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Abstract 

Preserving historic art provides society with a greater connection to its cultural history. 

Unfortunately, insufficient protection from vibration for canvas paintings in transit threatens to 

rob us of this benefit. This project was sponsored by the Georgia O’Keeffe Museum (GOKM) who 

provided tools and suggestions for researching this ongoing problem. We designed and 

implemented an affordable method of using simple sensors to analyze the effectiveness of 

packaging materials at eliminating vibration. We used this analytic method to evaluate a variety 

of alternative materials to the conventional foams used in canvas shipping containers. Finally, we 

worked with the GOKM to create a draft exhibit design to raise public awareness of the museum’s 

work to stop vibration damage. 
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Executive Summary 

Background             

Georgia O’Keeffe was a remarkable artist of the 20th 

century. She was one of the first female artists to participate in 

the American Modernist movement (Randolph, 2017). E.C. 

Goossen, a leading art critic and curator of the 1960s, praised 

her as “a thoroughly representative American artist of the first 

rank,” (Scott, 2015).   

Preserving the works of O’Keeffe for 

artistic value alone is justified, but art often holds significant 

meaning outside of its visual beauty or market-value. Art is 

important to preserve because it captures the thoughts and 

feelings of an entire era (Gerlach, 2014). Georgia O’Keeffe’s 

work in particular is significant in that it relates to her struggle 

for independence during the Women’s Rights movement of 

her time (Scott, 2015). It is important that such artwork continue to be shared for the historical 

connections they provide (Chute, 2011).  

Historically, shipping techniques were concerned with keeping the work in place, not 

necessarily protecting it. The packing materials – often paper, rope, and straw – could scratch and 

disfigure the pieces being shipped (Keenpac, 2014). These methods led to many artworks being 

destroyed before reaching any museums.   

During the 1950s the art world began to use more advanced protective materials such as 

foams and plastic shells (Shelley, 1987). Currently, when art is shipped it is placed in a foam lined 

box which is sealed and secured inside a foam lined wooden crate. This double crate design gives 

protection to the artwork from major drops and shocks that may occur during transportation. 

 

What is Going Wrong?            

Despite the current protection of art packaged in crates and foams, works are still being 

damaged. The Georgia O’Keeffe Innovation (GOKI) group noticed that cracks in the oil paintings 

were appearing without any drops or shocks exerted on the artwork. They realized that the cracks 

were caused by vibrations created by the vehicles used to transport paintings. The vibrations cause 

the artwork to flex, which causes cracks to form as the dry oil paint bends. In an attempt to stop 

the damage, our team worked with the GOKI group to explore ways to dampen the vibrations.  

  

From the Faraway, Nearby (O'Keeffe, 1937) 



 

Pg. iii 

Project Goal              

The goal of this project was to help the 

Georgia O’Keeffe Museum better understand and 

prevent vibration’s effects on paintings in transit. 

To accomplish this goal, we first combined several 

existing vibration analysis techniques. We then used 

those techniques to evaluate the effectiveness of 

different conventional and nonconventional 

shipping materials. To conclude our project, we 

drafted a museum exhibit designed to help the 

public better understand the problems the museum 

faces in shipping artwork, and the steps taken to 

mitigate damages.  

  

  

 

 

Objective 1 Methods            

For the GOKM to properly evaluate new container materials, they needed a method to 

measure vibrations. For their initial investigations into determining the cause of damage before 

our team’s arrival, the GOKI group relied upon extremely expensive tools such as a Multiple 

Scanning Vibrometer (MSV) and the Polytec Scanning Vibrometer (PSV). Ideally, the GOKM 

would be able to continue using these devices to test future designs and materials. However, 

renting these tools was prohibitively expensive and unsuitable for long term experimentation. In 

order for the museum to continue testing, a cheaper method of data collection had to be created. 

As a result, our team turned to accelerometers to collect data.  

To provide a cost-effective solution, we designed our own data acquisition system. We 

decided to use an STM LIS3DH accelerometer, a lightweight, affordable sensor used to measure 

accelerations. To utilize the sensor, we used a microcontroller – a very small programmable 

computer specifically designed for interfacing with other small electronics – known as the Arduino 

Uno R3. The Arduino served as a “middleman” for the data, reading data over wire connections 

from the accelerometer and sending it via USB to a laptop. The small size, mass, and cost of the 

LIS3DH accelerometers allowed for us to easily place many of them within the small crevices of 

the crate while obtaining accurate readings.  

To obtain the vibration frequency 

spectra from the raw accelerometer data, we 

performed Discrete Fourier Transform (DFT) 

analysis. DFT analysis takes in a large 

number of data points over some interval of 

time, and tries to approximate a “line of best 

fit” through them by combining periodic 

wave functions (in this case, simple 

vibrations) of different frequencies. This 

provides an approximation of what 

frequencies of vibration are occurring at the 

accelerometer mount point (Brandt, 2011). Example DFT approximating of a square curve using sine waves 

(Weisstein, n.d.) 

Diagram of a typical canvas artwork shipment crate. 



 

Pg. iv 

To perform this analysis, we used the programming language Python with the research module 

SciPy (Jones et al., 2001). 

However, the standard DFT function requires all of its data to be from the same set of 

vibrations (Brandt, 2011), which would not work if there were irregular bumps or changes in 

vibration during transit. To account for this, we used a modified version of the DFT known as 

Welch’s method. Welch’s method breaks the accelerometer data into smaller windows of time, 

and performs DFT analysis on each window. The average of the spectrums is then computed 

(Welch, 1967). 

 

Objective 1 Results             

In accomplishing objective 1, we were able to successfully wire the Arduino in a way that 

supported up to 32 accelerometers, and use these accelerometers to analyze vibrations at their 

respective mount point. Unfortunately, due to limitations in the Arduino’s USB data output speed, 

we were limited in how many total sensor readings we could output per second. For this reason, 

we were limited to only 6 simultaneous sensors, which was sufficient for testing but not ideal. For 

future designs, we could use the same circuit design with a more advanced version of the Arduino, 

which would allow us to send the data over four times as fast (and thus support 24 sensors) with 

minor changes to our program. 

 

Objective 2 Methods            

 Before we tested different materials for damping, we first created a system that attempted 

to mimic the vibrations experienced in transit. We designed our vibration generating machine 

by filling a large water jug and with many rocks of different sizes. The jug was placed on 4 

mounted wheels to rotate freely 

about its central axis. A hand 

drill was used as a motor to 

rotate the water jug. As the jug 

rotated, the rocks tumbled 

chaotically, creating vibrations. 

We measured these simulated 

vibrations with accelerometers, 

as explained in objective 1, to 

check whether these vibrations 

were actually similar to trucks’ 

vibrations.  

After establishing our 

vibration generating system, we tested different alternative materials to the traditional packing 

foam. We first tested the crates with their current PEU foam. After obtaining these baseline 

readings, we lined the existing foam with various alternative damping materials and tested each 

with the method from objective 1. The different materials configurations we tested were:  

• PORON; a urethane synthetic crystalline compound  

• Sorbothane; a visco-elastic polymer  

• Excelsior; fine curled wood shavings of aspen logs   

• PORON + Sorbothane; (to determine if their benefits were additive) 

 

Diagram of our water-jug shaker used to generate vibrations 
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Objective 2 Results             

After analyzing the water-jug shaker’s vibrations, we found that while it did not exactly 

mirror those produced by a transport truck, they were at least consistent enough to be used for 

reproducible experiments. Of the materials analyzed, Excelsior showed the most promising 

improvements to counteracting vibrations over other materials in most frequency ranges, but was 

not a clear best choice overall. The size and weight of a painting can alter how it responds to 

different frequencies of vibration, influencing the “best choice” of material. Nevertheless, the 

Georgia O’Keeffe Museum can continue to use this method of testing materials to evaluate the 

damping properties of any potential foam replacement. 

 

Objective 3 Methods             

For our last objective, we created a museum exhibit draft that established the current 

problems with art shipment and how the GOKM is working to alleviate them. Initially, we created 

a list of the individual core concepts of the project and how we might go about representing them. 

We needed to convey how art is shipped/why it is dangerous, what the museum is doing to protect 

art, and why protecting art matters.  

Before drafting an exhibit, we interviewed 

Georgia O’Keeffe Museum curators Carolyn 

Kastner and Cody Hartley to get a sense of how to 

properly draft an exhibit as well as how to display 

technical information in an accessible way. We then 

set out to make several 3D model draft options for 

each of the core ideas we wanted to convey. 

 

Objective 3 Result     

We designed several modular drafts for the 

museum staff’s consideration. The majority of the 

basic information was presented in writing, with an 

effort made to minimize size and complexity as 

suggested by the curators. The modules consisted 

of physically engaging tactile elements and 

interactive visual representations to help convey 

more technical aspects of the museum’s work. 

 

Conclusion                        

The GOKI group benefited from our work and will continue to explore materials and 

damping methods after our departure. We delivered a method of analyzing vibration damping 

effectiveness, and created a way to quantitatively compare one crate design’s effectiveness to 

another. The applications of our findings will hopefully allow for museums to more safely 

transport art. It is important to note that our findings here do not apply solely to the works of 

Georgia O’Keeffe. Any insight gained into protecting her paintings are applicable to canvas 

artworks worldwide. 

  

Exhibit Module Draft Design: Touch-table materials 

display with video showcasing how they were used 
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1.0 Introduction: The Social Reasoning and Technology Behind 

Protecting Art 

Artwork is important for providing cultural and historical background to modern society. 

Beyond their aesthetic value, the context surrounding an artist’s creations can tell a broader story 

about their life and culture. For instance, Georgia O’Keeffe’s paintings are mostly abstract 

depictions of flowers, rivers, and other natural features, but the story they tell is far more important: 

that of a woman rejecting artistic and gender norms, and moving far away to the American 

Southwest in pursuit of independence. It is important that as a society we protect the physical 

artworks of artists like O’Keeffe so that we do not lose the valuable cultural insight and historical 

perspective they provide. 

The Georgia O’Keeffe Museum currently possesses and is responsible for the preservation 

of the majority of O’Keeffe’s canvas paintings. Like most museums, the GOKM frequently 

transports many of its artworks around the world to be displayed at other art institutions. Recently, 

conservators at the GOKM noticed unexpected deterioration in many of their paintings, and 

suspected transport to be the cause of the damage. The museum created a research team, the 

Georgia O’Keeffe Innovation (GOKI) group, to investigate this issue further. Using advanced 

sensor technologies, the GOKI group discovered that even when protected by state-of-the-art 

canvas packing materials, the paintings were experiencing unsafe levels of vibrations when 

exposed to shipping conditions. Due to the ubiquity of the shipping container they tested, it was 

clear that this damage was affecting any canvas painting in transit, not just the works of O’Keeffe. 

