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Abstract

The partial differential equation governing the problem of elastoplasticity is linear
in the elastic region and nonlinear in the plastic region. In the elastic region, we
encounter the problem of elasticity which is governed by the Navier Lame equations.
We present a solution to the above problem through numerical schemes such as the
finite element method.

In the plastic region, we encounter a nonlinear partial differential equation. This
PDE is hard to solve numerically and therefore we rewrite our PDE with a penalty
parameter v. It is known that when the penalty parameter v associated to the above
PDE is zero we achieve an exact solution to the problem. This is hard to achieve from
a numerical point of view however.

We will see that when we linearize the partial differential equation with Newton’s
method, the method fails to converge when v is small. In this thesis, the failure of
Newton’s method is explained and a new method to solve the problem is proposed.
The path following method will help us improve Newton’s method by a better choice
of the initial guess.

We obtain the convergence of this method for v as close to zero as we want and
thereby we obtain an exact solution to our original PDE.

Plots with results are presented.
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1 Introduction

The problems of plasticity we will encounter in this paper are in two forms.

One of the forms is plasticity with isotropic hardening/softening where the problem is
defined by:
Find the displacement u, the plastic strain p (tensor) and the internal hardening variable £

(scalar) which satisfy the equilibrium equation
divo(u)+ f=0,

the strain-displacement relation

the constitutive relations

o =C (e(u) — p),
o= —H,
and the flow law
(5,€) € Ky,

D(q,n) > D(p,€) +0:(g—p)+a:(n—€) Y(gn)€ Ky,

where K, = dom(D) and D is the dissipation function defined by

D(p,€) = sup{o” :p+a”: € : (0%,a") € K}.
In this set of equations f is a volume force, o is a surface force , C is the forth order

elasticity tensor,H is a hardening parameter and K convex, closed, including the origin. We

have that K, is nonempty closed cone.

Later we will compute D(p, ) explicitly and return to this version of the flow law.

The second form is that of perfect plasticity where the problem is given by:

Find the displacement u and the plastic strain p which satisfy the equilibrium equation
divo(u)+ f=0,
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the strain-displacement relation

the constitutive relation

and the flow law

p e Ky,
D(g) > D(p)+o:(g—p) Vg€ K,

where K, = dom(D) and D is the dissipation function defined by
D(p) = sup{c”™:p : 0" € K}

with the same parameters as above.

To solve these problems of plasticity numerically, we introduce the penalty parameter v.
Introducing this parameter will make it possible for us to solve the problem numerically and
we will also see that the solution to the problem with the penalty parameter v converges to

the solution of the original problem.

In this thesis we will find a solution for the weak formulation of each v problem (with

specified boundary conditions) by using different linearization methods.

First we study the original problems of plasticity and arrive at the weak formulation of

these problems.

2 Variational formulation of the original problem

Next, we introduce the function spaces that correspond to the variables of our problem.

2.1 Function spaces

First we define the space of displacements V'



V = [Ho' ().

Next, we introduce the space ) defined by

Q = {q=(g;)sx3: ¢ = @, ¢; € L*(Q)}

with the usual inner product and norm of the space [L?(Q)]**.

Then the space of plastic strain g is the closed subspace of @ defined by

Qo={q€Q: trq=0 ae. in Q}.

The space M of internal variables is defined by

M = [L* Q)"

with the usual L?(£2)-based inner product and norm (for isotropic
hardening/softening, we have m = 1).

Now we introduce the product space Z = V x ¢ X M, which is a Hilbert space with the

inner product

(w,2)z = (v,v)v + (p,9)q + (§,m) M

1/

and the norm || z ||z= (2, 2)z ? where w = (u,p, &) and z = (v, q,7n).

We also introduce the product space Z = V x Qq, which is a Hilbert space with the inner
product

(w7 Z)Z = (u7v)V + (p7 q)Q

1/

and the norm || z ||z= (2,2)z"?, where w = (u,p) and z = (v, q).



Corresponding to the set K, = dom(D), we define
Zp={z2=(v,q,m) € Z: (g,n) € K; ae. in O},
which is a nonempty, closed, convex cone in Z.

We also define
Zy={2=(v,9) €Z: g€ K, ae. in Q},

which is a nonempty, closed, convex cone in Z.

2.2 Functionals and the bilinear form

For the problem of isotropic hardening/softening we introduce the bilinear form a : Z x Z —

R defined by
a(w,2) = [ [C: (e(u) = p) : (e(v) = q) + € : Hr do,
the linear functional
I(t): Z — R, <I(t),z>= /nf(t) v do
and the functional
j:Z—R, ()= [ Dign)ds,
where as before, w = (u,p, &) and z = (v, q, 7).
For the problem of perfect plasticity we introduce the bilinear form
a(w,2) = [[C: (ew) ~ p) : (e(v) — )] do,
and the linear functional
i(t):Z > R, <I(t),z>= /nf(t) v da

and the functional

7:Z =R, j(z)= / D(q) de,
Q
where, w = (u,p) and z = (v, q).

The bilinear forms a(-,-), @(-,-) are symmetric as a result of the symmetry properties
of C and H. From the properties of D, j(-) and j(-) are convex, positively homogeneous,

nonnegative, and lower semi continuous functionals.
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2.3 The primal variational formulation

We next derive the primal variational formulation for the problem of plasticity with isotropic

hardening/softening.

For simplicity, we consider the homogeneous Dirichlet boundary condition

vu=0 onT.

We begin by integrating the flow law and using our constitutive relations to obtain
[ Dlan) da > [ D(5,€) davt [ [C(e(w)~p): (a-5) - HE : (1-)] d= V(g,n) € Ky (1)

Next we multiply the equilibrium equation by v — u for arbitrary v € V, integrate over

Q and perform integration by parts to obtain
| Clew) = p) i (o) ~ @) do = [ f-(v—i)de Ve V. (2)
Now we add (1) and (2) to obtain the following variational inequality
a(w(t), z — () + §(2) — §((t) >< U(t), 2 — () >,

which is posed on the space Z,.

The primal variational problem of elastoplasticity with isotropic hardening/softening is

in the following form
Given l € H'(0,T;Z"), 1(0) = 0, find w = (u,p,€) : [0,T] = Z, w(0) = 0, such that for
almost all t € (0,7, w(t) € Z, and

a(w(t), z — w(t)) + j(2) — j(w(t) ><I(t),z —(t) > Vz€ Z,.

For the problem of perfect plasticity the variational problem is derived in the same way.

