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Abstract 
The objective of this project was to design and construct a low-cost quadrotor micro-aerial 

vehicle (MAV) with a multi-sensor payload capable of indoor flight using localization by a 

motion-capture system. Design considerations included low overall weight, ease of construction, 

and ease of replacing the sensor payload. To meet these objectives, the literature was thoroughly 

reviewed. An existing MAV frame design was adapted and modified. Motors and propellers 

were chosen to accommodate the desired sensor payload. An autopilot was implemented in 

conjunction with a high-level microcontroller for future implementation of intelligent control 

algorithms. A series of unit tests and bench tests were conducted within the motion-capture 

environment to demonstrate feasibility of the design. 
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1 Project Overview 
The goal of this project is to design a MAV that will utilize a Vicon motion capture system 

as its navigational means and carry a sensory payload from Point A to Point B. The essential 

electronics the MAV will be carrying will be a single-board computer (SBC), a flight controller, 

sensors, electronic speed controllers, a power distribution board, and motors with propellors. The 

single-board computer will interface with the flight controller, the sensory packages, and a 

ground station computer. This iteration of the MQP seeks to merely ensure that a connection 

between the SBC and the sensory packages exists and that the two can be accommodated on a 

single MAV. It is up to future iterations of the MQP to make use of the data collected from the 

sensory packages towards some larger goal such as using the volume level from the microphone 

to fly towards noisier or quieter areas. A crucial aspect of this iteration of the MQP is ensuring 

the design is low-cost and easily reproducible by future users. To this end, the main “body” of 

the MAV can be completely 3D printed and requires simply screws and standoffs to hold 

together. Making the body 3D printable also makes the design flexible as per future users’ 

requirements and allows for changes to easily be made.  

Unmanned Aerial Vehicles (UAVs), in modern times, are used for a variety of civilian and 

military applications. Most UAVs as thought of, by the general public, are aircraft that are large, 

capable of carrying massive payloads and remaining airborne for long endurances. These are 

inevitably military devices, used by the various defense forces of the world for a variety of roles. 

Such roles include surveillance and intelligence gathering of targets, border security, coast-line 

defense and combat (1). UAVs specifically designed for combat are termed as Unmanned 

Combat Aerial Vehicles (UCAVS) and they are a rapidly growing subsection of UAVs. Micro 

Aerial Vehicles (MAVs) are another subset of UAVs that have become popular in recent years 

due to their versatility as well as portability. They are also the considered superior in situations 

that require an inexpensive solution or where there is a chance of harm occurring to a human 

pilot (2). MAVs are regularly used by several defense forces around the world for a variety of 

roles such as surveillance of targets or operations, gaining intelligence of an area of interest and 

by a few, even for combat. The Black Hornet PRS is one such drone (3). Developed by Proxy 

Dynamics, it was designed for use by non-specialist soldiers to give them immediate situational 

awareness, without causing hinderances. The 10cm by 2.5cm drone can fit in a pocket and boasts 

a flight time of 25 minutes. It transmits live video as well as captures images in infrared, night 

vision and visible spectrum.  

Navigation in these scenarios is done with the aid of GPS and sensors onboard the MAV 

that record the aircraft’s attitude, accelerations in the three directions and, magnetic readings (4). 

All these quantities are then fed to an Extended Kalman Filter (EKF) that outputs the UAV’s 

position, heading, speed and whether it is flying in the requisite direction. The measurements that 

the UAV makes of the accelerations, attitude and magnetic are done by the Inertial Measurement 

Unit (IMU) and are not fit to be used as the sole means of navigation, which is where the GPS 

and EKF come in. Without the GPS, the aircraft’s localization, or idea of where it is relative to 

the surroundings, will deteriorate and continue to do so as the duration of the mission increases. 

This is known as drift and is a quantity that is minimized as much as possible.  

There are environments where the optimal solution would be to use a UAV, but the GPS 

signal may be too weak for the UAV to use or denied entirely. In such cases, the easiest method 

of control is simple line-of-sight operation of the UAV. When line-of-sight is not an option, 

vision-based methods are used. These are software that make use of the incoming visual 

odometry data from the camera to gather captured images and conduct analysis on them. Visual 



odometry packages are reliable, allow for real-time analysis and localization of the aircraft. They 

face issues in that if the UAV happens to remain stationary for too long in a fixed spot, the drift 

will increase. Simultaneous Localization and Mapping (SLAM) methods make use of the same 

visual odometry data, for UAVs to “simultaneously” deconstruct the environment around it to 

make a map, as well as orient themselves within that map to localize themselves. A third way 

that is used for navigation in indoor GPS-denied environments is via motion capture. By 

attaching markers to the body of the aircraft and tracking their movements as they occur, the 

navigation of the UAV can be handled autonomously. The goal of this project is to use such a 

motion capture system to control an aircraft bearing sensor packages with the aim of recording 

data pertaining to the environment of deployment.  

 

Background 

An unmanned aircraft system (UAS) constitutes of 5 coordinated disparate elements: A 

UAV, a control station, a launch and recovery system, a maintenance and support system and an 

operating payload (4). Colloquially, UAS and UAV are used interchangeably along with terms 

such as “drone”, “quadcopter” or “aerial robot.” To better understand what each of these terms 

means and clear away any misconceptions of exactly what the whole Unmanned Aerial scene 

entails, it is necessary to start with what exactly an UAS is. After a brief discussion of the history 

of global UASs and the events that led to their emergence, the paper will expand on the term 

UAV and the air vehicles that define it before proceeding to MAVs, an offshoot of UAVs.  

The first generally accepted use of an UAS was by the British Royal Navy (5), which 

operated a remotely operated airplane for aerial target practice as part of training sessions. The 

plane is question was the de Havilland DH.82 Tiger Moth and a total of 380 were used. They 

could attain an altitude of 17,000 feet and had an operating range of 300 miles. Interestingly it is 

from this very plane that the term “drone” arose. A drone is a male bee that makes a singular 

flight for the queen bee before perishing (6).  

The success of the British in utilizing RC technology spurred the US on and the US Navy 

began its own program to develop radio-controlled aerial targets. Major advances in UAV 

technology next arose in the Vietnam War. During this period, planes had been modified to act 

as decoys, conduct surveillance and reconnaissance behind enemy lines, gather intelligence 

through photographs and drop propaganda leaflets (5). The UAVs in question were the AQM-34 

Ryan Firebee and they were launched from a “mother” plane, Lockheed DC-130, which would 

simply drop the UAV from its underwing pylons to begin the mission. The Firebee was a very 

reliable tool for the USAF and prevented human losses while providing crucial information. The 

recovery system for the Firebee was a parachute that would deploy upon mission completion and 

allow for the UAV to be caught by a helicopter.  

From the Vietnam War onwards, the next country making leaps and bounds in the UAV 

field would be Israel. In 1982, Israel launched Operation Mole Cricket 19 against Syria. What 

makes this conflict a pivotal moment in history is that it was the first recorded and legitimate use 

of UAVs on the battlefield to carry out critical aspects of a combat mission in a successful 

fashion. Israel also developed the Scout and Pioneer aircraft; they are both small and light 

aircrafts that could be tactically deployed at short-notice and provide excellent surveillance (5).  

In the 1990s and 2000s were when UAVs became a dominant tool used in the various 

defense forces throughout the world. Their unmanned nature and plethora of information-seeking 

abilities allowed for militaries to keep a real-time track of events on a battlefield halfway across 

the world and not lose troops to the pitfalls of manned aviation (7). Some famous UAVs that 



made an emergence in these times were the American RQ-1 Predator, the joint American Israeli 

RQ-2 Pioneer and the Israeli Firebird. Fast forward 10 years and UAVs have started making 

appearances in consumer and civilian spaces. Companies like Parrot and DJI response to 

consumer commercial interests by producing UAV technology tailored for aerial photography, 

industrial work, data collection or mapping. It is becoming increasingly popular for all sorts of 

events to occur with a specialized video UAV overhead, taking gorgeous captures of vistas, 

controlled via a smartphone or remote control (8).  

A micro-aerial vehicle is a specific type of UAV, one with a weight between 200 grams to 

2 kilograms. Using weight as a means of classification is just one of many ways. Other methods 

include using wingspan, flight range or even intended use. Regardless of classification method, 

the defining characteristic of MAVs is their small size. Military applications of MAVs are 

surveillance, reconnaissance and search and rescue operations. Civilian and scientific 

applications of MAVs include traffic monitoring, urban mapping, cloud and coast monitoring 

and rainforest observation (9).  

 

1.1 Project Objectives 

 The project objective is to design a MAV that is capable of carrying sensor modules 

along with a micro-computer. The proposed design should be light, easily assembled by one 

person, and scalable to allow for a swarm to be manufactured if necessitated. The MAV must 

utilize a Vicon Motion Capture system for its navigation rather than the Global Positioning 

System (GPS). The MAV will use the Vicon Motion Capture to orient itself within an indoor 

environment and be controlled using a ground control station running a ground control software. 