Currently, the GOKI group is working towards designing innovative packing systems to 

help prevent further damage to paintings worldwide. Unfortunately, as a smaller museum, GOKM 

is limited in its resources and access to technical expertise; it cannot afford the cost of continuing 

its initial method of experimentation. The rest of this chapter provides further details of why 

protecting artwork is important, and why current protective practices are insufficient. 
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1.1 Significance of Georgia O’Keeffe’s Work 

Georgia O’Keeffe was a remarkable artist of the 20th 

century. She was one of the first female artists to participate 

in the American Modernist movement (Randolph, 2017).  

E.C. Goossen, a leading art critic and curator of the 1960s, 

praised her as “a thoroughly representative American artist of 

the first rank,” (Scott, 2015).  

When viewed chronologically, Georgia O’Keeffe’s 

paintings showcase her personal growth as an artist. As a 

young woman, she was considered a realist painter; most of 

her artwork captured the subject matter exactly as it appeared 

in reality. Her approach to painting changed in 1912 when she 

was introduced to the ideas of Arthur Wesley Dow, who 

believed that art could be created by the composition of lines, 

masses and colors to form harmony.  

Dow’s ideas greatly influenced 

O’Keeffe, who began experimenting with more 

abstract forms (Scott, 2015). An example of this 

can be seen in Figure 1, an abstract painting of 

Lake George. O’Keeffe described this method 

of abstraction as the best way to “get at the real 

meaning of things,” (Andrew, 2013). 

Though her early abstract works focused 

on the city and countryside around New York, 

Georgia O’Keeffe is best known for depicting 

the American Southwest, which she believed 

represented the true natural beauty of America 

(Scott, 2015). An example of her iconic work of 

the Southwest can be seen in Figure 2, which 

includes both her famous landscapes and her 

signature skull motif.  

  

Figure 1- From the Lake (O’Keeffe, 1924) 

Figure 2- From the Faraway, Nearby (O'Keeffe, 1937) 
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1.2 Importance of Preserving Artist’s Legacies 

Preserving the works of 

O’Keeffe for aesthetic value alone is 

justified, but art often holds significant 

meaning outside of their visual beauty. 

Historically, art has captured the 

thoughts and feelings of entire eras 

(Gerlach, 2014). For example, Norman 

Rockwell’s famous painting The 

Problem We All Live With (Figure 3) 

cut through the politicization and fear 

of racial issues to depict the core 

human struggles of African Americans of that era (Gallagher & Zagacki, 2005). His work 

tackled other big topics, such as fear during the Cold War, as well as the smaller pleasures of 

day-to-day life in the United States. Norman Rockwell’s works are so well known for capturing 

America’s symbols and values that he is known as “The People’s Painter” (Gerlach, 2014). In 

general, paintings and art help people reflect upon their views, and sympathize with others 

(Francis, 2012). 

In a similar way to how Rockwell’s work has become synonymous with the cultural 

attitude of the mid 1900s, O'Keeffe's work and personality were important aspects of the Women’s 

Rights activism of her time. O’Keeffe grew up in the 1920’s and adopted the decade’s new ideals 

of female independence (Scott, 2015). O’Keeffe’s technical skills, original artwork, and outspoken 

personality gave her a strong voice in the art world. This in turn gave her a platform for sharing 

her feminist political ideals (Palmer, 2017). O’Keeffe’s frequent presence in the public eye forced 

people to look past the novelty of her gender and read more deeply into the meaning of the work 

itself. Achim Borchart Hume, a museum director of exhibitions at Tate Modern Art Gallery in 

London, England, explained the significance of O’Keeffe’s work being displayed. He stated, 

"Many of the white male artists across the 20th century have the privilege of being read on multiple 

levels, while others—be they women or artists from other parts of the world—tend to be reduced 

to one conservative reading. It’s high time that galleries and museums challenge this” (Ellis-

Petersen, 2016). Hume went onto explain that for women to gain a professional status in the artistic 

world, their works need to be prominently showcased for long periods of time (Palmer, 2017). 

O’Keeffe’s path to success as a prominent artist of the 20th century reflects Hume’s claim. 

O’Keeffe herself stated, “Men put me down as the best woman painter…I think I’m one of the 

best painters,” (Tate, 2016). By successfully overcoming the barriers against women in the art 

world in such bold fashion, O’Keeffe became a cultural icon to female activists of that era. 

Artists like Rockwell and O’Keeffe have played a huge role in changing society, and it is 

important that we preserve their legacies, and the legacies of so many other influential artists. 

Sharing and preserving their works and the works of other artists allows us to continue to learn 

from the lessons they taught both in their art and how they lived their lives. Whether that be a 

lesson of American unity, or the power of feminism, art is worth saving and preserving.  

Figure 3- The Problem We All Live With (Rockwell, 1964). Oil on canvas 
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1.2.1 Benefits of viewing art 

Art must be shared for society to view and benefit from it (Chute, 2011).  In 1999 over 

eighty percent of Americans believed that the arts have a positive impact on their community and 

their children (DiMaggio & Pettit, 1999). The United Nations Educational, Scientific, and Cultural 

Organization declared paintings, along with other cultural artifacts and practices, a “mainspring of 

cultural diversity and a guarantee of sustainable development” (UNESCO, 2003). In other words, 

art and other forms of cultural expression are beneficial to society’s creativity and growth. 

Studies have also found that visiting art museums can increase historical empathy and 

tolerance towards others (Greene et al, 2013). Children who create, view, and have been exposed 

to art experience a greater connection to their community than their peers (Brooks, 2005). 

Researchers have also found that viewing a painting in person can evoke a sympathetic 

neurological response, meaning the viewer feels very similar emotions to those experienced by the 

artist (Jeffers, 2009). Renowned curator Robert Rabinowitz has stated that viewing a painting in 

person allows one to experience a more authentic connection to the artist (R. Rabinowitz, personal 

communication, August 29, 2017). For these reasons, it is important that we continue to display 

paintings and other artworks for the public to experience. Therefore, we must find a way to make 

sure that original paintings are sufficiently protected when are moved between museums.  

 

1.3 Causes of Damage in Transit 

Museums dedicated to one artist, such as the GOKM, often possess nearly all of that artist’s 

work. This makes it difficult for people who are not close to the museum to view that artist’s 

creations, unless the artwork is shipped to other museums. However, such transportation is not 

without risk. In some cases, moving works between museums and collections causes catastrophic 

damage to the art. For instance, The Book of Kells, a priceless religious artifact written around 

800 A.D., was damaged in flight by vibrations that dramatically changed the pigmentation of its 

pages (Parkin, 2000).  

Any time a piece of artwork is outside of a museum’s protection, it is at risk of damage. 

More obvious threats associated with travel include such things as the works being dropped, 

scratched, or struck by an outside force (Canadian Conservation Institute, 2016). Although the 

effects of vibrations are not easily detected, they are significant. Vibrations are small repeating 

motions in a structure. They are problematic because of how easily they are transmitted through 

packing materials. The amplitude of a vibration refers to the size of these motions (Lohninger, 

2009). In terms of a canvas surface, the amplitude of a vibration corresponds directly with how 

much the surface will bend; a higher amplitude means a higher chance of cracks forming (Lasyk, 

2008). 
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Vibrations typically do not cause catastrophic 

damage to an object. But while the damages are 

individually minor, over time they can accumulate to 

be far more significant, and cause a slow but steady 

deterioration of the art (United States National Park 

Service, 1991). The solid surfaces of oil paintings 

slowly become cracked and split due to continuous 

vibrations brought on by shipment (Mecklenburg et al, 

1991). Even with repairs, these disfigurements 

decrease the genuine “originality” by covering the 

strokes and styles the artist has applied, and in the 

worst cases, destroy it entirely (Grant, 2015). Figure 4 

shows the damaging effects that can be caused by 

vibrations. The red arrows in Figure 4 point to the 

cracks that the vibrations have created at a microscopic 

level. Though these cracks are microscopic to begin 

with, over time they become increasingly large and 

detrimental. 

Due to the very slow rate of vibration damage, 

it is easy to mistake the damage for the painting deteriorating with age. The Georgia O’Keeffe 

Museum was uniquely positioned to recognize the cause of their damage as vibrations because of 

the worldwide fame – and accompanying frequent shipment – of O'Keeffe's paintings. The GOKM 

paintings are frequently on tour, which was thought to have caused vibration damage to manifest 

more quickly compared to paintings in other collections that travel less. The smaller size of the 

collection allowed for closer scrutiny of the paintings after each trip by museum conservators, who 

were able to associate individual cracks with shipments (D. Kronkright, personal communications 

April 11, 2017). But even if Georgia O’Keeffe’s paintings were particularly vulnerable due to their 

frequent travel, this is a problem faced by any canvas work that is transported long distances. 

 

1.4 Existing Techniques for Vibration Reduction 

Historic shipping techniques were very basic, and often harmful to the artworks they were 

meant to protect. They were typically more concerned with keeping the work in place, not 

necessarily protecting it. The packing materials, usually paper, canvas, rope, and straw, would 

often scratch and disfigured the pieces being shipped (Keenpac, 2014). These primitive methods 

led to many artworks being destroyed before they ever reached a museum. 

Common shipping practices have improved significantly since then. Cloth coverings were 

added to protect the surfaces of canvases. Around the 1950s, the art world began using more 

advanced protective materials, such as foams and plastic shells (Shelley, 1987). Foam inserts, as 

seen in Figure 5 within the crate, keep the painting in place as well as protect art when the crate 

Figure 4 - O’Keeffe Oil painting cracks at 10x 

magnification 
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being shaken significantly. Foam inserts are usually effective enough that art is rarely damaged by 

small drops or impacts (Canadian 

Conservation Institute, 2016). 

To protect from larger impacts the 

crate requires larger, softer foam cushions 

to distribute the force of the impact. 

However, if the foam cushions are not stiff 

enough, they give the painting too much 

freedom to move around inside the crate. 

This problem is solved by using multiple 

layers of foam. A common method of 

packing art used by many museums, 

including the GOKM, is to use multiple 

layers of protective material in a “nested” 

crate setup. A trained art packer will first 

set the painting inside a rigid frame to 

protect it from ripping or scraping against 

its enclosure. The packer secures this frame in a tight-packed foam bed within a small padded box 

designed to keep the frame firmly in place and reduce higher frequency vibrations. This small 

inner box is then placed within a larger outer box (shown in Figure 5) with foam cushions designed 

to resist large impacts and reduce low frequency vibrations. The crate is then sealed and is ready 

for transport (Canadian Conservation Institute, 2016). 
Although current methods are vast improvements over primitive rope and straw, art 

shipment innovation has recently stagnated. Comparing the guidelines of The Metropolitan 

Museum of Art’s published book on art shipping The Care and Handling of Art Objects (Shelley, 

1987) with modern standards described by the CCI (Canadian Conservation Institute, 2016), both 

guidelines are almost identical, save minor changes in foam thickness and type. This would not be 

an issue if modern standards were satisfactory. However, these standards have shortcomings 

regarding certain types of vibrations, as described in section 1.5.  

