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I. ABSTRACT 
A Product Line Family contains similar applications that differ only in the sets of sup-

ported features from the family. To properly engineer these product lines, programmers 

design a common code base used by all members of the product line. The structure of this 

common code base is often an Object-Oriented (OO) framework, designed to contain the 

detailed domain-specific knowledge needed to implement these applications. However, 

these frameworks are often quite complex and implement detailed dynamic behavior with 

complex coordination among their classes. Extending an OO framework to realize a single 

product line instance is a unique exercise in OO programming. The ultimate goal is to develop 

a consistent approach, for managing all instances, which relies on configuration rather than 

programming. 

In this thesis, we show the novel application of Combinatory Logic to automatically syn-

thesize correct product line members using higher-level code fragments specified by means 

of combinators. Using the same starting point of an OO framework, we show how to design a 

repository of combinators using FeatureIDE, an extensible framework for Feature-Oriented 

Software Development. 

We demonstrate a proof of concept using two different Java-based frameworks: a card 

solitaire framework and a multi-objective optimization algorithms framework.  These case 

studies rely on LaunchPad, an Eclipse plugin developed at WPI that extends FeatureIDE. 

The broader impact of this work is that it enables framework designers to formally en-

code the complex functional structure of an OO framework. Once this task is accomplished, 

then, generating product line instances becomes primarily a configuration process, which 

enables correct code to be generated by construction based on the combinatory logic.  
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1. INTRODUCTION AND MOTIVATION 

One common goal in software engineering is to assemble software systems from 

reusable software units rather than developing entirely from scratch [1]. Computer software 

has long used code libraries to support development, but these are meant to be used “as is” 

and do little to support extensibility or assembly. Instead, to solve the reuse challenge, one 

must identify the proper structure of a unit and the means by which the units are composed. 

Many approach this goal by following a component-based development (CBD) strategy 

that relies on the assembly of systems from functional code units which can be 

independently constructed by third-party developers [2]. In the most general case, CBD 

ignores the actual language used to develop the components, relying instead on a component 

model implementation [3] that enables the assembly and integration of binary components. 

Other developers rely on an Object-Oriented (OO) language, such as Java or C++, to design 

abstract classes to represent fundamental abstractions and use inheritance and 

polymorphism to ensure reuse. This language based approach enables extensibility of 

existing code – something not easily supported by code libraries – but many believe there is 

an increased code in developing both the original code and the extensions. To address the 

problem of extensibility, programmers typically develop Object-Oriented (OO) frameworks 

that ease the burden of those seeking to extend them. Hereafter, whenever we say 

framework, we refer exclusively to an object oriented framework. 

For our purposes, “a framework is a set of cooperating classes that makes up a reusable 

design for a specific class of software. A framework provides architectural guidance by parti-

tioning the design into abstract classes and defining their responsibilities and collaborations. A 

developer customizes the framework to a particular application by subclassing and composing 

instances of framework classes” [4]. Framework developers provide common functionality 

for a family of applications so programmers need to write as little new code as possible to 

make their applications functional. A framework leverages domain experience of expert 

programmers and is designed to be reusable, extensible and specialized. 

Generally, frameworks focus on a specific domain, therefore domain knowledge is en-

coded into a framework, and the design is abstract, because it’s not a complete software ap-

plication; it is meant to be extended by implementing extra classes to complete the applica-

tion [5]. Usually the flexibility provided by a framework is not all needed by the application 

being developed, since applications are much more specific than frameworks. However, 

programmers still have to have a thorough understating of the framework to be able to use 

and extend it. The framework dictates the software architecture, design patterns and the 

flow of control of the application being developed. Thus, there is much more than just reusing 

the code provided by the framework, it’s the abstraction the framework is built upon. 

Therefore, the learning curve of a framework is quite steep, typically 6-12 months [5]. All 

these obstacles make frameworks hard to use; often they can only be extended by the very 
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programmers who developed the framework, which significantly decrease their reuse 

potential.  

To maximize the use of a framework, its designers must rely on documentation to 

explain the behavior of a framework. It must provide the necessary information for a 

programmer to start using the framework. Documenting each class and method in the 

framework is important and needed, but it fails to accurately describe the abstractions upon 

which the framework is designed. As it is very hard to include abstractions in the code and 

design of a framework, they usually remain only in the heads of designers. The lack of 

knowledge about abstractions used to develop a framework makes it hard to extend or even 

use the framework. 

Framework designers provide examples of how to use the framework, which is a good 

and quick starting point to using the framework. However, instead of simply providing 

sample code that programmers must read to identify the abstractions, should there be a way 

(other than coding) to represent the abstractions embedded in the code. 

A software product line is a set of software-intensive systems developed from a common 

set of core assets in a prescribed way [6]. It is quite common to design the product line using 

an object-oriented application framework [7]. This project targets the process of generating 

product line members in a software product line. More specifically, the idea is to convert an 

object-oriented framework extension problem into a configuration problem, namely 

generation of product line members in a product line family.  

1.1. GRAND CHALLENGE 

The grand challenge addressed by this research is to synthesize software from modular 

units and guarantee that the resulting code is “correct by construction”. This is a phrase 

adopted by the formal methods community that uses provably correct refinement steps to 

transform a specification into a design, which is ultimately transformed into an 

implementation that is correct by construction [8]. In this methodology, the specification is 

provided a priori and must typically be complete before the process can start. The correct by 

construction paradigm has been applied successfully to VLSI chip design [9] and safety 

critical applications [10]. It is hard to generally apply this method to arbitrary software 

because it relies on having a complete behavioral specification in advance. 

Instead of relying on refinement as the process that produces code in stepwise fashion, 

we seek to synthesize code from modular units which already are defined and typed in 

relation to an existing framework.  As argued by Robert Constable, “When types are rich 

enough to completely specify a task”, then one can programmatically achieve correct by 

construction code [11]. 

 The challenge is to identify the language needed to specify these modular units (are they 

fully implemented code units or do they only contain partial fragments?) and develop a tool 
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supported by type theory to ensure that these units are composed properly to produce the 

synthesized code. 

We refer to these modular units as combinators [12]. Thus, a combinator is a component 

in our repository of components, which is specified using a higher level language that we 

refer to as L2 language [12]. A combinator consists of two parts: definition and 

implementation. The definition part of a combinator is characterized by its name and its 

intersection type [13], the implementation part is a blend of the L2 and L1 languages, where 

L1 represents any of the programming languages (i.e. Java, C#, C, C++ etc.). For more details 

see Chapter 2.  

1.2. REQUIREMENTS 

Earlier work by Heineman on solving this problem [14] used the AHEAD tool suite 

developed by Batory [15]. But this work had limited impact for a number of reasons [16]. 

First, the AHEAD tool suite generated solutions using Java classes formed by a hierarchy of 

abstract classes. This resulting code is unreadable and is so radically different from any code 

that one normally would expect to see produced by programmers. Second, while the 

composition process is governed by algebraic specifications, it was not possible to formally 

state anything about the code being synthesized. In other words, it was impossible to make 

any claims about the synthesized code. 

As the current research program progressed, the research team (Boris Düdder, Jakob 

Rehof and George Heineman) identified the following requirements, which apply to the 

modular units that form the repository as well as the synthesized code that results. 

 Readable – Programmers must be able to easily read and understand the synthesized 

code 

 Debuggable – Programmers must be able to understand the runtime behavior of the 

synthesized code when executing the code within an IDE debugger 

 Type Safe – Programmers must be able to assign logical type specifications to the 

modular units as well as the synthesized code generated from these units 

 Scalable – Programmers must be able to intellectually manage a repository 

containing hundreds of combinators, much like they can manage object-oriented 

repositories with hundreds of classes 

 Compatible with IDEs – Programmers must be able to continue to use existing 

integrated development environments (IDEs) when synthesized code is integrated 

into an actual project 

We seek to improve the ability for software engineers to migrate existing OO 

frameworks into a software product line structure. The fundamental issue is that framework 

designers cannot cleanly encapsulate the abstractions of the framework using an OO 
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language nor describe in that same language how the abstractions are intended to compose 

and interact with each other.  

This thesis makes progress towards the overall goal of using configuration to synthesize 

individual members of a product line by (a) modeling the extension and usage patterns of 

the OO framework; and (b) building a repository of modular units for composition to enable 

code synthesis. We had already envisioned applying this research to an existing software 

product line developed at WPI, but we wanted to ensure the wider applicability of this 

approach to work with independently designed OO frameworks.   

We can restate the grand challenge in the context of extending an existing object 

oriented framework. There are two possible paths to follow (see Figure 1). The first purely 

logical path (labeled Semi-automated Support) starts by designing a complete specification 

of the framework and then relying on advanced techniques to refine the logical specification 

into working code.  The second approach (labeled Significant Manual Effort) relies on 

highly effective programmers who can understand the framework code base from 

documentation and sample code. We propose to make progress on a third approach which 

relies on specifications written by the framework designers, but which are associated with 

modular units that are fine-grained. With appropriate tool support, the programmer would 

be able to work more readily with these modular units to synthesize the same code that 

otherwise would have required significant effort to develop. At the same time, the resulting 

code is also functionally equivalent to the code that would have been synthesized from the 

logical specifications, but which is actually readable and understandable by programmers. 

 

Figure 1: Competing Visions for Extending OO Framework 
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1.3. OVERVIEW 

The remainder of the thesis presents the effort towards achieving our goal. In Chapter 

2 we describe the idea and the tools we have used to design our solution. We introduce the 

Combinatory Logic Synthesis (CLS) and the inhabitation problem, which lie at the heart of our 

approach towards code synthesis; then we describe the tools which realize CLS and the 

inhabitation problem. In Chapter 3 we document in detail two case studies that we have 

conducted in two different object-oriented frameworks as a proof of concept that this 

approach can be used to generate non-trivial software applications. In Chapter 4 we present 

the related work along with the results from our research on the documentation of OO 

frameworks. Chapter 5 talks about the evaluation process of our approach, and we close 

with Chapter 6, which gives a perspective on the future work.  
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2. DESIGN OF SOLUTION 

In this chapter we explain the tools and the approach used in designing our solution. We 

briefly introduce Combinatory Logic Synthesis, which is the foundation of our approach; and 

the inhabitation problem, whose solution synthesizes code from a repository of modular 

units. We close by demonstrating the tools we used for our case studies. 

2.1. COMBINATORY LOGIC SYNTHESIS 

Combinatory logic synthesis is a type-based approach to component-oriented synthesis 

[16]. The basic idea of CLS is to automate the composition from a repository using 

combinatory logic [17]. Here we use the term “component” in a general sense to denote a 

combinator [12]. A CLS repository is modeled as a finite combinatory type environment Γ 

containing type assumptions 𝑋: 𝜏, where 𝑋 is a combinator symbol and 𝜏 is its implementa-

tion type. Following standard practice in type theory, we write 𝜏 → 𝜎 to denote the type of a 

component with input type 𝜏 and the result type 𝜎. Since types are used as specifications for 

synthesis problem in CLS, we need to express semantic concepts at the type level, so that 

types can be used to specify the meaning and purpose of combinators. We extend implemen-

tation types with the intersection type operator [18], denoted ∩. Intuitively, a statement of 

the form 𝑋: 𝜏 ∩ 𝜎 means that 𝑋 has both type 𝜏 and type 𝜎. 

To illustrate these ideas by a simple example, consider the repository Γ  with typed 

combinators as shown in Figure 2. The combinators shown (Temp, F2C, Sens) name 

implementations written in an implementation language of choice (for example, Java), which 

we refer to as L1. The types associated with the combinators are types of the corresponding 

implementations (the types are trivially rewritten from the implementation language types 

using our type-theoretical notation). With these implementation types, it is impossible to 

specify the goal of synthesizing an expression that computes a sensor’s temperature in 

Celsius. But we can enrich the specifications with semantic concepts using the intersection 

operator as shown in Figure 3. 

The semantic types 𝐹⁰ and 𝐶⁰ denote the units Fahrenheit and Celsius, 𝑀𝑠 indicates the 

result of a measurement, and 𝐶𝑜𝑛𝑣  denotes a unit conversion function. To identify an 

Temp : 𝑆𝑒𝑛𝑠𝑜𝑟 → 𝑟𝑒𝑎𝑙 Extracts temperature measurement from a sensor 

F2C : 𝑟𝑒𝑎𝑙 → 𝑟𝑒𝑎𝑙  Converts Fahrenheit to Celsius 

Sens : 𝑆𝑒𝑛𝑠𝑜𝑟  Denotes a sensor  

Figure 2: Simple Sensor Example 
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expression of type 𝑟𝑒𝑎𝑙 ∩  𝐶⁰  from these elements in  (that is, apply combinators to 

arguments of the right types), the synthesized L1 expression is F2C (Temp Sens). 

This simple example demonstrates how CLS can formalize and automate the process of 

computing type-correct combinator expressions (applicative combinators of combinator 

symbols) from a given set  of typed combinators. The logical foundation of this idea is to 

consider the inhabitation relation in combinatory logic: Given an environment  and a type 

, does there exist a combinatory expression 𝑒 such that Γ ⊢ 𝑒: 𝜏, that is, an expression 𝑒 with 

type 𝜏 in the context of type assumptions ? An algorithm that solves inhabitation problems 

can be used to compute (or enumerate) such expressions 𝑒, referred to as inhabitants of the 

type 𝜏. 

To increase the flexibility of CLS, staged composition synthesis (SCS) [19] introduces a 

functional meta-language, L2, in which component implementation code (referred to as L1) 

can be manipulated. The meta-language is essentially the 𝜆𝑒
□→ −  calculus of Davies and 

Pfenning [20], which introduces a modal type operator ☐ to inject L-1-types into the type-

language of L2. Intuitively, a type ☐τ describes a fragment of L1 code that is of L1-type . The 

repository contains composition components with implementations in L2. Synthesis 

automatically composes both L1- and L2-components, resulting in more flexible and 

powerful forms of composition since complex (and usually context-specific) L1-code-

manipulations, including substitutions of code into L1-templates, are cleanly encapsulated 

in composition components. 

It is a nice consequence of the operational semantic theory of 𝜆𝑒
□→ that computation can 

be staged. For a composition 𝑒 of type ☐τ, it is guaranteed that all L2-operations can be 

computed away in a first composition time stage, leaving a well-typed L1-program 

(implementation type correctness) of type 𝜏 to be executed in a following runtime stage. SCS 

extends 𝜆 -calculus to include boxing of L1-code, box[L1-code]. A dual operation letbox 

var={meta-code} in {⋅} binds the unboxed code to a variable var which can then be used to 

manipulate the synthesized L1-program. To illustrate SCS, we extend our example L1-

repository  with the ConApp L2-combinator shown in Figure 4. 

Temp : 𝑆𝑒𝑛𝑠𝑜𝑟 → (𝑟𝑒𝑎𝑙 ∩  𝐹⁰ ∩  𝑀𝑠) 

F2C : ((𝑟𝑒𝑎𝑙 ∩ 𝐹⁰) → (𝑟𝑒𝑎𝑙 ∩  𝐶⁰))  ∩ 𝐶𝑜𝑛𝑣 

Sens : 𝑆𝑒𝑛𝑠𝑜𝑟 

Figure 3: Enhanced Sensor Example with Intersection Types 



Chapter 2. Design of Solution 
 

8 
 

This combinator expresses the new idea that a unit conversion (Conv) preserves the 

measurement property (i.e., it can be applied to a measurement to yield a measurement). 

ConApp has the L2-implementation shown in Figure 5. 

The combinator is polymorphic because of the  and  type variables. Thus, if we ask for 

inhabitation of the type 𝑟𝑒𝑎𝑙 ∩ 𝐶⁰ ∩ 𝑀𝑠 (insisting that we get the result of a measurement), 

the solution is ConApp F2C (Temp Sens), which reduces in L2 to the expression 

box[F2C(Temp Sens)], a boxed piece of well-typed L1-code we showed earlier.   

This example illustrates a fundamental idea in SCS, namely that an L2-combinator is a 

higher-order polymorphic function acting on L1-arguments, producing L1-code; this can be 

done even though L1 might be a first-order monomorphic language (see [19] for more details). 

Thus, introducing L2 leads to powerful functional and type-theoretic abstractions that can 

be made to interact with a quite different implementation language, L1. 

A (CL)S tool [21] implements SCS and is used as the platform for our experiments. 

Despite exponential worst-case complexity of CLS/SCS, the average synthesis time in our 

experiments is less than 5 seconds on a standard Windows Desktop PC because of heuristic 

optimizations included in (CL)S [12]. Table 1 lists the mathematical operators and their 

corresponding (CL)S operator representation used in the (CL)S input grammar [22]. 

Table 1: Mathematical operators and corresponding expressions in (CL)S 
 Mathematical example (CL)S representation example 

Atoms 𝜏, 𝜎 tau, sigma, 𝜏, 𝜎 

Variables 𝛼, β alpha, beta, 𝛼, 𝛽 

→ 𝜏 → 𝜎 tau −> sigma 𝑜𝑟 𝜏 → 𝜎 

∩ 𝜏 ∩ 𝜎 [tau, sigma] 𝑜𝑟 [𝜏, 𝜎] 

Covariant constructor 𝐶(𝜏1, … , 𝜏𝑛) C(tau1,… , taun) 

≤ 𝜏 ≤ 𝜎 tau <= sigma 𝑜𝑟 𝜏 ≤ 𝜎 

Subst. 𝑆(𝛼) = 𝜏 {𝛼} => {𝜏} 

{𝛼} ~ > {𝜏} 

 ConApp: ☐((𝛼 → 𝛽)  ∩ 𝐶𝑜𝑛𝑣)  → ☐(𝛼 ∩ 𝑀𝑠) → ☐(𝛽 ∩ 𝑀𝑠) 

Figure 4: Adding ConApp combinator to sensor example 

𝜆𝑓:☐((𝛼 → 𝛽) ∩ 𝐶𝑜𝑛𝑣).  
 𝜆𝑥:☐(𝛼 ∩ 𝑀𝑠). 

  letbox F = { f } in { 

       letbox X = { x } in { box[ F(X) ] } } 

Figure 5: Implementation of ConApp in Sensor Example 
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2.2. INHABITATION PROBLEM 

Inhabitation problem is in the core of our approach to synthesizing code from ready-to-

use software components, which are called combinators. Anytime we synthesize code, it’s 

the inhabitation problem that gets solved. In this section we explain in more detail what it is 

and give some examples that illustrate the nature of this problem. 

Recall that the logical foundation behind how (CL)S can formalize and automate the 

process of computing type-correct combinator expressions from a given set of typed 

combinators Γ is to consider the inhabitation relation in combinatory logic [17]. This can be 

explained in the following manner: 

Consider an environment 𝛤 and a type 𝜏, the question is does there exist a combinatory 

expression 𝑒  such that 𝛤 ⊢ 𝑒: 𝜏  (i.e. an expression 𝑒  with type 𝜏 in the context of type 

assumptions 𝛤)? 

