical

operation with a known runtime on the given processor. In order to accurately execute open-

loop maneuvers as well as checking sensor values, etc. at a known frequency, the PIC32’s Timer

3 was used to provide a millisecond-accurate timestamp.

2009-2010 Final Mission Rewrite

 As a simple test/demo of AUVLib, the final mission code from the previous MQP was

rewritten using the new library. In the process of examining the old code in close detail in order

to translate it into the new function calls, several errors were found which contributed to the

partial failure of the final mission. The nature of most of the errors was such that they would

not have occurred had basic on/off-level control functions had been written instead of directly

setting the I/O ports to hexadecimal values. For example, at one point in the old code, the

following 3 lines are called in sequence. The comments explaining what they do were added in

the process of translating them to AUVLib function calls – the only possible explanation for this

set of commands being performed is that it was not the intended commands, but the mistake

was not caught because the code is not self-explanatory.

P1OUT|= 0x78; // Turn all 4 maneuvering jet actuators on
P5OUT|= 0x0F; // Turn FDS/RDS and FFS on (what?)
P2OUT |= 0x02; // Turn pump on

44

Results

Simulations

 Each simple equation of motion was solved for distance in terms of time. The time
gathered would then be used in determining the sub-systems run time. These equations were
simulated in MATLAB to determine runtime for the AUV under ideal circumstances. Gathering
these timings is important for setting up an open loop control of the AUV. The open loop
control would give the team control of the AUV in a closed environment, like the swimming
pool, to certain behavior of the sub and it systems.

 As stated in the dynamics section each motion was broken down into two phases with
the exception of the ballast, which has thee. Using data gathered by the previous MQP teams
the equations were defined and solved in the MATLAB. The code located in Appendix D, solves
each maneuver. By a distance to travel the code will break the total distance up into parts and
determine timings for each component of the AUV. Below are examples of the horizontal and
vertical maneuver at a given distance and depth.

Figure 10: Horizontal Maneuver (3 meters)

45

Figure 11: Dive Maneuver (5 meters)

Electronics

The Revision 2 controller PCB was largely a success. Although there is still some room

for improvement in the design, the Revision 2.0 PCB is a good starting point for a fully

functioning AUV where the control electronics are no longer a serious liability. The Revision 2.0

PCB was used to successfully demonstrate operation of the port thruster operating under the

control of microcontroller code. The control electronics are no longer in danger of catastrophic

failures under normal operating conditions due to trace burnouts or components functioning

outside of their safe operating conditions. Setup of the AUV systems as well as the associated

programming is now more intuitive with specific systems being permanently assigned to

specific signal headers. RS232 serial communication support allows for integration of the

acoustic modems, which was not possible with the original PCB. Upgrading the MCU to a PIC32

has allowed the control electronics to operate independently of a higher-power computer like

the PC/104 stack. Shown below is the mostly-populated PCB.

46

Figure 12: PCB Top

Figure 13: PCB Bottom

47

Programming

AUVLib, while not entirely implemented at the time of writing, is on track to provide a

stable library for future development of the AUV using good software engineering practices.

Basic motion control and simple open-loop maneuvers are fully implemented. Implementation

of the onboard internal sensor systems has begun. The current top priority is to make use the

acoustic modems for external communication. This will allow the AUV to perform commands

remotely as well as communicate important system health information about the vehicle and

other sensor data back to the base station. Once that is complete, more sensors will be brought

online in order to facilitate closed-loop control of the vehicle. The basic framework for all of

these systems has been designed; the low-level code just needs to be implemented.

Modem Operations

 The acoustic modems from UConn were successfully setup and operated from the CAN

MUVE lab at WPI. Both modems worked as expected and were able to send a receive data from

one another. Below is a printout from a message received from one modem to another. The

message sent was “Hello”. As shown below currently there is a significant amount of debug

information that is printed out with the received message. In future software upgrades to the

modems this will be corrected.

Figure 14: Command Window

48

The modems are currently set up on a table in the lab. This can be seen in the picture below.

Because there was no aquarium in the CAN MUVE lab the hydrophone are currently in a bucket

of water. Both modems are connected to a computer for testing purposes. In the future one

modem will be mounted in the AUV and the serial connection from the modem will go to the

new daughter card to facilitate communication to the AUV.

Figure 15: Current Modem Setup

49

Recommendations

Hull Redesign

One future aspect of the project that might need to be redone is the hull. Other designs

of the hull that have been tossed around are a torpedo like shape and a modular tube

structure. A torpedo shape would give the AUV a more hydrodynamic shape that would greatly

reduce the drag that the current hull suffers from. The modular design would allow for quick

swap of components or hull segments on the fly.

The new design concept of the hull is a football-like shape made out of fiber glass. The

football shape would provide a comparable coefficient of drag to that of a torpedo. Another

design feature would be to create a flange to seal the hull. Currently the sub is sealed by fitting

the top of the hull in a gasket and rubbing Vaseline over edge to create a perfect seal. The

flange would press to flat surfaces to gather and the force created would be enough to seal it.

This would theoretically be easier and more reliable than reapplying Vaseline every time.

Fiber glass would be used to construct the hull because it is easier to work with than

Lexan. Originally the idea was to use Lexan and mold it the same way glass bubbles can be

made. Heating the Lexan and then blowing air under it by placing a mold ring on top of the

Lexan would form the spherical shape of the hull. This idea, while interesting, is not optimal.

Fiber-glass like that used on sailboats and the AUVs at Bluefin Robotics is much simpler to work

with. Simply create a mold and then form the fiber glass over it. Another positive aspect of

using fiber glass is the fact that fiber glass bonds to fiber glass, so any repairs or alterations that

need to be made to the hull can be done easily, whereas Lexan might require a new hull to be

made.

Figure shows a mockup hull that was built with a catamaran type ballast system that

was developed. Another external ballast system that was considered was a keel design like

those found on sailboats.

50

Figure 16: Prototype Fiber Glass Hull

Ballast System

 Over the course of this project a new ballast system was often discussed. During the

trip to WHOI the group was given a tour of some of their AUV labs. One AUV was a glider that

utilized a piston like ballast system. A screw-drive motor is used to increase and decrease the

volume and the ballast tank. The screw-drive creates linear motion that is used to draw water

in and expel water out of the tank. Although the WPI AUV in not a glider this system could be

used. This system would be very precise and provide extremely accurate depth control.

51

Appendix A: PCB Design and Fabrication Guide

Accessing the Eagle Files in SVN

 The first step is to access the files in the SVN repository outside of Eclipse (Eclipse

should not be used here at all). This requires a program called TortoiseSVN, which is available at

http://tortoisesvn.net/downloads.html. After installing TortoiseSVN, create an empty folder

somewhere convenient on your computer and then right-click on it and click “SVN Checkout”.

Fill in the directory paths as follows. Note that the empty folder in the example below is called

“Eagle”; if that is the case then the default directory chosen would be

“C:\Users\JOE\Documents\Classes\MQP\Eagle\Eagle”.