 

1.4.1 Passive Vibration Control 

Passive vibration control is the use of a static system to dampen vibrations (Chu et al, 

2005). In practice, it means using fixed structures of materials (such as foam) chosen for their 

vibration-absorption properties to dampen vibrations. Current vibration control for canvases is 

largely limited to passive control with foam-like materials (Canadian Conservation Institute, 

2016). In general, these materials are designed to protect against a particular range of vibration 

frequencies. Polyester-urethane (PEU) foams have this property, and can effectively dampen 

certain vibrations that pass through them. Museums construct art crates with PEU foam padding 

for this reason (Mecklenburg et al, 1991). However, when the GOKM staff performed experiments 

on these PEU foams, they determined that PEU does not sufficiently reduce the low-frequency 

Figure 5 - Diagram of typical art shipment crate. 
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(20-50Hz) vibrations which cause resonance damage in canvas paintings (D. Kronkright, personal 

communication, April 4, 2017). 

Unfortunately, the commonly used PEU foam also has significant disadvantages besides 

improperly reducing vibrations. Though PEU foam is cheap, its production method uses toxic 

cyanide, and the foam is non-recyclable (Canadian Conservation Institute, 2016). Additionally, all 

foams decay as the small bubbles within the foam collapse, compromising the foam’s ability to 

dampen vibrations. Minor vibrations are unlikely to cause decay, but major shocks will 

permanently degrade the foam. When this occurs, the foam no longer protects artwork from 

vibrations, and has to be replaced entirely (D. Kronkright, personal communication, April 4, 2017).  

 

1.4.2 Active Vibration Control 

Active vibration control is a type of system that actively identifies vibrations and 

mechanically counteracts them (Chu, Soong, & Reinhorn, 2005). It differs from passive vibration 

control in that it is generally more expensive, but is usually much more effective at completely 

eliminating vibrations (instead of just reducing them). An example of this technology is used in 

noise cancelling headphones, where specialized speakers cancel incoming sound waves – because 

sound waves are vibrations in the air (Encyclopedia Britannica Editors, 2015). A similar technique 

could be used to counteract vibrations in the crate. Typically, this system uses a microphone to 

detect the incoming vibration wave, and then uses speakers to generate the inverse of the wave. 

The inverse wave will cancel out the original wave so that no motion occurs; a phenomenon known 

as destructive interference (Encyclopedia Britannica Editors, 1998) (Zangi, 2002). A more 

advanced use of such technology can be found in helicopters. Helicopters use acceleration-

detecting devices known as accelerometers to detect vibrations within their fuselage, and generate 

inverse vibrations in order to protect delicate components from being damaged (Ford, 1999). 

Unlike passive vibration control, active vibration control technologies require electricity 

and more advanced sensors and mechanical components. However, they do not typically degrade 

as easily as foam and other passive materials do. Long term, active vibration control could prove 

to be a more effective method than passive vibration control if the GOKM can successfully 

implement it.  

 

1.5 Disadvantages of Current Methods 

To better explain the issue with current vibration control methods, some background is 

required. As previously mentioned in Section 1.3, vibrations are simple, repetitive motions in an 

object or material about a rest point. The frequency of a vibration is how many times per second 

it passes the rest point (Lohninger, 2009), and the amplitude is essentially the strength of the 

vibration. Simple harmonic motions, such as the repeating movement of a spring, pendulum, or 

musical instrument, are examples of vibration at a single frequency (Weisstein, 2017). These 

simple vibration systems will always prefer to vibrate at their own single frequency, which is 

known as the natural frequency of a system.   
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More complex vibrations, such as the movement of a truck bed on an uneven road, cannot 

be represented by a single frequency. They are instead composed of a multitude of overlapping 

simple vibration waves known as the frequency spectrum - essentially a graph of frequencies and 

their corresponding amplitudes (Brandt, 2011). A picture of a spectrum is a spectrogram.  In the 

case of the art-carrying crate on a truck bed, the majority of the vibration spectrum is in the 0 to 

100 Hz range (D. Kronkright, personal communication, April 4, 2017) 

Though the artworks in transit are 

experiencing a broad spectrum of vibrations at 

different frequencies, the concept of that single 

natural frequency is still very important due to 

a concept known as resonance. If a 

neighboring object (such as the truck bed) is 

vibrating at the natural frequency of an 

attached object (such as the canvas), that 

attached object will experience greatly 

amplified vibrations at that natural frequency 

in a phenomenon known as forced harmonic 

motion. See Figure 6 for an illustration of how 

the resonant frequency affects amplitude. 

Essentially, even if measurements of vibration on the canvas frame show a seemingly low vibration 

amplitude at the natural frequency of the canvas, the canvas itself would be experiencing much 

stronger forces due to the amplifying effects of resonance (Parker, 1983). 

Current shipping standards did not take resonance into account. Seemingly low amounts 

of vibration at the natural frequency of the canvas can cause severe fluctuations, damaging the 

painting (Michalski, 1991). Even when paintings were secured in containers designed to protect 

against vibrations, the GOKI group observed that they still experienced significant resonant motion 

(D. Kronkright, personal communication, April 4, 2017). To protect the artwork, special 

precautions must be taken to dampen the specific natural frequency of the canvas. Currently, the 

GOKI Group is investigating measures to prevent or at least reduce this resonance, in order to 

lessen the damages done by vibrations to their paintings. 

 

1.6 Project Goal 

The goal of this project was to enable the Georgia O’Keeffe Museum to better understand 

how vibrations affect paintings in transit, to provide insight into the best design techniques for 

preventing these vibrations, and to help share GOKM’s work with the public. It is important to 

note that our findings here do not apply solely to the works of Georgia O’Keeffe. Any insight 

gained into protecting her paintings are applicable to canvas artworks worldwide. 

  

Figure 6 - Simple Resonant Frequency Amplitude Graph 

(Wikimedia Commons, 2009) 
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2.0 Methodology 

In order to help the Georgia O'Keeffe Innovation (GOKI) group, our goal was to increase 

public awareness of the dangers of shipping canvas artworks, and improve upon current shipment 

techniques in order to better protect artwork in transit. We developed a low-cost method of 

analyzing vibrations throughout a shipping container. By applying this analytic method to 

simulated transportation vibrations, we were able evaluate how effective different materials were 

at protecting paintings against harmful low-frequency vibrations. Finally, we designed a special 

museum draft exhibit to display a simplified version of the museum’s research for public viewing 

at the GOKM. 

  

Our objectives for achieving this goal were as follows: 

1. Develop a low-cost alternative to current vibration measurement tools to allow the GOKM 

to continue experimentation. 

2. Identify and evaluate both traditional and non-traditional materials for damping vibrations.  

3. Design a draft exhibit for the GOKM to showcase how artworks become damaged in 

transit, and the steps the museum is taking to protect them. 

 

2.1 Objective 1: Determine cost efficient alternatives to current vibration measurement tools to 

find best choice for museum’s continued experimentation. 

For the GOKM to properly evaluate new container materials, it needs accurate 

measurements of how well they mitigate vibrations. For their initial investigations into determining 

the cause of damage, the GOKI group relied upon extremely expensive tools such as a Multiple 

Scanning Vibrometer (MSV) and the Polytec Scanning Vibrometer (PSV). Both of these use 

beams of light to measure subtle movements of points across a surface. These tools are state-of-

the-art, and the data they provided served as the foundation for the museum’s understanding of 

how poorly current container designs perform. Ideally, the GOKM would continue using these 

devices to test future designs and materials. However, renting these tools was prohibitively 

expensive, and not suitable for long term use by the museum. For the sake of the museum’s 

ongoing experimentation, we needed to determine the viability of alternative techniques that were 

less expensive than the MSR/PSV systems, while still providing informative vibration data. 

 

2.1.1 MSR Accelerometers – MSR145 and MSR165 

Accelerometers are a type of sensor that calculate the acceleration of whatever they are 

attached to (Bao, 2000). Acceleration is defined as the rate of change of the velocity. In practical 

terms, accelerometers allow us to measure small changes in how a point on an object is moving. 

The highly sensitive nature of an accelerometers allows them to detect even the very small motions 

of vibration. More significant movement cause higher values from the accelerometer, which in 

turn indicate higher amplitude vibrations. In this way, an accelerometer can replicate the 

functionality of the MSR/PSV systems’ vibration measurement at a single point of measurement. 
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A similar study (He & Jin, 2009) used this technique to measure vibrations in factory machinery 

to determine if parts were failing. 

As a baseline for testing, we used accelerometers the museum already had on hand: MSR 

model 145 and 165 accelerometers. These accelerometers are relatively large sensors designed for 

long-term (up to several hours) data recording in environments requiring extreme heat and pressure 

resistance. The 145 can record at a rate of 50 samples/second in a range of ± 15 g’s of acceleration 

in the x, y, and z axes (MSR Electronics, 2015). The 165 can record at a rate of 1600 

samples/second in a range of ± 200 g’s of acceleration in the x, y, and z axes (MSR Electronics, 

2015). 

We used the MSR 165 models because of its higher data acquisition rate, which allowed 

for more data points for analysis. Since we already had PSV vibration data on the GOKI prototype 

crate design (not pictured due to pending patents on its design), we performed our initial tests on 

that design with hopes that we could eventually compare our analysis to the PSV/MSV results. We 

placed one accelerometer on the exterior of the crate, one on the inner frame within the crate that 

holds the painting frame, and one on the canvas frame itself. We then enabled the accelerometers 

and ran the shaker device (described in section 2.2.1 Figure 9) for three trials of 60 seconds. In 

addition to using the shaker device, we also placed the crate on a small wheeled transport dolly, 

and pushed it around on uneven pavement for approximately 5 minutes. This initial test run of data 

gave us a framework to guide how we would implement our data analysis techniques  

 

2.1.2 Data Analysis – DFT 

To obtain the frequency spectra from 

the raw accelerometer data, we performed 

Discrete Fourier Transform (DFT) analysis. 

Essentially, DFT analysis takes in a large 

number of data points over some interval of 

time, and tries to approximate a “line of best 

fit” through them by combining periodic 

wave functions of different frequencies. This 

provides as an approximation of what 

frequencies of vibration are occurring at the 

data collection point (Brandt, 2011). Figure 7 

shows an example of how DFT analysis attempts to approximate a square wave by successively 

adding wave functions, signified by the different colored lines growing closer to the “true” curve. 

These individual wave functions each represent a particular frequency of vibration, which was 

used to determine what vibrations were experienced at what amplitudes (Rabiner & Gold, 1975). 

To perform this analysis, we used the programming language Python with the research module 

SciPy, which is often used for this sort of research (Jones et al., 2001). SciPy includes many tools 

for data analysis, including functions which perform variations of the Discrete Fourier Transform.  

Figure 7- DFT approximating a square wave (Weisstein, n.d.) 
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However, the standard DFT function expects all of its data to be from the same set of 

vibrations (Brandt, 2011). For example, if one used it to analyze musical pitches in a song 

recording, it would fail to properly account for changes in instruments or notes, and would instead 

try to find a matching sound (vibration) for the entire song – which would be entirely incorrect!. 