An algorithm that solves inhabitation problems can compute expressions 𝑒 referred to 

as inhabitants of the type 𝜏. The repository represented by  may change, hence there is a 

need for a generalized form of combinatory inhabitation known as relativized inhabitation. 

Under this form, the environment Γ is not constant as opposed to standard combinatory logic 

that considers a fixed base. This relativized inhabitation is versatile and can be used to define 

a Turing-complete notion of computation even in simple types or propositions.  

While the general inhabitation problem is undecidable, in practice the (CL)S tool uses 

heuristics to synthesize code. Optimization techniques for (CL)S are provided in [22]; it 

discusses two independent families of approaches to optimizing the relativized inhabitation 

problem. The first approach, addresses the optimization of the theoretical algorithm; and the 

second one, proposes a distributed implementation of the relativized inhabitation algorithm. 

Depending on the components comprising the Γ repository and the query expression 

(i.e., the inhabitant), there are cases when there exists only one inhabitant that satisfies the 

conditions; at other times, there will be many solutions to the inhabitation problem. In the 

latter case, the search tree expands to finding all the inhabitants, each of which leads to 

different new synthesized code that is part of the final solution. To better illustrate this 

situation, we describe two examples in which the inhabitation algorithm finds one single 

inhabitant (first example) and multiple inhabitants (second example). 

Example 1 

Given a  repository with the combinators shown in Figure 6. Note, we show only the 

definition of the combinators, as the implementation does not affect the inhabitation 
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problem at all. The definition of a combinator includes its name and intersection type, the 

implementation could be anything, Java code, C#, C++, configuration, properties etc. 

Now we can ask inhabitation questions of the form Γ ⊢ ? : 𝜏 using this repository and 

target intersection type 𝜏 . If this type is not computable from the combinators, then the 

resulting answer is “No Solution”.  

We can ask the question Γ ⊢ ? : #[𝑏], or whether any inhabitant can be found of type b or 

have a subtype of b. The algorithm will process the Γ repository, checking if there’s any 

combinator satisfying the rule, namely having the type ‘b’ or any subtype of ‘b’, and report 

that there are no inhabitants that satisfy the rule. 

Another question to ask is Γ ⊢ ? : #[𝐴, 𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒]. In this case there is a combinator with 

the intersection type [A, namerule] and it is the NameRule combinator, therefore the answer 

will be Namerule. Figure 7 illustrates this scenario. The next step is to replace the NameRule 

combinator with its implementation, but we won’t discuss it further here, since the 

implementation is not relevant for the inhabitation problem, and replacing the combinator 

with its corresponding implementation is a straightforward process.  

 

Figure 7: Search tree with single inhabitant 

 

Γ ⊢ ? : #[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] 

NameRule: #[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] Moves: #[𝐴,  𝑚𝑜𝑣𝑒𝑠] 

Game: # 𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒,  𝐴 

→ #[𝑚𝑜𝑣𝑒𝑠, 𝐴]

→ #[𝑔𝑎𝑚𝑒, 𝐴] 

Γ = { 
type ~> A 

NameRule : #[A, namerule] 

Moves : #[A, moves] 

Game : #[namerule, alpha.type] -> 

#[moves, alpha.type] -> 

       #[game, alpha.type] 

} 

Figure 6: Repository with Single Inhabitant Example 
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Red colored leaves indicate an unsuccessful search while green one (the lighter one) 

indicates success. 

Let’s see what happens when we ask the question Γ ⊢ ? : #[𝐴, 𝑔𝑎𝑚𝑒]. Initially, only the 

Game combinator satisfies the rule, but this combinator will force to evaluate the other two 

combinators, Moves and NameRule, since it expects two parameters whose intersection types 

match with Moves and NameRule. Figure 8 shows the expansion of the search tree for this 

scenario. 

 

Figure 8: Search tree with expanded single inhabitant 

The successful path, in the tree above, is marked with green (lighter color, in 

monochrome printouts). The answer in this case is the composition of combinators 

NameRule -> Moves -> Game.  

 Γ ⊢ ? : #[𝐴, 𝑔𝑎𝑚𝑒] 

Moves: 

#[𝐴,  𝑚𝑜𝑣𝑒𝑠] 

Game: # 𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒,  𝐴 

→ #[𝑚𝑜𝑣𝑒𝑠, 𝐴]
→ #[𝑔𝑎𝑚𝑒, 𝐴] 

Moves: #[𝐴,  𝑚𝑜𝑣𝑒𝑠] NameRule: #[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] 

NameRule: 

#[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] 

Γ = { 
type ~> A 

NameRule : #[A, namerule] 

Move1 :  #[A, move_1] 

Move2 :  #[A, move_2] 

Moves : [ #[A, move_1] -> #[A, moves], 

    #[A, move_2] -> #[A, moves]] 

Game : #[namerule, alpha.type] -> 

#[moves, alpha.type] -> 

       #[game, alpha.type] 

} 

Figure 9: Multiple Inhabitant Repository 
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Example 2 

In this example, shown in Figure 9, we enrich the  repository with two more 

combinators and modify the Moves combinator so that it is defined as a function table.  

With the same query  Γ ⊢ ? : #[𝐴, 𝑔𝑎𝑚𝑒] only the Game combinator satisfies the rule. In 

the process of evaluating the Game combinator, the algorithm finds NameRule and Moves. 

Since the Moves combinator is a function table, which contains two combinators of the 

intersection type #[A, moves], it causes the search tree to branch into two successful leaves, 

consequently giving two solutions.  

 

Figure 10: Search tree 3 

Each successful node contains unsuccessful leaves, but we are not showing them for 

the sake of brevity. In this case we have two solutions: NameRule -> Move1 -> Game  and 

NameRule -> Move2 -> Game. 

 Γ ⊢ ? : #[𝐴, 𝑔𝑎𝑚𝑒] 

Move1: 

#[𝐴,  𝑚𝑜𝑣𝑒_1] 

Game: # 𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒,  𝐴 

→ #[𝑚𝑜𝑣𝑒𝑠, 𝐴]
→ #[𝑔𝑎𝑚𝑒, 𝐴] 

NameRule: 

#[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] 

Move2: 

#[𝐴,  𝑚𝑜𝑣𝑒_2] 
Moves: [ 

#[𝐴,  𝑚𝑜𝑣𝑒_1] → #[𝐴,𝑚𝑜𝑣𝑒𝑠], 

#[𝐴,  𝑚𝑜𝑣𝑒_2] → #[𝐴,𝑚𝑜𝑣𝑒𝑠]] 

Moves: [ 

#[𝐴,  𝑚𝑜𝑣𝑒_1] → # 𝐴,  𝑚𝑜𝑣𝑒𝑠 , 

#[𝐴,  𝑚𝑜𝑣𝑒_2] → # 𝐴,  𝑚𝑜𝑣𝑒𝑠 ] 

Move1: 

#[𝐴,  𝑚𝑜𝑣𝑒_1] 

Move2: 

#[𝐴,  𝑚𝑜𝑣𝑒_2] 

NameRule: #[𝐴,  𝑛𝑎𝑚𝑒𝑟𝑢𝑙𝑒] 
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2.3. TOOL SUPPORT INHABCONSOLECLIENT 

In our experiments with the KombatSolitaire and MOEA frameworks, as well as other 

examples shown in this thesis, we used the tool implemented at the Technical University of 

Dortmund, Germany (for details see [21]). Details about the implemented inhabitation 

algorithm, employed heuristic optimizations and other theoretical and technical details are 

discussed in Boris Düdder’s dissertation [22]. Figure 11 shows a very high level design of the 

tool. The “Types” and “Impls” boxes represent the definition and implementation of 

combinators, respectively. 

 

This tool, InhabConsoleClient or CLS tool as we refer to it sometimes, provides the 

functionality of solving the inhabitation problem given a Γ repository and an intersection 

type (the goal) as discussed in the previous sections. In this section we will show how to use 

this tool and some special “hacks” needed to serve our purpose of synthesizing executable 

code.  

InhabConsoleClient is provided as an executable file, which requires two input files to 

run – an inhab file that contains the combinators’ definitions and the inhabitation question, 

and an implementation file that contains the combinators’ implementation. We now show a 

simple example which synthesizes a Java class for converting temperature values. This 

example simply shows how to use the tool. Create three files, as in Figure 12. 

 

Figure 12: Running the InhabConsoleClient 

InhabConsoleClient 

Γ Repository 

Types Impls 

file.inhab file.scs 

+ 

Computes type 𝑒 

Generates Code Files 

file1 

file2 

file3 

file4 

file5 

file6 

Figure 11: InhabConsoleClient - High level design 
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The folder InhapConsoleClient contains the tool that we need to run, more exactly the 

file named InhabConsoleClient.exe. The file javaTypeEnv.inhab contains the definition of 

the combinators, javaImpl.scs contains the implementation code for the combinators, and 

javaTest.bat contains the script to run the tool with the inhab and scs files as input 

parameters. The contents of these three files is given below. 

javaTest.bat 
InhabConsoleClient\InhabConsoleClient.exe javaTypeEnv.inhab javaImpl.scs 

 

javaTypeEnv.inhab 
kinds 
type ~> c 
 
combinatorsD 
NameRule : #[c, namerule] 
 
Methods : #[c, method] 
 
Class :  #[namerule, alpha.type] -> 
    #[method, alpha.type] -> 
    #[class, alpha.type] 
 
|- ? : #[c, class] //inhabitation question 

 

javaImpl.scs 
declarations 
 
NameRule : { box["Converter"] } 
 
Methods : { box["public static int celsToFahr(int c) 
  { 

     Math.round(c*9.0f/5 + 32); 

  }"] } 
 
Class : { 
 λname.   {letbox NameParameter = {name}    in { 
 λmethod. {letbox Methods       = {method}  in { 
box[ " 
public class " NameParameter "  
{ " Methods "  
}"] 
}}}} 
} 
inhabitant 

Note, the Class combinator is defined to have two parameters: [namerule, alpha.type] 

and [method, alpha.type]. The order of parameters matters, therefore the parameters in the 

implementation should match the order in the definition. In the case of the Class combinator, 
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the first parameter named NameParameter will be whatever combinator matches the 

intersection type [namerule, alpha.type], as specified in the definition. If there are two or 

more combinators of the same intersection type, only one will be returned and the selection 

is non-deterministic.  The same rule applies to other parameters, too. 

Now we can execute javaTest.bat from the command line and see the result, as shown 

in the screenshot below.  

 

The highlighted code is the solution that was found in the repository. As we can see, the 

solution is printed out on the console, which is not the place where we would want our code 

to be placed on. To modify the implementation of the combinatory so its generated code is 

saved to a file, change the Class combinator implementation in the javaImpl.scs file, so that 

the code inside the box[] is preceded with “=======” Name of the file “=======”. The 

Class combinator now will look like this (the added code is colored red). 

Class : { 
 λname.   {letbox NameParameter = {name}    in { 
 λmethod. {letbox Methods       = {method}  in { 
box["=======" NameParameter ".java======= 
public class " NameParameter "  
{ " Methods "  
}"] 
}}}} 
} 

The number of equality signs (=) should be exactly 7 before and 7 after the name of the 

file. Now if we run the javaTest.bat script again, it will print the result on the console and 

also dump it into a file named Converter.java, as determined by the NameRule combinator. 

In this example we are saving, into a file, only the final step of the solution. It is possible 

to save into different files the intermediate steps of the solution, too. Suppose we want to 

create a class to test our Converter class, basically, create a class that has a main(…) method, 

which tests the celsToFahr(int c) method. Add a Program combinator that causes the 
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evaluation of the Class combinator, and creates the class with the main(…) method 

described above. We will modify the javaTypeEnv.inhab file as shown below. 

javaTypeEnv.inhab 
Kinds 
type ~> c 
 
combinatorsD 
NameRule : #[c, namerule] 
 
Methods : #[c, method] 
 
Class :  #[namerule, alpha.type] -> 
    #[method, alpha.type] -> 
    #[class, alpha.type] 
 
Program: #[c, class] -> 
    #[c, namerule] -> 
    #[c, program] 
 
|- ? : #[c, program] //inhabitation question 

Figure 13: A sample of combinator definitions in CLS 

Note that, besides adding the Program combinator, we have also modified the 

inhabitation question; now we are asking for a solution of the intersection type [c, program], 

before we asked for [c, class]. Since Program expects a [c, class] combinator, it will cause the 

Class combinator to be evaluated, thus creating the file named Converter.java. We need to 

add an implementation for the Program combinator to the javaImpl.scs file. The code 

snippet below shows how we implement the Program combinator. Recall from Section 2.1 

that the implementation of a combinator, which is a blend of L2 and L1 code, is placed inside 

a box, enclosed in double quotes (e.g. box[“implementation”]}.  

1. Program : { 
2. λclass.  {letbox ClassParam = {class}   in { 
3. λname.   {letbox NameParam  = {name}    in { 
4. box[ "=======Test" NameParam ".java======= 
5.    public class Test" NameParam " { 
6.     private int temp = 20; 

7.     public int getTemp() 

8.     { return temp; } 

9.     " 
10.     ClassParam ” 
11.     =======+Test" NameParam ".java=======  
12.    public static void main(String[] args) 

13.    { 

14.  Test" NameParam " tn = new Test" NameParam "(); 
15.  System.out.println(" NameParam ".celsToFahr(tn.getTemp())); 
16.    } 
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17. }"]}}}} 
18. } 

Figure 14: Implementation of the Program combinator 

Line 4 (ignore the string “box[“) is a way (hack) to tell the tool to save the synthesized 

output of this combinator to a file named TestConverter.java (since NameParam is bound to 

“Converter”, in this case). In line 10 we are using the ClassParam combinator, which in this 

case won’t be replaced by its implementation, but rather serve as a binding with the 

parameter, causing the first parameter of Program to be evaluated, in this case the Class 

combinator. In line 11, the second synthesized part of Program is appended to the 

TestConverter.java because of the “=======+” notation. If we don’t add the code in line 11, 

the main(…) method will wind up being in Converter.java rather than TestConverter.java.  

2.4. TOOL SUPPORT LAUNCHPAD ECLIPSE PLUGIN 

FeatureIDE [23] is an open-source framework for feature-oriented software 

development (FOSD) based on Eclipse. It successfully integrates a number of composition 

tools through a well-documented extensible interface. We wanted to integrate the 

InhabConsoleClient tool and make it easy for developers to use and write their own 

combinators. The first decision was to design a text-based representation for combinators 

that would be easier for programmers to use by eliminating the λ syntax that appears in the 

standard representations of combinators. 

Figure 15 contains the LaunchPad [24] equivalent of some of the combinators from 

Figure 13 and Figure 14. These combinators appear in files that are associated with the 

individual features (see Section 2.5 for details). The syntax was designed to more closely 

resemble modern programming languages. Each intersection type A∩B is written textually 

as [A, B] where the order of these strings is irrelevant. A combinator is defined by its type 

and its implementation. Using the common concepts found in OO, one can design an abstract 

combinator by only defining its type specification in a combinator file; alternatively, it is 

possible to override the implementation of an existing combinator by providing an 

implementation of an existing combinator.  

In the implementation of the Program combinator (Figure 15) note how the L1-

embedded Java code has “<NameParameter>” which will ultimately be replaced by the L1-

code associated with the L2-variable NameParameter, which in this case is the constant 

“Converter”. These files are edited within a LaunchPad editor that properly formats the L1-

embedded Java code, making it easier for programmers to read. 

Upon selecting a configuration file in FeatureIDE (see Section 2.5 for details), the 

LaunchPad plugin composes the associated combinator files and constructs the necessary λ 

combinator specification files which it passes to the InhabConsoleClient tool to 

synthesize the final code. The code is generated within the src/ source folder in an Eclipse 
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project, which allows programmers to easily include the generated code into their own 

projects by simply linking to the FeatureIDE project in which the generated code exists. 

 

 

LaunchPad [12] is implemented by three Eclipse plugins, one to handle editing files, one 

to integrate the InhabConsoleClient executable [21], and one to install the KS plugin example.  

LaunchPad can be retrieved from its update site, 

http://combinators.org/launchpad/update-site; naturally, one must first install FeatureIDE. 

LaunchPad is implemented in about 7,500LOC. 

2.5. TOOL SUPPORT FEATUREIDE 

In this section we briefly explain FeatureIDE and give references for further details, a 

helper tool that we have used to develop the Γ repository for the two frameworks within 

which we have conducted our case studies. 

Computer programs that share many features are grouped together to form the so called 

program families, which are also known as product lines, and the idea is to build not 

individual programs but the family of similar programs [25]. An architectural model and a 

define { 

 [c, namerule]   NameRule -> Converter;  

} 

 

type Program { 

 ClassParam   [alpha.type, class]; 

 NameParameter  [alpha.type, namerule];    

     [alhpa.type, program];  

} 

implementation Program (converter/Test<NameParameter>.java) { 

package converter; 

public class Test<NameParameter> { 

 private int temp = 20; 

 public int getTemp(); 

 {return temp;} 

 <ClassParam> 

 public static void main(String[] args){ 

  Test<NameParam> tn = new Test<NameParam>(); 

  System.out.println("<NameParam>".celsToFahr(tn.getTemp()));  

 }  

}} 

Figure 15: Equivalent LaunchPad Combinators 

http://combinators.org/launchpad/update-site
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design methodology that implements the idea of program families is the AHEAD model (for 

details see [15]). FeatureIDE is an open source tool provided as an Eclipse plugin, which 

supports the development of program families following the AHEAD architecture model 

[25].  

FeatureIDE supports Feature Oriented Software Development (FOSD), which is a 

paradigm for designing and implementing applications based on features [23]. A feature 

represents a characteristic in a software system, and FOSD enables modularizing a software 

into units which represent features (see [23] for details). To do this, FeatureIDE supports an 

extensible interface allowing for different composition tools to synthesize or generate code 

based upon a selected configuration of features. 

We will refer to the same example used in Section 2.3. Here we develop the repository 

using the FeatureIDE rather than pure L2 language. For details on how to install the 

FeatureIDE plugin and get started see [26].  

In Eclipse, each FeatureIDE project has a model that defines features of a program family. 
Figure 16(a) shows the model for the Converter repository described in section 2.3. We can 
add features above or below the selected feature by selecting a feature, right-clicking on it 
and choosing the desired operation from the menu shown in Figure 16(b). Each rectangle 
represents a feature, the legend on the right-hand side of Figure 16(a) describes the meaning 
of the symbols and shapes in the model. 

