
Computational Methods in Financial Mathematics Course
Project

by

Zhipeng Lin

A Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Mathematics Science

by

May 2009

APPROVED:

Professor Marcel Blais, Major Project Advisor

Professor Bogdan M. Vernescu, Head of Department

Abstract

This course project is made up of two parts. Part one is an investigation and

implementation of pricing of financial derivatives using numerical methods for the

solution of partial differential equations. Part two is an introduction of Monte

Carlo methods in financial engineering. The name of course is

MA573:Computational Methods in Financial Mathematics, spring 2009, given by

Professor Marcel Blais.

Acknowledgements

I would like to express my gratitude to my advisor Professor Marcel Blais who

help me accomplish my project.

i

Contents

I Introduction 1

II Finite Differnce Methods 3

0.1 Options . 4

0.2 Stochastic Process . 7

0.3 Order Notation . 13

0.4 Time discretization . 19

0.5 Specific finite difference methods . 20

0.6 Implementation of the Time Advancement 22

III Monte Carlo Methods 28

0.7 Foundations . 29

0.8 Random Number Generation . 33

0.9 Acceptance-Rejection Method . 36

0.10 Multivariate Normals . 40

0.11 Money Market Account . 44

0.12 Multi-Dimensions . 47

0.13 Generating sample paths . 50

0.14 Variance Reduction Techniques . 54

ii

0.15 References . 71

iii

List of Figures

1 Call Option . 4

2 Put option . 5

3 BrownianMotion . 8

4 BrownianMotion . 9

iv

Part I

Introduction

1

This project is a summary of the course : Computational Methods in Financial

Mathematics, it introduces the Finite Difference Method and Monte Carol

Methods to solve the option pricing problem. The text of this project is based on

the course lecture and added some extra examples.

2

Part II

Finite Differnce Methods

3

0.1 Options

Call Option:

An European call option is a financial contract with the following conditions:

At a prescribed time in the future, the expire date, the holder of the option may

purchase a prescribed asset, known as the underlying asset, for orescribed amount,

called the strike price. It has the properites as follows:

1. Holder has a right not a obligation.

2. Seller potentially has an obligation.

3. It has value.

Figure 1: Call Option

Put Option:

An European put option is a financial contract with the same conditions as a

European call except the holder has the right to sell the underlying to the writer

at expiry for the strike price.

4

Figure 2: Put option

Some other types

European digital call option

payoff= $1 if ST ≥ K

= $0 if ST ≤ K

American option

It is a financial contract between two parties, the holder and the writer, with

expiry time T. At any time t, the holder may exercise the option and receive the

payoff g(t, St), where St is the time t value of the underlying.

Asian call option

An asian option is an option where the payoff is not determined by the underlying

price at maturity but by the average underlying price over some period of time.

payoff=max(AT −K, 0), where

AT=avg(St:0 ≤ t ≤ T)

5

= 1
T

∫ T
0
Stdt

Discrete time model

Model the underlying asset price movement using a sequence of coin tosses, at

timet ∈ {0, 1, 2, ...}

Black-Scholes Model

It is a continuous time model, and it is the limit of the binomial with a specific

choice of parameters as ∆t→ 0

It’s SDE:

dSt
St

= udt+ σdWt (1)

Option Pricing Approachs

1. Find the theory of asset pricing.

- use of probability - price option by taking the discounted expected payoff

under the risk-neutral measure.

- get algorithmic solution in some cases.

2. Option replication

- create a synthetic option, use positions to replicate the option value.

3. Solving PDE’s

Often time, an option’s value can be determined by solving a boundary value

problem, which is a PDE and a set of boundary conditions.

-sometimes can find algorithmic solutions(usually approximate the solution

using finite difference methods)

-deal with discretizing the continuous models

6

4. Monte Carlo Methods

-approximate an option’s value by simulation

0.2 Stochastic Process

A stochastic process X is a collection of random variables

(Xt, t ∈ [0, π]) = Xt(ω) : t ∈ [0, π], ω ∈ Ω), where Ω is sample space.

For fixed t, Xt(ω) is a random variable for ω ∈ Ω fixedXt = Xt(ω) is a function of

time, called sample path.

A stochastic process ω = (ωt, t ∈ [0,∞]) is called a standard Brownian motion if

the followings are satisfied:

1. ω0 = 0

2. for 0≤ s ≤ t

ωt − ωs ∈ N(0, t− s)

3. Independence of increments for0 ≤ s < u < v

Wt −Ws⊥(Wv −Wu)

4. W has continuous sample paths

Example:

Brownian Motion with drift Xt = µt+ σWt

E(Xt)=E(µt+ σWt)

=E(µt)+E(σWt)

=µt+σE(Wt)

=µt

Black-Scholes-Merton

7

Figure 3: BrownianMotion

SDE: consider a small time interal dt, during which an asset price changes from s

to s+ds, decompose it into 2 parts

1. One part comes from a fixed rate of return over dt:

µdt, µ is called the drift

2. The random compoment is given by a random sample drawn from a normal

dist, with mean 0 and variance dt, σdWt, σ is called the volatility.

dS

S
= µdt+ σdWt (2)

Thm:

The stochastic process that solves the SDE dS
S

= µdt+ σdWt is the geometric

8

Figure 4: BrownianMotion

Brownian Motion.

St = S0e
µ− 1

2
σ2

t+ σWt (3)

Ito process

Xt is an Ito process if it is a stochastic process that can be written as:

dXt = utdt+ vtdWt (4)

Ito’s formula is a basic tool for determining the Ito process followed by a function

of other Ito processes.

Suppose Xt is an Ito’s process and gt,x ∈ C2([0,∞]×R), then Xt = g(t,Xt) is also

an Ito process and

9

dYt = gt(t,Xt)dt+ gx(t,X(t))dXt +
1

2
gxx(t,Xt)dXtdXt (5)

dtdt = 0, dtdWt = 0, dWtdWt = dt (6)

Example:

St = S0e
µ− 1

2
σ2t + σWt

g(t, x)=S0e
µ− 1

2
σ2t + σX

gt = (µ− 1
2
σ2)g, gx = σg, gxx = σ2g

Back to option

Consider a European option with time-t,value V (t, St), the option payoff is

V (T, ST)

Let V (t, St) = g(t, St)

Using Ito’s formula, we get

dV = gtdt+ gxdSt +
1

2
gxxdStdSt (7)

dSt = µStdt+ σStdWt (8)

Plus (8) into (7)

dV = gtdt+ gx(µStdt+ σStdWt) + 1
2
gxx(µ

2S2
t dtdt+ 2µσS2

t dtdWt + σ2S2
t dWtdWt)

=(gt + µgxSt + 1
2
gxxσ

2S2
t)dt+ gxσStdWt

This is the ODE for option price

Form a portfolio with one option and ∆ units of underlying, at time t, the value of

the portfolio is

Πt = Vt −∆St (9)

10

dΠt = dVt −∆dSt (10)

where ∆ is fixed at the beginning of dt

Plug in dV, we get

dΠt = (∂V
∂t

+ µSt
∂V
∂S

1
2
σ2S2

t
∂2V
∂S2)dt+ ∂V

∂S
σStdWt −∆(µStdt+ σStdWt)

= (∂V
∂t

+ µSt
∂V
∂S

+ 1
2
σ2S2

t
∂2V
∂S2 − µSt∆)dt+ (σSt

∂V
∂S
− σ∆St)dWt

Then choose the value of ∆, let ∆ = ∂V
∂S
⇒ 0

dΠt = (
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
)dt (11)

We find that there is no randomness

Arbritrage

Suppose the amount Πt was invested in the money market account(MMA)

dΠ = rΠdt must hold, otherwise there would be arbitrage.

dΠt = r(Vt −
∂V

∂S
St)dt (12)

Combining (11) and (12), we get

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
+ rSt

∂V

∂S
− rV = 0 (13)

This is the Black-Scholes PDE, it has the properities as follows:

1. Any option whose price depends only on t and St is paid for up front must

satisfy this PDE

2. Boundary conditions are needed to price an option

Example:

European call option with strike price K, expiry T

11

final condition : C(T, ST) = max(ST −K, 0)

Spatial condition

dSt = St(µdt+ σdWt)

Since S can not escape from 0, we set C(0, t) = 0

As S →∞, the call option becomes more likely to be exercised.

So we set C(S, T)→ S as S →∞

The Boundary Value Problem(B.V.P) works backward in time before we give an

end condition instead of an initial

Make transformation t∧̂ = T − t

Rewrite the BSM PDE as

∂V

∂t∧̂
= σS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV (14)

To approximate the partial deviratives in the above PDE, we use finite differnce

methods to solve it.

First of all, let us recall Taylor’s Theory

Suppose u ∈ C∞, then u(x) =
∑∞

n=0
uu(a)
n!

(x− a)n

Consider u(x+h) and u(x-h), we expand both in taylor series at a=x

u(x+ h) =
∑∞

n=0
un(x)
n!

((x+ h)− x)n

=
∑∞

n=0
un(x)
n!

hn

u(x− h) =
∑∞

n=0
un(x)
n!

hn(−1)n

And u(x+h)+u(x-h)=2u
′
(x)h+ 2u

′′
(x)

3!
h3 +O(h4)

Divide both sides by 2h, we get

u(x+h)+u(x−h)
2h

= u
′
(x) + u

′′

3!
h2 +O(h3)

Rearrange it , we get ∂u
∂x

= u(x+h)−u(x−h)
2h

+O(h2)

and it is a first-order central finite difference method

12

u(x+ h) + u(x− h) = 2u(x) + u′′(x)h2 + 2u
′′′

(x)h4

4!
+O(h6)

Divide both sides by h2, we get

∂2u
∂x2 = u(x+h)−2u(x)+u(x−h)

h2

So we get

∂u

∂x
(x, t) =

u(x+ ∆x, t)− u(x−∆, t)

2∆x
− TE (15)

∂2u

∂x2
=
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
− TE2 (16)

where TE, TE2 are both O(∆x2)

0.3 Order Notation

Given two sequences, {an}∞n=1 and {bn}∞n=1, we write an = O(bn), if ∃ C > 0 such

that |an| ≤ C|bn|∀n, and we write an = o(bn), if limn→∞
an
bn

= 0.

Space discrelization

Use finite difference from last time on:

∂u
∂t

= r ∂u
∂x

+ 1
2
σ2 ∂2u

∂x2 − ru

We set up a grid with grid points x0, x1, x2....xI , ∆x=xi+1 − xi

Let ui = u(xi), use finite difference to approximate ∂u
∂x

and ∂2u
∂x2 at the grid points.