In our methods of testing (2.2.1), we faced a similar issue of different parts of the data recording 

process having different vibrations because our vibration generating technique introduced was not 

perfectly consistent in the amount of vibration generated from moment to moment, and instead 

relied upon longer measurement periods to normalize. To account for this, we used a modified 

version of the DFT known as Welch’s method. Welch’s method breaks the accelerometer data into 

smaller windows of time, and performs DFT analysis on each window. The average of the 

spectrums is then computed (Welch, 1967). We used the default SciPy implementation of this 

method, with a time window of one second. Finally, we applied a flat-top windowing filter to 

reduce noisiness in the resulting spectrogram, and make peaks in the data more easily 

distinguished. 

The resulting graphs of frequency/amplitude are known as spectrograms, and represent the 

amplitude of each component vibration frequency. To render the graphs of these spectrograms, we 

wrote a small Python utility which gathers all of the accelerometer readings for an experiment, and 

plots them into a single graph using the “Plotly” python library. The Python code was specifically 

designed to quickly generate these graphs for entire sets of experimental data, so that they could 

easily be compared with different graphing or DFT analysis configurations without the tedium of 

creating the graphs by hand. 

 

2.1.3 Alternative Accelerometers – STM LIS3DH 

Examining accelerometers further, we wished to more closely replicate the MSV/PSV 

behavior by measuring significantly more points on the container, including points on the canvas 

itself. Having more points would allow us to better visualize the vibrations, and better account for 

different parts of the same component (ex: outer frame) having different vibration spectra. 

Unfortunately, we had only 3 of the MSR165 accelerometers and did not have funds to secure any 

more, as they cost upwards of $1000 each (MSR Electronics, 2015). Beyond cost, the MSR 

accelerometers weigh approximately 69 grams each - almost as much as the canvas itself. 

Mounting such a large mass to the canvas would likely have resulted in atypical movement, making 

the data useless in terms of measuring “real” canvas movement.  

After some searching we selected the STM LIS3DH accelerometer. It is capable of up to 

5300 readings per second in the x, y, and z axes in a range of up to 16 g’s of acceleration. More 

importantly, it is much lighter at 1.5 grams, meaning we had reasonable chances of placing them 

directly on the canvas without significant interference with its motion (STMicroelectronics, 2013). 

At a cost of $4.53 per unit, we were able to afford 12 of them. Though they were less durable than 

the MSR sensors, this did not matter for our purposes. 

The LIS3DH accelerometer on its own does not record data, and requires assembly and 

programming. To utilize the sensor, we used a microcontroller -- a very small computer specifically 
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designed for interfacing with other small electronics -- known as the Arduino Uno R3. The Arduino 

served as a “middleman” for the data, reading it over wire connections from the accelerometer and 

forwarding it via USB to a laptop. Arduinos can typically only connect with two LIS3DH 

accelerometers at a time, but using two 8-way connection splitting devices known as multiplexers, 

we were able to configure the Arduino to connect to up to 32 at a time.  

To use these sensors, we needed to create a program which would tell the Arduino to read 

from each sensor, and send the resulting reading to the laptop. We also needed to create a program 

for the laptop to listen to the Arduino output and convert it into useable accelerometer data. It was 

important that both programs could handle readings at a rate of 200Hz. We wrote the Arduino 

program using the official Arduino Development Environment, using the standard libraries 

provided with the board. These standard libraries simplified the task of communicating with the 

multiplexers and accelerometers significantly. Using those libraries, the Arduino program was 

essentially only three steps:  

1. Scan all multiplexer ports to detect active accelerometers, and remember them in an 

internal list  

2. Wait for the laptop host program to signal it is ready to begin receiving data 

3. For each accelerometer in the saved list, read and send the current acceleration. Once all 

have been read, wait until the next 200Hz interval, and repeat step 3. 

 

The Arduino has a maximum 

data transfer rate of approximately 12 

kilobytes per second, which is not very 

high. Since each additional 

accelerometer meant more data needed 

to be sent, then to maximize the number 

of sensors we could read at 200Hz, we 

needed to minimize how much many 

bytes were used per reading. We did 

this by eliminating unnecessary data 

from each packet. For instance, the ID 

bytes for each reading were 

unnecessary, since if we know how 

many sensors there are total, we could 

infer which one each reading was for 

by the order it was received in. The 

timestamps could also be minimized, 

by only sending a change in timestamp 

instead of the full time. Figure 8 shows 

the progression of byte usage from the first to the final version. 

Figure 8 - Arduino Reading Size Minimization 
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The laptop software simply needed to receive and store all the Arduino readings. This was 

slightly more complicated than originally expected, as all of the above message size minimizing 

techniques had to be reversed to restore the original data. Because of this, our final version would 

need special code for determining which accelerometer had sent each message, and at what time. 

Once that was implemented, we had a full data recording setup which output files for each sensor 

in a folder denoting when the data was recorded. 

As a first step towards evaluating the precision/accuracy of these sensors, we mounted 

them beside the existing MSR accelerometers. Then, we performed the same motor vibration-

generation experiment as described in section 2.1.1. The resulting data from each MSR/LIS3DH 

accelerometer pairing was then analyzed and compared to see how closely they matched one 

another when analyzed with the above method. Since they were in the same location, our 

expectation was that the analysis would produce roughly identical spectrograms, both in terms of 

the overall shape as well as amplitude at each frequency. 

 

2.2 Objective 2: Identify and evaluate both traditional and non-traditional damping methods and 

materials: 

Our second objective was to research possible alternatives to current PEU foams, and 

evaluate their effects on vibrations in a shipment crate. We evaluated each material's damping 

effects using the vibration analysis method established in Objective 1 to learn which potential 

material or combination most effectively dampened the vibrations.  

 

2.2.1 Vibration Generation 

Before we could test 

different materials for damping, 

we needed to first create a 

system to cause vibrations 

mimicking those caused during 

transit. Our solution was to 

design our own vibration 

generating machine. To 

accomplish this task, we took a 

large water jug and filled it with 

a mix of different sized rocks. 

The jug was then placed on 4 

mounted wheels so it could rotate freely about its central axis. The water jug was strapped to the 

wheel mounts to increase contact with crate system and thus allow vibrations to transfer 

consistently. The motor used to power the machine was a Dewalt 18-volt battery cordless drill. 

The drill’s torque dial was set to #12, and with the power switch setting #1 was selected. The drill 

was then switched to the "drill-bit" setting on the left side. During the test the trigger was pulled 

Figure 9 - Diagram of our water-jug shaker 
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halfway down to cause the shaker jug to rotate approximately once per second. See Figure 9 for a 

visual representation of the device. 

To evaluate the vibrations generated by the device, it was placed on top of the crate and 

the motor was activated for sixty seconds. As the jug rotated, the rocks placed inside the jug 

tumbled chaotically, creating vibrations at the mount point. These simulated vibrations were 

measured using accelerometers, using analysis methods explained in objective 1. 

In addition to our makeshift vibration system, we also evaluated a method of producing 

vibrations by placing the shipping crate on two dollies and wheeling it across the pavement outside. 

This method of obtaining vibrations created random noise due to the uneven and cracked 

pavement. We hoped that the similarity to actual truck transportation – wheels on pavement – 

would produce similar vibrations. Ultimately, we did not continue using this method outside these 

early tests. 

To evaluate these methods, we compared them to the vibrations generated by a truck bed. 

Prior to our involvement in the project, the GOKM used MSR accelerometers to measure the 

movement of a truck bed in transit. We used the analysis methods established in section 2.1.2 to 

compare the vibration spectrograms of the truck bed to those produced by our vibration techniques. 

Ultimately, we decided to continue using the shaker device and not use the dollies for material 

testing. 

 

2.2.2 Materials 

After establishing our vibration 

generating system, we tested different 

vibration damping materials. We only 

investigated passive vibration control 

methods, as the GOKM staff was not 

comfortable with active control methods, 

due to the chance of catastrophic battery 

failure. 

We started by testing the crate with 

its current foam application (see Figure 11 

for reference) to generate baseline vibration 

readings for a standard museum crate. Next, 

we combined the existing foam within the 

inner frame with different damping 

materials (except excelsior, which entirely replaced the inner foam for its experiment) and tested 

them with shaker method described above. The different materials we tested were:  

• PORON, a urethane synthetic crystalline compound (PORON® VXT™ 4701-70., 2017). Used 

in bicycle helmets and footwear to dampen impacts. 

Figure 10 - Excelsior (left), Sorbothane (disks in center), and 

PORON (right rectangular padding) 
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• Sorbothane, a visco-elastic polymer that has the properties of both viscous materials (thick 

liquids which resist flowing) and elastic materials, such as rubber (Sorbothane Overview, 

2017). Designed specifically for vibration damping. 

• Excelsior, fine curled wood shavings of aspen logs similar to packing straw, but less prone to 

decay and bug infestation (Sediment Control, 2017).  

 

See Figure 10 for visual reference of what the materials looked like. After testing PORON 

and Sorbothane with the existing foam, we decided to try combining them with the basic PEU 

foam to determine if their benefits were additive. Table 1 shows the combination and individual 

material configurations tested and their positioning. Figure 11 below shows a visual representation 

of the components of the experimental crate, and can be used as reference for how materials and 

accelerometers were placed. 

  

To test the materials, we used the shaker jug vibration generator described in section 

2.2.1 and the STM LIS3DH accelerometers described in section 2.1.3. The shaker was affixed to 

the top of the outer crate and spun for one full minute. To obtain a more accurate reading, the 

shaker was performed three times and averaged out for each material. Five accelerometers were 

used for this test and positioned to record the vibrations: one on the top of the crate, and one of 

each on the tops and bottoms of the inner frame and canvas frame. All accelerometers were 

glued on, oriented in the same way so their axes were parallel, and positioned so no contact was 

made with surrounding surfaces except the actual mounting point.  

 

 

 

 

Figure 11 - Art shipment crate used in material experiments.  

Specific elements of crate labeled with arrows. 
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Table 1. Experimental Material Configurations 

 

2.3 Objective 3: Design a draft exhibit for the GOKM to showcase how artworks become 

damaged in transit, and what the museum does to protect them. 

For our third objective, we needed to create a museum exhibit that would showcase the 

current problems with art shipment and what work the GOKM has done to solve them. Initially, 

we created a list of the individual core concepts of the project and how we might go about 

representing them. Certain ideas, such as the general why and how of art transportation, were easily 

explained using text. Other ideas, like the mechanical causes of vibration in transit, would need 

more visual aids to explain. The more technical ideas, such as how vibrations spread and affect 

canvases, and the implications of different frequencies, were decided to be too difficult to explain 

without something to interact with for a greater understanding.   

Before moving forward with drafting exhibits for the GOKM, we sought out professional 

insight to ensure our designs would be useful to the museum. We interviewed Georgia O’Keeffe 

Museum curators Carolyn Kastner and Cody Hartley to get a better idea of what criteria the 

museum looks for in its exhibit designs, as well as ideas of exhibiting technical information. We 

loosely structured the interview base on the questions in Appendix A, but the interview quickly 

diverged from that structure.  