             

       (a)       (b) 

Figure 16: The model of the Converter Repository 

For each feature there is a corresponding folder in which we can put the combinators 

associated with that feature. Apart from the model, we have the configuration files, which, 

unlike the model, can be more than one. In the configuration file we can choose which 

features we want for our program. In case of multiple configuration files, we can right click 

on one file and choose the “Set as current configuration” option to run the inhabitation 

problem for the chosen features – this operation should generate the desired program by 

synthesizing code from the chosen combinators and put it in the src folder.  
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Figure 17: Configuration file (right) and the folder structure of the Converter Repository (left) 

In this model we have decided that we can choose either C2F feature or F2C, but not 

both (see Figure 16(a)), and it is imposed on the configuration file, therefore we cannot have 

a configuration with both features selected. This is just a design decision for this model, 

which could have very easily been different. 

It is possible to add other constraints in the model. Consider the case when we want to 

execute any of the converters. So we add a new feature named Program, for which we create 

a combinator that creates a class with a main method, inside main it creates a Converter 

object and calls its conversion method. We won’t go into implementation details, as they are 

not relevant to the topic we are talking about in this section, but we will rather explain how 

we can add constraints on feature selection. We can make sure that no one will ever be able 

to create a Program without choosing one of the methods F2C or C2F. We do so, by adding 

a constraint in the model, which basically says “If you select Program, then you must select 

either F2C or C2F” or in a formal manner 𝐏𝐫𝐨𝐠𝐫𝐚𝐦 ⇒ 𝐂𝟐𝐅 ⋁ 𝐅𝟐𝐂. 
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Figure 18: Constraints on feature selection 

Observe that the other way around is not constrained, which means we can select F2C 

or C2F without selecting the Program feature. 

As seen in Figure 16, features are organized in a hierarchical model, consequently the 

parent-child relationship is implied, which means, if you select C2F you have already selected 

Methods and Class. 

FeatureIDE counts the number of possible valid configurations for a particular selection 

of features in a config file. If we deselect all the features, it will show the total possible valid 

configurations; after selecting some features, it will show the number of possible valid 

configurations left to be selected.  

 

   a)       b) 
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   c) 

Figure 19: Possible configurations: a) total, b) possible configs after the current selection of 
features (invalid config), c) possible configurations (valid config) 

 

The number of possible configurations depends on the constraints in the model, hence 

we call it the valid number of possible configurations. Figure 19(b) shows an invalid 

configuration; it is invalid because either C2F or F2C must be selected after Methods has 

been selected and in this configuration none of them is selected. 

 

We end this chapter by emphasizing the importance of these tools in conducting our 

research. As we’ll see later in the following chapters, Γ repositories can grow really big over 

time and contain hundreds and maybe thousands of combinators. FeatureIDE makes it 

possible to manage such a large number of combinators.  The standard representation of 

combinators uses the λ syntax, which is not easy to write and makes it even more difficult to 

read; besides, it also requires everything to be put into two files (definition and 

implementation files), which is very impractical to deal with when the number of 

combinators exceeds 50. LaunchPad provides a macro language, which looks like a modern 

programming language and is much easier to read and write. It also allows the programmer 

to break the code into many combinators (files), which gives an advantage as opposed to 

having all in just two files. And finally, the InhabConsoleClient tool provides the 

implementation of the CL(S), which provides the algorithm for solving the inhabitation 

problem in our repository of combinators. 
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3. CASE STUDY 

We have two case studies, conducted in two different object oriented frameworks. The 

first one was conducted within an OO framework called KombatSolitaire (KS), a framework 

that had earlier been developed over a number of years by Prof. George Heineman as part of 

an undergraduate course in software engineering. KS is a Java framework that enables head-

to-head competition of solitaire variations played simultaneously over the Internet. First we 

implemented a solitaire variation called FourteenOut in native Java code, then we 

implemented the same variation in Lambda/Combinator language called L2. 

One of the goals of this thesis, is to find out whether the combinatory logic approach to 

software development can be exploited with any OO framework or not. Therefore, we picked 

a third-party framework, which would take this approach one step ahead. The second case 

study is conducted within an open source framework hosted on www.sourceforge.com. It is 

called MOEA (Multi-Objective Evolutionary Algorithms) framework; it offers many ready-to-

use algorithms for solving multi objective optimization problems, and provides the interface 

for encoding any optimization problem, which then can be solved using the algorithms 

provided by the framework. (For details see the MOEA Framework section). 

3.1. FOURTEENOUT EXPERIENCE 

FourteenOut is a variation of the solitaire game, in which the player can take two cards 

out if the sum of their ranks equals 14. This is called a legal move. The move is done by first 

selecting one card and then another one. After the second card has been selected, the ranks 

of the selected cards are checked if they add up to 14; if yes, the cards are taken out; if not, 

the selected cards are deselected.  

 
Figure 20: FourteenOut - the first row represents columns, the second one represents piles. 

 

http://www.sourceforge.com/


Chapter 3. Case Study 
 

24 
 

All 52 cards are laid out in an equal number of piles and columns. A pile contains cards 

that are piled up and the player can see and select only the top most card. A column contains 

cards that are arranged in such a way that the player can see all the cards, but select only the 

topmost one. Figure 20 shows what the game layout looks like. 

3.1.1. Native Java implementation 

In order to write my own variation of solitaire, namely FourteenOut, by taking 

advantage of the framework - not writing everything from scratch, I needed to understand 

the design of this framework, so that I could extend it and produce the desired flavor of the 

game.  

Most of the functions you need for a solitaire variation game, are provided by the 

framework; all you have to do is provide the classes that behave the way you want your game 

to be, and know where to hook them up.  

I used the tutorial provided by Prof. Heineman to understand the design of the 

framework, and find out the hot spots - points where a framework allows extension. The 

tutorial describes how to write the Narcotic game, which is another variation of the solitaire 

game.  

- Tutorial for the Narcotic variation 

The framework is designed using EBC (Entity-Boundary-Controller) pattern. The entity, 

boundary and controller objects share the relationship as shown in the following picture. 

 

Figure 21: Design pattern of the KombatSolitaire framework 

Entity objects 

Deck deck 

Pile pile1 

Pile pile2 

Pile pile3 

Pile pile4 

MutableInteger score 

MutableInteger numLeft 

 

Boundary objects 

Boundary objects represent the entity objects visually. 

DeckView deckView 

PileView pileView1 

PileView pileView2 

PileView pileView3 

Entity Boundary Controller 



Chapter 3. Case Study 
 

25 
 

PileView pileView4 

IntegerView scoreView 

IntegerView numLeftView 

Each Boundary View widget can be associated with a MouseAdapter (responsible for 

handling PRESS, RELEASE and CLICK), MouseMotionAdapter (responsible for handling 

MOVE and DRAG), UndoAdapter (responsible for handling UNDO). The DRAG controllers are 

provided for you free of charge, but you still need to construct them. For each view object, 

you need to calculate where they will be displayed in the (x,y) plane as shown in the figure 

below (Figure 22). Note that (0,0) is in the upper left corner of the screen. To aid in your 

calculations, you can use the CardImages class, which provides the following static 

methods: getWidth(), getHeight(), and getOverlap(). The getOverLap() 

method returns the number of pixels by which cards should overlap themselves within a 

Column or Row. 

 

Figure 22: Narcotic Layout 

Controller Objects 

Controllers are used to map the mouse interaction into moves recognized by the 

Narcotic solitaire variation, as shown in the following table: 

 Mouse Mapping 

Deal Mouse Press on DeckView 

Move Mouse Press on PileView, followed by Mouse Release on a second 
PileView 
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Reset Mouse press on DeckView 

RemoveAll Double Click on the left-most pile 

 

NarcoticDeckController Class 

This class is responsible for processing a deal move (if the deck is not empty) and the 

reset move (when the deck is empty). 

NarcoticDeckController extends MouseAdapter 

NarcoticDeckController (Narcotic theGame) 
void mousePressed (MouseEvent me) 
void mouseRelease (MouseEvent me) 

# Narcotic narcoticGame 

The mousePressed() method is responsible for dealing cards; the 

mouseReleased() method will handle situations as described in the section 

NarcoticReleasedAdapter Class below. 

NarcoticPileController Class 

This class is responsible for processing requests to move cards between Piles (PRESS on 

a source PileView and RELEASE on target PileView), removeAll Cards (double click on the 

leftmost Pile). 

NarcoticPileController extends MouseAdapter 

NarcoticPileController (Narcotic theGame, PIleView src) 
void mousePressed (MouseEvent me) 
void mouseClicked (MouseEvent me) 
void mouseReleased (MouseEvent me) 

# Narcotic narcoticGame;  // point to game 
# PileView sourse;  //which PIleView (if any) to match with 

RELEASE 

The mouseClicked(), mousePressed(), mouseReleased() methods are 

responsible for controlling the entities as stored within the Narcotic solitaire Plug-In. 
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SolitaireMouseMotionAdapter Class 

This class is responsible for processing any DRAG request and is provided as is. During 

design, you will learn how to interact with the container so drag will work properly. 

SolitaireMouseMotionAdapter extends 

MouseMotionAdapter 

SolitaireMouseMotionAdapter (Solitaire theGame) 
void mouseDragged (MouseEvent me) 

# Solitaire theGame; //point to game 

If you are curious as to how this method operates, look at the Solitaire source code. 

SolitaireUndoAdapter Class 

This class is responsible for processing any right click events to Undo requests. This 

class is provided for you as is. During design you will learn its interface and how to interact 

with it. For now (in Analysis) we will not discuss Undo further. 

SolitaireUndoAdapter extends UndoAdapter 

SolitaireUndoAdapter (Solitaire theGame) 
void undoRequested() 

# Solitaire theGame; // point to game 

 

NarcoticReleaseAdapter Class 

What if the user is executing the drag of an element (such as a card) from one Pile to 

another, but the mouse is not released on another Pile? The mouse Press has already 

recorded the source of the interaction, and therefore we must move the actively dragged 

card back to its original location. This controller must be associated with every view element 

that is visible and which you would normally have thought of as being “Passive”. To ease the 

implementation, you will find the returnWidget(w) method quite useful (see the Widget 

class documentation). 

NarcoticReleaseAdapter extends MouseAdapter 

NarcoticPileController (Narcotic theGame) 
void mouseReleased (MouseEvent me) 

# Narcotic narcoticGame; // point to game 
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Game Object 

This is the “super object”, the one that is the center of the solitaire plug in. This special 

class must extend the Solitaire class. To complete the functionality you must design several 

move classes. 

NarcoticGame extends SolvableSolitaire 

void initialize() 
Enumeration availableMoves () 

# Deck deck 
# Pile pile1, pile2, pile3, pile4 
# DeckView deckView 
# PileView pileView1, pileView2, pileView3, pileView4 
# IntegerView numLeftView, scoreView 

The availableMoves() method is only to be implemented if you will produce a plug-

in that is capable of auto-play. In this case, note that the superclass of NarcoticGame is 

SolavbleSolitaire. 

DealFourMove Class 

DealFourMove extends Move 

DealFourMove (Deck d, Pile p1, Pile p2, Pile p3, Pile p4) 
boolean doMove (theGame) 
boolean undo (theGame) 
boolean valid (theGame) 

# Deck deck 
# Pile pile1, pile2, pile3, pile4 

This Move class represents the dealing of four cards from the deck to the four piles. As 

with all Move objects, it is responsible for determining whether a given move (as represented 

by a Move object) is valid. A move encodes the logic required to perform a move (in this case, 

dealing four cards) and undoing that move (returning the cards from the respective piles 

back to the deck in order). 

MoveCardMove Class 

MoveCardMove extends Move 

MoveCardMove (Pile from, Card movingCard, Pile to) 
boolean doMove (theGame) 
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boolean undo (theGame) 
boolean valid (theGame) 
# boolean toLeftOf(Pile pile1, Pile pile2) 

# Pile from, to 
# Card movingCard 

This Move class represents the moving of a card from one column to another. As with all 

Move objects, it is responsible for determining whether a given move (as represented by a 

Move object) is valid. The helper method toLeftOf (p1, p2) is used to validate a move. 

RemoveAllMove Class 

RemoveAllMove extends Move 

RemoveAllMove (Pile p1, Pile p2, Pile p3, Pile p4) 
ReMoveAllMove (Pile p1, Pile p2, Pile p3, Pile p4,  
               Card c1, Card c2, Card c3, Card c4) 
boolean doMove (theGame) 
boolean undo (theGame) 
boolean valid (theGame) 

# Pile pile1, pile2, pile3, pile4 
# Card removedCard1, removedCard2, removedCard3, removedCard4 

This Move class represents the removal of all cards from the table. As with all Move 

objects, it is responsible for determining whether a given move (as represented by a Move 

object) is valid. Note that the object must remember the removed cards so the undo can be 

properly executed. The second constructor (with 8 arguments) is never called during 

interactive play, but becomes useful when you consider writing code to automatically play 

Narcotic. 

 

Summary 

For this solitaire plug-in, we need the following control objects. 

NarcoticDeckController deckController 

NarcoticPileController pileController 

SolitaireMouseMotionAdapter standardDragController 

SolitaireUndoAdapter standardUndoController 

NarcoticReleasedAdapter releasedAdapter 
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The associations will be as follows: 

{deckView, pileView1, pileView2, pileView3, pileView4} ➜ standardUndoController 

{scoreView, numLeftView} ➜ standardUndoController 

{deckView, pileView1, pileView2, pileView3, pileView4} ➜ standardDragController 

{scoreView, numLeftView} ➜ standardDragController 

{pileView1, pileView2, pileView3, pileView4} ➜ pileController 

{deckView} ➜ deckController 

{scoreView, numLeftView} ➜ releasedAdapter 

 

Finally: You need to have some default controller to handle the Container; that is, mouse 

events that do not occur over any specific view widget. 

{container} ➜ releasedAdapter 

{container} ➜ standardDragController 

{container} ➜ standardUndoController 

 

 

By going over this tutorial, I could understand how to create a deck, a pile and interact 

with them. Basically, after exercising the Narcotic example, it was easy to write any variation 

which has a deck and any number of piles. In spite of that, I still didn’t have enough 

understanding of the framework to complete the FourteenOut variation, because it was 

slightly different. I needed columns, which were not described in the tutorial, and the moves 

happened to be different from the moves in Narcotic. Therefore I looked at two or more other 

variations developed by students, to see how they customized the widgets and implemented 

various moves. 

 

Designing and implementing the FourteenOut variation 

The Fourteen-Out variation, since it extends the KS framework, follows the EBC (Entity 

- Boundary - Controller) pattern. Figure 23 shows a high level design of this variation. Later, 

we describe in more detail classes that were written for FourteenOut. 
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Figure 23: A high level design of the FourteenOut solitaire variation 

FourteenOut.java 

This is the class that combines all the pieces together, creates the model and the view, 

and starts the game. It does so by extending the Solitaire class and overriding 

initialize(), hasWon(), and getName() methods. Note: even though FourteenOut 

doesn’t have a deck, we still need to use the Deck class to shuffle and deal the cards to 

columns and piles. The IntegetView class is used to show the score and number of cards 

left. CardImages lets us get the dimensions of a card, based on which we know how to lay 

out the view elements. 

FourteenOutModel.java 

This class is responsible for creating and maintaining the model elements of the game. 

In the picture below we show the relations between this class and other components. 
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Figure 24: The model component of FourteenOut 

The Deck class is used behind the scenes to shuffle the cards and deal them. The number 

of columns and piles is configurable; the game allows as many piles as there are columns. By 

default, there are 4 columns and 4 piles. Each column contains 12 cards, and the remaining 

4 cards are dealt in 4 piles. Recall that a move consists of two steps: 1. select the first card, 2. 

select the second card; if their ranks add up to 14, then remove them, otherwise deselect 

both. The model keeps track of the selected card (if there’s one, which means the first step 

was taken), and the list of all the removed cards.  RemovedCard is nothing but a data 

structure that knows which card was removed, and from which column or pile. We keep 

track of the removed cards to able to implement the undo operation that the framework 

offers a hook for (this is accomplished by overriding the undo(Solitaire s) method of 

Move). The ‘boolean isEmpty()’ method of FourteenOutModel is used to tell 

whether the game is won or not. This method checks all the columns and piles to determine 

if all the cards are removed. 

FourteenOutColumnView.java and FourteenOutPileView.java 

The KS framework provides ColumnView and PileView classes, which can be used 

directly to draw a Column and a Pile, respectively. Since our column and pile widgets have a 

slightly different behavior from what is already provided by the framework, we needed to 

override the redraw() method of CoumnView and PileView so that it can show the 

selected card to the player.  
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Figure 25: Customized widgets for ColumnView and PileView 

FourteenOutColumnView extends ColumnView and FourteenOutPileView 

extends PileView. Each of them overrides the draw() method of its superclass, so that the 

selected card can be distinguished from others. 

Controllers 

The job of these controllers is to listen to mouse events and act accordingly. 

FourteenOutPileController is the class that listens to mouse events by extending 

the MouseAdapter class; if there is a mouse click over a pile it creates an object of 

FourteenOutPileMove to register the move. FourteenOutPileMove is the class that 

extends the Move class and is responsible for validating a move and registering it, if it’s valid. 

It is also responsible for implementing the undo action, which is the reverse of the move 

action. In the same way FourteenOutColumnController handles the moves of cards in 

a column. The picture below shows the structure of the controller component.  

 

Figure 26: The controller component of FourteenOut. The Model and View boxes represent classes that 
we described earlier in this section. 
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3.1.2. Native Lambda / Combinator implementation 

Here we present a completely different approach to developing the FourteenOut 

variation using the KombatSolitaire framework. We define combinators, which represent the 

building blocks of a solitaire variation. When defining a combinator, the aim is to make it as 

generic as possible, so that it can be reused among variations that share the behavior 

provided by this combinator. We use the CLS tool to synthesize the desired code from these 

combinators. Combinators are written in a language that we call L2; apart from lambda 

notations, it contains Java code fragments as well. 

The first version contains the combinators that create the Model and View, at this point 

no move is possible. The process of writing the combinators for FourteenOut, at this point, 

is a migration process; since we already have the solution implemented in native Java code, 

we use that code to define the combinators out of which the CLS tool will produce the “same” 

code in terms of functionality. 

WinRule : { box [""] }  

The above line defines a combinator named “WinRule”, which will be used to determine 

if the game is won. Inside double quotes of box[""] we can write any java code, it can be 

any valid java code, a single line, a block of lines, a method or a whole class. It can also contain 

other combinators. Java code and combinators can be interleaved inside a box structure; Java 

code should be enclosed in double quotes, whereas combinators not. Here’s the list of 

combinators for the first, the most basic, version of FourteenOut. 

Table 2: The list of combinators for the first version of FourteenOut 

NameRule : { box ["FourteenOut"] } Wherever “NameRule” is 
used, when synthesized it 
will be replaced with the 
string “FourteenOut”. 