The flight controller of the MAV must communicate with the onboard micro-computer to allow 

for flight autonomy. The final iteration of the MAV project is aimed to be able to take off from 

an arbitrary point, utilize the Vicon Motion Capture System to fly to another arbitrary point, 

collecting sensor data along the way and then land in a smooth and safe manner. Requirements 

that the MAV must meet along with the objective are being light (≈ 500 grams) and compact to 

store, capable of being constructed singlehandedly and have a flight time of 15 minutes.  

 

1.2 Literature Review 

 Literature review for the MAV’s construction consisted of an examination of modern 

quadcopter design theory, basic quadcopter frames used by other research projects as well as 

recreational projects and popular commercial drones such as DJI (8) and Parrot (10). Previous 

MQP designs for competitions were also examined in a hands-on fashion at Professor Cowlagi’s 

laboratory. From these three sources of information, the team narrowed down frame layouts, 

component choices, component placements and frame materials.  

 A quadcopter has four motors attached to the ends of its four arms. The motors have 

propellors attached to them, oriented vertically. These propellors when spun are what generate 

the thrust allowing the craft to fly. The arms extend from the central frame, where the 

components are housed. The four motors evenly carry a quarter of the weight of the quadcopter 

if the components are arranged correctly. Two of the motors spin in the clockwise direction and 

two spin in the anti-clockwise. Motors spinning in the same direction cannot be placed in 

adjacent quadrants of the quadcopter. Additionally, the motors must all be on the same vertical 

plane. Both clockwise and anticlockwise rotation is necessitated because otherwise the 

quadcopter would simply spin in place. For example, consider a quadcopter with the X design. 

Common design types will be discussed in the following subsection. If the front right motor of 



this hypothetical quadcopter spins clockwise, the other clockwise motor must be the back left 

one.  

 The thrust generated by the propellors is measured in force units, metric and imperial. 

Propellor acceleration generates thrust, moving the system up and down on the Z-axis. Rotation 

of the quadcopter about the Z-axis is dictated by the net torque about the Z-axis. By default, this 

quantity is zero, balanced by the equal and opposite clockwise and anticlockwise motion of the 

motors. Shifting the net torque from zero rotates the quadcopter. When the clockwise torque is 

greater than the anticlockwise torque, the quadcopter will rotate in a clockwise direction and 

when the anticlockwise torque is greater than the clockwise torque, the quadcopter will rotate in 

an anticlockwise direction. The torque in a direction can be changed by changing the rotation 

speed of the motors for that direction (11). An important quantity is the ratio of the thrust 

generated to the weight of the quadcopter. In general, the maximum possible thrust that can be 

generated by the motors should be twice the weight of the quadcopter. This is done to ensure that 

flight is possible without risking motor failure by constantly having the motors at maximum 

thrust. Brushless DC motors are the most commonly used type of motors for quadcopters (12). 

This is due to their numerous advantages over brushed types (13). The first comes from the name 

itself. Brushless motors have no brushes and so periodic replacement of components in not 

required, reducing overall maintenance. Brushless motors are also more electricity efficient than 

their brushed counterparts due to the lack of brushes. The brushes of a brushed motor are 

actually the commutator, a rotary switch that reverses the direction of current between the rotor 

and the external circuit. Brushless motors do away with the physical commutator and handle the 

commutation electronically. By doing so, friction from the brushes as well as the electrical 

resistance of the brushes themselves is eliminated, improving electrical and torque efficiency. 

The third main advantage that brushless motors offer is a higher torque to weight ratio due to 

their lower weight.  

 Propellers can be two-bladed, three-bladed, or four-bladed. The number of blades affects 

the control of the aircraft and thrust generation (11). Fewer blades offer greater speed and 

efficiency at the cost of control. Propellor size and material are also important factors to 

consider. Longer propellors generate more thrust at the same speed than shorter ones, however 

they require more torque to get them spinning. Propellor size also influences propeller pitch. 

Pitch is the distance travelled per revolution of the propeller. A low pitch offers more torque and 

higher stability than a lower pitch. This is because the propeller is reaching the operation 

revolutions per minute at a slower speed. Propellor material affects how stiff the propellor will 

be as well as its durability. Materials with a lower density will need less torque to acquire the 

same revolutions per minute but may be more fragile. They may also be more susceptible to 

damage due to vibration and can flex if the propellor spins at a particular speed, which can 

introduce undesirable effects.   

 Modern quadcopter design theory dictates that the final application of the MAV is the 

most influential factor on the design (1). An MAV meant for combat applications will be more 

likely to have an assortment of cameras, sensors and weapon systems, than a civilian MAV. A 

recreational racing MAV will likely have as little weight as possible, to maximize flying speed 

and ensure smooth handling. To this end, the team’s final application was very clear and that 

greatly simplified the design process. The autonomous nature of the project meant that we had to 

include a micro-controller. The MAV needed to be operated in an indoor environment, so a 

global position system (GPS) was not required.  For the same reason, the battery did not need to 

be able to provide charge for an extended duration. In an outdoor environment, the user may 



navigate the craft too far away for it to be able to return to their vicinity, but the same cannot be 

said for an indoor environment. If the battery level becomes too low, the user can simply land the 

vehicle and navigate to it to retrieve it.  

 

1.2.1 MAV Basic Designs  

 MAV quadcopter frame shapes are dictated by the placement of the arms relative to the 

central body. There are four commonly used frame styles: True X, Hybrid X, Stretched X and H 

(14). These are all pictured below in Figure 1. True X is as the name implies, when the arms are 

all evenly spaced from the central body and the ends of the arms form a geometric X. This frame 

shape is very stable. H frames resemble a I shaped beam. The arms are attached perpendicularly 

to the body. These frames can necessitate long arms if the propellors are long, to ensure there is 

no contact between the body and the tips of the propellors. Hybrid X frames blend the H and true 

X frames. The angle of the arms is adopted from the true X layout and combined with the longer 

central body of the H frame. These are the most common type of quadcopter frames. Stretched X 

frames are similar to the hybrid X frames, with the difference being that they have a greater 

distance between the front and rear arms. The greater distance between the front and back means 

more material is used, making the stretched X frames slightly heavier than the other X frames. 

Another frame choice, not pictured, is where the arms of the quadcopter are integrated to the 

central body. This makes the entire frame one piece, which comes with its own set of advantages 

and disadvantages. Fusing the arms to the body reduces the number of linkage points, reducing 

the chance of mechanical failure. It also makes the frame stiffer than if the arms had been 

separated. The joining does mean that if there is a crack somewhere or if an arm breaks that the 

entire frame must be replaced rather than just one arm.  

 

 
Figure 1: Quadrotor MAV Configurations (Image taken from DroneNodes.com) 

          

  

1.2.2 MAV Control  

 MAV control has two main aspects to it (1). There is the remote control for the actual 

flying and movement of the craft and then there is attitude control of the craft. Attitude control is 

handled by the flight controller and motion control is handled by a remote controller and 

partially by the flight controller as well. The flight controller is the “brain” of the quadcopter. It 

contains sensors such as accelerometers, magnetometers and barometers. These sensors measure 

acceleration, magnetic field strength and pressure respectively. The flight controller also makes 

use of a model of the quadcopter. This model’s behavior is determined by the number of degrees 

of freedom it was designed with. A model with a greater number of degrees of freedom will paint 

a more detailed picture of how the craft will respond to stimulus. The flight controller combines 

this model with the measurements it makes to calculate the “attitude” of the craft. The attitude is 

essentially information on how the craft is oriented at an instant of time. Once the attitude is 



calculated, the flight controller uses it along with user input to alter the speed of the motors to 

move the quadcopter as per the user’s desire.  

 

1.3 Design Requirements, Constraints, and Other Considerations 

 The following were the design requirements the project was completed with in mind. A 

few of the requirements were provided at the inception of the project and some were decided by 

the team while undertaking the project, in order to make the project our own and simplify some 

choices. 

 

The MAV: 

• Must be under 500 grams total. 

• Must be under 400 grams without the sensors.  

• Must use Vicon Motion Capture. 

• Must be able to autonomously travel from a point A to an arbitrary point B within 

reasonable distance.  

• Must be low cost (around $100 to assemble given instructions). 

• Must be easy to set up (given instructions a person could make one in a day). 

• Include a controller.  

 

 Some of the considerations we had to make while working on our project were related to 

the manner we worked in the laboratory. We had to always be careful to disconnect the battery 

before altering the electrical components in any manner as doing so with a connection would 

have shorted out some of the more sensitive components. The Vicon Motion Capture system is 

extremely sensitive to perturbations and the slightest movement while it is operating throws the 

system out of calibration, so we had to keep that in mind while carrying out the test flights. 

Additionally, the MAV had to be properly armed and disarmed every time we carried out the 

flight tests. Failing to disarm and accidentally triggering the controller could have caused 

damage to both the team and the MAV. Appropriate conduct with the MAV also extended to the 

way it armed before the test flights. The Pixhawk carries out a burst of tests before arming the 

MAV and if voltage is too low, or the throttle is being activated before the craft is ready, the 

procedure to arm will stop. Mission Planner notifies the user and asks if the MAV should be 

force armed rather than regularly armed. Force arming is not something this group carried out, as 

the risks are far too great.  