Figure 17: TortoiseSVN Checkout

http://tortoisesvn.net/downloads.html

52

Eagle Setup

 Download Eagle from http://www.cadsoft.de/download.htm and install it using the

freeware license option when prompted. When Eagle is run, the Control Panel window is

opened. As an initial configuration step, some directories in the files checked out from SVN

have to be added to Eagle’s directory paths. Add the Libraries, Design Rules, CAM Jobs, and

Projects directories from SVN to the path as shown below.

Figure 18: Eagle Configuration

 At this point, read over the following tutorials as a primer:

• Eagle Schematics: http://www.sparkfun.com/tutorials/108

• Eagle PCB Layout: http://www.sparkfun.com/tutorials/109

• Creating parts in Eagle: http://www.sparkfun.com/tutorials/110

• Better PCBs in Eagle: http://www.sparkfun.com/tutorials/115

PCB Fabrication

 Once changes to the schematic/layout are finalized, it’s time to create the files that

need to be sent to the fabrication house. Gerber files contain a set of coordinates that directly

control the hardware that creates the PCB. From the board layout window, open the CAM

Processor, which will open in a new window. In the CAM Processor window, open the sfe-

http://www.cadsoft.de/download.htm
http://www.sparkfun.com/tutorials/108
http://www.sparkfun.com/tutorials/109
http://www.sparkfun.com/tutorials/110
http://www.sparkfun.com/tutorials/115

53

gerb274x.cam in the ‘cam’ folder. This will add nine new tabs to the window for each layer. At

this point, click the Process Job button in the bottom-right. The following 7 files need to be

placed in a zip archive:

• daughtercard.gbl (Bottom copper)

• daughtercard.gbo (Bottom silkscreen)

• daughtercard.gbs (Bottom soldermask)

• daughtercard.gtl (Top copper)

• daughtercard.gto (Top silkscreen)

• daughtercard.gts (Top soldermask)

• daughtercard.txt (Drill file)

 All previous PCBs have been fabricated by Advanced Circuits (http://4pcb.com/). Use

their FreeDFM pre-order file check before placing an order. Once this has been cleared, place

your order using the $33 2-layer board special offer, and make use of the student discount to

remove the minimum order size.

http://4pcb.com/

54

Appendix B: Vehicle Operation Guide

 This guide is based on the guide in last year’s report with revisions made to reflect

changes that have been made to the vehicle since the previous report was written.

Vehicle Power and Battery Charging

 The vehicle is powered by two 12V batteries hooked up in parallel. There is a power

switch located near the aft battery that will allow the PCB and components to be connected

without unwanted power.

 Included in the CAN MUVE laboratory should be a 12V 3A constant current charger. The

leads from the charger unit should be connected to the respective positive and negative

terminals on a single battery pack in the AUV. Note: RED designates positive connections while

BLACK is negative. Because both batteries are connected in parallel with each other, both

batteries will charge simultaneously even though leads are connected to only a single pack.

Total charge time will vary depending on usage. Leaving the AUV to charge for a full day

however should ensure a complete charge of the system.

 The charger uses a self-terminating trickle charge method to charge the batteries, so

leaving the charger connected for long periods of time will not harm the system. The charger

will automatically stop charging the batteries when they are at capacity and a small LED on the

unit will turn green. A picture of the Soneil battery charger is included in Figure 20.

Figure 19: 12V 3A battery charger for the AUV batteries

55

Programming Options

MPLAB and C32 Compiler

 MPLAB is Microchip’s PIC-specific IDE. Although it should not be used in favor of Eclipse

for development as it does not provide reliable SVN support, it needs to be installed because it

includes the Microchip C32 compiler, associated libraries, and tools to download code to the

PIC32. Microchip does offer the C32 compiler as a separate download, but it does not include

the programming tools.

 Do not use the software on the CD included with the PIC32 Starter Kit, as it is out of date

and will cause AUVLib to fail to compile. MPLAB can be found on the Microchip website at

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=81. The version

of the C32 compiler used to write AUVLib (v1.11b Lite) can also be found on the Documents

page on SourceForge if needed for compatibility reasons.

MPLAB X

At the time of writing, MPLAB X, a Netbeans-based replacement for MPLAB, is available

as a beta release. In the future, MPLAB X will likely surpass Eclipse as the preferred

development tool. It fully supports SVN and can be used to download code to the PIC32.

Setting up Eclipse for AUV Development

 The base Eclipse for C/C++ Developers installation can be acquired from

http://www.eclipse.org/downloads/. If any sort of incompatibility issues are encountered with

newer versions of Eclipse, all development for this project was done using Eclipse 3.5.

PIC C Builder Plugin

 This plugin allows Eclipse to use the Microchip C32 compiler. The .jar file, which can be

obtained from http://sourceforge.net/projects/piccbuilder/, needs to be placed in the

Eclipse\plugins directory.

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=81
http://www.eclipse.org/downloads/
http://sourceforge.net/projects/piccbuilder/

56

Subversive Plugin

 Subversive provides access to SVN repositories from within Eclipse. This is the preferred

method of using SVN when writing code in Eclipse, although TortoiseSVN will also work.

Subversive can be obtained from http://www.eclipse.org/subversive/downloads.php, with

detailed installation instructions located at

http://www.eclipse.org/subversive/documentation/gettingStarted/aboutSubversive/install.php.

Eclox Plugin

 Eclox is an Eclipse plugin to build Doxygen documentation such as the AUVLib

documentation found in Appendix F. Eclox is available at

http://home.gna.org/eclox/#download.

Checking out AUVLib from SVN

 In Eclipse, click Window->Show View->Other… and select “SVN Repositories” from the

SVN folder. There should now be a tab on the bottom pane for SVN Repositories. Add a new

repository location with the URL https://sourceforge.wpi.edu/svn/repos/auv as shown below

and click Finish.

http://www.eclipse.org/subversive/downloads.php
http://www.eclipse.org/subversive/documentation/gettingStarted/aboutSubversive/install.php
http://home.gna.org/eclox/#download
https://sourceforge.wpi.edu/svn/repos/auv

57

Figure 20: Adding SVN Repository to Eclipse

 Expand the repository, right click on AUVLib, and click Check Out. The AUVLib project

should now be in the Project Explorer tab on the left side of the Eclipse window.

58

Making a new Project using AUVLib

 Make a new C project, and select “PIC Cross Target Application” with the PIC C32

toolchain if shown below.

Figure 21: New Eclipse Project

 At this point, click “Next”, not “Finish”. On the following screen, make sure Release is

checked and Debug is unchecked. After clicking “Finish”, right click on the project folder in the

Project Explorer tab on the left side of the screen and click “Properties”. Under C/C++ Build-

59

>Settings, set the target processor to PIC32MX360F512L. While still in C/C++Build->Settings, set

up the PIC C32 C Compiler directories as shown for the PIC32 and AUVLib headers.

Figure 22: Eclipse Project Include Paths

 Still in the Tool Settings tab of C/C++ Build->Settings, change the optimization level to

“Optimize (-O1)”, as higher levels of optimization are not available with the Lite version of C32.

Configure the PIC C32 C Linker libraries as follows.