Once again, for simplicity we consider the homogeneous Dirichlet boundary condition

vu=0 onT.
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For this case the variational problem is in the following form
Given I € H*(0,T;Z"), 1(0) = 0, find w = (u,p) : [0,T] = Z, w(0) = 0, such that for
almost all ¢ € (0,7T), w(t) € Z, and

a(w(t), z — w(t)) +5(2) — j(w(t) ><I(t),z —w(t) > Vz€ Z,.

Existence and uniqueness of these problems are proven in Han and Reddy (page 166).

Here we will only state the theorem

Theorem 1. Let H be a Hilbert space; Z, C H a nonempty, closed, convez cone; a :
H x H — R a bilinear form that is symmetric, bounded, and H-elliptic; | € H'(0,T; H')
with [(0) = 0; and j : Z, — R nonnegative, convez, positively homogeneous, and Lipchitz

continuous. Then there ezists a unique solution w of our problem satisfyingw € H*(0,T; H).

3 The yield function

In general for isotropic hardening/softening, we will let P = (p,£) denote the generalized
plastic strain (p is a second order tensor and £ is a scalar) and ¥ = (o, a) denote the

generalized stress (o second order tensor and a scalar).
For perfect plasticity we have P = p and ¥ = 0.
We also let ITY. denotes the projection of ¥ onto the set of admissible stresses K.
Next, we define the yield function.

We let K denote the set of admissible stresses. This set is closed, convex, contains 0 and

is defined by

K ={2:8(z) < 0},

where the function @ is the yield function describing the state of the stress, i.e. elastic region

characterized by ®(X) < 0 and plastic region by ®(%) = 0.

The objective is to have ®(X) < 0 always i.e. we want to be in the elastoplastic region.
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In reality ®(X) > 0 can happen and this means that we are in the visco region.

When we are in the visco region we use the plastic flow rule to project ¥ back on the

elastoplastic region.

Examples of plasticity problems are those of perfect plasticity and isotropic hardening,

presented in the sections below.

3.1 Perfect plasticity

Perfect plasticity is a special case of plasticity where the yield function is defined by

®(X) = ®(0,a) = (o) =| dev(o) | —oy. (3)

Together with (3) we impose the following constraint
$(3) <0. (4)

If we impose the symmetry of the stress o and the strain g then we can write ¢ =

(0'11,0'12,0'127022) and g = (Q11;Q12;Q12;Q22)-

The set of admissible stresses K is defined by

K ={o:|deva |< a,} = {o: (011 — 022)° + 4015° < 20,%}.

To define the set of admissible strains K, we first write the definition for the dissipation

function

D(q) = sup{oc:q : 0 € K}. (5)
Then the set K, is defined by

K, ={q: D(q) is finite},

1

1
but ¢ : 0 = q11011+G22022+2¢12012 = 5(‘111—Q22)(0'11—022)-|-§(CI11+Q22)(011—|-0'22)—|-2Q12012-

Note that | 017 — 032 | is bounded and | o1 | is bounded (because o € K) and so D(q) is
finite if ¢11 + ga2 = 0. Therefore in order for g to be in K, we need ¢1; = —¢z2. Note that
tr(q) = 0if g € K,,.
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Consider the map M which takes X = (z11,Z12, 212, Z22) to X = (wll,ﬁ?gz,\/ﬁmlg).
Then, the map M preserves inner product and therefore it is an isometry. Indeed, it pre-
serves inner product since (211, Z1a, 12, Z22)(Y11, Y12, Y12, Y22) = T11Y11 + T22Y22 + 2T12y12 =
(z11, 22, \/iﬂ?lz)(yll,yzg, \/iylz). Therefore instead of performing our analysis on X, we can

perform the analysis on X.
Next we analyze K = M(K), K, = M(K,) and X = M(X).
K ={5: (11 — 722)* + 257, < 20,°},

1
—(1,1,0) and radius
V2

o,. Therefore K, is the orthogonal cross section of K passing through the origin.

where (611,022, 012) = (011, 022, \/50'12). This is a cylinder with axis

Next we compute o — Ilo for o outside K.

The projection II is uniquely determined by 7 = Ilo, where we have
dist(o,K) =|o — 7| = |o — Ueo| =nf{lc — 7|}

for ' € K.

We decompose o = dev(o) + 0 — dev(o). Then

1
Mo — dev(e)) = M(E572,0,0, Z72) = 2o+ 0,001 + 0, 0),
M(dev(o)) = M(Q’Glz’mz, 022 ; 0'11) _ (0'11 ; 0'227 022 ; 0’11,\/50_12)‘

This shows that M (o —dev(a)) = v/2a(1,1,0) (axis direction) and M (dev(c)) € K,. There-

fore
Ilo = o — dev(o) + mdev(o),
o—Ilo=0— (0 —dev(o) + mdev(a)) = dev(o)(1 — m).

3.2 Plasticity with isotropic hardening/softening
For plasticity with isotropic hardening/softening, the yield function has the form
$(o,a) =| dev(o) | —oy (1 + Ha).
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For isotropic hardening H > 0,a > 0 and o, is as above.

As in the case of perfect plasticity we impose (4).

If we impose the symmetry of the stress o and the strain g then we can write ¢ =
(011,012,012,022,0) and q = (Q11,€I12,Q12,Q22,?7)-

The set of admissible stresses K is defined by

K ={Y:|deve |[< o,(1+ Ha)} = {o: (011 — 092)° + 401,° < 20,*(1 + Ha)?}.

To define the set of admissible strains K, we first write the definition for the dissipation

function

D(q) = sup{¥:q : X € K}. (6)
Then the set K, is defined by
K, ={q: D(q) is finite},
but this then imposes the additional constraint g;; + g2a < 0, which is equivilant to ¢;; <

—Qq22.

Consider the map M which takes X = (z11,Z12, Z12, Z22, @) to X = (mll,wzg,\/ﬁmlg,a).
Then, the map M preserves inner product and therefore it is an isometry. Indeed, it preserves

inner product since (211, 12, Z12, T22, @) (Y11, Y12, Y12, Y22,M) = T11Y11 + T2aY22 + 2T12y12 + ) =
(Z11, a2, V2215, a)(y11, Yoz, V2y1, n). Therefore instead of performing our analysis on X, we

can perform the analysis on X.

Next we analyze K = M(K), K, = M(K,) and X = M(X).