 

1.4 Project Management 

At the onset of the project, the team divided into sub-teams to allow for a deeper focus and 

understanding of different aspects of our project. Antonio and Martin worked together to learn 

the Vicon motion capture system. Nicolas focused on the design and modeling of the frame, 

while Akul worked with the microcontrollers. Antonio and Akul also collaborated on Pixhawk 

familiarization. 

Aside from these major subdivisions, team members were responsible for other, smaller 

tasks. Martin submitted purchase requests as well as performing 3D printing related tasks. 

Antonio and Nicolas often focused on the electrical assembly and propulsion subsystems of the 

MAV, including soldering, and thrust testing of the engines. Additionally, Akul worked on the 

QGroundControl software. Later in the project, Akul, Antonio, and Martin collaborated when 

working with Mission Planner software to communicate with and control the MAV. 



 For the first several months of the project, the team and advisor met weekly to discuss 

progress, upcoming goals, and any questions or adjustments to the project. Later, these meetings 

occurred less frequently on an as-needed basis. Our team of four held three independent 

meetings weekly, on Monday, Wednesday, and Friday. These meetings were scheduled in 

advance to work with the varied academic schedules of the team members. Additional meetings 

were scheduled as necessary to complete specific time-sensitive tasks or meeting with outside 

persons, such as Vicon support staff. 

 As an engineering team we also made sure to uphold the Code of Ethics for Engineers as 

outlined by the National Society of Professional Engineers. The duties include the following 

listed below: 

1. Hold paramount the safety, health, and welfare of the public.  

2. Perform services only in areas of their competence.  

3. Issue public statements only in an objective and truthful manner.  

4. Act for each employer or client as faithful agents or trustees.  

5. Avoid deceptive acts. 

6. Conduct themselves honorably, responsibly, ethically, and lawfully so as to enhance the 

honor, reputation, and usefulness of the profession. 

 

1.4.1 Tasks and Timetable 

  
Table 1: A-term Proposed Timetable 

 



Table 2: B-Term Proposed Timetable 

 
 

Table 3: C-Term Proposed Timetable 

 
 

The above tables document the manner in which the team divided their work up across the three 

terms. During the weekly presentations, the week of the term that it was at the time was 

highlighted green and the progress made towards the listed objectives was presented to the 

advisors. For the most part, the team stuck to the proposed timetables and completed tasks at the 

speeds we had initially thought we would. There were a few setbacks, namely with the Odroid 

initial testing and towards the end of the project with the test flights. One of the ESCs for the 

motors was incorrectly plugged in to the Pixhawk 4 Mini and that caused it to short out. 

Obtaining another set of ESCs quickly proved to be difficult and in the subsequent delay, less 

testing of the actual completed MAV was done than hoped. Additionally, a team member 

contracted COVID-19 and to adhere to university standards, the entire team remained in isolation 

and conducted meetings virtually rather than in-person. This also took away valuable testing 

time.  

 

1.5 Relevant Engineering Standards 

 For on board autonomy, the Robot Operating System (ROS) standard was used. The 

specific version of ROS was mavROS Kinetic. mavROS is a communication node used for 

communication between the ground control station through the Odroid and the autopilot running 

within the PixHawk 4 mini (15). For the hardware, namely the flight controller, the Pixhawk 

open standards were used (16).  



 

1.6 Methods 

 
Table 4: Various methods applied to subsystems. 

Method Subsystem 

Additive Manufacturing Fused filament fabrication (FFF) of polylactic 

acid (PLA) to construct frame 

Vicon Tracker Motion capture software for live position and 

attitude tracking  

Mission Planner Flight control software to communicate with 

flight controller 

MATLAB Receive and store data from Vicon Tracker 

for motion capture analysis 

RCBenchmark Software for testing thrust of motors 

 These are the methods used to carry out tasks for the various subsystems comprising the 

MAV. The frame was constructed using FFF of PLA. The instrument we used was a Creality 3D 

printer from Professor Cowlagi’s lab. The Vicon Tracker is software companion to Vicon 

Motion Capture systems and is used as a control station for it. Our use of it was to make the 

MAV an object within the program’s database that the system would recognize and track the 

position and altitude of. Mission Planner and QGroundControl are also methods that we used. 

They were the control stations for the actual MAV and were used to control it though a PC. They 

were also used for the calibration of the flight controller as well as the electronic speed controller 

tuning. MATLAB was used to process the captured data from the Vicon Motion Capture system 

and produce quantitative results.  

 

1.6.1 ODROID Setup: 

To get the ODROID functional, an SD card with an operating system has to be inserted 

into it. The ODROID reads the contents of the SD card and boots accordingly. Inserting an 

operating system on an SD card is called flashing the SD card. Our choices of operating systems 

to flash were either an Android based system or a Linux based system. We chose the Linux 

based system as it is the system recommended by HardKernel, the company that sells the 

ODROID. The HardKernel website contains links to images of different versions of the Linux 

operating system. An image is a compressed file that captures an “image” of an operating system 

and can be used to move data between devices. Our initial thought was to use the most recent 

version, Ubuntu 18.04, however our XU4 could not handle the processing associated with that 

version and would frequently crash. We chose a version that was one generation earlier, Ubuntu 

16.04, and these problems stopped.  

The image must first be downloaded from the HardKernel website and then 

decompressed using either Windows extract or through software like 7-Zip (17). Once the image 

has been decompressed, it is ready for use. The SD card can be inserted into the computer 

containing the contents of the image and then flashed with them using another software like 

Balena Etcher. Once Balena Etcher is done flashing the SD card, it should be ejected from the 

computer and inserted into the ODROID. The operator must make sure that the boot switch for 

the ODROID is set to MicroSD and not eMMC. Figure 2 below shows the layout of the ports 

and pins for the XU4. The boot mode selector is on the bottom left of the board. Once the SD 

card has been inserted, a keyboard and a mouse must also be plugged into the USB ports of the 



ODROID. They will allow the user to use the graphical interface of the Linux OS. Initial setup of 

the Linux OS is things such as device name, username, user password, time zone and Wi-Fi 

connections. These must be completed to the user’s preference.  

 

 
Figure 2: ODROID XU4 Component Layout 

 

 

1.6.2 Pixhawk 4 Mini Setup: 

 Setting up the PIXHAWK 4 MINI requires downloading a ground station software on a 

ground control station. The ground control station for the project was a desktop running 

Windows. The two most popular pieces of ground station software are QGroundControl and 

Mission Planner. The PIXHAWK 4 MINI comes with a USB-A to USB – Micro B cable. The 

USB – A plug is to be connected to a port on the computer and the USB – Micro B plug is to be 

connected to the PIXHAWK 4 MINI. Once the two are connected, the ground station software 

should be launched. 

  

For Mission Planner:  

If using Mission Planner, the connection to the PIXHAWK 4 MINI can be established in 

the top right corner of the software as shown in Figure 3. There are two drop-down fields in the 

top right corner. The left field indicates the port of the computer the Pixhawk is connecting to 

(COMX), and the right field displays the baud rate. The baud rate is the frequency at which the 

communication between the two occurs. The user should use Device Manager (Windows 

Software) to determine the port to which the PIXHAWK 4 MINI has been connected and then 

select the same port in Mission Planner. Alternatively, simply choosing the AUTO option will 

select the software-determined port and baud rate to carry out the communication. When using 

the AUTO feature, keep in mind that the chosen baud rate is the minimum required baud rate and 

that higher baud rates will speed up communication. The baud rate should be set to 921600.  

Flashing firmware OS onto the PIXHAWK 4 MINI is a simple task with Mission 

Planner. Click the SETUP tab, pictured with a gear, on the top left and then click on Install 

Firmware. A display pops up showing the various types of vehicles that can be configured 

(Figure 4). Select the type of remote-controlled craft being used. If you wish to change any part 

of the firmware, select “All Options”. There are a few drop down fields from which the version 



type, platform and version can be chosen as desired. The difference between version type and 

version is that version type describes whether the version being flashed is “Stable”, “Beta”, or 

“Dev”. “Stable” versions are the most-used as they are mostly bug-free and have dedicated 

forums that answer most trouble-shooting questions users may have. “Beta” versions are usually 

new versions which have bugs that are being worked on the developers. They also have greater 

capabilities than “Stable” versions in terms of available features. “Dev” versions are the versions 

where the developers of the software are actively working and creating new features. They are to 

be used only by those well versed in RC software.  

 
Figure 3: Mission Planner Main View (Mission Planner) 

 

 
Figure 4: Mission Planner Vehicle Configuration Menu (Mission Planer) 

 

For QGroundControl: 

Plug the Micro USB B end into the PIXHAWK 4 MINI and the USB B end into the 

computer and launch QGroundCotrol. The software should detect the PIXHAWK 4 MINI and 



change status in the top left from Not Connected to Connected. Click the second icon of the top 

left bar of the gears. A small screen title “Firmware Setup” should be showing on the right side 

of the screen. Choose either PIXHAWK 4 MINI Pilot Flight Stack or ArduPilot Flight Stack.  