Game : { 

      λtc.             {letbox TestCases                       = {tc}             in {  
     λhelps.      {letbox HelperFunctions          = {helps}       in {  
     λcontrs.    {letbox Controllers                     = {contrs}     in {  
     λmethod. {letbox MethodDeclarations    = {method}  in { 

     λfield.        {letbox FieldDeclarations        = {field}         in { 

     λwin.         {letbox WinParameter              = {win}          in { 

     λinit.          {letbox InitializeParameter     = {init}          in { 

     λname.      {letbox NameParameter          = {name}      in {  
  box ["//... java code ..."] 

              }}  }}  }}  }}  }}  }}  }} }} 

} 

The “Game” combinator 
will produce the final pure 
java code for FourteenOut. 
The combinators, preceded 
with λ,  inside the “Game” 
combinator are parameters 
of the “Game” combinator.  



Chapter 3. Case Study 
 

35 
 

InitializationSteps : { 

 λname.  {letbox NameParameter     = {name} in {  
  box ["//... java code ..."] 

 }} } 

Steps used to initialize the 
game. 

Fields : { box ["//... java code ..."] } Fields used in the model. 

In this table we show only the implementation part of combinators, they also have the 

definition part, which we are omitting here. By running the CLS tool we get the first version 

of FourteenOut constructed through combinators. It doesn’t have any functionality, all it has 

is the model and some elements of the view. The picture below shows how it looks like.  

 

Figure 27: The first version of FourteenOut implemented through combinators 

In this version we have only four combinators: NameRule, Game, InitializationSteps 

and Fields. The NameRule combinator contains the string “FourteenOut”, which basically 

defines the name of the variation. Combinators can have parameters; such is the Game 

combinator. It contains the Java code for implementing the class which extends the 

Solitaire class, and it uses other combinators for building up the game. Similarly, 

InitializationSteps and Fields contain the code for initializing the game and specifying the 

fields needed, respectively. 

The process of developing combinators is incremental, we make a small step and try it 

out. If it works we move on to the next step. This way we prove by construction that the 

combinators generate the correct code, and we can easily step back if something is done 

wrong and correct the mistakes. 
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In the following table we show all the combinators in the final version of FourteenOut, 

for the sake of brevity we skip the intermediate versions of the developing process.  

Table 3: The list of the combinators for the final version of FourteenOut 

WinRule : { box ["// … java code ..."] } Determines when the game 
is won. 

NameRule : { box ["FourteenOut"] } Wherever “NameRule” is 
used, when synthesized it 
will be replaced with the 
string “FourteenOut”. 

PileRule : { box ["10"] } Defines the number of piles 
and columns, in this case 
10 of each. 

Game : { 

λtc.             {letbox TestCases                      = {tc}             in {  
λmoves.    {letbox MoveFunctions           = {moves}    in {  
λcontrs.    {letbox Controllers                   = {contrs}     in {  
λmethod. {letbox MethodDeclarations  = {method}  in { 

λfield.       {letbox FieldDeclarations        = {field}        in { 

λwin.        {letbox WinParameter              = {win}         in { 

λinit.         {letbox InitializeParameter     = {init}         in { 

λname.     {letbox NameParameter           = {name}    in {  
 box [ 

"//… java code ..."  
NameParameter "… java code ..."  
NameParameter  "//… java code ..."  
NameParameter "// … java code ..."  
NameParameter "// … java code ..." 

FieldDeclarations "//… java code ..." 

Controllers "// … java code ..." 

MethodDeclarations "// … java code ..." 

WinParameter "// … java code ..." 

InitializeParameter "//… java code ..."  
NameParameter "// … java code ..."  
NameParameter "// … java code ..." 

MoveFunctions 

TestCases ] 

              }}  }}  }}  }}  }}  }}  }} }} 

} 

The “Game” combinator 
will produce the final pure 
java code for FourteenOut. 
The combinators, preceded 
with λ, inside the “Game” 
combinator are parameters 
of the “Game” combinator. 
Combinator parameters are 
replaced with their 
corresponding 
implementation code. 

InitializationSteps : { 

 λname.  {letbox NameParameter     = {name} in {  
Steps used to initialize the 
model and the view. 
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  box ["//... java code ..."] 

 }}  } 

Methods : { box ["// … java code ..."] } This combinator contains 
the implementation of 
methods for initializing the 
view and the model. 

Fields : { 

λpiles. {letbox NumPiles          = {piles} in {  
 box [    "//… java code ..."  
  NumPiles "//… java code ..."] 

} 

Fields used in the model. 
We have added the 
“NumPiles” parameter to 
this combinator, which was 
not in the first version. 

FOColumnView : { 

 λname. {letbox NameParameter        = {name} in { 

 box [ "//… java code ..."  
           NameParameter "//… java code ..."] 

}} } 

Contains the 
FourteenOutColumnView 
class  described in the 
section “Designing and 
implementing the 
FourteenOut variation” 

FOPileView: { 

 λname. {letbox NameParameter        = {name} in { 

 box [ "//… java code ..."  
           NameParameter "//… java code ..."] 

}} } 

Contains the 
FourteenOutPileView 
class described in the 
section “Designing and 
implementing the 
FourteenOut variation” 

RemovedCard : { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

}} } 

Contains the 
RemovedCard class 
described in the section 
“Designing and 
implementing the 
FourteenOut variation” 

Model: { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

}} } 

Contains the 
FourteenOutModel class 
described in the section 
“Designing and 
implementing the 
FourteenOut variation” 

FourteenOutColumnMove: { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

Contains the 
FourteenOutColumnMov
e class described in the 
section “Designing and 
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}} } implementing the 
FourteenOut variation” 

FourteenOutPileMove: { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

}} } 

Contains the 
FourteenOutPileMove 
class described in the 
section “Designing and 
implementing the 
FourteenOut variation” 

FourteenOutColumnController: { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

}} } 

Contains the 
FourteenOutColumnCont
roller class described in 
the section “Designing and 
implementing the 
FourteenOut variation” 

FourteenOutPileController: { 

 λname. {letbox NameParameter        = {name} in {  
 box [ "//... java code ..."  
           NameParameter "// ... java code ..."] 

}} } 

Contains the 
FourteenOutPileControll
er class described in the 
section “Designing and 
implementing the 
FourteenOut variation” 

Controllers : { 

 λc. {letbox Controller        = {c} in { 

 box [Controller] 

}}  } 

This combinator combines 
all defined controllers 
together. 

Moves : {  
 λm.  {letbox Move     = {m} in {  
 box [Move]  
}}  } 

This combinator combines 
all defined moves together. 

AllTestCases : { box ["// … java code ..."]} Contains all test cases. 

The final version contains 18 combinators and all of them are shown in the above table. 

The CLS tool generates code that is human readable and behaves exactly the same way as 

the one implemented in native Java language. Nevertheless we’re not supposed to touch the 

generated code even if a single change needs to be made. We always go back to the 

combinators and make the changes, run CSL tool again and see if we got the desired result. 

Note that combinators are totally reusable, which is not the case with pure object 

oriented programming. Consider a solitaire variation that is 95% similar to FourteenOut 

but has some additional moves. We can reuse all the combinators from the repository as they 
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are, and just add the extra moves we want our variation to have. But, this is not the case with 

pure OOP. Consider the winning condition. We need to override the hasWon() method of 

the Solitaire class to determine when the game is won. Every time we write a new 

variation we need to repeat the step even though the condition may be the same. So we end 

up copy-pasting code, which is not the definition of reuse. What if we need to modify a little 

bit the winning condition in all variations that have the same winning condition? We have to 

go off and change the code wherever it is used. In case of the lambda/combinator 

implementation, we only change the WinRule combinator and rerun the CLS tool. 

3.1.3. Review of the LaunchPad repository implementation of Fourteen-Out 

Besides having it implemented in L2 language, we have implemented the Γ repository of 

Fourteen-Out in the LaunchPad tool as well. In this section we will review the combinators 

implemented using the LaunchPad tool and compare them with the ones in the previous 

section. The goal is to show the advantages of using this tool instead of manually developing 

combinators in L2. It doesn’t mean that we are completely avoiding the usage of the L2 

language, but rather use a more user-friendly tool for development, which automatically 

generates the cumbersome L2 code.  

One of the major differences is that in LaunchPad we don’t use the lambda expressions 

at all, though they get generated behind the scenes, so that the CLS tool will be able to 

synthesize code from those combinators. Another difference is that we don’t have to have 

everything in only two files, where we put all the definition code into one file and the 

implementation code into another, but we can break down the code into smaller and more 

manageable modules. Unlike in L2, where implementation and definition reside in two 

different files, here we keep them together in one file. 

In Table 3 we have shown only the implementation of the combinators, omitting the def-

inition part of it. Let’s have a look at the Game combinator, its definition and implementation. 

//definition 
Game : #[testcases, alpha.gameType, all] -> 
  #[moves,     alpha.gameType] -> 
  #[allControllers, alpha.gameType] -> 
  #[methods, alpha.gameType] -> 
  #[fields, alpha.gameType] -> 
  #[winrule, alpha.gameType] ->  
  #[initializationsteps, alpha.gameType] -> 
  #[namerule, alpha.gameType] ->  
  #[game, alpha.gameType] 
//implementation 
Game : { 

λtc.             {letbox TestCases                      = {tc}             in {  
λmoves.    {letbox MoveFunctions           = {moves}    in {  
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λcontrs.    {letbox Controllers                   = {contrs}     in {  
λmethod. {letbox MethodDeclarations  = {method}  in { 

λfield.       {letbox FieldDeclarations        = {field}        in { 

λwin.        {letbox WinParameter              = {win}         in { 

λinit.         {letbox InitializeParameter     = {init}         in { 

λname.     {letbox NameParameter           = {name}    in {  
 box [ 

"//… java code ..."  
NameParameter "… java code ..."  
NameParameter  "//… java code ..."  
NameParameter "// … java code ..."  
NameParameter "// … java code ..." 

FieldDeclarations "//… java code ..." 

Controllers "// … java code ..." 

MethodDeclarations "// … java code ..." 

WinParameter "// … java code ..." 

InitializeParameter "//… java code ..."  
NameParameter "// … java code ..."  
NameParameter "// … java code ..." 

MoveFunctions 

TestCases ] 

              }}  }}  }}  }}  }}  }}  }} }} 

} 

Below is the code for the Game and other combinators in LauchPad; we are omitting the 

Java code for the sake of brevity. 

Table 4: The list of combinators for the final version of Fourteen-Out in LaunchPad 
/** 
  Sets the structure for the primary extension class in Solitaire. Each of the bound variables pulls     
in different elements as needed. 

  */ 
 type Game { 
  NameParameter          [alpha.gameType, namerule]; 
  MethodDeclarations     [alpha.gameType, methods]; 
  FieldDeclarations      [alpha.gameType, fields]; 
  WinParameter           [alpha.gameType, winrule]; 
  InitializeSteps        [alpha.gameType, initializationsteps]; 
                         [alpha.gameType, game]; 
} 
implementation Game (<NameParameter>/<NameParameter>.java) {  

package <NameParameter>;//... Java Code ... 
    <NameParameter> //... Java Code ... 
    <FieldDeclarations>  
 <MethodDeclarations> //... Java Code ...  
 <WinParameter>//... Java Code ... 
 <InitializeSteps>//... Java Code ...   
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 "<NameParameter>"; //... Java Code ...   
} 
/* Each solitiare variation has a winning completion condition. */ 
type WinRule { 
 [fourteenout, winrule]; 
} 
 
/* Default implementation determines win once score reaches 52.*/ 
implementation WinRule { 
 if (model != null) { return isEmpty(); } 

} 
/** 
Building off of the default Moves combinator in the library, this table demonstrates how to launch 
four different inhabitation searches, each one of which generates the appropriate helper code for 
dealing with the dragging moves in this variation. 
 
These moves are simpler than in most variations, so we don't use the DragMoves feature, but 
rather implement these as standalone. 
 */ 
table Moves { 
  type { 
 Move   [fourteenout, pile_remove_cards]; 
                   [fourteenout, moves, pilemoves]; } 
  type { 
 Move   [fourteenout, column_remove_cards]; 
                   [fourteenout, moves, columnmoves]; }  
} 
type FourteenOutPileMove { 
 NameParameter       [fourteenout, namerule]; 
      [fourteenout, pile_remove_cards]; 
} 
// missing a close parentheses will drive you nuts because there won't be an implementation. Spot 
// syntax error?  
implementation FourteenOutPileMove 
(<NameParameter>/FourteenOutPileMove.java) { 
 package <NameParameter>; 
 //... Java Code ... 
 <NameParameter> model = (<NameParameter>) game; 
 //... Java Code ... 
} 
type FourteenOutColumnMove { 
 NameParameter       [fourteenout, namerule];  
      [fourteenout, column_remove_cards]; 
} 
implementation FourteenOutColumnMove 
(<NameParameter>/FourteenOutColumnMove.java) { 
package <NameParameter>; 
 //... Java Code ... 
 <NameParameter> model = (<NameParameter>) game; 
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 //... Java Code ... 
} 
table AllControllers { 
  type { 
 Controller [fourteenout, pileController]; 
            [fourteenout, allControllers]; 
  } 
   
  type { 
 Controller [fourteenout, columnController]; 
            [fourteenout, allControllers]; 
  } 
} 
type ColumnDesignate { 
 [alpha.gameType, columnControllerName]; 
} 
implementation ColumnDesignate { // empty string } 
 
type CMousePressed { 
 [fourteenout, columnPressed ]; 
} 
implementation CMousePressed { 
    //... Java Code ... 
} 
 
type CMouseClicked { 
 [fourteenout, columnClicked]; 
} 
implementation CMouseClicked {// ignore } 
 
type CMouseReleased { 
 [fourteenout, columnReleased]; 
} 
implementation CMouseReleased {// ignore} 
type PileDesignate { 
 [alpha.gameType, pileControllerName]; 
} 
implementation PileDesignate {// empty string } 
 
type PileMousePressed { 
 NameParameter [fourteenout, namerule];    
              [fourteenout, pilePressed]; 
} 
implementation PileMousePressed { 
 //... Java Code ... 
} 
 
type PileMouseClicked { 
 NameParameter [fourteenout, namerule]; 
    [fourteenout, pileClicked]; 
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} 
implementation PileMouseClicked {// ignore} 
 
type PileMouseReleased { 
 [fourteenout, pileReleased]; 
} 
implementation PileMouseReleased {// ignore}  
/* Contains description of the extra fields to be added to FourteenOut structure. Required 
parameters include the number of piles.  */ 
type Fields { 
 NumPiles  [fourteenout, pilerule]; 
   [fourteenout, fields]; 
}  
implementation Fields { 
 //... Java Code ... 
 int numberOfColumns = <NumPiles>; 
 //... Java Code ... 
} 
/* Initialization depends on key structural concepts, namely the number of piles. */ 
type InitializationFourteenOut {  
 NameRule  [fourteenout, namerule]; 
    [fourteenout, initializationsteps]; 
} 
/* All structural elements and widgets are constructed; in addition, the expected controllers are 
associated here. */ 
implementation InitializationFourteenOut { 
 //... Java Code ... 
} 
/* When a combinator refers to a single token (a common occurrence) then use ‘define’ to 
capture this relationship. */ 
define { 
  [fourteenout, namerule]   NameRule -> FourteenOut; 
} 

/* Simple definition capturing the concept that there are ten piles within the game. */ 
define { 
  [fourteenout, pilerule] PileRule -> 10; 
} 
type Methods { 
 [fourteenout, methods]; 
} 
implementation Methods { 
 //... Java Code ... 
} 
type RemovedCard { 
 NameParameter [fourteenout, namerule]; 
    [fourteenout, removedCard]; 
} 
implementation RemovedCard (<NameParameter>/RemovedCard.java) { 
 package <NameParameter>; 
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 //... Java Code ... 
} 
/* Each solitaire variation has a winning completion condition. */ 
type WinRule { 
 [fourteenout, winrule]; 
} 
/* Default implementation determines win once score reaches 52. */ 
implementation WinRule { 
 if (model != null) { return isEmpty(); } 

} 
/* The Full codebase is generated once individual elements are generated. Each of these subtasks 
*MUST* expand to its own file, otherwise there will be text that bleeds over from one abstraction 
to the next. */ 
type Full { 
  Moves   [fourteenout, moves]; 
  RemovedCard  [fourteenout, removedCard]; // helper class 
  FOColViews  [fourteenout, columnview];  // special widget 
  Controller   [fourteenout, allControllers]; 
  Game             [fourteenout, game]; 
              [fourteenout, full]; 
} 

The original FourteenOut in CLS was completed as a stand-alone project. To properly 

integrate this code into the Γ repository, we made several changes to properly align the new 

combinator code with the existing combinators.  The resulting product line is thus formed 

from the intersection of the “globally useful” combinators used across multiple members. 

Naturally when working on successive solitaire variations using the Γ repository, future 

developers would start by using the existing combinators, and only would develop new ones 

relevant for their specific variation. 

3.2. KOMBATSOLITAIRE 

The KombatSolitaire (KS) framework [24] is an OO framework developed over a number 

of years as part of an undergraduate course in software engineering. KS is a Java framework 

that enables head-to-head competition of solitaire variations played simultaneously over the 

Internet. KS contains about 67KLOC, of which 31KLOC form the core Solitaire-playing engine. 

The objective of the framework was to develop dozens, even hundreds, of solitaire plugins 

to be executed by KS. The framework designer wrote a tutorial showing students how to 

develop a sample variation from scratch (see Tutorial for The Narcotic Variation). 

Specifically, a Java programmer must implement a number of classes with designed 

interrelationships between them: 

• Create a named class as subclass of Solitaire 

• Define structure of element objects 

• Define structure of widget objects 
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• Create move subclasses of Move for each move type 

• Create controller classes to process mouse events to create move objects to be 

executed 

• Determine logical condition for when game is over 

• Write test cases that properly evaluate implementation 

Following this approach, a typical implementation of the popular FreeCell solitaire 

variation requires ten classes and 1,565 commented lines of Java code. In doing so, the 

programmer applied the Model/View/Controller design pattern [4] and properly 

implemented the necessary coding protocols imposed by the framework. Hundreds of 

students have repeated this task, each one having to learn the abstractions encoded in the 

framework. 

3.3. KOMBATSOLITAIRE Γ REPOSITORY 

Given the core OO framework [24] that supports the solitaire variations, it makes sense 

to create a product line from this OO framework.  

 

 

The challenge is to make this process configurable where one can synthesize individual 

product line members by selecting features from a feature diagram. 

Starting from the original KS tutorial, we created a repository of combinators that 

encodes the logic required to extend the OO framework to implement a solitaire variation. 