We learned that exhibit design is a long process, often going through many iterations and 

test runs before a museum would settle on a final design. Given our limited time frame, both 

Carolyn Kastner and Cody Hartley suggested we focus more on the creation of individual exhibit 

“modules” showcasing a key concept rather than attempt to create an entire exhibit. These modules 

would be able to be combined to form a more complete exhibit, and could serve as the basis for 

the GOKM’s future iterations of the exhibit. They also suggested having different variations of 

each module so the museum would have more flexibility in its design process.  

Carolyn Kastner and Cody Hartley also suggested that for any written portion, the majority 

of the information presented should reside in the beginning of the paragraph, since many people 

Experimental 

Configurations: 

Placements (See Figure 11 for visual reference): 

 

Current foam 

(control) 

Default configuration. What the museum already uses. 

Current foam + 

PORON 

PORON was lined on the inner corner foams. 

 

Current foam + 

Sorbothane 

The conical Sorbothane mounts were placed at the center of each inner 

corner foam. 

Excelsior The inner corner foams were removed and the excelsior was placed within 

the inner frame and around the painting. 

Current foam + 

PORON + 

Sorbothane 

PORON was lined on the back-triangle pieces of the inner corner foam and 

Sorbothane was placed at the center of each side of the inner corner foam. 
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stop reading after the first few sentences. When asked how to best represent more technical 

concepts, they advised that we avoid complexity wherever possible. If nothing else, visitors 

regardless of technical knowledge should be able to grasp the core narrative an exhibit is trying to 

establish. People will remember material better if the exhibit first establishes why it is important. 

If we really needed to explain a topic such as vibration, they suggested we show it with a visual or 

interactive portion (C. Hartley, C. Kastner, personal communication Sept 27, 2017). 

With these suggestions in mind, we concluded that we wanted to design a display that 

presented information in such a way that it established a simple narrative describing the steps the 

museum had taken to protect their works. We felt that the core concepts we needed to address were 

basics of art transport, the problems with the current methods, the techniques the Georgia O'Keeffe 

Museum is using to improve them, and why this was important to the visitor. We decided to create 

several draft exhibit elements for each of these core concepts. This approach allowed us to make 

the best use of our time and focus with the technical aspects of the project, which we had more 

experience with. Furthermore, our handling of the technical aspects would allow the GOKM staff 

to better utilize their curatorial experience without needing to worry as much about explaining 

technical details.  

We were then faced with the problem of how to convert these ideas into modules that 

educated viewers without overwhelming them. As the curators suggested, we kept technical detail 

to a minimum. We made the first several sentences require little to no technical knowledge to 

understand, and used them to establish the broader narrative of the museums work. This ensured 

that any visitor would be able to understand the larger narrative that the GOKM is trying to 

establish. To convey more complicated ideas that could not easily be explained in text, we chose 

to use interactive elements so that visitors could learn about the concept without being 

overwhelmed by technical language. The inclusion of interactive exhibits has been shown to be 

beneficial to the understanding of technical materials (Gammon 2003). To draft these more 

complicated interactive portion, we used computer design software SketchUp to create multiple 

draft sketches of possible interactive and non-interactive exhibit modules (see Appendix B for 

early drafts of these exhibits).  

To get more insight into how people interact with exhibits, we also tried to interview 

museum educators, who are closely involved with guiding visitors through the museum can give 

insight into how effective different display types are. After many delays, we were eventually able 

to interview GOKM educators Shannon Bay and Sarah Zurick. Unfortunately, it was too late to 

incorporate their suggestions into our exhibit designs. However, their responses to the interview 

question largely mirrored those of Cody Hartley and Carolyn Kastner. They emphasized the 

importance of interactive exhibits to explain technical concepts. They also asserted that the most 

important thing an exhibit needed to explain was why the content of the exhibit was important 

(Bay & Zurick, personal communication, Oct 5, 2017). They also provided several small 

suggestions that we incorporated into our recommendations. 

An outline of the core concepts and how we planned to implement them can be seen in 

Table 2 below.  
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Table 2. Exhibit Module Design Plan Outline 

 

3.0 Results and Discussion 

This chapter enumerates our findings after carrying out the steps described in Chapter 2.0: 

Methodology. Note that the sections and subsections of this chapter, Results and Discussion, do 

not correspond exactly the subsections of Methodology. 

 

3.1 Objective 1 Results 

We designed a way to use inexpensive accelerometers to replicate the functionality of the 

expensive Polytech Scanning Vibrometer system. The details of our findings are below. 

 

3.1.1 MSR Data Results:  

The MSR accelerometers recorded data from the vibration generating machine acting on 

the GOKM prototype crate’s internal frame and shaker mount point. The data was collected in 

three separate trials of one minute each, at identical motor settings. Using the data analysis methods 

described in section 2.1.2, we produced spectrograms (vibration graph) for the experiment. Since 

the MSR165 reads at 200Hz, this let us analyze vibrations with frequencies in the range of 0 to 

100 Hz using the DFT methods. To account for variations between the three trials, the graph we 

produced shows the sensor data as a range, with a line denoting the average reading at each 

frequency through the middle. Note that the range is only really visible where the trials diverged 

significantly, such as at the 20Hz mark for the Frame’s acceleration. Anywhere it is not seen, the 

trials were simply similar enough to produce a visible range. See Figure 12 below for an example 

of the produced graph. 

Central Concept Detail of Module What Will the Module look like? 

What is 

happening? 

Shipping methods are a fairly simple 

concept, and can be easily expressed 

in writing. Vibrations likely need 

interactive portion due to complexity. 

Text display explaining the basics 

of art transportation, with 

interactive element describing how 

vibrations come into play. 

What is the 

Museum Doing? 

Very Complicated and technical. 

Needed both text explanation and 

graphics to visually show 

experimental methods. Interactivity 

might help visitors connect what they 

read to real-world materials. 

Text with visual representation of 

key elements of museum 

experiments. and an interactive 

display. 

What can you do 

to help? 

Easily expressed concept, more of an 

appeal to emotion than technical 

detail. 

Display with small amounts of 

text, graphics of O’Keeffe, etc. 

optional. 
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Figure 12 is in the same format as all vibration analysis graphs in this report. As such, the 

following analysis should serve as a basic guideline for interpreting any of these graphs. The 

graph represents our use of DFT analysis to reduce a complex vibration into its constituent 

simple harmonic vibrations as described in section 2.1.2. The graph’s x axis is the frequency of 

each vibrations, and the y axis is proportional to the vibration’s amplitude at that frequency (refer 

to section 1.5 for a more in-depth explanation of implications frequency and vibration). A high 

amplitude at a given frequency means that the sensor was experiencing strong vibrations at that 

frequency. Each colored curve represents the measurements of a single sensor, as specified in the 

legend. For example, in Figure 13, we can see the red curve represents measurements on the 

inner frame of the prototype crate, and the blue curve represents the frequencies under the shaker 

itself. 

The appearance of distinct peaks in these graph is significant, as they are a clear indication 

of resonance (refer to section 1.5 for more detail of causes of resonance). As explained earlier, 

resonance occurs when a structure receives input vibrations at its natural frequency, and 

experiences greatly amplified vibrations at that natural frequency. In Figure 13, we can see a clear 

example of resonance causing high amplitudes at the 20Hz mark. Despite the shaker producing 

consistent vibrations throughout the entire 0-50Hz domain, the inner frame experiences drastically 

increased amplitudes at that frequency. 

Since each experiment was conducted with three trials, we averaged the data from the 

trials to more easily compare between experimental configurations (e.g. different materials). For 

each sensor’s line, the lightly shaded portion represents the min/max range at that frequency for 

all trials. The darker center line represents the average of all trials. In the case of Figure 13, one 

can see that among our three shaker trials, the blue shaker measurements were very consistent, 

whereas the red frame trial measurements diverged near the 20Hz mark. 

Figure 12 - MSR165 DFT Analysis of Shaker Vibrations (x-axis readings) 
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3.1.2 LIS3DH Data Results: 

We assembled our electronics to support connecting up to 32 LIS3DH accelerometers. 

Unfortunately, due to unforeseen limitations in the Arduino’s USB data output speed, we were 

limited by how many sensors we could add before the data transfer speed slowed too much. This 

initially limited us to no more than two LIS3DH accelerometers at the desired 200Hz read rate 

with our first version of the software. We overcame this by optimizing how we sent sensor readings 

over the connection (as described in 2.1.3), more than doubling our maximum readings per second. 

This allowed us to support 6 sensors at 200Hz by the end of our work on the software. For further 

improvements, the museum could use the software we created with a more advanced version of 

the Arduino (the Arduino Mega) that supports faster data output rates, which would allow them to 

support over 4x as many sensors. 

The results of the comparison between the MSR165 and LIS3DH sensors can be seen in 

Figure 13. In this experiment, the MSR and LIS3DH sensors were placed directly next to each 

other, and recorded data for the same set of experiments. In theory, if the two techniques are similar 

in accuracy and precision, we should have seen almost identical spectrograms. As can be seen, the 

data follows similar trends in shape, but differs on the exact amplitudes, meaning the LIS3DH was 

somehow receiving lower vibrations than expected. This difference occurred in all axes, and across 

all locations where we placed the accelerometers (data not shown). We believe this may have been 

cause by the LIS3DH being ineffectively mounted using loose tape instead of glue. Unfortunately, 

we were unable to repeat the experiment as the GOKM only granted us access to the MSR165 

accelerometers for a limited amount of time. For future analysis, we would recommend the GOKM 

repeat the side-by-side test with better mounting and the most up-to-date version of our software 

to shed light on this difference in amplitudes. If not, the data is at least useful in that its shape (if 

not exact amplitudes) lines up with the MSR data, so resonance and damping can still be seen.   

Figure 13 - MSR vs LIS3DH, Inner Frame X axis measurements, Side-by-side comparison 
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3.2 Objective 2 Results 

We designed a process of using our measurement system from objective 1 to measure the 

effects of different crate designs on vibrations. We then used this process to identify and evaluate 

both traditional and non-traditional materials for damping vibrations. 

 

3.2.1 Vibration Generation Analysis Results: 

Before performing any real analysis on materials, we needed to be sure that our vibration 

generation methods were consistent and analogous to measurements from an actual truck bed. We 

tested the vibrations produced by the shaker-jug and pavement-dolly methods outlined in Section 

2.2.1, comparing them to truck-bed accelerometer data that the GOKM had recorded prior to our 

team’s arrival. Note that the dolly and truck bed are a single trial; however, both measurements 

exceeded 10 minutes in length (versus the shaker’s 3 1-minute trials). Since the method of DFT 

we used is an average over time, it is unlikely that future trials would have significantly different 

results. 

Figure 14 shows the result of comparing our vibration generation method (for an 

explanation of this type of graph, see section 3.1.1). In the 0-10 Hz range, all three methods 

produced wildly different results. In the 15-25 Hz range, the shaker and dolly produced roughly 

equivalent vibrations, but were still very different from the truck. In the 25-50 Hz range, both the 

shaker and the dolly were very similar to the truck, and could reasonably be used for simulating 

truck vibrations in this spectrum. Above 50 Hz, the dolly and truck remained similar, but the shaker 

had vibrations that were greater than those on the truck. 