K ={o: (611 — 722)* + 262, < 20,*(1 + Ha)?},

1
—(1,1,0) and radius
V2

where (811,22, 012, @) = (0711, 022, V2071, a). This is a cone with axis

oy(1+ Ha).
Next we compute ¥ — IIX for ¥ outside K.

The projection II is uniquely determined by (7, 3) = II(e, @), where we have
dist((0, @), K) = |(0 — 7,0 = B)| = |(0, @) — (0, &)| = inf{|(o — 7,0 — B')|}
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for (7',8') € K.

In order to compute o — Ilo, we first notice that

o —Ilo = 7 cos(6)

o —llo

The vector 7 can be computed in the same way as o —Ilo for the case of perfect plasticity

(with the radius o, replaced with the radius o,(1 + Ha)). Therefore, we have:

oy(1+ Ha)

= denfo)(1 - L)

The angle 6 can also be computed since we know tan(6) = Ho,. Therefore

1 (1+ aH)oy

S § T Sl il v
i T Tdelo) |

Now that we have ¢ — Ilo, we can compute a — I[Ta. Indeed a — Ila is the scalar

o —Ilo = (7 — IIT) cos(0) = Ydev(o).

-| ¢ —Ilo | tan(#) (with the minus sign indicating Ila > a). Therefore we obtain:

1 (1+ aH)oy,

1—
Six el den(o) ]

4 Some physical assumptions

)(—Hoy)dev(o).

a—Ila =

For small strain theory the basic assumption is that the energy function v
Y:=¢e—nb
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(e is the internal energy of the body, 5 is the total entropy in the body and 6 > 0 is the
absolute temperature) can be decomposed into an elastic part 1; and a plastic part ¥, so

that
Y = vi(e) + pa2(p).

We also assume that the forces acting on the body are of potential type so that we have:

dy)

£--2 7

with the minus sign indicating that the forces due to plasticity occur in the direction opposite

to the motion.

We impose a quadratic approximation to the function % in both the elastic region and

the plastic region.

In the elastic region 1; can be approximated by assuming that it is a quadratic function

of the strain

1
1,01(6):56:06

In the plastic region 1, is defined differently for every problem.

For the case of isotropic hardening, we assume that 1, is a quadratic function of the

internal strain

1

ba(€) = 5 Hit?,

where H; is a positive hardening parameter.
For the case of perfect plasticity 15 is not defined in the plastic region.

Equation (7) implies that in the elastic region

di), d(% e: Ce) _ d(%(e—p) : C(e—p)) _ _
G:_dp = — ap = — dp =C(e—p) =Ce.

In the plastic region for the case of isotropic hardening (or softening) we have:

a = —%: —Hlf

d§

Next, we introduce the problem in the dual space.
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5 Variational formulation of the dual problem

Next, we introduce the function spaces that correspond to the variables of our problem.

5.1 Function spaces
We define the space of displacements V as before,
V= [Hol(Q)]sa

the space of stresses is defined by

and the space of internal forces M

M={p=(p;): p € L*Q), j=1,..,m}.
with m = 1 for isotropic hardening/softening.

Next we introduce the space

T=8xM.
This space is given the inner products induces by the natural inner products on S and M.

We also define the convex subsets
P={T=(r,u) €T : (r,p) € K a.e. in Q},

P={reS: 7€ K ae. in Q}.

5.2 Functionals and the bilinear form

We now introduce the bilinear forms associated with the dual problem

a:Sx8S— R, a(a’,T):/na:C_lew,
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hVXS%&bmﬂ:—meTM,

¢c:MxM— R, c(a,,u):/na:H_l,udm,
and the bilinear form

A:TxT =R, AS,T)=a(o,r)+ c(a, )
for £ = (0,@) and T = (r, ).

We also introduce the linear functional

myV%R,<WMQ:—AﬂﬂmM.

5.3 The dual variational formulation

To arrive at the dual variational problem we first state our problem in the dual space:

Find the displacement u and the forces ¥ that satisfy the equlibrium equation
dive+ f=0,
and this version of the flow law
Y:P>T:P VT eK.

The above version of the flow law is derived from the original version of the flow law by

setting (g,n) = 0, using the constitutive relations and the definition of D(P).

This version of the flow law can also be stated as the following constraint mininimization

problem:

min{—D[T; P},
where D[T; P] =T : P.
For simplicity, we consider the homogeneous Dirichlet boundary condition

u=0onT.
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We take the problem in the dual space, integrate by parts and obtain (after some algebra)
the variational problem for the case of isotropic hardening/softening:
given | € H'Y0,T;V') with [(0) = 0, find (»,%) = (u,0,0) : [0,T] — V X P with
(»(0),%(0)) = (0,0) such that for almost all ¢t € (0,T),

b(v,o(t)) =<I(t),v> YveY,

A(S(t), T — B(t)) + b(a(t), 7 — o(t)) > 0 VT = (r, ) € P.

For the case of perfect plasticity the variational problem is derived in the same way. For
this case we have the following problem:
given [ € H'(0,T; V') with I(0) = 0, find (u, %) = (u,0) : [0,T] — V x P with (u(0),a(0)) =
(0,0) such that for almost all ¢ € [0, T,

b(v,o(t)) =<I(t),v> YveY,
a(a(t), T — B(t)) + b(u(t),r —a(t)) >0 VT = (1) € P.

The connection between the dual problem and the original problem is given in Han and

Reddy (on page 181). Here we will state the result

Theorem 2. Assume f € H'. Then (u, P) € H' is a solution of the original problem if and
only if (u,X) € H' is a solution of the dual problem, where (u, P) and (u,X) are related by

the constitutive equations, i.e.
o = C(e(v) - p),

a=—HE.

Therefore we have the existence and uniqueness of the solution of the dual problem for

both perfect plasticity and isotropic hardening.

Next we introduce the method of regularization for the dual problem (although this

method can also be introduced in the original problem).
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5.4 Regularization of the dual problem

The regularization of the dual problem is used from a theoretical point of view and from a

numerical point of view.

From a theoretical point of view, it is used in order to show the existence of a solution

to the dual problem directly. This is done in Han and Reddy (on page 196).

From a numerical point of view the regularization of the dual problem is easier to solve
than the dual problem. The reason for this is that we replace the constraint inequality (the

flow rule) with an unconstraint equality (the regularized version of the flow rule).

Remark 1. For what s to follow, we will concentrate on the case of isotropic harden-

ing/softening, although similar results can be derived for the case of perfect plasticity.

