Secure and Reliable Data Outsourcing in Cloud Computing

by

Ning Cao

A Dissertation
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Doctor of Philosophy
in
Electrical and Computer Engineering

July 2012

Approved:
Professor Wenjing Lou Professor Xinming Huang
ECE Department ECE Department
Dissertation Advisor Dissertation Committee
Professor Berk Sunar Professor Joshua D. Guttman
ECE Department CS Department

Dissertation Committee Dissertation Committee

Abstract

The many advantages of cloud computing are increasingly attracting individuals
and organizations to outsource their data from local to remote cloud servers. In
addition to cloud infrastructure and platform providers, such as Amazon, Google,
and Microsoft, more and more cloud application providers are emerging which are
dedicated to offering more accessible and user friendly data storage services to cloud
customers. It is a clear trend that cloud data outsourcing is becoming a pervasive
service. Along with the widespread enthusiasm on cloud computing, however, con-
cerns on data security with cloud data storage are arising in terms of reliability and
privacy which raise as the primary obstacles to the adoption of the cloud. To address
these challenging issues, this dissertation explores the problem of secure and reliable
data outsourcing in cloud computing. We focus on deploying the most fundamental
data services, e.g., data management and data utilization, while considering relia-
bility and privacy assurance.

The first part of this dissertation discusses secure and reliable cloud data man-
agement to guarantee the data correctness and availability, given the difficulty that
data are no longer locally possessed by data owners. We design a secure cloud
storage service which addresses the reliability issue with near-optimal overall per-
formance. By allowing a third party to perform the public integrity verification, data
owners are significantly released from the onerous work of periodically checking data
integrity. To completely free the data owner from the burden of being online after
data outsourcing, we propose an exact repair solution so that no metadata needs to

be generated on the fly for the repaired data.

The second part presents our privacy-preserving data utilization solutions sup-
porting two categories of semantics — keyword search and graph query. For pro-
tecting data privacy, sensitive data has to be encrypted before outsourcing, which
obsoletes traditional data utilization based on plaintext keyword search. We de-
fine and solve the challenging problem of privacy-preserving multi-keyword ranked
search over encrypted data in cloud computing. We establish a set of strict privacy
requirements for such a secure cloud data utilization system to become a reality.
We first propose a basic idea for keyword search based on secure inner product
computation, and then give two improved schemes to achieve various stringent pri-
vacy requirements in two different threat models. We also investigate some further
enhancements of our ranked search mechanism, including supporting more search
semantics, i.e., TF x IDF, and dynamic data operations.

As a general data structure to describe the relation between entities, the graph
has been increasingly used to model complicated structures and schemaless data,
such as the personal social network, the relational database, XML documents and
chemical compounds. In the case that these data contains sensitive information
and need to be encrypted before outsourcing to the cloud, it is a very challenging
task to effectively utilize such graph-structured data after encryption. We define
and solve the problem of privacy-preserving query over encrypted graph-structured
data in cloud computing. By utilizing the principle of filtering-and-verification, we
pre-build a feature-based index to provide feature-related information about each
encrypted data graph, and then choose the efficient inner product as the pruning

tool to carry out the filtering procedure.

To my beloved family

Acknowledgements

Without the generous support of many people this dissertation would not have
been possible. First, I want to thank my advisor, Dr. Wenjing Lou, who guided me
into the research area of cloud computing and security, discussed about my ideas,
challenged me with sharping questions, gave suggestions about the structure of the
paper and did proofread with great patience. I appreciate the insightful suggestions
Dr. Lou has given to me and the strong belief she has put in me. Her hard working
and passion for research also has set an example that I would like to follow.

I want to thank my thesis committee, Dr. Xinming Huang, Dr. Berk Sunar and
Dr. Joshua D. Guttman, for serving on my dissertation committee, and for their
good questions and insightful comments on my work. I also want to thank Dr. Kui
Ren for discussing with me on the technique details, helping me think through the
difficult problems and kind support to my job application.

My sincere gratitude further goes to current and former fellow graduate students
in the Cyber Security lab, including Kai Zeng, Shucheng Yu, Zhenyu Yang, Ming
Li, Hanfei Zhao, Qiben Yan, Yao Zheng, Ning Zhang, Wenhai Sun, Bing Wang, and
Tingting Jiang for their friendship and support. Besides, I would like to extend my
thanks to my fellow collaborators, Cong Wang and Qian Wang, for their invaluable
discussions and the kind friendship. I also wish to take this opportunity to say thank
you to my fellow friends at WPI: Sisi Luo, Qi Ao, Xiaodong Huang, Shiquan He,
Xiaolin Hu, Ya Zhang, Yuqin Yao and many others, for their accompany during my
study here.

Finally, I want to thank my family. I am in debt to my parents, Fengjin Cao and
Enying Liang, who always encouraged me to pursue what I wanted. I want to thank
my younger sister, Bo Cao, giving me courage when I face difficulties. I am very

indebted to my dearest grandmother, who passed away during my Ph.D study. I

ii

also want to thank my dearest wife, Ruijun Fu. To accompany me studying abroad,
Ruijun sacrificed many chances of studying and working. Without her support,
encouragement and love, I cannot imagine how I can go through this four-year
study. She is the best gift I have ever received in my life. Special thanks also go to
my parents in-law, Genfa Fu and Yali Yang. Thanks for their support and love in

Ruijun and me. This thesis is dedicated to all my dearest family members.

il

Contents

1 Introduction

1.1 Motivation s,
1.2 Contributions
1.3 Roadmap

2 Secure and Reliable Cloud Storage

2.1 Introduction
2.2 Problem Formulation 00
2.2.1 The System Model
2.2.2 The Threat Model
2.2.3 Design Goals L o
2.24 Notations
2.2.5 Preliminary on LT Codes
2.3 LTCS: Design Rationale,
2.3.1 Enabling Reliability and Availability
2.3.2 Reducing Maintenance Cost
2.3.3 Offline Data Owner

2.4 LTCS: The Proposed Secure and Reliable Cloud Storage Service . . .

241 Setup . ..o

v

11
11
12
12
13
14
14
14
18
19
20

2.4.2 Data Outsourcing 20

2.4.3 Data Retrieval Lo 22
24.4 Integrity Check 23
2.4.5 DataRepair 25
2.5 Security Analysis 27
2.5.1 Protection of Data Confidentiality and Integrity 27
2.5.2 Verification Correctness in Integrity Check 28
2.6 Performance Analysis 28
2.6.1 Outsourcing 29
2.6.2 Data Retrieval 31
2.6.3 Imtegrity Check 33
2.6.4 Data Repair 33
2.7 Related work 34
2.7.1 Network Coding-based Distributed Storage 34
2.7.2 Remote Data Integrity Check 35
2.8 Conclusions 37
Privacy-Preserving Multi-Keyword Ranked Search 39
3.1 Imtroduction 39
3.2 Problem Formulation 43
3.2.1 System Model 43
3.2.2 Threat Model oo 44
3.2.3 Design Goals o 45
3.24 Notations Lo 45
3.2.5 Preliminary on Coordinate Matching 46
3.3 Framework and Privacy Requirements for MRSE 47
3.3.1 MRSE Framework 47

3.3.2 Privacy Requirements for MRSE 48

3.4 Privacy-Preserving and Efficient MRSE 50
3.4.1 Secure Inner Product Computation 50
3.4.2 Privacy-Preserving Scheme in Known Ciphertext Model 53
3.4.3 Privacy-Preserving Scheme in Known Background Model . . . 58

3.5 Discussion 61
3.5.1 Supporting More Search Semantics 61
3.5.2 Supporting Data Dynamics 64

3.6 Performance Analysis L. 66
3.6.1 Precision and Privacyo 66
3.6.2 Efficiency 68

3.7 Related Work 73
3.7.1 Single Keyword Searchable Encryption 73
3.7.2 Boolean Keyword Searchable Encryption 74
3.7.3 Secure Top-K Retrieval from Database Community 75
3.7.4 Other Related Techniques 76

3.8 Conclusion 7

Privacy-Preserving Query over Encrypted Graph-Structured Data 78

4.1 Introduction 78
4.2 Problem Formulation 82
4.2.1 The System Model 82
4.2.2 The Known Background Threat Model 83
4.2.3 Design Goals oL 83
424 Notations 84
4.3 Preliminarieso 85
4.3.1 Graph Query 85

vi

4.3.2 Secure Euclidean Distance Computation
4.4 PPGQ: The Framework and Privacy
4.4.1 The Framework L.
4.4.2 Choosing Frequent Features
4.4.3 Privacy Requirements
4.5 PPGQ: The Proposed Scheme and Analysis
4.5.1 Privacy Concerns on Secure Inner Product Computation . . .
4.5.2 The Proposed Privacy-Preserving Graph Query Scheme
4.5.3 The Analysis
4.6 Experimental Evaluations
4.6.1 False Positive and Index Construction
4.6.2 Trapdoor Generation and Query
4.7 Related Worko
4.7.1 Graph Containment Query
4.7.2 Keyword-based Searchable Encryption

4.8 Conclusion

Conclusion and Future Work
5.1 Conclusion

5.2 Future Work

vil

101
102
104
107
107
107
108

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

Distributed storage systems based on replication. 15
Distributed storage systems based on optimal erasure codes. 16
Distributed storage systems based on network coding. 17
Data availabity after functional repair as in LTNC. 18
LT codes-based cloud storage service (LTCS). 24
Outsourcing performance with different e 30
Encoding and decoding time for different size of file 32
Communication cost of repair 34
Architecture of the search over encrypted cloud data 43
Distribution of final similarity score 57
Tradeoff between precision and rank privacy 67
Time cost of building index. 69
Time cost of generating trapdoor. 71
Time cost of query. 72
Architecture of graph query over encrypted cloud data 82
Distribution of Feature Support 91
Build subindex for each data graph 96
Generate trapdoor for query graph 96

viil

4.5 Relation between minimum support and other parameters. 102
4.6 Index construction cost.o 103
4.7 Trapdoor size in different dataset L. 104
4.8 Trapdoor generation time. L. 105
4.9 Query execution time on server. 106
4.10 Privacy-Preserving Graph Query Scheme 109

X

List of Tables

2.1

3.1
3.2
3.3

4.1

Performance complexity analysis of storage services 26
K3 appears in every document 59
K3 does not appear in either document 60
Size of subindex/trapdoor 73
Analysis on inner products in two correlated queries 94

Chapter 1

Introduction

1.1 Motivation

Cloud computing is the long dreamed vision of computing as a utility, where cloud
customers can remotely store their data into the cloud so as to enjoy the high qual-
ity networks, servers, applications and services from a shared pool of configurable
computing resources [103]. The advantages of cloud computing include on-demand
self-service, ubiquitous network access, location independent resource pooling, rapid
resource elasticity, usage-based pricing, transference of risk, etc. [11] Its great flexi-
bility and economic savings are motivating both individuals and enterprises to out-
source their local complex data management system into the cloud.

Along with the widespread enthusiasm on cloud computing, however, concerns
on data security with cloud storage are arising due to unreliability of the service
and malicious attacks from hackers. Recently more and more events on cloud ser-
vice outage or server corruption with major cloud infrastructure providers are re-
ported [2—4,117]. Data breaches of noteworthy cloud services also appear from time

to time [84,99,100]. Besides, the cloud service providers may also voluntarily exam-

ine customers’ data for various motivations. Therefore, we argue that the cloud is
intrinsically neither secure nor reliable from the view point of the cloud customers.
Without providing strong security, privacy and reliability guarantee, it would be
hard to expect cloud customers to turn over control of their data to cloud servers
solely based on economic savings and service flexibility. To address these concerns
and thus motivate the wide adoption of data outsourcing in cloud, in this thesis
we will explore the problem of secure and reliable data outsourcing. We aim at
deploying the most fundamental data services including data management and data
utilization, with built-in reliability and privacy assurance as well as high level service
performance, usability, and scalability.

Firstly, in addition to major cloud infrastructure providers, such as Amazon,
Google, and Microsoft, more and more third-party cloud data service providers are
emerging which are dedicated to offering more accessible and user friendly storage
services to cloud customers [11]. Examples include Dropbox [1] which already has
millions of users. It is a clear trend that cloud storage is becoming a pervasive
service. With the increasing adoption of cloud computing for data storage, assur-
ing data service reliability, in terms of data correctness and availability, has been
outstanding. While existing solutions address the reliability issue by adding data
redundancy to multiple servers, the problem becomes challenging in the “pay-as-
you-use” cloud paradigm where we always want to efficiently resolve it for both
corruption detection and data repair. Prior distributed storage systems based on
erasure codes or replication techniques have either high decoding computational
cost for data users, or too much burden of data storage and repair cost for data
owners. Recently Chen et al. [37] proposed a network coding-based storage system
which provides a decent solution for efficient data repair. This scheme, based on

previous work [43,44, 78, 121], reduces the communication cost for data repair to

the information theoretic minimum. This is achieved by recoding encoded packets
in the healthy servers during the repair procedure. However, as network coding uti-
lizes Gaussian elimination for decoding, the data retrieval in terms of computation
cost is more expensive than erasure codes-based systems. Hence, new secure and
reliable storage solutions with the efficiency consideration of both data repair and
data retrieval are entailed in the cloud computing.

Secondly, to protect data privacy and combat unsolicited accesses in the cloud
and beyond, sensitive data, e.g., emails, personal health records, tax documents,
financial transactions, etc., may have to be encrypted by data owners before out-
sourcing to the commercial public cloud [58]; this, however, obsoletes the traditional
data utilization service based on plaintext keyword search. The trivial solution of
downloading all the data and decrypting locally is clearly impractical, due to the
huge amount of bandwidth cost in cloud systems. Moreover, aside from eliminating
the local storage management, storing data into the cloud serves no purpose unless
they can be easily searched and utilized. Thus, exploring privacy-preserving and
effective search service over encrypted cloud data is of paramount importance. Con-
sidering the potentially large number of on-demand data users and huge amount of
outsourced data documents in the cloud, this problem is particularly challenging as
it is extremely difficult to meet also the requirements of performance, system usabil-
ity and scalability. Related works on searchable encryption focus on single keyword
search or Boolean keyword search, and rarely sort the search results. How to design
an efficient encrypted data search mechanism that supports multi-keyword ranking
semantics without privacy breaches still remains a challenging open problem.

Thirdly, we further explore the data search within another category of search
semantics in cloud computing. As a general data structure to describe the relation

between entities, the graph has been increasingly used to model complicated struc-

tures and schemaless data, such as the personal social network (the social graph), the
relational database, XML documents and chemical compounds studied by research
labs [38,91, 92,128,132, 133]. Tmages in the personal album can also be modeled
as the attributed relational graph (ARG) [20]. For the protection of users’ privacy,
these sensitive data also have to be encrypted before outsourcing to the cloud. More-
over, some data are supposed to be shared among trusted partners. For example,
the lab director and members are given the authorization to access the entire lab
data. Authorized users are usually planning to retrieve some portion of data they
are interested rather than the entire dataset, mostly because of the “pay-for-use”
billing rule in the cloud computing paradigm. Considering the large amount of data
centralized in the cloud datacenter, the key challenge here is to realize an efficient

encrypted query design which supports graph semantics without privacy breaches.

1.2 Contributions

In this dissertation, the fundamental problem of secure and reliable data outsourcing
in Cloud Computing is tackled. The detailed and challenging research tasks we
solved are outlined below:

Secure and Reliable Cloud Storage In Chapter 2, we address the problem of
secure and reliable cloud storage with efficiency consideration of both data repair
and data retrieval. By utilizing a near-optimal erasure codes, specifically LT codes,
our designed storage service has faster decoding during data retrieval than existing
solutions. To minimize the data repair complexity, we employ the exact repair
method to efficiently recover the exact form of any corrupted data. Such a design also
reduces the data owner’s cost during data repair since no verification tag needs to

be generated (old verification tags can be recovered as same as data recovery). Our

proposed cloud storage service provides a better overall efficiency of data retrieval
and repair than existing counterparts. It also completely releases the data owner
from the burden of being online by enabling public integrity check and exact repair.
Portions of the work studied in this chapter were presented as extended abstract at
the 31th IEEE Conference on Computer Communications (INFOCOM’12) [32].
Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud
Data In Chapter 3, we address the problem of privacy-preserving multi-keyword
ranked search over encrypted data in cloud computing. We establish a set of strict
privacy requirements for such a secure cloud data utilization system. Among various
multi-keyword semantics, we choose the efficient similarity measure of “coordinate
matching”, i.e., as many matches as possible, to capture the relevance of data doc-
uments to the search query. We further use “inner product similarity” to quanti-
tatively evaluate such similarity measure. We first propose a basic idea for ranked
keyword search based on secure inner product computation, and then give two im-
proved schemes to achieve various stringent privacy requirements in two different
threat models. We also investigate some further enhancements of our ranked search
mechanism, including supporting more search semantics, i.e., TF x IDF, and dy-
namic data operations. Portions of the work studied in this chapter were presented
as extended abstract at the 30th IEEE Conference on Computer Communications
(INFOCOM'11) [30].

Privacy-Preserving Query over Encrypted Graph-Structured Cloud Data
In Chapter 4, we address the problem of privacy-preserving query over encrypted
graph-structured data in cloud computing. Our work utilizes the principle of “filtering-
and-verification”. We pre-build a feature-based index to provide feature-related
information about each encrypted data graph, and then choose the efficient in-

ner product as the pruning tool to carry out the filtering procedure. To meet the

challenge of supporting graph query without privacy breaches, we improve the se-
cure inner product computation to achieve various privacy requirements under the
known-background threat model. Portions of the work studied in this chapter was
presented as extended abstract at the 31th International Conference on Distributed

Computing Systems (ICDCS’11) [31].

1.3 Roadmap

The organization of this dissertation is as follows.

Chapter 2 presents our solution for secure and reliable cloud storage. Section
2.1 describes the problem as well as the main idea of our solution. In Section 2.2,
we formulate the problem by introducing the system model, the threat model, our
design goals, and the preliminary. Section 2.3 gives our design rationale, followed
by section 2.4, which describes the proposed scheme. Section 2.5 and 2.6 discuss
security analysis and performance analysis, respectively. We discuss related work
on both network coding-based distributed storage and remote data integrity check
in Section 2.7, and conclude the chapter in Section 2.8.

Chapter 3 presents our proposed privacy-preserving multi-keyword ranked search
over encrypted cloud data. Section 3.1 describes the problem as well as the main idea
of our solution. In Section 3.2, we introduce the system model, the threat model, our
design goals, and the preliminary. Section 3.3 describes the framework and privacy
requirements, followed by section 3.4, which describes the proposed schemes. Section
3.5 discusses supporting more search semantics and dynamic operation. Section 3.6
presents simulation results. We discuss related work on both single and Boolean
keyword searchable encryption in Section 3.7, and conclude the chapter in Section

3.8.

Chapter 4 presents our proposed privacy-preserving query over encrypted graph-
structured cloud data. Section 4.1 describes the problem as well as the main idea
of our solution. In Section 4.2, we introduce the system model, the threat model
and our design goals. Section 4.3 gives preliminaries, and section 4.4 describes
the framework and privacy requirements, followed by section 4.5, which gives our
proposed scheme. Section 4.6 presents evaluation results. We discuss related work
on both keyword searchable encryption and graph containment query in Section 4.7,
and conclude the chapter in Section 4.8.

Chapter 5 concludes this dissertation and presents several directions for future

work.

Chapter 2

Secure and Reliable Cloud Storage

2.1 Introduction

The many advantages of cloud computing are increasingly attracting individuals
and organizations to move their data from local to remote cloud servers [58]. In
addition to major cloud infrastructure providers [11], such as Amazon, Google, and
Microsoft, more and more third-party cloud data service providers are emerging
which are dedicated to offering more accessible and user friendly storage services to
cloud customers. It is a clear trend that cloud storage is becoming a pervasive ser-
vice. Along with the widespread enthusiasm on cloud computing, however, concerns
on data security with cloud storage are arising due to unreliability of the service.
For example, recently more and more events on cloud service outage or server cor-
ruption with major cloud infrastructure providers are reported [3,4], be it caused
by Byzantine failures and/or malicious attacks. Such a reality demands for reliable
data storage to tolerate certain outage/corruption. In particular, the cloud storage
service should offer cloud customers with capabilities of: 1) timely detection of any

server (and hence data) corruption event, 2) correct retrieval of data even if a limited

number of servers are corrupted, and 3) repair of corrupted data from uncorrupted
data. Although existing techniques have provided solutions for them individually,
the main challenge for cloud storage service is to simultaneously provide these capa-
bilities at minimal cost. This is because in cloud computing both data storage and
transmission are charged in the “pay-as-you-use” manner. Solutions of high cost will
discourage user engagement and be of less practical use. Moreover, it is important
to set cloud customers free by minimizing the complexity imposed on them in terms
of computation/communication cost and burden of being online.

Existing solutions address the reliability issue by adding data redundancy to
multiple servers. These techniques can be categorized into replication-based solu-
tions and erasure codes-based ones. Data replication is the most straightforward
way of adding redundancy. The advantage of replication is its simplicity in data
management. Repair of data on corrupted servers is also straightforward by simply
copying the entire data from a healthy server. The main drawback of replication is
its high storage cost. Moreover, replication-based solutions cannot satisfy the high-
throughput requirement in distributed storage service like cloud computing, where a
large number of users may access the service concurrently. This is because different
users may want to access different pieces of data on a server, which would cause less
cache hits but frequent disk I/O requests. [126] provides a detailed analysis on this
drawback.

As compared to its replication-based counterparts, erasure codes-based solutions
can achieve the required reliability level with much less data redundancy [116]. Dif-
ferent from replication-based solutions, erasure codes-based ones are more suitable
for distributed storage systems with concurrent user access. This is because every
block of data on a server is useful for decoding the original data, which leads to a

high cache hit rate of the system. There have been a large number of related works

on erasure codes-based distributed storage systems [60,61,126]. The main drawback
of existing optimal erasure codes-based systems, however, is the high communication
cost needed for repairing a corrupted storage server. It is commonly believed that
the communication cost is equal to the size of the entire original data [43]. For ex-
ample, Reed-Solomon codes [79] usually need to reconstruct all the original packets
in order to generate a fragment of encoded packets. Taking into consideration the
large amount of data outsourced, the entire data reconstruction is expensive which
makes this solution less attractive. Similarly, existing distributed storage systems
based on near-optimal erasure codes [126] do not have an efficient solution for the
data repair problem or pay no attention to it.