∂u
∂x

(xi, t) = u(xi+∆x,t)−u(xi−∆x,t)
2∆x

− TE=ui+1−ui−1

2∆x
− TE1

∂2

∂x2 (xi, t) = u(xi+∆x,t)−2u(xi,t)+u(xi−∆x,t)
(∆x)2

− TE2=ui+1−2ui+ui−1

(∆x)2
− TE2

for i=1, 2, 3 ..., I-1

Boundary value u0 and uI

Example: for linear condition

13

line: u− ui = m(x− xi)

m = u2−u1

x2−x1
= u2−u1

∆x

u− u1 = u2−u1

∆x
(x− x1), u0 − u1 = u2−u1

∆x
(x0 − x1)

u0 − u1 = u1 − u2, u0 = 2u1 − u2

Similarly, uI = 2uI−1 − uI−2

∂u
∂t

= r(ui+1−ui−1

2∆x
) + 1

2
σ2(ui+1−2ui+ui−1

∆x2)− rui + ε

=ui−1(−r
2∆x

+ σ2

2∆x2) + ui(
−σ2

∆x2 − r) + ui+1(r
2∆x

+ σ2

2∆x2) + ε

=βui−1 − γui + αui+1

where α = 1
2
[r
δx

+ σ2

∆x2], γ = σ2

∆x2 + r,β = −r
2∆x

+ σ2

2∆x2

Then we need to vectorize,

14

Let u =



u0

u1

.

.

.

uI


boundary : u0 = 2u1 − u2, uI = 2uI−1 − uI−2

Au =



u0 − 2u1 + u2

βu0 − γu1 + αu2

βu1 − γu2 + αu3

......

......

uI − 2uI−1 + uI−2


ε =



ε1

ε2

ε3

.

.

εI


A =



1 − 2 1 0 0 ... 0

β − γ α 0 0 ... 0

0 β − γ α 0 ... 0

.......

.......

.......

0 0 ... 0 1 − 2 − 1


du

dt
= Au+ ε (17)

Use du
dt
≈ Au, we solve this system numerically.

Discretize form {t0, t1,, tN}

Denote uni = ui(tn) = u(xi, tn), then we can find a solution at time tn using

information from t0, t1, ..., tn−1, fix i, we drop subscript, and get

uni = un = u(tn) = u(tn−1 + ∆t)

Using Taylor’s series to u(t+ ∆t) about a = tn−1

u(t+ ∆t) =
∑∞

k=0
u(k)(tn−1)

k!
(t+ ∆t− tn−1)

=u(tn−1) + du
dt

(tn−1)(t+ ∆t− tn−1) + d2u
dt2

(tn−1)(t+ ∆t− tn−1)

Use a first-order approximation, we get

15

u(tn−1 + ∆t) = u(tn−1) + du
dt

(tn−1)∆t+ TE∆t

As we mentioned above, replace du
dt

(tn−1) by (du
dt

)n−1, we get

un = un−1 + (du
dt

)n−1∆t+ TE∆t

Vary i from 1 to I, it gives

un = un−1 + (du
dt

)n−1∆t+ TE∆t

⇒ un = un−1 + (An−1un−1)∆t

Numercal Issues

1. Consistency: A numercal scheme is consistent if the finite difference scheme

converges to the PDE as the space and time steps → 0,error terms are

O(∆x2) and O(∆t2)

2. Stability: A numercal scheme is stable if the difference between the

numbercal solution and exact solution remains bounded as the number of

time steps → 0

Another Finite Differnce Discretization

∂u
∂x

= 4u(x+∆x,t)−u(x+2∆x,t)−3u(x,t)
2∆x

+O(∆x2)

Stability Analysis

We use stability analysis to judge whether a method fail or not.

Pricing using finite difference

1. discretize in space, transforms the PDE into a system of ODE’s

2. discretize in time to solve ODE’s system of equations(PDE’s)

Analysis of the finite difference equations(PDE’s)

16

1. find a local analytic solution to the system of ODE’s in (1) above

2. find a local analytic solution of the PDE system that came from (2) above

3. compare them-relates ∆x and ∆t

Linear Algebra Review

Eigenvalues: let A ∈ Rn×n, if ∃ a vector x ∈ Rn, such that x 6= 0 and Ax = λx,

then λ is called an eigenvalue of A.

Consider

Ax = λIx

Ax− λIx = 0

(A− λI)X = 0⇐⇒ Det(A− λI) = 0

Defination: the space of the set of all solutions to Ax− λIx = 0 is called the

eigenspace of A.

Example: A =

7 − 1

4 3


λ of A is 5

so for (λI − A)x = 0

−2 1

−4 2


x1

x2

 =

0

0


Solution is

x1 = 1
2
t

x2 = t

The eigenspace of A is i =


1

2

1

 t : t ∈ R


Space Discretization

Consider ∂u
∂t

= Lu, where L is a partial differential operator with no time

derivatives. For example:

17

∂u
∂t

= ∂2u
∂x2 − 4∂u

∂x

L=(∂2

∂x2 − 4∂
∂x

)

In our example, space discretization gave du
dt

= Au

Assume A is non-singular, rank M, so Xm for m = 1, 2, 3,,M and eigenvalues

λ1, λ2,, λm

Define AXm = λmXm

X = [X1|X2|X3|...|Xm], non-singular λ =



λ1 0 0 ... 0

0 λ2 0 ... 0

...

...

0 0 ... 0 λm


AX = [AX1|AX2|...|AXm] = [λ1X1|λ2X2|..|λmXm] = λX

=⇒ AX = λX

So we get X−1AX = λ

−→ X−1 du
dt

= X−1Au = X−1A(XX−1)u,where λ = X−1AX

−→ X−1 du
dt

= λX−1u

If the elements of X are independent of time, d(X−1u)
dt

= λX−1u

Define V = X−1u, then dV
dt

= λV

We get



dV 1

dt

dV 2

dt

...

...

dVm
dt


=



λ1V1

λ2V2

...

...

λmVm


with solution V ∗ =



C1e
λ1t

C2e
λ2t

...

...

Cme
λmt


where Ci are constants

18

0.4 Time discretization

Let V n = V (n∆t), the shift operator Ei is defined by EiV n = V n+i = V [(n+ i)∆t].

Time discretized finite difference can be expressed as polynomial in the shift

operator. For example:

Suppose ∂u
∂t
≈ u(x,t+∆t)−u(x,t)

∆t
,tn = t0 + n∆t = n∆t

∂u
∂t

(tn) = (∂u
∂t

)n ≈ u(tn+∆t)−u(tn)
∆t

= u(n∆t+∆t)−u(n∆t)
∆t

=un+1−un
∆t

= Eun−un
∆t

=un

∆t
E − un

∆t

Consider a polynomial in the shift operator

P (E) =
∑n

i=0 aiE
i

An equation of the form P (E)V n = 0 is known as a homogeneous difference

equation and has the solution V n =
∑K

k=1 bk(Λk)
n, where the bk are constants and

the Λk are the roots of the polynomial P(Λ).

Consider this system dV
dt

= λV , jth component
dVj
dt

= λjVj

has the analytic solution: vj(t) = cje
λjt

Finite difference expression:

dVj
dt

(tn) = dVt
dt

(n∆t) ∼= 1
∆t

∑M
i=1 CiV

n+i
j for some constants Ci

Recall homogeneous difference equation P̂ (Λ)− λj∆t = 0, the λj resulted from

spatial discretization, dv
dt

= λv

The Λjk resulting from time discretization are resulted to the λj by

P̂ (Λjk)− λj∆t = 0

Thus a space-time discretization gives rise to a set Λjk. They are called

amplification errors.

Since vnj =
∑K

k=1Cjk(Λjk)
n,if |Λjk| > 1, then vjk will blow up as the number of n

19

increases. If any one |Λjk > 1|, the scheme is unstable.

The relationship between time and space discretizations is embodied in

relationship between λj and Λjk, so we set t=n∆t and vj(t) = Cje
λjt

gives vj(t) = vj(n∆t) = Cje
λjn∆t = Cj(e

λj∆t)n

and expand the right-hand side by Taylor series:

vj(t) = cjk[1 + λj∆t+ 1
2!

(λj∆t)
2 + ...]n

To get vj(n∆t) to converge as ∆t→ 0, the following equation must hold for some

(at least 1) pair j,k

Λjk = 1 + (λj∆t) +
(λj∆t)

2

2!
+ ...+

(λj∆t)
P

P !
+O(∆tP+1)

0.5 Specific finite difference methods

1. The Explicit Euler Scheme

ODE:dv
dt

= λv, we use the explicit approximation

dv
dt
|n ∼= vn+1−vn

∆t
, plug into the ODE, we get:

vn+1−vn
∆t

≈ λvn or vn+1 = λ∆tvn + vn,which is called explicit because vn+1

depends on previous vales of v.

vn+1 − vn − λδtvn = 0 ⇒ Evn + vn − λ∆tvn = 0⇒ (E − 1− λ∆t)︸ ︷︷ ︸
P (E)

vn = 0

To solve P (E) = 0,

Λ− 1− λ∆t = 0⇒ Λ = 1 + λ∆t

⇒ eλ∆t − Λ = 1
2
(λ∆t)2 + 1

3!
(λ∆t)3 + ..., the model is first-order accurate.

For stability, we require

|Λ| ≤ 1⇒ −1 ≤ 1 + 1λ∆t ≤ 1⇒ −2 ≤ λ∆t ≤ 0⇒ |1 + λ∆t| ≤ 1

So if λ > 0⇒unstable, if λ < 0⇒ if ∆t ≤ − 2
λ
⇒stable

20

2. The Implicit Euler Scheme

dv
dt
|n+1 ≈ vn+1−vn

∆t
, plug into ODE dv

dt
= λv

vn+1−vn
∆t

≈ λvn+1

(1− λ∆t)vn+1− vn = 0⇒ (1− λ∆t)Evn− vn = 0⇒ [(1− λ∆t)E − 1]︸ ︷︷ ︸
P (E)

vn = 0

Solve P (Λ) = 0⇒ (1− λ∆t)Λ− 1 = 0

Λ = 1
1−λ∆t

=1 + (λ∆t) + 1
2
(λ∆t)2 + 1

3!
(λ∆t)3

Thus, eλ∆t−Λ = −1
2
(λ∆t)2 +O(∆tλ)3, so this method is first-order accurate.

For stability we require |Λ| ≤ 1⇒ | 1
1−λ∆t

| ≤ 1, that is if λ < 0, it is stable.