60

Figure 23: Eclipse Project Library Paths

 To initially upload the new project on SourceForge, right click on the project folder, and

click “Share Project…” in the Team menu. Once this is done, there are two commands in the

Team menu which are most commonly used. The Update command updates the local copy of

the files with any new changes since they were checked out/previously updated without

overwriting changes made locally. The Commit command submits local changes to the server. It

is generally recommended to run an update before committing, as conflicts can occur if others

have committed changes of their own since you last updated.

61

Downloading Code

Warning

DO NOT CONNECT THE USB CABLE TO THE PIC32 STARTER KIT WHILE IT IS CONNECTED TO THE

REVISION 2.0 CONTROLLER. DOING SO WILL PERMANENTLY DAMAGE THE PROCESSOR. The

reason for this can be seen in the power regulation schematic from the PIC32 Starter Kit User’s

Guide below:

Figure 24: PIC32 Starter Kit power input schematic

 Note that there is a reverse voltage protection diode on the +5V_USB input (D2), but no

such diode for the +5V_EXT input. Connecting the USB input in this configuration will cause the

entire 5V rail (including the output pin of the 7805 regulator) to be connected to -5V. This

mistake was made once (the batteries were not connected to the +12V input). The only

observations made before realizing that something was wrong and disconnecting the USB cable

were that the 7805 regulator and the PIC32 itself were very hot. After two failed attempts to

solder a new PIC32MX360F512L to the Starter Kit board, the Starter Kit had to be replaced.

62

Software Considerations

 The first problem to address is that Microchip has not updated the USB drivers for the

basic PIC32 Starter Kit for Windows 7. Instructions are available online for setting them up with

Windows Vista, but Windows XP was used for this project. If the Revision 2.2 PCB and a PICKit 2

are purchased, Windows 7 can be used to program the PIC32 using the PICKit’s software.

 Unfortunately, at this time there is no way to download code using Eclipse. The code has

to be imported into MPLAB or MPLAB X to download. Despite being beta-quality software,

MPLAB X was used over MPLAB because MPLAB was not recognizing the PIC32 Starter Kit.

Differences in how MPLAB X handles header file directories compared to Eclipse require

modification of the include paths in the source code. This situation may be avoidable with

proper project configuration in the future. A separate project is available on SVN called

AUVLib.X that shows the differences in configuration.

Electrical Subsystem Connections

 This process has been greatly simplified from the previous revision of the controller PCB.

The actuator wires now have proper end connectors, so short circuits are not a serious concern.

The silkscreen labels on the PCB show which actuator connects to which header without having

to refer to this guide. Never connect a maneuvering jet actuator or the pump to a ballast

solenoid header, as operation of the vehicle in this configuration will burn out the traces for the

ballast solenoid MOSFET. Only two banana clip connections are required to power the

controller. These 12V and ground inputs are also marked on the PCB silkscreen.

Sealing the Vehicle

 Sealing the vehicle is vital to its operation. A generous portion of petroleum jelly should

be applied to the lower section of the hull where the “I” channel is attached. The jelly should be

flush with the top of the “I” channel. When attaching the hull be sure not to damage any wires

or shift any ballast weights. The top section will sit in the middle of the “I” channel and eight

black rubber clamps around the vehicle should be secured. When the clamps are secured be

sure to verify that the top of the hull is fully in the “I” channel and no gaps can be seen. Next it

63

is best to spread another layer of the petroleum jelly where the top of the hull and the “I”

channel meet.

Transporting the Vehicle

 Transporting the vehicle seems simple but if not done with caution can lead to severe

damage to various subsystems or the vehicle hull. A cart with wheels is used for transport. The

vehicle sits in a white platform constructed from PVC piping. The vehicle should be strapped

down first to this platform, using two green straps found in the lap, and then the platform

should be strapped to the cart with a yellow strap also found in the lab.

 When wheeling the vehicle on the cart at least two people should be involved. One

person will push and steer the cart while the other helps avoid objects and prevent the vehicle

from sliding if a strap is not secured correctly. When transporting the vehicle from the cart to

the test site only the yellow strap should be removed. The white platform should remain

attached to the vehicle and used to help carry the vehicle. Removing the vehicle from the

platform is the last step in transporting the vehicle.

64

Appendix C: Modem Operation Guide

Modem Setup

 The process to set up the modems is fairly straightforward. There are 2 hydrophones

and one 12V power cable that must be plugged into each of the modems. The barrel jack

connector for the 12V cable splits into two cables. The cable with a white strip in it is for +12V

while the all black wire is ground.

Figure 25: First modem

 Currently, there are two hydrophones for each modem. One hydrophone for each

modem will get plugged directly into the modem on the slot that reads “Hydrophone HY”

(yellow in picture above). According to the UConn group, there is a possibility in the future of a

third hydrophone used as a second receiver. Each modem is slightly different in terms of where

the hydrophones are connected. The second modem (shown below) has a different

hydrophone location (also shown in yellow) but the 12V jack and the second hydrophone are

located in the same location.

65

Figure 26: Second modem

 The second hydrophone from each modem must be plugged first into a transducer and

then into the modem. There are currently 2 transducers in the lab. These are shown below.

Only 2 hydrophones have the correct physical connection to plug into the transducers. Once

the hydrophones are plugged into the transducers they are then plugged into the modems on

the location shown by green circles in the pictures above. Again this connection is different

than the first set of hydrophones so there should be little to no confusion.

Figure 27: Modem transducers

66

 The last picture below shows an example of a pair of hydrophones to be plugged into a

modem. There are 2 sets of cables so they should be split up to match the pair in the picture

below.

Figure 28: Hydrophones

 Lastly plug the serial cable from the modem into either the daughter card, for the sub

modem, or a computer for a command modem. It is important that the cables used are Null

Modem cables and not standard serial cables. The modems will not work otherwise.

PuTTY Setup

 In order to send and receive serial data from the modems one must us a terminal

program. Because Putty is available on almost every PC on campus, it was chosen as the

terminal program of choice. Firstly you need to select the serial radial button from the first

menu (shown in red below). Next make sure correct COM port is selected (Blue in picture

below). Lastly change the baud rate, or speed, to 115200 (green in picture below).

67

Figure 29: PuTTY Configuration

 Now select the serial sub menu from the list of option along the left side of the window

(red in picture below). The COM and speed (blue in picture below) should be what was selected

in the first menu. If there is a difference make sure the settings are correct before proceeding.

The most important part in this menu is selecting the proper data bits, stop bits, parity and flow

control options. The options shown below in green should always be used when working with

the modems. Lastly select open to open the serial connection window.

Data = 8

Stop = 1

Parity = None

Flow Control = None

Figure 30: PuTTY Serial Configuration

68

Modem Modes of Operation

 Once the modems are set up there are two ways in which they can be operated. The

first way is an auto-ping configuration. In this configuration the modems will ping each other

every 16 seconds. While the modem will ping each other every 16 second a user can also send a

message in the mode as one normally would. Secondly the modems can be set to only send

data when prompted by the user. To change between these configurations a switch must be

toggled on the modem. The switch in question is located in a bank of 4 switches shown below.

Switches 0-2 should be left alone, while switch 3 changes which mode the modems are

currently in. In the picture shown below the modem is currently in “send on user command”

mode. The mode will toggled to auto-ping mode by switching the position of switch 3 as

explained above.