 

1.6.3 PIXHAWK 4 MINI Calibration: 

Before the PIXHAWK 4 MINI can successfully be used with a UAV frame, its internal sensors 

such as the accelerometers and rate gyros must be calibrated. Mission Planner simplifies the 

process. The PIXHAWK 4 MINI was connected to a computer running the software and the 

setup tab was navigated to. From there, the calibration process began. It involved placing the 

PIXHAWK 4 MINI on a flat surface and rotating about the axis perpendicular to the side it was 

resting on. This was completed for all 6 faces of the PIXHAWK 4 MINI. The rotation is shown 

below in Figure 5. 

 

  
Figure 5: PIXHAWK 4 MINI sensor calibration. 

 

1.6.4 Autonomous software setup instructions: 

On the XU4, open a new terminal and begin the installation of mavROS. mavROS is a 

ground control station software that allows for the SBC to act as a ground station and control the 

Pixhawk autonomously. mavROS makes use of MAVLink, a messaging protocol for UAV as 

well as onboard component communication. The mavROS installation procedure is clearly 

outlined on the MAVLINK GitHub page. The GitHub page is referenced (18).  

 

1.6.5 Serial communication between XU4 and PIXHAWK 4 MINI:  

Connecting the XU4 and the PIXHAWK 4 MINI required male to female wires. The 

male ends of the wires plugged into the PIXHAWK 4 MINI, and the female ends to the XU4. 

The PIXHAWK 4 MINI port was the UART1 port, shown in Figure 6 below. The connection on 

the XU4 end was the expansion connector board. Figure 9 shows the pin configuration for the 

XU4. The relevant pinouts from the PIXHAWK 4 MINI, initially, to get a start on serial 

communication are the TX and RX ones. The TX (out) from the PIXHAWK 4 MINI connects to 

the RX (in) on the XU4’s expansion board and the RX (in) from the PIXHAWK 4 MINI 

connects to the TX (out) of the XU4. Figure 7 below is a diagram intended to simplify where the 

first pin on each of the expansion boards is. There is also a set of wires responsible for the 



powering of the ODROID, VCC and GND, but these can be connected once communication is 

initiated.   

 
Figure 6: The PIXHAWK 4 MINI port layout. 

 

 
 

Figure 7:ODROID-XU4 Expansion Pin Locations (www.hardkernel.com) 

 

http://www.hardkernel.com/


 
Figure 8: UART1 Pin Layout for PIXHAWK 4 MINI. (www.docs.px4.io) 

 
Figure 9: ODROID XU-4 Pin Wiring Diagram (www.hardkernel.com) 

 

1.6.6 Manufacturing Processes: 

In this project, fused filament fabrication (FFF) of polylactic acid (PLA) plastic was used 

to create initial models of the frame of the MAV. Cura, an open-source 3D printing software, 

was used to slice 3D models into printable instruction files, and all parts were printed on a 

Creality CR-10S Pro V2 3D printer. While PLA was not an appropriate material for the final use 

of the MAV due to poor stiffness properties, it allowed rapid prototyping of different frame 



designs and a “sanity-check” that the components were sized correctly before sending files to be 

manufactured in carbon fiber elsewhere. 

• Prototype- 

o Creality CR-10S Pro V2 3D printer 

o Construction of prototype by connecting wires 

▪ Soldering electrical components 

 

1.7 Broader Impacts 

 

The MAV that resulted from this project was designed for indoor flight. The quadrotor 

will be controlled using a motion capture system that feeds a ground control station the position 

of the quadrotor in real time. Unlike MAVs that are designed to fly outdoors there are fewer 

mainstream applications, such as using an MAV to run quality control tests on large construction 

sites that would typically be too difficult for people to test themselves. An example of this is 

described in a study by Jun Wang which discusses integrating building information modeling 

(BIM) and Light Detection and Ranging (LiDAR) for real-time construction quality control. 

Another more common outdoor application is the use of UAVs to deliver packages instead of 

delivery trucks, which is still in the developmental phase. It is clear to see how these applications 

of MAV can be useful and beneficial to society, however the type of UAV we have created is 

different in several ways. Primarily, our MAV is guided by a motion capture system in lieu of 

GPS.  

The overall wiring and frame of our UAV would require minimal changes to be suited to 

fly outdoors, the most significant addition would be connecting a commercially available GPS 

module to the Pixhawk 4 mini. A GPS is a reliable navigation tool for many applications, 

especially those which require a large area of operation; however, it is far less precise than the 

Vicon motion capture system that is being used with this MAV in a small capture volume. This 

is an important factor when discussing how our project differs from existing MAVs. Using 

Vicon motion capture we are able to have real time data and far more accurate than GPS 

(accurate to tenths of millimeters) the Euler angles, coordinates, velocity and much more send to 

the ground control station which works with the Pixhawk 4 mini to control the MAV. This 

results in us being able to program the MAV to perform more precise maneuvers than is possible 

with GPS. An example of another group of people who have worked with Vicon motion capture 

to achieve this result is Mark Cutler and his team at MIT, who successfully navigated their MAV 

through obstacles and performed aggressive maneuvers. The MIT team could not have flown 

their UAV properly without the more precise data provided by the motion capture system. The 

next step for society is to master this technology and determine practical applications in the 

world, people did not just know to use outdoor UAVs on construction sites overnight. To master 

this technology, we need to make it easier to teach and easier for students to have access to and 

learn how to work these systems. That is why we are creating a low-cost quadrotor MAV in this 

project alongside learning how the Vicon hardware and software works and writing a manual for 

future students to follow. As stated above, the goal of this project is to design an MAV that will 

utilize a Vicon motion capture system as its navigational means and carry a sensory payload. 

This MAV needs to have easily accessible parts and instructions so that future students can be 

given the parts list and instructions for the MAV and Vicon and continue learning and 

researching this topic without the need to learn it from scratch like we have in this project. The 

broader impacts of this project are yet to be known because we are laying the building blocks for 



future students to use this technology as a tool to use instead of a subject to learn. Most modern 

aircraft are made with autonomous features or are completely autonomous, so learning how to 

process and deal with the large amounts of data that the Vicon motion capture system provides 

extends well past quadrotor MAV.  

  



2 System Design 
 

Table 5: Component List 

Component Final Selection 

Flat Frame Components 3D Printed PLA 

Frame Standoffs 35 mm M3 Female Threaded Hex Standoffs 

Mechanical Fasteners M3 Machine Screws 

Propellors 5 inch diameter 3 inch pitch 2 blade propellers 

Microcontroller ODROID-XU4 Single Board Controller 

Flight Controller Pixhawk 4 Mini 

Flight Controller Power Module Pixhawk Power Module 5.3V BEC XT60 

Battery HOOVO 4500 mAh 3s (11.3 V) Lithium Polymer 

Battery 

Power Distribution Module Matek PDB-XT60 

Motors  T-MOTOR MN2206 KV2000 Brushless Electric Motors 

Electronic Speed Controllers 

(ESCs) 

ARRIS Swift Series BLHeli 20A 2-4S BEC 5V/1A 

Brushless ESC 

Motion Capture Software Vicon Tracker 3.0 

Ground Station Software Mission Planner 

Microcontroller Software Ubuntu 16.04  

Pixhawk 4 Mini Firmware Latest Firmware available from Mission Planner 

 

 
Figure 10: Fully Assembled MAV (without ODROID microcontroller) 

The UAS is made up of the UAV, the Vicon motion capture system, and the ground 

control unit. The frame of the UAV is made of three decks, holding the XU4, the Pixhawk 4 

mini, the power distribution board, and the sensor payload (Figure 10). 

2.1 Flat Frame Components 

Before deciding on the specifications of what the frame of the quadrotor will look like, we 

made a list of all the components. Table 5 above shows the list of our initial components. The list 



in the figure above also includes a column with the dimensions of all the components, to make 

sure the frame we construct will be able to enclose them all. The frame is based on a design from 

Holybro. 

While researching existing quadrotor frame designs, we found many to have their builds 

made from carbon fiber. Rather than using carbon fiber for the whole MAV, we decided to use 

the 3D printed Polylactic Acid (PLA) for the main frame and carbon fiber for the arms. This 

decision was made since 3D printing material is much cheaper than carbon fiber. Also using 

carbon fiber for the arms will allow them to be much stronger and stiffer and support the motors 

torque and vibrations. 

To construct the frame and attach all components to it, M3 machine screws and nuts were 

used. To provide vertical structure and function as landing gear, 35mm female-threaded 

standoffs were used. Initially, the MAV was proposed to land on the flat bottom of the frame 

without landing gear. However, upon construction, part of the power module extended beneath 

the frame, requiring landing gear. 

 The addition of motor guards to the MAV was discussed to protect anything that may be 

near the MAV during flight from the spinning propellors. However, as the MAV was never 

constructed past the initial prototype stage, including flexible PLA instead carbon fiber motor 

arms the motor guards were not included. With further iteration, motor guards would likely be 

added as flight patterns became more elaborate. 

 

2.2 Propellers 

The propellers that we selected for our project are 5 inches in length with a 3-inch pitch 

(5030) (Figure 11). Our propellers were decided by several factors including compatibility with 

both the frame and motors. Diameter and pitch are the two main factors determining propellor 

performance. We decided to determine the diameter first, as the diameter of the propellers is 

restricted by the overall frame geometry, while the pitch is not restricted by other components. 