In terms of which vibration generation method is the best for creating transport-like 

vibrations, the answer may be neither. We had hoped that the wheels of the dolly on pavement 

would closely emulate the wheels of a truck, but that turned out to not be the case for the entire 0-

Figure 14 - MSR Vibration Generation Z-axis comparison 
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25 Hz range. The shaker was remarkably consistent in amplitude across the entire spectrum, but 

this consistency meant it did not exhibit the low-frequency peaks that the truck measurements 

recorded at all. However, the shaker’s consistent amplitude made it useful for measuring resonance 

and damping, as the near-constant input amplitude made change in amplitude of inner sensors 

easily distinguishable. For this reason, we used the shaker jug for the rest of our material evaluation 

experiments, and suggest the GOKM do the same until it can find a more suitable alternative. 

 

3.2.2 Material Evaluations: 

We tested each of the material 

configurations described in section 2.2.2. Though 

we used 5 sensors across the crate in these 

experiments, the shaker measurements are 

omitted for visual clarity, and because we are 

mostly interested in the difference in vibration 

from the inner frame to the canvas frame. Of 

these, the canvas frame is more important because 

it is in direct contact with the canvas and thus is 

our best representation of what vibrations the 

canvas will experience (however, it does not 

include the effects of resonance). The inclusion of 

the inner frame is still useful because the material 

was placed between the inner frame and canvas frame readings, so comparing them lets us see 

some of the damping effects of the material.  

 The accelerometers record data separately in the X, Y, and Z axes (see Figure 15). For 

example, a vibration measured by the accelerometer on the Z axis would be motion up and down. 

The graphs shown below (Figures 16-20) are all spectrograms of the accelerometers' Z axis 

readings. The X and Y axes spectrograms can also provide valuable insight, and are included in 

Appendix C, although we do not discuss them in depth in this report. Since different axes can 

exhibit drastically different vibration patterns, we cannot conclusively say anything about these 

materials without considering all 3 axes. However, the goal of this section is to demonstrate the 

method of analysis, not find an optimum material. 

All the spectrograms in this section have been truncated to the 0Hz to 50Hz range, as the 

amplitudes over 50Hz are negligible. The most important frequencies to consider depend on the 

size of the canvas. Most canvases that the GOKI group tested have a natural resonant frequency 

between 10Hz and 40Hz, with larger canvases tending towards lower frequencies (D. Kronkright, 

personal communications Sept 18, 2017). All vibrations near the canvas’s natural frequency will 

be amplified due to resonance. In order to minimize the impact of this resonance, the museum 

must select materials to specifically dampen around the canvas's natural frequency. 

In each of these experiments, we are looking for reductions to the canvas frame vibration 

amplitudes compared to the current standard material (PEU foam). 

Figure 15 - Experimental Axis Diagram. 

The axes labels indicate the 3 directions of acceleration that 

the accelerometers recorded data for.  
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 In our analysis, we considered computing a percentage reduction for each material so that 

they could be empirically compared. However, the complex mechanics of vibration in a system 

like this do not allow for such oversimplification. For instance, in the Sorbothane spectrogram 

(Figure 17 below), such a simplistic measurement of damping would show Sorbothane to have 

negative damping, implying that it increased the amplitude of vibrations. But, as explained in the 

analysis of the Sorbothane experiment, the Sorbothane canvas frame measurements are still 

significantly lower than those of the PEU foam.  

For an example explanation of how to interpret spectrograms like those below, see section 

3.1.1. 

Figure 16 shows the vibrations of components of a shipping container using standard PEU 

foam with no modifications (except the attachment of sensors). In these graphs, we are looking at 

how changes in materials affect amplitudes for the inner frame's accelerometers (solid red/blue 

lines), and the canvas frame accelerometers (dotted orange/red-orange lines). If an experimental 

packing material was successful, we would expect to see a reduction in the canvas frame 

accelerometer amplitudes compared to this PEU foam spectrogram.  

In the PEU foam graph, the 'canvas frame top' and 'canvas frame bottom' are almost 

perfectly aligned, indicating equal vibration throughout the canvas frame. This is a good indicator 

that the canvas frame was well secured by the PEU foam, as we would otherwise see the top and 

bottom readings diverge because one was held more/less rigidly than the other. 

We can see that the canvas frame is experiencing almost no vibration compared to the inner 

frame in the 0-20Hz range, indicating good damping performance in that range. However, the 

canvas frame vibrations had equal or greater amplitudes than the protective inner frame in the 25-

50Hz range, indicating the PEU foam’s dampening effects were minimal in that range. Because of 

Figure 16 - PEU Foam (Control) – LIS3DH Shaker Experiment Spectrogram (z-axis) 
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this, PEU foam is likely fine for damping larger paintings with natural frequencies in the 10-20Hz 

range, but would likely provide little to no benefit for a painting in the 25-35Hz range. 

 

Figure 17 shows the vibrations of a shipping container with its inner-corner foam 

augmented with Sorbothane. Compared to the PEU foam, the Sorbothane has generally lower 

vibration amplitudes. Like the PEU foam, Sorbothane exhibited strong damping in the 0-20Hz 

range, as can be seen by the low amplitudes of the canvas frame vs the inner frame in that range. 

Even though the canvas frame vibrations exceed the inner frame in the 20-30Hz range, the canvas 

frame amplitudes still lower for Sorbothane than for PEU foam in this range. Additionally, in the 

30-50Hz range the Sorbothane crate has almost no vibration compared to the PEU foam. As such, 

Sorbothane is likely an improvement over the PEU foam for any painting in the 10-40Hz natural 

frequency range. 

Figure 17 also demonstrates some strange factors of this experimental setup. Despite 

roughly equivalent shaker input energy, the inner frame vibrations in Figure 17 (Sorbothane) are 

lower than those in figure 16 (PEU Foam). This difference is noteworthy as the inner frame is 

outside of the change in packing materials, so one would expect its measurements to be unchanged 

between different configurations.  There are likely many factors at play here, and it is difficult to 

determine exactly why this occurred without further experimentation.  

One possibility that we cannot dismiss out of hand is that experimental error occurred. 

Though the shaker generally created consistent amplitudes between these experiments, there was 

still some variation (potentially due to its battery declining. Between the PEU foam and 

Sorbothane, there was an approximate 15% difference in shaker amplitudes (not pictured) across 

the entire 0-50Hz range. However, the difference favored PEU foam; that is, the PEU foam 

experiment experience consistently lower input vibration amplitudes than the Sorbothane, which 

Figure 17- Sorbothane - LIS3DH Shaker Experiment Spectrogram (z-axis) 
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would not at all explain why the Sorbothane still managed to have consistently lower amplitudes 

for its internal sensors. 

A more likely possibility is that this is simply the result of more complex vibration 

mechanics. Vibrations do not only flow one way, but reverberate throughout entire mechanical 

systems such as this crate.  Therefore, differences in material properties inside the inner frame 

could have affected how the inner frame itself vibrated. The Sorbothane within the inner frame 

could have acted as “sink” for the entire system, absorbing vibrations and causing an overall 

reduction in amplitude.  

Regardless of the specific cause, this sort of vibration behavior further complicates the 

issue of objectively measuring damping within the crate. If nothing else, we recommend that the 

museum repeat these experiments just to be sure that nothing anomalous occurred. 

 

Figure 18 shows the vibrations of components of a shipping container with its inner corner 

foam augmented with PORON. Like Sorbothane (Figure 17), the PORON crate had generally 

lower vibration amplitudes than the PEU foam (Figure 16), even in the inner frame. This is despite 

the fact that PORON shaker input amplitudes (not pictured) exceeded those measured in the PEU 

foam experiments by as much as 50% in most frequencies.  

PORON performed similarly well at damping in the 0-20Hz range as PEU foam and 

Sorbothane did. In the 20-30Hz range, PORON achieved lower amplitudes than Sorbothane and 

the PEU foam. However, PORON is not a clear improvement over Sorbothane, since PORON 

amplitudes in the 40-50Hz range are almost identical to those in the PEU foam, whereas 

Sorbothane showed significant damping in that range. In terms of canvas packing value, PORON 

is likely better than Sorbothane and PEU foam in the 10-30Hz range, but is likely no better than 

the PEU foam for the 30-50Hz range. 

Figure 18 - PORON - LIS3DH Shaker Experiment Spectrogram (z-axis) 
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Regarding the significant difference in shaker input amplitudes mentioned above, differing 

by as much as 50%, we believe this was caused by a battery replacement for the motor about 

halfway through our experiments. We did not have time to repeat them, but would advise that the 

battery be fully recharged before each trial to ensure that the shaker motor is at the same level of 

power for each experimental trial. 

 

Figure 19 shows the vibrations of a shipping container with its inner corner foam 

augmented with both PORON and Sorbothane. Like the Sorbothane on its own, this configuration 

was very effective at damping in the 30-40Hz range. However, the addition of PORON to the 

system did nothing to improve the 20-30 Hz range – in fact, it greatly increased amplitudes in that 

range! 

This material combination is unlikely to be useful to the museum, because it is essentially 

the "worst of both worlds". However, it served as a great example of how unpredictably these 

materials can behave when combined, and emphasizes the importance of testing designs 

thoroughly. 

Figure 19 - PORON + Sorbothane - LIS3DH Shaker Experiment Spectrogram (z-axis) 
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Figure 20 shows the vibrations of components of a shipping container with its inner frame 

stripped entirely of foam, and filled with Excelsior. The Excelsior crate, perhaps owing to the 

unconventional nature of the material, had a vastly different spectrogram than the other materials. 

The distinct peak at around 25-30Hz exhibited by the PEU foam (Figure 16), Sorbothane (Figure 

17), and PORON (Figure 18) is entirely absent from this spectrogram. Instead, the 30-40Hz 

contains two lower amplitude peaks at around 33-40Hz. Despite these being peaks, their maximum 

amplitudes are approximately equivalent to PEU foam amplitudes at those frequencies. As such, 

one can view this spectrogram as if one took the PEU foam experimental results and almost entirely 

removed the 20-30Hz vibrations. 

In terms of what this effect means for packing viability, it is very different compared to 

other materials. The maximum amplitudes seen are similar to those in the PORON experiments, 

but appear to have been shifted to a broad expanse of the 25-45Hz range. The minimization of the 

entire 0-30Hz range means this material would likely be excellent for paintings with natural 

frequencies in that range. However, its effects on the 30-40Hz range are, as stated before, very 

similar to those of the PEU foam and unlikely to be exceptionally valuable as a replacement. 