The regularization of the dual problem is introduced in Han and Reddy on page 196 (we
will use the same notation for the spaces, the functionals and the bilinear forms as for the
dual problem). This version of the problem reads:

Find (u,X) € V x T such that

b(v,o(t)) =<I(t),v> YveY,

A(B(E), T) + b(u(t),r) + (JL(),T) =0 VT = (r,p) € T.
where J)(X) = %(E —II%).

We see that with the regularization method the flow rule was replaced with an equality

on the whole space.

This version of the flow rule is equivalent to:

T:(—P)+T: (L2 —TI%) =0 VT = (r,) € T,

14

which is equivalent to

1
P=—-(¥-1I%
(% - TIx)

In Han and Reddy (on page 198), it is shown that the solution to the regularized problem

converges to the solution of the dual problem as the penalty parameter v goes to 0.
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Therefore in our plasticity problems we can solve the regularization of the problem (with

v very small) in order to obtain the solution to our original problem.

We return to the general problem of plasticity where the constraint inequality (flow rule)
is replaced with an unconstraint equality (We will call the problem with the equality the v
problem).

The v problem reads:

Find the displacement u and the stress ¥ which satisfy the equilibrium equation

divo(u)+ f=0,

the strain-displacement relation

the constitutive relations

o =C (e(u) — p),
a = _H 57
and the flow law of the form
p=1 (L —1II%)
= - .

6 The flow rule

We proceed by describing the flow rule for both perfect plasticity and isotropic harden-
ing/softening.

The general flow rule is of the form

P:l(z—nz)

v

The above law states that in the plastic region, the flow is in the direction perpendicular

to the set of admissible stresses at a point ¥ € K.
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The parameter v in the flow rule is a penalty parameter and we would like to have v = 0
in order to obtain the exact solution to the original problem. This is hard to obtain from a
numerical point of view because the nonlinearity of o (in u) in the viscoplastic region causes

our linearization methods to diverge.

Therefore we try to make v as close to 0 as possible without causing our linearization

methods to diverge.

6.1 Perfect plasticity

We next proceed by calculating the flow rule for perfect plasticity.

We restate the flow rule

P:lm—nm. (8)

14

In the absence of the internal variables and internal forces (8) becomes:

p=2 (o To). (9)

v

Let K = {o | ®(0) =| dev(o) | —0y, ®(0) < 0} be the closed convex set of admissible
stresses in the elastic range. Then, if we are in the viscoplastic region, we project back on

the convex set K and
Oy

o —Ilo = dev(o)(1 — W)+. (10)

Using (3), (8) and (10) we obtain

é—C*&:lu—

” W)+dev(a).

We also have that in the plastic region

Oy

——— >0
[dev()] ~

| dev(o) |[> 0y & 1 —

Note that in the elastic region
c=Ile=p=0
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From the analysis on the two cases above, we have
1 oy

e—C o= ;(1 - W)+dev(a'),
where (z)4+ = maz{0,z}.

We will later discretize the equation above and with C~'o known from the Navier Lame

equations we will obtain an expression for o in the viscoplastic region.

6.2 Isotropic hardening

We next proceed by calculating the flow rule for isotropic hardening. We restate the flow

rule

p=1(_my (11)

14

In this case both a and ¢ are present and we use the flow rule to compute o —Ilo and a —Ila
where ITo and Ila are the first and second component (respectively) of the projection of ¥

onto the cone.

For isotropic hardening the yield function ® is given by
®(o,a) =| dev(o) | —oy(l + Ha)
where H denotes the modulus of hardening (H > 0).

We compute the projection on the cone and use (11) to arrive at the following equations

) . 1 (1+aH) o
E—Cle= 1-— ¥), dev(o 12
v ﬁ n HZO'E ( | dev(a') | )+ ( ) ( )
. 1 (1+ aH) oy
= 1— —He dev(o 13
f N \/m ( | dev(a) | )+( y) | ( ) | ( )
where we have used

| dev(o) |> oy(l + Ha) & 1> 0o u —|—Ha)|

% | dev(o)

Using the fact that the forces o, a are of potential type, i.e.

)
E3

a =
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and the quadratic approximation to 15 in the plastic region

bal€) = S HE’

we obtain

¢ =—H'a

Therefore equations (12), (13) become:
1 (1+aH) oy

1—
vy/l+ HZO'Z ( | dev(o) |

1 (1+ aH)oy

V,/l—I—H%'Z( - | dev(o) |

Remark 2. The projection that we have computed above s only correct if a > 0. However,

e—Clo=

)+dev(o)

)+(=Hay) | dev(o) |

wn our case we take ag > 0. Thas implies oy > 0 and therefore the projection above is correct.

We proceed by looking at the weak formulation of the equilibrium equation.

7 Weak formulation of the problem

In this section we study the weak formulation of the two models presented above.

Let us look at the original equilibrium equation with the specified boundary conditions
divo(u)+ f=0 onQ
c-n=g on I'y
Mu=w on I'p

Where o € L*(Q; R¥X%), f € L*(Q; R?), g € L*(Tw), w € H}(Q)?, M € L>(['p)¥*?

sym

The weak formulation of the problem for isotropic hardening/softening is:

Find u € H'(Q2)%, Mu = w on T'p such that

/ﬂa’(u):e(v)dm:/nfvdm—l—/rlvgvds
(i) — C'6 = % (o — TIo) (14)

£() = © (o~ Tla)
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for all v € Hy(Q)¢ := {v € H(Q)?: Mv=0o0n 'p}.

The weak formulation of the problem for perfect plasticity is:
Find u € H'(Q2)?, Mu = w on T'p such that

/na(u):e(’u)dm:/s;f'udm—l—/rlvg'uds
e(w) —C o = l(0'—1—10')

14

for all v € Hy(Q)¢ := {v € H'(Q)?: Mv=0o0n 'p}.

8 Time discretization

We will proceed with time discretization in order to solve the above equation.

We assume that u is known at a discrete time uy and we want to compute u at the next
discrete time u;. To do this, u at an intermediate time ug is computed and then extrapolation

is used to compute u;. Thus

1
U = a(ue + (6 — 1)uo).

Therefore what we look for is ug that satisfies the weak formulation of the problem.