The frame design created by Holybro Holybro (19) that we modified for this project was 

originally designed for five-inch propellers, and with the expected mass and dimensions of our 

components retaining this size was appropriate. For the pitch of the propellers, we referenced the 

motor specification sheet published by T-MOTOR. For an 11.1V battery and five-inch 

propellers, only data for a three-inch pitch is available. With the thrust generated at the throttle 

ranges provided, 5030 propellors were decided on for compatibility with frame size, motors, and 

thrust requirements. 



 
Figure 11: Example of 5030 2 Blade Propellers 

 

 

2.3 Microcontroller 

A microcontroller is a small computer. For UAVs, microcontrollers allow autonomous 

control. To give our MAV autonomous capabilities, we had to choose between using an NVIDIA 

Jetson Nano or a HardKernel ODROID XU4 as the microcontroller. The microcontroller that we 

decided on using was the ODROID XU4. There were a few factors that made the XU4 a better 

choice for the MAV overall. It is significantly lighter than the Jetson Nano. The XU4 weighs 60 

grams, while the Nano weighs 210 grams, nearly four times as much. With a mass of 210 grams, 

about half of the weight of the entire MAV would be just the microcontroller, which seemed 

poor designing strategy. Additionally, the Jetson Nano requires a heatsink to operate. NVIDIA 

recommends that this heat sink not be removed under any circumstances as it could cause the 

Nano to overheat. With the heat sink, the only way to accommodate the Jetson on the MAV 

would be on the topmost deck. In the event of a crash, this would likely significantly damage the 

Jetson, which also seemed poor design strategy. In terms of technical specifications, the Jetson 

offers much greater processing power than the XU4 due to its combination of quad-core CPU 

and 128-core GPU. The XU4 has only an octa-core CPU. The Jetson’s RAM is 4GB and the 

XU4’s is 2GB. For sensory data capture and transmission to an external device, the processing 

power required is not extremely high. Additionally, since navigation was going to be done using 

the Vicon system, there wasn’t a need to run a Kalman Filter or other such taxing processes. 

Keeping the above factors, as well as the costs in mind, it made much more sense to use the XU4 

rather than the Jetson. Since the XU4 is still a little wider than our design for the top of our 

frame, we have designed an attachment piece for the XU4 to help mount the minicomputer to the 

aircraft. For any person replicating our model, they will have the ability to exchange the XU4 for 

a microprocessor of their choice by simply reprinting the attachment piece that is designed to fit 

on top of our aircraft but move the location of the attachment holes to match those of their 

processor.  

 



 
Figure 12: NVIDIA Jetson (left) and ODROID XU-4 (right) 

  

2.4 Flight Controller 

A Pixhawk 4 Mini flight controller was chosen primarily for open-source, platform neutral 

software options, versatility, and physical size (Figure 13). The Pixhawk 4 Mini runs PIXHAWK 

4 MINI autopilot software, an open-source, industry standard ecosystem for unmanned vehicles 

(20). PIXHAWK 4 MINI allows for extensive customization, allowing us to modify the autopilot 

for this specific project. The Pixhawk 4 Mini was chosen over the Pixhawk 4 solely due to 

physical size. The Mini version possesses the exact same processing capability, but in smaller 

dimensions and with fewer additional data ports, which were not necessary for this application. 

With the small size of the frame, space saving was a priority.  

 

 
Figure 13: Pixhawk 4 Mini 

 

2.5 Battery 

For the final design a 4500 mAh 3S (11.1 V) lithium-ion polymer (LiPo) battery 

manufactured by HOOVO was chosen (Figure 14). This battery was chosen out of other batteries 

with the same electrical properties due to mechanical dimensions and minimal weight. The 

dimensions of this battery better matched the dimensions of the frame to allows for better 

component positioning. The electrical properties of the battery were determined as part of the 

iterative electrical system design process described in Section 3. To support the proper voltage of 

the motors and provide a flight time of at least 15 minutes running all proposed components, 

11.1 V and 4500 mAh were required. Before deciding on the 4500 mAh battery by HOOVO, our 



initial consideration was the Turnigy Bolt 1800 mAh 3S (11.1 V) LiHV battery. The Turnigy 

Bolt battery had less milli ampere-hour but was much lighter than the HOOVO battery. We 

eventually found and decided on the HOOVO battery since the weight of our aircraft increased 

and the motors we choose required more power to operate. 

 

 
Figure 14: 4500 mAh 3S (11.1V) HOOVO LiPo Battery 

 

 
 

2.6 Power Distribution Module 

Our project team decided on the Pixhawk power module 5.3V (Figure 15). This component gives 

us the ability to power our flight controller while also reporting the battery voltage and current 

data to the controller to log. The connectors on the module output a minimum of about 5.3V at a 

maximum of 2.25 Amps and can be used up to a maximum of 28V at 90 amps. The connectors 

are called XT60, which are the same as the PDB below. This decision was made because it was 

created by the same company as our flight controller, Pixhawk, and its specs included everything 

that we needed. It was also a highly recommended product by many reviewers custom building 

quadrotors. 

 
Figure 15: Pixhawk 5.3V Power Module 

 

 

2.7 Power Distribution Board 

Our project team chose the LinsyRC Power Distribution Board (PDB) (Figure 16). This 

PDB comes with an XT60 connector which connects directly to the power module we decided 

on. It also provides our UAV with up to six positive and negative ESC outputs. When using four 

ESCs it relays 25 amps through each one with a peak current of 30 amps. The decision to 

purchase this PDB over others was relatively simple. It provided us with a direct connection to 

the power module we selected as mentioned earlier and can handle a 3S LiPo battery. The board 

also provides an extra 5V and 12V BEC output which can be used for any sensors that are added 

to the aircraft. 



 
Figure 16: LinsyRC Power Distribution Board 

 

 

2.8 Motors 

The quadrotor motor that was decided on was the T-Motor MN2206 KV2000 (Figure 17). 

This motor is a high-performance brushless electric motor specifically made for multi-rotor 

aircrafts. A picture of the motor and its specifications are shown in the figures below. 

 

 
Figure 17: T-Motor MN2206 KV2000 Brushless Motor 

 

 



 
Figure 18: Manufacturer’s Specifications for T-Motor MN2206 KV2000 

 

 

This motor when using a 5in diameter by 3in pitch propellor provides a thrust of 195G at 

50% throttle (Figure 18). The thrust provided at 50% throttle must be approximately equal to the 

weight of the UAV. This is called the hovering thrust, which will allow the motors to ascend and 

descend the UAV by rotating above or below 50% thrust. This motor was also decided on 

because it came from a highly reviewed company and was available on amazon providing quick 

and easy shipping. The price was also matched up against other motors before the decision was 

made. The price of these MN2206 motors matched the quality of motor our team was looking 

for. Table 6 below shows some of the motors that we compared before deciding on the T-Motor 

MN2206 KV2000. 
 

 



Table 6: Motor Comparison Chart 

Name Mass (g) 

Power 

Consumption(V) KV RPM Thrust 

Idle 

Current 

EMAXMT1806 18 2-3S 2280 

Depends on 

Battery 

Depends 

on Prop 

Depends 

on Prop 

T - 

MotorF1303 6.1 2-3S 5000 

22735 @ 

50%throttle 

66.24g @ 

50%throttle 

0.32 A 

@ 4V 

T - 

MotorF1204 6.9 2-3S 

5000 

/6500 

19881 @ 

50%throttle 

58.85g @ 

50%throttle 

0.7A @ 

10V 

T - 

MotorF1103 5.3 2-3S 

8000 

/11000 

29663 @ 

50%throttle 

48.3g @ 

50%throttle 

0.58A @ 

3V 

T-MotorF1404 7.75 3-4S 3800 

22759 @ 

50%throttle 

158g @ 

50%throttle 

0.5A @ 

10V 

Need to change the table, not all the correct motors we compared 

 

2.9 Electronic Speed Controllers (ESCs) 

The ESCs we decided on were the ARRIS Swift 20A 2-4S BLHeli Brushless ESCs 

(Figure 19). They were designed to for a 20A continuous current and up to 30A burst current. 

Batteries of 2-4S (7.4-14.8 V) are supported. These were decided based on the amount of current 

and voltage our motors required as well as the voltage output by the battery. 

 

 
Figure 19: ARRIS Swift 20A 2-4S BLHeli Brushless ESC 

 

 

2.10 Motion Capture Software 

Vicon Tracker is the software developed by Vicon for engineering applications. At the 

time of this project Vicon Tracker 3.9 was the most recent version. Designed to maximize 

accuracy and precision, Tracker is capable of dynamic accuracy of 0.017 mm and allows for 



real-time data transfer and modeling via Mathworks Simulink (21). With Tracker designed 

specifically for use with the Vicon Vero cameras in engineering applications, there were no 

comparable software alternatives. 