3. Crank-Nicolson Scheme

We average the Explicit and Implicit Euler schemes, and get the

Crank-Nicolson scheme:

1
2
[dv
dt
|n + dv

dt
|n+1] = vn+1−vn

∆t

Rewrite as P (E)vn = 0

(1− 1
2
λ∆t)vn+1 − (1 + 1

2
λ∆t)vn = 0⇒ (1− 1

2
λ∆t)Evn − (1 + 1

2
λ∆t)vn = 0

P (E) = (1− 1
2
λ∆t)E − (1 + 1

2
λ∆t)

Solve P (Λ) = 0, we get

Λ =
1+ 1

2
λ∆t

1− 1
2
λ∆t

= 1
1− 1

2
λ∆t

+ 1
2
λ∆t(1

1− 1
2
λ∆t

)

⇒ Λ = 1 + (λ∆t) + 1
2
(λ∆t)2 + 1

4
(λ∆t)3 + ...

So eλ∆t − Λ = 1
12

(λ∆t)3 +O(λ∆t)4

The scheme is second-order accurate.

Stability Condition:

Suppose |Λ| = |1+ 1
2
λ∆t

1− 1
2
λ∆t
| ≤ 1

⇒ |1 + 1
2
λ∆t| ≤ |1− 1

2
λ∆t|

21

And Λ = 1 + (λ∆t) + 1
2
(λ∆t)2 + 1

4
(λ∆t)3 + ..., so if λ ≤ 0, |Λ| ≤ 1

0.6 Implementation of the Time Advancement

un+1 = un + 2t[du
dt

]n + TE∆t

Using Crank-Nicolson, we get

un+1 ≈ un + ∆t
2

[du
dt
|n + du

dt
|n+1], then insert the spatial discretization du

dt
= Au, gives

un+1 = un + ∆t
2

[Aun + fn + Aun+1 + fn+1, wherefn and fn+1 are vectors.

Rewrite it as un+1 − ∆t
2
Aun+1 = un + ∆t

2
Aun + ∆t

2
(fn + fn+1)

⇒ (I − ∆t

2
)︸ ︷︷ ︸

Â

un+1 = (I +
∆t

2
A)un +

∆t

2
(fn + fn+1)︸ ︷︷ ︸

b

Âun+1 = b, where Â is sparse, large and bonded.

Solving sparse systems of linear equations

1. Direct Solver

properties:

-solve in a finite number of steps

-can not control the accuracy and it depends on the implementation and the

algorithm

The most popular direct solver is the tridiagonal solver which is applicable to

1-dimensional problems.

The tridiagonal solver is the Gaussian elimination method.

22



b1 c1 0 0 ... 0

a2 b2 c2 0 ... 0

...

...

0 0 ... an−1 bn−1 cn−1

0 0 0 0 an bn





u1

u2

...

...

un−1

un


=



f1

f2

...

...

fn−1

fn


Step 1 Normalization

1 c1
b1

0 0 ... 0

a2 b2 c2 0 ... 0

...

...

0 0 ... an−1 bn−1 cn−1

0 0 0 0 an bn





u1

u2

...

...

un−1

un


=



f1
b1

f2

...

...

fn−1

fn


Step 2 Elimination

1 c1
b1

0 0 ... 0

0 b2 − a2c1
b1

c2 0 ... 0

...

...

0 0 ... an−1 bn−1 cn−1

0 0 0 ... an bn





u1

u2

...

...

un−1

un


=



f1
b1

f2 − a2f1
b1

...

...

fn−1

fn


Step 3 Normalization

23



1 a1

b1
0 0 ... 0

0 1 c2
b2−a2c1b1

0 ... 0

...

...

0 0 ... an−1 bn−1 cn−1

0 0 0 ... 0 an bn





u1

u2

...

...

un−1

un


=



f1
b1

f2−a2f1b1

b2−a2c1b1

...

...

fn−1

fn


This is continued until the system looks as follows:

1 x1 0 0 ... 0

0 1 x2 0 ... 0

...

...

0 0 0 ... 1 xn−1

0 0 0 0 ... 1





u1

u2

...

...

un−1

un


=



y1

y2

...

...

yn−1

yn


The solution follows in the upward sweep:

un−1 = yn−1 − xn−1un−i+1, i = 1, 2, ..., n− 1

2. Iterative Solvers

There are two main types of iterative solvers:

(a) Stationary methods-using iteration schemes with parameters that

remain fixed during the iterations -the Jacobi, Gauss-Seidel, SOR

methods

(b) Nonstationary methods-using parameters that are updated as the

iteration proceeds -the conjugate gradient family and minimal residual

methods

Preconditioning Âu = f , for some non-singular matrix C, we use

24

ÂC−1Cu = f , could choose C such that if λmin and λmax are the smallest and

largest eigenvalues of ÂC−1, then λmax

λmin
is close to 1.

The Jacobi method

Consider the system of linear equations∑j=n
i=1 aijuj = fi

Solve for ui, assume that we konw all the uj for j 6= i, we get the solution

ui = 1
aii

{
fi −

∑
i 6=j aijuj

}
This equation suggests an iterative algorithm of the form

un+1
i = 1

aii

{
fi −

∑
i 6=j aiju

n
j

}
The Gauss-Seidel Method

This method is a modification of Jacobi method, its property is that the

updates to the unknowns are incorporated into the scheme as they occur.

The solution is as follows:

un+1
i = 1

aii

{
fi −

∑
j<i aiju

n+1
j −

∑
j>i aiju

n
j

}
The SOR Method

It is constructed by averaging the Gauss-Seidel iterate with a previous

iterate:

ũN+1
i = 1

aii

{
fi −

∑
j<i aiju

n+1
j −

∑
j>i aiju

n
j

}
ũn+1
i = ωũn+1

i + (1 + ω)uni , where ω is a overrelaxation parameter.

Finite Difference Approach to American Options

Partial Differntial Complementarity Problem(PDCP)

1. v ≥ f

- the option value must be above its immediate exercise value.

25

2. ∂v
∂t

+ rs∂v
∂s

+ 1
2
σ2s2 ∂2v

∂s2
≤ rv

- if the growth rate of the option value is lower than the mma, exercise.

3. (∂v
∂t

+ rs∂v
∂s

+ 1
2
σ2s2 ∂2v

∂s2
− rv)(v − f) = 0

- if v=f, that means early exercise

- or if ∂v
∂t

+ rs∂v
∂s

+ 1
2
σ2s2 ∂2v

∂s2
− rv, it means that Black-Scholes PDE is

satisfied, in such condition, it is like a European option.

4. v(T,S)=f(S)-payoff

The Linear Complementarity Problem

Given a matrix A and vectors band c, the Linear Complementarity Problem(PCM)

makes x satisfy the following:

Ax ≥ b,x ≥ c,(x− c)(Ax− b) = 0

Then we use PDCP to fit this form.

Define differential operator

L = rs ∂
∂s

+ 1
2
σ2s2 ∂2

∂s2
− r

So for an option value u(s,t) at time-t, it satisfies the following PDCP:

1. u(s, t) ≥ F (s, t)

2. ∂u
∂t
− Lu ≥ 0

3. (∂u
∂t
− Lu)(u− F) = 0,0 ≤ t ≤ T, 0 ≤ S ≤ ∞

4. u(S, 0) = F (S, 0), 0 ≤ S ≤ ∞

Then use Crank-Nicolson scheme to approximate Lu, we get

Lu ≈ 1
2
(Aun+1 + Aun) + 1

2
(fn+1 + fn)

⇒ Mun+1 = b,

26

where M = I − 1
2
∆tA,b == (I + ∆t

2
A)un + ∆t

2
(fn + fn+1)

Let F be a discrete approximate to the exercise value F, apply to above PDCP,

then we get:

1. un+1 ≥ F

2. Mun+1 ≥ b

3. (Mun+1 − b)T (un+1 − F) = 0

4. u0 = F

To get an equivalent and more compact version, we make the following

substitutions:

Z = u− F ,q = MF − b

z ≥ 0⇐⇒ u− F , (1) holds.

q +Mz = MF − b+M(u− F) = Mu− b ≥ 0 (2)holds

zT (q +Mz) = (u− F)T (Mu− b) = 0,(3) holds

27

Part III

Monte Carlo Methods

28

0.7 Foundations

Monte Carlo Methods are based on the analogy between probability and volume.

By drawing samples randomly from a universe of possible outcomes, use these

samples as an estimate of the set’s volume. The law of large numbers ensures this

estimate converges to the currect value as the number of draws goes to very large.

Since it needs probability background, recall some notions of probability

Probability

Sample Space Ω (Ω, F, P)

Define A the set of outcomes in Ω that leads to this event occuring. A ∈ F , P(A)

is the probability of the event occuring.

However Monte Carlo Method is a different approach to above calculation, its

properties are as following:

1. Randomly sample ω ∈ Ω many times

2. For each sample ω, determine whether or not event occurs

3. P(A) is approximated by the fraction of outcomes

4. The laws of large numbers ensure that this estimate converges to P(A) as the

number of draws goes to ∞

5. The central limit theorey gives us information about the error of our

approximation

Assume x1, x2, x3,, xn is a sequence of independent identically distributed (iid)

random variables

E(xi)=µ <∞ i=1,2,3...

Denote x̄n= 1
n

∑n
i=1 xi

29

Thm Strong Law of Large Numbers

P(limn→∞ x̄n = µ)=1

we can simplely write it as x̄n
a.s→ as n→∞

The strong law can imply the weak law, which means that the events for which x̄n

does not converge to µ have probability zero.

P (ω ∈ Ω : limn→∞ x̄n(ω) = µ) = 1

Thm Central Limit Theorem

If var(xi)=σ
2 <∞, then for all a ≤ b, limn→∞ P (a ≤ x̄n−µ

σ√
n

≤ b) = Φ(b)− Φ(a),

where Φ is the CDF of the standard normal distribution.