Recently Chen et al. [37] proposed a network coding-based storage system which
provides a decent solution for efficient data repair. This scheme, based on previous
work [43,44,78,121], reduces the communication cost for data repair to the infor-
mation theoretic minimum. This is achieved by recoding encoded packets in the
healthy servers during the repair procedure. However, as network coding utilizes
Gaussian elimination for decoding, the data retrieval in terms of computation cost
is more expensive than erasure codes-based systems. Moreover, [37] adopts so-called
functional repair for data repair, i.e., corrupted data is recovered to a correct form,
but not the exact original form. While this is good for reducing data repair cost, it
requires the data owner to produce new verification tags, e.g., cryptographic mes-
sage authentication code, for newly generated data blocks. As the computational
cost of generating verification tags is linear to the number of data blocks, this de-
sign will inevitably introduce heavy computation/communication cost on the data
owner. Moreover, the data owner has to stay online during data repair.

In this chapter, we explore the problem of secure and reliable storage in the “pay-

as-you-use” cloud computing paradigm, and design a cloud storage service with the

10

efficiency consideration of both data repair and data retrieval. By utilizing a near-
optimal erasure codes, specifically LT codes, our designed storage service has faster
decoding during data retrieval than existing solutions. To minimize the data repair
complexity, we employ the exact repair method to efficiently recover the exact form
of any corrupted data. Such a design also reduces the data owner’s cost during data
repair since no verification tag needs to be generated (old verification tags can be
recovered as data recovery). By enabling public integrity check, our designed LT
codes based secure cloud storage service (LTCS) completely releases the data owner
from the burden of being online. Our contributions are summarized as follows,

1) We are among the first to explore the problem of secure and reliable cloud storage
with the efficiency consideration for both data repair and data retrieval.

2) Our proposed cloud storage service provides a better overall efficiency of data
retrieval and repair than existing counterparts. It also greatly reduces cost and
burden of being online for the data owner by enabling public integrity check and
exact repair.

3) The advantages of our proposed service are validated via both numerical analysis

and experimental results.

2.2 Problem Formulation

2.2.1 The System Model

Considering a cloud data storage service which provides both secure data outsourcing
service and efficient data retrieval and repair service, including four different entities:
the data owner, the data user, the cloud server, and the third party server. The data

owner outsources the encoded fragments of the file M to n cloud servers denoted

11

as storage servers. If the data owner requires to keep the data content confidential,
the file M can be first encrypted before encoding. Outsourced data are attached by
some metadata like verification tags to provide integrity check capability. After the
data outsourcing, a data user can select any k storage servers to retrieve encoded
segments, and recover the file M, which can be further decrypted in case the file
is encrypted. Meanwhile, the third party server periodically checks the integrity of
data stored in cloud servers. Failed cloud servers can be repaired with the help of

other healthy cloud servers.

2.2.2 The Threat Model

The cloud server is considered as “curious-and-vulnerable”. Specifically, the cloud
server is vulnerable to Byzantine failures and external attacks. While Byzantine
failures may be made by hardware errors or the cloud maintenance personnel’s
misbehaviors, external attacks could be ranging from natural disasters, like fire and
earthquake, to adversaries’ malicious hacking. After the adversary gains the control
of the cloud server, it may launch the pollution attack or the replay attack which
aims to break the linear independence among encoded data, by replacing the data
stored in corrupted cloud server with old encoded data. If the cloud server is not
corrupted, it correctly follows the designated protocol specification, but it will try to
infer and analyze data in its storage and interactions during the protocol execution
so as to learn additional information. This represents a threat to the privacy of

cloud users’ data stored on the server.

2.2.3 Design Goals

To provide secure and reliable cloud data storage services, our design should simul-

taneously achieve performance guarantees during data retrieval and repair.

12

Availability and Reliability: By accessing any k-combination of n storage
servers, the data user could successfully retrieve encoded data and recover all
the original data. The data retrieval service remains functional when up to
n — k storage servers are corrupted in one round, and corrupted servers can

be repaired from other healthy servers.

Security: The designed storage service protects the data confidentiality and
periodically checks the integrity of data in cloud servers to prevent data

dropout or corruption.

Offline Data Owner: Data owners can go offline immediately after data
outsourcing, which means they are not required to be involved in tasks such

as data integrity check and repair at a later stage.

Efficiency: Above goals should be achieved with low storage, computation

and communication cost for the data owner, data users and cloud servers.

2.2.4 Notations

M : the outsourced file, consisting of m original packets, M = (M, ..., M,,).
S; . the [-th storage server, 1 <[< n.

Cy; : the i-th encoded packet stored in the [-th storage server, 1 <1 < a.

Aj; : the coding vector of the encoded packet C;.

@ @ the coding tag, used to verify all the coding vectors Ay in ;.

¢y; : the retrieval tag, used to verify Cj; in the retrieval and repair.

oy ¢+ the verification tag, used to verify Cj; in the integrity check, 1 < j <*t.

13

2.2.5 Preliminary on LT Codes

LT codes [69] has a typical property that the encoding procedure can generate un-
limited number of encoded packets, each of which is generated by conducting bitwise
XOR operation on a subset of original packets. LT codes can recover m original
packets from any m + O(y/mIn*(m/§)) coded packets with probability 1 — §. The
decoding procedure is performed by the efficient Belief Propagation decoder [70]
with complexity O(mIn(m/0)). Code degree d is defined as the number of original
packets that are combined into one coded packet. In LT codes, the distribution of
code degree is defined by Ideal Soliton distribution or Robust Soliton distribution.
The Ideal Soliton distribution is p(i), i.e., P{d = i}, where Y ", p(i) = 1 and

‘ . 1/m ifi=1
pli) = P{d = i} =
1i(i—1) ifi=2,...,m.

Robust Soliton distribution is 4(4), where pu(i) = (p(i)+7(i))/f and 8 = >, p(i)+
7(i). Let R = c¢-1In(m/d)y/m, and define 7(i) as follows,

R/im ifi=1,...,m/R—1
(i) = ¢ RIn(R/8)/m ifi=m/R

0 ifi=m/R+1,...,m.

2.3 LTCS: Design Rationale

2.3.1 Enabling Reliability and Availability

To ensure the data reliability in distributed storage systems, various data redun-

dancy techniques can be employed, such as replication, erasure codes, and network

14

outsourcing repair

L

M/.EM
N

ES Y N

retrieval

¥
@, L

Data owner
= M)

complete co
e 2 Cloud servers Data user

Figure 2.1: Distributed storage systems based on replication.

coding. Replication as shown in Fig. 2.1 is the most straightforward way of adding
data redundancy where each of n storage servers stores a complete copy of the orig-
inal data. Data users can retrieve the original data by accessing any one of the
storage servers, and the corrupted server can be repaired by simply copying the
entire data from a healthy server.

Given the same level of redundancy, the optimal erasure codes based distributed
storage system as shown in Fig. 2.2 is more reliable by many orders of magnitude
than the replication-based system [116]. Data users can recover the entire m original
packets by retrieving the same number of encoded packets from any k-combination of
n servers, and therefore every server only needs to store m/k encoded packets which
is regarded as the property of optimal redundancy-reliability tradeoff. However, its
quadratic decoding complexity makes it very inefficient for data users to recover
data during data retrieval. Moreover, the communication cost to repair a failed
storage server is equal to the size of the entire original data in the optimal erasure

codes-based distributed storage system [43,44]. For example, as a typical optimal

15

repair . Ci1
1
. po==os : C:
outsourcing [Ca] =
— (.
M Bl = (] 0
M [Ce li=[M
M, s,] M.
ma '322 : Cia I ME
b B, —/ 1 M F - o
Ve] g
M
retrieval
s . p==—==== X M,
Cay M.

§ E 241 | |

3 42 |
®.L (e I
Data owner | My
Cloud servers I: , M
I Ce Ms

|

L_Ca]

|
! |

complete copy encode decode == @———————= @

Figure 2.2: Distributed storage systems based on optimal erasure codes.

erasure codes, Reed-Solomon codes [79] usually need to reconstruct all the original
packets in order to generate a fragment of encoded packets. In other words, one has
to retrieve m encoded packets in order to generate only m/k encoded packets for
the corrupted server.

Network coding-based storage codes [43,44,78,121] as shown in Fig. 2.3 reduce
the repair communication cost to the information theoretic minimum by combining
encoded packets in the healthy servers during the repair procedure, where only
m/k recoded packets are needed to generate the corrupted m/k encoded packets.
Each server needs to store 2m/(k + 1) encoded packets, which is more than optimal
erasure codes, to guarantee that data users can retrieve m linearly independent
encoded packets from any k-combination of n servers. Besides, the network coding-

based storage codes have the similar inefficient decoding problem as optimal erasure

16

outsourcing repair

D, 3D,+4D,+D;
D,/==3|S1' | [2D1+D,*5D;
M g LU 1| ¢ [Cat2Ci*3Cs Qail
M,
M i
Mi retrieval
M4 _______ _i m1
Ms l M.
Mq | e
= M.
- - 5
\ﬁ] [Cx 1| Ms
p L |
o 27 5 |
Data owner . Cor : @
Cloud servers Dat
ata user

partial copy encode decode
]

Figure 2.3: Distributed storage systems based on network coding.

codes due to the utilization of Gaussian elimination decoder.

To meet the efficient decoding requirement in the cloud data storage scenario
where the data owner outsources huge amount of data for sharing with data users,
our design is based on the near-optimal erasure codes, specifically LT codes, to
store low-complexity encoded packets over n distributed servers. The fast Belief
Propagation decoding for LT codes can be used during data retrieval in our LT
codes based secure cloud storage service (LTCS). Data users can efficiently recover
all the m of original packets from any m(1l + €) encoded packets which can be
retrieved from any k-combination of n servers. To achieve so, every server needs to
store at least m(14¢)/k encoded packets which is larger than the erasure codes but

smaller than the network coding based storage codes.

17

100

801

601

40r

Data availabilty (%)

207

0 5 10 15 20 25 30
of repairs

Figure 2.4: Data availabity after functional repair as in LTNC.

2.3.2 Reducing Maintenance Cost

To prevent data dropout or corruption, the integrity of data stored in each server
needs to be periodically checked. In [37], the data owner raises a challenge for
every encoded packet to cloud servers. Taking into consideration the large number
of encoded packets with substantial data redundancy in cloud servers, the cost of
such private integrity check is somehow burdensome in terms of both computation
and communication for data owners. LTCS utilizes the public integrity verification
which enables the data owner to delegate the integrity check task to a third party
server. Once there is a server failing to pass the integrity check, the third party
server immediately reports it to the administrator of the cloud server who will then
activate the repair process.

The repair task in our LT codes based storage service is accomplished by gen-
erating the exactly same packets as those previously stored in corrupted storage
servers. Such repair method does not introduce any additional linear dependence
among newly generated packets and those packets stored in healthy storage servers,
and therefore maintains the data availability. Furthermore, we run the decoding

over the encoded packets before outsourcing to guarantee the reliable data retrieval

18

and recovery. Unlike the exact repair in our designed service, the functional repair
is the other category of data repair, where the repair procedure generates correct
encoded packets, but not the exactly same packets as those corrupted. Attempts to
apply functional repair in the LT codes based distributed storage should first solve
how to recode packets, because the random linear recoding in the functional repair
of network coding-based storage codes cannot satisfy the degree distribution in LT
codes. It seems that this problem can be solved by utilizing the recently proposed
LT network codes (LTNC) which provides efficient decoding at the cost of slightly
more communication in the single-source broadcasting scenario [33]. However, af-
ter several rounds of repair with same recoding operations regulated in LT network
codes, data users experience decoding failure with high probability, as illustrated
in Fig. 2.4, where data availability is the probability that data users could recover
original data from any k-combination of n storage servers. The major reason is
that recoding operations with the degree restriction in LT network codes introduce
inneglectable linear dependence among recoded packets and existing packets in LT
codes based storage service. Therefore, the functional repair is not suitable for L'T

codes-based storage service.

2.3.3 Offline Data Owner

In the repair procedure, network coding-based storage systems with functional repair
generate new encoded packets to substitute corrupted data in the failed server. The
data owner needs to stay online for generating necessary tags for these new pack-
ets [37]. In LTCS, all newly generated packets for the corrupted storage server in
the repair procedure are exactly the same as old ones previously stored in the server,
which means their corresponding metadata are also same. Like the distributed stor-

age of data packets, these metadata can be stored in multiple servers and recovered

19

in case of repairing corrupted servers. The replication or erasure codes (like Reed-
Solomon codes) can be adopted to reliably backup these metadata. Hence, without
the burden of generating tags and checking integrity, the data owner can stay offline
immediately after outsourcing the data which makes LTCS more practical to be

deployed in the cloud paradigm.

2.4 LTCS: The Proposed Secure and Reliable Cloud
Storage Service

In this section, we present the LT codes-based secure and reliable cloud storage
service (LTCS), where n storage servers {S;}1<;<, are utilized to provide the data
storage service for data owner and data users. Our data integrity technique is

partially adapted from the BLS signature in POR [87].

2.4.1 Setup

Let e : G x G — Gr be a bilinear map, where g is the generator of G, with a BLS
hash function A : {0,1}* — G. The data owner generates a random number 7 < Z,
and s random numbers uy, ..., us < G. The secret key sk is {n}, and the public

key is pk = {u1, ..., us, v}, where v < g".

2.4.2 Data Outsourcing

The data outsourcing is to pre-process data and distribute them to multiple cloud
servers. The file M is first equally split into m original packets, M, ..., M,,, with
the same size of %—l bits. Following the Robust Soliton degree distribution in LT

codes, m original packets are combined by exclusive-or (XOR) operations to gen-

20

erate na encoded packets, where « is the number of packets outsourced to each
storage server and set to m/k - (1 + ¢). For protecting data confidentiality, sensitive
data could be encrypted before the encoding process. Existing data access control
mechanisms [129] can be employed to prevent the cloud server from prying into
outsourced data.

According to LT codes, all the m original packets can be recovered from any
m(1 + ¢) of encoded packets with probability 1 — ¢ by on average O(m - In(m/§))
packet operations. However, the availability requirement specifies that data recov-
ery should be always successful by accessing any k of healthy storage servers. To
achieve this goal, the data owner checks the decodability of these encoded pack-
ets before outsourcing by executing the decoding algorithm. Specifically, all the
na encoded packets are divided into n groups, each of which consists of a pack-
ets, {{Cli}i1<i<at1<i<n. The Belief Propagation decoding algorithm is then run on
every k-combination of n groups. If the decoding fails in any combination, the
data owner re-generates encoded packets and re-checks the decodability until every
k-combination can recover all the m original packets. Once the encoding config-
uration successfully passes the decodability detection, it can be reused for all the
storage services that specifies the same n and k.

For each encoded packet Cj;, 1 <1 < n, 1 < i < «, three kinds of auxiliary
data are attached, i.e., the coding vector, the retrieval tag, and verification tags.
The coding vector A; is a m-bit vector, where each bit represents whether the
corresponding original packet is combined into Cj; or not. The retrieval tag ¢y,
computed by Eq. 2.1, is to verify the encoded packet Cj; in data retrieval, and also

in data repair if necessary.

¢ < (H(1|7]|Cr))" € G (2.1)

21

To generate the verification tag for the purpose of integrity check, each encoded
packet Cj; is split into ¢ segments, {Cj1,...,Cl}. Each segment Cj;; includes s
symbols in Z, : {Ciij1,...,Cljs}. For each segment Cj;;, we generate a verification

tag 055, 1 < j <t, in Eq. 2.2.
ou; (H(lil]j) - [Jue") € G (2.2)
=1

These data are outsourced to the [-th storage server in the form of
{1, {1, Chi, Aii, duiy {01i; }1<j<t }1<i<as @1}, Where ¢ is the coding tag to validate all the

previously coding vectors. The computation of ¢; is shown in Eq. 2.3.

o — (H|Anl] -)|Aw)" € G (2.3)

2.4.3 Data Retrieval

Data users can recover original data by accessing any k of n cloud servers in the
data retrieval. The data user first retrieves all the coding vectors and the coding
tags stored in the selected k cloud servers, and performs the verification in Eq. 2.4.
If the verification operation on any coding tag fails, the data user sends reports to

the third party server and accesses one substitutive storage server.
?
e(er,g) = e(H(||Anl| ... ||Aw), v) (2.4)

Once all the coding tags from k storage servers pass the validation, the data user
partially executes the Belief Propagation decoding algorithm only with coding vec-
tors, and records ids of coding vectors that are useful for the decoding. Meanwhile,

the data user retrieves those corresponding useful encoded packets and their re-

22

trieval tags from corresponding storage servers, and verifies the integrity of encoded

packets as shown in Eq. 2.5.

e(u, g) = e(H(U[i]|C), v) (2.5)

All the original packets in M can be recovered by performing the same XOR
operations on encoded packets as those on coding vectors. Finally, the data user
can decrypt the M and get the plaintext data if the file is encrypted before encod-
ing. Note that if there exist some verification tags that fail in the integrity check
procedure, the data user also reports them to the third party server and retrieves
data from one substitutive storage server. When the third party server receives any
failure reports from data users about either coding tags or verification tags, it will
immediately challenge the corresponding server (details on challenge will be given

in the following section).

2.4.4 Integrity Check

To monitor the integrity of data stored in the storage servers, the third party server
periodically performs the integrity check over every storage server. The third party
server first randomly picks a+¢ numbers, ay, ..., aq, b1, ..., b < Z,, and then sends
them to every storage server. The [-th storage server will compute s integrated
symbols {pus}i1<i<s and one integrated tag ¢ in Eq. 2.6. Note that a; corresponds
to the i-th encoded packet in every storage server, and b; corresponds to the j-th

segment in each encoded packet.

« t a t
e =Y abiCuje, o= [[]] Jlijaibj (2.6)

i=1 j=1 i=1 j=1

23

outsourcing e repair
W
m: Cn
[s:] — s/ | ——
mf [C.
e
LW o
E %
15
J \C: retrieval
Co [——— I
E Ty C_Ca]
— mp |——Cz i .
o || Wy
o] —cr— M
E Cx I Ca I mi
T —— : T i > M:
Cu | Ca I m?
| C |
- I — Ma
Blj= —
Cw [Cu
Cyq || 77— ===—=
Cloud servers @
Data user

complete copy partial copy encode decode

Figure 2.5: LT codes-based cloud storage service (LTCS).

The third party server verifies these received integrated symbols {1 }1<o<s and

the integrated verification tag ¢;, as shown in Eq. 2.7.

[t

e(a,9) = e(JT TT Hllillj)= HW (2.7)

i=1 j=1

If the verification fails, the third party server reports it to the data center, and the
administrator of the storage server will reset the server software and start the data

repair procedure.

24

2.4.5 Data Repair

It is commonly believed that all existing coding constructions must access the orig-
inal data to generate coded packets, which means the communication cost of data
repair for erasure codes is equal to the size of the entire original data [43]. A
straightforward data repair method is therefore to recover all the original data pack-
ets whenever a storage server is corrupted. But such method will introduce much
cost of both computation and communication. In LTCS as illustrated in Fig. 2.5,
one repair server S, is deployed to efficiently repair corrupted storage servers. Al-
though other storage services based on optimal erasure codes or network coding can
also integrate the repair server, they still introduce more computational cost during
data retrieval (and storage cost for network coding-based service) than LTCS, which
will be validated in section 2.6.

To accommodate the repair server, the data owner outsources all the original
packets to the repair server S,,; during data outsourcing. Each original packet is
also attached by the verification tag which is generated in the same way as shown
in Eq. 2.2. Besides, all the auxiliary data of storage servers are stored in the repair
server as a backup. Similarly with the distributed data storage, the metadata in-
cluding verification tags for original packets need to be reliably stored in n storage
servers. Compared with the large size of encoded data, auxiliary data are quite small
such that we can employ the simple replication or erasure codes to add redundancy.

To deal with the failure on the [-th storage server, the repair server uses all the
corresponding coding vectors {Aj;}i<i<a to generate encoded packets {Cj;}i<i<a-
Specifically, Cj; is generated by the XOR combination of |Ay| original packets, as
illustrated in Eq. 2.8, where ji1,. .., juja,| < {1,...,m} correspond to the nonzero

bits in the coding vector A;. The repair server sends to S; all the encoded packets

25

Table 2.1: Performance complexity analysis of storage services based on different
redundancy techniques.

Network Coding Reed-Solomon LTCS
Server storage | O((2n/(k+1))-|M|) | O((1+n/k)-|M]) O((1+n(l+¢)/k) - |M]|)
Encoding comp. O(2nm?/(k + 1)) O(nm?/k) O((nm(1+¢)Inm)/k)
Retrieval comm. O(|M]) O(|M]) O(|M])
Retrieval comp. O(m?) O(m?) O(mInm)
Repair comm. O2T/(k+1)-|M|) | O(T(1/k+1/n)-IM]|) | OT((L+¢)/k+1/n)-|M|)

Wlth their tags il’l the form Of {l, {Z, Cli7 Ali; ¢li; {O-lij}lgjgt}lgigaa (,01}

Ci=M;, ®...6M (2.8)

1i| A |

The repaired server S; authenticates received encoded packets {C}; }1<i<o and aux-
iliary tags as in the data retrieval and integrity check. If the authentication fails,
the repair server itself may be corrupted and need repair.

The third party server also challenges the repair server S, 1 to check the in-
tegrity of original packets. Since there are m packets stored in S, 1, instead of «
in storage servers, the third party server should generate m + t random numbers,
a1y, G, b1, ... b <= Z,. The integrated symbols {fin41)¢}1<e<s are then gen-
erated from the m original packets, fi(p41) = i i a;b;Crnt1yije, where Cpqy; =
M;. There are similar changes in the generatiolrj 1(jf: ihe integrated verification tag,
Sni1 = ﬁ1 f[1 O (4 1)ij %% The repair server is less likely to be corrupted than storage
servers,l;iri(;e it does not participate in the data retrieval service for data users. Even
when the repair server is found to be corrupted and needs repair, all the original

packets and auxiliary data can be recovered by performing data retrieval from any

d of healthy storage servers. Therefore, there is no single point of failure.