Figure 31: Modem Switches

69

Sending and Receiving Commands

 Once the modems are setup and the Putty terminal windows have been opened, turn

on the power to the modems via a power supply or through the AUVs battery. The picture

below shows what the modems should print to the terminal window after being powered. If

this message is not shown check all previous steps and make sure there are lit green LEDs on

the modems (signaling they are getting power).

Figure 32: Modem startup

 Sending messages is fairly straightforward. Simply type the message that is to be sent in

the window corresponding to the transmitting modem and hit enter. The modem will reply

echoing what message is being sent by returning “send out msg: message” where message is

the message that has been sent (in the figure below the message sent is “Hello”). The follow

figure shows what should happen on the sending window when attempting to transmit.

Figure 33: Modem transmission

70

After the message has been transmitted an audible squeal can be heard from the acoustic

modems. This squeal should be followed by an update to the receiving modems terminal

window. The figure below shows the terminal window of the receiving modem after getting the

message “Hello” from the previous step. Currently, there is quite a bit of debug information

that also gets printed out with the received message. This is normal, and future upgrades to the

modems firmware should remove the debug information for less computation time on the

AUV.

Figure 34: Modem Reception

From here repeat the previous steps to send any signal from one modem to another. As long as

the modems have 2 hydrophone connected each should be able to send and receive. There is

no need to reset the modems for each message; simply type in a new message on either screen

and press Enter.

Troubleshooting

 Should there be any issues with the modem make sure to go over each step again,

double checking all connections. Another good strategy for troubleshooting is to use a

voltmeter to check that the power supply used for 12v is actually outputting 12v. Finally if there

are still issues with the modems contact Janny Liao at UConn. Please request Professor Hussein

for contact information for Janny Liao.

71

Appendix D: MATLB Code for Motion Simulations

Simple Motions
function simp_motion(mode,delta_x)
% Mode values
%1 - x
%2 - yaw
%3 - z
%4 - pitch

%% Initialize
a1=0;

switch(mode)
 case 1
 X=26;
 m=72;
 a1=26/m;
 lab='X [m]';
 case 2
 X=26;
 r=0.201;
 Iz=4.6;

 a1=X*r/Iz;
 lab='Yaw [radians]';
 case 3
 a1 = 18*.61/72;
 lab='Pitch [radians]';
 case 4
 a1 = 18*.1/.526;
 lab='Roll [radians]';
end

%% Solve
if(delta_x>0)
 t_run=sqrt((delta_x/2)*2/a1);
else
 t_run=sqrt((-delta_x/2)*2/a1);
 a1=-a1;
end

steps=1000;
dt=(t_run)/steps;
t=0:dt:t_run;

xs1=zeros(length(t),2);
xs2=zeros(length(t),2);

for i=1:length(t)

72

 %Phase 1
 x=a1*t(i)^2/2;
 xs1(i,:)=[t(i) x];

 %Phase 2
 x=-a1*t(i)^2/2+a1*t_run*t(i)+a1*t_run^2/2;
 xs2(i,:)=[t(i)+t_run x];
end

fprintf('Half runtime: %0.6g\n',t_run)

plot(xs1(:,1),xs1(:,2))
hold on
plot(xs2(:,1),xs2(:,2),'g')
legend('Phase 1','Phase2')
xlabel('Time [s]')
ylabel(lab)

Vertical Maneuver

Ballast
function [tb] = Ballast(h_des,ho)

global mo P2o V2o rho empty A Af g Cd V

%% Define Contant variables
% mo=65;
P2o=172368.932; %25 psi
% V2o=1*10^-003;
V2o=0.007296588;
rho=998;
empty=0;

A=0.03^2*pi/4;
g=9.81;
Cd=0.6;
Af=0.213*1.22;
V=0.408*0.213*1.2;
mb0=V2o*rho;

mo=rho*V;

%% initiate progress bar
Pbar=waitbar(0,'0% complete','Name','Simulating AUV Ballast System...');
%% Initialize State Vector
s0=zeros(3,1);
s0(1)=0;
s0(2)=ho;
s0(3)=0;

73

%% Simulation time
t0=0;
t_max=40;
dt=0.001;
tstep=0.05;
tspan=0:dt:tstep;

%% Initizlize Matricies
tb=zeros(4,2);

stage=1;
down=0;

%% run simulation 2
s_count=1;
figure
for count = 0:(t_max/tstep)
 t=t0+count*tstep;

 %solve ODE
 [t_ode,s_ode] = ode45('Ballast_ODE',tspan,s0);

 s_size=size(s_ode);

 %set new initial conditions
 t=t+tstep;
 s0=s_ode(s_size(1),1:3)';

 %add points to matrix
 tc(s_count:s_count+s_size(1)-1)=t+t_ode;
 sc(s_count:s_count+s_size(1)-1,:)=s_ode(1:s_size(1),:);
 s_count=s_count+s_size(1);

 %controller
 mb=s0(1);
 h=s0(2);
 vel=s0(3);
 delta=h-h_des;

% empty=-2;

 switch(stage)
 case 1
 empty=-1;
 stage=2
 tb(1,:)=[t empty];
 case 2
 if(mb>=mb0*0.57)
 empty=0;
 tb(2,:)=[t empty];
 end

74

 if(delta>=0)
 stage=3

 subplot(3,1,1)
 hold on
 plot(tc,sc(:,1))

 subplot(3,1,2)
 hold on
 plot(tc,sc(:,2))

 subplot(3,1,3)
 hold on
 plot(tc,sc(:,3))
 clear tc sc
 s_count=1;
 end

 case 3
 empty=1;
 if(mb<=0.02*mb0)
 empty=0;
 tb(3,:)=[t empty];
 stage=4

 subplot(3,1,1)
 plot(tc,sc(:,1),'g')

 subplot(3,1,2)
 plot(tc,sc(:,2),'g')

 subplot(3,1,3)
 plot(tc,sc(:,3),'g')
 clear tc sc
 s_count=1;
 end

 case 4
 empty=-2;
 tb(4,:)=[t empty];
 stage=5

 case 5
 if(vel<0)
 empty=0;
 stage=6
 subplot(3,1,1)
 plot(tc,sc(:,1),'r')

 subplot(3,1,2)
 plot(tc,sc(:,2),'r')

 subplot(3,1,3)
 plot(tc,sc(:,3),'r')
 clear tc sc

75

 s_count=1;
 end

 case 6
 break
 end

 %update progres bar
 ratio=count/(t_max/tstep);
 waitbar(ratio,Pbar,sprintf('%6.2f%% Complete',100*ratio));

end

% figure
subplot(3,1,1)
% plot(tc,sc(:,1))
title('Balast Mass')
xlabel('Time [s]')
ylabel('Mass [kg]')
legend('Phase 1','Phase 2','Phase 3')

subplot(3,1,2)
% plot(tc,sc(:,2))
title('Sub Position')
xlabel('Time [s]')
ylabel('Depth [m]')
legend('Phase 1','Phase 2','Phase 3')

subplot(3,1,3)
% plot(tc,sc(:,3))
title('Sub Velocity')
xlabel('Time [s]')
ylabel('Velocity [m/s]')
legend('Phase 1','Phase 2','Phase 3')