During this process, we iteratively identified the core abstractions in the OO framework and 

NameRuletype: (freeCell ∩ namerule) 

NameRuleterm: { box[“FreeCell”] } 

HomePileRuletype: (freeCell ∩ pilerule ∩ homePile) 

HomePileRuleterm: { box[“4”] } 

WinRuletype:  (freeCell ∩ pilerule ∩ homePile)  (freeCell ∩ winrule) 

WinRuleterm: { 

   piles. {letbox NumPiles = {piles} in { 

    box[“   boolean won = true; 

     for (int i = 0; i < " NumPiles "; i++) { 

       if (fieldHomePiles[i].count() != 13) {  

         won = false; 

       } }   

     if (won) { return true; } 

          "] 

  }}} 

 Figure 28: Sample Combinators for FreeCell Variation 
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mapped them to combinators at different levels of granularity. The sample combinators for 

a FreeCell variation shown in Figure 28 construct L1-level code fragments that can be 

composed with other code fragments. The HomePileRule combinator maps the concept 

number of home card piles (i.e., where the Aces are placed) to the integer value 4. By 

encoding this concept into a single combinator, the designer has separated concerns which 

can be reused in other combinators. The WinRule combinator produces a Java code 

fragment that determines whether the game has been won by checking whether all home 

card piles are full. This combinator depends on having the HomePileRule combinator so it 

can generate code using the appropriate number of piles. The code resulting from WinRule 

is synthesized from the L1-level code fragment by replacing the L2-level variable NumPiles 

with the L1-level code fragment, 4. Finally, the NameRule combinator maps to a string 

constant which refers to the name of the top-level class of the plugin implementation. 

 
The power of this approach comes from its ability to assign type information to 

intermediate code fragments synthesized from combinators. Referring to the inhabitation 

problem from Section 2.2, the code for the FreeCell solitaire plugin is generated by applying 

the generic Game combinator shown in Figure 29 in a query, viz. Γ ⊢ e : (game ∩ freeCell). 

The inhabitation uses this goal query to drive the generation of code resources as required 

by the FreeCell solitaire variation. 

Identifying this combinator is important because the individual clauses in this 

combinator directly parallel the bulleted list (Section 3.2) that described the tutorial steps to 

follow when extending the framework. There is no ability in Java alone to specify that these 

steps must be carried out. The very structure of the Game combinator actually provided 

guidance as we refactored the KS tutorial through a number of iterations. In the same way 

that the original KS tutorial guided students through a series of executable iterations – each 

one completing more features of the target solitaire variation – we were able to iteratively 

add combinators to the repository, always checkpointing our progress by executing the 

synthesized code to validate that the newly generated code was meeting its obligations. 

Gametype : (testcases ∩ alpha.gameType ∩ all) → 
 (moves ∩ alpha.gameType) → 
 (allControllers ∩ alpha.gameType) → 
 (methods ∩ alpha.gameType) → 
 (fields ∩ alpha.gameType) → 
 (winrule ∩ alpha.gameType) → 
 (initializationsteps ∩ alpha.gameType) → 
 (namerule ∩ alpha.gameType) → 
 (game ∩ alpha.gameType) 
 

Figure 29: Game Combinator 
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Ultimately a framework designer provides a library of combinators that encodes the 

logic required for extensions, and then the framework extender fills in the combinator 

implementations as required by the logic of their extensions. Note that the alpha.gameType 

type appearing in the clauses in Figure 30 clarifies that this combinator is reused “as is” for 

any solitaire variation, not just the FreeCell variation discussed here. 

The KS tutorial (showing how to implement a solitaire variation known as Narcotic) was 

first converted into 24 combinators composed of 962 lines of L2-code, containing 

appropriate L1-code fragments (in Java). Synthesizing Narcotic generated seven classes 

consisting of 609 lines of L2-code, containing appropriate L1-code fragments (in Java). The 

documentation embedded with the L1-code becomes part of the synthesized result, thus 

improving its readability. In addition to the L1-code fragments that implement the variation, 

the combinators also embedded JUnit code test cases which validate the synthesized code.  

We next synthesized a FreeCell variation requiring 58 combinators composed of 2,185 

lines of L2-code which generated fourteen classes consisting of 1,250 lines of readable, 

commented Java code. In reviewing these two solitaire variations, we consolidated common 

logic, extracting seven generic combinators which formed the basis for a common repository 

Γ of combinators. While each of these implementations requires some unique combinators 

to represent the individual logic of the variations, they all share the common architecture 

defined by the collection of combinators in the repository that formally encodes the 

abstractions and the way these abstractions are composed and interact with each other. 

Upon reflecting on the effort to create these two variations, it was clear that we needed to 

define { 
 [freeCell, namerule] NameRule -> FreeCell; 
} 

define { 
 [freeCell, pilerule, homePile] HomePileRule -> 4; 
} 

type WinRule { 
 NumPiles [alpha.gameType, pilerule, homePile]; 
 [alpha.gameType, winrule]; 
} 
implementation WinRule { 
 boolean won = true; 
 for (int i = 0; i < <NumPiles>; i++) { 
   if (fieldHomePiles[i].count() != 13) { won = false; break; }  
  } if (won) { return true; } 
} 

 Figure 30: Equivalent LaunchPad Combinators 
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“engineer” the design of these combinators in a systematic fashion. Naturally, this is the same 

impulse that leads to the development of software product lines in the first place. 

 

Figure 31: Solitaire Feature Model 

Briefly, a solitaire variation determines its WinCondition, Structure, mouse 

Controllers, and the allowed Moves that provide the logic of the desired solitaire variation. 

As the Γ repository matured, the feature diagram evolved to incorporate an increasing 

number of generic combinators used to synthesize different variations. The final feature 

model of the Solitaire framework is shown in Figure 31. Note that throughout this process, 

the OO framework remained unchanged because all development work was focused on the 

product line code. 

Each product line member has at least one inhabitation file that determines the 

inhabitation query used to generate the code. For FreeCell, this target is the intersection type 
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[freeCell, full]. LaunchPad is flexible enough to support multiple code generation 

steps as desired by the product line designer. 

Each valid product line member is defined by a configuration which represents a valid 

subset of the features defined in the feature model, based upon the semantics of the diagram. 

Table 5 lists three variations – FreeCell, FourteenOut, and Narcotic – and the features that 

are included in their respective configurations. Figure 32 depicts a sample execution of the 

synthesized FreeCell variation. 

 

Figure 32: Sample FreeCell Execution 

Table 5 identifies that some features are used by all product line members, while others 

are used by one or two of the members. We continue to increase the number of variations in 

this repository, which will only improve the reuse of combinators.  

Table 5: Sample Solitaire Configurations 
 FreeCell FourteenOut Narcotic 

Base    

Moves    

PileController    

Column8    

DragMoves    

FreeCell    

FreePile    

FullPiles    

HomePile    
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ColumnController    

TestCases    

DeckController    

DeckMove    

FourteenOut    

Narcotic    

PileMove    

ResetDeckMove    

Score52    

Generation  

Statistics 

18 classes 

1438 LOC 

7 classes 

696 LOC 

7 classes 

562 LOC 

To complete the support for migration we needed to integrate the command line utility 

(called InhabConsoleClient [21]) into an integrated development environment. We selected 

Eclipse because of its existing support for FeatureIDE [23]. See Section 2.4 for details on the 

LaunchPad Eclipse plugin. 

3.4. MOEA FRAMEWORK 

The MOEA framework [27] provides a base set of algorithms and defined problems1, but 

can easily be extended by adding new algorithms and problems. The manual focuses on 

explaining how to define new problems and gives detailed examples of two different 

problems. We will be experimenting with the possibility of defining new problems and using 

the built-in algorithms to solve any optimization problem that we can define within the 

MOEA framework. The variability of optimization problems, Knapsack problems for 

instance, gives us a good example of defining and using combinators in the MOEA 

Framework Repository implementation (see section 3.5 for details). 

In this section, we will give a brief introduction to the framework, how to use it to solve 

optimization problems and define new problems, which then can be solved using the 

algorithms provided by the framework. 

Most of the functionality provided by the framework is spread out across three classes: 

Executor, Instrumenter and Analyzer. We will explore the Executor class only, as the two 

others have to do with performance and analysis of the algorithms and are not quite relevant 

for us. The Executor class is used to construct and execute an algorithm. There are three 

pieces of information needed to run an algorithm: 

1. the problem to be solved 

2. the algorithm for solving the problem 

                                                           
1 In this section we use the words “problem” and “optimization problem” interchangeably 
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3. the number of objective function evaluations allocated to solve the problem 

The code snippet below shows how the Executor object is constructed and run. 

Table 6: Solving the UF1 problem using the NSGA-II algorithm. 

1.   NondominatedPopulation result = new Executor() 
2.                     .withProblem("UF1") 
3.                     .withAlgorithm("NSGAII") 
4.                     .withMaxEvaluations(10000) 
5.                     .run(); 

Line 1 creates a new instance of the Executor class; lines 2, 3, and 4 set the problem, 

algorithm and the maximum number of objective function evaluations, respectively. This 

example shows how to solve the two-objective UF1 problem using the NSGA-II algorithm. 

And finally, line 5 runs the algorithm and returns the result as NondominatedPopulation. In 

the code above, the problem and algorithm are provided by the framework, therefore we set 

them as Strings. Changing the problem or the algorithm is as easy as changing the String 

parameter. For example, if we want to use a different algorithm, let’s say GDE3 (Generalized 

Differential Evolution 3), we call the withAlgorithm(“GDE3”) method and off we go, now the 

problem will be solved using the GDE3 algorithm. For the complete list of the algorithms 

provided by the framework see the API. 

Once the execution is finished, we can access the result, which is saved in the variable 

named ‘result’.  

Table 7: Printing the solution obtained by the Executor in Table 6. 

 for (Solution solution : result) { 
    System.out.println(solution.getObjective(0) + " " + 
    solution.getObjective(1)); 
 } 

The algorithms provided by the MOEA framework have many parameters, which, if not 

set explicitly, are assumed to have the default values. The code snippet in Table 6 uses the 

NSGA-II algorithm with the default parameterization. If we want to set the values of any of 

its parameters different from default ones, we can do so by calling the setProperty 

method. The code snippet in Table 8 shows an example. 

Table 8: Setting the parameter values for NSGA-II. 

NondominatedPopulation result = new Executor() 
 .withProblem("UF1") 
 .withAlgorithm("NSGAII") 
 .withMaxEvaluations(10000) 
 .withProperty("populationSize", 50) 

http://www.moeaframework.org/javadoc/
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 .withProperty("sbx.rate", 0.9) 
 .withProperty("sbx.distributionIndex", 15.0) 
 .withProperty("pm.rate", 0.1) 
 .withProperty("pm.distributionIndex", 20.0) 
 .run(); 

Each algorithm has its own parameters. Refer to the API documentation for a complete 

and exact parameter keys. 

3.4.1. Defining a new problem 

The real power of the MOEA framework comes from the possibility of introducing any 

multi-objective optimization problem, which can be solved using the algorithms that this 

framework provides. The problems can be introduced in Java, C/C++, and in scripting 

languages. But, since our target language is Java, we’ll explain how to do it only in Java. For 

other implementations see the manual [51]. 

All problems in the MOEA framework implement the Problem interface, therefore we 

can introduce to the framework any multi-objective optimization problem by implementing 

this interface. It defines methods for characterizing a problem, defining the representation 

of the problem, and evaluating solutions to the problem. Another hot-spot of the framework, 

which in practice is used more than the Problem interface, is the AbstractProblem class. 

This class provides default implementations for many of the methods required by the 

Problem interface. We’ll explain briefly two examples of defining new problems, which are 

taken from the manual provided with the framework. For detailed implementations see the 

manual [51]. 

Kursawe Problem 

The Kursawe problem is formally defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝐹(𝑋)  =  (𝑓1(𝑥), 𝑓2(𝑥)) 

         𝑥 ∈ 𝑅𝐿 

where  

𝑓1(𝑥)  = ∑−10

𝐿−1

𝑖=0

𝑒
−0.2√𝑥𝑖

2+𝑥𝑖+1
2

 

𝑓2(𝑥)  = ∑  |𝑥𝑖|
0.8

𝐿

𝑖=0

+ 5𝑠𝑖𝑛(𝑥𝑖
3) 

The MOEA Framework only works on minimization problems. If any objectives in our 

problem are to be maximized, we can negate the objective value to convert from 
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maximization into minimization. In other words, by minimizing the negated objective, we 

are maximizing the original objective. 

Table 9: Implementation of the Kursawe problem by extending the AbstractProblem class. 

public class Kursawe extends AbstractProblem 

public Kursawe(){...} 

@override 
public Solution newSolution() {...} 
 
@override 
public void evaluate(Solution solution) {...} 

After having implemented the Kursawe class we can use it with the MOEA framework. 

The code snippet below shows how to solve the Kursawe problem using the NSGA-II 

algorithm. Note that in this case we don’t use the withProblem method, but 

withProblemClass, since we are providing our own definition of the problem.  

Table 10: Solving the Kursawe problem using the NSGA-II algorithm. 

new Executor() 
 .withProblemClass(Kursawe.class) 
 .withAlgorithm("NSGAII") 
 .withMaxEvaluations(10000) 
 .run(); 

 

To print the solutions, we use the same method as described in the Table 7. 

Knapsack Problem 

In this section we will solve a problem, which is a multi-objective version of the famous 

Knapsack problem (discussed in detail in [28]). This is the problem of choosing which items 

to carry in a knapsack to maximize the value of the items without exceeding the weight 

capacity of the knapsack. 

The formal definition of the problem is:  

We are given N items. Each item has a profit denoted as 𝑃(𝑖), and a weight denoted as 

𝑊(𝑖), for i = 1, 2, … , N. Let 𝑑(𝑖) represent the decision of including the i-th item in the knapsack, 

where 𝑑(𝑖) = 1 meaning the item is included, and 𝑑(𝑖) = 0 meaning the item is excluded. Let C 

be the weight capacity of the knapsack, then the problem is defined as: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑃(𝑖), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑊(𝑖)  ≤ 𝐶 

The left-hand side summation calculates the profit we get by putting the items in the 

knapsack, and the right-hand side summation is a constraint, which ensures that the capacity 

of the knapsack is not exceeded.  

The problem that we will introduce to the MOEA framework, is similar to this problem, 

except that it has two knapsacks to hold the items. Additionally, the weights and profits of 

items vary depending on which knapsack is holding them. For example, an item may have 

the profit of $25 and weight of 4 kg in the first knapsack, but in the second knapsack it may 

have the profit of $15 and weight of 5 kg. It seems unusual, but this is how it is defined in the 

literature. Since we have two knapsacks now, the profit is defined as 𝑃(𝑖, 𝑗)and weight is 

defined as 𝑊(𝑖, 𝑗), where 𝑗 = 1,2 is the knapsack index. In this case, each knapsack has its 

own capacity defined as 𝐶1 and 𝐶2. The Two-Knapsack problem is defined as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑃(𝑖, 1), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑊(𝑖, 1)  ≤ 𝐶1 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑃(𝑖, 2), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑑(𝑖)

𝑁

𝑖=1

∗ 𝑊(𝑖, 2)  ≤ 𝐶2 

The information required by the Knapsack problem - capacities, profits, weights - is 

loaded from a text file. The data is saved in a format developed by Eckart Zitler and Marco 

Laumanns (see [29]).  

Table 11: Input file format for the multi-objective knapsack problem. 

knapsack problem specification (2 knapsacks, 2 items) 

= 

knapsack 1: 
  capacity: +251 

  item 1: 
     weight: +94 

     profit: +57 

  item 2: 
     weight: +74 

     profit: +94 

= 

knapsack 2: 
  capacity: +190 

  item 1: 
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     weight: +55 

     profit: +20 

  item 2: 
     weight: +10 

     profit: +19 

In practice, the number of items is larger, but for the sake of brevity we’re showing only 

two items. 

The Knapsack problem is encoded into the MOEA framework by implementing the 

Problem interface. Without going into implementation details, we’ll explain how one could 

introduce a problem to the MOEA framework by implementing the Problem interface 

rather ran extending the AbstractProblem class. For the full implementation see the 

manual [51].  

Table 12: Implementation of the Knapsack problem by implementing the Problem interface. 

public class Knapsack implements Problem 

private int nsacks; /** The number of sacks.*/ 
private int nitems; /** The number of items.*/ 
private int[][] profit; 
private int[][] weight; 
private int[] capacity; 

public Knapsack(File file) {...} 
public Knapsack(InputStream inputStream) {...} 
public Knapsack(Reader reader) {...} 

private void load(Reader reader) throws IOException {...} 
@Override 
public void evaluate(Solution solution) {...} 
@Override 
public String getName() {...} 
@Override 
public int getNumberOfConstraints() {...} 
@Override 
public int getNumberOfObjectives() {...} 
@Override 
public int getNumberOfVariables() {...} 
@Override 
public Solution newSolution() {...} 
@Override 
public void close() {...} 

The key points are the newSolution and evaluate methods. The newSoluton 

method creates a solution using a three argument constructor. The three argument 
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constructor of the Solution class is used to define constraints. Below, in Table 13, we are 

defining a problem with 1 decision variable, nsacks - objectives and nsacks - constraints, 

one objective and one constraint for each knapsack. The second line, sets the one decision 

variable to be a bit string (binary encoding) for the items included in or excluded from the 

knapsacks, which represent the values of 𝑑(𝑖)  ∈ {0,1}. 

Table 13: Obtaining a Solution object for the knapsack problem 

@Override 
public Solution newSolution() { 
    Solution solution = new Solution(1, nsacks, nsacks); 
    solution.setVariable(0, EncodingUtils.newBinary(nitems)); 
    return solution; 
} 

The evaluate method calculates the knapsack equations mentioned above. We extract 

the bits from the solution we are evaluating; if the bit is 1 then the corresponding item is 

placed in both knapsacks, if it is 0 the item is not included. After that, we sum up the profits 

and weights in both knapsacks and check if any of the weights exceed the capacity of the 

corresponding knapsack. If the weight is less than or equal to the capacity, then the 

constraint is satisfied and we set its value to 0, if the weight exceeds the capacity, the 

constraint is violated and we set its value to a non-zero (positive or negative). To reiterate, 

we know that constraints equal to zero are satisfied, those non-equal to zero are violated. 

The last two lines, set the objective and constraint values, respectively. Note that objective 

values are negated, this is because we are trying to maximize the values, but the MOEA 

framework works only on minimization problems. 

Table 14: Evaluating the values for the knapsack equations. 

@Override 
public void evaluate(Solution solution) 
{ boolean[] d = EncodingUtils.getBinary(solution.getVariable(0)); 
  double[] f = new double[nsacks]; 
  double[] g = new double[nsacks]; 
  // calculate the profits and weights for the knapsacks 
  for (int i = 0; i < nitems; i++){ 
 if (d[i]){ for (int j = 0; j < nsacks; j++) 
                {f[j] += profit[j][i]; g[j] += weight[j][i]; }} 
  } 
  // check if any weights exceed the capacities 
  for (int j = 0; j < nsacks; j++){ 
 if (g[j] <= capacity[j]){g[j] = 0.0;}  
     else{g[j] = g[j] - capacity[j];} 
  } 
  // negate the objectives since Knapsack is maximization 
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  solution.setObjectives(Vector.negate(f)); 
  solution.setConstraints(g); 
} 

Now that we have defined the Knapsack problem, we can use the MOEA framework to 

solve it. Unlike the Kursawe class defined in the previous section, the Knapsack class has 

constructors that require parameters. In the code snippet below, we show how these 

parameters can be passed to a Knapsack object.  