26

2.5 Security Analysis

2.5.1 Protection of Data Confidentiality and Integrity

For protecting data confidentiality, existing encryption techniques or data access
control schemes [129] can be utilized before the encoding process, which prevent the
cloud server from prying into outsourced data. With respect to the data integrity,
LTCS utilizes various cryptographic tags to resist the pollution attack during the
data repair and retrieval procedures. LTCS is also secure against the replay attack
which is presented in the network coding-based distributed storage system [37].
To lunch the replay attack, the adversary first corrupts some storage servers and
backups encoded packets stored in these servers. After several rounds of data repair,
the adversary corrupts the same storage servers as before, and then substitutes new
encoded packets with specific old packets. Since the verification tag only binds the
storage server id and the packet id, not the freshness of the packet, the substituted
old packets could pass the integrity verification. As a result, such substitution
makes encoded packets stored in specific k-combinations of n storage servers linearly
dependable, and the data recovery would fail when all other n — k storage servers
are corrupted. Actually, if the data repair mechanism is designed to generate new
packets which are different from the old packets stored in the same storage server,
any coding-based distributed storage system is somehow vulnerable to such kind
of attack. In other words, the functional repair itself has the possibility to break
the decodability. By contrast, LTCS employs the exact repair method where the
newly generated packets are the same as those previously stored packets. The replay
attack becomes invalid since there is no difference between old and new packets in the
same storage server. Furthermore, LTCS examines the data decodability from any

k-combination of storage servers before outsourcing, which guarantees that original

27

data could be recovered even when the adversary corrupts both the repair server

and at most n — k storage servers in one round.

2.5.2 Verification Correctness in Integrity Check

The verification correctness in Eq. 2.7 is proved in Eq. 2.9.

e(st,9)

« t
AN IER)

i*lj*l
HH (1]

i=1j=1

i=1j=1

i=1j=1

([T IT &l *

i=1j=1

2.6 Performance Analysis

([T TTEwN)™ - [T w

S
up ey gy

(=1

s a t

e [T T Eaas = - TLTTTLw" . v)

(=1i=1j=

(&3

t
S Z Z ibj Clml
=1j=1
V)
(=1

S
i, Hugzeyv)‘
/=1

In this section, we demonstrate the performance of storage services based on differ-

ent redundancy techniques by both theoretical complexity analysis and experimental

evaluation. We set the same desired reliability level as network coding-based dis-

tributed storage system RDC-NC [37], where n = 12, k = 3. Other parameters

are set from the consideration of specific properties of network coding (NC), Reed-

Solomon codes (RS), and LT codes. For LTCS, m = 3072,a = m(1 + ¢)/k,ds =

1,d, = k,8=a,0 = 1,¢ = 0.1, where ¢ ~ O(In*(m/8)/+/m) is the LT overhead

28

factor. ds and d, represent the number of cloud servers participating in the repair
of corrupted storage server and corrupted repair server, respectively. [represents
the number of packets retrieved from each participating server during repair. For
Reed-Solomon codes based storage system, m = 6 or 12, = m/k,d =k, = «; for
network coding based storage system, m =6 or 12, =2m/(k+1),d = k,5 = a/d.
The whole experiment system is implemented by C' language on a Linux Server
with Intel Xeon Processor 2.93GHz. Besides, the performance of network coding
and Reed-Solomon codes is optimized by employing table lookup in the multiplica-
tion and division over GF(2%), and we evaluate their performance with or without
repair server (rs), respectively. The performance complexity comparison among stor-
age services based on different redundancy techniques with repair server is shown
in Tab. 2.1, where T is the number of corrupted storage servers in one round,

0<T<n-—k.

2.6.1 Outsourcing

As described in section 2.4.2, the data owner detects the decodability in the en-
coding procedure to guarantee data availability. To check all k-combinations of n
groups, the data owner has to execute (}) times of the Belief Propagation decoding
algorithm. For the efficiency purpose, this decoding process can be partially exe-
cuted where only coding vectors follow the decoding steps and data packets are not
involved. If there exists a combination that cannot recover all the original pack-
ets, the data owner will re-generate na coding vectors according to LT codes and
re-detect them, where « is equal to m(1 4+ ¢)/k. Once all the (}) combinations
successfully pass the decodability detection, corresponding coding vectors can be

reused for all the storage services that specifies the same n and k. As illustrated in

Fig. 2.6(a), the larger € makes the decodability detection more costly because of the

29

29

28¢

27¢

267

Time of decodability detection (s)

25 ‘ ‘ ‘ ‘ ‘
0.19 0.192 0.194 0.196 0.198 0.2
LT overhead factore

(a) Time of detecting decodability

o
o

Data storage (in multiplies of 4|M|)
o
i

RSwiors RSwirs LTCS NCwlors NCw/rs
Redundancy techniques

(b) Data storage cost

Figure 2.6: Outsourcing performance with different ¢. n = 12, k = 3, m = 3072.

linear relation between € and «, namely the number of coding vectors in each group.
Considering that the larger £ leads to more storage cost and repair communication
cost, the following evaluations are conducted by setting € to the smallest one as
0.1904, which corresponds to oo = 1219.

Once one set of na coding vectors pass the decodability detection, encoding op-
erations are performed on real data packets via the XOR combination. Although

the number of encoded packets in LTCS, na, is several hundreds times larger than

30

in other storage service based on network coding or Reed-Solomon codes, the com-
putational cost of encoding in LTCS is much less than the later, as illustrated in
Fig. 2.7 (a). The main reason for such big advantage is that the average degree
of encoded packets is O(In(m/J)) and O(m) in two services, respectively. Further-
more, the combination for encoding is the efficient XOR in LTCS while the linear
combination in network coding or Reed-Solomon codes involves the multiplication
operations with coefficients. The total number of encoded packets in Reed-Solomon
codes-based service is less than network coding-based one so the encoding procedure
introduces different computational cost in two services.

As for the data storage in LTCS, every storage server stores o encoded packets,
each of which has the size of |[M|/m. And the repair server stores all the m original
packets with the same size. The total data storage in cloud servers is the sum of
all encoded packets in n storage servers and all original packets in the repair server,
which is O(na - [M]|/m + |M]), ie., O([1 + n(1 4 €)/k] - [M]). Since LT codes is
a near-optimal erasure codes in terms of redundancy-reliability tradeoff, the data
storage cost in LTCS is larger than Reed-Solomon codes-based storage service which
introduces theoretical minimum storage cost as 4| M| in our evaluation setting. By
contrast, the total data storage in existing network coding-based storage service is
O(IM|[2n/(k+1)]) as illustrated in Fig. 2.6(b). If we integrate the repair server into
this service, the storage cost will be O(|]M|[1 + 2n/(k + 1)]) which is much larger
than LTCS.

2.6.2 Data Retrieval

The availability in data retrieval is guaranteed by the decodability detection before
data outsourcing and the exact repair of corrupted data. Recall that the data

user first retrieves ka, i.e. m(1 + ¢), of coding vectors from k storage servers, and

31

——NC, m=12
700t RS, m=12
—=—NC, m=6
| RS, m=6
|| ©—LTCS, m=3072

100 200 300 400 500
File size (MB)

(a) Encoding

140

—-NC, m=12 5
120t RS, m=12 1
" —=—NC, m=6
~ 100H RS, m=6
g —-6—-LTCS, m=3072
= 80r 1
2
5 60F /
o
g 4ot 1
(| . D
200]
O L L L
100 200 300 400 500
File size (MB)

(b) Decoding

Figure 2.7: Encoding and decoding time for different size of file. n=12, k=3.

then only retrieve m of encoded packets that are useful for decoding. Therefore,
the communication cost during data retrieval in LTCS is the same O(|M)|) as the
network coding-based storage system where any m of encoded packets are linearly
independent with high probability.

The computational complexity of Belief Propagation decoding in LTCS is O(m -
In(m/0)) for the data user, where § is set to 1. By contrast, the other storage

services based on network coding or Reed-Solomon codes usually use the costly

32

decoding algorithms with higher computational complexity, O(m?). Although the
total number of original packets, m, may be smaller in the other two storage services
than in LTCS, the decoding process for the data user in LTCS performs at least
two times faster than in the other two storage services, as illustrated in 2.7(b).
This efficient decoding process demonstrates that LTCS is more appropriate than
other redundancy-based storage services in the cloud storage paradigm, where data

retrieval is a routine task for data users.

2.6.3 Integrity Check

To check the integrity of data stored in a storage server, the third party server needs
to perform one integrated challenge in LTCS, which means only two bilinear maps
in Eq. 2.7 are executed in order to check a encoded packets. Network coding-based
service has to perform « times of challenges for each storage server where 2« bilinear
maps are executed to check a of encoded packets. Similarly, the communication
cost between the third party server and each storage server during one round of

Integrity C'heck in network coding-based service is almost « times more than that

in LTCS.

2.6.4 Data Repair

When the repair server is corrupted, LTCS first retrieve § encoded packets from
each of d, healthy storage servers to recover all the original packets. In such case,
the communication complexity from d,. healthy storage servers to the repair server is
o(d,-p-|M|/m), i.e., O((1+¢€)-|M|), where d, = k, 5 = «. If the repair server is not
corrupted or has been repaired, the data repair of storage servers in LTCS is simply
accomplished by the repair server generating S encoded packets for each corrupted

storage server, where d; = 1, f = «. Assume the number of corrupted storage

33

[any
o

——RS w/ors
NC w/ rs
r—E—NC w/ors
—©—-LTCS
RS w/rs

(e

Repair communication cost (|M|)

0 2 4 6 8 10
of corrupted storage servers

Figure 2.8: Communication cost of repair. n=12, k=3.

servers in one round is T, 0 < T < n — k. The repair communication complexity in
such scenario is O(T« - | M|/m), i.e., O(T'(1+¢)/k - |[M]), where | M|/m is the size
of each encoded packet.

Assume the corruption probability of the repair server is the same as storage
servers, i.e., T'/n. The total repair communication complexity is then calculated as
O(T(1+e)/k-IM|+T/n-|M)]),ie., OT((1+¢)/k+1/n)-|M]). As illustrated in
Fig. 2.8, to repair different number of corrupted storage servers 7', the communica-
tion cost in LTCS is only 15 percent more than Reed-Solomon codes-based service

integrated with repair server, but smaller than that in network coding-based service.

2.7 Related work

2.7.1 Network Coding-based Distributed Storage

As a new data transmitting technique, network coding is different with traditional
store-and-forward methods. Instead of simply forwarding previously received pack-

ets, network coding allows intermediate nodes to recode received packets before

34

forwarding. It has been proved that random linear network coding over a suffi-
ciently large finite field can achieve the multicast capacity [53,82]. Since the data
repair problem in the distributed storage is claimed to be mapped to a multicasting
problem on the information flow graph [43], many network coding-based storage
codes [42-44, 46,66, 78,90, 101, 121-125] have been proposed to take advantage of
this property of capacity achievability. By recoding encoded packets in healthy
servers during the repair procedure, the repair communication cost is reduced to
the information theoretical minimum. The achievable region of functional repair
is characterized in [37], but a large part of the achievable region of exact repair
remains open [44]. Furthermore, since network coding utilizes Gaussian elimination
decoding algorithm, the data retrieval is more expensive than erasure codes-based
system [37]. Therefore, these designs are only suitable in “read-rarely” storage sce-
narios, and cannot be efficiently deployed in the cloud storage system where data

retrieval is a routine operation.

2.7.2 Remote Data Integrity Check

The remote data integrity check problem has been explored in many works [12,
13,25,26,34,41,47,57,71,74,85,89,105,107,109-113]. However, existing works do
not have an efficient solution for the data repair problem or pay no attention to it.
Portions of the work studied in this chapter were presented as extended abstract at
the 31th IEEE Conference on Computer Communications (INFOCOM’12) [32].
Juels et al. [57] described a formal proof of retrievability (POR) model for en-
suring the remote data integrity. Their scheme combines spot-checking and error-
correcting code to ensure both possession and retrievability of files on archive service
systems. Shacham et al. [87] built on this model and constructed a random linear

function based homomorphic authenticator which enables unlimited number of chal-

35

lenges and requires less communication overhead due to its usage of relatively small
size of BLS signature. Bowers et al. [26] proposed an improved framework for POR
protocols that generalizes both Juels and Shachams work. Later in their subsequent
work, Bowers et al. [25] extended POR model to distributed systems. However,
all these schemes are focusing on static data. The effectiveness of their schemes
rests primarily on the preprocessing steps that the user conducts before outsourc-
ing the data file. Recently, Dodis et al. [45] gave theoretical studies on generalized
framework for different variants of existing POR work.

Ateniese et al. [12] defined the provable data possession (PDP) model for ensuring
possession of file on untrusted storages. Their scheme utilized public key based
homomorphic tags for auditing the data file. In their subsequent work, Ateniese et
al. [13] described a PDP scheme that uses only symmetric key based cryptography.
This method introduces lower overhead than their previous scheme and allows for
block updates, deletions and appends to the stored file. However, their scheme
focuses on single server scenario and does not provide data availability guarantee
against server failures, leaving both the distributed scenario and data error recovery
issue unexplored. Wang et al. [112] proposed to combine BLS based homomorphic
authenticator with Merkle Hash Tree to support fully data dynamics, while Erway
et al. [47] developed a skip list based scheme to enable provable data possession
with fully dynamics support. The incremental cryptography work done by Bellare
et al. [19] also provides a set of cryptographic building blocks such as hash, MAC,
and signature functions that may be employed for storage integrity verification while
supporting dynamic operations on data. However, this branch of work falls into the
traditional data integrity protection mechanism, where local copy of data has to be
maintained for the verification. It is not yet clear how the work can be adapted to

cloud storage scenario where users no longer have the data at local sites but still

36

need to ensure the storage correctness efficiently in the cloud.

In other related work, Curtmola et al. [41] aimed to ensure data possession
of multiple replicas across the distributed storage system. They extended the PDP
scheme to cover multiple replicas without encoding each replica separately, providing
guarantee that multiple copies of data are actually maintained. Lillibridge et al. [68]
presented a P2P backup scheme which can detect data loss from free-riding peers,
but does not ensure all data is unchanged. Filho et al. [49] proposed to verify data
integrity using RSA-based hash to demonstrate uncheatable data possession in peer-
to- peer file sharing networks. However, their proposal requires exponentiation over
the entire data file, which is clearly impractical for the server whenever the file is
large. Shah et al. [88,89] proposed allowing a TPA to keep online storage honest
by first encrypting the data then sending a number of pre-computed symmetric-
keyed hashes over the encrypted data to the auditor. However, their scheme only
works for encrypted files, and auditors must maintain long-term state. Schwarz et
al. [85] proposed to ensure static file integrity across multiple distributed servers,
using erasure-coding and block-level file integrity checks. Very recently, Wang et
al. [107] gave a study on many existing solutions on remote data integrity checking,
and discussed their pros and cons under different design scenarios of secure cloud

storage services.

2.8 Conclusions

In this chapter, for the first time, we explore the problem of secure and reliable cloud
storage with the efficiency consideration of both data repair and data retrieval, and
design a LT codes-based cloud storage service (LTCS). To enable efficient decoding

for data users in the data retrieval procedure, we adopt a low complexity LT codes

37

for adding data redundancy in distributed cloud servers. Our proposed LTCS pro-
vides efficient data retrieval for data users by utilizing the fast Belief Propagation
decoding algorithm, and releases the data owner from the burden of being online by
enabling public data integrity check and employing exact repair. The performance
analysis and experimental results show that LTCS has a comparable storage and
communication cost, but a much faster data retrieval than the erasure codes-based
solutions. It introduces less storage cost, much faster data retrieval, and comparable

communication cost comparing to network coding-based storage services.

38

Chapter 3

Privacy-Preserving

Multi-Keyword Ranked Search

3.1 Introduction

Cloud computing is the long dreamed vision of computing as a utility, where cloud
customers can remotely store their data into the cloud so as to enjoy the on-demand
high quality applications and services from a shared pool of configurable computing
resources [31,32,103]. Its great flexibility and economic savings are motivating
both individuals and enterprises to outsource their local complex data management
system into the cloud. To protect data privacy and combat unsolicited accesses in
the cloud and beyond, sensitive data, e.g., emails, personal health records, photo
albums, tax documents, financial transactions, etc., may have to be encrypted by
data owners before outsourcing to the commercial public cloud [58]; this, however,
obsoletes the traditional data utilization service based on plaintext keyword search.
The trivial solution of downloading all the data and decrypting locally is clearly

impractical, due to the huge amount of bandwidth cost in cloud scale systems.

Moreover, aside from eliminating the local storage management, storing data into
the cloud serves no purpose unless they can be easily searched and utilized. Thus,
exploring privacy-preserving and effective search service over encrypted cloud data is
of paramount importance. Considering the potentially large number of on-demand
data users and huge amount of outsourced data documents in the cloud, this problem
is particularly challenging as it is extremely difficult to meet also the requirements

of performance, system usability and scalability.

On the one hand, to meet the effective data retrieval need, the large amount
of documents demand the cloud server to perform result relevance ranking, instead
of returning undifferentiated results. Such ranked search system enables data users
to find the most relevant information quickly, rather than burdensomely sorting
through every match in the content collection [96]. Ranked search can also ele-
gantly eliminate unnecessary network traffic by sending back only the most relevant
data, which is highly desirable in the “pay-as-you-use” cloud paradigm. For privacy
protection, such ranking operation, however, should not leak any keyword related
information. On the other hand, to improve the search result accuracy as well as to
enhance the user searching experience, it is also necessary for such ranking system
to support multiple keywords search, as single keyword search often yields far too
coarse results. As a common practice indicated by today’s web search engines (e.g.,
Google search), data users may tend to provide a set of keywords instead of only one
as the indicator of their search interest to retrieve the most relevant data. And each
keyword in the search request is able to help narrow down the search result further.
“Coordinate matching” [119], i.e., as many matches as possible, is an efficient sim-
ilarity measure among such multi-keyword semantics to refine the result relevance,
and has been widely used in the plaintext information retrieval (IR) community.

However, how to apply it in the encrypted cloud data search system remains a very

40

challenging task because of inherent security and privacy obstacles, including vari-
ous strict requirements like the data privacy, the index privacy, the keyword privacy,

and many others (see section 3.3.2).

In the literature, searchable encryption [7,18,22,23,35,40,51,65,86,98] is a helpful
technique that treats encrypted data as documents and allows a user to securely
search through a single keyword and retrieve documents of interest. However, direct
application of these approaches to the secure large scale cloud data utilization system
would not be necessarily suitable, as they are developed as crypto primitives and
cannot accommodate such high service-level requirements like system usability, user
searching experience, and easy information discovery. Although some recent designs
have been proposed to support Boolean keyword search [16,24,29,52,55,59,63,67,
93] as an attempt to enrich the search flexibility, they are still not adequate to
provide users with acceptable result ranking functionality (see section 3.7). Our
early works [104,106] have been aware of this problem, and provide solutions to the
secure ranked search over encrypted data problem but only for queries consisting
of a single keyword. How to design an efficient encrypted data search mechanism
that supports multi-keyword semantics without privacy breaches still remains a
challenging open problem.

In this chapter, for the first time, we define and solve the problem of multi-
keyword ranked search over encrypted cloud data (MRSE) while preserving strict
system-wise privacy in the cloud computing paradigm. Among various multi-keyword
semantics, we choose the efficient similarity measure of “coordinate matching”, i.e.,
as many matches as possible, to capture the relevance of data documents to the
search query. Specifically, we use “inner product similarity” [119], i.e., the number
of query keywords appearing in a document, to quantitatively evaluate such similar-

ity measure of that document to the search query. During the index construction,

41

each document is associated with a binary vector as a subindex where each bit rep-
resents whether corresponding keyword is contained in the document. The search
query is also described as a binary vector where each bit means whether corre-
sponding keyword appears in this search request, so the similarity could be exactly
measured by the inner product of the query vector with the data vector. However,
directly outsourcing the data vector or the query vector will violate the index pri-
vacy or the search privacy. To meet the challenge of supporting such multi-keyword
semantic without privacy breaches, we propose a basic idea for the MRSE using se-
cure inner product computation, which is adapted from a secure k-nearest neighbor
(kNN) technique [120], and then give two significantly improved MRSE schemes
in a step-by-step manner to achieve various stringent privacy requirements in two
threat models with increased attack capabilities. Our contributions are summarized

as follows,

1. For the first time, we explore the problem of multi-keyword ranked search
over encrypted cloud data, and establish a set of strict privacy requirements

for such a secure cloud data utilization system.

2. We propose two MRSE schemes based on the similarity measure of “coordinate
matching” while meeting different privacy requirements in two different threat

models.

3. We investigate some further enhancements of our ranked search mechanism to

support more search semantics and dynamic data operations.

4. Thorough analysis investigating privacy and efficiency guarantees of the pro-
posed schemes is given, and experiments on the real-world dataset further

show the proposed schemes indeed introduce low overhead on computation

42

m| trusled

loud server

f
| |
]
se® * ey i '
e{\c.vi? ?V Tesy, L“: i
b 3@ i |
{ l\ /l

search control(trapdoors)}——»
access control(data decryption keys)

Data owner Data users

Figure 3.1: Architecture of the search over encrypted cloud data

and communication.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce
the system model, the threat model, our design goals, and the preliminary. Section
3.3 describes the MRSE framework and privacy requirements, followed by section
3.4, which describes the proposed schemes. Section 3.5 discusses supporting more
search semantics and dynamic operation. Section 3.6 presents simulation results.
We discuss related work on both single and Boolean keyword searchable encryption

in Section 3.7, and conclude the chapter in Section 3.8.

3.2 Problem Formulation

3.2.1 System Model

Considering a cloud data hosting service involving three different entities, as illus-
trated in Fig. 3.1: the data owner, the data user, and the cloud server. The data
owner has a collection of data documents F to be outsourced to the cloud server
in the encrypted form C. To enable the searching capability over C for effective
data utilization, the data owner, before outsourcing, will first build an encrypted

searchable index Z from F, and then outsource both the index Z and the encrypted

43

document collection C to the cloud server. To search the document collection for
t given keywords, an authorized user acquires a corresponding trapdoor 7' through
search control mechanisms, e.g., broadcast encryption [40]. Upon receiving T from a
data user, the cloud server is responsible to search the index Z and return the corre-
sponding set of encrypted documents. To improve the document retrieval accuracy,
the search result should be ranked by the cloud server according to some ranking cri-
teria (e.g., coordinate matching, as will be introduced shortly). Moreover, to reduce
the communication cost, the data user may send an optional number k£ along with
the trapdoor T' so that the cloud server only sends back top-k£ documents that are
most relevant to the search query. Finally, the access control mechanism [129] is em-
ployed to manage decryption capabilities given to users and the the data collection
can be updated in terms of inserting new documents, updating existing documents

and deleting existing documents.

3.2.2 Threat Model

The cloud server is considered as “honest-but-curious” in our model, which is con-
sistent with related works on cloud security [111,129]. Specifically, the cloud server
acts in an “honest” fashion and correctly follows the designated protocol specifi-
cation. However, it is “curious” to infer and analyze data (including index) in its
storage and message flows received during the protocol so as to learn additional
information. Based on what information the cloud server knows, we consider two

threat models with different attack capabilities as follows.

Known Ciphertext Model In this model, the cloud server is supposed to only
know encrypted dataset C and searchable index Z, both of which are outsourced

from the data owner.