%% Close Progress bar
close(Pbar);

Ballast ODE

function sdot = Ballast_ODE(t,s)

global mo P2o V2o rho empty A Af g Cd V

mb = s(1);
h = s(2);
v = s(3);

76

m = mb+mo;
P2 = P2o*V2o/(V2o-mb/rho);
hddot=0;

mdot=0;
if(empty==1)
 P1=101325+rho*g*h;
 mdot = -A*sqrt(2*rho*(-P1+P2));
 if(P1>P2)
 mdot = A*sqrt(2*rho*(P1-P2))
 end

 if(mb<=0)
 mdot=0;
 end
elseif(empty==-1)
 P1=448159.224;
 mdot = A*sqrt(2*rho*(P1-P2));

 if(P1<P2)
 mdot = -A*sqrt(2*rho*(-P1+P2));
 end

elseif(empty==-2)
 hddot=-36/m;
end

mdot_max=1.13562354*rho/3600;

if(mdot>mdot_max)
 mdot=mdot_max;
end
% P1=101325+rho*g*h;
% mdot = -A*sqrt(2*rho*(-P1+P2));

hddot = hddot + g-1/2*rho*v^2*Cd*Af*sign(v)/m-rho*V*g/m;
hdot = v;

sdot = zeros(3,1);
sdot(1) = mdot;
sdot(2) = hdot;
sdot(3) = hddot;

Dive Maneuver Lookup Table Generator

This script uses a slightly modified version of the Vertical Maneuver code which disables

the progress bars, console output, and plot generation. If this is reused, be sure to remove the

commas directly before each closing bracket and after the final closing bracket.

77

fid = fopen('ballast_table.txt', 'w');
progbar=waitbar(0,'0% complete','Name','Simulating AUV Ballast System...');
for row = 0:0.1:4.0
 progratio = row/4.0;
 waitbar(progratio,progbar,sprintf('%6.2f%% Complete',100*progratio));
 fprintf(fid,'//h_0 = %u dm \n{', row*10);
 for column = 0:0.1:4.0
% fprintf(fid, 'Row: %u, Col: %u\n', row*10, column*10);
 bal = Ballast(column,row);
 out = round(bal(3,1)*1000);
 fprintf(fid, '%5.0d,', out);
% fprintf(fid, '%6.3f\n', out);
 end
 fprintf(fid,'},\n');
end
fclose(fid);

close(progbar);

78

Appendix E: Controller Revision 2.0 Schematics

PIC32 Connector (upper half)

79

PIC32 Connector (lower half)

80

Compass Amplifiers

81

Compass and Compass Set/Reset Circuit

82

External Communications

83

Gyro

84

Motors

85

Power Connections

86

Pump

87

Solenoids and Actuators

88

Temperature and Pressure Sensors

89

Voltage Reference Amplifier and 5V Regulator

90

Appendix F: AUVLib Documentation

File List

Here is a list of all documented files with brief descriptions:

auv.h .. 91
system.h ... 92
communication/acoustic_modem.h ... 95
communication/uart.h .. 96
control/base_control.h .. 97
control/open_loop_maneuvers.h ... 105
sensors/analog_sensors.h .. 108
sensors/gyro.h ... 109

91

auv.h File Reference
#include "communication/acoustic_modem.h"
#include "communication/uart.h"
#include "control/base_control.h"
#include "control/open_loop_maneuvers.h"
#include "control/closed_loop_maneuvers.h"
#include "sensors/analog_sensors.h"
#include "sensors/gyro.h"
#include "system.h"
#include <math.h>
#include <p32xxxx.h>
#include <plib.h>
#include <stdlib.h>
#include <string.h>

Detailed Description

Author:
Joe Baker

Date:
November 9, 2010

This is a meta-header file which includes all of the other AUV headers.
Definition in file auv.h.

92

system.h File Reference

Defines

• #define SYS_FREQ (80000000L)
• #define GetSystemClock() (80000000ul)
• #define GetPeripheralClock() (GetSystemClock()/(1 << OSCCONbits.PBDIV))
• #define GetInstructionClock() (GetSystemClock())
• #define INTERNAL_TEMP_THRESHOLD 75
• #define DEPTH_PRESSURE_THRESHOLD 9000
• #define FILL 1
• #define DRAIN 2

Functions

• void auv_init (void)
Calls all other initialization functions. Call this at the beginning of mission code.

• void Vref2_5 (void)
Voltage reference generaotr init. Initializes the PIC32's comparator reference output voltage to 2.5V based on
the 5V input to the Vref+ pin.

• int wait (int msecs)
Wait a specified time in milliseconds based on the T3 timestamp.

Variables

• unsigned long int timestamp
• short int ballast_status
• short int lmotor_temp_flag
• short int lmotor_temp_previous
• float lmotor_current
• short int rmotor_temp_flag
• short int rmotor_temp_previous
• float rmotor_current
• float cabin_temp
• float pressure
• float compass_heading
• float gyro_x
• float gyro_y
• float gyro_z
• float gyro_accel_x
• float gyro_accel_y
• float gyro_accel_z
• float supply_voltage
• int current_depth

93

Detailed Description

system.h

Author:
Joe Baker

Date:
January 31, 2011

Miscellaneous functions required for basic operation of the AUV systems as well as system
health checks based on the internal sensor systems.
Definition in file system.h.

Define Documentation

#define DEPTH_PRESSURE_THRESHOLD 9000
Safe operating threshold for external pressure sensor: (testing required) psi
Definition at line 29 of file system.h.

#define DRAIN 2
Macro for use with the ballast_status flag variable.
Definition at line 38 of file system.h.

#define FILL 1
Macro for use with the ballast_status flag variable.
Definition at line 37 of file system.h.

#define INTERNAL_TEMP_THRESHOLD 75
Safe operating threshold for internal temperature sensor: 75 degrees Celsius
Definition at line 23 of file system.h.

Function Documentation

void auv_init (void)

Calls all other initialization functions. Call this at the beginning of mission code.

Returns: void
Definition at line 61 of file system.c.

94

int wait (int msecs)

Wait a specified time in milliseconds based on the T3 timestamp.

Parameters:

msecs Number of milliseconds to wait

Returns: void
Definition at line 95 of file system.c.

95

communication/acoustic_modem.h File Reference

Defines

• #define BAUD_115200 21

Functions

• void modem_init (void)
Configure UART2 for the UConn acoustic modem (8 data bits, 1 parity, no RTS/CTS).

• void handle_opcode (void)
Perform actions based on the given opcode and set/clear status flags as needed.

Variables

• unsigned char opcode_start_found
• unsigned char opcode_end_found
• unsigned char modem_enabled
• char opcode_buffer [11]

Detailed Description

Date:
February 8, 2011

Author:
Joe Baker

Definition in file acoustic_modem.h.

Define Documentation

#define BAUD_115200 21
U2BRG register value for 115.2k baud
Definition at line 14 of file acoustic_modem.h.

Function Documentation

void handle_opcode (void)

Perform actions based on the given opcode and set/clear status flags as needed.