We discretize the equilibrium equations and the flow rule (in time) so that the discretized

problem of isotropic hardening/softening is:

Find u € H'(Q)¢, Mu = w on TI'p such that

/;)a'(ue):e('u)da::/f;fg'udm—l—/rlvgg'uds
[e(ug — uo) — C~*(ag — 00)] = L [0 — Tlog) (15)
[€(as,t8) — €(ao, t0)] = 2 [ag — Tay]

for all v € H5(Q)? := {v € H(2)?: Mv = 0on 'p} where oy = (1—6)aq + o,

and k = dt is the timestep in our scheme.
For the problem of perfect plasticity the problem is:

Find u € H*(Q2)?, Mu = w on I'p such that
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{/ﬂa’(ue):e(v)dm/S]fgvdm+ANggvds

i[e(ue — ) — C 7 Hog — a0)] = % [og — Ilog]
for all v € Hy(Q)¢ := {v € H'(Q)?: Mv=0o0n 'p}.

In this thesis we take § = 1 so that we use Backward Euler’s method for the time

discretization.

9 Analytic expression for the stress tensor

We define
Ug — Uo _100
A= C———
% )T wm
then the discretized version of the flow rule is
o 1 .
A—C™? é = (id — Mgy

Now we would like to obtain an expression for C 'y in terms of ¢ros and devog by using

the Navier Lame equations.

The Navier Lame equations state that for an isotropic material we have
og = Atregl + 2u eq
Therefore using the properties of trace and deviator for tensors, we obtain
g = v tregl + & devey, (16)
eg = atrogl + B devoy, (17)
where § = 2u, v =A+2u/d, B=1/8, a=1/(d*y) and dis the dimension of the problem.
Equation (17) then implies

1
C oy trogl + ﬂ devoyg (18)

1
Cd2) 4 2dp
Equation (18) can then be used to solve for oy in both cases perfect plasticity and isotropic

hardening.
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Theorem 3. For perfect viscoplasticity and perfect plasticity there ezist constants Cy, C,, C3

such that the stress tensor is
og(0kA) = Citr(0kA)I + (Cy + C3/ | devbkA |)devfkA.

For perfect viscoplasticity these constants are

Ci:=Ax+2u/d, Cy:=v/(Bv+0k), Cs=0ko,/(Bv+0k).

For perfect plasticity we take the limit as v — 0 and the constants are
Ci:=A+2u/d, Cy:=0, C3:=o0,

The plastic phase occurs for

a.
dev(6kA .
| dev(Bha) > 5

In the elastic phase the stress tensor is
og(0kA) = C1 tr(6kA)I + 2p dev(0kA).

Proof. For perfect plasticity the discretized version of the flow rule is

1 o
A—C' 21— 2 )4 19
0k v ( | devog |)+ cvees (19)

so that the plastic phase occurs when (1 — o,/ | devoyg |) > 0.

Using C~'oy = a trogl + B devoy we obtain

0k oy
0k devA = (B + — (1-— Tdevog |))devo'9. (20)
We solve (20) for | devoy | and obtain
v|devA | +eo
d =0k L 21
Using (21) in (20) we have
d =(Cy + L)d kA
evog = (Cy TdevBkA | ev )

Taking the trace of both sides of equation (19) and using equation (20) we obtain
trog = C1d tr(6kA).
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This proves the first part.

The plastic phase occurs for

Oy

(1 ) > 0.

| devoy |

Using (21) this is equivalent to

| dev(6kA) |> 22
2p

The last statement of the theorem follows directly from the Navier Lame equations. [

Theorem 4. For viscoplasticity and plasticity with isotropic hardening there exist constants

C1, C,, C3,Cy such that the stress tensor is
og(0kA) = Citr(0kA)I + (C3/(C> | devBkA |) + C4/Cy)devlkA.

For viscoplasticity with isotropic hardening these constants are

Cr:= A+ 2u/d, Cy = Bum+0k(l+ﬁHleaj),
Cs := Okoy(1 + aoH),  Ca:= HiH*0ko? +v,/1+ H??.

For perfect plasticity we take the limit as v — 0 and the constants are
C1:= A+ 2u/d, C, :=0k(1 + BH,H?3)),

Cs := bkoy(1 4+ aoH), C,4:= H\H?6ko.

The plastic phase occurs for
| dev(0kA) |> B(1 + aoH)oy,.
In the elastic phase the stress tensor is

og(0kA) = C1 tr(6kA)I + 2p dev(0kA).

Proof. The discretized version of the flow rule is

~ 1 1 (]_—|—a9H)0'
A_c-r%e_ 1 1 _UTasl)oy, 4 22
0k » \/m( |de1)0'9 | )+ evoy, ( )
_ 1 1 1 H
_Hl_lag Qg _ 2t (1 . ( + ayg )o'y)_l_Ha-y | devog | . (23)

Ok v /14 H2g2 | devoy |
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The plastic phase occurs for 1 — (1 4+ agH)o,/ | devag |> 0.

Using C~'og = a trogl + 8 devoy and (22) we obtain
0k 1 (1+ agH)oy

0k devA = + — — devoyg. 24
(ﬁ v m( | devoy | )) 6 ( )

Solving this for | devfkA | we have
| devfkA |= (B + Ok 1 %)) | devayg | . (25)

- (1—
v [1+ H%—Z( | devoyg |

The second part of the flow rule (equation (23)) can be solved for ag. Inserting the result

in (25), we can obtain an expression for | devoy |.

Using the expression for | devoy | in (24) we have

Cs N
Cy | devfkA |

devog = (

%)devaA. (26)

For the spherical part of oy we take the trace on both sides of equation (22 ) and use

(18) to obtain
trog = C1d tr(6kA).

This proves the first part of the theorem.
The plastic phase occurs for | devog |> (1 + agH)oy,.

Using (26) this is equivalent to

| devBkA |> B(1 + aoH)oy.
The last part of the theorem follows directly from the Navier Lame equations. O

We now have an expression for oy (for perfect plasticity and isotropic hardening/softening).

10 Discretization in space

We proceed by discretizing the problem in space for a given time by the finite element

method.
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10.1 Ritz-Galerkin finite element method

Suppose the domain {2 has a polygonal boundary I', we can cover {) by an admissible trian-
gulation Sy.

The elements of Sj, are triangles for d=2 and tetrahedrons for d=3.

Remark 3. The notation Sy is used since h stands for a discretization parameter, and
this suggests that the approzimate solution will converge to the true solution of the given

continuous problem as h — 0.

Let Sy be the finite element space.
We partition the given domain ) into many subdomains (in this thesis we use triangles),

and consider functions which reduce to a polynomial on each subdomain.