Φ(y) = 1√
2π

∫ y
−∞ e

−x
2

2 dx

Then standardize x̄n to get a Zn,Zn = x̄n−µ
σ√
n

, close to a N(0,1) random variable. For

large n, x̄n has a distribution that is approximate N(µ, σ
2

n
)

Two Monte Carlo Examples

The first one is to calculate α =
∫ 1

0
f(x)dx

Thinking of α as an expectation E(f(U)), where U is uniformly distributed on[0,1],

sample U1, U2, ... independently and uniformly from [0,1]. Evaluating the function f

at n random points and averaging the results produces the Monte Carlo estimate

α̂ = 1
n

∑n
i=1 f(Ui)

If f is integrable on [0,1], then by the strong law of large numbers, we get α̂n = α

with probability 1 as n→∞

P(limn→∞ α̂n = α)=1

If f is square integrable on [0,1], set

σ2
f = var(f(U)) = E[(f(U)− E(f(U)))2] = E[(f(U)− α)2] =

∫ 1

0
[f(x)− α]2dx

30

Analysis of the error of our approximation α̂n − α by CLT, the distribution of α̂n

is N(α,
σ2
f

n
)

Error estimate

Since we know Sf =
√

1
n−1

∑n
i=1[f(Ui)− α̂n]2 and σt√

n
≈ Sf√

n

we can use
Sf√
n

as an error estimate. As we mentioned, Monto Carlo Method is not

a competitive method for one-dimensional integrals, the accuray of the error is

O(n−
1
2), in contrast, the error in the simple trapezoidal rule

α ≈ f(0)+f(1)
2n

+ 1
n

∑n−1
i=1 f(i

n
) is O(n−2)

Multiple integrals∫
[0,1]d

f(x)dx,x ∈ Rd based on n draws from [0, 1]d, we get error estimates: Monte

Carlo-O(1√
n
), Trapezoidal Rule-O(1

n
2
d

)

So once n > 4, Monte Carle Method is better.

The second one is Pricing Options.

European Call Option with strike K, underlying St, maturity T, interest rate r.

The underlying asset price must follow Black-Schole formula, so its SDE is:

dSt
St

= rdt+ σdWt ⇒

St = S0e
(r− 1

2
σ2)t+σWt (18)

ST = S0e
(r− 1

2
σ2)T+σWT (19)

where Wt ∼ N(0, 1).

If Z ∼ N(0, 1), then
√
TZ ∼ N(0, T)

(19) can be rewrited as ST = S0e
(r− 1

2
σ2)T+σ

√
TZ

The logarithm of the stock price is normally distributed, and the stock price itself

31

has a lognormal distribution.

Log(ST) ∼ N((r − 1
2
σ2)T, σ2T)

The expectation E[e−rT (S(T)−K+)] is an integral with respect to the lognormal

density of S(T), this integral can be evaluated as

BS(S(0), σ,T,r,K)=SΦ(
log(S

K
)+(r+ 1

2
σ2)T

σ
√
T

)− e−rTKΦ(
log(S

K
)+(r− 1

2
σ2)T

σ
√
T

)

This is a Black-Scholes formula for a call option.

Monte Carlo Pricing

V0 = Ê[e−rt(ST −K)+]

We can estimate E[e−rt(ST −K)+] using the following algorithm:

for i=1,2,3,...,n

generate Zi

set Si(T) = S(0) exp([r − 1
2
σ2]T + σ

√
TZi)

set Ci = e−rT (S(T)−K)+

Set Ĉn = C1+...+Cn
n

If n≥ 1,

E(Ĉn)=E(1
n

∑n
i=1 Ci) = 1

n

∑n
i=1E(Ci) = 1

n
(nE(Ci)) = C0 = E(e−rT (ST −K)+)

By the Strong Law of Large Numbers, P(limn→∞ Ĉ = C0)=1

Error estimate

Let SC =
√

1
n−1

∑n
i=1(Ci − Ĉn)2 denote the sample standard deviation of

C1, C2..., Cn and let zδ denote the 1− δ quantile of the standard normal

distribution. Then Ĉn = ±zδ/2 sC√n is an asymptotically (as n→∞) valid 1-δ

confidence interval for C.

32

0.8 Random Number Generation

The core of Monte Carlo simulation is to generate uniformly distributed random

variables.

Pseudo random number generator

Generator a sequence of random variables U1, U2 with two properties:

1. Ui is uniformly distributed on [0,1]

2. the Ui are mutually independent.

The Linear Congruential Generator

The general linear congruential generator takes the form:

xi+1 = (axi + c) mod m,ui+1 = xi+1/m (20)

, where a, m, c ∈ Z

a is called the multiplier, m is the modulus. the initial seed x0 is required

1 ≤ x0 ≤ m− 1.

If c 6= 0, it is called mixed, if c=0, it is called pure.

Some examples:

8 mod 5 =3, 2 mod 7=2

use (20) with a=6, m=11,x0 = 1

x1 = ax0 mod 11=6, x2=ax1mod 11=3, x3 = 7, x4 = 9, x5 = 10, x6 = 5, x7 = 8,

x8 = 4, x9 = 2, x10 = 1, x10 = x0, the sequence repeats.

Full Period

Definition: A linear congruential generator that produces all m-1 distinct values is

said to have a full period.

33

In general, we choose m large, and a needs to be chosen carefully.

Issues for random number generator

1. Period length-any random generator will eventuall repeat itself, and the

longer period is much better, since it contains more distinct values before

repeating. The longest period is m-1(m is the modulus). For a full period

linear congruential generator, the gap between two variables is 1/m, so the

larger m is the more accuracy values that approximate a uniform

distribution.

2. Reproducibility-the linear congruential generator can reproduce the same

random sequence by using the same seed x0

3. Speed-since a generator can be used many times in a single simulation, it

must be fast.

4. Portability-An algorithm for generating random numbers should produce the

same sequence of values on all platforms.

5. Randomness-two broad aspects to constrain generators : theoretical

properties and statistical tests.

Thm: suppose c 6= 0, for any seed x0, (20) generates m-1 distinct values if

1. c and m are relaively prime

2. every prime number that divides m also divides a-1

3. a-1 is divisible by 4 if m is

As a simple consequence, if m is power of 2, the generator has full period if c is

odd and a=4n+1 for some integer n.

34

If c=0 and m is prime, full period is achieved from any x0 6= 0 if

1. am−1 − 1 is a multiple of m

2. aj − 1 is not a multiple of m for j=1,2...,m-2.

A number a satisfying above 2 properties is called a primitive root of m.

General Sampling Methods

Assume the availability of a sequence U1, U2, ... of independent random variables,

each satisfying:

P (Ui ≤ u)=


0, u < 0

u, 0 ≤ u ≤ 1

1, u > 1


i.e each uniformly distributed between 0 and 1.

So We want to find a algorithm to transform these random variables into paths of

stochastic processes.

The Inverse Transform Method

Set random variable X with cumulative distribution function(CDF) :

F (x) = P (X ≤ x),∀x ∈ R, if f(x) is the density function of x, then

F (x) =
∫ x
−∞ f(y)dy.

If F is strictly increasing, the inverse transform method sets X = F−1(U), U ∼

Unif[0,1], where F−1 is the inverse of F and Unif[0,1] denotes the unform

distribution on[0,1].

Otherwise, we need a rule to break ties. For example, we may set

F−1(u) = inf x : F ≥ u for the points that have more than one values.

Verification:

35

To make sure that the inverse transform generates samples from F, we check the

distribution of the X it produces:

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

Some examples:

Exponential Distribution:

The exponential distribution with mean θ has distribution: F (x) = 1− e−xθ , x ≥ 0

Invert F(x)

⇒ U = 1− e−xθ ⇒ −x
θ

= ln(1−U)⇒ x = −θ ln(1−U)⇒ x = −θ ln(U), because U

and 1-U have the same distribution.

Arcsine law:

For t∈ [0, 1], the time at which a standard brownian motion attains its maximum

over the time interval [0,1] has distribution: F (x) = 2
π

arcsin(
√
x), 0 ≤ x ≤ 1

Invert U = 2
π

arcsin(
√
x)→ sin(πU

2
) =
√
x→ sin2(πU

2
) = x

Using 2 sin2(t) = 1− cos(2t) for 0 ≤ t ≤ π
2
, we get X = 1

2
− 1

2
cos(Uπ), U ∼ Unif[0,1]

0.9 Acceptance-Rejection Method

This method is one of the most widely used applicable mechanisms for generating

random samples. First, it generates samples from a convenient distribution, then

reject a random subset. The reject mechanism is designed so that the accepted

samples are distributed according to the target distribution.

Suppose we have a density function f defined on set χ ∈ Rd, let g be a density on χ

from which we can generate samples such that f(x) ≤ cg(x), for some constant c≥

1,∀x ∈ χ

36

In acceptance-rejection method, we generate a sample X from g, accept the sample

with probability f(x)
cg(x)
≤ 1;this can be implemented by sampling U uniformly over

(0,1) and accept X if U≤ f(X)
cg(X)

, if X is rejected, sample X from g again, and repeat.

Verification: suppose Y is returned by our algorithm then Y has the distribution of

X conditional on U ≤ f(X)
cg(X)

, then for any A ∈ χ

P (Y ∈ A) = P (X ∈ A|U ≤ f(X)

cg(X)
) =

P (X ∈ A,U ≤ f(X)
cg(X)

)

P (U ≤ f(X)
cg(X)

)
(21)

Given X, P (U ≤ f(X)
cg(X)

) = f(X)
cg(X)

because U∼Unif[0,1]

For the random variable X, P (U ≤ f(X)
cg(X)

) = E(f(X)
cg(X)

) =
∫ f(x)

cg(x)
g(x)dx = 1

c

Plug into (21), we get

P (Y ∈ A) = cP (X ∈ A,U ≤ f(X)
cg(X

) = c
∫
A

f(x)
cg(x)

g(x)dx =
∫
A
f(x)dx

So this verifies that Y has density f.

Example:

Normal from Double Exponential

Standard Normal Density: f(x)= 1√
2π
e−

x2

2

Double-normal exponential on (−∞,∞) density: g(x) = 1
2
e−|x|

Ratio f(x)
g(x)

=
1√
2π
e−

x2

2

1
2
e−|x|

=
√

2
π
e−

x2

2
+|x| ≤

√
2e
π
≈ 1.3155 ≡ c

To sample a double exponential draw on standard exponential X=-θ ln(U), where

U ∼ Unif[0,1]

Then randomize the sign.

Rejection test: U ≥ f(x)
cg(x)

=

√
2
π
e−

1
2x

2+|x|
√

2e
π

=e−
1
2

(|x|−1)2

The combined steps are as follows:

1. generate U1, U2, U3 from Unif[0,1]

37

2. X← - log(U1)

3. if U2 > exp(−0.5(X − 1)2)

go to step 1

4. if U3 ≤0.5

X←-X

5. return X

Normal Random Variables and Vectors

Basic Properties:

If X ∼ N(µ, σ2), then it has density Φ(x) = Φµ,σ(x) = 1√
2πσ

e−
(x−µ)2

2σ2

If Z∼ N(0, 1), then µ+ σZ ∼ N(µ, σ2)

So if we want to generate normal random variables, we can only generate standard

normal random variables.