96

Returns: void
Definition at line 74 of file acoustic_modem.c.

void modem_init (void)

Configure UART2 for the UConn acoustic modem (8 data bits, 1 parity, no RTS/CTS).

Returns: void
Definition at line 25 of file acoustic_modem.c.

communication/uart.h File Reference

Functions

• void PutCharacterU1 (const char character)
• void WriteStringU1 (const char *string)
• void PutCharacterU2 (const char character)
• void WriteStringU2 (const char *string)

Detailed Description

Date:
March 10, 2011

Author:
Joe Baker

UART helper functions from Microchip's UART Interrupt example code.
Definition in file uart.h.

97

control/base_control.h File Reference

Defines

• #define FORWARD 0
• #define REVERSE 1

Functions

• void control_init (void)
Initializes I/O ports, timers, etc. for the AUV motion control systems.

• void Pump_On (void)
Turn pump on.

• void Pump_Off (void)
Turn pump off.

• void Dive (void)
Turn pump, RFS, and FFS on.

• void Dive_Stop (void)
Turn pump, RFS, and FFS off.

• void Surface (void)
Turn pump, RDS, and FDS on.

• void Surface_Stop (void)
Turn pump, RDS, and FDS off.

• void All_Jets_On (void)
Turn pump, AFL, AFR, ARL, and ARR on.

• void AFL_On (void)
Turn AFL on.

• void ARL_On (void)
Turn ARL on.

• void ARR_On (void)
Turn ARR on.

• void AFR_On (void)
Turn AFR on.

• void All_Jets_Off (void)
Turn pump, AFL, AFR, ARL, and ARR off.

• void AFL_Off (void)
Turn AFL off.

• void ARL_Off (void)
Turn ARL off.

• void ARR_Off (void)
Turn ARR off.

• void AFR_Off (void)
Turn AFR off.

• void Fill_Solenoids_On (void)
Turn FFS and RFS on.

• void Drain_Solenoids_On (void)

98

Turn FDS and RDS on.
• void RDS_On (void)

Turn RDS on.
• void FDS_On (void)

Turn FDS on.
• void FFS_On (void)

Turn FFS on.
• void RFS_On (void)

Turn RFS on.
• void Fill_Solenoids_Off (void)

Turn FFS and RFS off.
• void Drain_Solenoids_Off (void)

Turn FDS and RDS off.
• void RDS_Off (void)

Turn RDS off.
• void FDS_Off (void)

Turn FDS off.
• void FFS_Off (void)

Turn FFS off.
• void RFS_Off (void)

Turn RFS off.
• void Set_M0 (unsigned char pct_duty, unsigned char dir)

Set left motor to specified percent throttle and direction.
• void M0_Brake_On (void)

Turn M0 brake on.
• void M0_Brake_Off (void)

Turn M0 brake off.
• void Set_M1 (unsigned char pct_duty, unsigned char dir)

Set right motor to specified percent throttle and direction.
• void M1_Brake_On (void)

Turn M1 brake on.
• void M1_Brake_Off (void)

Turn M1 brake off.

99

Detailed Description

Author:
Joe Baker

Date:
November 9, 2010

This header file contains all prototypes and definitions pertaining to the control systems of the
AUV.
Definition in file base_control.h.

Define Documentation

#define FORWARD 0
Motor direction macro for the H-Bridge direction pins.
Definition at line 19 of file base_control.h.

#define REVERSE 1
Motor direction macro for the H-Bridge direction pins.
Definition at line 20 of file base_control.h.

Function Documentation

void AFL_Off (void)
Turn AFL off.

Returns: void
Definition at line 67 of file base_control.c.

void AFL_On (void)
Turn AFL on.

Returns: void
Definition at line 44 of file base_control.c.

void AFR_Off (void)
Turn AFR off.

100

Returns: void
Definition at line 72 of file base_control.c.

void AFR_On (void)
Turn AFR on.

Returns: void
Definition at line 48 of file base_control.c.

void All_Jets_Off (void)
Turn pump, AFL, AFR, ARL, and ARR off.

Returns: void
Definition at line 61 of file base_control.c.

void All_Jets_On (void)
Turn pump, AFL, AFR, ARL, and ARR on.

Returns: void
Definition at line 39 of file base_control.c.

void ARL_Off (void)
Turn ARL off.

Returns: void
Definition at line 77 of file base_control.c.

void ARL_On (void)
Turn ARL on.

Returns: void
Definition at line 52 of file base_control.c.

void ARR_Off (void)
Turn ARR off.

Returns: void
Definition at line 82 of file base_control.c.

void ARR_On (void)
Turn ARR on.

101

Returns: void
Definition at line 56 of file base_control.c.

void control_init (void)
Initializes I/O ports, timers, etc. for the AUV motion control systems.

Returns: void
Definition at line 11 of file base_control.c.

void Dive (void)
Turn pump, RFS, and FFS on.

Returns: void
Definition at line 163 of file base_control.c.

void Dive_Stop (void)
Turn pump, RFS, and FFS off.

Returns: void
Definition at line 172 of file base_control.c.

void Drain_Solenoids_Off (void)
Turn FDS and RDS off.

Returns: void
Definition at line 127 of file base_control.c.

void Drain_Solenoids_On (void)
Turn FDS and RDS on.

Returns: void
Definition at line 95 of file base_control.c.

void FDS_Off (void)
Turn FDS off.

Returns: void
Definition at line 138 of file base_control.c.

void FDS_On (void)
Turn FDS on.

102

Returns: void
Definition at line 106 of file base_control.c.

void FFS_Off (void)
Turn FFS off.

Returns: void
Definition at line 133 of file base_control.c.

void FFS_On (void)
Turn FFS on.

Returns: void
Definition at line 101 of file base_control.c.

void Fill_Solenoids_Off (void)
Turn FFS and RFS off.

Returns: void
Definition at line 121 of file base_control.c.

void Fill_Solenoids_On (void)
Turn FFS and RFS on.

Returns: void
Definition at line 89 of file base_control.c.

void M0_Brake_Off (void)
Turn M0 brake off.

Returns: void
Definition at line 213 of file base_control.c.

void M0_Brake_On (void)
Turn M0 brake on.

Returns: void
Definition at line 208 of file base_control.c.

void M1_Brake_Off (void)
Turn M1 brake off.

103

Returns: void
Definition at line 237 of file base_control.c.

void M1_Brake_On (void)
Turn M1 brake on.

Returns: void
Definition at line 232 of file base_control.c.

void Pump_Off (void)
Turn pump off.

Returns: void
Definition at line 158 of file base_control.c.

void Pump_On (void)
Turn pump on.

Returns: void
Definition at line 153 of file base_control.c.

void RDS_Off (void)
Turn RDS off.

Returns: void
Definition at line 148 of file base_control.c.

void RDS_On (void)
Turn RDS on.

Returns: void
Definition at line 116 of file base_control.c.

void RFS_Off (void)
Turn RFS off.

Returns: void
Definition at line 143 of file base_control.c.

void RFS_On (void)
Turn RFS on.