A partition T = {T1,Ts,---,Tu} of Q into triangular or quadrilateral elements (closed)
is called admissible provided the following properties hold

i Q=UMT;
1. If T; N T} consists of exactly one point, then it is a common vertex of T; and Tj.

ii. If for 7 # j, T; N T; consists of more than one point, then 7; N T is a common edge

of T; and Tj.

For simplicity we will use the notation S for the space Sj.

10.2 The equilibrium equation

In the discrete version of the problem we replace H'({2) and H}(2) by finite dimensional
subspaces S and Sp = {V € §:V =0 on I'p}, respectively.

The discrete problem is: find Uy € S, such that
/ag(ﬁk A): e(V)de :/ ngdm—l—/ gV ds (27)
9] Q I'n
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for all V € Sp,
where A is defined by

Therefore, we can use Theorem (3) and Theorem (4) in order to compute o(8k A) for

perfect plasticity and isotropic hardening.

S is a triangulation of  and N the set of all nodes in S, and let

(451; ceey ¢dN) = (¢1€1, ...¢1€d, ceey ¢N€1, ceey ¢N6d)
be the nodal basis of the finite dimensional space S, where N is the number of nodes in the
mesh.

¢, above is the scalar hat function of node z in the triangulation S and we have ¢,(z) =1
and ¢,(y) = 0 for all y € N with y # 2. Everywhere else ¢, is determined by a linear

interpolation.

Therefore equation (27) is equivalent to

F,= /nae(E(Ue —Us) + Clo0) : €(¢p)dz — /nfe ¢p dz — /FN 9e ¢p ds =0 (28)

forp=1,...,dN.

We can decompose F), into a part (), which depends on uy and a part P, which is

independent of ug. Therefore F, := @, — P, with
Qp = /‘.)ag(e(Ug —Up) + Clay) : €(¢yp) dz,

Ppiz/feﬁbpdm‘l'/ 9o Pp ds
) T'n
for T €T.

We approximate [; fo ¢, dz by evaluating the value of fy and ¢ in the center (zg,ys) of
T. Thus

1 .
/;fgbp dng | T | fr(zs,ys) with k:=mod(p—1,2)+1

Where | T' | denotes the area of the triangle T
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Similarly we approximate [5 g¢ ¢, ds by evaluating the value of g and ¢ in the center

(za,ym) of the edge E with length | E | and obtain

1 .
/Egg ¢p ds x 2 | E | ge(za,ym) with k:=mod(p — 1,2) +1

This shows that we have an approximation to P,.

Therefore using the decomposition of F, and the fact that P, does not depend on Uy, we
only need to compute P, once at every discrete time while (), must be computed at every

Newton and Homotopic iteration in a given discrete time.

We would like to find AUy = Uy — Uy satisfying equation (28). We use different iterative

methods in order to approximate AUy.

We begin with Newton-Raphson method.

10.3 Newton-Raphson method

In general Newton’s method can be used to solve the following problem:

where F' : R* — R™ is a continuously differentiable function.

If we define
F = (0F;(u)/0u;) € R™".

Then Newton’s method can be implemented in the following way:
1. Given an initial u°.

2. Until termination, let:

Uk+1 — U — DF(uk)_lF(uk)

In reality we do not use the form of Newton’s method given above. The reason for this is
that computing D F(u;)~! is very expensive. Therefore we find a different way to implement

Newton’s method.

33



One way to do this in three steps is
1. Given an initial u°.
2. We iterate:

Decide whether to stop or continue. Solve
DF(’lLk)Sk = —F(uk)

3. Update

Upy1 = Uk + Sk.

€ and itmax are given parameters, where itmax denotes the maximum number of itera-

tions.

We terminate the method if || F(uz) ||, < € || F(wo) ||, or if the number of iterations

exceed itmax.

When using Newton’s method we have the following convergence result

Theorem 5. Suppose F' is lipschitz continuously differentiable at v* and that F(u*) = 0 and
DF(u*) is nonsingular. Then for uq sufficiently near v*, {u*} produced by Newton’s method

1s well-defined and converges to u* with

| w** —w* |[< O wk — |

for a constant C' independent of k.

We can see that although Newton’s method is quadratically convergent, the convergence
is only local.
The iterates may diverge if u° is not near a solution. This causes a problem when we try to
implement Newton’s method for the problem of plasticity. The reason for this is that we do

not know how to choose u° sufficiently near a solution.

10.3.1 Isotropic hardening

We next, look at the performance of Newton’s method for the case of isotropic harden-

ing/softening and perfect plasticity (for d = 2 throughout).
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We note that since P, is independent of Uy, the only things that we need to compute at

every newton iteration are @ and DF (defined above).

We have an analytic expression for o from Theorem 4 and we can compute DF and Q.

{ (DF)ps =| T | (C1 tr(e(¢p))tr(e(¢s)) + Cr dev(e(4y)) = €(da) — (Cs)p dev(A) : €(¢s))

Qp =| T | (C1 tr(A)tr(e(¢p)) + Cr dev(A) : €(¢p))
where C1, (5, C3,Cy are the same as in Theorem 4 (with d = 2) and we have defined

1
A= €(ug — uo) + Clog, C5:=2u, Cs:= o (1 + aoH)oy,
U

Co C3/(Cq | dev(A) |) + Cy/Cy if dev(A) — Cs > 0,
" Cs else,

and

(Co), i | Oo/(02] dev(A) P)dev(e(4y)) : dev(d) i | dev(4) | ~Co >0,
P77 000000 else.

We try to implement Newton’s method with the following parameters

t=(0,.4), dt=.05 o,=.1and H = 150.

We use the initial guess U° = AU® = 0 at every discrete time .

We remember that the objective is to have v =~ 0 in order to obtain an exact solution to
the problem.

When we use v = .006 the method converges at every time step (see Table 1).

From Table 1 we can observe that although Newton’s method converges, the convergence
1s very slow. It takes the method more than 90 Newton iterations to converge for a time

scale t > .15
Next we try to obtain better accuracy by using v = .003 in our problem.

With this value of v the method fails to converge within 100 iterations at ¢t = .15 (see
Table 1). Therefore we need a better method in order to be able to reduce v further and

obtain a more accurate solution.

Newton’s method also fails to converge for the case of perfect plasticity.