Table 15: Solving the Knapsack problem using the NSGA-II algorithm. 

NondominatedPopulation result = new Executor() 
 .withProblemClass(Knapsack.class, new File(“knapsack.5.2”)) 
 .withAlgorithm("NSGAII") 
 .withMaxEvaluations(50000) 
 .run(); 

Note that in this case the withProblemClass method takes two parameters: 

Knapsack.class and new File(“knapsack.5.2”). The second parameter 

(supposing we have a text file names knapsack.5.2) is a parameter that will be passed on 

to the Knapsack object. 

Now, from the result object we can get the solutions and print them out, as shown 

below. 

Table 16: Printing the solutions of the Knapsack problem. 

for (int i = 0; i < result.size(); i++) 
{ Solution solution = result.get(i); 
  double[] objectives = solution.getObjectives(); 
    // negate objectives to return them to their maximized form 
  objectives = Vector.negate(objectives); 
  System.out.println("Solution " + (i + 1) + ":"); 
  System.out.println(" Sack 1 Profit: " + objectives[0]); 
  System.out.println(" Sack 2 Profit: " + objectives[1]); 
  System.out.println(" Binary String: " + solution.getVariable(0)); 
} 

3.5. MOEA FRAMEWORK Γ REPOSITORY 

We will use the LaunchPad Eclipse plugin for developing the repository. For details 

about this tool see the Tool Support LaunchPad Eclipse Plugin section. 

In the previous section we showed how to use the MOEA framework for solving multi-

objective optimization problems, and how to introduce new problems to the framework. All 
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this was accomplished using pure Java language. Now, we will approach the problem in a 

different way - using combinatory logic synthesis. The process of developing combinators is 

incremental; the first step is to create as few combinators as possible to generate the desired 

code, afterwards we continue breaking it down into smaller parts, which presumably are 

more generic than those in the previous step.   

Let’s have a look at the Knapsack problem. In the pure Java implementation it has two 

classes: Knapsack.java and KnapsackExample.java. The figure below (Figure 33), 

shows the class diagram for the Knapsack problem. 

 

 

Figure 33: The class diagram for the Knapsack problem. 

The Knapsack class is the implementation of the Knapsack problem explained in the 

previous section, see Table 12. The KnapsackExample class contains the code for solving 

the Knapsack problem with MOEA framework and printing the solutions, see Table 15 and 

Table 16.  

Initially, we place the whole implementation code of Knapsack into one combinator; 

we do the same for the KnapsackExample class. The initial model for the repository is very 

simple, it defines three components: Problem, Knapsack and KnapsackExample (Executor). 

 

Figure 34: The initial model of the repository for the MOEA framework. 
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Our first version has only two combinators: Knapsack.comb and Executor.comb. The 

LaunchPad plugin defines a macro-language on top of L2, which is more user-friendly and 

human readable than the L2 language. The table below shows the important parts of the 

combinators mentioned above, the java code is omitted for the sake of brevity.  

Table 17: The combinators for the Knapsack problem defined in LauchPad 

type KnapsackProblem { 

 [alhpa.problemType, problem];  

} 

implementation KnapsackProblem (knapsack/Knapsack.java) { 
           // Java code for the Knapsack class 

} 

type Executor { 

 [alpha.problemType, executor];  

} 

implementation Executor (knapsack/KnapsackExample.java) { 
           // Java code for the KnapsackExample class   

} 

The table below shows the same combinators defined in pure L2 language. 

Table 18: The combinators for the Knapsack problem defined in L2. 

KnapsackProblem : #[alhpa.problemType, problem] 

KnapsackProblem : {box ["=======knapsack/Knapsack.java=======  
 // Java code for the Knapsack class  

"] } 

Executor : #[alpha.problemType, executor] 

Executor : {box ["=======knapsack/KnapsackExample.java=======  
               // Java code for the KnapsackExample class  

"]} 

Two more things that we need at this point to make it work are the .inhab file and .type 

file; the .inhab file contains the target for solving the inhabitation problem, the .type file 

contains the definition of the problem types. The code below, shows our .inhab and .type 

files for the Knapsack problem, respectively. 

target { 

 [knapsack, problem]; 

 [knapsack, executor];  

}, 

problemType ~> knapsack 
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The difference between these two syntaxes (Table 17 and Table 18) doesn’t seem so big, 

but things get more bizarre as we start using the parameters, function tables etc. Then, using 

the L2 language becomes much more difficult. Now, let’s start breaking the code down into 

more combinators, then the difference becomes more obvious. Note that, in Table 17, when 

we write the implementation for the KnapsackProblem and Executor combinators, we are 

hard-coding the name of the files these classes will be saved to; consequently, whenever we 

use, let’s say the KnapsackProblem combinator, the implementation code will be saved to 

a file named Knapsack.java. We do the same with the package name. To parameterize the 

class/file name and the package name, we create two combinators, ProblemName and 

PackageName, respectively. Now, the list of our combinators looks like in the table below. 

Table 19: The list of combinators with parameterized problem-name and package-name. 

define { 

              [knapsack, packageName]   PackageName -> TwoKnapsacks; 
} 

define { 

 [knapsack, problemName]  ProblemName -> Knapsack;  
} 

type KnapsackProblem { 

 ProblemName                 [alpha.problemType, problemName]; 
 PackageName                 [alpha.problemType, packageName]; 
      [alhpa.problemType, problem];  

} 

implementation KnapsackProblem (<PackageName>/<ProblemName>.java) { 

      package <PackageName>; 
      //the list of imports needed 

      public class <ProblemName> implements Problem 
  { 

    public <ProblemName>(InputStream inputStream) throws IOException 
    { 
  this(new InputStreamReader(inputStream)); 
    }  
    //The rest of the code for the Knapsack class 
  } 

} 

type Executor { 

 ProblemName                 [alpha.problemType, problemName]; 
 PackageName                 [alpha.problemType, packageName]; 
      [alpha.problemType, executor];  

} 

implementation Executor (<PackageName>/KnapsackExample.java) { 
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 package <PackageName>; 
 //Java code for the KnapsackExample class 

} 

 The table below shows the KnapsacProblem combinator in L2. Now it’s very obvious 

that it is much harder to read the combinator in L2 than it is in the macro language defined 

and used in LaunchPad. This is true, also due to some hacks used in L2, for example the 7 

equal signs (they are used to have the content of a combinator saved into a file).  

Table 20: The KnapsackProblem combinator in L2. 

KnapsackProblem : {  𝜆var1.{letbox ProblemName  = {var1}  in { 

                    𝜆var2.{letbox PackageName  = {var2}  in { 

box ["=======" PackageName "/" ProblemName ".java=======  

package " PackageName "=======+" PackageName "/" ProblemName ".java=======; 
//imports 

public class " ProblemName "=======+" PackageName "/" ProblemName ".java======= 
implements Problem 

{ //Java code  }  

"] }}}}} 

This way we go on building our repository of components/combinators, which later will 

be used in solving other variations of already introduced problems or completely new 

problems. This is an incremental process, we make one step at a time and verify that it’s 

correct. Every time we create a combinator and prove its correctness, we add it to the 

repository, consequently enrich our repository with new features.  

We continued the process of building up the repository for the MOEA framework, by 

adding new combinators for problems, algorithms, and breaking down the initial 

combinators that we had created for the Knapsack problem into smaller and more generic 

ones. The picture below shows the structure of the model with dozens of combinators.  



Chapter 3. Case Study 
 

62 
 

 

Figure 35: The model for the MOEA repository 

The three main branches of the repository are: Problem, Solver and Algorithm. Under 

the Problem component we put all the problems that we encode into the framework, and 

those that are already provided by the framework. The Solver component is used to make 

the necessary configuration for solving a problem, and create the executable file. The 

Algorithm component contains the algorithms provided by the framework, which can be 

chosen over the configuration process in the Solver component. Figure 36 shows a possible 

configuration. 

FeatureIDE allows us to have restrictions on the model of the repository, for example 

feature selection under the Problem component is limited to one, which means we cannot 

select two problems, let’s say UF1 and LZ2. We can have different kinds of restrictions in the 

model. There are two other restrictions in this model; shown in the middle bottom in Figure 

35.  

Restriction 1: 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 ⇒ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡 ∧ 𝐼𝑡𝑒𝑚𝑠  (read: Executor implies InputSet and 

Items). This forces to select the component IputSet and Items once the Executor is selected. 

Restriction 2: 𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 ⇒  ¬𝐺𝐷𝐸3 (read: Knapsack implies not GDE3). This forces to 

make the selection of GDE3 algorithm disabled if the Knapsack problem is selected. 

Restrictions may be necessary to prevent problems arising from different sources: 

design decisions, violation of domain rules, lack of expressibility etc.   

 



Chapter 3. Case Study 
 

63 
 

 

Figure 36: The config file for solving the CF1 problem using the GDE3 algorithm. 

Design Decisions – Consider the restriction 1 mentioned above. The Executor combinator 

is used to solve the Knapsack problem and it reads the input data from a file. We chose to 

model the input set as a separate combinator from the Executor, therefore whenever we 

need to solve a Knapsack problem we need an input set, hence the restriction to avoid 

problems that arise due to missing input data.  

Domain rules – The MOEA framework offers many algorithms for solving different 

optimization problems, but not all optimization problems can be solved with all algorithms. 

For example, the Knapsack problem can be solved with NSGA-II but cannot be solved with 

the GDE3 algorithm; if we try to use the GDE3 algorithm to solve this problem we get the 

error message “unsupported decision variable type”. To prevent this scenario from 

happening, we put the restriction 2 mentioned above. 

Lack of expressibility - We’ll have a closer look at the Solver component of our model 
presented in Figure 35. It is used to create a class with a main method, where the multi-
objective optimization problems can be solved (as described in Section 3.4). It configures the 
Executor class by setting the required parameters and then runs it to provide us with the 
solution(s). 

Table 21: Solver.comb - The Solver combinator 
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type Solver { 

 PackageName                 [alpha.problemType, packageName]; 
 ProblemName                  [alpha.problemType, problemName]; 
 AlgorithmName    [alpha.algoType, algorithm]; 
 SolverConfig     [alpha.problemType, alpha.algoType, config]; 
       [alhpa.problemType, alpha.algoType, problem];  
} 

implementation Solver 
(<PackageName>/<ProblemName>_<AlgorithmName>Solver.java) { 

package <PackageName>; 
import org.moeaframework.Executor; 
import org.moeaframework.core.NondominatedPopulation; 
import org.moeaframework.core.Solution; 

public class <ProblemName>_<AlgorithmName>Solver 
{ 
    public static void main(String[] args) 
    { 

        <SolverConfig> 
            // display the results 
        System.out.format("Objective1  Objective2%n"); 
        for (Solution solution : result) 
        { 
            System.out.format("%.4f      %.4f%n", 

solution.getObjective(0), 

solution.getObjective(1)); 
        } 
    } 

}} 

The first four lines are the parameters for the Solver combinator. Each parameter is 

characterized by its name and its intersection type. 

PackageName                 [alpha.problemType, packageName]; 

 ProblemName                  [alpha.problemType, problemName]; 

 AlgorithmName    [alpha.algoType, algorithm]; 

 SolverConfig     [alpha.problemType, alpha.algoType, config]; 

The first row defines the parameter named PackageName, which is of the type 

𝑎𝑙𝑝ℎ𝑎. 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑇𝑦𝑝𝑒 ∩  𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒 . In the same way the three other parameters are 

defined. After the parameter declaration, comes the intersection type of the combinator, 

which in this case is 𝑎𝑙𝑝ℎ𝑎. 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑇𝑦𝑝𝑒 ∩  𝑎𝑙𝑝ℎ𝑎. 𝑎𝑙𝑔𝑜𝑇𝑦𝑝𝑒 ∩  𝑝𝑟𝑜𝑏𝑙𝑒𝑚. The result of the 

Solver combinator, after it has been evaluated, is set to be saved to a file. This is done by 

specifying the filename inside parentheses in the implementation part of the combinator.   

implementation Solver (<PackageName>/<ProblemName>_<AlgorithmName>Solver.java)  
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After the combinator is completely evaluated, which means all the parameters are 

replaced with their corresponding implementation code, the result is saved to a file named 

exactly as the evaluated string inside the parentheses after the ‘/’ symbol. The string before 

the ‘/’ symbol specifies the package (folder) where the file is saved. As we can see from the 

combinator above (Table 21), combinators can have as parameters other combinators, and 

those combinators may have as parameters other combinators and so on. While trying to 

evaluate the combinators, namely finding inhabitants, if more than one solution exists, then 

the first one found will be returned. 

The first three parameters, PackageName, ProblemName and AlgorithmName, are very 

simple combinators, indeed the simplest we can create. Table 22 shows the code for these 

three combinators. Here we use a shorter form of defining and implementing a combinator, 

which is made possible by means of the define keyword (see LaunchPad for more details). 

Table 22: PackageName, ProblemName and AlgorithmName combinators 

define { 

              [alpha.problemType, packageName]   PackageName -> solver; 
} 

define { 

 [uf1, problemName]                                          ProblemName -> UF1;  

} 

define { 

 [nsgaiii, algorithm]                             AlgorithmName -> NSGAIII; 
} 

The first row defines a combinator which is nothing more than the string “solver”, in the 

same way the second and the third define combinators with the string values “UF1” and 

“NSGAIII”, respectively. Deciding which problem to solve using which algorithm is a matter 

of changing a string, for example ProblemName -> CF1, AlgorithName -> NSGAII. 

Furthermore, the FeatureIDE tool makes it even easier through the feature selection tool 

shown in Figure 36. 

A little bit more involved is the fourth parameter, SolverConfig, which defines a 

combinator that among other parameters it expects the ProblemName and AlgorithmName 

parameters. Table 23 shows the SolverConfig, Properties and PopulationSize combinators. 

Table 23: SolverConfig.comb, Porperties.comb, PopulationSize.comb 

type SolverConfig { 

 ProblemName                [alpha.problemType, problemName]; 
 AlgorithmName  [alpha.algoType, algorithm]; 
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 Properties   [alpha.problemType, properties]; 
     [alpha.problemType, alpha.algoType, config]; 
} 

implementation SolverConfig { 
 NondominatedPopulation result = new Executor() 

   .withProblem("<ProblemName>") 

   .withAlgorithm("<AlgorithmName>") 
   .withMaxEvaluations(10000) 

   <Properties> 
   .distributeOnAllCores() 
   .run(); 

} 

Now, let’s suppose we want generate to solver classes that solve the built-in problem 

UF1 using two different algorithms, let’s say, NSGA-II and GDE3. Based on the Solver 

combinator, after running the tool, we should have two classes named: 

1. solver.UF1_NSGAIISolver.java, and 

2. solver.UF1_GDE3Solver.java 

and this is exactly what is produced. But, we should also have the corresponding code in each 

class, shown in Table 23, set properly to solve the UF1 problem with both NSGA-II in the first 

class, and GDE3 in the second class. Unfortunately, both classes contain the same code as 

shown below: 

NondominatedPopulation result = new Executor() 

   .withProblem("UF1") 

   .withAlgorithm("NSGAII") 

   .withMaxEvaluations(10000) 

   .withProperty("populationSize",10) 

   .distributeOnAllCores().run(); 

What we need here is a way of passing the same ProblemName and AlgorithmName 

parameters to both Sovler and SolverConfig combinators. A possible notation, when using 

the SolverConfig parameter inside the Solver combinator, would be: 

<SolverConfig <ProblemName, AlgorithmName>> 

Since the tool does not support such a functionality, we set the restriction on choosing 

the algorithm, so what we can choose only one algorithm. This way we avoid the undesired 

scenario described above. 

A possible hack to make it work 

Consider these two combinators, Solver and SolverConfig, shown in Table 21 and Table 

23, respectively; and the configuration in which two algorithms are selected. They both use 
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the ProblemName and AlgorithmName parameters, and yet when evaluated, Solver produces 

two solutions whereas SolverConfig only one. The latter case happens because both of the 

selected algorithms satisfy the type condition, they are both of the same type as the 

AlgorithmName parameter is, namely [alpha.algoType, algorithm], and the tool that solves 

the inhabitation problem returns only one solution. Nevertheless, there’s a way around it, 

and that’s precisely what the Solver combinator does: force the intermediate solutions to be 

dumped into a file. 

We can change the SolverConfig combinator so that it will be saved into a file, and also 

the Solver combinator so that it uses the class created by the SolverConfig combinator. The 

table below shows the changes made to the combinators from the previous version. 

Table 24: Modified combinators: SolverConfig, Solver 

type SolverConfig { 

 PackageName              [alpha.problemType, packageName]; 
 ProblemName  [alpha.problemType, problemName]; 
 AlgorithmName [selected, algorithm]; 
 Properties  [alpha.problemType, properties]; 
    [alpha.problemType, selected, config]; 
} 

implementation SolverConfig 
(<PackageName>/<ProblemName>_<AlgorithmName>Config.java) { 

package <PackageName>; 
import org.moeaframework.Executor; 
import org.moeaframework.core.NondominatedPopulation; 

public class <ProblemName>_<AlgorithmName>Config { 
  public static NondominatedPopulation execute() { 
 NondominatedPopulation result = new Executor() 

   .withProblem("<ProblemName>") 

   .withAlgorithm("<AlgorithmName>") 
   .withMaxEvaluations(10000) 

   <Properties> 
   .distributeOnAllCores().run();    
 return result; 

  } } 

type Solver { 

 PackageName              [alpha.problemType, packageName]; 
 ProblemName  [alpha.problemType, problemName]; 
 AlgorithmName [selected, algorithm]; 
 SolverConfig  [alpha.problemType, selected, config]; 
    [alhpa.problemType, selected, problem]; 
} 

implementation Solver 



Chapter 3. Case Study 
 

68 
 

(<PackageName>/<ProblemName>_<AlgorithmName>Solver.java) {  

package <PackageName>; 
import org.moeaframework.core.NondominatedPopulation; 
import org.moeaframework.core.Solution; 

public class <ProblemName>_<AlgorithmName>Solver{ 
   public static void main(String[] args){ 
      NondominatedPopulation result = 

<ProblemName>_<AlgorithmName>Config.execute(); 
 System.out.format("Objective1  Objective2%n"); 
 for (Solution solution : result){ 
         System.out.format("%.4f      %.4f%n", 

solution.getObjective(0), 

solution.getObjective(1)); 
 } 
   } 

} } 

This way, the SolverConfig combinator creates two classes which configure the Executor 

for solving a problem using two different algorithms. Then, the Solver combinator invokes 

the execute() method of these classes to solve the problem and print the solutions. 