A d-dimensional normal distribution is characterzed by µ ∈ Rd and Σ ∈ Rd×d

Properties of Σ

1. Σ is symmetric, that is Σ = ΣT

2. Σ is positive, semidefinite

Definition: A matrix Σ ∈ Rd×d is positive definite if XTΣX > 0,∀X ∈ Rd with

X 6= 0.

A matrix Σ is positive semi-definite if XTΣX ≥ 0,∀X ∈ Rd

If Σ is positive definite, then N(µ,Σ) has density function:

Φµ,Σ(x) = 1

(2π)
d
2 |Σ|

1
2
e−

1
2

(x−µ)TΣ(x−µ) for x ∈ Rd

38

If x ∼ N(µ,Σ), then its ith component xi has density: xi ∼ N(µi, σ
2
ii), where

σ2
ii = Σii, further, cov(xi, xj)=E[(xi − µi)(xj − µj)] = Σij

The correlation bewteen xi and xj is : ρij =
Σij
σiσj

Generating univariate normals:

Now we discuss algorithms for generating samples from univariate normal

distributions. Assume that we have a sequence of independent uniform on[0,1]

U1, U2, ...

Box-Muller Method

First, generate a sample from the bivariate standard normal, so each component is

a standard normal. This algorithm is based on the following two properties of the

bivariate normal: if Z ∼ N(0, I2),

1. R=Z2
1 + Z2

2 is exponentially distributed with mean 2: P (R ≤ x) = 1− e−x2 ;

2. given R, the point(Z1, Z2) is uniformly distributed on the circle of radius
√
R,centered at 0

To generate (Z1, Z2)

1. generate R

2. choose a point uniformly, from the circle of radius
√
R

Generate R

R=−2 ln(U1), U1 ∼ Unif[0,1]

Generate the point

generate a random angle uniformly between 0 and 2π, V=2πU2, U2 ∼ Unif[0,1]

point on circle:(
√
R cosV,

√
R sinV)

39

Algorithm:

Generate U1, U2 ∼ Unif[0,1] independently, R=−2 ln(U1), V=2πU2

Z1 =
√
R cosV, Z2 =

√
R sinV

Return Z1, Z2

0.10 Multivariate Normals

Basic properties:

Z ∼ N(µ,Σ),where

Σ =



σ11 σ12 ... σ1d

σ21 σ22 ... σ2d

...

...

...

σd1 σd2 ... σdd


Using the correlations ρij =

σij
σiσj

Σ =



σ1 0 0 ... 0

0 σ2 0 ... 0

...

...

...

0 0 ... 0 σd





ρ11 ρ12 ... ρ1d

ρ21 ρ22 ... ρ2d

...

...

ρd1 ρd2 ... ρdd





σ1 0 0 ... 0

0 σ2 0 ... 0

...

...

...

0 0 ... 0 σd


If Σ is positive semidefinite, but not positive semidefinite, ∃X 6= 0, such that

XTΣX = 0

-Σ is sigular

-there is no normal density with covariance matrix Σ

40

-if Z ∼ N(0, 1), X = µ+ AZ ∼ N(µ,Σ)

Thm:Linear Transformation Property

Any linear transformation of a normal vector is normal. If X ∼ N(µ,Σ), then

AX ∼ N(Aµ,AΣAT) for any µ ∈ Rd,Σ ∈ Rd×d and A∈ Rk×d

Generate multivariate normals

First, generate independent Z1, Z2, ..., Zd ∼ N(0, 1) and put them in a vector

Z ∼ N(0, Id), then AZ ∼ N(0, AAT)

Then, the problem of sampling X from N(µ,Σ) reduces to finding a matrix A for

which AAT = Σ

Thm Cholesly factorization

Suppose Σ ∈ Rd×d is positive definite, then ∃ a lower trangular matrix A ∈ Rd×d

such that Σ = AAT , and A is unique up to changes in sign.

Consider the component of X = µ+ AZ

x1

x2

.

.

.

xd


=



µ1

µ2

.

.

.

µd


+



A11 A12 ... A1d

A21 A22 ... A2d

...

...

...

Ad1 Ad2 ... Add





Z1

Z2

.

.

.

Zd


Example: 2×2 case

Suppose Σ =

σ2
1 ρ12σ1σ2

ρ21σ2σ1 σ
2
2

, we want to Σ = AAT =

A11 A12

A21 A22


A11 A21

A12 A22


⇒

Σ11 Σ12

Σ21 Σ22

 =

 A11 0

A21 A22


A11 A12

0 A22

 =

 A2
11 A21A11

A21A11 A
2
21 + A2

22



41

⇒ A11 =
√

Σ11, A21 = Σ12

A11
= Σ12√

Σ11
, A22 =

√
Σ22 − A2

21

Σ11 = σ2
1,Σ22 = σ2

2,Σ12 = σ1σ2ρ

A11 = σ1, A21 = σ2ρ,A22 = σ2

√
1− ρ2

⇒ A =

 σ1 0

ρσ2 σ2

√
1− ρ2


General Case Σ ∈ Rd×d

Σ = AAT

Σ =



A11 0 0 ... 0

A21 A22 0 ... 0

...

...

...

Ad1 Ad2 Ad3 ... Add





A11 A21 A31 ... Ad1

0 A22 A32 ... Ad2

...

...

...

0 0 0 ... Add


over row 1 of Σ

Σ11 = A2
11,Σ12 = A11A21,Σ13 = A11A31, ...Σ1d = A11Ad1

over row 2 of Σ

Σ21 = A21A11,Σ22 = A2
21 + A2

22,Σ23 = A21A31 + A22A32, ...,Σ2d = A21Ad1 + A22Ad2

...

...

over row d of Σ

Σd1 = A11Ad1,Σd2 = A21Ad1 + A22Ad2, ...,Σdd = A2
d1 + A2

d2 + ...+ A2
dd

General solution of Σij is Σij =
∑j

k=1AikAjk, j ≤ i

we get,Aij =
(Σij−

∑j−1
k=1 AikAjk)

Ajj
, j < i and Aii =

√
Σii −

∑i−1
k=1A

2
ik

Algorithm:

Input: Symmetric positive definite matrix d×d matrix Σ

42

Output: Lower triangular A with AAT = Σ

A← 0(d× d zero matrix)

for j=1,2,...,d

for i=j,...,d

vi ← Σij

for k=1,2,...,j-1

vi ← vi − AjkAik

Aij ← vi√
vj

return A

The Semidefinite Case

If Σ is positive semidefinite but not positive definite, then Σ is singular and if

AAT = Σ, then A is singular

Suppose A is lower triangular since its rank deficient, some diagonal element

Ajj = 0, so the Cholesky algorithm fails because of a division by 0.

In sitution of Ajj = 0, we set column j of A to 0, and change the algorithm slightly:

Given Σ symmetric positive semidefinite but not posiive definite, same as previous

case, but we replace Aij ← vi√
vj

with :

If vj > 0, then Aij ← vi√
vj

Thus if vj = 0, the entry Aij is left at its intital value of zero.

However, there are two problems in practice.

1. It may lead to a round-off error

2. Reduction: X ∼ N(0,Σ), suppose rank(Σ)=k<d, the components of X ∈ Rd

can be represented as a linear combination of k components, situation arises

if d variables are generated using k<d sources of uncertainty .

43

0.11 Money Market Account

In Money Market Account(MMA), if we invest $1 at time t=0, then it has the

value β(t) = ert at time t.

Suppose stock pays no dividends, dSt
St

= µdt+ σdWt

In no arbitrage condition, under the risk-neutral measure, µ = r, and all assets

have the same average rate of return.

Further, under the risk-neutral measure, St
β(t)

is a martingale,

Su
β(u)

= E[St
β(t)
|Sτ : 0 ≤ τ ≤ u]

Path Dependent Payoff

path = GBM(µ, σ, n)

Asian Option with Discrete Monitoring

For call option: Payoff= (S −K)+, for put option: Payoff= (K − S)+, where K is

the strike price and S = 1
n

∑n
i=1 S(ti) is the average stock price over different time

monitoring dates.

Asian Option with Continuous Monitoring

The only difference is S = 1
t−u

∫ t
u
S(τ)dτ , compared with Asian option with

discrete monitoring.

Barrier Option

It is a Down-and-Out call option with barrier b, strike K, and expiry T, which

means that spot price starts above the barrier level and has to move down for the

option to become null and void

Payoff: 1τ(b)>T , where τ(b) = inf{ti : Sti<b} is the first time in t1, t2, ..., tn that

underlying price drops below b.

44

Look back option

The Lookback options are a type of exotic options with path dependency. The

payoff depends on the optimal (maximum or minimum) underlying asset’s price

occurring over time slots.

Payoff for put option: maxi=1,2,...,n{Sti − Stn}

Payoff for call option: Stn −mini=1,2,...,n{Sti}

-gain profit from buying the underlying at the lowest price over t1, .., tn and selling

at the final price.

Incorporate a Term Structure of Interest Rates

If we have a constant interset rate r, the time-t price of a zero-coupon bond paying

$ 1 at time T > t is B(t, T) = er(T−t)

However in real world, r is not constant, so we determine the term structure of

interest rates using a collection of bond prices B(0, T) : i = 1, 2, ..., n

Then we define the time-varying interest rate r(u) by r(u) = −∂
∂T

[B(0, T)]|T=u

solve for B(0,T) and we get B(0, T) = e−
∫ T
0 r(u)du

Under risk-neutral measure, the only nomics of an asset price are

dSt
St

= r(t)dt+ σdWt with solution St = S0e
∫ t
0 r(u)du− 1

2
σ2t+σWt .

We can simulate this over 0 = t0 < t1 < ... < tn using

Sti+1
= Stie

∫ ti+1
ti

r(u)du− 1
2
σ2(ti+1−ti)+σ

√
ti+1−tiZi+1 , where Z1, ..., Zn are independent and

have standard normal distribution

Suppose we observe bond prices B(0, t1), B(0, t2), ..., B(0, tn),

B(0,ti)
B(0,ti+1)

= e−
∫ ti
0 r(u)du

e−
∫ ti+1
0 r(u)du

=e
∫ ti
0 r(u)du+

∫ ti+1
0 r(u)du

=e
∫ ti+1
ti

r(u)du

45

Simulation:

Sti+1
= Sti

B(0,ti)
B(0,ti+1)

e−
1
2
σ2(ti+1−ti)+σ

√
ti+1−tiZi+1 , i = 0, 1, ..., n− 1

Asset with Dividends

Suppose we hold a single share of an asset which is no longer self-financing, then

our strategy must deal with the dividends.