104

Returns: void
Definition at line 111 of file base_control.c.

void Set_M0 (unsigned charpct_duty, unsigned chardir)
Set left motor to specified percent throttle and direction.

Parameters:

pct_duty 0-100 value for a throttle percentage

dir Motor direction (use FORWARD/REVERSE macros)

Returns: void
Definition at line 193 of file base_control.c.

void Set_M1 (unsigned charpct_duty, unsigned chardir)
Set right motor to specified percent throttle and direction.

Parameters:

pct_duty 0-100 value for a throttle percentage

dir Motor direction (use FORWARD/REVERSE macros)

Returns: void
Definition at line 218 of file base_control.c.

void Surface (void)
Turn pump, RDS, and FDS on.

Returns: void
Definition at line 180 of file base_control.c.

void Surface_Stop (void)
Turn pump, RDS, and FDS off.

Returns: void
Definition at line 187 of file base_control.c.

105

control/open_loop_maneuvers.h File Reference

Defines

• #define PI 3.14159265

Functions

• void open_horizontal_maneuver (int decimeters)
Translate along the X axis using the motors with open-loop control.

• void open_full_surface_maneuver (void)
Fully surface with open-loop control.

• void open_surface_maneuver (int decimeters)
Rise a specified amount with open-loop control.

• void open_dive_maneuver (int decimeters)
Fill the ballast tanks in order to dive to a certain depth with open-loop control.

• void open_yaw_maneuver (int degrees)
Rotate about the Z axis using the motors with open-loop control.

• void open_pitch_maneuver (int degrees)
Rotate about the Y axis using the maneuvering jets (TODO: ballast?) with open-loop control.

• void open_roll_maneuver (int degrees)
Rotate about the X axis using the maneuvering jets with open-loop control.

Detailed Description

Open-loop motion control functionality for the AUV.

Date:
January 29, 2011

Author:
Joe Baker

Definition in file open_loop_maneuvers.h.

Function Documentation

void open_dive_maneuver (intdecimeters)
Fill the ballast tanks in order to dive to a certain depth with open-loop control.

Parameters:

decimeters Distance to dive in decimeters

106

Returns: void
Definition at line 167 of file open_loop_maneuvers.c.

void open_full_surface_maneuver (void)
Fully surface with open-loop control.

Returns: void
Definition at line 144 of file open_loop_maneuvers.c.

void open_horizontal_maneuver (intdecimeters)
Translate along the X axis using the motors with open-loop control.

Parameters:

decimeters Distance to travel in decimeters.

Returns: void
Definition at line 98 of file open_loop_maneuvers.c.

void open_pitch_maneuver (intdegrees)
Rotate about the Y axis using the maneuvering jets (TODO: ballast?) with open-loop control.

Parameters:

degrees Direction to turn relative to LCS. Positive is in the CCW direction.

Returns: void
Definition at line 243 of file open_loop_maneuvers.c.

void open_roll_maneuver (intdegrees)
Rotate about the X axis using the maneuvering jets with open-loop control.

Parameters:

degrees Direction to turn relative to LCS. Positive is in the CCW direction.

Returns: void
Definition at line 302 of file open_loop_maneuvers.c.

void open_surface_maneuver (intdecimeters)
Rise a specified amount with open-loop control.

107

Parameters:

decimeters Distance to rise in decimeters

Returns: void
Definition at line 154 of file open_loop_maneuvers.c.

void open_yaw_maneuver (intdegrees)
Rotate about the Z axis using the motors with open-loop control.

Parameters:

degrees Direction to turn relative to LCS. Positive is in the CCW direction.

Returns: void
Definition at line 195 of file open_loop_maneuvers.c.

108

sensors/analog_sensors.h File Reference

Defines

• #define ADC_RESOLUTION 0.0032226563

Functions

• void analog_sensor_init (void)
Initialize the ADC for the AUV's analog sensor systems.

• void get_cabin_temp (void)
Sets the cabin_temp global variable based on the ADC value and LM20 transfer function.

• void get_compass_heading (void)
Sets compass_heading global variable using equations from Honeywell AN-203.

Variables

• int m1_sense_result
• int cabin_temp_result
• int pressure1_result
• int gyro_dac_result
• int comp_z_result
• int comp_x_result
• int comp_y_result
• int m0_sense_result

Detailed Description

Author:
Joe Baker

Date:
November 10, 2010

This header file contains all prototypes and definitions pertaining to the analog sensor systems of
the AUV.
Definition in file analog_sensors.h.

Define Documentation

#define ADC_RESOLUTION 0.0032226563
Resolution = Supply voltage/ADC bits = 3.3/(2^10)
Definition at line 18 of file analog_sensors.h.

109

sensors/gyro.h File Reference

Functions

• void gyro_init (void)
Initialize SPI1 for the ADIS16354.

Detailed Description

Date:
January 31, 2011

Author:
Joe Baker

Definition in file gyro.h.

Function Documentation

void gyro_init (void)
Initialize SPI1 for the ADIS16354.

Returns:
void

Definition at line 11 of file gyro.c.

110

References

Advanced Circuits. "Advanced Circuits Capabilities." Advanced Circuits Capabilities. Aurora:
Advanced Circuits, September 1, 2010.

Barkhordarian, Vrej. "Power MOSFET Basics." International Rectifier Web site. October 25,
2005. www.irf.com/technical-info/appnotes/mosfet.pdf (accessed January 21, 2011).

CadSoft. Eagle Tutorial Version 5. Pembroke Pines: CadSoft, 2008.

CollabNet Inc. SourceForge Enterprise Edition 4.4 SP1 User Guide. Brisbane: CollabNet Inc.,
2008.

David, Radu A, Maxwell E French, Brandon M Habin, and Akil Kerjiwal. Design of Autonomous
Underwater Vehicle and Optimization of Hydrodynamic Properties and Control. MQP,
Worcester: Worcester Polytechnic Institute, 2009.

Di Jasio, Lucio. Programming 32-bit Microcontrollers in C: Exploring the PIC32. Burlington:
Newnes, 2008.

Honeywell. "AN-203: Compass Heading Using Magnetometers." Honeywell Web site. July 1,
1995.
http://www.honeywell.com/sites/servlet/com.merx.npoint.servlets.DocumentServlet?d
ocid=D47F07978-4A99-3FC1-6F40-7CB8271A5B30 (accessed March 10, 2011).

Microchip. 32-Bit Language Tools Libraries. Chandler: Microchip, 2009.

—. PIC32 Family Reference Manual. Chandler: Microchip, 2008.

—. PIC32MX3XX/4XX Family Data Sheet. Chandler: Microchip, 2008.

Moussette, Daniel, Ashish Palooparambil, and Jarred Raymond. Optimization and Control
Design of an Autonomous Underwater Vehicle. MQP, Worcester: Worcester Polytechnic
Institute, 2010.

National Semiconductor. "LM20 micro SMD Temperature Sensor Datasheet." National
Semiconductor Web site. September 21, 2010.
http://www.national.com/mpf/LM/LM20.html (accessed December 9, 2010).

Suppanz, Brad. Trace Width Calculator. January 1, 2007.
http://www.4pcb.com/index.php?load=content&page_id=95 (accessed December 30,
2010).