44

Known Background Model In this stronger model, the cloud server is supposed
to possess more knowledge than what can be accessed in the known ciphertext model.
Such information may include the correlation relationship of given search requests
(trapdoors), as well as the dataset related statistical information. As an instance
of possible attacks in this case, the cloud server could use the known trapdoor
information combined with document/keyword frequency [131] to deduce/identify

certain keywords in the query.

3.2.3 Design Goals

To enable ranked search for effective utilization of outsourced cloud data under the
aforementioned model, our system design should simultaneously achieve security

and performance guarantees as follows.

e Multi-keyword Ranked Search: To design search schemes which allow
multi-keyword query and provide result similarity ranking for effective data

retrieval, instead of returning undifferentiated results.

e Privacy-Preserving: To prevent the cloud server from learning additional
information from the dataset and the index, and to meet privacy requirements

specified in section 3.3.2.

e Efficiency: Above goals on functionality and privacy should be achieved with

low communication and computation overhead.

3.2.4 Notations

e F — the plaintext document collection, denoted as a set of m data documents

.F: (Fl,FQ,...,Fm>.

45

e C — the encrypted document collection stored in the cloud server, denoted as

C = (017027---70771)-

e VW — the dictionary, i.e., the keyword set consisting of n keyword, denoted as
W= Wy, Wy, ..., W,).
e 7 — the searchable index associated with C, denoted as (I3, I, ..., I,,) where

each subindex I; is built for Fj.

e W — the subset of W, representing the keywords in a search request, denoted

as W= (W;,,Wj,,...,W,,).
e T35 — the trapdoor for the search request W.
e Fj; — the ranked id list of all documents according to their relevance to W.

3.2.5 Preliminary on Coordinate Matching

As a hybrid of conjunctive search and disjunctive search, “coordinate matching” [119]
is an intermediate similarity measure which uses the number of query keywords ap-
pearing in the document to quantify the relevance of that document to the query.
When users know the exact subset of the dataset to be retrieved, Boolean queries
perform well with the precise search requirement specified by the user. In cloud
computing, however, this is not the practical case, given the huge amount of out-
sourced data. Therefore, it is more flexible for users to specify a list of keywords

indicating their interest and retrieve the most relevant documents with a rank order.

46

3.3 Framework and Privacy Requirements for MRSE

In this section, we define the framework of multi-keyword ranked search over en-
crypted cloud data (MRSE) and establish various strict system-wise privacy require-

ments for such a secure cloud data utilization system.

3.3.1 MRSE Framework

For easy presentation, operations on the data documents are not shown in the
framework since the data owner could easily employ the traditional symmetric key
cryptography to encrypt and then outsource data. With focus on the index and

query, the MRSE system consists of four algorithms as follows.

e Setup(1°) Taking a security parameter { as input, the data owner outputs a

symmetric key as SK.

e Buildindex(F, SK) Based on the dataset F, the data owner builds a searchable
index T which is encrypted by the symmetric key SK and then outsourced to
the cloud server. After the index construction, the document collection can be

independently encrypted and outsourced.

° Trapdoor(W) With t keywords of interest in W as input, this algorithm gen-

erates a corresponding trapdoor T;.

o Query(Ty;, k,Z) When the cloud server receives a query request as (Ty;, k),
it performs the ranked search on the index I with the help of trapdoor T3,
and finally returns F;, the ranked id list of top-k documents sorted by their

simalarity with W.

Neither the search control nor the access control is within the scope of this

dissertation. While the former is to regulate how authorized users acquire trapdoors,

47

the later is to manage users’ access to outsourced documents.

3.3.2 Privacy Requirements for MRSE

The representative privacy guarantee in the related literature, such as searchable
encryption, is that the server should learn nothing but search results. With this
general privacy description, we explore and establish a set of strict privacy require-

ments specifically for the MRSE framework.

As for the data privacy, the data owner can resort to the traditional symmetric
key cryptography to encrypt the data before outsourcing, and successfully prevent
the cloud server from prying into the outsourced data. With respect to the index pri-
vacy, if the cloud server deduces any association between keywords and encrypted
documents from index, it may learn the major subject of a document, even the
content of a short document [131]. Therefore, the searchable index should be con-
structed to prevent the cloud server from performing such kind of association attack.
While data and index privacy guarantees are demanded by default in the related
literature, various search privacy requirements involved in the query procedure are

more complex and difficult to tackle as follows.

Keyword Privacy As users usually prefer to keep their search from being exposed
to others like the cloud server, the most important concern is to hide what they are
searching, i.e., the keywords indicated by the corresponding trapdoor. Although the
trapdoor can be generated in a cryptographic way to protect the query keywords,
the cloud server could do some statistical analysis over the search result to make an
estimate. As a kind of statistical information, document frequency (i.e., the number
of documents containing the keyword) is sufficient to identify the keyword with high

probability [130]. When the cloud server knows some background information of the

48

dataset, this keyword specific information may be utilized to reverse-engineer the

keyword.

Trapdoor Unlinkability The trapdoor generation function should be a random-
ized one instead of being deterministic. In particular, the cloud server should not be
able to deduce the relationship of any given trapdoors, e.g., to determine whether
the two trapdoors are formed by the same search request. Otherwise, the deter-
ministic trapdoor generation would give the cloud server advantage to accumulate
frequencies of different search requests regarding different keyword(s), which may
further violate the aforementioned keyword privacy requirement. So the fundamen-
tal protection for trapdoor unlinkability is to introduce sufficient nondeterminacy

into the trapdoor generation procedure.

Access Pattern Within the ranked search, the access pattern is the sequence of
search results where every search result is a set of documents with rank order. Specif-
ically, the search result for the query keyword set W is denoted as Fi5, consisting
of the id list of all documents ranked by their relevance to W. Then the access
pattern is denoted as (FW]_’FW27 ...) which are the results of sequential searches.
Although a few searchable encryption works, e.g., [29] has been proposed to utilize
private information retrieval (PIR) technique [56, 62,75, 75,114, 118], to hide the
access pattern, our proposed schemes are not designed to protect the access pattern
for the efficiency concerns. This is because any PIR based technique must “touch”

the whole dataset outsourced on the server which is inefficient in the large scale

cloud system.

49

3.4 Privacy-Preserving and Efficient MRSE

To efficiently achieve multi-keyword ranked search, we propose to employ “inner
product similarity” [119] to quantitatively evaluate the efficient similarity measure
“coordinate matching”. Specifically, D; is a binary data vector for document F;
where each bit D;[j] € {0, 1} represents the existence of the corresponding keyword
W; in that document, and () is a binary query vector indicating the keywords of
interest where each bit Q[j] € {0, 1} represents the existence of the corresponding
keyword W; in the query W. The similarity score of document F; to query W is
therefore expressed as the inner product of their binary column vectors, i.e., D; - ().
For the purpose of ranking, the cloud server must be given the capability to compare
the similarity of different documents to the query. But, to preserve strict system-
wise privacy, data vector D;, query vector () and their inner product D; - () should
not be exposed to the cloud server. In this section, we first propose a basic idea for
the MRSE using secure inner product computation, which is adapted from a secure
k-nearest neighbor (kNN) technique, and then show how to significantly improve it
to be privacy-preserving against different threat models in the MRSE framework in

a step-by-step manner.

3.4.1 Secure Inner Product Computation
3.4.1.1 Secure kNN Computation

In the secure k-nearest neighbor (kNN) scheme [120], Euclidean distance between a
data record p; and a query vector ¢ is used to select k£ nearest database records. The
secret key is composed of one (d+1)-bit vector as S and two (d+1) x (d+1) invertible
matrices as { My, My}, where d is the number of fields for each record p;. First, every

data vector p; and query vector ¢ are extended to (d+ 1)-dimension vectors as p; and

50

¢, where the (d + 1)-th dimension is set to —0.5||p?|| and 1, respectively. Besides,
the query vector ¢ is scaled by a random number r > 0 as (rq,r). Then, p; is split
into two random vectors as {p;’, p;"}, and ¢ is also split into two random vectors as
{¢',q"}. Note here that vector S functions as a splitting indicator. Namely, if the
j-th bit of S is 0, p;’[j] and p;”[j] are set as the same as p;[j], while ¢''[j] and ¢ "[j]
are set to two random numbers so that their sum is equal to ¢lj]; if the j-th bit of S
is 1, the splitting process is similar except that p; and ¢ are switched. The split data
vector pair {py’, p;”"} is encrypted as {pia, pip}, Where p;s = MIp;’ and py = MIp;”;
the split query vector pair {7 ', "} is encrypted as {qa, g}, where ¢, = M; 'q’ and
@ = M;'q". In the query step, the product of data vector pair and query vector
pair, i.e., —0.57(||p:||* — 2p; - ¢), is serving as the indicator of Euclidean distance
(Ilpsl|? = 2p: - ¢ + ||ql]?) to select k nearest neighbors.

Security Analysis in Known Ciphertext Model Similarly with [120], let the
knowledge of the attacker be the encrypted data record and query vector. For any
data record p;, by definition, the attacker knows the encrypted values {pia,piv}-
If the attacker does not know the splitting configuration, he has to model as two
random (d+1)-dimensional vectors. The equations for solving the transformation
matrices are M{ p;’ = p;a and MI'p;" = py, where M, and M, are two (d+1) x (d+1)
unknown matrices. There are 2(d+1) unknowns in p;, and py, and 2(d+1)? unknowns
in M; and M. Since there are only 2(d 4+ 1) equations, which are less than the
number of unknowns, the attacker does not have sufficient information to solve for
the transformation matrices. Hence, we believe this KNN computation scheme is

secure in the known ciphertext model.

o1

3.4.1.2 Secure Inner Product Computation

As the MRSE is using the inner product similarity instead of the Euclidean distance,
we need to do some modifications on the secure kNN computation scheme to fit the
MRSE framework. One way to do that is by eliminating the dimension extension,
the final result changes to be the inner product as rp; - q.

Efficiency Analysis While the encryption of either data record or query vector
involves two multiplications of a d x d matrix and a d-dimension vector with com-
plexity O(d?), the final inner product computation involves two multiplications of
two d-dimension vectors with complexity O(d).

Security Analysis In the known ciphertext model, the splitting vector S is un-
known, so p;’ and p;” are considered as two random d-dimensional vectors. To solve
the linear equations created by the encryption of data vectors, we have 2dm un-
knowns in m data vectors and 2d* unknowns in {M;, M,}. Since we have only 2dm
equations, which are less than the number of unknowns, there is no sufficient in-
formation to solve either data vectors or { M, Ms}. Similarly, ¢’ and ¢” are also
considered as two random d-dimensional vectors. To solve the linear equations cre-
ated by the encryption of query vectors, we have 2d unknowns in two query vectors
and 2d* unknowns in {M;, Ms}. Since we have only 2d equations here, which are
less than the number of unknowns, there is no sufficient information to solve either
query vectors or {M;, Ms}. Therefore, we believe that without prior knowledge of
secret key, neither data vector nor query vector, after such a series of processes
like splitting and multiplication, can be recovered by analyzing their corresponding

ciphertexts.

52

3.4.2 MRSE_I: Privacy-Preserving Scheme in Known Ci-

phertext Model

The adapted secure inner product computation scheme is not good enough for our
MRSE design. The major reason is that the only randomness involved is the scale
factor r in the trapdoor generation, which does not provide sufficient nondetermi-
nacy in the overall scheme as required by the trapdoor unlinkability requirement as
well as the keyword privacy requirement. To provide a more advanced design for

the MRSE, we now provide our MRSE_I scheme as follows.

3.4.2.1 MRSE_I Scheme

In our more advanced design, instead of simply removing the extended dimension
in the query vector as we plan to do at the first glance, we preserve this dimension
extending operation but assign a new random number ¢ to the extended dimension
in each query vector. Such a newly added randomness is expected to increase the
difficulty for the cloud server to learn the relationship among the received trap-
doors. In addition, as mentioned in the keyword privacy requirement, randomness
should also be carefully calibrated in the search result to obfuscate the document
frequency and diminish the chances for re-identification of keywords. Introducing
some randomness in the final similarity score is an effective way towards what we
expect here. More specifically, unlike the randomness involved in the query vector,
we insert a dummy keyword into each data vector and assign a random value to it.
Each individual vector D; is extended to (n + 2)-dimension instead of (n+ 1), where
a random variable €; representing the dummy keyword is stored in the extended
dimension. The whole scheme to achieve ranked search with multiple keywords over

encrypted data is as follows.

53

e Setup The data owner randomly generates a (n + 2)-bit vector as S and two
(n + 2) x (n+ 2) invertible matrices { My, My}. The secret key SK is in the
form of a 3-tuple as {5, My, Ms}.

e BuildIndex(F, SK) The data owner generates a binary data vector D; for every
document F;, where each binary bit D;[j] represents whether the correspond-
ing keyword W; appears in the document F;. Subsequently, every plaintext
subindex D; is generated by applying dimension extending and splitting pro-
cedures on D;. These procedures are similar with those in the secure kNN
computation except that the (n+ 1)-th entry in ﬁz is set to a random number
e;, and the (n+2)-th entry in D; is set to 1 during the dimension extending. D;
is therefore equal to (D;,e;,1). Finally, the subindex I; = {MTD;’, MI D;"}

is built for every encrypted document Cj.

e Tra pdoor(W) With ¢ keywords of interest in W as input, one binary vector)
is generated where each bit Q[j] indicates whether W; € W is true or false.
@ is first extended to n + 1-dimension which is set to 1, and then scaled by a
random number r # 0, and finally extended to a (n + 2)-dimension vector as
@ where the last dimension is set to another random number ¢. Cj is therefore
equal to (r@,r,t). After applying the same splitting and encrypting processes

as above, the trapdoor T3 is generated as {MI_IQ", M{lé”}.

o Query(T35;, k, T) With the trapdoor T, the cloud server computes the similar-
ity scores of each document F; as in equation 3.1. WLOG, we assume r > 0.

After sorting all scores, the cloud server returns the top-k ranked id list Fi;.

o4

With ¢ brought into the query vector and ¢; brought into each data vector, the

final similarity scores would be:

= (Di,Efi, 1) : (TQ,T, t)

= T(DZ -Q + 51) + . (31)

Note that in the original case, the final score is simply rD; - (), which preserves
the scale relationship for two queries on the same keywords. But such an issue is
no longer valid in our improved scheme due to the randomness of both ¢ and &;,

which clearly demonstrates the effectiveness and improved security strength of our

MSRE_I mechanism.

3.4.2.2 Analysis

We analyze this MRSE_I scheme from three aspects of design goals described in

section 3.2.

Functionality and Efficiency Assume the number of query keywords appearing
in a document F; is x; = D; - (). From equation 3.1, the final similarity score
as y; = I - Ty = r(v; +¢;) +t is a linear function of x;, where the coefficient
r is set as a positive random number. However, because the random factor ¢; is
introduced as a part of the similarity score, the final search result on the basis of
sorting similarity scores may not be as accurate as that in original scheme. For the
consideration of search accuracy, we can let ; follow a normal distribution N (u, 0?),

where the standard deviation ¢ functions as a flexible trade-off parameter among

95

search accuracy and security. From the consideration of effectiveness, o is expected
to be smaller so as to obtain high precision indicating the good purity of retrieved
documents. To quantitatively evaluate the search accuracy, we set a measure as
precision P, to capture the fraction of returned top-k documents that are included
in the real top-k list. Detailed accuracy evaluation on the real-world dataset will be
given in section 3.6.

As for the efficiency, our inner product based MRSE scheme is an outstanding
approach from the performance perspective. In the steps like BuildIndex or Trapdoor,
the generation procedure of each subindex or trapdoor involves two multiplications
of a (n+2) x (n+2) matrix and a (n + 2)-dimension vector with complexity O(n?).
In the Query, the final similarity score is computed through two multiplications of

two (n + 2)-dimension vectors with complexity O(n).

Privacy As for the data privacy, traditional symmetric key encryption techniques
could be properly utilized here and is not within the scope of this dissertation.

The index privacy is well protected if the secret key SK is kept confidential
since such vector encryption method has been proved to be secure in the known
ciphertext model [120]. We add two more dimensions to the vectors compared to
the adapted secure inner product computation described in Section 3.4.1.2. In the
encryption of data vectors, the number of equations as 2(n + 2)m in M{ Dy = Il
and MID;" = IV is still less than the number of unknowns as the sum of 2(n + 2)m
unknowns in m data vectors and 2(n + 2)? unknowns in {M;, My}. As a result, the
attacker cannot solve the equations. Note that the addition of dimensions will only
increase the security of the scheme [120].

With the randomness introduced by the splitting process and the random num-
bers r, and ¢, our basic scheme can generate two totally different trapdoors for the

same query W. This nondeterministic trapdoor generation can guarantee the trap-

26

of documents

o WMTWM ‘ hwﬂw S
’ ° Finalogimilarinfgcore °? '
(a) o =1

of documents
= N
S 8

HHHWWMW

0.4 0.6 0.8 1
Final similarity score

(b) 0 =05

.,,.Mm ‘

Figure 3.2: Distribution of final similarity score with different standard deviations,
10k documents, 10 query keywords.

door unlinkability which is an unsolved privacy leakage problem in related symmetric
key based searchable encryption schemes because of the deterministic property of
trapdoor generation [40]. Moreover, with properly selected parameter o for the ran-
dom factor ¢;, even the final score results can be obfuscated very well, preventing the
cloud server from learning the relationships of given trapdoors and the correspond-
ing keywords. Note that although o is expected to be small from the effectiveness
point of view, the small one will introduce small obfuscation into the the final sim-

ilarity scores, which may weaken the protection of keyword privacy and trapdoor

o7

unlinkability. As shown in Fig. 3.2, the distribution of the final similarity scores with
smaller o will enable the cloud server to learn more statistical information about
the original similarity scores, and therefore ¢ should be set large enough from the

consideration of privacy.

3.4.3 MRSE _II: Privacy-Preserving Scheme in Known Back-

ground Model

When the cloud server has knowledge of some background information on the out-
sourced dataset, e.g., the correlation relationship of two given trapdoors, certain
keyword privacy may not be guaranteed anymore by the MRSE_I scheme. This
is possible in the known background model because the cloud server can use scale
analysis as follows to deduce the keyword specific information, e.g., document fre-
quency, which can be further combined with background information to identify the
keyword in a query at high probability. After presenting how the cloud server uses
scale analysis attack to break the keyword privacy, we propose a more advanced

MRSE scheme to be privacy-preserving in the known background model.

3.4.3.1 Scale Analysis Attack

Given two correlated trapdoors T; and T for query keywords { K, K3} and { K7, K», K3}
respectively, there will be two special cases when searching on any three documents

as listed in Tab. 3.1 and Tab. 3.2. In any of these two cases, there exists a system

o8

Table 3.1: K3 appears in every document
Doc | Query for {K;, Ko, K3} Query for {K;, Ky}
r1=3y1 =r(34e)+t |21 =291 =72+¢e)+ ¢
To=2,yp=1(2+e)+t |2y =11y2=1(14¢e) + 1
333:1,y3:7"(1+€3)+t x’3:0,y’3:7”(0+€3)+t’

W[DNO| —

of equations among final similarity scores y; for T} and y’; for T as follows,

y1—y2 = r(l4+e —e9);

vi—ya= r'(l14e —ey);

Y2 —ys = 1(l+e2—e3);
(3.2)

vo—1y's= r'(1+ey—e3);

y1—ys= 1(2+¢e —e3);

y'l — y’3 = 7“/(2 + g1 — 63).

\

To this end, although the exact value of z; is encrypted as y;, the cloud server could
deduce that whether all the three documents contain K3 or none of them contain
K3 through checking the following equivalence relationship among all final similarity

scores in two queries,

Y1 — Y2 _ Y2 — Y3 _ Y1 — Y3
Y1i—y Yo —1Y'3 Yi—Y'3

(3.3)

By extending three documents to the whole dataset, the cloud server could further
deduce two possible values of document frequency of keyword Kj3. In the known
background model, the server can identify the keyword K3 by referring to the key-

word specific document frequency information about the dataset.

29

Table 3.2: K3 does not appear in either document
Doc | Query for {K;, Ko, K3} Query for {K;, Ky}
r1=2,y1=r(24¢e)+t |21 =291 =72+¢e)+ ¢
zo=Llyp=r(l+e)+t|ay=1Lyr=r(14¢e)+1
x3=0,y3=r(0+e3)+t | 2/35=0,¢y3=r'(0+¢e3)+1

W[DNO| —

3.4.3.2 MRSE _II Scheme

The privacy leakage shown above is caused by the fixed value of random variable ¢;
in data vector D;. To eliminate such fixed property in any specific document, more
dummy keywords instead of only one should be inserted into every data vector D;.
All the vectors are extended to (n+ U + 1)-dimension instead of (n +2), where U is
the number of dummy keywords inserted. Improved details in the MRSE_II scheme

is presented as follows.

e Setup(1™) The data owner randomly generates a (n + U + 1)-bit vector as S

and two (n+ U + 1) x (n + U + 1) invertible matrices { My, M, }.

e Buildindex(F, SK) The (n + j + 1)-th entry in D; where j € [1,U] is set to a
random number £) during the dimension extending.

—~

e Trapdoor(W) By randomly selecting V' out of U dummy keywords, the corre-

sponding entries in () are set to 1.

e Query(T35;, k,Z) The final similarity score computed by cloud server is equal
to r(z; + Se™) + t; where the v-th dummy keyword is included in the V

selected ones.

3.4.3.3 Analysis

Assume the probability of two > 55-10 having the same value should be less than 1/2%,

it then means there should be at least 2¢ different values of ngv) for each data

60

vector. The number of different 255”) is not larger than (¥), which is maximized

when ¥ = 2. Besides, considering (/) > (4)” = 2V, it is greater than 2* when
U =2wand V = w. So every data vector should include at least 2w dummy entries,
and every query vector will randomly select half dummy entries. Here w can be
considered as a system parameter for the tradeoff between efficiency and privacy.
With properly setting the value of w, the MRSE_II scheme is secure against scale
analysis attack, and provides various expected privacy guarantees within the known
ciphertext model or the known background model.

Moreover, every) is assumed to follow the same uniform distribution M (y/ —
¢,) + ¢), where the mean is ;¢ and the variance as o’ is ¢?/3. According to the
central limit theorem, the sum of w independent random variables) follows the
Normal distribution, where the mean is wy/ and the variance is wo”® = wc?/3. To
make 3" e follow the Normal distribution N (u,o2) as above, the value of 4/ is set
as pu/w and the value of ¢ is set as \/ga so that wy/ = p and wo'® = o2, With

such parameter setting, search accuracy is statistically the same as that in MRSE_I

scheme.