In this case, neither withdraw nor deposits are allowed and number of shares

changes over time.

First, we construct the model:

St: underlying asset price, S̃t: asset price with dividends reinvested

dSt
St

= µdt+ σdWt

dS̃t
S̃t

= dSt+dDt
St

, where dDt is the dividend payment over dt, return an origiral

investment with dividends and captital gains reinvested.

In such case, S̃
β(t)

is a martingale under the risk-neutral measure instead of St
β(t)

Suppose an asset pays a continuous dividend yield at a rate δ, then dDt = δStdt

So S̃t
S̃t

= dSt+δStdt
St

=St
St

+ δdt

=(µdt+ σdWt) + δdt

=(µ+ δ)dt+ σdWt

Since it is a no arbitarge case, µ+ δ = r → µ = r − δ
dSt
St

= µdt+ σdWt → dSt
St

= (r − δ)dt+ σdWt

-Risk-neutral dynamics of an asset price with continuous dividend yield δ

Solving above equation, we get:

St = S0e
(r−δ− 1

2
σ2)t+σWt

Comparing with the original formula, r − δ − 1
2
σ2 takes the place of r, so the

46

dividend yield reduced the growth rate of the underlying.

Applications:

1. Equity Indices

we often construct an index as a Geometric Brownian Motion, the index

itself does not pay dividends, but the stocks that make up the index might.

Wide range of dividends on different dates can be simulated by a continuous

dividend yield.

2. Exchange Rates

Exchange rate=#units of domestic currency
1 unit of foreign currency

a unit of foreign currency earns interset at rate rf , can be considered as a

dididend stream.

3. Commodities Some physical commodities as gold , oil and etc have extra cost

of storage, such cost can be considered as negative dividend yield (set δ < 0)

0.12 Multi-Dimensions

We specify a multi-dimensional Geometric Brownian motion

dSi(t)

Si(t)
= µidt+ σidXi(t), i = 1, 2, ..., d (22)

where Xi(t) is a standard 1-dimension Brownian motion, and Xi and Xj have

correlation ρij

Let
∑

ij = σiσjρij

Define
∑
∈ Rd×d

47

then X(t) =



σ1X1(t)

σ2X2(t)

.

.

.

σdXd(t)


∼ BM(0,

∑
)

We denote S =



S1(t)

S2(t)

.

.

.

Sd(t)


as GBM(µ,

∑
) with µ =



µ1

µ2

.

.

.

µd


∑

is the convariance matrix for X(t) and the actual drift vector for S is[
µ1S1(t), µ2S2(t), ..., µdSd(t)

]T
Si(t) = Si(0)e(µi− 1

2
σ2)t+σiXi(t), i = 1, 2, ..., d

Recall that a vector ∼ BM(0, σ) can be represented as AW (t), where W (t) is a

standard Brownian motion with drift 0 and covariance I and A is any matrix such

that AAT =
∑

Apply this to X(t) to (22), we get

dSi(t)
Si(t)

= µidt+ aidW (t), where ai is the ith row of A.

Explicitly, dSi(t)
Si(t)

= µidt+
∑d

j=1AijdWj(t)

Simulation:

Si(t) = Si(0)e(µi− 1
2
σ2)t+

∑d
j=1 AijWj(t),where µ and

∑
are the drift and covariance for

X(t), the underlying Brownian motion.

48

At discrete monitoring 0 = t0 < t1 < ... < tn

Si(tk+1) = Si(tk)e
(µ1− 1

2
σ2)(tk+1−tk)+

√
tk+1−tk

∑d
j=1 AijZk+1 , i=1,2,...,d, k=0,1,...,n-1,

where Zk =

[
Zk,1, Zk,2, ..., Zk,d

]T
If asset Si has dividend yield δi, set µi = r − δi for no arbitrage.

Applications:

1. spread option

A call option on the spread between two assets S1 and S2 with strike K,

expiry T.

Payoff=([S1(T)− S2(T)]−K)+.

For example, crack spread options traded on the New York Mercantile

Exchange are options on the spread between heating oil and crude oil futures.

2. Basket Option.

A basket option is an option on a portfolio of underlying assets and has a

payoff of ([c1S1(T) + c2S2(T) + ...+ cdSd(T)]−K)+.

Typical examples would be options on a portfolio of related assets - bank

stocks or Asian currencies.

3. Outperformance option.

A outperformance option is an option that the holder gains the best

performance out of multiple assets and have payoff of the form

:(max c1S1(T), c2S2(T), ..., cdSd(T)−K)+

4. Barrier options

A two-asset barrier option may have such a payoff like the form:

1mini=1,2,...,n{S2}(t1)<b(K − S1(T))+

This example is a down and in put option on S1 that knocks in when S2

49

drops below a barrier at b, where S1 could be a stock and S2 could be an

index. If so, the put on the stock is knocked in only if the market drops.

5. Quantos

Quantos are options that depends on both a stock price and an exchange

rate. For example, an option to buy a stock denominated in a foreign

currency with teh strike price fixed on the foreign currency, but payoff is to

be made in the domestic currency.

Let S1 denote the stock price and S2 the exchange rate (units domestic currency
1 unit foreign currency

)

The payoff in the domestic currency is : S2(T)(S1(T)−K)+

Another variation payoff is : (S1(T)− K
S2(T)

), it corresponds to a quanto in

which the level of the strike is fixed in the domestic currency and the payoff

is made in the foreign currency.

0.13 Generating sample paths

This chapter introduces some methods for simulating paths of a variety of

stochastic processes important in financial engineering.

In many applications, we need entire path of an asset price {St : 0 ≤ t ≤ T}

Brownian Motion

A standard one-dimensional Brownian motion on [0,T], we mean a stochastic

process W(t), 0 ≤ t ≤ T with the following properties:

1. W0=0;

2. the mapping t→ Wt is, with probability 1, a continuous function on [0,T];

3. the increments Wt1 −Wt0 ,Wt2 −Wt1 , ...,Wtk −Wtk−1
are independent for

any k and any 0 ≤ t0 < t1 < ... < tk ≤ T ;

50

4. Wt −Ws ∼ N(0, t− s) for any 0 ≤ s ≤ t ≤ T .

For constants µ and σ > 0, we call a process X(t) a Brownian motion with drift µ

and diffusion coefficient σ2(X ∼ BM(µ, σ2)) if Xt−µt
σ

is a standard Brownian

motion.

Given a standard Brownian motion Wt, we construct a Brownian motion

X ∼ BM(µ, σ2) by setting Xt = µt+ σWt. Further, Xt solves the SDE

dXt = µdt+ σdWt, we can also define a Brownian motion with deterministic drift

µ(t), and diffusion coefficient σ(t) through dxt = µ(t)dt+ σ(t)dWt

Then we need stochastic integration to get the solution

Xt = X0 +
∫ t

0
µ(s)ds+

∫ t
0
σ(s)ds

In this case (Xt −Xs) ∼ N(
∫ t

0
µ(s)ds,

∫ t
0
σ(s)ds)

Random Walk Construction

Simulate Brownian motion at a fixed set of times 0 < t1 < t2 < ... < tn. Because

Brownian motion has independent normally distributed increments, simulating the

W (ti) from their increments is straightforward.

Suppose Z1, Z2, ..., Zn ∼ N(0, 1) and independent set t0 = 0 and W0 = 0, we

generate a standard Brownian motion, using Wti+1
= Wti +

√
ti+ − tiZi+1 for

i=0,1,2,...,n-1.

For Brownian motion with constant µ and σ and given X(0),set

Xti+1
= Xti +

∫ ti+1

ti
µ(s)ds+

√∫ ti+1

ti
σ2(s)dsZi+1 ,i=0,1,2,...,n-1

To generate X ∼ BM(µ, σ2), given X0, set

Xti+1
= Xti + µ(ti+1 − ti) + σ

√
ti+1 − tiZi+1

The methods are exact in the sence that the joint distribution of the simulated

values (Wt1 , ...,Wtn) coincides with the joint distribution of the corresponding

51

Brownian motion at t1, ..., tn.

Alternative Construction

The vector (Wt1 , ...,Wtn) is a linear transformation of the vector of increments

(Wt1 ,Wt2 −Wt1, ...,Wtn −Wtn−1), which are independent and normal.

So [Wt1 , ...,Wtn] is multivariate normal.

E(Wti)=0, and

Cov(Ws,Wt)=Cov(Ws,Ws + (Wt −Ws))

=Cov(Ws,Ws)+Cov(Ws,Wt −Ws)

=Var(Ws)+0=S

Let C be the covariance matrix for [Wt1 , ...,Wtn]T , then Cij = min(ti, tj), and this

vecter has mean 0

Since [Wt1 , ...,Wtn] ∼ N(0, C)

The choleskey factorization of C gives:

A=



√
t1 0 0 ... 0

√
t1
√
t2 − t1 0 ... 0

...

...

√
t1
√
t2 − t1

√
t3 − t2 ...

√
tn − tn−1


Definition: A process Wt = [W1(t),W2(t), ...,Wd(t)]

T , 0 ≤ t ≤ T is a standard

Brownian motion on Rd. If

1. W0 = 0

2. W has continuous sample paths almost surely

3. W has independent increments

4. (Wt −Ws) ∼ N(0, (t− s)I),∀0 ≤ s < t ≤ T

52

-Each Wi(t), i = 1, ..., d is a standard Brownian motion

-Wi⊥Wj for i 6= j

Definition: suppose µ ∈ Rd and Σ ∈ Rd×d positive semidefinite we say X is a

Brownian motion with drift µ and covariance Σ(X ∼ BM(µ,Σ)) if X has

continuous sample paths and independent increments with

(X t −Xs) ∼ N((t− s)µ, (t− s)Σ)

If B ∈ Rd×d is a vector such that BBT = Σ and W is a standard Brownian motion

on Rd then X t = µt+BW t ∼ BM(µ,Σ)

X solves dX t = µdt+BdW t

Simulation

Let Z1, Z2, ..., Zn ∼ N(0, 1), independent to simulate Wt, apply the 1-dimensional

random walk construction to each component of Wt:

Wj(ti+1) = Wj(ti) +
√
ti+1 − tiZi+1, i = 0, 1, 2, .., n− 1

To simulate Xt ∼ BM(µ,Σ), we need find B definited above ∼ Rd×d, such that

BBT = Σ

Set Xt = 0,Xti+1
= Xti + µ(ti+1 − ti) +

√
ti+1 − tiBZi+1

Geometric Brownian Motion

Definition: a stochastic process St is a geometric Brownian motion if ln(St) is a

Brownian motion with initial value ln(S0)

The properties of Geometric Brownian motion:

If St is Geometric Brownian motion, St does not have independent increments.