	Abstract
	Executive Summary
	Acknowledgements
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Background
	AUV History
	Submarine Ballast
	Acoustic Underwater Communication

	Methodology
	Ballast Holder Design
	Electronics Enclosure for WPI AUV
	AUV Dynamics Equations and Simulation
	Horizontal
	Pitch
	Roll
	Yaw
	Vertical

	Electronics Refit
	Controller PCB Revision 2.0
	Microcontroller Selection
	Power Systems
	Sensor Systems
	Cabin Temperature
	3-Axis Compass
	6-Axis IMU
	Pressure
	Supply Voltage
	Water Leak Sensor

	Power Inputs
	12V Bus Current Requirements
	Fuses

	Motion Control systems
	Maneuvering Thrusters
	Ballast System Connections
	Motors

	Communications Systems
	UART 1 Header
	UART 2 Port
	I2C Header
	SPI 2 Header
	Port E General Purpose I/O

	Silkscreen Labels
	Revision 2.0 Errata
	Pressure Sensor
	C35 Label
	Gyro Slave Select

	Atmel AVR644/STK500 Coprocessor

	Controller PCB Revision 2.1 and 2.2
	Power Systems
	Supply Voltage Monitor
	Voltage Reference Generation
	Communication
	Signal Connections

	Programming/Control
	AUVLib
	Basic Control
	Open-Loop Maneuvers
	Closed-Loop Maneuvers
	Acoustic Modem Communication
	STK500 Modem Interface
	System Health Checks
	Timing

	2009-2010 Final Mission Rewrite

	Results
	Simulations
	Electronics
	Programming
	Modem Operations

	Recommendations
	Hull Redesign
	Ballast System

	Appendix A: PCB Design and Fabrication Guide
	Accessing the Eagle Files in SVN
	Eagle Setup
	PCB Fabrication

	Appendix B: Vehicle Operation Guide
	Vehicle Power and Battery Charging
	Programming Options
	MPLAB and C32 Compiler
	MPLAB X
	Setting up Eclipse for AUV Development
	PIC C Builder Plugin
	Subversive Plugin
	Eclox Plugin
	Checking out AUVLib from SVN
	Making a new Project using AUVLib

	Downloading Code
	Warning
	Software Considerations

	Electrical Subsystem Connections
	Sealing the Vehicle
	Transporting the Vehicle

	Appendix C: Modem Operation Guide
	Modem Setup
	PuTTY Setup
	Modem Modes of Operation
	Sending and Receiving Commands
	Troubleshooting

	Appendix D: MATLB Code for Motion Simulations
	Simple Motions
	Vertical Maneuver
	Ballast
	Ballast ODE

	Dive Maneuver Lookup Table Generator

	Appendix E: Controller Revision 2.0 Schematics
	PIC32 Connector (upper half)
	PIC32 Connector (lower half)
	Compass Amplifiers
	Compass and Compass Set/Reset Circuit
	External Communications
	Gyro
	Motors
	Power Connections
	Pump
	Solenoids and Actuators
	Temperature and Pressure Sensors
	Voltage Reference Amplifier and 5V Regulator

	Appendix F: AUVLib Documentation
	File List
	auv.h File Reference
	Detailed Description
	Author:
	Date:

	system.h File Reference
	Defines
	Functions
	Variables
	Detailed Description
	Author:
	Date:

	Define Documentation
	#define DEPTH_PRESSURE_THRESHOLD 9000
	#define DRAIN 2
	#define FILL 1
	#define INTERNAL_TEMP_THRESHOLD 75

	Function Documentation
	void auv_init (void)
	Returns: void

	int wait (int msecs)
	Parameters:
	Returns: void

	communication/acoustic_modem.h File Reference
	Defines
	Functions
	Variables
	Detailed Description
	Date:
	Author:

	Define Documentation
	#define BAUD_115200 21

	Function Documentation
	void handle_opcode (void)
	Returns: void

	void modem_init (void)
	Returns: void

	communication/uart.h File Reference
	Functions
	Detailed Description
	Date:
	Author:

	control/base_control.h File Reference
	Defines
	Functions
	Detailed Description
	Author:
	Date:

	Define Documentation
	#define FORWARD 0
	#define REVERSE 1

	Function Documentation
	void AFL_Off (void)
	Returns: void

	void AFL_On (void)
	Returns: void

	void AFR_Off (void)
	Returns: void

	void AFR_On (void)
	Returns: void

	void All_Jets_Off (void)
	Returns: void

	void All_Jets_On (void)
	Returns: void

	void ARL_Off (void)
	Returns: void

	void ARL_On (void)
	Returns: void

	void ARR_Off (void)
	Returns: void

	void ARR_On (void)
	Returns: void

	void control_init (void)
	Returns: void

	void Dive (void)
	Returns: void

	void Dive_Stop (void)
	Returns: void

	void Drain_Solenoids_Off (void)
	Returns: void

	void Drain_Solenoids_On (void)
	Returns: void

	void FDS_Off (void)
	Returns: void

	void FDS_On (void)
	Returns: void

	void FFS_Off (void)
	Returns: void

	void FFS_On (void)
	Returns: void

	void Fill_Solenoids_Off (void)
	Returns: void

	void Fill_Solenoids_On (void)
	Returns: void

	void M0_Brake_Off (void)
	Returns: void

	void M0_Brake_On (void)
	Returns: void

	void M1_Brake_Off (void)
	Returns: void

	void M1_Brake_On (void)
	Returns: void

	void Pump_Off (void)
	Returns: void

	void Pump_On (void)
	Returns: void

	void RDS_Off (void)
	Returns: void

	void RDS_On (void)
	Returns: void

	void RFS_Off (void)
	Returns: void

	void RFS_On (void)
	Returns: void

	void Set_M0 (unsigned charpct_duty, unsigned chardir)
	Parameters:
	Returns: void

	void Set_M1 (unsigned charpct_duty, unsigned chardir)
	Parameters:
	Returns: void

	void Surface (void)
	Returns: void

	void Surface_Stop (void)
	Returns: void

	control/open_loop_maneuvers.h File Reference
	Defines
	Functions
	Detailed Description
	Date:
	Author:

	Function Documentation
	void open_dive_maneuver (intdecimeters)
	Parameters:
	Returns: void

	void open_full_surface_maneuver (void)
	Returns: void

	void open_horizontal_maneuver (intdecimeters)
	Parameters:
	Returns: void

	void open_pitch_maneuver (intdegrees)
	Parameters:
	Returns: void

	void open_roll_maneuver (intdegrees)
	Parameters:
	Returns: void

	void open_surface_maneuver (intdecimeters)
	Parameters:
	Returns: void

	void open_yaw_maneuver (intdegrees)
	Parameters:
	Returns: void

	sensors/analog_sensors.h File Reference
	Defines
	Functions
	Variables
	Detailed Description
	Author:
	Date:

	Define Documentation
	#define ADC_RESOLUTION 0.0032226563

	sensors/gyro.h File Reference
	Functions
	Detailed Description
	Date:
	Author:

	Function Documentation
	void gyro_init (void)
	Returns:

	References