3.5 Discussion

3.5.1 Supporting More Search Semantics

In the ranking principle “coordinate matching”, the presence of keyword in the
document or the query is shown as 1 in the data vector or the query vector. Actually,
there are more factors which could make impact on the search usability. For example,
when one keyword appears in most documents in the dataset, the importance of this
keyword in the query is less than other keywords which appears in less documents.

Similarly, if one document contains a query keyword in multiple locations, the user

61

may prefer this to the other document which contains the query keyword in only
one location. To capture these information in the search process, we use the TF
x IDF weighting rule within the vector space model to calculate the similarity,
where TF (or term frequency) is the number of times a given term or keyword
(we will use them interchangeably hereafter) appears within a file (to measure the
importance of the term within the particular file), and IDF (or inverse document
frequency) is obtained by dividing the number of files in the whole collection by
the number of files containing the term (to measure the overall importance of the
term within the whole collection). Among several hundred variations of the TF x
IDF weighting scheme, no single combination of them outperforms any of the others
universally [134]. Thus, without loss of generality, we choose an example formula
that is commonly used and widely seen in the literature (see Chapter 4 in [96]) for

the relevance score calculation,

1
Score(F;, Q) = 7] > (14Infij)-In(1+ %). (3.4)
! W]‘GW J
Here f;; denotes the TF of keyword W, in file F}; f; denotes the number of files
that contain keyword W; which is called document frequency; m denotes the total

number of files in the collection; and |F;| is the Euclidean length of file F;, obtained

by \/ > (1+1In f;;)?, functioning as the normalization factor.
j=1

In order to calculate the relevance score as shown in Eq. 3.4 on the server side, we
propose a new search mechanism MRSE_I_TF as follows which modify related data
structures in the previous scheme MRSE_I. As for the dictionary W, the document
frequency f; is attached to every keyword W;, which will be used in the generation
of query vector. In BuildIndex, for every keyword W; appearing in the document

F;, the corresponding entry D;[j] in the data vector Dj; is changed from a binary

62

1+1H fi,j
| £

value 1 to the normalized term frequency, i.e., . Similarly, the query vector
@ changes corresponding entries from 1 to In(1 + fm) Finally, the similarity score
J

is as follows,

1+Inf;; m
W;€Q ! J
J

= r(Score(F;, Q) +¢;) +t. (3.5)

Therefore, the similarity of the document and the query in terms of the cosine of
the angle between the document vector and the query vector could be evaluated by
computing the inner product of subindex /; and trapdoor T;. Although this similar-
ity measurement introduces more computation cost during the index construction
and trapdoor generation, it captures more related information on the content of
documents and query which returns better results of users’ interest. As we will see
in section 3.6, the additional cost of this measurement in Buildlndex and Trapdoor
is relatively small compared to the whole cost. Besides, BuildIndex is a one-time
computation for the whole scheme.

Here, although some entries in D; have been changed from binary value 1 to
normalized term frequency, the scale analysis attack presented in section 3.4.2 still
partially works in the known background model. With similar setting in the previous
section, the first query contains two keywords as { K, Ky} while the second query
contains three keywords as { K7, Ky, K3}. Given three documents as an example, the
first keyword K appears in two documents as F; and Fj, and the second keyword
K, appears in document F;. Note that there are some difference between this attack
and previous one. If the third keyword K3 appears in each of these three documents

as shown in Tab. 3.1, such equivalence relationship as shown in in Eq. 3.3 does no

63

exist among these documents here. Here we only consider the case that the third
keyword K3 does not appear in any of these three documents. The final similarity

scores are shown as follows,

(1+1n m 1+1In m
Y1 = (T{Ll1n(1+z>+|T|bf‘l721n(1+£)+51)+t,
1+1Info, m
=r(— 2L In(1 4+ =) + &) + £;
Y2 (|F2| (f1> 2)
Ys = reg + L (36)
3.6
14+ 1In m 1+1In m
yllZT,(T{M~ID(1+E>+|T|JCLQ'1H(1+£)+81>+t,;
1+1Info, m
=1 (= In(l+) +e2) + 1
Vo= r/(TE (1 4+) +)
y/g = 7”,63 + t,.

Recall that the scale analysis attack presented in section 3.4.2, it is caused by
the fixed value of random variable ¢; in each data vector D; which remains same
here. From Eq. 3.6, the cloud server can still deduce the equivalence relationship as
presented in Eq. 3.3. As a result, the document frequency could be exposed to cloud
server and further used to identify this keyword in the known background model.
To this end, we can employ the same solution as presented in MRSE_II to build the
new mechanism as MRSE_II_TF where more dummy keywords instead of only one

are inserted into data vectors.

3.5.2 Supporting Data Dynamics

After the dataset is outsourced to the cloud server, it may be updated in addition to
being retrieved [109]. Along with the updating operation on data documents, sup-
porting the score dynamics in the searchable index is thus of practical importance.

While we consider three dynamic data operations as inserting new documents, modi-

64

fying existing documents and deleting existing documents, corresponding operations
on the searchable index includes generating new index, updating existing index and
deleting existing index. Since dynamic data operations also affect the document

frequency of corresponding keywords, we also need to update the dictionary W.

For the operation of inserting new documents in the dataset, there may be some
new keywords in new documents which need to be inserted in the dictionary WW. Re-
member that every subindex in our scheme has fixed dimension as same as the num-
ber of keywords in the old dictionary, so the straightforward solution is to retrieve
all the subindexes from the cloud server, and then decrypt, rebuild and encrypt
them before outsourcing to the cloud server. However, this approach introduces
much cost on computation and communication for both sides which is impractical
in the “pay-as-you-use” cloud paradigm. To reduce such great cost, we preserve
some blank entries in the dictionary and set corresponding entries in each data vec-
tor as 0. If the dictionary needs to index new keywords in the case of inserting new
documents, we just replace the blank entries in the dictionary by new keywords,
and generate subindexes for new documents based on the updated dictionary. The
other documents and their subindexes stored on the cloud server are not affected
and therefore remain the same as before. The number of preserved entries functions
as a tradeoff parameter to balance the storage cost and the system scalability.

When existing documents are modified, corresponding subindexes are also re-
trieved from the cloud server and then updated in terms of the term frequency
before outsourcing. If new keywords are introduced during the modification op-
eration, we utilize the same method which is proposed in the previous insertion
operation. As a special case of modification, the operation of deleting existing doc-
uments introduce less computation and communication cost since it only requires to

update the document frequency of all the keywords contained by these documents.

65

3.6 Performance Analysis

In this section, we demonstrate a thorough experimental evaluation of the proposed
technique on a real-world dataset: the Enron Email Dataset [39]. We randomly
select different number of emails to build dataset. The whole experiment system is
implemented by C language on a Linux Server with Intel Xeon Processor 2.93GHz.
The public utility routines by Numerical Recipes are employed to compute the
inverse of matrix. The performance of our technique is evaluated regarding the
efficiency of four proposed MRSE schemes, as well as the tradeoff between search

precision and privacy.

3.6.1 Precision and Privacy

As presented in Section 3.4, dummy keywords are inserted into each data vector and
some of them are selected in every query. Therefore, similarity scores of documents
will be not exactly accurate. In other words, when the cloud server returns top-k
documents based on similarity scores of data vectors to query vector, some of real
top-k relevant documents for the query may be excluded. This is because either their
original similarity scores are decreased or the similarity scores of some documents
out of the real top-k are increased, both of which are due to the impact of dummy
keywords inserted into data vectors. To evaluate the purity of the £ documents
retrieved by user, we define a measure as precision P, = k’'/k where k' is number of
real top-k documents that are returned by the cloud server. Fig. 3.3(a) shows that
the precision in MRSE scheme is evidently affected by the standard deviation o of
the random variable €. From the consideration of effectiveness, standard deviation
o is expected to be smaller so as to obtain high precision indicating the good purity

of retrieved documents.

66

100

gaw
—_ D
S
~ 80r i
[
iel
1]
g 7ot
o _
a —-0=1
——0=05
60
50 i i i i
50 70 90 110 130 150
of retrieved documents
(a) Precision
50
40+ 1
L) —e— =
§’ . 0.5
—+—0=0.
& 30t
©
=
-
T ol : i
= >
©
[0 ¢
10} 1
] M
0 ‘ ‘ ‘ ‘
50 70 90 110 130 150

of retrieved documents

(b) Rank Privacy

Figure 3.3: With different choice of standard deviation o for the random variable ¢,
there exists tradeoff between (a) Precision, and (b) Rank Privacy.

However, user’s rank privacy may have been partially leaked to the cloud server
as a consequence of small o. As described in section 3.3.2, the access pattern is
defined as the sequence of ranked search results. Although search results cannot
be protected (excluding costly PIR technique), we can still hide the rank order of
retrieved documents as much as possible. In order to evaluate this privacy guarantee,
we first define the rank perturbation as p; = |r; —r/;| /k, where r; is the rank number
of document Fj in the retrieved top-k documents and r’; is its rank number in the

real ranked documents. The overall rank privacy measure at point k is then defined

67

as the average of all the p; for every document ¢ in the retrieved top-k documents,
denoted as P, = 3 pi/k. Fig. 3.3(b) shows the rank privacy at different points with
two standard deviations ¢ = 1 and o = 0.5 respectively.

From these two figures, we can see that small o leads to higher precision of
search result but lower rank privacy guarantee, while large o results in higher rank
privacy guarantee but lower precision. In other words, our scheme provides a balance
parameter for data users to satisfy their different requirements on precision and rank

privacy.

3.6.2 Efficiency
3.6.2.1 Index Construction

To build a searchable subindex I; for each document Fj in the dataset F, the first
step is to map the keyword set extracted from the document F; to a data vector D,
followed by encrypting every data vector. The time cost of mapping or encrypting
depends directly on the dimensionality of data vector which is determined by the
size of the dictionary, i.e., the number of indexed keywords. And the time cost of
building the whole index is also related to the number of subindex which is equal
to the number of documents in the dataset. Fig. 3.4(a) shows that, given the same
dictionary where [WW| = 4000, the time cost of building the whole index is nearly
linear with the size of dataset since the time cost of building each subindex is fixed.
Fig. 3.4(b) shows that the number of keywords indexed in the dictionary determines
the time cost of building a subindex. As presented in the section 3.4.1, the major
computation to generate a subindex in MRSE_I includes the splitting process and
two multiplications of a (n + 2) X (n + 2) matrix and a (n + 2)-dimension vector

where n = |W|, both of which have direct relationship with the size of dictionary.

68

4 T T T s

= ——MRSE_| - X
C\é 35_ 1 MRSE_” : b .
% S| TMRSEITF| A
% ——MRSE_IL_TF
225t :
o=
§ 2 .. 4
=
E IR 51 | AL SUUNII . W
=]
R W N
i: 1

0.5 4 6 8 10

of documents in the dataset (x 103)

(a) For the different size of dataset with the same
dictionary, n = 4000

5 T
“947 5-MRSE_Il
» || MRSE_L_TF
B || MRSE_I_TF
T 3t 4
=
[=)]
L=
S 2t
=]
O
ks
o 1r
£
E 4 -
0 j ; i
4 6 8 10 12

of keywords in the dictionary (x 103)

(b) For the same dataset with different size of
dictionary, m = 1000

Figure 3.4: Time cost of building index.

The dimensionality of matrices in MRSE Il is (n + U + 1) x (n + U + 1) so that
its index construction time with complexity O(m(n + U)?) is bigger than that in
MRSE_I with complexity O(mn?) as shown in both Fig. 3.4(a) and Fig. 3.4(b). As
presented in section 3.5.1, both MRSE_I.TF and MRSE_II_TF introduce more com-
putation during the index construction since we need to collect the term frequency
information for each keyword in every document and then perform the normaliza-
tion calculation. But, as shown in both figures, such additional computation in the

TF x IDF weighting rule is insignificant considering much more computation are

69

caused by the splitting process and matrix multiplication. Although the time of
building index is not a negligible overhead for the data owner, this is a one-time
operation before data outsourcing. Besides, Tab. 3.3 lists the storage overhead of
each subindex in two MRSE schemes within different sizes of dictionary. The size of
subindex with complexity O(n) is absolutely linear with the dimensionality of data
vector which is determined by the number of keywords in the dictionary. The sizes
of subindex are very close in the two MRSE schemes because of trivial differences

in the dimensionality of data vectors.

3.6.2.2 Trapdoor Generation

Fig. 3.5(a) shows that the time to generate a trapdoor is greatly affected by the
number of keywords in the dictionary. Like index construction, every trapdoor
generation incurs two multiplications of a matrix and a split query vector, where
the dimensionality of matrix or query vector is different in two proposed schemes
and becomes larger with the increasing size of dictionary. Fig. 3.5(b) demonstrates
the trapdoor generation cost in the MRSE_IT scheme with complexity O((n + U)?)
is about 10 percentages larger than that in the MRSE_I scheme with complexity
O(n?). The MRSE_ITF and MRSE_ILTF have similar difference where the ad-
ditional logarithm computation accounts for very small proportion of the whole
trapdoor generation. Like the subindex generation, the difference of costs to gen-
erate trapdoors is majorally caused by the different dimensionality of vector and
matrices in the two MRSE schemes. More importantly, it shows that the number of
query keywords has little influence on the overhead of trapdoor generation, which is

a significant advantage over related works on multi-keyword searchable encryption.

70

—+—MRSE_|

5-MRSE_I :
15 —=—MRSE__TF | oem i
——MRSE_IL_TF

015 ki il S I—

Time of generating trapdoor(s)

4 6 8 10 12
of keywords in the dictionary (x 103)

(a) For the same query keywords within different
sizes of dictionary, t = 10

22 T
o —+—MRSE_|
9 =E=MRSE_II :
5’20_+MRSE_|_TF 4
'g ——MRSE_IL_TF
-U E
@ 18+
@
S £ o & £
"@' ABE oo Loy s o e s
2 it * i
[(F] :
o
"'6 14 ..
[(F]
E
L ; ; ‘

5 10 15 20 25

of keywords in the query

(b) For different numbers of query keywords
within the same dictionary, n = 4000

Figure 3.5: Time cost of generating trapdoor.

3.6.2.3 Query

Query execution in the cloud server consists of computing and ranking similarity
scores for all documents in the dataset. The computation of similarity scores for the
whole data collection is O(mn) in MRSE_I and MRSE_I_TF, and the computation
increases to O(m(n + U)) in MRSE_II and MRSE_II_TF. Fig. 3.6 shows the query
time is dominated by the number of documents in the dataset while the number of

keywords in the query has very slight impact on it like the cost of trapdoor generation

71

[+1]
L]

——MRSE_|

= MRSE_I
——MRSE_|_TF
|| ——MRSE_II_TF

o
=]
T

I~
[}

]
L]

Time of query (x 10'25)
(43
[}

-

2 4 6 8 10
of documents in the dataset (x 103)

(a) For the same query keywords in different sizes
of dataset, t = 10

4.8 :
—+—MRSE_|
—MRSE_I
5 48| >—MRSE_I_TF |
18 ——MRSE_II_TF| .
544 ...
>
[}
:, =
w 4.2F i ki
=]
£ — =
I— Qb b
%8 10 15 20 25

of keywords in the query

(b) For different numbers of query keywords in
the same dataset, m = 1000

Figure 3.6: Time cost of query.

above. The two schemes in the known ciphertext model as MRSE_I and MRSE_I_TF
have very similar query speed since they have the same dimensionality which is the
major factor deciding the computation cost in the query. The query speed difference
between MRSE_I and MRSE_I.TF or between MRSE_II and MRSE_II_TF is also
caused by the dimensionality of data vector and query vector. With respect to the
communication cost in Query, the size of the trapdoor is the same as that of the

subindex listed in the Tab. 3.3, which keeps constant given the same dictionary,

72

Table 3.3: Size of subindex/trapdoor
Size of dictionary | 4000 | 6000 | 8000 | 10000 | 12000
MRSE.1 (KB) 31.3 | 46.9 | 62.5 | 78.1 93.8
MRSEI (KB) | 325 | 48.1 | 63.8 | 79.4 95.0

no matter how many keywords are contained in a query. While the computation
and communication cost in the query procedure is linear with the number of query
keywords in other multiple-keyword search schemes [24,52], our proposed schemes

introduce nearly constant overhead while increasing the number of query keywords.

3.7 Related Work

3.7.1 Single Keyword Searchable Encryption

Traditional single keyword searchable encryption schemes [6,7,15,17,18,22,23,27,35,
40,51,65,98,104, 106, 115] usually build an encrypted searchable index such that its
content is hidden to the server unless it is given appropriate trapdoors generated via
secret key(s) [58]. It is first studied by Song et al. [98] in the symmetric key setting,
in which each word in the document is encrypted independently under a special
two-layered encryption construction. Thus, a searching overhead is linear to the
whole file collection length. Goh [51] developed a Bloom Filter based per-file index,
reducing the work load for each search request proportional to the number of files
in the collection. Chang et al. [35] also developed a similar per-file index scheme.
To further enhance search efficiency, Curtmola et al. [40] proposed a per-keyword
based approach, where a single encrypted hash table index is built for the entire file
collection, with each entry consisting of the trapdoor of a keyword and an encrypted
set of related file identifiers. Searchable encryption has also been considered in the

public-key setting. Boneh et al. [22] presented the first public-key based searchable

73

encryption scheme, with an analogous scenario to that of [98]. In their construction,
anyone with the public key can write to the data stored on the server but only
authorized users with the private key can search. Improved definitions are proposed
in [7]. Compared to symmetric searchable encryption, public key solutions are
usually very computationally expensive. Furthermore, the keyword privacy could
not be protected in the public key setting since server could encrypt any keyword
with public key and then use the received trapdoor to evaluate this ciphertext.
Besides, aiming at tolerance of both minor typos and format inconsistencies in
the user search input, fuzzy keyword search over encrypted cloud data has been
proposed by Li. et al.in [65] and further extended by Wang. et al. [108]. Note that
none of all these schemes support the ranked search problem which we are focusing
in this chapter. As an attempt to enrich query experience, our early works [104,106]
solve secure ranked keyword search which utilizes keyword frequency to rank results
instead of return undifferentiated results. However, it only supports single keyword

ranked search.

3.7.2 Boolean Keyword Searchable Encryption

To expand search functionalities, conjunctive keyword search [14,16,24,28,29,52,55,
76,77,80,97] over encrypted data have been proposed. The trapdoor construction
in most of these schemes clearly indicates which keyword field will be searched in
a query, and therefore exposes information related to keyword privacy and search
pattern. These schemes incur large overhead caused by their fundamental primi-
tives, such as computation cost by bilinear map, e.g. [24], or communication cost by
secret sharing, e.g. [16]. As a more general search approach, predicate encryption
schemes [59,63,93,95] are recently proposed to support both conjunctive and dis-

junctive keyword search capabilities, and even support inner product. Conjunctive

74

keyword search returns “all-or-nothing”, which means it only returns those docu-
ments in which all the keywords specified by the search query appear; disjunctive
keyword search returns undifferentiated results, which means it returns every doc-
ument that contains a subset of the specific keywords, even only one keyword of
interest. Note that, inner product queries in predicate encryption only predicates
whether two vectors are orthogonal or not, i.e., the inner product value is concealed
except when it equals zero. Without providing the capability to compare concealed
inner products, predicate encryption is not qualified for performing ranked search.
In short, none of existing Boolean keyword searchable encryption schemes support
multiple keywords ranked search over encrypted cloud data while preserving privacy
as we explore in this chapter. Furthermore, most of these schemes are built upon
the expensive evaluation of pairing operations on elliptic curves. Search query is
first converted into a polynomial before generating a trapdoor, and computation
complexity is polynomial on d* where ¢ is the number of variables and d is the
maximum degree of the resulting polynomial in each variable [59]. Such inefficiency
disadvantage also limits their practical performance when deployed in the cloud.
Portions of the work studied in this chapter were presented as extended abstract at
the 30th IEEE Conference on Computer Communications (INFOCOM’11) [30]. In

this chapter we extend and improve more technical details as compared to [30].

3.7.3 Secure Top-K Retrieval from Database Community

In database community, [8,21,48,102,130] are the most related works to our pro-
posed search schemes. The idea of uniformly distributing posting elements using an
order-preserving cryptographic function was first discussed in [102]. However, the
order-preserving mapping function proposed in [102] does not support score dynam-

ics, i.e., any insertion and updates of the scores in the index will result in the posting

75

list completely rebuilt. [130] uses a different order-preserving mapping based on
pre-sampling and training of the relevance scores to be outsourced, which is not
as efficient as our proposed schemes. When scores following different distributions
need to be inserted, their score transformation function still needs to be rebuilt. On
the contrary, in our scheme the score dynamics can be gracefully handled. We note
that supporting score dynamics, which can save quite a lot of computation over-
head when file collection changes, is a significant advantage in our scheme. Most
important, all the works based on order-preserving mapping techniques do not well
support multi-keyword search. Since the order-preserving mapping is only designed
for every single keyword, the simple sum of encrypted scores does not preserve the
order of the sum of original scores. [48] does not take into consideration the term

frequency of keywords during the query which causes the low search quality.

3.7.4 Other Related Techniques

Allowing range queries over encrypted data has been studied in both public key
setting [24,94], where advanced privacy preserving schemes were proposed to allow
more sophisticated multi-attribute search over encrypted files. Though these two
schemes provide provably strong security, they do not support the ordered result
listing on the server side. Thus, they can not be effectively utilized in our settings
since the user still does not know which retrieved files would be the most relevant.
Related research on range queries in symmetric key setting [9, 10] do not provide

provable security guarantee.

76

3.8 Conclusion

In this chapter, for the first time we define and solve the problem of multi-keyword
ranked search over encrypted cloud data, and establish a variety of privacy require-
ments. Among various multi-keyword semantics, we choose the efficient similarity
measure of “coordinate matching”, i.e., as many matches as possible, to effectively
capture the relevance of outsourced documents to the query keywords, and use “inner
product similarity” to quantitatively evaluate such similarity measure. For meeting
the challenge of supporting multi-keyword semantic without privacy breaches, we
propose a basic idea of MRSE using secure inner product computation. Then we
give two improved MRSE schemes to achieve various stringent privacy requirements
in two different threat models. We also investigate some further enhancements of our
ranked search mechanism, including supporting more search semantics, i.e., TF X
IDF, and dynamic data operations. Thorough analysis investigating privacy and ef-
ficiency guarantees of proposed schemes is given, and experiments on the real-world
dataset show our proposed schemes introduce low overhead on both computation

and communication.