35



10.3.2 Perfect plasticity

For the case of perfect plasticity we use Theorem 3 to obtain an analytic expression for o

which can then be used to obtain an expression for DF' and @

Qo =| T | (Cy tr(A)tr(e()) + Cs dev(A) : €(4y))

Where C, C», C3 are the same as in Theorem 3 (with d = 2) and we have defined

{ (DF)ps =| T | (C1 tr(e(¢p))tr(e(¢s)) + Cs dev(e(8y)) = €(da) — (Co)p dev(A) : €(¢s))

A= e(ug — uo) + Ctap, Cy:=2u,

Ce Cy + Cs3/ | dev(A) | if dev(A) — a,/(2p) > 0,
P 2u else,

and

(Co) = Cs/| dev(A) |3[dev(e(¢p)) s dev(A)|S, if | dev(A) | —oy/(2p) > 0,
° 000000 else.

We try to implement Newton’s method to our problem with the parameters
oy = 100 dt = .025 and ¢ = (0,.15) and the initial guess U® = U(t,) at every discrete time
t,.

When we use v = 256 the method converges at every discrete time (see Table 2).
For v = 128 the method fails to converge (at t=.15) within 100 iterations (see Table 2).

Therefore in this case we also need a better method in order to be able to reduce v and

obtain a more accurate solution.

We have seen that for perfect plasticity and isotropic hardening/softening Newton’s
method does not give a solution to the problem with the desired accuracy. The reason

is that when we reduce v to obtain better accuracy our method diverges.

We would like to modify Newton’s method so that we can decrease the value of v to
obtain a more accurate solution to the problem without having the method diverge. We
would also like to decrease the number of Newton Iterations needed in order to obtain the

solution.
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We next propose a globally convergent Modification of Newton’s method with backtrack-
ing [H.F. Walker].

10.4 Modification of Newton’s method with backtracking

We use Newton’s method with an additional constraint. The constraint is that the reduction
of F' is not less than the reduction predicted by the local linear model. If this constraint is

not satisfied, we decrease our step length until the constraint is satisfied.

The method works in the following way:
Given ug, t € (0,1), 0 < pmin < Omaz < 1, iterate:
Solve (for s) in DF(ug)se = —F(ug)
Let ugpt1 = ug + sk
while | ared |< t | pred |
choose 8 € [Omin, Omaz)
set sp = Osp and ug; = up + Sg, where ared and pred are defined as follows:
actual reduction:=ared:=|| (F'(ux)) || — || (F(ur + s&)) ||,
predicted reduction:=pred:=|| (F(uz)) || — || (F(ur) + DF (ur)sk) || -
We see that the predicted reduction is the reduction predicted by the local linear model of
F at u.

In practice we usually choose 0,,,;, = .1, ;0. = .8 and 6 = .5.
The parameter ¢ is chosen to be very small so that the actual reduction needs to be less than

a small fraction of the predicted reduction in order for us to accept the Newton step.

We terminate the Newton iterations if || F(uz) ||< 107® || F(uo || or if the number of

iterations exceed itmax.

We next look at the performance of the Modified Newton’s method for the case of isotropic
hardening/softening and perfect plasticity (with d = 2).
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10.4.1 Isotropic hardening

For isotropic hardening/softening DF and ) are the same as in Newton’s method.

{ (DF)ps =| T | (C1 tr(e(¢p))tr(e(a)) + Cr dev(e(y)) : €(¢) — (Cs)p dev(A) : €(¢4))

Qp =| T | (C1 tr(A)tr(e(dy)) + Cr dev(A) = €(dy)).

with the same parameters as in Newton’s method.

We try to implement the modified method with the parameters
t = (0,.4), dt = .05, 0, = .1, H = 150 and the initial guess U® = U(t,) at every discrete
time t,,.

We remember that the objective is to have v =~ 0 in order to obtain an exact solution to
the problem. We observe that when we use v = .003 Modified Newton’s method converges
at every time step (see Table 1). This shows us that for this problem our modified method

1s better than Newton’s method because it converges with » = .003 where Newton’s method

diverges.

We implement our method with v = .003/2 and we see that the method fails to converge
within 100 iterations at ¢ = .15 (see Table 1). The modified iterations (modifying s) do

converge, but the Newton iterations do not converge.

We note that although this method reduced v by half, it still does not provide us with a

sufficiently accurate solution to the original problem.

Therefore we still need to modify our method in order to obtain a solution with the

desired accuracy.

Modified Newton’s method also performs better than the original Newton’s method for
the case of perfect plasticity (d = 2).

10.4.2 Perfect plasticity

In the case of perfect plasticity DF and () are the same as in Newton’s method
{ (DF)ps =| T | (C1 tr(e(¢p))tr(e(s)) + Cs dev(e(y)) « €(¢s) — (Co)pdev(A) : €(¢s))

Qp =| T | (Cytr(A)ir(e(¢p)) + Cs dev(A) : e(¢p))
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With the same parameters as in Newton’s method.

We try to implement Modified Newton’s method to our problem with the parameters
o, = 100, dt = .025 and ¢ = (0,.15) and the initial guess U° = U(t,) at every discrete time
tn.

We see that our method converges with v = 256 (see Table 2).
We implement our method with » = 128 and observe that our method fails to converge

within 100 iterations at £ = .15 (see Table 2). The modified iterations (modifying s) do

converge, but the Newton iterations do not converge.

In this case the modification of Newton’s method did not improve Newton’s method at

all.

We have seen that for perfect plasticity and isotropic hardening Newton’s method does
not give solution to the problem with the desired accuracy and therefore we tried to obtain

a more accurate solution by using modified Newton’s method.

Although the Modified Newton’s method performs better than Newton’s method for
plasticity with isotropic hardening, it does not give a solution with the desired accuracy to

the problem and so we need to find a better way to improve this method.

Another problem with the Modified Newton’s method is that it did not decrease the

number of Newton iterations needed to obtain the solution.

We would like our next method to decrease the number of Newton iterations needed to

obtain the solution.

10.5 Path following method

We proceed with the next modification.

We would like to decrease v and when doing this prevent our method from diverging. To
do this we refer back to Theorem 6 and see that Newton’s method is quadraticly convergent
as long as we choose the initial guess close to the solution. We would like to maintain the

local quadratic convergence.
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Therefore we first solve the problem with Modified Newton’s method with a large value
of v, say v; and the method does not diverge. This then gives us an approximation to the

accurate solution associated to the problem with v = kg, k < 1.

Then, the solution of the problem with v; will provide a good initial guess to the problem

with vy, where vy < v; so that the Modified Newton’s method will not diverge.

When we find the solution to the problem with vy, we can then decrease v further in a

similar way.

We do this by using the solution to the problem with v, as the initial guess for the

problem with v, where v3 < v,.