Instead,

St2−St1
St1

,
St3−St2
St2

, ...,
Stn−Stn−1

Stn−1
, t0 < t1 < ... < tn are independent.

Suppose W is a standard Brownian motion and X satifies dXt = µdt+ σdWt.

53

Then X∼ BM(µ, σ2)

Let St = S0e
Xt = f(Xt), by Ito’s formula, we get:

dS = ft(Xt)dt+ fx(Xt)dx+ 1
2
fxx(Xtdx

2), ft = 0, fx = S0e
x, fxx = S0e

x

dXidXi = (µdt+ σdWt)
2 = σ2dt

⇒ dSt = 0 + S0e
Xt(µdt+ σdWt) + 1

2
σ2S0e

Xtdt

dSt = St(µ+ 1
2
σ2)dt+ StσdWt

dSt
St

= (µ+ 1
2
σ2)dt+ σdWt

This is a different SDE than what is usually used for Geometric Brownian motion,

here µ is the drift for the Brownian motion Xt = lnSt

If St ∼ GBM(µ, σ2), then St = S0e
(µ− 1

2
σ2)2)t+σWt , for

u¡t,St = S0e
(µ− 1

2
σ2)(t−u)+σ(Wt−Wu)

Simulation:

for 0 = t0 < t1 < ... < tn,Sti+1
= Stie

(µ− 1
2
σ2)(ti+1−ti)+σ

√
ti+1−tiZi+1 , for i=0,1,...,n-1,

where Z1, Z2, ..., Zn ∼ N(0, 1) and independent.

This method is exact i.e Sti+1
− Sti has the joint distribution of

St ∼ GBM(µ(ti+1 − ti), σ2(ti+1 − ti)) and that (Sti+1
− Sti)⊥Sti − Sti−1

.

0.14 Variance Reduction Techniques

In this chapter, we develop some methods for increasing the efficiency of Monte

Carlo simulation by reducing the cariance of simulation estimates. The greatest

gains in efficiency from variance reduction techniques results from expoliting

specific features of a problem, rather than from generic applications of generic

methods.

Control Variates

54

This method is to expolit information about the error in estimates of known

quantities to reduce the error in an estimate of an unknown quantity.

Let Y1, Y2, ..., Yn be outputs of n runs of a simulation. For example,Yi could be the

discounted payoff of an option in the ith simulation path.

Assume the Yi are independent and identically distributed(iid) and our objective

is to estimate E(Yi).

Estimator: Y = 1
n

∑n
i=1 Yi, it is unbiased and converges with probability 1 as n

→∞.

Suppose on each replication we calculate another output Xi in addition to Yi

Assume the pairs (Xi, Yi), i = 1, 2, ..., n are independent and identically distributed

and E(Xi) is known.

For any fixed b, we can calcucate Yi(b) = Yi − b[Xi − E(X)] for the ith replication.

Calculate the sample mean: Y (b) = Y − b[X −E(X)] = 1
n

∑n
i=1[Yi− b[Xi−E(X)]].

This is a control variate estimator, and the observed error Xi − E(X) is a control

in estimating E(Y).

E(Y (b)) = E[Y − b[X − E(X)]]

=E(Y)− b[E(X − E(X))]

=E(Y)− b[E(X)− E(X)︸ ︷︷ ︸
0

]

⇒ Y (b) is an unbiased estimator of E(Y)

limn→∞ Y (b) = limn→∞
1
n

∑n
i=1[Yi − b(Xi − E(X))]

=limn→∞
1
n

∑n
i=1 Yi − limn→∞

1
n

∑n
i=1Xi+

b ∗ limn→∞
1
n

∑n
i=1E(X)

=E(Y)− bE(X) almost surely.

⇒ Y (b) is a consistent estimator of E(Y)

Var[Yi(b)]=Var[Yi − b(Xi − E(X))]

55

=E[Yi − b(Xi − E(X))]2 − E[Yi − b(Xi − E(X))]2

=E(Y 2
i)− 2bE[Yi(Xi − E(X))] + b2E[(Xi − E(X))2]− [E(Yi)]

2

=σ2
y − 2bσxσyρxy + σ2b2︸ ︷︷ ︸

σ2(b)

The control estimator Y (b) has variance:

V ar(Y (b)) = V ar[1
n

∑n
i=1 Yi(b)]

= 1
n2V ar(

∑n
i=1 Yi(b))

= 1
n2

∑n
i=1 V ar(Yi(b))

= 1
n2nV ar(Yi(b)) = σ2(b)

n

The sample mean Y has variance: V ar(Y) =
σ2
y

n

Hence, the control variate estimator has smaller variance than the standard

estimator if b2σx < 2bσyρxy, because:

V ar(Y (b)) < V ar(Y)⇐⇒ σ2(b)
n

<
σ2
y

n
⇐⇒ b2σx < 2bσyρxy

To find a b∗ to minimize σ2(b), we derivate σb(b) and let it equal to 0, then we get:

−2σxσyρxy + 2bσ2
x = 0

So b∗ = σxσy
σx

= Cov(X,Y)
V ar(X)

The minimized variance σ2(b∗) = σ2
y − 2(σyρxy

σx
)σxσyρxy + (σyρxy

σx
)2σ2

x = σ2
y(1− ρ2

xy)

Compare the ratio of the optimally controlled estimator to that of the uncontrolled

estimator:

σ2(b∗)
n

σ2(0)
n

= 1− ρ2
xy (23)

Through this formula, we find that the effectiveness of th control variate is

determined by the correlation of X and Y.

1
1−ρ2xy

is called the variance reduction factor.

What we discuss above depends on that the optimal coefficient b∗ is known. If we

56

don’t know σx and σy, we can also gain most of the benefit of a control variate

using an estimate of b∗. For example, replacing the population parameters in

b∗ = σxσy
σx

= Cov(X,Y)
V ar(X)

with their sample counterparts yields the estimate:

b̂n =

∑n
i=1(Xi −X)(Yi − Y)∑n

i=1(Xi −X)2
(24)

By the strong law of large numbers, b̂→ b∗ almost surely as n→∞, so we can use

Y (b̂n) as an estimator.

This suggests using the estimator Y (b̂n), the sample mean of

Yi(b̂n) = Yi − b̂n(Xi − E[X]), i = 1, 2, ..., n. (25)

b̂n is the slope of the least squares regression line through the points(Xi, Yi).

57

APPENDIX

Matlab Codes For Monte Carlo Simulation

Spatialcoeff.m

This function takes inputs of the spatial step δx, the number of space grid points

N, the volatility σ, the interest rate r and returns a matrix A that results from the

spatial discretization of ∂u
∂t

= r ∂u
∂x

+ 1
2
σ2 ∂2u

∂x2 − ru

function [A] = spatialcoeffs(deltaX,r,n,sigma)

N = N+1;

gamma = sigma2̂/deltaX2̂+r;

beta = -r/(2*deltaX)+sigma2̂/(2*deltaX);

alpha = .5*(r/deltaX+sigma2̂/deltaX2̂);

A = zeros(N);

gammas = gamma*ones(1,N-2);

betas = beta*ones(1,N-2);

alphas = alpha*ones(1,N-2);

A(2:end-1,2:end-1) = A(2:end-1,2:end-1) + diag(-gammas);

A(2:end-1,1:end-2) = A(2:end-1,1:end-2) + diag(betas);

A(2:end-1,3:end) = A(2:end-1,3:end) + diag(alphas);

A(1,1) = 1;

A(1,2) = -2;

A(1,3) = 1;

A(N,N-2) = 1 ;

A(N,N-1) = -2;

A(N,N) = 1 ;

Intergalmc.m

58

This function takes n as an input and return both the estimate of the integral and

the error of the approximation.

function[a,b]=intergalmc(n)

u=unifrnd(0,1,1,n);

a=(1/n)sum(u.2̂);

Sf=sqrt(1/(n-1))*sum((u.2̂-a).2̂);

b=Sf/sqrt(n);

end

EuroOption.m

This function takes inputs of the number of draws n, the initial underlying asset

price S0, the interest rate r, and the volatiliy σ, it returns the estimated prices of

the put and call, along with 95% and 99% confidence intervals for each estimate.

function[C,ci1,ci2,P,ci3,ci4]=EuroOptionmc(n,S0,r,sigma,K,T)

z=normrnd(0,1,1,n);

S=zeros(1,n);

C1=zeros(1,n);

P1=zeros(1,n);

for i=1:n

S(i)=S0*exp((r-0.5*sigma))*T+sigma*sqrt(T)*Z(i));

C1(i)=exp(-r*T)max(S(i)-K,0);

P1(i)=exp(-r*T)max(K-S(i),0);

end

C=sum(C1)/n;

P=sum(P1)/n;

Sc1=sqrt(1/(n-1))*sum((C1-C).2̂);

59

Sc2=sqrt(1/(n-1))*sum((P1-P).2̂);

z1 = norminv([0.025 0.975],0,1);

z2 = norminv([0.005 0.995],0,1);

ci1= zeros(1,2); ci1 = C+z1*Sc1/sqrt(n); ci2 = zeros(1,2); ci2 =

C+z2*Sc1/sqrt(n); ci3= zeros(1,2); ci3 = C+z1*Sc2/sqrt(n); ci4 = zeros(1,2); ci4

= C+z2*Sc2/sqrt(n); end

LinConGenerator.m

This function takes modulus m, multiplier a, c, seed x0 and N as inputs. It returns

a vector of length N containing the pseudorandom values.

function u = linConGenerator(a,c,x0,N,m)

x = [x0 zeros(1,N-1)];

u = [x0/m ones(1,N-1)];

for i = 1:N-1

x(i+1) = mod(a*x(i)+c,m);

u(i+1) = x(i+1)/m;

end

if c 6= 0 u;

else if isprime(m) == 0 warning(’The generator does not have full period’) u;

else a1 = zeros(1, m-2);

for i = 1: m-2

a1(i) = âı-1;

end

t = mod(a1,m);

if mod(a(̂m-1)-1, m) == 0 && isempty(t) u;

else warning(’The generator does not have full period’) u;

60

end

end

end

Exponentialgenerator.m

This function returns a vector of length N containing the pseudo- random values.

function u = exponentialgenerator(N,lamda)