7

Chapter 4

Privacy-Preserving Query over

Encrypted Graph-Structured Data

4.1 Introduction

In the increasingly prevalent cloud computing, datacenters play a fundamental role
as the major cloud infrastructure providers [11], such as Amazon, Google, and Mi-
crosoft. Datacenters provide the utility computing service to software providers who
further provide the application service to end users through Internet. The later ser-
vice has long been called “Software as a Service (SaaS)”, and the former service has
recently been called “Infrastructure as a Service (IaaS)”, where the software service
provider is also referred to as cloud service provider. To take advantage of computing
and storage resources provided by cloud infrastructure providers, data owners out-
source more and more data to the datacenters [58] through cloud service providers,
e.g., the online storage service provider, which are not fully trusted by data owners.
As a general data structure to describe the relation between entities, the graph has

been increasingly used to model complicated structures and schemaless data, such

78

as the personal social network (the social graph), the relational database, XML doc-
uments and chemical compounds studied by research labs [38,91,92, 128,132, 133].
Images in the personal album can also be modeled as the attributed relational graph
(ARG) [20]. For the protection of users’ privacy, these sensitive data have to be en-
crypted before outsourcing to the cloud. Moreover, some data are supposed to be
shared among trusted partners. For example, the album owner may share family
party photos with only authorized users including family members and friends. For
another example, the lab director and members are given the authorization to access
the entire lab data. In both cases, authorized users are usually planning to retrieve
some portion of data they are interested rather than the entire dataset, mostly be-
cause of the “pay-for-use” billing rule in the cloud computing paradigm. Considering
the large amount of data centralized in the datacenter, it is a very challenging task
to effectively utilize the graph-structured data after encryption.

With the conventional graph data utilization method, we first take the query
graph as an input, and then perform the graph containment query: given a query
graph as @ and a collection of data graphs as G = (G1,Gs,...,Gy,), find all the
supergraphs of () in G, denoted as Gg. The straightforward solution is to check
whether @) is subgraph isomorphic to every G; in G or not. However, checking sub-
graph isomorphism is NP-complete, and therefore it is infeasible to employ such
costly solution. To efficiently solve the graph containment query problem, there
have been a lot of proposed techniques [38,91,92, 128,132, 133|, most of which fol-
low the principle of “filtering-and-verification”. In the filtering phase, a pre-built
feature-based index is utilized to prune as many data graphs from the dataset as
possible and output the candidate supergraph set. Every feature in the index is a
fragment of a data graph, e.g., the subgraph. In the verification phase, each candi-

date supergraph is verified by checking subgraph isomorphism. Since the candidate

79

supergraph set is much smaller than the entire dataset, such approach involves less
subgraph isomorphism checking, and therefore is significantly more efficient than the
straightforward solution. However, when data graphs are stored in the encrypted
form in the cloud, the encryption excludes the filtering method which is based on the
plaintext index. Recently, Chase and Kamara proposed structured encryption [36]
to handle private access to parts of a large graph in encrypted form; yet only simple
operations such as neighbor queries are supported.

In the most related literature, the searchable encryption [22,30,40,64,65,106] is
a helpful technique that treats encrypted data as documents and allows a user to
securely search over it through specifying single keyword or multiple keywords with
Boolean relations. However, the direct application of these approaches to deploy
the secure large scale cloud data utilization system would not be necessarily suit-
able. The keyword-based search provides much less semantics than the graph-based
query since the graph could characterize more complicated relations than Boolean
relation. More importantly, these searchable encryption schemes are developed as
crypto primitives and cannot accommodate such high service-level requirements like
system usability, user query experience, and easy information discovery in mind.
Therefore, how to design an efficient encrypted query mechanism which supports
graph semantics without privacy breaches still remains a challenging open problem.

In this chapter, for the first time, we define and solve the problem of privacy-
preserving graph query in cloud computing (PPGQ). To reduce the times of checking
subgraph isomorphism, we adopt the efficient principle of “filtering-and-verification”
to prune as many negative data graphs as possible before verification. A feature-
based index is firstly built to provide feature-related information about every en-
crypted data graph. Then, we choose the efficient inner product as the pruning tool

to carry out the filtering procedure. To achieve this functionality in index construc-

80

tion, each data graph is associated with a binary vector as a subindex where each bit
represents whether the corresponding feature is subgraph isomorphic to this data
graph or not. The query graph is also described as a binary vector where each bit
means whether the corresponding feature is contained in this query graph or not.
The inner product of the query vector and the data vector could exactly measure the
number of query features contained in the data graph, which is used to filter negative
data graphs that do not contain the query graph. However, directly outsourcing the
data vector or the query vector will violate the index privacy or the query privacy.
To meet the challenge of supporting graph semantics without privacy breaches, we
propose a secure inner product computation mechanism, which is adapted from a
secure k-nearest neighbor (kNN) technique [120], and then show our improvements
on it to achieve various privacy requirements under the known-background threat
model. Our contributions are summarized as follows,
1) For the first time, we explore the problem of query over encrypted graph-structured
data in cloud computing, and establish a set of strict privacy requirements for such
a secure cloud data utilization system to become a reality.
2) Our proposed scheme follows the principle of “filtering-and-verification” for ef-
ficiency consideration, and thorough analysis investigating privacy and efficiency
guarantees of the proposed scheme is given.
3) The evaluation, which is performed with the widely-used AIDS antiviral screen
dataset on the Amazon EC2 cloud infrastructure, further shows our proposed scheme
introduces low computation and communication overhead.

The remainder of this chapter is organized as follows. In Section 4.2, we intro-
duce the system model, the threat model and our design goals. Section 4.3 gives
preliminaries, and section 4.4 describes the framework and privacy requirements

in PPGQ), followed by section 4.5, which gives our proposed scheme. Section 4.6

81

Service

[R) |
5 TR
[
o : ‘\Que,y | \
Sy Infrastructure “\ca,?df,d ~ \
e 6'3‘@ ate s | I
5 Cloud server Sf*: @ |
@ L \ !

«———search control (trapdoors)
-«——access control (data decryption keys}———

Data owner Data users

Figure 4.1: Architecture of graph query over encrypted cloud data

presents evaluation results. We discuss related work on both keyword searchable
encryption and graph containment query in Section 4.7, and conclude the chapter

in Section 4.8.

4.2 Problem Formulation

4.2.1 The System Model

Considering a cloud data storage service, involving four different entities: the data
owner, the data user, the storage service provider/cloud service provider, and the
datacenter/cloud infrastructure provider. To take advantage of the utility comput-
ing services provided by the datacenter, e.g., computing and storage resources, the
storage service provider deploys its storage service on top of the utility computing
in datacenter and delivers the service to end users (including data owners and data
users) through Internet. In our system model, neither cloud service provider nor
cloud infrastructure provider is fully trusted by data owners or data users, so they
are treated as an integrated entity, named the cloud server, as shown in Fig. 4.1.
The data owner has a graph-structured dataset G to be outsourced to the cloud
server in the encrypted form G. To enable the query capability over G for effective

data utilization, the data owner will build an encrypted searchable index Z from G

82

before data outsourcing, and then both the index Z and the encrypted graph dataset
G are outsourced to the cloud server. For every query graph @), an authorized user
acquires a corresponding trapdoor Ty through the search control mechanism, e.g.,
broadcast encryption [40], and then sends it to the cloud server. Upon receiving Tg
from data users, the cloud server is responsible to perform query over the encrypted
index Z and return the encrypted candidate supergraphs. Finally, data users decrypt
the candidate supergraphs through the access control mechanism, and verify each

candidate by checking subgraph isomorphism.

4.2.2 The Known Background Threat Model

The cloud server is considered as “honest-but-curious” in our model, which is con-
sistent with most related works on searchable encryption [30,129]. Specifically, the
cloud server acts in an “honest” fashion and correctly follows the designated pro-
tocol specification. However, it is “curious” to infer and analyze the data and the
index in its storage and interactions during the protocol so as to learn additional
information. The encrypted data G and searchable index Z can be easily obtained
by the cloud server, because both of them are outsourced and stored on the cloud
server. In addition to these encrypted information, the cloud server is supposed to
know some backgrounds on the dataset, such as its subject and related statistical
information. As a possible attack similar to that in [130], the cloud server could

utilize the feature frequency to identify features contained in the query graph.

4.2.3 Design Goals

To enable the graph query for the effective utilization of outsourced cloud data under
the aforementioned model, our design should simultaneously achieve security and

performance guarantees.

83

e Effectiveness: To design a graph query scheme that introduces few false

positives in the candidate supergraph set.

e Privacy: To prevent the cloud server from learning additional information
over outsourced data and index in query interactions, and to meet privacy

requirements specified in section 4.4.3.

e Efficiency: Above goals on effectiveness and privacy should be achieved with

low communication and computation overhead.

4.2.4 Notations

e G — the graph-structured dataset, denoted as a collection of m data graphs

Q — (Gl,GQ,...,Gm).

e G- the encrypted graph-structured dataset outsourced into the cloud, denoted
as §: (él,ég, ce ,ém)

e id(G;) — the identifier of the data graph G; that can help uniquely locate the

graph.
e F —the feature set mined from the graph dataset, denoted as F = (F}, Fy, ..., F},).

e D —the frequent feature dictionary, denoted as D = {Lp,, Lp,, ..., LEg, }, where

Ly, is the unique canonical label of Fj;

e 7 — the searchable index associated with G , denoted as (Iy, Iy, ..., I,), where

each subindex I; is built from G;.
e () — the query graph from the data user.

o Fo — the subset of F, consisting of frequent features contained in (), denoted

as]:Q: {FHF] QQ,FJ‘ Ef}

84

e Gioy —the subset of G, consisting of exact supergraphs of the graph @, denoted
as Giop = {1d(G4)|Q € Gi, G; € G}

e Gr, — the subset of G, consisting of candidate supergraphs of the graph @,

denoted as Gz, = NG(F,}, where F; € Fg.

e T — the trapdoor for the query graph Q.

4.3 Preliminaries

4.3.1 Graph Query

A labeled, undirected, and connected graph is a five-tuple as {V, E, ¥y, ¥g, L},
where V' is the vertex set, £ C V x V is the edge set, and L is a labeling function:
V — ¥y and E — Y. We use the number of vertices |V (G)| to represent the size
of the graph G.
Subgraph Isomorphism Given two graphs G = {V,E, Xy, Y, L} and G’ =
{V',E',Yy,YE, L'}, G is subgraph isomorphic to G’ if there is an injection f :
V — V' such that

1. VveV, Lv)=L(f(v)).

2.V (u,v) € E,(f(u), f(v)) € E.

3. V (u,v) € E, L(u,v) = L'(f(u), f(v)).
Graph Containment Query If G is subgraph isomorphic to G’, we call G is a
subgraph of G’ or G’ is a supergraph of G, denoted as G C G’. Such relation is also
referred to as G is contained by G' or G’ contains G. Given a graph dataset G =
(G1,Gs,...,G,y) and a query graph @, a graph containment query problem is to find
all the supergraphs of @) from the dataset G, denoted as Gyqy = {id(G;)|Q C G;,G; €

G} where id(G;) is the identifier of the graph G;. The number of supergraphs of @),

85

i.e., |Giqyl, is called the support, or the frequency of Q.

Considering the large size of the graph dataset, it is impractical to solve the

graph containment query problem by sequentially checking whether @) is subgraph
isomorphic to each graph in G or not, because checking subgraph isomorphism has
been proved to be NP-complete [50]. To reduce the times of checking subgraph
isomorphism, most graph query works [38,91,92,128,132,133] follow the principle
of “filtering-and-verification”.
Filtering-and-Verification In the filtering phase, a feature-based index for the
dataset G is utilized to prune most negative data graphs that does not contain the
query graph @, and then produce the candidate supergraph set. In the verification
phase, the subgraph isomorphism is checked between the query graph and every
candidate supergraph to output the exact supergraph set Gyqy.

The feature-based index is pre-built from the entire graph dataset, where each
feature F} is a substructure of a data graph in the dataset, such as subpath [92],
subtree [91,132,133] and subsubgraph [38,128]. Let F = (F}, Fy, ..., F},) represent
the feature set. The supergraph set of every feature F}, denoted as Gyr,}, is stored
in the index. Let Fo = {F}|F; C Q, F; € F} denote the query feature set consisting
of features contained in the query graph. Then, the candidate supergraphs of the
query graph GG can be obtained by the intersection operation as Gz, = NG(x,
where Fj, € Fg. The false positive ratio is then defined as S{Lj}“

Frequent and Discriminative Substructure It is infeasible and unnecessary to
index every possible substructure of all the graphs in a large dataset, and therefore
only frequent and discriminative substructures are indexed to reduce the index size.
A feature Fj is frequent if its support, or frequency is large enough, i.e., |Gy Fj}| >0,

where o is called the minimum support. A feature F} is discriminative if it can

INkG(F, 3

o] > 7, where
J

provide more pruning power than its subgraph feature set, i.e.,

86

Fj, C F; and 7 is called the discriminative threshold.

4.3.2 Secure Euclidean Distance Computation

In order to compute the inner product in a privacy-preserving method, we will adapt
the secure Euclidean distance computation in the secure k-nearest neighbor (kNN)
scheme [120]. In this scheme, the Euclidean distance between a database record p;
and a query vector ¢ is used to select k nearest database records. The secret key is
composed of one (d+ 1)-bit vector as S and two (d+ 1) x (d+ 1) invertible matrices
as {M, My}, where d is the number of fields for each record p;. First, every data
vector p; and the query vector ¢ are extended to (d 4+ 1)-dimensional vectors as p;
and ¢, where the (d+1)-th dimension is set to —0.5/[p?|| and 1, respectively. Besides,
the query vector ¢ is scaled by a random number r > 0 as (rq,r). Then, p; is split
into two random vectors as {p;, p;"}, and ¢ is also split into two random vectors
as {¢’,¢"}. Note here that vector S functions as a splitting indicator. Namely,
if the j-th bit of S is 0, p;'[j] and p;"[j] are set as the same as p;[j], while ¢'[J]
and ¢ ”[j] are set to two random numbers so that their sum is equal to ¢[j]; if the
j-th bit of S is 1, the splitting process is similar except that p; and ¢ are switched.

-/

The split data vector pair {p;, p;"} is encrypted as {M{p;/, Mip;"}, and the split
query vector pair {¢’, ¢ "} is encrypted as {M;'q’, M;'q"}. In the query step, the
product of the data vector pair and the query vector pair, i.e., —0.57(||p;||> — 2p; - q),
is serving as the indicator of the Euclidean distance (||p;||> — 2p; - ¢ +1lq||?) to select
k nearest neighbors. Without prior knowledge of the secret key, neither the data
vector nor the query vector, after such a series of processes, can be recovered by
analyzing their corresponding ciphertexts. The security analysis in [120] shows

that this computation technique is secure against known-plaintext attack, which is

roughly equal in security to a d-bit symmetric key. Therefore, d should be no less

87

than 80 to make the search space sufficiently large.

4.4 PPGQ: The Framework and Privacy

In this section, we define the framework of query over encrypted graph-structured
data in cloud computing and establish various strict system-wise privacy require-

ments for such a secure cloud data utilization system.

4.4.1 The Framework

Our proposed framework focuses on how the query works with the help of index
which is outsourced to the cloud server. We do not illustrate how the data itself is
encrypted, outsourced or accessed, as this is a complementary and orthogonal issue
and has been studied elsewhere [129]. The framework of PPGQ is illustrated as

follows.

e FSCon(G, o) Takes the graph dataset G and the minimum support o as inputs,

outputs a frequent feature set F.
e KeyGen(&) Takes a secret & as input and outputs a symmetric key K.

e Buildindex(G, K) Takes the graph dataset G and the symmetric key K as inputs,

output a searchable index Z.

e TDGen(Q,K) Takes the query graph @ and the symmetric key K as inputs,

outputs a corresponding trapdoor Tt,.

o Query(Ty,T) Takes the trapdoor Ty and the searchable index I as inputs, re-

turns Gr,, i.¢., the candidate supergraphs of query graph Q.

88

The first three algorithms, i.e., FSCon, BuildIndex, and BuildIndex, are run by the
data owner as pre-processes. The query algorithm is run on the cloud server as a part
of the cloud data storage service. According to various search control mechanisms,
the trapdoor generation algorithm TDGen may be run by either the data owner
or the data user. Besides, depending on some specific application scenarios, while
search requests on confidential documents may be allowed for all users, the access
to document contents may be forbidden for those low-priority data users. Note that

neither search control or access control are within the scope of this dissertation.

4.4.2 Choosing Frequent Features

To build a feature-based index, there are three choices of features, i.e., subpath, sub-
tree and subgraph, which can be extracted from the graph dataset. According to
the feature comparison in [133], with the same minimum support, either subtree-
based or subgraph-based feature set is larger than subpath-based one, especially
when the feature size is between 5 and 20. To be consistent with the size of graph
which is |V(G)|, the size of feature is measured by its number of vertices |V (F})|.
As for the cloud server, the larger feature set will demand more index storage, and
also incur larger computation cost during the query process. However, the pruning
power of the subgraph-based index performs the best among all the three choices,
which leads to the lowest false positive ratio and the smallest candidate supergraph
set.From the perspective of the data user, the size of the candidate supergraph set
has a direct and important impact on the communication and computation cost.
Compared with the powerful cloud server, data users may access the cloud server
through portable devices, e.g., mobile phones and netbooks, which have limited ca-
pability of communication and computation to retrieve the candidate supergraph set

and check subgraph isomorphism. To this end, the subgraph-based index is more

89

appropriate than the other two choices for our PPGQ framework that is designed for
the efficient graph-structured data utilization in cloud computing. To generate the
frequent feature set, there have been a lot of frequent subgraph mining algorithms
over the large graph dataset, such as gSpan [127], and Gaston [72]. For the index-
ing purpose, every frequent subgraph should be represented as a unique canonical
label which can be accomplished by existing graph sequentialization techniques, like
CAM [54] and DFS [127]. Besides, the shrinking process on the frequent feature
set is not adopted in our framework since it will weaken the pruning power of index.
As the subgraph is chosen as the feature to build index in our framework, we do
not distinguish between frequent feature and frequent subgraph in the rest of this

chapter.

4.4.3 Privacy Requirements

As described in the framework, data privacy is to prevent the cloud server from
prying into outsourced data, and can be well protected by existing access control
mechanism [129]. In related works on privacy-preserving query, like searchable en-
cryption [40], representative privacy requirement is that the server should learn
nothing but query results. With this general privacy statement, we explore and es-
tablish a set of stringent privacy requirements specifically for the PPGQ framework.
While data privacy guarantees are demanded by default in the related literature,
various query privacy requirements involved in the query procedure are more com-

plex and difficult to tackle as follows.

4.4.3.1 Index Privacy

With respect to the index privacy, if the cloud server deduces any association be-

tween frequent features and encrypted dataset from outsourced index, it may learn

90

10

107

107

Feature support
N

10°¢

-
-
-
-

0

10 : : :
10° 10' 10° 10° 10
Feature rank (sorted by its support)

4

Figure 4.2: Distribution of Feature Support

the major structure of a graph, or even the entire topology of a small graph. There-
fore, searchable index should be constructed in such a way that prevents the cloud

server from performing such kind of association attack.

4.4.3.2 Feature Privacy

Data users usually prefer to keep their query from being exposed to others like the
cloud server, and the most important concern is to hide what they are querying, i.e.,
the features indicated by the corresponding trapdoor. Although trapdoor can be
generated in a cryptographic way to protect the query features, the cloud server may
do some statistical analysis over the search results to make an estimate. Especially,
the feature support (i.e., the number of data graphs containing the feature), a kind
of statistical information, is sufficient to identify the feature with high probability.
When the cloud server knows some background information of the dataset, this
feature-specific information can be utilized to reverse-engineer the feature. As pre-
sented in Fig. 4.2, the distribution of feature support in the AIDS antiviral screen
dataset [5] provides enough information to identify most frequent features in the

dataset. Such problem is similar with the keyword privacy issue in [131], where

91

document frequency (the number of documents containing the keyword) is used as

a statistical information to reverse-engineer the keyword.

4.4.3.3 Trapdoor Unlinkability

The trapdoor generation function should be a randomized one instead of being
deterministic. In particular, the cloud server should not be able to deduce the re-
lationship of any given trapdoors, e.g., to determine whether the two trapdoors
are formed by the same search request or not. Otherwise, the deterministic trap-
door generation would give the cloud server advantage to accumulate frequencies
of different search requests regarding different features, which may further violate
the aforementioned feature privacy requirement. So the fundamental protection for
trapdoor unlinkability is to introduce sufficient nondeterminacy into the trapdoor

generation procedure.

4.4.3.4 Access Pattern

Access pattern is the sequence of query results where each query result is Gr,,
including the id list of candidate supergraphs of the query graph. Then the access
pattern is denoted as (G Fo,1 9Fo, - .) which are the results of sequential queries.
In related literature, although a few schemes (e.g., [23,29]) have been proposed
to utilize private information retrieval (PIR) technique [56] to hide access pattern,
our proposed schemes are not designed to protect access pattern for the efficiency
concerns. This is because any PIR-based technique must “touch” the whole dataset
outsourced on the server which is inefficient in the large scale cloud system. To this
end, the query result of any single feature F, which is part of access pattern, cannot
be hidden from the cloud server. Such query result G will directly expose the

support of the feature, and break the feature privacy as discussed above. Therefore,

92

we do not consider the single-feature query in our proposed schemes.

4.5 PPGQ: The Proposed Scheme and Analysis

In order to accomplish the filtering purpose in the graph query procedure, the data
graph G is selected as a candidate supergraph of the query graph @ if and only if
G; contains all the frequent features in (). Let \; represent the number of query
features contained in the data graph G;. For every candidate supergraph G, its
corresponding \; should be equal to the size of the query feature set Fg, i.e., \; =
|Fgl|. To obtain the candidate supergraph set, we propose to employ the efficient
inner product computation for pruning negative data graphs G; that do not contain
the query graph, i.e., \; < Fq. Specifically, every data graph G; is formalized as a
bit vector g; where each bit g;;) is determined by checking whether G; contains the
frequent feature F; or not. If F; C G, g, is set as 1; otherwise, it is set as 0. The
query graph @ is formalized as a bit vector ¢ where each bit gf; also represents the
existence of the frequent feature F} in the query feature set Fg. Then, A; can be
acquired via computing the inner product of the data vector g; and the query vector
q, i.e., g; - q. To preserve the strict system-wise privacy, the data vector g; and the
query vector ¢ should not be exposed to the cloud server. In this section, we first
design a secure inner product computation mechanism, which is adapted from the
secure Euclidean distance computation technique, and then show how to improve it

to be privacy-preserving under the known-background threat model.