Default values 

Recall from the MOEA Framework section that if we don’t set parameters on an 

Executor object, it uses default values as they’re set in the framework. One of the parameters 

that we use is ‘populationSize’; if we want to change its default value we have to explicitly 

set it using the withProperty method, like in the code snippet below. 

NondominatedPopulation result = new Executor() 

.withProblem("UF1") 

     .withAlgorithm("NSGAII") 

  .withMaxEvaluations(10000) 

  .withProperty("populationSize", 10) 

       .distributeOnAllCores().run(); 

In our model, shown in Figure 35 (a part of that picture is shown 

here on the left), we have created combinators for the population 

size. Note that we have added a combinator named ‘Default’, which 

is basically an empty combinator, as shown below. 

type PopulationSize { 

 [alpha.problemType, populationSize];  

} 

implementation PopulationSize {} 
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When we select the ‘Default’ feature (instead of 10 or 20) the above code will not contain 

the line ‘.withProperty(“populationSize”, ...)’, which means the Executor object will have the 

default value for the ‘populationSize’ parameter. The PopulationSize combinator is a 

parameter for the Properties combinator. If we don’t select a PopulationSize, the Properties 

combinator won’t receive an empty value for this parameter, but it won’t be generated at all. 

So the only way to pass an empty value, is by creating an empty combinator. Otherwise, we 

can set any population value that we want, for example 10. The code snippet below shows a 

combinator which sets the ‘populationSize’ to be 10. 

type PopulationSize { 

 [alpha.problemType, populationSize];  

} 

implementation PopulationSize { 

.withProperty("populationSize",10) } 

Types and subtypes 

Consider the following combinators: 

type Properties { 

 Population   [alpha.problemType, properties, populationSize]; 
 SbxRate   [alpha.problemType, properties, sbxRate]; 
     [alpha.problemType, properties];  

} 
 

implementation Properties {<Population> 

   <SbxRate>} 

type PopulationSize { 

 [alpha.problemType, properties, populationSize];  

} 
 

implementation PopulationSize { 

.withProperty("populationSize",10)} 

type SbxRate { 

 [alpha.problemType, properties, sbxRate];  

} 
 

implementation SbxRate { 

.withProperty("sbx.rate",0.8)} 

type TestComb{ 

 Properties  [alpha.problemType, properties]; 
    [alpha.problemType, selected, config]; 
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} 

implementation TestComb (Test.java)  
{ 
    import org.moeaframework.Executor; 
    import org.moeaframework.core.NondominatedPopulation; 

    public class Test  

   {   public static NondominatedPopulation execute() { 

 NondominatedPopulation result = new Executor() 

   .withProblem(“UF1”) 

   .withAlgorithm("NSGAII") 

   .withMaxEvaluations(10000) 

   <Properties> 
   .distributeOnAllCores() 

   .run();  

 return result; 

        } 

   } 

} 

To keep it brief we are using a simplified version of the SolverConfig combinator, which 

we are naming TestComb.  

TestComb expects a Properties parameter, Properties expects two other parameters: 

PopulationSize and SbxRate.  

PopulationSize is replaced by “.withProperty("populationSize",10)”; SbxRate is 

replaced by “.withProperty("sbx.rate",0.8)”; Properties concatenates these two; and 

finally TestComb uses Properties to configure the parameters for the Executor object. 

It’s easy to get fooled and expect the TestComb combinator to produce the following 

code: 

Table 25: this is what we want 

... 
NondominatedPopulation result = new Executor() 

   .withProblem(“UF1”) 

   .withAlgorithm("NSGAII") 

   .withMaxEvaluations(10000) 

   .withProperty(“populationSize”, 10) 

.withProperty(“sbx.rate”, 0.8) 

   .distributeOnAllCores() 

   .run(); 

... 

As a matter of fact, it produces this code (Table 26): 
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Table 26: this is what we get 

... 
NondominatedPopulation result = new Executor() 

   .withProblem(“UF1”) 

   .withAlgorithm("NSGAII") 

   .withMaxEvaluations(10000) 

.withProperty(“sbx.rate”, 0.8) 

   .distributeOnAllCores() 

   .run(); 

... 

Where is the PopulationSize combinator? Is seems like a defect in the tool, but this is 

because of the type - subtype relationship inferred from intersection types. Let’s have a look 

at the intersection types of all these combinators. The table below shows the intersection 

type of each combinator and its name. 

Combinator Intersection type 

Properties [alpha.problemType, properties] 

PopulationSize [alpha.problemType, properties, populationSize] 

SbxRate [alpha.problemType, properties, sbxRate] 

As we can see from the table above the PopulationSize and SbxRate combinators are 

subtypes of the Properties combinator, because they contain the intersection type of 

Properties, which is 𝑎𝑙𝑝ℎ𝑎. 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑇𝑦𝑝𝑒 ∩ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 , plus their own distinctive type 

populationSize and sbxRate, respectively.  

The type definition of the TestComb combinator is: 

type TestComb{ 

   Properties  [alpha.problemType, properties]; 

      [alpha.problemType, selected, config]; 

        } 

It expects a parameter named Properties of the type 𝑎𝑙𝑝ℎ𝑎. 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑇𝑦𝑝𝑒 ∩ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠. 

The name of the parameter is not important - in this case it’s Properties, but it can be anything 

- the intersection type is what defines which combinators fit the bill. In this case there are 

three: Properties, PopulationSize and SbxRate; because the inhabitation problem is 

nondeterministic, it returns the first one found, and it just happens to be the SbxRate 

combinator.  
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To get the desired code generated, all we have to do is change the intersection type of 

the PopulationSize and SbxRate combinators, so that they are no more subtypes of the 

Properties combinator, and modify the parameters of the Properties combinator to match 

with the intersection type of PopulationSize and SbxRate. The table below shows a possible 

solution. 

Combiantor Intersection type 

PopulationSize [alpha.problemType, populationSize] 

SbxRate [alpha.problemType, sbxRate] 

type Properties { 

 Population   [alpha.problemType, populationSize]; 
 SbxRate   [alpha.problemType, sbxRate]; 
     [alpha.problemType, properties];  

} 

Now, only the Properties combinator will fit the bill for TestComb’s parameter, then 

from Properties, PopulationSize and SbxRate get evaluated, thus producing the desired code 

shown in Table 25. 

Conclusion 

After several iterations, we have developed a baseline of components that can be used 

in introducing new problems to the framework and extending it. The picture below (Figure 

37) shows the model of the repository at this point.  

Using the repository it’s very easy now to solve a new problem, let’s say UF4 (which is 

not in the repository). All we have to do is add a new feature to the model, name it UF4, and 

create a combinator of the intersection type [alpha.problemName, problemName]. After we 

have added this combinator, namely the string which represents a built-in problem in the 

MOEA framework, we can configure the Executor by choosing the features we want, we don’t 

have to write anymore code in this case, and all the necessary code will be automatically 

generated. 

Introducing a new problem to the framework requires to write code, but only the code 

that is specific to that particular problem, the boilerplate code is not necessary to be written 

or copy pasted from other classes, it can be encoded in the combinators and just reused any 

time we need. Moreover, we have encoded even the order of the steps, necessary to solve a 

problem, so that someone who wants to solve a problem does not need to worry about how 

to configure the Executor, whether the order of method calls is correct or not, that part is 

being taken care of in the repository. 
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This is very helpful in the case of high variability, like the MOEA framework. We have to 

write the code only for that part that varies from the other version of the same problem, the 

rest of the code can be generated using the previously created combinators. 

 

Figure 37: The final model of the MOEA framework Γ repository 
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4. RELATED WORK 

Throughout this thesis, there are two major problems that we are dealing with: ex-

tending a framework and generating members of a software product line. More specifically, 

we try to convert a framework extension problem into a configuration problem, which is the 

core activity in developing products of a product line family. This chapter consists of two 

sections, which describe the work that is related to the problems we explore in this thesis. 

4.1. PRODUCT LINE LITERATURE ON CONFIGURATION 

The approach to developing a software product line rather than products as separate 

software, is desirable because it maximizes the reuse of software components, which are 

common for virtually all members of the product line family. Developing a product, then, 

becomes more of a configuration than development task; only a small portion of the code 

which is specific for that product needs to be written. However, composing a product from 

core assets [30], components that form the basis for a software product line, is not a 

straightforward task (for details on benefits and costs see [31]). In large product lines, 

managing the components (core assets) is a challenge in its own. Moreover, just as any 

software system changes over time, product lines do as well, rendering the maintenance of 

components even harder.  

Components in a software product line are generic, and usually depend on each other. 

The relationship between components is complex, since they are designed to support many 

products in the product line family and not only a single product. Selecting components, 

requires knowledge about the relationships and dependencies between them, and is error 

prone as it’s possible to create invalid configurations by not choosing necessary components 

or choosing those that conflict each-other. Methodologies and tools that support the 

maintenance of components are necessary to facilitate or make possible the development of 

product line members.  

Krebs et al [32] introduce a methodology which combines the research areas of software 

product families and model-based configuration in order to fill the gap in between. “This 

methodology is based on a configuration model that represents functionality and variability 

provided by the product family” [32].  

White et al [33], on their paper published in 2008, report on three contributions towards 

debugging configurations of feature models: “(1) a technique for transforming a flawed 

feature model configuration into a Constraint Satisfaction Problem (CSP) and show how a 

constraint solver can derive the minimal set of feature selection changes to fix an invalid 

configuration, (2) how this diagnosis CSP can automatically resolve conflicts between con-

figuration participant decisions, and (3) experiment results that evaluate this technique”. They 

claim that this technique scales to models with several thousand features. 
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Kroon [34], in his thesis, proposes a layered approach to configuration management. It 

is an approach that allows step-by-step adoption of product lines and is capable of handling 

distinct phases of Software Product Line Engineering. He also offers a preliminary tool that 

works with the proposed layered approach.  

Salinesi et al [35] propose an approach that combines configuration and recommenda-

tion techniques to help the process of selecting features, and they call it interactive configu-

ration. It aims at providing the customers with the necessary information in real time about 

features which may be: desirable, possible or unattainable according to their choices. 

The papers presented above comprise just a small portion of the whole research effort 

being put on product line configuration. During our literature research we targeted only 

some papers on software product line configuration, whereas product line configuration, in 

general, is a much broader field, including: software, car industry, electronics etc. 

4.2. DOCUMENTATION OF OO FRAMEWORKS 

Domain knowledge is encoded into a framework, and the design is abstract, because it’s 

not a complete software application; it is meant to be extended by implementing extra 

classes to complete the application. Usually the flexibility provided by a framework is not all 

needed by the application being developed, since applications are much more specific than 

frameworks. Therefore, documentation is essential to explain the behavior of a framework. 

It must provide the necessary information for a programmer to start using the framework. 

We have conducted a research on OO framework documentation on three different 

repository hosting services: SourceForge, GitHub and Google Code. In this section, we 

describe the process of researching, and we report findings related to OO framework 

documentation. While doing the research, we looked specifically for the documentation 

entities listed below:  

a. tutorial 
b. design documents written by humans 
c. generated document (Doxygen, Javadoc etc.) 
d. video(s) 
e. screenshot(s) 
f. wiki(s) 
g. text files only 
h. code snippets 
i. the code itself only 

We wanted to see if there’s any correlation between any sort of documentation and the 

popularity or usage of a framework. Basically, we want to find out what is it that makes a 

framework live long and catch on.  
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4.2.1. SourceForge (www.sourceforge.com) 

SourceForge provides download statistics for each project. We took note of total 

downloads and last week’s downloads to find out the usage and popularity of a framework.  

Search keyword: “framework”, date: Tuesday, January 27, 2015 

Results: 93 pages, 25 results per page, total = 93 x 25 = 2325 

The result list was sorted by relevance and frameworks were picked based on the 

number of downloads in the prior week (relative to the search date provided above). We 

picked a framework for review if it was downloaded at least once over the prior week. Out 

of 2325 frameworks, we selected 30 and categorized them based on their domain. 

Here’s the list of chosen frameworks and the type of documentation they provide. The 

boxes that contain ‘y’ show that that type of documentation is provided by framework 

developers. 

Table 27: The list of the selected frameworks from sourceforge. 

          Downloads  

Framework a b c d e f g h i Total Last 
week 

Domain 

Hibernate y y y  y y  y  9,127,992 10,675 Database 

BIRT Report Designer y y  y y     6,970 342 Reporting & Data 
Visualization 

Code::Blocks y y   y y  y  11,430,642 70,281 IDE 

Liferay Portal y y y  y y  y  13,470,610 50,096 Business & 
Enterprise 

Win32++ y y y  y   y  51,299 67 Development 

Spring Framework y y y y y y  y  3,845,066 457 Database, 
Enterprise 

SW Test Automation 
Framework 

y y   y   y  791,042 1,335 Testing Automation 

C Unit Testing  y y  y   y  185,814 445 Testing 

Hcon Security Testing y y   y     56,886 574 Testing 

CppCMS C++ Web y y y     y  54,509 583 Web Development 

http://www.sourceforge.com/
http://sourceforge.net/projects/hibernate/?source=directory-featured
http://sourceforge.net/projects/opensourcebirtreportdesigner/?source=directory-featured
http://sourceforge.net/projects/codeblocks/?source=directory
http://sourceforge.net/projects/lportal/?source=directory
http://sourceforge.net/projects/win32-framework/
http://sourceforge.net/projects/springframework/
http://sourceforge.net/projects/staf/?source=directory
http://sourceforge.net/projects/staf/?source=directory
http://sourceforge.net/projects/cunit/?source=directory
http://sourceforge.net/projects/hconframework/?source=directory
http://sourceforge.net/projects/cppcms/?source=directory
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MOEA y y y  y   y  16,393 138 Artificial 
Intelligence, 
Mathematics 

WebSploit         y 78,218 249 Networking/Web 

Logging Framework For C++   y   y  y  161,099 414 Logging 

openLCA Framework y y  y y     33,640 92 Simulation 

Logging Framework For C       y   92,310 338 Logging 

MLT Multimedia y y y y    y  86,144 136 Multimedia 

TreeFrog y y y y y   y  10,284 59 Web Development 

Java Neural Network 
Framework Neuroph 

y y y  y     169,123 702 Machine Learning, 
Simulation 

OWLNext: C++ Application 
Framework 

y y y  y y  y  24,300 57 GUI Widget 

Marvin Image Processing y y y y y   y  32,103 124 Image Processing 

Genode OS Framework y y   y   y  13,562 43 OS Security 

EPICS Qt y y   y   y  5,544 41 Development, 
Scientific, 
Engineering 

DMF: Distributed 
Multiplatform Framework 

y y   y     11,498 291 Modeling 

Evolutility y y   y   y  55,991 80 Development, 
Database 

TRAK Enterprise 
Architecture Framework 

 y   y y    6,051 34 Enterprise 

ProM - Framework for 
Process Mining 

y    y     30,721 49 Enterprise 

Abbot Java GUI Testing 
Framework 

y y y  y   y  112,345 52 Testing 

PL/SQL Starter Framework         y 6,452 7 Database 

Moqui y y y     y  3,833 6 Enterprise 

SAFS y y y y y   y  74,600 42 Testing Automation 

 

http://sourceforge.net/projects/moeaframework/?source=directory
http://sourceforge.net/projects/websploit/?source=directory
http://sourceforge.net/projects/log4cplus/?source=directory
http://sourceforge.net/projects/openlca/?source=directory
http://sourceforge.net/projects/log4c/?source=directory
http://sourceforge.net/projects/mlt/?source=directory
http://sourceforge.net/projects/treefrog/?source=directory
http://sourceforge.net/projects/neuroph/?source=directory
http://sourceforge.net/projects/neuroph/?source=directory
http://sourceforge.net/projects/owlnext/?source=directory
http://sourceforge.net/projects/owlnext/?source=directory
http://sourceforge.net/projects/marvinproject/?source=directory
http://sourceforge.net/projects/genode/?source=directory
http://sourceforge.net/projects/epicsqt/?source=directory
http://sourceforge.net/projects/lbdmf/?source=directory
http://sourceforge.net/projects/lbdmf/?source=directory
http://sourceforge.net/projects/evolutility/?source=directory
http://sourceforge.net/projects/trak/
http://sourceforge.net/projects/trak/
http://sourceforge.net/projects/prom/?source=directory
http://sourceforge.net/projects/prom/?source=directory
http://sourceforge.net/projects/abbot/?source=directory
http://sourceforge.net/projects/abbot/?source=directory
http://sourceforge.net/projects/plsqlframestart/?source=directory
http://sourceforge.net/projects/moqui/?source=directory
http://sourceforge.net/projects/safsdev/?source=directory
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4.2.2. Github (www.github.com) 

Unlike SourceForge, which provides download statistics over time, GitHub doesn’t; it 

provides statistics about: pull, fork and star.  

Pull request: “Pull requests let you tell others about changes you've pushed to a repository 

on GitHub.” [36] 

Fork: “A fork is a copy of a repository. Forking a repository allows you to freely experiment 

with changes without affecting the original project.” [37]  

Star: “Starring a repository allows you to keep track of projects that you find interesting, 

even if you aren't associated with the project. When you star a repository, you're actually 

performing two distinct actions: 

- Creating a bookmark for easier access 

- Showing appreciation to the repository maintainer for their work” [38] 

Combining the data from pull, fork and star, we can tell how much a framework is being 

used, how much it has gained popularity, how much people are contributing to further 

development of the framework and the like.  

Search keyword: “object oriented framework”, date: Friday, January 30, 2015  

Results: 323 repositories 

The result list is sorted by “most stars”. Initially, we picked top 10 results. After that, we 

applied the “Java” filter, and we picked top 10 java frameworks, out of 17. Finally, we applied 

the “JavaScript” filter, and we picked top 5 frameworks (excluding those that were picked up 

during the first round). Out of 323 frameworks, we selected 25 for review. Here’s the list of 

the selected frameworks.  

Table 28: The list of the selected frameworks from Github. 