 

3.2.3 Material Conclusions: 

 Ideally, we could select one "best" material from those tested, but such a clear choice does 

not exist. Without being able to test more specific types of vibrations than our shaker can produce, 

we cannot make generalizations about any one material's superiority. Furthermore, the analysis 

above is only on the Z-axis, which corresponds to vertical movement; looking at the graphs in 

Appendix C, one can see significant variation between the axes. Therefore, to make any 

meaningful conclusions about the materials, we would need to analyze all 3 axes. And even 

looking only at the Z-axis, no material objectively "better" than another. For example, Sorbothane 

Figure 20 - Excelsior - LIS3DH Shaker Experiment Spectrogram (z-axis) 
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and Excelsior are both improvements over the standard PEU foam, but choosing between them 

involves deciding which range, the 30-50Hz or 10-30Hz range respectively, is more harmful to the 

specific painting and therefore a higher priority for protection. Ultimately, the best option depends 

on the painting the material is protecting, because the natural frequency of that painting is the 

frequency which must be reduced the most, as the natural frequency has proportionally the most 

significant effect on the movement of the canvas. 

To conclude, there were no clear best material for general vibration damping. The vibration 

generation method (the shaker jug), though primitive, was consistent enough for us to be able to 

perform reproducible tests of the materials, and the GOKM can continue to use it until they decide 

to purchase something more advanced. The spectrograms gave valuable insight into the effects 

each material had on vibrations in the crate, and we are confident that the GOKI group can leverage 

their data analysis experience to interpret and use these graphs to further their research. Though 

there was no clear optimum solution, almost all materials have an advantage in some aspect when 

compared to the basic PEU foam. Hopefully these results and methods for analysis used can serve 

as a foundation for the GOKM's future experimentation, helping them to identify a superior design 

for protecting artwork. 

 

3.3 Objective 3 Results 

Our final deliverable for Objective 3 consisted of several module options that the GOKM 

curators will eventually base a full exhibit around. We did our best to incorporate the advice of 

museum curators Cody Hartley and Carolyn Kastner about how different people interpret, view, 

and react to museum exhibits. (See appendix A for transcript). From this interview, the most 

significant suggestions we utilized were how to make visual and interactive aids understandable 

and relatable. We tried to simplify the text in our modules to be as widely understandable as 

possible, and used interactive elements to help visitors understand and relate to the museum’s 

work. We also interviewed GOKM educators Shannon Bay and Sarah Zurick, but due to time 

constraints were not able to incorporate their advice before the end of the project (See appendix A 

for transcript).  

The modules were focused on addressing three core ideas: What goes on during art 

shipment, what the GOKM doing to make it safer, and how “you” (the visitor) can learn more 

about the problem. Each module consisted of a textual component talking about the core idea, as 

well as an interactive element to attract visitor interest and allow them to better relate to the 

discussed topic. The text was kept simple in order to avoid overwhelming the reader with 

unnecessary technical detail.  

After brainstorming ideas of how to best represent each of the core concepts, we created 

several draft designs to become more familiar with the process – these can be found in Appendix 

B we ended up creating a total of 7 full featured modules. The modules were created using the 

computer design tool SketchUp, allowing us to create a visual representation of how our ideas 

might look in a real exhibit. The following is our different designed options for each module: 
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3.3.1 “What is Happening?” Module 

Our first module was intended to show how art transportation works, and how vibrations 

affect crates in transit. We created three different module options for this core idea. The primary 

text (same for each module in this category) sought to establish the basic ideas of how art was 

shipped, and how art gets damaged. To allow the visitor to understand the more complicated 

concept of vibration, these options contain an interactive component to allow the visitor to see for 

themselves how vibration works. 

Core Idea: “What is Happening?” text component: 

 "Artworks from around the world are constantly being shipped from place to place for 

museum visitors like you to see. Unfortunately, when these pieces of artwork are shipped, they 

undergo damage from the vibrations created during transit. The movement of trucks, ships, trains, 

and planes, cause vibrations that go straight through the crate to the paintings they carry, which 

causes the painting to crack and split. To the right (insert similar picture to Figure 4), you can see 

how damaging cracks even formed in one of Georgia O’Keeffe’s paintings!" 

(This text is on the red placards to the left of each interactive option) 

Option A: Transportation Vibration Simulation 

Our first design showcased a 

canvas painting behind a glass cover, with 

four buttons to the right of it. Each button 

was labeled a different transportation 

method and pressing a button caused the 

painting’s crate to vibrate with the 

corresponding frequency. The different 

types of vibrations will show viewers the 

severity of each transportation method. 

Optionally, the frame could be surrounded 

by a standard crate to demonstrate how 

easily the vibrations transfer through the 

PEU foam. See figure 21 for visual. 

Figure 21 - Module 1 Option A: Transportation Vibration Simulation  

Right text: "Try pressing the buttons of each transportation method to 

see the different effects they have on the painting!" 

  



 

Pg. 30 

Option B: Manual Vibration 

Our second design involved a hand 

crank attached to a canvas painting. The 

hand crank would drive a small vibration 

shaker similar to the one used in our 

experiments. This would allow viewers to 

manually inflict vibrations on the canvas 

frame to see how easily they affect 

paintings. Unlike Option A, the crank does 

not directly correspond to any mode of 

shipment, so its technical accuracy is not as 

good. However, the hand-driven nature 

allows the visitor to more easily relate the 

amount of force that they are applying to 

how much the crate is reacting. The shaker 

device itself (not pictured) could be visually 

modified to look like a truck’s wheel to 

relate the vibrations the visitor generates to 

those generated in transit. See Figure 22 for visual. 

Option C: Interactive Game - Shipping Simulation 

Our last design showed a touch 

screen monitor with an interactive game that 

takes viewers on a journey alongside art in 

transit. The game presents viewers with a 

series of packing options, routes, and 

transportation methods with which they can 

transport their painting across the world; 

while trying to minimize damage to their 

painting (similar to the computer game 

"Oregon Trail"). The game would teach 

viewers the challenges of transporting art. 

Though it does not directly show vibration, 

it can give the visitor a more comprehensive 

understanding of how difficult it is to protect 

against it. See Figure 23 for visual. 

 

Figure 22 - Module 1 Option B: Manual Vibration 

Right Text: "Try turning the crank to see the effects vibrations have 

on the painting!" 

 

 

Figure 23 - Module 1 Option C: Video Game Simulation 

Above text: "How far can you transport art without damaging it?” 

Below text: “Transporting art is more difficult than you might 

imagine. Play this game to see what makes safely transporting 

artwork from one museum to another so difficult!" 
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3.3.2 “What is the Museum Doing?” Module 

Our second module was intended to show the viewer what the museum was doing to stop 

the vibrations shown in the first module. For this module, we drafted three variations of a display 

table aimed at informing visitors what research the GOKM is doing about art shipment. A brief 

description of our and museum's work was placed on a placard next to the display table in each 

draft 

Core Idea: “What is the GOKM doing about this problem?” text component: 

"The Georgia O’Keeffe Museum is working hard to protect its paintings from transportation 

vibrations. Researchers at the museum teamed up with college students from Worcester 

Polytechnic Institute (WPI), to find new ways to measure and combat these vibrations. They used 

the tools and materials on this table to measure and attempt to reduce this damage. The 

accelerometer (see item 1 below in display case) is being used to measure vibrations in the crate. 

The accelerometers are placed throughout the crate, and were used to analyze how different 

materials (see items x-y in display case) protect against vibration. The Georgia O’Keeffe Museum 

is still experimenting to find the safest and most reliable method of protecting its priceless 

paintings."  

(This text is on the red placards next to each interactive option) 

Option A: Glass Enclosed Display Table 

This design showcased the materials 

and tools we used (e.g. PORON, MSR165, 

etc.) on a table behind glass. The idea behind 

this glass-enclosed design was to showcase 

our tools to viewers without the risk of 

damage to the exhibit itself, as some of the 

materials (such as the MSR accelerometer) 

are very expensive. Next to each material is a 

small placard saying what the material is 

called, what it is good at, and real world uses 

of that material (ex. PORON used in bicycle 

helmets). The components on the table are 

not necessarily restricted to what was used in 

this project, and should include whatever 

future materials the museum tests and uses 

for its research. See Figure 24 for visual. 

Figure 24 - Module 2 Option A: Glass Enclosed Display 

Contains experimental materials and tools used by GOKI 
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Option B: Open Table Display 

Our second option is essentially the 

same as Option A, but without the protective 

glass. This would let viewers touch and 

compare the feel of the different materials. 

Since the materials we used are not often 

encountered outside of industrial 

applications, being able to touch things like 

“Sorbothane” can give the visitor a better 

understanding of what exactly a vibration 

damping material is/feels like. There is a risk 

of theft and deterioration of the materials, so 

it is important that they are secured in some 

way and not too difficult to replace. It is up to 

the museum to decide whether this added 

expense is worth the benefit of interactivity. 

See Figure 25 for visual. 

 

 

Option C: Open Table Display with Video 

Our third option for this module 

incorporated the same table as Option A/B 

along with a large display screen displaying 

pictures and videos the museums 

research/experimentation. This lets the 

visitor see for themselves how the materials 

on the table were used to research painting 

protection. Ideally, each component of the 

table would have a button next to it that, 

when pressed, causes the screen to display a 

short demonstration of the capabilities of the 

corresponding table element. For instance, 

PORON could trigger a short video clip of a 

weight being dropped onto normal foam and 

PORON, to demonstrate the difference in 

how much energy is deflected/bounced by the PORON. These buttons could be used regardless of 

whether the table was glass-enclosed, as the individual videos could effectively replace the tactile 

interaction without fear of the exhibit being damaged by visitors’ touches. See Figure 26 for visual. 

 

Figure 25 - Module 2 Option B: Open Table Display 

Contains touchable experimental materials and tools 

Figure 26 - Module 2 Option C: Open Table Display with Video 

Video displays how the materials and tools were used in real 

experiments 

 



 

Pg. 33 

3.3.3 “What can you do to help?” Module 

The final module was designed to inform visitors about how they can learn more and help 

the museum. As the last module in the core narrative, it should give the visitor a strong takeaway 

about the importance of this research to protecting not only Georgia O’Keeffe’s paintings, but 

those of other artists around the world. The text component of this module is significantly more 

important than the interactive component, as we found it more difficult to appeal to visitor 

emotions without text. As such, we created only one module option for this core concept, and do 

not consider it fully necessary for this module to be effective. 

Core Idea: "How you can learn more about the problem" text component. 

"Vibrations are currently one of the main threats to the preservation of Georgia O’Keeffe’s 

paintings. However, vibrations are also a threat to any other artists’ work that is shipped between 

museums. The Georgia O’Keeffe Innovation Group is committed to researching this problem until 

they are confident that artwork can be transported without fear of damage.  For more information 

visit our website at www.okeeffemuseum.org" (this URL may optionally be replaced with a QR 

code). 

(This text is on the red placard above the module) 

Option A: Donation Box 

 In this module we created one draft of a 

donation box. Text in front of the box reads. “To 

help the Georgia O’Keeffe Innovation Group 

preserve the legacy of Ms. O’Keeffe and other 

artists, we greatly appreciate any donations to 

fund further research into protecting art from 

vibration damage.”  