X = rand(1,N) ;

u = zeros(1,N);

for i = 1:N

u(i) = -log(X(i))/lamda;

end

return

end

Boxmuller.m

This function takes N, µ, σ as inputs and returns a vector of length N containing

the pseudorandom values.

function [V] = boxmuller(N, mu, sigma)

V = zeros (1,N);

for i = 1:2:N

u1 = rand(1);u2 = rand(1);

R = -2*log(u1);v = 2*pi*u2;

Z1 = sqrt(R)*cos(v);Z2 = sqrt(R)*sin(v);

x1 = mu+sigma*Z1;x2 = mu+sigma*Z2;

V(i) = x1;

if i ¡= N-1

61

V(i+1) = x2;

end

end

end

Bivariatenormal.m

This function takes a 1× 2 vector and a 2× 2 matrix as inputs and returns a

vector of containing the pseudorandom values.

function [V]=bivariatenormal(mu,m,N)

A = zeros(2,2);

rho = m(1,2)/sqrt(m(1,1)*m(2,2));

V = zeros(2,N);

for i = 1:N

if m(1,1)¿0 && det(m)¿0

A(1,1) = sqrt(m(1,1));A(1,2) = 0;

A(2,1) = rho*sqrt(m(2,2));A(2,2) = sqrt(m(2,2))*sqrt(1-rho2);

u1 = rand(1);u2 = rand(1);

R = -2*log(u1);v = 2*pi*u2;

Z1 = sqrt(R)*cos(v);Z2 = sqrt(R)*sin(v);

Z = [Z1;Z2];

X = mu + A*Z;

V(:,i) = X;

else

warning(’m is not positive definite’)

end

end

62

end

Brownianmotion.m

This function takes drift µ, volatility σ, time T, and step number N as inputs and

returns a vector of simulated values from a Brownian motion.

function W = brownianmotion(mu,sigma,T,N,W0)

deltaT = T/N;

Z = randn(1,N);

W = [W0 zeros(1,N-1)];

for i = 1:N-1

W(i+1) = W(i) + mu*deltaT+sigma*sqrt(deltaT)*Z(i+1);

end

plot(1:N,W)

end

Geobrownianmotion.m

This function takes drift µ, volatility σ, time T, and step number N as inputs and

returns a vector of simulated values from a geometric Brownian motion.

function S = geobrownianmotion(mu,sigma,T,N,S0)

deltaT = T/N;

Z = randn(1,N);

S = [S0 zeros(1,N-1)];

for i = 1:N-1

S(i+1) = S(i) * exp((mu-0.5*sigma2̂)*deltaT+sigma*sqrt(deltaT)*Z(i+1));

end

plot(1:N,S)

end

63

MultiVarNormal.m

This function takes a take mean vector and covariance matrix as inputs and

returns a d-vector of normally distributed random variables.

function [randValues] = multiVarNormal(mu, Sigma, N)

d=length(mu);

muRows,muCols

= size(mu);

if muRows == 1

mu = mu’;

end

n,m

= size(Sigma);

if d 6= n|d 6= m

error(’Dimensions must agree.’)

end

if Sigma 6= Sigma

error(’Sigma must be symmetric.’)

end

if min(eig(Sigma))¡= 0

error(’Sigma must be positive definite.’)

end

A=zeros(d);

for jj=1:d

64

for ii=jj:d

v(ii)= Sigma(ii,jj);

for kk=1:jj-1

v(ii)=v(ii)-A(jj,kk)*A(ii,kk);

end

A(ii,jj)=v(ii)/sqrt(v(jj));

end

end

randValues = zeros(d,N);

for i=1:N

Z=randn(d,1);

randValues(,i)= mu + A*Z;

end

AsianOption.m

This function takes interest rate r, drift µ, volatility σ, time T, and step number N

as inputs and returns the estimated prices of asian call and put option with 95%

confidence interval.

function[callPrice,putPrice,callCI,putCI] =

asianOption(n,S0,r,sigma,K,T,N,M,delta)

if mod(N,M) 6= 0,

error(’asianOption(n,S0,r,sigma,K,T,N,M): N should be a multiple of M.’);

end

monitorFactor = N/M;

callPayoffs = zeros(n,1);

putPayoffs = zeros(n,1);

for count = 1:n

65

S = geoBrownianMotion(r,sigma,N,T,S0);

SatMdates = zeros(M+1,1);

for index = 1:M+1

monitorDate = 1 + monitorFactor*(index-1);

SatMdates = S(monitorDate);

end

callPayoffs(count) = max(0,mean(SatMdates)-K);

putPayoffs(count) = max(0,K-mean(SatMdates));

end

callPrice = exp(-r*T) * mean(callPayoffs);

putPrice = exp(-r*T) * mean(putPayoffs);

zScore = norminv(1-delta/2,0,1);

callSampleStDev = callPayoffs - callPrice;

callSampleStDev = 1/(n-1)* sum(callSampleStDev.2̂);

callCI = [callPrice - zScore*callSampleStDev/sqrt(n),callPrice +

zScore*callSampleStDev/sqrt(n)]

putSampleStDev = putPayoffs - putPrice;

putSampleStDev = 1/(n-1)* sum(putSampleStDev.2̂);

putCI = [putPrice - zScore*putSampleStDev/sqrt(n),putPrice +

zScore*putSampleStDev/sqrt(n)]

BarrierOption.m

This function takes interest rate r, drift µ, volatility σ, time T, strike price K,

initial price S0 as inputs and returns the estimated price of a barrier option.

function [ci1, ci3, C, P] = barrieroptionlzp(mu, sigma, b, T, K, S0, V, N, M)

deltaT = T/N;

66

Z = randn(1,N);

S = [S0 zeros(1,N-1)];

for i =1:N-1

S(i+1) = S(i) * exp((mu-0.5*sigma2̂)*deltaT+sigma*sqrt(deltaT)*Z(i+1));

end

if mod(N,M) 6=0

error(’N must be an integer multiple of M’)

else

C1 = zeros (1,M); P1 = zeros (1,M);

for j = 1:M

r = mu;

C1(j) = exp(-r*T)*max(S(30*j)-K,0); P1(j) = exp(-r*T)*max(K-S(30*j),0);

end

SC = zeros(1,M);

if strcmp(V,’down and out’)

for m = 1:M

if S(30*m)<b

SC(m) = 0;

else

SC(m) = 1;

end

end

if SC == 1

C = sum(C1)/M; P = sum(P1)/M;

Sc1 = sqrt(1/(M-1)*sum((C1-C).2̂));

Sc2 = sqrt(1/(M-1)*sum((P1-P).2̂));

67

z1 = norminv([0.025 0.975],0,1);

ci1 = C+z1*Sc1/sqrt(M) ;

ci3 = C+z1*Sc2/sqrt(M);

else

warning(’The option has been knocked out’)

end

elseif strcmp(V,’down and in’)

for m = 1:M

if S(30*m)> b

SC(m) = 1;

else

SC(m) = 0;

end

end

if SC 6= 1

C = sum(C1)/M; P = sum(P1)/M;

Sc1 = sqrt(1/(M-1)*sum((C1-C).2̂));

Sc2 = sqrt(1/(M-1)*sum((P1-P).2̂));

z1 = norminv([0.025 0.975],0,1);

ci1 = C+z1*Sc1/sqrt(M) ;

ci3 = C+z1*Sc2/sqrt(M);

else

warning(’The option has not been activated’)

end

elseif strcmp(V,’up and out’)

for m = 1:M

68

if S(30*m)< b

SC(m) = 1;

else

SC(m) = 0;

end

end

if SC == 1

C = sum(C1)/M; P = sum(P1)/M;

Sc1 = sqrt(1/(M-1)*sum((C1-C))2̂));

Sc2 = sqrt(1/(M-1)*sum((P1-P).2̂));

z1 = norminv([0.025 0.975],0,1);

ci1 = C+z1*Sc1/sqrt(M) ;

ci3 = C+z1*Sc2/sqrt(M);

else

warning(’The option has been knocked out’)

end

else strcmp(V,’up and in’)

for m = 1:M

if S(30*m)> b

SC(m) = 0;

else

SC(m) = 1;

end

end

if SC 6= 1

C = sum(C1)/M; P = sum(P1)/M;

69

Sc1 = sqrt(1/(M-1)*sum((C1-C).2̂));

Sc2 = sqrt(1/(M-1)*sum((P1-P).2̂));

z1 = norminv([0.025 0.975],0,1);

ci1 = C+z1*Sc1/sqrt(M) ;

ci3 = C+z1*Sc2/sqrt(M);

else

warning(’The option has not been activated’)

end

end

end

end

Basketoption.m

This function takes a drift vector, a covariance matrix, an initial underlying price

vector, maturity time T, step number N, a weights vector, interest rate r, strike

price K as inputs and returns a estimated price of basket option.

function [optionprice] = basketoption(mu,Sigma,S0,N,K,c,T)

S = multipleGeoBrownianMotion(mu, Sigma, T, N, S0);

callpayoffs = zeros(1,N);

for i = 1:N

callpayoffs(i) = max(sum(c.*S(:,i)’- K),0);

end

optionprice = mean(callpayoffs);

end

70

0.15 References

Andersen, L.B.G. & Brotherton-Ratcliffe, R.(1997). The Equity Option Volatility

Smile: An Implicit Finite-Difference Approach. Journal of Computational

Finance,1,5-38

Brennan, M.J., & Schwartz, E.S. (1980). Jounral of Financial and Quantitative

Analysis, Proceedings Issue,15,(4),907-929.

Clewlow, L., & Strickland, C. (1998). Implementing Derivative Models.

Chichester,England: Wiley.

Derman, E., kani, I., & Chriss, N. (1996). Implied Trinomial Trees of the Volatility

Smile. Journal of Derivatives, 3, 7-22.

Rogers, L.C.G.,& Zane, O. (1997). Valuing Moving Barrier Options. Journal of

Computational Finance, 1, 5-11.

Abken, P.A. (2000) An Empirical Evaluation of Value at Risk by Scenario

Simulation, Journal of Derivatives 7(Summer): 12-30.

Beasley, J.D., and Springer, S.G. (1977) The Percentage Points of the Normal

Distribution, Applied Statistics 26: 118-121.

Chung, K.L. (1974) A Course in Probability Theory, Second Edition, Acdemic

Press, New York.

Devroye, L. (1986) Non-Uniform Random Variate Genenration, Springer-Verlag,

New York.

Niederreiter, H. (1992) Random Number Generation and Quasi-Monte Carlo

Methods, Society for Industrial and Applied Mathematics, Philadelphia.

71