 

2.11 Ground Station Software 

 Mission Planner is a ground control station software for remote-controlled vehicles. It 

can be used to simply configure the RC vehicles or to actively control them if they are 

autonomous. QGroundControl is another ground control station software and offers many of the 

same features as Mission Planner, however not as many. QGroundControl has a simplified user 

interface compared to Mission Planner and streamlines many of the initial procedures to get the 

MAV armed. The reason the team opted for Mission Planner over QGroundControl is that the 

arming procedure using QGroundControl did not work. The software could not recognize the 

ESCs, which was not an issue that could be solved by the team. Opting to maintain the schedule, 

we pivoted to Mission Planner.  

 

2.12 Ubuntu 16.04 

 For the initial flashing of the OS for the ODROID, the team had to choose between using 

an Android based system or a Linux based one. The team chose a Linux-based OS because of 

two main reasons. The first being that it was the OS the team was more comfortable using and it 

has a lot of support online if troubles were encountered. The second is that the Android OS is 

primarily designed to be used via touchscreens on mobile devices, not utilizing a controller to 

command a MAV. Linux is a system that has been used for millions of embedded devices across 

the globe, while Android is a more recent entry in that space. It was simply a question of the 

amount of existing information pertinent to our task between the two OS, and the answer was 

Ubuntu.   

 

2.13 Universal Sensor Clamp/Holder 

Our project team never officially decided on a sensor clamp or sensors to use on the MAV. 

With the Odroid XU4 microcontroller we initially thought to include a clamp that could hold 

multiple different sensors. Some sensors that we had in mind include microphones, cameras, and 

LIDAR. The universal holder would consist of a wall of holes being held facing the front of the 

aircraft. These holes can be used to attach a clamp of the user’s choice. This will allow the user 

to decide exactly what sensor they would like to use on the MAV. Since the XU4 has a solid 

processing power, there are a wide variety of sensors that the user can choose to attach on the 

MAV.  



3 Design Process and Analysis 
3.1 Electrical System Iterations 

 

In Figure 20 below we have our iteration process expressed within a diagram. It shows our 

thinking and how we arrived at our selected motors, propellers, and battery combination. 

 
Figure 20: Propulsion System Iterative Process 

3.2 SolidWorks 

Our design process began by forming a complete parts list. Once our group knew all the 

components that will be included in the aircraft, we were able to start modeling our frame. Our 

initial idea was to have a quadrotor that has 3 levels as shown in the figure below. After some 

calculations and research on quadrotor designs that already exist, we established 2 levels would 

have enough space to hold all necessary components. From a website named HolyBro (19) we 

were able to find a schematic and 3D model of a quadrotor that had been tested in flight. Using 

this model as shown in Figure 21 below, we were able to adjust the mounts and the size of the 

bases to fit our needs. 

 
Figure 21: HolyBro Frame Design 

 

 

We began by modeling our components in SolidWorks in order to make sure that all our 

components fit onto the designed frame before we printed the 3D model. Using the SolidWorks 

software made it easy to visual all the parts attached to the frame virtually to make sure enough 

space was provided for wiring and in between components. Some of the 3D modeled parts were 



found on a similar website named GrabCad. (22) Once a place was found for all the components 

on the frame, we began printing starting with the arms (Figure 22). 

 
Figure 22: 3D Printed Motor Arms 

 

The first test was to see whether the motors could be connected to the arms properly. This 

test was our top priority for we needed to have our motors attached to an arm to test it on the 

thrust stand. We immediately recognized that the 3D printing process caused the holes to shrink. 

The screws we ordered did not fit through the arms. Therefore, we reprinted the arms after 

increasing the 3mm diameter holes and slots to 3.2mm. This adjustment was made to all frame 

parts that required the use of the screws. 

 

Next in the design process came the main base. It was redesigned to fit both the PDB and 

have a space for the Pixhawk to be strapped in place to maintain its orientation for flight. Two 

main base plates were printing out to hold the arms together. The arms attached perfectly to the 

base and did not need to be reprinted. The PDB also fit nicely with the wire for the battery running 

along the bottom of the drone to the top of the drone where the battery will be held. The frame was 

a two-floor design where the arms are not directly connected to the main frame as mentioned 

before. This way in the case of an arm breaking during flight, only a new arm needs to be printed 

instead of the whole main base. The top plate of the drone was redesigned next to have holes for 

the battery straps to flow through as well as new holes for the microcontroller holder. An extra 

platform was designed for the microcontroller to be held perpendicular to the battery. This was 

done to prevent the battery and microcontroller from sticking too far over the edge. The 

microcontroller does stick over the sides of the drone above the propellers, which could affect their 

performance. Figure 23 below is an assembly of all the components planned for our structure of 

the MAV. 

 



 
Figure 23: Solidworks CAD Model of MAV 

 

Once all the pieces were 3D printed for the MAV, the assembly began. Standoffs were 

used to attach the top plate to the base of the MAV. The holes aligned as predicted through 

SolidWorks. The battery fit well on the top plate, but the extra microcontroller platform has some 

issues when attached. A piece coming off the bottom of the microcontroller was preventing it from 

sitting flat on the platform. When all screws were tightened the platform bent in a slight U shape. 

 

 
Figure 24: Frame with Motors, Battery, and Microcontroller Attached 

  



Holding the frame and during flight tests it was noticed that the arms are very unstable. They tend 

to bend during flight. This was why we initially projected to use carbon fiber arms but did not have 

enough time to order them. 

 

3.3 Thrust Stand Testing using RC Benchmark 

The main purpose of conducting these tests of the motors on a thrust stand was to verify 

that our motors were performing to listed specifications. The most important specification being 

the thrust generated at half power. Generally, for a quadrotor, the motors should allow the MAV 

to hover at approximately half thrust (around a 2:1 thrust to weight ratio is widely used in MAV 

so that the MAV can hover at half thrust) so it is important to make sure the motors provide the 

necessary thrust. The thrust stand test was the first time that many components were used 

together, so it served as a check of component compatibility, specifically for the PDB, ESCs, and 

motors  

For this test we collaborated with students from other MQPs who had experience using 

the thrust stand correctly and taught us how to use it, specifically Chris Davenport taught us how 

to work the hardware and software properly in a timely manner. The steps we took in setting up 

the hardware of the thrust stand are as follows:  

1. Plug the three signal wires of the esc into the back three holes on the top of the stand and 

use the screws on the top to tighten them, such as in Figure 25 below.  

2. The two power wires of the esc are plugged into the power holes on the board, seen in 

Figure 25 beneath the three esc signal wires as two gold circles which can be accessed 

from the bottom and screwed tightly from the side.  

3. The wire on the esc which receives signal from the flight controller (the RC benchmark 

software in this test) is the yellow and black wire seen in the pictures and is plugged into 

the three-prong set labeled esc on the left side of the board.  

4. There is a micro-USB cable that can be seen underneath the three signal esc wires that are 

plugged into the inner side of the board, the other end of that wire is a USB cable that 

plugs into the computer running the RC Benchmark software.  



 
 

Figure 25: Thrust Stand with Motor (bottom) Attached to ESC 

 

5. The motor and arm of the UAV can be seen screwed into the thrust stand in Figure 26 

(the propeller of the motor is not seen in the picture because it is not attached yet). The 

arm is being used as a spacer to attach the motor to the stand. 

6. The three wires of the motor are plugged in and screwed tight in the corresponding holes 

for the correct esc wires (the esc and motor wires could go in any hole as long as they are 

connected to the correct pair). 



 
Figure 26: Motor (without propellor) Attached to Thrust Stand 

 

7. The red and black wires seen coming from back of the board in Figure 26 are plugged 

into a battery and then the setup of hardware for the thrust stand is completed. 

 

Setting up the hardware of the thrust stand can be a long process as it is difficult to screw 

motors into the stand. To use RC Benchmark, the hardware needs to be set up correctly or else 

the program will not be able to connect. The first setback that we had was that sometimes despite 

the hardware being set up properly, when the connect button is pressed on the computer, the 

software is still unable to connect. Our group at first had assumed that we set up the hardware 

incorrectly, however when consulting Chris and the other MQP students who have used the stand 

before we were informed that sometimes the software is inconsistent and will often not connect. 

So, after putting the hardware back to the original configuration and trying to connect a few 

times it finally connected properly.  

In the software there were several things that we needed to change before we could test 

the motor. For our motor to run we had to set the safety cutoffs above what our motor needed to 

work (such as the current being set to a 4-amp cutoff, because 3.3 amps should result in half 

thrust for our motor). Then once we selected the graphs we wanted displayed (Thrust being the 

most important) we went into the manual control section of the software, turned the ESC power 

on half strength, and recorded the data. It seemed to be working as intended and the data we were 

receiving all seemed to be around the same values for each of the different motors, so we took 

down our motor from the stand and went back to the lab to analyze the data (Table 7).  

  



Table 7: Motor 1 Thrust Stand Data, Test 1 

Table  

 

The relevant parameters that the thrust stand records data for are shown in Table 7, this data was 

recorded over 200 intervals of time for all four motors and compared, and the following Table 8 

was created from the raw data which led us to believe that something was not right. 