 See Figure 27 for visual reference. The 

donation box itself is not of critical importance 

to this module. The core idea text above is far 

more important as it establishes the real 

importance of the experiments displayed in the 

exhibit. If the museum decides they do not like 

the idea of a donation box, we would recommend 

they keep the text component. 
Figure 27 - Module 3 Option A: Donation Box 
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3.3.4 Combined Exhibit 

The final exhibit draft design we created was not another module, but instead an example 

of how the previously listed module options can be combined into a single exhibit. This was mostly 

done as a proof-of-concept of how easily one can pick options from each module group to create 

a full exhibit. Breaking the problem up into multiple designs allowed us to more easily approach 

what we wanted to show in the exhibit as a series of easily manageable steps. More importantly, 

creating these interchangeable puzzle pieces gives the GOKM more freedom to modify our 

suggestions without having to rework them entirely. Since exhibit designs can undergo many 

revisions before their completion (C. Hartley, C. Kastner, personal communication Sept 27, 2017), 

we are satisfied that these modules will be very useful as an easily-modified baseline for this 

exhibit.  

4.0 Recommendations 

If there was ever an opportunity for us to repeat or continue our project with the Georgia 

O'Keeffe Museum we would do a number of things differently. While we feel that our method was 

scientifically valid and well thought out, changing certain aspects could make the process more 

easily repeatable for the museum in the future. 

 

Objective 1 Recommendations: 

Though initial results of using our new accelerometer system from section 2.1.1 were 

promising, there are still many improvements that can be made in terms of its usefulness as a 

measurement system. Before the GOKI group fully commits to the new LIS3DH vibration 

measurement system over the MSR165 accelerometers, we recommend that they repeat the side-

by-side LIS3DH vs MSR165 experiment described in section 2.1.3. We believe that improper 

mounting may have negatively affected our results when we conducted the experiment, but were 

unfortunately unable to repeat it ourselves due to limited access to the MSR165 sensors. Even 

Figure 28 - Example Combined Exhibit 

Created by combining Module 1 option A, Module 2 option C, and Module 3 option A 
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though the LIS3DH results are internally consistent, it is troubling that comparing the new system 

with the industry-standard MSR165 accelerometers shows such a significant difference in 

amplitudes. The results of Objective 2 using this method are still probably valid, since the LIS3DH 

accelerometers were attached in the same way each time, so comparing between them is valid. 

To further validate our method of DFT analysis described in section 2.1.2, we recommend 

that the GOKI group find a way to repeat the vibrations used in its initial PSV/MSV experiments 

using accelerometers. Recall that the PSV/MSV systems are state of the art laser-based vibration 

measuring tools that the GOKM cannot afford to continue using for long term experimentation. 

By comparing the resulting spectrograms of our analytic method to those generated by the 

PSV/MSV software, we can ensure that the using accelerometers in this use case is valid. The 

museum does not necessarily need the PSV/MSV devices again, but it does need to use the same 

type of shaker device it rented for that experiment so that it can accurately recreate the vibrations 

that were measured by the PSV/MSV systems. Doing this experiment will allow the museum to 

evaluate how closely our analysis results replicate the PSV/MSV results. 

If the GOKI group can repeat the experiments above, we would recommend that they also 

test the viability of using the lightweight LIS3DH accelerometers directly on a canvas surface. 

Measuring the canvas surface directly would allow the museum to ignore any guesswork about 

how the canvas will resonate, and observe painting movement directly by measuring the canvas 

surface itself. Unfortunately, though we took some initial steps towards testing this capability, we 

had no way of verifying that the behavior of the canvas we measured would have been the same 

had the canvas not been burdened by the additional mass of the LIS3DH accelerometer. If the 

GOKI group could repeat the vibrations used in the PSV/MSV experiments, they could compare 

the LIS3DH data with the existing data from the PSV/MSV experiments to see if this highly 

valuable addition to the system is possible. 

Finally, if the museum decides to continue using the LIS3DH system, we would 

recommend they upgrade from the Arduino Uno to an Arduino Mega. This model has 4x as many 

serial connections, which would significantly increase the number of accelerometers the system 

can measure at once (up to an estimated 24 at least). This could be used to emulate the sophisticated 

MPV’s (Multi-point vibrometers) ability to measure vibration across many points of the crate, and 

better account for potential differences between different points on the same component. 

Additionally, if canvas surface measurement is possible, then this could be used to visualize 

motion of the entire canvas, to better detect resonance. 

 

Objective 2 Recommendations:  

Though our shaker tool produced consistent vibrations, it did not accurately represent 

typical artwork transport, and thus analysis of the effects on different frequencies vibration is of 

somewhat limited use for practical applications. If the museum wishes to exactly recreate the 

vibrations of a truck, they would need to seek out other methods. One type of tool that they could 

use to generate vibrations in a controlled experimental setting is known as a “Modal Shaker,” 

which the museum has used in the past for MSV/PSV experiments. A Modal Shaker is a precisely 
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controllable device that can produce complex vibrations within a large range of frequencies. These 

devices are typically expensive (costing over $1000), but would be able to accurately simulate any 

vibration (truck, plane, tarmac, etc.). Alternatively, the museum could opt to not simulate 

vibrations using a shaker device, and instead perform experiments on an actual truck/plane ride. 

 Additionally, we intended to reduce the graphs we produced down to more easily 

comparable metrics, but were unable due to lack of time. Our recommended analysis method to 

accomplish this would be to use the RMS method (root mean square) which reduces spectrograms 

like those in 3.2.2 into a single value representing the “total vibration” (Brüel & Kjær, 1982). 

Moreover, by scaling the RMS total for each sensor by the total mass of the object the sensor was 

attached to, the resulting number the total vibration energy in Joules, representing the energy in 

the object, not just how much it is vibrating (Encyclopedia Britannica Editors, 1998). This scaling 

based on mass would better account for differences in weights of materials, because current 

estimates favor heavier materials simply because they have higher inertia. This would also allow 

the museum to be able to empirically compare material tests without having to observe minor 

details about each spectrogram.  

 

Objective 3 Recommendations:  

Though we are confident the proposed modules for the exhibit are a well-researched basis 

for an exhibit on this subject, there are several steps that we recommend the GOKM take to make 

sure the exhibit is as understandable and educational as possible. To ensure that the contents of the 

draft exhibit modules are understandable, we would recommend doing a test run on a control group 

that was made up of different aged museum patrons to measure how well they grasped the content 

of the modules. This information could later be used to correct the modules to ensure that the 

information is as easily digestible as possible. 

We also suggest that it would be beneficial for the second module to give information about 

where in peoples everyday lives the materials are used, so the visitor can more easily relate to what 

their function is. For instance, PORON is used in bicycle helmets to protect from impacts, and 

Sorbothane is used in football cleats. We believe these facts will help the reader connect more to 

the written material, that it will be easier for the viewer to understand the technical aspects of the 

materials if they know where they come from/are used for. 

Finally, the current drafts for "What is the Museum Doing?" module (section 3.3.2 lacked 

a physical representation of the actual shipping crate the GOKM uses. We recommend that the 

museum create a cross section of a common shipping crate, or, at the very least, provide a disused 

crate that visitors could look inside. By incorporating this visual and possibly interactive aid, 

viewers will gain a better understanding of how art is shipped, and where the materials we tested 

were placed. 
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5.0 Conclusion 

Our team sought to help the GOKM in its mission to preserve the legacy of O'Keeffe and 

artists worldwide. Using low-cost sensors, we developed a system that let the GOKM better 

understand how vibrations affect paintings within transportation containers. We used this system 

in conjunction with several methods of generating vibrations to provide insight into the best design 

techniques for eliminating vibrations. Finally, we used the insight of museum experts to create a 

draft museum exhibit designed to help share GOKM’s mission and findings with the public.  

Our work proved beneficial to the GOKI group who continued to explore materials and 

their positioning after our departure. We delivered a method of analyzing vibrations at many points 

across the surface of a crate. Then, we used this method to evaluate a variety of potential 

replacements to the current PEU foam, and though many showed advantages over the PEU foam 

we were not able to meaningfully conclude that any one material was superior – more testing is 

required. Finally, we created draft components for an exhibit showcasing the work the GOKM has 

done to protect artwork in transit. The applications of our findings will hopefully allow for 

museums to continue its work on transporting art for viewing in a safer manner.   
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Appendix A: Exhibit Designer Semi-Structured Interview 

Preamble: 

We are a group of students from Worcester Polytechnic Institute in Massachusetts.  We 

have been working with the Georgia O’Keeffe Museum to better understand how vibrations 

damage paintings in transit. We are working on creating an exhibit that explains this to museum 

visitors. Our goal is to offer The Georgia O’Keeffe Museum suggestions towards how to best 

represent the problems with art shipment to the public, and your insights will be extremely useful 

in how effectively we convey this information. 

Your participation in this interview is completely voluntary and you may withdraw at any 

time. If you would like, we would be happy to include your comments as anonymous. If 

interested, a copy of our results can be provided at the conclusion of the study. 

 

Exhibit Design Questionnaire 

1. What experience do you have in exhibit design? 

2. Have you ever made an exhibit about the museum’s curation and/or operation? If so, how 

did it differ from a regular exhibit? 

3. To you, what is the most important aspect of a museum exhibit?   

4. What makes an effective educational exhibit? 

5. Is graphical or textual information more important when designing an exhibit? 

6. How does the inclusion of tangible/interactive elements impact an exhibit? 

7. How do you successfully integrate more technical, hard-to-understand material into an 

exhibit? 

 

*Note that this is only a rough guideline that we tried to follow going into each interview. In 

practice, our interviewees all quickly diverged from these questions. 

 



 

Pg. 43 

Appendix B: Exhibit Early Draft Prototypes 

 

Section 1- First Full Exhibit Draft Layout

 
Section 1 showcases our earliest draft for how the exhibit design might be laid out, before 

we had decided on a modular setup. After meeting with Cody Hartley and Carolyn Kastner we 

began to focus more on drafting specific modules. 
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Section 2 – Crate Display Detail 

 
 

Proposed text: “This type of crate is used by the Georgia O’Keeffe Museum to protect its 

paintings in transit. The wooden frame protects the painting from drops and impacts, while the 

soft foam cushions the painting, converting sudden jerking motions into gentle movements”. 

 

Section 2 shows the first modular exhibit proposal. This module showcases the interior of a 

shipping crate with a small panel describing what the different components do it works. A screen 

behind will show a short repeating video visually showcasing how the different materials stop 

impacts to the painting. This design was effectively replaced by the designs in section 3.3.2, as 

we felt focusing too much on the old design might mislead visitors as to what the new designs 

the GOKM was working on were. 
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Appendix C: Additional Analysis Graphs 

Below are all the graphs of the other axes that were omitted from 3.2.2, as comparing so many 

different graphs would become pointlessly confusing. No analysis is provided here, but the 

graphs are structured in the same way as in those analyzed 3.2.2, and can be similarly compared. 

For reference in how to interpret spectrogram graphs in general, see section 2.1.2 

 



 

Pg. 46 



 

Pg. 47 



 

Pg. 48 



 

Pg. 49 

 

 