93

Table 4.1: Analysis on inner products in two correlated queries

G FQ For = Fo U{Fi} v Jyi | N — A
Ai r’

Gi |yi=rN | N =N+1 v =r'\ A_t-/ - 1

Gilys=rd| N =X y'=rN | % 0

4.5.1 Privacy Concerns on Secure Inner Product Computa-
tion

Since the inner product of the data vector and the query vector is preferred to select
candidate supergraphs of the query graph, the secure Euclidean distance compu-
tation technique in the secure kNN scheme [120] cannot be directly utilized here.
As shown in Section 3.4.1, by eliminating the extended dimension which is related
to the Euclidean distance, the final inner product result changes to be 7(g; - q).
Since the new result r(g; - ¢) can serve as an indicator of the original inner prod-
uct g; - ¢, it seems that an efficient and secure inner product computation scheme
can be appropriately achieved. However, the cloud server may break the feature
privacy via analyzing final inner products and figuring out some feature-specific sta-
tistical information, e.g., the support of feature. With the background knowledge
of the outsourced graph dataset, which can be obtained by the cloud server under
the known-background model, such feature-specific information could be further
utilized to identify what feature is included in the query at high probability. We
first demonstrate how such statistical analysis attack could break feature privacy as
follows.

Whenever there exist two query graphs which have inclusion relationship, the
cloud server could explore the relationship among final inner products in two queries.
Assume that Ty and T be trapdoors for two query graphs () and @', and their
corresponding query feature sets have the inclusion relation as Fo C F¢. Especially,

when the differential feature subset contains only one feature, i.e., |Fgr| = 1 where

94

For = Fo\Fg, the cloud server can deduce an estimate of the support of the
differential feature and further identify this feature with the background knowledge
of the graph dataset. As listed in Tab. 4.1, the second query feature set F¢ includes
one more feature as Fj than the first one Fy. The cloud server evaluates the
expression y;' /y;, which is equal to (A;/A;) (1’ /r) for every graph G, and then obtains
a large number of different values. However, these values could be distinguished into
two categories. If the graph G; does not contain the feature Fj, i.e., \;/ = J\;, its
corresponding expression evaluation y;’/y; is equal to 7//r; otherwise, it is larger
than r'/r and can be easily detected because of its special ratio as % Therefore,
the minimum values over the whole dataset indicate that corresponding data graphs
do not contain the feature Fj, and other graphs with larger values contain it. In
addition, by checking whether the expression y; is equal to 0 or not, the special
case where the data graph G; contains neither feature in F¢ can be recognized by
the cloud server. In such case, the existence of feature F}, in G; can be determined
by checking whether the expression y;" is equal to 0 or not. To this end, the total
number of data graphs containing this feature, i.e., |G¢p,y|, is uncovered. Under the
known-background threat model, the cloud server could break the feature privacy

with both the support of single feature and the distribution of all the supports as

illustrated in Fig. 4.2.

4.5.2 The Proposed Privacy-Preserving Graph Query Scheme

The statistical analysis attack shown above works when the final inner product y; is
a multiple of \;, i.e., the number of query features contained in the data graph G;.
To this end, we should break such scale relationship to make the previous statistical
analysis attack infeasible. Our proposed design is to convert both the data vector

and the query vector from the bit structure to more sophisticated structures. Specif-

95

-1 T
(M)
g, g=(g.D (i1]
Pj Pj it _
spli
Gi_"XIi][.iH] 1 Xjijj+1] 9 E’”
o
Pn pn (M2) I
1 i[2]

Figure 4.3: Build subindex for each data graph

g
Ml
- T
q q=(q.7) [Q[1]
l‘, rj —
split | _.
Q—r ﬂ — 0 —= gin
I'n I, M, .
t Q2]

Figure 4.4: Generate trapdoor for query graph

ically, if the frequent feature F} is contained in the data graph Gj, the corresponding
element g;(;) in the data vector g; is set as py; instead of 1 where p is a n-dimensional

vector; otherwise, g;j;) is set as Xp;;; where X is a n X n matrix and Xp; is a ran-

96

dom number less than pp;. Correspondingly, if Fj is contained in the query graph
Q, q(5 is set as a positive random number r; instead of 1; otherwise, q; is set as 0.
In addition, to hide the original inner product, we resume the dimension extending
operation where the g;j,41) is set as 1 and the g, 1] is set as a random number ¢. As
a result of these modifications, the final inner product of the data vector and the
query vector, i.e., g; - ¢+, should be equal to p- ¢+t for any candidate supergraph.
Note that, the vector p is constant as a part of the secret key, but ¢ and r; in ¢ are
randomly generated for each query. Our proposed privacy-preserving graph query

scheme is designed as follows with details in Fig. 4.10.

e FSCon(G, o) The data owner utilizes existing frequent subgraph mining algo-
rithms to generate the frequent subgraph set F, and then creates the frequent

feature dictionary D and the feature-based inverted index I;,,,.

e KeyGen(Kg,n) With the master key K, the data owner generates the secret
key IC, consisting of the splitting indicator S, two invertible matrices { My, M},

and the vector p.

e Buildindex(G, F, K) For each data graph G}, this algorithm creates the subindex
I; as shown in Fig. 4.3. The data owner first creates a vector g; with length
n, in which the value of g;j;) is determined by whether graph G; contains the
corresponding feature F; or not (steps 1 and 2). Subsequently, the data vector
g; is processed by applying the dimension extending where the (n + 1)-th en-
try in g; is set to 1 (step 3) and further adopting the splitting and encrypting
procedures in the secure Euclidean Distance computation scheme (steps 4 and
5). Finally, a subindex I; = {(M;)7g/, (My)7 "} is created for every data
graph G; and associated with the encrypted data graph CNJZ for outsourcing to

the cloud server .

97

e TDGen(R) With the query graph @ as input from the data user, this algorithm
outputs the trapdoor Ty as shown in Fig. 4.4. The query feature set Fy is
first generated through checking which features in F are also contained in @)
(steps 1 and 2). An n-dimensional vector ¢ is created by assigning a positive
random number 7; to the element g if F; € Fg; otherwise, ¢ = 0 (step 3).
This initial query vector ¢ is then extended to an (n + 1)-dimensional vector
as ¢ = (q,t), where t is a non-zero random number (step 4). After adopt-
ing the splitting and encrypting processes in the secure Euclidean distance
computation technique (steps 5 and 6), the trapdoor Ty, for the query graph
Q is generated as {M.q', M>q", " pjjqy) + t}, where the third element is the
expected final inner product of the query vector and the data vector for every

candidate supergraph.

e Query(Z,Tp) With the trapdoor g, the cloud server computes the inner prod-
uct of {Tihpy, Tz} with every subindex ; for data graph G;, and returns graph
id list Gr, where each graph has an inner product as exactly same as T3
The data user can further do the graph verification to remove false positives

from Gz, , and finally get the exact result as Gyq.

4.5.3 The Analysis

Analysis of this proposed scheme follows three aspects of design goals described in

Section 4.2.3.

4.5.3.1 Effectiveness

Assume () consists of ¢ query features, i.e., ¢ = |Fg|. For any supergraph G; of

the query graph @, it includes all the ¢ features in F¢ which is extracted from Q.

98

Therefore, all the ¢ corresponding elements in the data vector are equal to those in
the p, respectively, i.e., gij;,] = ppj,), where 1 < k < £. Besides, each corresponding

element in the query vector as g, is set as 7, and all other elements is set as 0.

Lk
The final inner product g; - ¢+t for any supergraph G; is then equal to > py;,i7j, +1,
which is also the result of p- ¢+ t. The later one p - ¢+t has been included in the
trapdoor and serves as an indicator to select candidate supergraphs. It means that
our scheme does not introduce any false negative into the result Gz, , as every exact
supergraph in Gyoy will produce the same inner product as p - ¢ + ¢ with the query

vector. But false positive supergraphs may be introduced into Gz, by those data

graphs that do not contain the query graph @) but contain all the features in Fy.

4.5.3.2 Efficiency

As far as the data user is concerned, the query response is well presented because
the final inner product for every data graph can be efficiently computed by the
cloud server via two multiplications of (n+ 1)-dimensional vectors. The whole inner
product computation during query is O(mn). Although some costly computations
are involved in FSCon and BuildIndex, such as graph sequentialization, they are
unavoidable for building a graph index. And more importantly, they are executed
for only one time during the whole scheme. Apart from these computations, the
encryption of the data vector or the query vector only needs two multiplications of
a (n+1) x (n+ 1) matrix and a (n + 1)-dimensional vector with complexity O(n?)
in Buildlndex or TDGen, respectively. Besides, to avoid the high computation cost
of inverting two high-dimension matrices in TDGen, every query vector is encrypted
by the two matrices M; and M, themselves, instead of their inverses of M; and M,
utilized in the secure Euclidean distance computation. Correspondingly, the costly

inverting operation is transferred to the one-time index construction procedure.

99

4.5.3.3 Privacy

With the randomness introduced by the splitting process and the random numbers
r; and ¢, our scheme can generate two totally different trapdoors for the same query
graph (). This nondeterministic property of the trapdoor generation can guarantee
the trapdoor unlinkability.

Recall that the data vector encryption with matrices has been proved to be
secure against known-plaintext attack in [120], the index privacy is protected unless
the secret key K is disclosed. The number of equations as 2(n+1)m in (M;)7 g}’ =
Ly and (M;1)Tg" = Ly is still less than the number of unknowns as the sum
of 2(n + 1)m unknowns in m data vectors and 2(n + 1) unknowns in {M;, My}.
Therefore, the attacker cannot solve the equations.

As mentioned above, in the secure inner product computation technique, the
primary reason why the statistical analysis attack works is that the final inner
product y; has the scale relationship with A;. And this scale relationship exists just
because y; is a multiple of the original inner product g; - ¢ which is equal to A;. Our
proposed scheme introduces randomness in both g; and ¢ to break the equivalence
relationship between g; - ¢ and ;. As a consequence, the value of g; - ¢ does not
completely depend on A;. In the case where data graph G; contain fewer query
features than data graph G, it is still possible that g; - ¢ > g; - ¢. Moreover, the
extended dimension ¢ is utilized to break the direct scale relationship between y;
and g; - ¢, which further eliminates the indirect scale relationship between y; and

which is used to

Ai. So the cloud server cannot deduce the special ratio as %

detect the inclusion relationship between two query feature sets as discussed in
the previous section 4.5.1. Without disclosing such inclusion relationship, the cloud

server cannot compute the support of a single feature. In other words, the statistical

analysis cannot break the feature privacy, and all the expected privacy requirements

100

in section 4.4.3 are being met by the proposed scheme.

4.6 Experimental Evaluations

In this section, we demonstrate a thorough experimental evaluation of the proposed
scheme on the AIDS antiviral screen dataset [5] that is widely used in graph query
related works [38,91,128,132,133]. It contains 42,390 compounds with totally 62
distinct vertex labels. The 5 datasets in our experiment, as same as in [128], are
G20005 G000, G000, Fsooo, and Groooo, where Gy contains N graphs randomly chosen
from the AIDS dataset. We also adopt the same 6 sets of query graphs Q4, Qs, Q12,
Q16, Q20 and (o4, where (); contains ¢ query graphs with ¢ edges. Default dataset
and query graphs are set as G409 and Q4 in our experiment, respectively. gSpan [127]
is used as the frequent subgraph mining algorithm in our scheme. The maximum
size of frequent subgraph maxL is set to 11, and the minimum support o for feature
F; is defined as follows, o = 1 if |V (F})| < 5; otherwise, o = % -minsup - |G|,
where the default minsup is set to 10% and |G| is the size of dataset. Graph
boosting toolbox [81] is utilized to implement gSpan algorithm and check subgraph
isomorphism, and the public utility routines by Numerical Recipes are employed to
compute the inverse of matrix. The query performance in our scheme is evaluated
on the Amazon Elastic Compute Cloud (EC2) in which we deploy the basic 64-
bit Linux Amazon Machine Image (AMI) with 4 CPU cores (2 x 1.2GHz); the
performance of other procedures in our scheme, such as index construction and
trapdoor generation related to data owners or data users, is evaluated on a 2.8GHz
CPU with Redhat Linux. The compared schemes are gindex [128] and TreePi [132],
and their performance data are provided in [132] which are also run on a 2.8GHz

CPU with RedHat Linux.

101

6000

—+— PPGQ-8%
PPGQ-9%
—5— PPGQ-10%
|| = PPGQ-11%
5000 —¥— gindex-10%
—O— TreePi-10%

4000

O

30007

Frequent feature set size

2000 4000 6000 8000 10000
of graphs in the dataset

(a) Frequent feature set size

——PPGQ-8%

PPGQ-9%
[| —=—PPGQ-10%
——PPGQ-11%

False positive ratio

1 1 1 1
2000 4000 6000 8000 10000
of graphs in the dataset

(b) False positive ratio

Figure 4.5: Relation between minimum support and other parameters.

4.6.1 False Positive and Index Construction

The minimum support determines the threshold for a subgraph of being an indexed
feature. Specifically, the large value of minimum support means that only very
frequent subgraphs in the dataset could be treated as valid in the filtering procedure.
However, such high requirement will reduce the number of features included in the
index whose pruning power would be directly affected. With the decreasing number
of indexed features, the query graph can only be represented by less number of

query features, and therefore more and more data graphs, which does not contain

102

250

——PPGQ-8%

PPGQ-9%
200f| ——PPGQ-10%
——PPGQ-11%

1501

100r

Index size(MB)

501

0 1 1 1
2000 4000 6000 8000 10000
of graphs in the dataset

(a) Storage cost of index

1000

—8-PPGQ
—¥—gIndex
8001 —o—TreePi

600
4007

K
2001
C

0 1 1 1
2000 4000 6000 8000 10000
of graphs in the dataset

Index construction time (s)

A=

(b) Time of index construction

Figure 4.6: Index construction cost.

the query graph () but contain all the graphs in the smaller size query feature set
Fq, are included in the candidate supergraph set Gr,. As demonstrated in Fig. 4.5
where four different minimum supports through adjusting minsup from 8% to 11%
are examined, the false positive ratio defined as % raises in accordance with
the minsup. Although the minimum support should be set as small as possible to
prune as many data graphs as possible, the larger one will introduce more storage
cost of index due to the larger size of frequent feature set as shown in Fig. 4.6(a).

Moreover, as shown in Fig. 4.5(a), the size of the frequent feature set increases

in a lower speed when the dataset is larger than 600, while the minimum support

103

N
N

B R PN
N (2] (o] o

Trapdoor size (KB)

=
N
T

8 1 1 1
2000 4000 6000 8000 10000
of graphs in the dataset

Figure 4.7: Trapdoor size in different dataset

o= JIVE]

——2= - minsup - |G| increases linearly with the size of dataset. As a result,

there will be increasing false positives in the candidate supergraph set, which is
validated in Fig. 4.5(b).

As shown in Fig. 4.5(a), our frequent feature set is larger than that in the other
two related works since our scheme does not adopt the shrinking process on the
frequent set by choosing discriminative subgraphs. Besides, the false positive ra-
tio in our scheme is almost same as that in gSpan and a little larger than the
scheme Tree+A [132], through the performance data provided in [132]. As shown in
Fig. 4.6(b), because our index construction involves the encryption process on data
vectors, the time cost here is about four times larger than that in other schemes
which only deal with plaintext index. Note that this construction is only a one-time

procedure in the whole scheme.

4.6.2 Trapdoor Generation and Query

Like index construction, every trapdoor generation incurs two multiplications of
a matrix and a split query vector, whose dimensionality becomes larger with the

increasing number of documents in dataset. As demonstrated in Fig. 4.8(a), the

104

w B [$2) [«2) ~ [ee]

Trapdoor generation time (s)

N

1 L L L
2000 4000 6000 8000 10000
of graphs in the dataset

(a) Different dataset with same query size as 4

3.3
3.25f

w
[N

3.15f

3.05f

w

Trapdoor generation time (s)
w
[

N
©
a

0 5 10 15 20 25
of edges in the query graph

(b) Different query size with same dataset size as
4000

Figure 4.8: Trapdoor generation time.

time to generate a trapdoor is linear with the number of data graphs in the dataset.
Fig. 4.8(b) demonstrates the trapdoor generation cost is almost linear with the size
of query graph, which is defined as the number of edges in the query graph. Such
linearity is caused by the fact that the major costly operation mapping query graph
to vector is roughly determined by query size since all the query features should be
mapped.

In the query process in our scheme design, the cloud server executes the filtering

process by computing the inner product of trapdoor and each encrypted data vector.

105

[ee]

[«2)

N

N

]

Query execution time on server (s)

O 1 1 1
2000 4000 6000 8000 10000
of graphs in the dataset

(a) Different dataset with same query size as 4

2.85

N
o)

2.75¢

N
~

2.651

Query execution time on server (s)

N
(<)

5 10 15 20 25
of edges in the query graph

o

(b) Different query size with same dataset size as
4000

Figure 4.9: Query execution time on server.

Fig. 4.9 shows that the query time is almost linear with the number of data graphs
in the dataset. Although the query time in our scheme is much larger than that in
gSpan, whose query time is around 100 milliseconds presented in [38], our scheme
is performing query on the encrypted index. With respect to the communication
cost in the query procedure, the size of trapdoor is the same as that of subindex for
single data graph. As shown in Fig. 4.7, the size of trapdoor keeps constant in the

same dataset, no matter how many features are contained in a query graph.

106

4.7 Related Work

4.7.1 Graph Containment Query

To reduce the computation cost caused by checking subgraph isomorphism, most
research on plaintext graph containment query problem follows the “filtering-and-
verification” framework [38,91,92, 128,132, 133] to decrease the size of candidate
supergraph set. Feature-based index has been increasingly explored by choosing
different substructures as features. Shasha et al. [92] designed a path-based in-
dex approach. However, paths carry few structural information and therefore have
limited filtering power. Yan et al. [128] proposed glndex to build index from fre-
quent and discriminative subgraphs which can carry more structure characteristics.
Zhang et al. [132] utilized frequent and discriminative subtrees instead of subgraphs
to build the index. Recently, Chase and Kamara proposed structured encryption [36]
to handle private access to parts of a large graph in encrypted form; yet only simple
operations such as neighbor queries are supported. Portions of the work studied in
this chapter were presented as extended abstract at the 31th International Confer-

ence on Distributed Computing Systems (ICDCS’11) [31].

4.7.2 Keyword-based Searchable Encryption

Traditional single keyword searchable encryption schemes [22, 40, 65, 106] usually
build an encrypted searchable index such that its content is hidden to the server
unless it is given appropriate trapdoors generated via secret key(s) [58]. To en-
rich search semantics, conjunctive keyword search [24] over encrypted data have
been proposed. These schemes incur large overhead caused by their fundamental
primitives, such as computation cost by bilinear map [24].As a more general search

approach, predicate encryption schemes [63] are recently proposed to support both

107

conjunctive and disjunctive search. However, none of existing boolean keyword
searchable encryption schemes support graph semantics as we propose to explore in

this chapter.

4.8 Conclusion

In this chapter, for the first time, we define and solve the problem of query over
encrypted graph-structured cloud data, and establish a variety of privacy require-
ments. For the efficiency consideration, we adopt the principle of “filtering-and-
verification” to prune as many negative data graphs as possible before verification,
where a feature-based index is pre-built to provide feature-related information for
every encrypted data graph. Then, we choose the inner product as the pruning tool
to carry out the filtering procedure efficiently. To meet the challenge of supporting
graph semantics, we propose a secure inner product computation technique, and then
improve it to achieve various privacy requirements under the known-background
threat model. Thorough analysis investigating privacy and efficiency of our scheme
is given, and the evaluation further shows our scheme introduces low overhead on

computation and communication.

108

FSCon(G, o)

1.

3.

Mine frequent feature set F = {F, Fs, ..., F,} from graph dataset G with the minimum
support threshold o;

i) For each frequent feature F);, where 1 < j < n, generate its supergraph id set Gry;
Create the frequent feature dictionary D = {Lp,, Lp,, ..., LF,}, where L, is the unique
canonical label of Fj;

Build the feature- based inverted index i, = {G(my, G(mys - - Giray }-

KeyGen(Kg,n)

1.

2.

Create an (n + 1)-bit vector S, two (n + 1) x (n + 1) invertible matrices My, Ms,
and an n-dimensional vector p;

. R

1) {S7M17M27P}FKS;

Output the secret key K = {S, My, My, p}.

BuildIndex(1;,,,, K)

1.
2.

6.

Create a n x n matrix X, where Xp;; is a random number less than KCpy;;
For each graph G;, where 1 <17 < m, create a n-dimensional data vector g;;
i) Ifid(G;) € Linwlj)s set gigy) = Kpypy); otherwise, set g1 = Xpp;
Extend every g; to (n+ 1)- dnnensaonal Ji;
i) For1l<j<n, set gj[j] = gi[j); Set @[n_,_l] =1;
According to the splitting indicator Kpj, split every g; to two vectors g;" and g;";
i) For1<j<n-+1,if Ky = 0, set both gi/[j] and g;'//m as @[j];
otherwise, set gi';;; and g;”[;] as two random numbers such that g + ;"1 = G
Encrypt these two vectors by inverses of the two matrices, and combine them as the
subindex I; for G;;

i) L ={((Kp))", (Kg))"}
Output the encrypted 1ndex] = {]1, Iy, I, }.

TDGen(Q, D, K)

1.
2.
3.

6.
7.

Initialize the query feature set: Fg = ();
For each frequent feature Dy, 1 < j < n: if Dy C Q, Fo = FolU{ D1}
Create a n-dimensional query vector ¢ for the input query graph Q;
i) Generate n positive random numbers as r1,79, ..., 7y;
ii) For 1 <j <, if Dy € Fg, set q;) = r;; otherwise, set gy = 0;
Extend ¢ to (n + 1)-dimensional ¢, and generate a random number ¢;
i) For1l<j<n, set (j[j] = q1); Set (f[n_ﬂ] =t
According to the splitting indicator Kpj, split ¢ to two vectors as ¢ and ¢";
i) For1l<j<n+1,if Ky = 1, set both ¢'; and ¢"j; as G;i;
otherwise, set ¢';; and ¢"[; as two random numbers such that ¢';;; + @'} = @iy
Encrypt these two vectors by the two invertible matrices as {(Kyg)' ¢, (Ki5)'¢"};
Output the trapdoor Ty for query graph Q);

1) To=A{Ke)"7, (Kg) 7", > Kuay + th

Query(Z,Tp)

1.
2.

Initialize the query result: Gr, = 0;

For each subindex Ij;, 1 <7 < m:

i) Compute inner product as Lipy - Topy + Liy - Ty

ii) If the inner product is equal to Ty, set Gr, = Gx, U{id(Gy)};
Output the query result Gr,. 109

Figure 4.10: Privacy-Preserving Graph Query Scheme

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we investigated and addressed the fundamental problem of
secure and reliable data outsourcing in Cloud Computing. We summarize our results
as follows.