 
Table 8: Average Thrust for All Motors, Test 1 

 Motor 1 Motor 2 Motor 3  Motor 4 

Average Thrust 

(Newtons) 

0.521871 0.70975 0.65288 0.75174 

 

Once we looked at the data and converted the numbers for the average thrust into grams, 

we quickly realized that something was not right. The data, as seen for one motor and the 

average thrust values for the other three in Table 8 show that each motor was only generating 

between 50 and 75 grams of thrust at what we thought to be half power. This was an issue 

because each motor was listed to lift ~195 grams at half power, if the data we collected was 

correct, the UAV would not be able to fly, and the manufacturers spec sheet would be 

inconsistent with the performance. 

To determine what the issue was in our test we first reviewed the hardware set up. The 

thrust stand had a dedicated ESC and battery that was for use of everyone, and it was suggested 

just to use the standard thrust stand ESC and battery. We realized that having a different ESC 

with different amperage limits and a battery with a different voltage would impact the expected 

performance of our motors; so, we decided to retest motor 1 with our battery and the given ESC, 

and then our battery and our ESC to see if there are any noticeable changes. 

After testing with our battery and the given ESC, the average thrust for motor 1 increased 

by 0.3 Newtons, which was noticeable, but not significant enough to solve our problem. Then the 

third test with our battery and our ESC (which we ran through our PDB as well to verify 

compatibility of our components) went up 0.4 Newtons from the original test.  

Making these changes did increase motor performance, however the increase in thrust 

still resulted in half of the expected and required thrust for this UAV to work properly. After 

talking to other teams for ideas on what to do next to make it work, we were told that the thrust 

stand produces unreliable data at times and it may not be our setup, so we decided to keep these 

results in mind and continue assembling the MAV. With unreliable thrust stand data, the thrust 

capacity of the motors was verified by lifting the fully assembled MAV. 

 

3.4 Vicon 

The path learning how to operate the Vicon motion capture system was filled with many 

obstacles that challenged us and ultimately created a much more complete understanding of the 

system hardware and software. Every problem solved in the process allowed us to understand a 

different component of the system and generate a more complete user’s guide (Section 7). Steady 

progress over the course of months resulted in the ability to track object both live and recorded 

and stream live position and attitude data to a MATLAB script. 



The Vicon motion capture software was set up to 

determine the position of the MAV within the testing area. Vicon 

Tracker software creates a virtual 3D capture volume using a 

infrared sensors placed around the room. This software has the 

ability to relay live three-dimensional position and orientation 

data to the ground station to provide information necessary to fly 

quadrotor autonomously. The series of figures below show 

screenshots of the software and its capabilities. 

Eight Vicon Vero cameras surround the capture volume, 

so that the MAV is visible from multiple cameras at any given 

time. The cameras themselves track the MAV by detecting 

infrared light reflected of spherical tracking markers, as seen in 

Figure 27 which are placed asymmetrically on the object is to be 

tracked. The Vicon markers must be placed asymmetrically on 

the UAV so that the Vicon software can determine the axes and 

orientation of the MAV, without accidental axis inversion that 

can occur with a symmetrical placement. 

 

 

 
Figure 28: Example Quadrotor with Attached Markers 

 

A UAV from a previous MQP that was available was used as a test UAV for the Vicon 

system while we were simultaneously creating the MAV for this project. Figure 28 above is an 

image of that test UAV, with asymmetrically placed reflective markers. If the markers were 

placed in the shape of a square, one on each of the arms of the UAV, the Vicon software would 

Figure 27: Vicon Reflective 

Tracking Marker 



be unable to differentiate them, because the position of each marker would the same relative to 

the others. In a symmetrical pattern, the Vicon software struggles to track the orientation through 

complex maneuvers, and the axes in the software are constantly flipped 180 degrees and back. 

Vicon publications and guides state to place them asymmetrically, however it was not until 

testing that the reasoning behind this became evident. 

When making an object in Vicon Tracker, the selected tracking markers that make up 

said object are only known in relation to each other. There is no way for Vicon to differentiate 

between the tracking balls besides the fixed position of one compared to the others on the object 

being tracked. Similar to the need for asymmetry, varied differences between markers enables 

more accurate orientation readings. 

The first step in tracking the MAV was setting up the hardware of the Vicon system. 

Getting information on this step, and much of the software process, was difficult, due to few 

online publications or forums other than official Vicon documents. The Vicon user guides are 

helpful, however they have many different products and set ups, and sifting through them to find 

specific information can be difficult. Although no WPI groups had worked with the system 

extensively, professor Cowlagi, the project advisor referred us to a student that worked with the 

system in the past.  We were able to contact Chase St Laurent, who graciously agreed to lend his 

knowledge of the Vicon hardware setup.  

To prepare for Chase, we organized all the PoE cables equipment that had been stored in 

the lab, including the cameras, tripods, and switch box. Chase was able to help us mount the 

Vicon Vero cameras to the tripods and gave us suggestions about where to place them in the 

room to get the best view of the capture volume. We were also shown how to wire the cameras to 

the Vicon station at the computer and how to orient and number the cameras in the Vicon 

software. It was a productive meeting that got cut short with a software error, in which the 

cameras were detected by the tracking software but not transmitting any data, that we did not 

know how to solve. Before he left, he gave us some tips on how to calibrate the cameras with the 

wand, unfortunately the cameras could not be calibrated due to the software issue, but it was 

nonetheless useful information later in the project.  

The day after Chase was with us, we attempted to complete Vicon tracker software setup 

to the point we stopped, however we were unable to. Chase had downloaded the most recent 

version of Vicon Tracker, however it was only available from his account, so we were unable to 

load the software. When attempting to download the most recent version to our own accounts, 

we were not able to because we did not have admin privileges on the computer as Chase did. We 

reached out for help first from Vicon customer support, who were extremely helpful and 

responded quickly with suggestions, and second to Professor Ed Burnham to obtain admin 

privileges for the Vicon ground station computer.  

Vicon customer support responded that day with suggestions about network settings we 

could adjust (details of our troubleshooting process and what settings/configuration were 

changed can be found in Section 8), which we also needed administrator access to modify. 

After a short wait, we were able to obtain admin accounts on the computer and we could 

continue with the process. Progress was made with the suggestions from Vicon support, and we 

were able to transmit data from the cameras to the software and view the live feed of each 

individual camera. The next step was then to calibrate the cameras using the wand. The wand is a 

T shaped device approximately one meter long with red LEDs placed along it as seen in Figure 

29 below. 

  



 

 
Figure 29: Vicon Active Calibration Wand 

 

With the cameras transmitting data, we could see the wand on our screen as seen in one 

of the camera views as yellow (+) symbols (Figure 30). However, upon clicking the calibrate 

button on the left side of the screen, the program would display an error message and promptly 

crash. 

 

 
Figure 30: Vicon Camera View During Calibration 

 

After contacting Vicon support and describing the problem, they suggested a Zoom call 

to resolve the issue live. On the call, we modified various settings, including disabling Windows 



Firewall, as the cameras are connected to the PC via ethernet, and the firewall can block 

unrecognized networks. Upon seeing the error, Vicon support recommended that we ensure that 

the monitor was plugged directly into the Mini DisplayPort of the graphics card instead of the 

motherboard of the PC. Unfortunately, at the time there were no available adapters to connect the 

HDMI monitor to the Mini DisplayPort compatible graphics card. After the meeting, we found a 

second monitor, as well as a series of adapters to connect the original HDMI monitor to the 

graphics card, but upon using it, the same calibration error occurred. 

We decided to restart the computer as part of the troubleshooting process. Upon restart, 

the BitLocker encryption software enabled on the PC completely prevented the use of Windows 

without an encryption key, which we did not have. We contacted Professor Burnham once again 

to obtain the encryption key and regain access to the system. After some time, we received the 

key and were able to continue. 

However, the same calibration error persisted. Although the issue was not resolved, we 

decided to continue using the graphics card port to avoid other potential problems. We once 

again set up a meeting with Vicon support to troubleshoot. After several hours and multiple 

Vicon support personnel, the calibration error was resolved. (Complete details of the solution can 

be found in Section 8, although not all unsuccessful attempts were documented). With this 

progress, we were able to successfully calibrate the cameras and use the test UAV to create an 

object inside of the software the next day (Figure 31). 

 
Figure 31: Camera View During Calibration 

The setup of the Vicon system was nearly complete. The final step was to track objects in 

real time and send live data to third-party programs. While attempting to continue our progress to 

send live data, we were stopped yet again by a different BitLocker encryption key. The previous 

key used was not correct and yet again we turned to Professor Burnham for help in search of a 

permanent solution. The decision to reimage the computer with a fresh installation of Windows 

was made. With nothing stored on the PC that could not simply be reinstalled, this could 

eliminate many errors. Later in the week, Professor Burnham came to the lab and reimaged the 

computer, giving us a fresh start. 

There was, however, a benefit to this fresh start, now that we had a completely erased 

computer to work with, we had the opportunity to follow the Vicon manual that we had been 



producing throughout the process of us learning how to work with it. Although it was much 

easier to set up for a second time with our experience, we still encountered new obstacles. 