Continuing in this way we generate a sequence {v;}. This sequence then generates {U,, },
a sequence of solutions to the problem. Each solution depends on the value of v and since
we chooose v;1; < v; we will obtain a more accurate solution to our problem at every v

iteration.
We terminate the Modified Newton iterations for each v; problem
if | F(u*,,) ||[< 107® || F(u%,) || or if the number of iterations exceed itmax.

When implementing the path following method we would like to decrease the value of v
as much as possible at every v iteration so that we will obtain the desired accuracy to the

problem in as few v iterations as possible.

The problem is that if we try to decrease v too much in a single v iteration the path
following method might diverge. The reason for this is that the initial guess being the
solution to the problem with »; might not be a close enough approximation to the solution

of the problem v;,; and therefore Modified dNewton’s method will diverge.

In practice we usually choose v;y; = k - v;, where k < 1 i1s a parameter that depends on

the problem.

We next examine the performance of the path following method for the case of isotropic

hardening/softening and for the case of perfect plasticity.
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10.5.1 Isotropic hardening/softening

We try to implement our path following method with the parameters
t = (0,.4), dt = .05, 0, = .1, H = 150 and the initial guess U® = U(t,) at every discrete

time t,,.

When we use v = .003 Modified Newton’s method converges at every time step (see Table

1). This then gives us vo = .003 which we can use to generate our sequence v;.
We choose v;11 = k-v;, k < 1.

First we implement the method with k = 1/2 and observe that our method then converges

at every v iteration and at every time step.

We then try different values of k and observe that the method converges even with a very

small value of k.
We can choose k = 1/500 and the method will still converge.

We can also decrease the number of Newton Iterations by simply choosing vy to be a
larger value. In fact if we choose vy = 15 instead of vy = .003 our method will converge with

very few Newton iterations (see Table 1).
Table 1 shows that the method converges after only five v iterations at every timestep.

Next we note that the path following method works very well for isotropic hardening
even when the mesh is large. See Table 3 for the mesh shown in Figure 5, where we have

2047 coordinates and 5680 elements.

Our path following method also gives us the desired accuracy for the case of perfect

plasticity.

10.5.2 Perfect plasticity

We try to implement the path following method to our problem with the parameters
o, = 100, dt = .025, t = (0,.15) and the initial guess U° = U(t,) for every discrete time t,.

We see that the modified Newton’s converges with v = 128 (Table 2). This then gives us
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vo = 128 which we can use to generate v;;.
We choose v;11 =k -v;, k < 1.

We begin by implementing the method with & = 1/2 and observe that our method

converges at every v iteration and at every time step.

We then try different values of k and observe that the method converges even with

k = 1/5000.

To decrease the number of Newton iterations we choose vy = 256 and the method con-

verges with very few Newton iterations (see Table 2).
Table 2 shows that the method converges after only three v iterations at every timestep.

Table 4 shows that the method converges even when the problem involves a mesh is large

(Figure 6 for the mesh, where we have 5680 elements and 2947 coordinates).
The last thing we want to do is to optimize the program.

Since certain things depend neither on v nor the initial guess u°, they do not have to be

computed at every v iteration. Indeed if we write F' = @) — P where

Q= [ o) d(¢)

sznqu—/FNm

then we do not need to compute P at every v iteration. The only things that we compute

in a specified timestep after every v iteration are () and DF.

11 Concluding remarks

We have seen that the problem of plasticity involves a nonlinear partial differential equation.

We have tried to linearize this equation with Newton’s method and observed that the
method fails to converge when v is small and therefore we did not obtain the desired accuracy

to the problem.

42



We then tried to impose a globally convergent modification to Newton’s method with

backtracking.

We have seen that this method converges with v smaller than that given by Newton’s
method. However this method still did not provide us with the desired accuracy and when

we tried to lower v further the method failed to converge.
Next we tried to use a path following method.

We observed that this method works very well for the problem of plasticity. It works well
for isotropic hardening and for perfect plasticity. The method converges even when v is very

small.
Therefore we obtain a solution to our problem with the desired accuracy.

The path following method is computationally expenssive however. The reason for this

is that we have to go through an extra v iteration in order to obtain the solution.

Although this causes the program to be slower, we have lessened this effect by optimizing
our program. We have also used the extra v iteration to lower the number of Newton

iterations that we need in order to obtain the solution.

Therefore, for our problems it has caused the program to be overall faster than the

original Newton’s method.
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Figure 1: The initial mesh at time t=0, for isotropic hardening
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Figure 2: Isotropic hardening at final time t=.4, using the path following method
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Table 1: Isotropic hardening

Number of Newton Iterations

Newton’s | Newton’s | Modified | Modified | Path Following Method v; = 1.5 x (500)*
Time | Method Method Newton Newton |[1=0|z2=1]2=2|2=3 1=4

(v =.006) | (v =.003) | (v =.003) | (v =.0015)
.05 11 12 11 11 6 9 6 3 0
1 68 87 76 90 6 9 6 3 0
15 91 100 95 100 6 10 7 3 0
2 94 100 97 100 6 10 7 3 0
.25 95 100 97 100 6 11 7 3 0
.3 95 100 97 100 6 11 7 3 0
.35 95 100 97 100 6 11 8 3 0
A4 95 100 97 100 6 12 8 3 0
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Table 2: Perfect plasticity

Number of Newton Iterations

Newton’s | Newton’s | Modified | Modified | Path Following Method v; = 256 x (5000)~*
Time | Method Method | Newtons | Newton |2=0|2=1|2=2|7=3 1=4
(v =256) | (v =128) | (v =256) | (v = 128)
.025 1 1 2 2 2 0 0 0 0
.05 1 1 3 3 3 0 0 0 0
.075 3 3 4 4 4 2 0 0 0
1 3 4 5 5 5 3 2 0 0
125 5 5 6 6 6 3 2 0 0
15 5 100 5 100 5 9 3 0 0
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Table 3: Isotropic hardening for larger mesh

Number of Newton Iterations

Path Following Method v; = 1.5 x (500)~*
Time |2=0|2=1|2=2|:7=3 1=4
.05 8 3 0 0 0
1 8 4 0 0 0
15 8 6 0 0 0
2 8 21 7 0 0
.25 8 23 8 1 0
3 8 20 8 1 0
.35 8 19 8 1 0
A4 8 18 8 1 0
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Table 4: Perfect plasticity for larger mesh

Number of Newton Iterations

Time

Path Following Method v; = 256 x (5000)~*
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