In Chapter 2, we address the problem of secure and reliable cloud storage with
efficiency consideration of both data repair and data retrieval. By utilizing a near-
optimal erasure codes, specifically LT codes, our designed storage service has faster
decoding during data retrieval than existing solutions. To minimize the data repair
complexity, we employ the exact repair method to efficiently recover the exact form
of any corrupted data. Such a design also reduces the data owner’s cost during
data repair since no verification tag needs to be generated (old verification tags
can be recovered as data recovery). Our proposed cloud storage service provides a
better overall efficiency of data retrieval and repair than existing counterparts. It
also greatly reduces cost and completely releases the data owner from the burden

of being online by enabling public integrity check and exact repair.

110

In Chapter 3, we address the problem of privacy-preserving multi-keyword ranked
search over encrypted data in cloud computing. We establish a set of strict privacy
requirements for such a secure cloud data utilization system. Among various multi-
keyword semantics, we choose the efficient similarity measure of “coordinate match-
ing”, i.e., as many matches as possible, to capture the relevance of data documents
to the search query. We further use “inner product similarity” to quantitatively
evaluate such similarity measure. We first propose a basic idea for ranked keyword
search based on secure inner product computation, and then give two significantly
improved schemes to achieve various stringent privacy requirements in two differ-
ent threat models. We also investigate some further enhancements of our ranked
search mechanism, including supporting more search semantics, i.e., TF x IDF, and
dynamic data operations.

In Chapter 4, we address the problem of privacy-preserving query over en-
crypted graph-structured data in cloud computing. Our work utilizes the princi-
ple of “filtering-and-verification”. We pre-build a feature-based index to provide
feature-related information about each encrypted data graph, and then choose the
efficient inner product as the pruning tool to carry out the filtering procedure. To
meet the challenge of supporting graph query without privacy breaches, we pro-
pose a secure inner product computation technique, and then improve it to achieve

various privacy requirements under the known-background threat model.

5.2 Future Work

We identify a few challenging issues for future work on secure and reliable data
outsourcing in cloud computing as follows.

As presented in our proposed cloud data storage service, the availability in data

111

retrieval is guaranteed by the decodability detection before data outsourcing and the
exact repair of corrupted data. Once the encoding configuration successfully passes
the decodability detection, it can be reused for all the storage services that specifies
the same reliability level in terms of n and k. However, such detection computation
still takes nonnegligible cost when every cloud user may have its own expected
reliability requirement. We plan to investigate more efficient decodability detection
algorithm which will make such cloud storage solution more practical. Besides, in
cloud computing, the outsourced data might not only be accessed but also updated
by the data owners, e.g., through block modification, deletion and insertion, etc.
Hence, we also plan to investigate supporting dynamic data operations which can
be of vital importance to the practical application of data outsourcing services.

In our proposed data utilization solutions as presented in chapter 3 and chapter 4,
the query computation cost in the server side is linear with the number of documents
in the dataset. Currently data owners outsource more and more data into cloud
servers, so it is of practical use to make the query faster. To address this problem,
we plan to explore more efficient search algorithm based on tree structures [73,83].
We further plan to investigate new security and privacy problems in the untrusted
cloud server model. In practice, cloud servers may sometimes behave beyond the
known background model. This can happen either because cloud server intentionally
wants to do so for saving cost when handling large number of search requests, or
there may be software bugs, or internal /external attacks. Thus, enabling a search
result authentication mechanism that can detect such unexpected behaviors of cloud
server is also of practical interest and worth further investigation. Our early work
has been aware of this problem, and provided a solution to authenticating ranked

search result [104], but only for single keyword search.

112

Bibliography

[1] http://www.dropbox.com/.

2] Blog service hosted by google crashes review.
http://hostwisely.com/blog/blog-service-hosted-by-google-crashes/.

[3] Microsoft ~ cloud data breach heralds things to come.
http://www.techworld.com.au/article/372111/.

[4] Summary of the amazon ec2 and amazon rds service disruption in the us east
region. http://aws.amazon.com/message/65648/.

[5] Aids antiviral screen dataset, 1999. http://dtp.nci.nih.gov/docs/aids/aids_data.html.

(6] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,
Tanja Lange, John Malone-lee, Gregory Neven, Pascal Paillier, and Haixia Shi.
Searchable encryption revisited: Consistency properties, relation to anony-
mous ibe, and extensions. In CRYPTO 2005, pages 205-222. Springer-Verlag,
2005.

(7] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,
Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia
Shi. Searchable encryption revisited: Consistency properties, relation to
anonymous ibe, and extensions. J. Cryptol., 21(3):350-391, 2008.

[8] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proceedings of SIGMOD ’04, pages
563-574, 2004.

9] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. New security
models and provably-secure schemes for basic query support in outsourced
databases.

[10] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. Provably-
secure schemes for basic query support in outsourced databases. In DBSec’07:
Proceedings of the 21st Annual [FIP WG 11.3 Working Conference on Data
and Applications Security. Springer-Verlag, 2007.

113

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

Michael Armbrust, Armando Fox, and et al. Above the clouds: A berkeley
view of cloud computing. Technical Report UCB-EECS-2009-28, University
of California, Berkeley.

Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary Peterson, and Dawn Song. Provable data possession at untrusted

stores. In Proceedings of CCS, New York, NY, USA, 2007. ACM.

Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik.
Scalable and efficient provable data possession. In Proceedings of the 4th in-

ternational conference on Security and privacy in communication netowrks,
SecureComm ’08, pages 9:1-9:10, New York, NY, USA, 2008. ACM.

Joonsang Baek, Reihaneh Safiavi-naini, and Willy Susilo. Public key encryp-
tion with keyword search revisited. In Cryptology ePrint Archive, Report
2005/151, 2005.

Joonsang Baek, Reihaneh Safiavi-naini, and Willy Susilo. Public key encryp-
tion with keyword search revisited. In Computational Science and Its Appli-
cationsCICCSA 2008, 2008.

L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive key-
word searches over encrypted data. In Proc. of ICICS, 2005.

Feng Bao, Robert Deng, Xuhua Ding, and Yanjiang Yang. Private query on
encrypted data in multi-user settings. In Proc. of ISPEC, 2008.

Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and
efficiently searchable encryption. In Proc. of CRYPTO, 2007.

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptog-
raphy: The case of hashing and signing. In Proceedings of the 14th Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO
'94, pages 216-233, London, UK, UK, 1994. Springer-Verlag.

S. Berreti, A.D. Bimbo, and E. Vicario. Efficient matching and indexing of
graph models in content-based retrieval. [EEE Trans. Pattern Analysis and
Machine Intelligence, 2001.

A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving sym-
metric encryption. In Proceedings of Eurocrypt’09, volume 5479 of LNCS.
Springer, 2009.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In Proc. of EUROCRYPT, 2004.

114

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III.
Public key encryption that allows pir queries. In Proc. of CRYPTO, 2007.

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Proc. of TCC, pages 535-554, 2007.

Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability and
integrity layer for cloud storage. In Proc. of CCS, 2009.

Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory
and implementation. In Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, pages 43-54, New York, NY, USA, 2009. ACM.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based en-
cryption (without random oracles). In Proc. of CRYPTO. LNCS, vol. 4117.
Springer,Heidelberg, 2006.

R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching
in encrypted data. In Secure Data Management, 2004.

Richard Brinkman. Searching in encrypted data. In University of Twente,
PhD thesis, 2007.

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. In Proc. of INFOCOM,
2011.

Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou. Privacy-
preserving query over encrypted graph-structured data in cloud computing. In
Distributed Computing Systems (ICDCS), 2011 31st International Conference
on, pages 393 —402, june 2011.

Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou, and Y.T. Hou. Lt
codes-based secure and reliable cloud storage service. In INFOCOM, 2012
Proceedings IEFE, pages 693 =701, march 2012.

Mary-Luc Champel, Kevin Huguenin, Anne-Marie Kermarrec, and Nicolas Le
Scouarnec. Lt network codes. Proc. of ICDCS, pages 536-546, 2010.

Ee-Chien Chang and Jia Xu. Remote integrity check with dishonest stor-
age server. In Sushil Jajodia and Javier Lopez, editors, Computer Security
- ESORICS 2008, volume 5283 of Lecture Notes in Computer Science, pages
223-237. Springer Berlin / Heidelberg, 2008.

Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In Proc. of ACNS, 2005.

115

[36]

[37]

[38]

[39]
[40]

[43]

[44]

[45]

[48]

[49]

M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
Proc. of ASIACRYPT, 2010.

Bo Chen, Reza Curtmola, Giuseppe Ateniese, and Randal Burns. Remote

data checking for network coding-based distributed storage systems. In Proc.
of CCSW ’10, 2010.

J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query
processing on graph databases. In Proc. of SIGMOD, 2007.

W. W. Cohen. Enron email dataset. http://www.cs.cmu.edu/~enron/.

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient constructions.

In Proc. of ACM CCS, 2006.

Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. Mr-pdp:
Multiple-replica provable data possession. In Proc. of ICDCS, 2008.

A. G. Dimakis D. Cullina and T. Ho. Searching for minimum storage regener-
ating codes. In IN ALLERTON CONFERENCE ON CONTROL, COMPUT-
ING, AND COMMUNICATION, 2009.

A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. ITIT, 2010.

A.G. Dimakis, K. Ramchandran, Yunnan Wu, and Changho Suh. A survey
on network codes for distributed storage. Proceedings of the IEEE, 99(3):476
—489, march 2011.

Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability
via hardness amplification. In Proceedings of the 6th Theory of Cryptogra-
phy Conference on Theory of Cryptography, TCC ’09, pages 109-127, Berlin,
Heidelberg, 2009. Springer-Verlag.

A. Duminuco and E. Biersack. A practical study of regenerating codes for
peer-to-peer backup systems. In Proc. of ICDCS, June 2009.

Chris Erway, Alptekin Kiipgii, Charalampos Papamanthou, and Roberto
Tamassia. Dynamic provable data possession. In Proceedings of the 16th

ACM conference on Computer and communications security, CCS 09, pages
213-222, New York, NY, USA, 2009. ACM.

Daniel Fabbri, Arnab Nandi, Kristen Lefevre, and H. V. Jagadish. Pri-
vatepond: Outsourced management of web corpuses, 2009.

Dcio Luiz Gazzoni Filho and Paulo Srgio Licciardi Messeder Barreto. Demon-
strating data possession and uncheatable data transfer. Technical report, 2006.

116

[50] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to
the theory of np-completeness. Freeman, New York, NY, USA, 1990.

[51] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, 2003.
http://eprint.iacr.org/2003/216.

[52] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over
encrypted data. In Proc. of ACNS, pages 31-45, 2004.

[53] T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, Jun Shi, and B. Leong.
A random linear network coding approach to multicast. ITIT, 2006.

[54] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in
the presence of isomorphism. In Proc. of ICDM, 2003.

[55] Y.H. Hwang and P.J. Lee. Public key encryption with conjunctive keyword
search and its extension to a multi-user system. In Pairing, 2007.

[56] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptogra-
phy from anonymity. In Proc. of FOCS, pages 239-248, 2006.

[57] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs of retrievability for large
files. In Pro. of CCS, pages 584-597, New York, NY, USA, 2007. ACM.

[58] S. Kamara and K. Lauter. Cryptographic cloud storage. In RLCPS, 2010.

[59] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In Proc. of
EUROCRYPT, 2008.

[60] Ranjita Bhagwan Kiran, Kiran Tati, Yu chung Cheng, Stefan Savage, and
Geoffrey M. Voelker. Total recall: System support for automated availability
management. In Proc. of NSDI, 2004.

[61] John Kubiatowicz, David Bindel, Yan Chen, and et al. OceanStore: an archi-
tecture for global-scale persistent storage. In ASPLOS, New York, NY, USA,
2000. ACM.

[62] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS ’97: Proceedings of
the 38th Annual Symposium on Foundations of Computer Science, page 364,
Washington, DC, USA, 1997. IEEE Computer Society.

[63] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption
and (hierarchical) inner product encryption. In Proc. of EUROCRYPT, 2010.

117

[64]

[65]

[66]

[72]

[73]

Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. En-
abling efficient fuzzy keyword search over encrypted data in cloud computing.
Cryptology ePrint Archive, 2009. http://eprint.iacr.org/2009/593.

Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy
keyword search over encrypted data in cloud computing. In Proc. of IEEE
INFOCOM’10 Mini-Conference, San Diego, CA, USA, March 2010.

Jun Li, Shuang Yang, Xin Wang, Xiangyang Xue, and Baochun Li. Tree-
structured data regeneration in distributed storage systems with regenerating
codes. In Proc. of IWQoS, July 2009.

Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private key-
word search over encrypted data in cloud computing. In Distributed Com-
puting Systems (ICDCS), 2011 31st International Conference on, pages 383
-392, june 2011.

Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and Michael
Isard. A cooperative internet backup scheme. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC ’03, pages 3-3,
Berkeley, CA, USA, 2003. USENIX Association.

M. Luby. Lt codes. In Proc. of FoCS, pages 271-280, 2002.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Effi-
cient erasure correcting codes. ITIT, (2):569-584, 2001.

M. Naor and G.N. Rothblum. The complexity of online memory checking.
In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE
Symposium on, pages 573 — 582, oct. 2005.

S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make
a difference. In Proc. of SIGKDD, 2004.

M. Ondreicka and J. Pokorny. Extending fagins algorithm for more users based
on multidimensional b-tree. In Paolo Atzeni, Albertas Caplinskas, and Hannu
Jaakkola, editors, Advances in Databases and Information Systems, volume
5207 of Lecture Notes in Computer Science, pages 199-214. 2008.

Alina Oprea, Michael K. Reiter, and Ke Yang. Space-efficient block storage
integrity. In In Proc. of NDSS 05, 2005.

Rafail Ostrovsky and William E. Skeith. Private searching on streaming data.
Journal of Cryptology, 20(4):397-430, October 2007.

D. Park, J. Cha, and P. Lee. Searchable keyword-based encryption. In Cryp-
tology ePrint Archive, Report 2005/367, 2005.

118

[77]

[78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[33]

D.J. Park, K. Kim, and P.J. Lee. Public key encryption with conjunctive field
keyword search. In WISA, 2004.

K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Exact regen-
erating codes for distributed storage. In Proc. Allerton Conf. Control Comput.
Commun., pages 337-350, 2009.

I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the SIAM, 1960.

Eun-Kyung Ryu and Tsuyoshi Takagi. Efficient conjunctive keyword-
searchable encryption. Advanced Information Networking and Applications
Workshops, International Conference on, 2007.

H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. Gboost: A
mathematical programming approach to graph classification and regression.
In Machine Learning, 2008.

Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time al-
gorithms for network information flow. In Proc. of SPAA, pages 286294,
2003.

Peter Scheuermann and Mohamed Ouksel. Multidimensional b-trees for asso-
ciative searching in database systems. Information Systems, 7(2):123 — 137,
1982.

Mathew J. Schwartz. 6 worst data breaches of 2011, 2011.
http://www.informationweek.com/news/security/attacks/232301079.

T.S.J. Schwarz and E.L. Miller. Store, forget, and check: Using algebraic
signatures to check remotely administered storage. In Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on, page 12,
2006.

Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. Towards an
information theoretic analysis of searchable encryption. In Proceedings of the
10th International Conference on Information and Communications Security,
ICICS 08, pages 345-360, Berlin, Heidelberg, 2008. Springer-Verlag.

Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Pro-
ceedings of Asiacrypt, 2008.

Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan. Audit-
ing to keep online storage services honest. In Proceedings of the 11th USENIX

workshop on Hot topics in operating systems, HOTOS’07, pages 11:1-11:6,
Berkeley, CA, USA, 2007. USENIX Association.

119

[89] Mehul A. Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit
and extraction of digital contents, cryptology eprint archive, report 2008/186,
2008.

[90] N.B. Shah, K.V. Rashmi, P.V. Kumar, and K. Ramchandran. Explicit codes
minimizing repair bandwidth for distributed storage. In Information Theory
Workshop (ITW), 2010 IEEE, pages 1 -5, jan. 2010.

[91] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. In Proc. of VLDB, 2008.

[92] D. Shasha, J.T-L. Wang, and R. Giugno. Algorithmics and applications of tree
and graph searching. In Proc. of PODS, 2002.

[93] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In Proc. of TCC, 2009.

[94] E. Shi, J. Bethencourt, T.-H.H. Chan, Dawn Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In Security and Privacy, 2007.
SP °07. IEEE Symposium on, pages 350 —364, may 2007.

[95] Elaine Shi. Evaluating predicates over encrypted data. In CMU-CS-08-166,
PhD thesis, 2008.

[96] A. Singhal. Modern information retrieval: A brief overview. [IEEE Data
Engineering Bulletin, 24(4):35-43, 2001.

[97] Radu Sion and Bogdan Carbunar. Conjunctive keyword search on encrypted
data with completeness and computational privacy. In Cryptology ePrint
Archive, Report 2005/172, 2005.

[98] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proc. of S€P, 2000.

[99] Aaron Souppouris. Linkedin investigating reports that
6.46 million hashed passwords have leaked online, 2012.
http://www.theverge.com/2012/6/6/3067523/1inkedin-password-leak-online.

[100] Darlene Storm. Epsilon breach: hack of the century?, 2011.
http://blogs.computerworld.com/18079/epsilon_breach_hack_of_the_century.

[101] C. Suh and K. Ramchandran. Exact regeneration codes for distributed storage
repair using interference alignment. In Proc. IEEE Int. Symp. Inf. Theory,
2010.

120

102]

[103]

[104]

[105]

[106]

[107]

[108]

109]

[110]

[111]

[112]

Ashwin Swaminathan, Yinian Mao, Guan-Ming Su, Hongmei Gou, Avinash L.
Varna, Shan He, Min Wu, and Douglas W. Oard. Confidentiality-preserving
rank-ordered search. In Proceedings of the 2007 ACM workshop on Storage
security and survivability, StorageSS 07, pages 7-12, New York, NY, USA,
2007. ACM.

Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. ACM SIGCOMM Comput.
Commun. Rev., 39(1):50-55, 20009.

C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked
keyword search over outsourced cloud data. Parallel and Distributed Systems,
IEEFE Transactions on, PP(99):1, 2012.

C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving pub-
lic auditing for secure cloud storage. Computers, IEEE Transactions on,
PP(99):1, 2011.

Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked
keyword search over encrypted cloud data. In Proc. of ICDCS, 2010.

Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Toward publicly auditable
secure cloud data storage services. Network, IEEE, 24(4):19 —24, july-august
2010.

Cong Wang, Kui Ren, Shucheng Yu, and K.M.R. Urs. Achieving usable and
privacy-assured similarity search over outsourced cloud data. In INFOCOM,
2012 Proceedings IEEFE, pages 451 —459, march 2012.

Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure
and dependable storage services in cloud computing. Services Computing,
IEEFE Transactions on, 5(2):220 —232, april-june 2012.

Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Ensuring data storage
security in cloud computing. In Proc. of IWQoS, 2009.

Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for data storage security in cloud computing. In INFOCOM,
2010 Proceedings IEEFE, pages 1 -9, march 2010.

Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public
verifiability and data dynamics for storage security in cloud computing. In
Michael Backes and Peng Ning, editors, Computer Security — ESORICS 2009,
volume 5789 of Lecture Notes in Computer Science, pages 355—370. Springer
Berlin / Heidelberg, 2009.

121

[113] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling pub-
lic auditability and data dynamics for storage security in cloud computing.
Parallel and Distributed Systems, IEEE Transactions on, 22(5):847 —859, may
2011.

[114] Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private infor-
mation retrieval using trusted hardware. In In ESORICS 2006, September
2006. LNCS, page 4189.

[115] Brent Waters, D Balfanz, G Durfee, and D.K. Smetters. Building an encrypted
and searchable audit log. In Proc. of NDSS, 2004.

[116] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. replica-
tion: A quantitative comparison. In IPTPS, 2002.

[117] Zack Whittaker. Amazon web services suffers partial outage.
http://www.zdnet.com/blog/btl/amazon-web-services-suffers-partial-outage/79981.

[118] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of
mud: practical access pattern privacy and correctness on untrusted storage.

In Proceedings of the 15th ACM conference on Computer and communications
security, CCS 08, pages 139-148, New York, NY, USA, 2008. ACM.

[119] Tan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gigabytes:
Compressing and indexing documents and images. Morgan Kaufmann Pub-
lishing, San Francisco, May 1999.

[120] W. K. Wong, David W. Cheung, Ben Kao, and Nikos Mamoulis. Secure knn
computation on encrypted databases. In Proc. of SIGMOD, 2009.

[121] Y. Wu. A construction of systematic mds codes with minimum repair band-
width. In IEEFE Trans. Inf. Theory, 2009.

[122] Yunnan Wu. Existence and construction of capacity-achieving network codes
for distributed storage. In Information Theory, 2009. ISIT 2009. IEEE Inter-
national Symposium on, pages 1150-1154, 28 2009-july 3 20009.

[123] Yunnan Wu. Existence and construction of capacity-achieving network codes
for distributed storage. JSAC, 28(2):277 —288, 2010.

[124] Yunnan Wu and A.G. Dimakis. Reducing repair traffic for erasure coding-
based storage via interference alignment. In Information Theory, 2009. ISIT
2009. IEEFE International Symposium on, pages 2276 —2280, 28 2009-july 3
2009.

[125] Yunnan Wu, Ros Dimakis, and Kannan Ramchandran. Deterministic regen-
erating codes for distributed storage. In IN ALLERTON CONFERENCE ON
CONTROL, COMPUTING, AND COMMUNICATION, 2007.

122

[126] Huaxia Xia and Andrew A. Chien. Robustore: a distributed storage architec-
ture with robust and high performance. In Proc. of Supercomputing, 2007.

[127] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proc. of ICDM, 2002.

[128] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structurebased
approach. In Proc. of SIGMOD, 2004.

[129] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-
grained data access control in cloud computing. In Proc. of INFOCOM, 2010.

[130] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+r: Top-k retrieval
from a confidential index. In Proc. of EDBT, 2009.

[131] Sergej Zerr, Elena Demidova, Daniel Olmedilla, Wolfgang Nejdl, Marianne
Winslett, and Soumyadeb Mitra. Zerber: r-confidential indexing for dis-
tributed documents. In Proc. of EDBT, pages 287-298, 2008.

[132] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method. In
Proc. of ICDE, 2007.

[133] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta >= graph. In
Proc. of VLDB, 2007.

[134] Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR
FORUM, 32:18-34, 1998.

123