Framework a b c d e f g h i star fork pull Domain 

oocss y y   y y  y  4,462 616 22 Web Development 

micromvc       y   618 130 4 Web Development 

Simple.Web y    y y  y  200 62 4 Web Development 

Objective-Chain  y      y  199 8 2 Development 

rails_script y y      y  128 7 0 Web Development 

polymode y    y   y  111 13 1 Development 

http://www.github.com/
https://github.com/stubbornella/oocss
https://github.com/Xeoncross/micromvc
https://github.com/markrendle/Simple.Web
https://github.com/iMartinKiss/Objective-Chain
https://github.com/gemgento/rails_script
https://github.com/vspinu/polymode
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skull       y   96 6 0 OS 

onphp-framework         y 72 45 16 Web Development 

xp-framework y y y   y  y  36 28 9 Development 

Jive Selenium Pages 
Framework 

  y     y  3 2 0 Testing 

aGOOF         y 2 0 0 Gaming 

Flow3 Netbeans Plugin         y 1 0 0 Development 

Anasy         y 1 0 0 Syntax Analysis 

jauk         y 1 0 0 Parsing 

oo-webdriver         y 1 1 0 Testing 

tell-me         y 1 0 0 Development 

meteor         y 1 1 0 Data Management 

groops         y 1 0 0 Simulation 

tangram         y 1 0 0 Web Development 

Joov         y 0 0 0 VXML 

UIZE JavaScript Framework y y   y   y  41 13 0 Web Development 

easejs y y      y  35 3 0 Web Development 

MuLego UI   y       34 5 0 GUI Widget 

Simple Game Framework         y 24 2 0 Gaming 

Romano         y 18 0 0 Gaming 

 

4.2.3. Google Code (https://code.google.com) 

Search keyword: “object oriented framework”, date: Saturday, January 31, 2015  

Results: 584 frameworks 

Many projects have been moved to GitHub and are not being maintained any longer in 

Google Code. We selected top 20 frameworks which have not been moved to GitHub or any 

other host. Google Code does not provide any download statistics or other usage indicators, 

except how many people have starred a project. Thus we could only record the number of 

https://github.com/tomas/skull
https://github.com/onPHP/onphp-framework
https://github.com/xp-framework/xp-framework
https://github.com/jivesoftware/jive-selenium-pages-framework
https://github.com/jivesoftware/jive-selenium-pages-framework
https://github.com/wes-forsythe/aGOOF
https://github.com/aftabnaveed/Flow3-Netbeans-Plugin
https://github.com/jurem/Anasy
https://github.com/syntelos/jauk
https://github.com/nicholascus/oo-webdriver
https://github.com/vidageek/tell-me
https://github.com/gigakuma/meteor
https://github.com/waman/groops
https://github.com/mgoellnitz/tangram
https://github.com/Joov/Joov
https://github.com/UIZE/UIZE-JavaScript-Framework
https://github.com/mikegerwitz/easejs
https://github.com/moolego/ui
https://github.com/TooTallNate/Simple-Game-Framework
https://github.com/patternleaf/Romano
https://code.google.com/
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people that have starred a project. The concept of “starring” in Google Code is same as in 

GitHub (for details have a look at the GitHub section).  

Table 29: The list of the selected frameworks from Google Code. 

Framework a b c d e f g h i star Domain 

mdanalysis y y   y y  y  75 Simulation 

mid3d      y    311 Mobile Development 

php-reader  y    y  y  114 Web Development 

TibiaAPI      y  y  52 Development 

PHP Form Builder Class y    y   y  261 Web Development 

Lua for Windows y y      y  471 OS 

OSCATS      y    17 Testing 

mybatis.NET y y      y  113 Database 

GAPI      y  y  552 Web Development 

ease-bat-php         y 2 Web Development 

axiospace         y 2 Web Development 

Nuwani IRC Platform      y    21 Web Development 

emo-framework y y  y y y  y  77 Gaming 

make-it-easy      y  y  83 Testing 

tamy y y    y  y  3 Gaming 

Jease y y   y   y  18 Web Development 

WebSite-PHP y y y y y y  y  3 Web Development 

ieUnit y   y    y  14 Testing 

TangramCOM y       y  1 Networking 

QuickDB y y y y y y  y  26 Database 

It’s obvious from the tables presented above that frameworks, which are considered to 

be successful, provide code snippets along with user generated design documents and other 

forms of documentation, i.e. screenshots, videos, APIs etc. We define a framework as 

https://code.google.com/p/mdanalysis/
https://code.google.com/p/min3d/
https://code.google.com/p/php-reader/
https://code.google.com/p/tibiaapi/
https://code.google.com/p/php-form-builder-class/
https://code.google.com/p/luaforwindows/
https://code.google.com/p/oscats/
https://code.google.com/p/mybatisnet/
https://code.google.com/p/gapi-google-analytics-php-interface/
https://code.google.com/p/ease-bat-php/
https://code.google.com/p/axiospace/
https://code.google.com/p/nuwani/
https://code.google.com/p/emo-framework/
https://code.google.com/p/make-it-easy/
https://code.google.com/p/tamy/
https://code.google.com/p/jease/
https://code.google.com/p/websitephp/
https://code.google.com/p/ieunit/
https://code.google.com/p/tangramcom/
https://code.google.com/p/quickdb/
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successful, if it has been downloaded recently by a considerable number of users, Hibernate 

for instance - over 10k downloads during the last week of the research. In GitHub or Google 

Code, the number of downloads would be equivalent to “star”. This is a good indication that 

the framework is being used and/or extended, which makes it successful in terms of 

usability. 

After having gathered considerable information on OO framework documentation, we 

shortlisted three frameworks, which had enough documentation, tutorials and help, to 

conduct our second case study. Our three candidates for the second case study are: 

Hibernate, MOEA and Marvin Image Processing framework. 

- Hibernate  

Hibernate is an Object/Relational Mapper tool. It's very popular among Java applications 

and implements the Java Persistence API. Hibernate ORM enables developers to more easily 

write applications whose data outlives the application process. As an Object/Relational 

Mapping (ORM) framework, Hibernate is concerned with data persistence as it applies to 

relational databases (via JDBC). [39] 

- MOEA (Multi Objective Evolutionary Algorithms) 

MOEA is an open source java framework for developing and experimenting with multi-

objective evolutionary algorithms, and other general purpose multi-objective optimization 

algorithms. It provides many ready-to-use algorithms, and offers the possibility of defining 

new problems which then can be solved using these algorithms. In addition, it provides the 

tools necessary to design, develop, execute and statistically test optimization algorithms. The 

documentation is very thorough and provides complete examples of defining new problems 

and solving them using the MOSA’s algorithms. [27] 

- Marvin Image Processing 

Marvin is a framework that provides features for image and frame manipulation, image 

analysis, filtering and multi-threaded image processing. All features are provided as plugins, 

which are run at runtime using reflection. The framework can be extended by developing 

new plugins, and it provides documentation and examples on how to develop a plugin. [40] 

Among these three candidates, MOEA seems to best fit the bill for our purpose. It has a 

high variability, where different problems can be encoded into the framework, each problem 

can have many variations. In these kinds of domains, combinators show their power of 

reusability. Therefore, we decided to experiment with the MOEA framework. 
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5. EVALUATION 

This project is exploratory in nature and so the first contribution was a proof of concept 

towards using an available Combinatory Logic tool [21] to generate non-trivial software 

applications. We have developed a repository of combinators of the KS product line and 

demonstrated the ability to generate a couple of variations. 

To ensure that this work is applicable to other software frameworks, after having 

searched the Internet for open source OO frameworks and characterized them by the 

mechanisms and artifacts they provide to explain how one should extend the framework, we 

have selected one for which we have developed a Γ repository for generating extensions in 

that framework. This part of the overall effort demonstrates that our approach can work on 

multiple frameworks. 

And finally, we present a set of basic metrics which are supposed to help us evaluate Γ 

repositories. 

5.1. EVALUATION OF KS AND MOEA Γ REPOSITORIES 

By developing the Γ repositories for KS and MOEA frameworks, we have demonstrated 

how a framework extension problem can be converted into a configuration problem. Using 

this approach we make it possible for a framework designer to encode the abstractions 

necessary for extending the framework in question and make a complete reuse of the code 

which is repeated across different variations.  

To better explain the power of abstraction encoding and code reuse, we will use a 

combinator from the KS framework repository (see Figure 38). For the sake of brevity, we 

are using a very simple combinator to show how a very basic requirement, as a result of a 

design decision during the framework development, can be encoded in a combinator. 

Referring to Figure 38, DeckController is responsible for handling a mouse-press action on 

the deck. Obviously, to be able to handle a mouse-press on the deck, we need to provide a 

class which extends the SolitaireReleaseAdapter class. Besides providing the code 

for the mousePressed(MouseEvent m) method, there are other things we need to take 

care of, otherwise nothing will work; and they are: call the constructor of the superclass, and 

after the mouse press action had been handled (whatever needs to happen after clicking on 

the deck) call the refreshWidgets() method of the Solitaire class. There is no way 

of enforcing this in Java. The only way to convey this information to framework extenders, is 

by providing documentation and perhaps code snippets that do a similar thing. 
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The DeckController combinator makes sure that all the required actions are taken, and 

lets the programmer focus on developing the DeckPressed combinator – the code that 

handles a mouse-press action on the deck. Another advantage that comes along is the 

reusability. Note that, we don’t have to retype the refreshWidgets() line (or the other 

lines of Java code) whenever we develop a new Solitaire variation, they’re encoded in this 

combinator and get generated by the CLS tool. In a real life application the framework itself 

evolves, and a very common scenario is when other steps are necessary to be taken, let’s say 

we have to call a method before <DeckPressed>, and this happens after we have developed 

dozens of variations. In a pure object-oriented implementation we have to modify each 

variation2, and update the documentation so that other programmers who develop new 

variations follow the modified necessary steps. Whereas using the CLS approach, all we need 

to do is modify the DeckController combinator and rerun the tool. 

                                                           
2 One could use the Aspect Oriented Programming (AOP) to make the changes in all the variations, but in AOP it is 
much more difficult to predict and control the effects of modifications, it is not a type-safe system, they may affect 
the wrong parts. 

type DeckController { 

 NameParameter  [alpha.gameType, namerule]; 

 DeckPressed  [alpha.gameType, deckPressed]; 

    [alpha.gameType, deckController]; 

} 

implementation DeckController (<NameParameter>/DeckController.java) { 

package <NameParameter>; 
import java.awt.event.MouseEvent; 

import ks.common.view.*; 

import ks.common.model.*; 

import ks.common.controller.*; 

public class DeckController extends SolitaireReleasedAdapter { 

 protected <NameParameter> theGame; 

 public DeckController(<NameParameter> theGame) { 
  super(theGame); 

  this.theGame = theGame; 

 } 

 // Deal cards 

 public void mousePressed(MouseEvent me) { 

      Move m; 

  // Action on press 

  <DeckPressed> 
  //have solitaire game refresh widgets that were affected  

  theGame.refreshWidgets(); 

}}} 

Figure 38: Example of reuse and abstraction encoding using combinator 
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When introducing Combinatory Logic Synthesis in Section 2.1, we mentioned that L2-

combinators are higher-order polymorphic function acting on L1-arguments. Explaining this 

concept is best done by an example. Figure 39 shows a combinator that will synthesize 

various move classes that involve cards moving from a source stack to a destination stack. 

 

 This combinator synthesizes a class named Designate (a string value bound to an input 

parameter) and stores the generated code in a package NameRule. When exercised multiple 

times during the inhabitation algorithm, this combinator will create Java classes whose 

type Move {  

 Designate  [alpha.gameType, stack, movename];  

 Helper   [alpha.gameType, stack, helper];  

 Valid   [alpha.gameType, stack, valid];  

 Do   [alpha.gameType, stack, do];  

 Undo   [alpha.gameType, stack, undo];  

 NameRule  [alpha.gameType, namerule];  

   [alpha.gameType, stack, stackFrom, stackTo]; 

} 

implementation Move (<NameRule>/<Designate>.java) {  

 package <NameRule>;  
 import ks.common.model.*;  

 import ks.common.games.*; 

 public class <Designate> extends Move {  
 Stack source;  

 Stack destination; 

 public <Designate>(Stack from, Stack to) {  
  super();  

  this.source = from;  

  this.destination = to;  

 } 

 public boolean undo(Solitaire game) {  

  <Undo>  
  return true;  

 } 

 public boolean doMove(Solitaire game) {  

  if (!valid (game)) { return false; } 

  <Do>  
  return true;  

 } 

 public boolean valid(Solitaire game) {  

  <Valid>  
  return false;  

 }  

} 

Figure 39: Solitaire polymorphic combinator 
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structure properly embodies the logic of a move. The specific logic synthesized by the Do 

and Undo input parameters will be inserted in their proper location in the class file. Thus 

instead of relying on native inheritance as supported by Java, this combinator will generate 

any number of classes in polymorphic fashion, each one guaranteed to be correct if properly 

specified. 

These examples also explain why we feel CLS is well-suited for software product lines. 

Logic programming approaches seek to synthesize a program from a single specification 

[41], typically using stepwise refinement to ensure correctness with each transformation. It 

seems hard to explain how to conduct this process individually for each product line 

member; alternatively, it seems hard to explain how one could share or reuse results from 

each stepwise refinement across multiple product line members. By contrast, the repository 

development process outlined in this thesis starts by constructing a simple repository of 

combinators by identifying the fundamental steps necessary to produce the code (as 

expressed in tutorials or sample software artifacts). Iteratively over time, the repository 

incrementally adds the individual combinators identified as the different product line 

members are migrated and synthesized. 

 

5.2. METRICS FOR COMBINATORS 

Based on the common practices of object-oriented metrics [42], we have defined several 

metrics that help us evaluate the quality of a project developed by means of combinators. By 

doing so, we have tried to evaluate as many aspects as possible of a Γ repository, for example 

the coupling factor between combinators, reusability of combinators etc.  

Table 30: List of the metrics for combinators 
Name Description 
NC Number of combinators in a repository 
NM Number of unique intersection types 
APTC Average number of parameters per combinator (number of all parameters/NC) 
LNFT Number of function tables 
LND Number of ‘defines’ (simple combinators whose implementation contains just a 

String value). 

All the metrics listed in the table above are L2 metrics, which means they don’t take into 

account the implementation part. Since the implementation of a combinator, namely L1, can 

be any language (object-oriented, procedural etc.) or a configuration/properties file, it’s very 

difficult, not to say impossible, to come up with generic metrics that would evaluate the 

combinators at the implementation level regardless of the L1 language. 

Table 31 lists the values of all these metrics for our case study repositories: 

KombatSolitaire and MOEA. 
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Table 31: Values of metrics for the KS and MOEA repositories 
Metric Value (KombatSolitaire) Value (MOEA) 
NC 92 54 
NM 142 33 
APTC 3 1 
LNFT 13 1 
LND 25 27 

According to [42], coupling is a measure of interdependence of two classes. For example, 

class A and B are coupled if a method declared in class A calls a method declared in class B 

or vice-versa. In our context, two combinators are considered to be coupled if one uses the 

other as an input parameter. Observe that two combinators, even if they don’t have 

parameters at all, may be coupled at the implementation level. However, this is beyond the 

scope of the metrics defined so far, so we won’t consider it as a metric for combinators, but 

rather point it out as a topic for future work.   

The APTC metric’s intension is to measure the coupling factor in a repository. It basically 

represents the average number of parameters per combinator in a repository. The larger the 

APTC’s value is, the more coupled, combinators in a repository are considered, since the 

more parameters a combinator has the more dependent on other combinators it is.  

From the data on Table 31 we can conclude that the MOEA framework has a smaller 

coupling factor than KombatSolitaire, which is desired (for details see [42]).  

The number of combinators (NC) metric is similar to the LOC (Lines of Code) metric in 

object-oriented metric system. “If a comparison is made between projects with identical 

functionality, those projects with fewer lines of code have superior design and require less 

maintenance” [42]. Thus, the value for LOC is desired to be as low as possible.  In the case of 

NC it is slightly different. We can compare two different repositories for the same framework. 

The one with a larger NC is considered to have a better design, since smaller combinators 

(consequently larger overall NC) are likely to be reused more easily than larger ones.   

Currently, our metric system is very basic and defines a set of very simple metrics. More 
advanced metrics are described under the Conclusion and Future Work section. 
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6. CONCLUSION AND FUTURE WORK 

We have given a comprehensive report on using CLS as an alternative approach to 

designing and extending object oriented frameworks. We have presented and described the 

tools which help us realize our goals, and described in detail two case studies that help us 

evaluate this approach – emphasizing advantages and challenges that come along with it. 

However, there are many questions remaining to be answered in the future, and some of 

them are listed below. We conclude this thesis project with some remarks on the future 

work, which fall into two categories: tool support and theory. 

Tool support 

Currently there is no support for navigation from a feature in the model to the 

corresponding combinator(s) or vice-versa. The only way to find the combinators associated 

with a feature, is by manually finding the folder with the same name as the feature, then 

listing the combinators inside it. This task will be difficult to carry out in the case of large 

repositories; a large repository will be one that has over a thousand combinators or even 

more. Thus, an easy navigation will tremendously improve the usability and contribute to 

the success of the overall approach. 

Besides navigation, the continued evaluation of the LaunchPad macro-language is key to 

improving the way combinators are written, detecting syntax and specifically semantic 

errors, enriching the language with new expressions etc. 

The L2 language that we use in this project, is one of many possible higher level 

languages that could be used in a type-safe system. It would be interesting exploring other 

possible L2 languages and finding advantages and disadvantages of one over the other. 

We have successfully demonstrated applying the CLS principles to a number of case 

studies in this thesis. Naturally the next question is to evaluate whether other programmers 

will have similar success. Upon the completion of CS 3733 in May 2015, Professor Heineman 

will coordinate a number of students in using LaunchPad to build solitaire variations in the 

same way that the FourteenOut variation was constructed. This experience will provide 

valuable feedback as we continue to evaluate the widespread applicability of the technique. 

Theory 

Up until now, all the case studies we have experimented with, use Java as a target (L1) 

language. It would be of a great interest in the future to experiment with other languages as 

well, which would potentially reveal the strengths and weaknesses of the tool and the overall 

approach, and consequently contribute to developing a more robust system.  

Combinatory Logic Synthesis (CLS) is an approach to a much bigger picture than what 

we use it for in this thesis, and it is continuously being researched on. Thus, it is very is crucial 

to have the advances on CLS mapped onto LaunchPad, for a more complete overview of the 
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idea of synthesizing code using CLS. In addition, the L2 language will likely change in future 

releases of the InhabConsoleClient tool chain, and LaunchPad will adjust accordingly. 

Evaluation is a very important aspect in developing qualitative software, and we have 

defined several metrics to address this issue. Nevertheless, there are still many remaining 

evaluation questions, which require metrics that capture the behavior of combinators and 

the relationship between them, and give more meaningful answers that help better evaluate 

the project. Such metrics would take into consideration not only the definition but the 

implementation part of combinators too. Another metric that would be interesting to 

consider in the future, is similar to the Depth of Inheritance Tree [42] metric defined for 

object-oriented programming. It basically defines the depth of subtyping of the intersection 

types. Let’s say we have the intersection types defined as below: 

1. [a, b] 

2. [a, b, c] 

3. [a, b, c, d] 

The intersection type (3) is a subtype of (2), and (2) is a subtype of (1), therefore (3) is a 

subtype of (1), too. In this case the depth of subtyping is 2, since from (3) we can go two 

levels up in the tree of intersection types. 
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