 

When we first tried to download the Vicon tracking software, we were not allowed to 

because of licensing reasons. We had not run into this problem the first time we set up Vicon 

because the program was already downloaded, and the license was set up. We thought that the 

license was just a Vicon USB that is always plugged into the computer, however after talking 

with Vicon customer support again they emailed us a digital license that we need as well as the 

USB. With the licensing figured out we were able to download the latest Vicon tracker program 

and continued to follow our manual, making it more detailed as we went along. Again, we came 

across a new problem that we had not seen before: the cameras were sending data, but we could 

not see any images on the screen. This was different than an earlier issue where we could not see 

anything on the screen because of the cameras not sending any data, so it looked the same on the 

surface, however we knew the cameras were sending data this time because their blue lights were 

on (blue lights indicate the cameras are on and sending data). This issue prompted another zoom 

meeting with Vicon customer support, where we went over what we did last time to make it 

work and what things we have tried already. After several failed solutions he suggested 

redownloading the drivers to the Nvidia graphics card. Although the computer said in the Nvidia 

control panel that the drivers were fine, this ended up being the problem. When the computer 

was reimaged, it wiped the drivers off the graphics card, and so redownloading them solved our 

problem.  

After the new set of setbacks, we were able to get back to the point we were at before, 

with calibrated cameras and a computer we could log into the next step was yet again to collect 

live data of objects moving in the flight area and send it to our ground control station in real 

time. A video of the Vicon system live tracking the object can be found at 

https://youtu.be/IGXECrBQFx8 with a screen shot in Figure 32. Note that the low frame rate and 

stuttering is due to the screen recording software and not Vicon Tracker. 

 
Figure 32: Screenshot of Vicon Tracker Position Test 

https://youtu.be/IGXECrBQFx8


For this step we went back to following Vicon's setup guides, because this was an area 

that was better documented on their behalf. We downloaded a data stream SDK (software 

development kit) from their website and some MATLAB code also from their website that 

helped us achieve this goal. We modified their code to produce graphs by making matrices of the 

Euler angles and position vectors using timestamps. We used these graphs to check and make 

sure that Vicon was working correctly and the data it was producing was correct. We did this by 

moving the test UAV in specific paths that would create obviously identifiable shapes when 

plotted. These tests and graphs can be seen in our results section in greater detail. The ground 

station software that we are using can use data from MATLAB to control MAV, so the next step 

was to set up ground station to receive data. A manual for how to set up the whole system can be 

found in Section 7. 

 

3.5 Ground Station (Mission Planner) 

Familiarizing ourselves with the ground station software early on consisted mainly of 

plugging in the Pixhawk 4 mini to a computer with a micro-USB to USB cable and performing 

calibrations.  As mentioned earlier in section 2.11 ,we chose to use Mission Planner instead of 

Qgroundcontrol because the telemetry radio connection between ground station PC and Pixhawk 

worked more consistently with Mission Planner.   

Before we could attempt a test flight, we first had to calibrate and configure the MAV 

within the ground control software.  In order to do this we followed the steps in the setup section 

of Mission Planner.  With the Pixhawk connected through telemetry we first downloaded the 

current firmware from Mission Planner for a quadrotor with our motor configuration and went 

through the calibration steps for the Pixhawk alone first.  Next we connected the ESCs and 

motors, without the propellers attached, to the Pixhawk and tried to calibrate the motors and 

ESCs through the setup section.  This is where we ran into the bulk of our time spent on Mission 

Planner.  After connecting an Xbox controller to the computer and binding the throttle, yaw, 

pitch and roll to different inputs on the controller we started our first attempted to spin the 

motors manually.  For greater control in intial testing, we decided to use a manual controller, as 

an autonomous control scheme could introduce unwanted error.  At first we only connected and 

powered one motor/ESC pair to the Pixhawk, but several error messages would display when we 

would attempt to arm it.  The errors would range from logging errors to failsafe problems to 

calibration errors. Each error was researched throught he Ardupilot and Mission Planner 

websites and forums until we found a solution that worked for each.  The only error message we 

needed to account for regularly was a “Throttle too high” error upon arming the MAV. In the 

binding process of the controller, the two variable triggers are treated as a single axis with the 

right trigger increasing the value from 50% and the left trigger decreasing the value. While this 

could be helpful in the case of a pilot accidentally releasing the throttle during flight, it required 

the left trigger to be fully depressed to hold the the throttle at zero to arm. These errors were 

solved in multiple areas of Mission Planner, however a many of the fixes were made in the 

configuration settings.   

The errors were solved until all four motors were spinning correctly and we could 

assemble the MAV and run a test flight.  The test flight is discussed further in the results section. 

We practiced flying with the controller and tuning the Pixhawk so that it stabilized the MAV 

better.  If someone were to make the MAV autonomous, Mission Planner would also be required 

receive the telemetry data from another source (such as MATLAB as part of the Vicon SDK) and 

relay it to the Pixhawk 4 mini.  



4 Results 
4.1 Vicon Experimental Results 

To determine if the Vicon motion capture system was working properly we conducted 

several tests to see if the plots that Vicon was outputting to us were correct.  To accomplish this, 

we manually moved the test MAV (holding it, not flying it) in simple paths in which we know 

what the graphs of the yaw, pitch and roll should look like, such as keeping the yaw and pitch 

constant while only rotating the MAV in the roll plane.  The first of these experiments was a 

baseline angle test in which we just placed the test MAV motionless on the origin of Vicon 

system (Figure 33).   

 
Figure 33: Vicon Baseline Euler Angle Test 

                   

The plots turned out almost exactly as expected.  The yaw, pitch and roll are all constant, 

the first row of graphs does not look constant because Vicon, like any sensor, does have noise, 

however each of the angles varies only by around 0.2 degrees when stationary because of the 

noise.  This is acceptable because as shown in the second row of graphs, on a scale with a full 

range of motion the Euler angles appear constant. Important to note is that this is raw data with 

no filtering applied, in a practical application, filters would be applied to provide better state 

estimates. 

The second of these experiments was a manual yaw rotation, where we held the test 

drone in the air and spun it in a complete circle while keeping it level (Figure 34).   



 
Figure 34: Vicon Manual Yaw Test 

            

Again, the plots turned as expected, in this case we only should see the yaw angle move 360 

degrees as it was turned in a full circle while the pitch and the roll stay constant.  The yaw graph 

is shown to not be smooth because the yaw axis is set from –180 degrees to 180 degrees, and 

when it passed –180 degrees it jumped up to 180 and continued down instead of smoothly 

travelling to -360 degrees.   

Similar tests were performed for the roll and pitch, for the roll test the test MAV was held 

in the air and tilted 90 degrees to the left and then 90 degrees to the right (Figure 35).   



 
Figure 35: Vicon Manual Roll Rotation Test 

     

The resulting graphs for the roll test are as expected, but with a little more variance in the pitch 

and yaw than with the yaw test, this is due to the person holding it being less steady, however for 

the pitch test we got odd results when it came to the roll and yaw.   

 

 

 



 
Figure 36: Vicon Manual Pitch Rotation Test 

     

We repeated the pitch test several times, and each time we got the results we were 

expecting from the pitch graph after tilting the test MAV up 90 degrees and then down 90 

degrees, however each time the roll and yaw also indicated a direction change when the test 

MAV was first tilted upwards (Figure 36).  This was not expected, but Vicon may use a different 

definition for Euler angles than expected.  Changing the orientation of the test MAV could find 

the plane Vicon defined as pitch through trial and error, however as long as the system is 

tracking pitch correctly it will work. For future flight, ensuring that the axes defined as an object 

in Vicon Tracker match those of the physical MAV is important. 

Similar to the Euler angle tests, the position measurements were verified with the object 

at a standstill with noise on the order of ≈ 0.1 mm, well within a reasonable value (Figure 37). 

 
Figure 37: Vicon Baseline Position Test 

The test MAV was placed at the origin of the Vicon plane, that is why the x and y positions are 

close to zero, though human error when placing the test MAV caused the small distance from 

exactly 0.  Initially we expected all 3 coordinates to be at zero because the test MAV was on the 



ground, however the z coordinate varies around 90 millimeters.  This is because the origin of the 

Vicon axis is on the ground and the object coordinates are measured from its center of volume, 

hence when the test MAV is on the ground its center of volume is above the ground and the z 

coordinate is above 0.   

The next position test that was conducted was lifting the test MAV straight up and then 

straight down. 

 
Figure 38: Vicon Manual Vertical (z axis) Translation Test 

The position data was plotted expected from this test; the x and y coordinates stayed near zero, 

human error cause slight movement in them because we did not lift it perfectly straight, and the z 

coordinates are shown to go up and then back down over time (Figure 38).   

For the final position test, we moved the test MAV on all of the axes consecutively 

during the same ‘flight’, first lifting the test MAV straight up, then moving it left, right and back 

to center in the x direction, forward, backward and back to center in the y direction, followed by 

lowing the test MAV back down to the ground.   

 

 
Figure 39: Vicon Manual 3-axis Test 

 

The results from this test were also as expected and therefore a success.  All three graphs 

represent the movement of the test MAV correctly, the only error occurred when the Vicon 

cameras lost sight of the test MAV and all three coordinates went to zero for a split second 

before the cameras relocated the test MAV and had the correct coordinates again.  This can be 

seen in the graphs as a straight line to 0 can be seen at the same time stamp with the plot then 

resuming its trajectory on all three graphs (Figure 39). The default state for position data in the 

Vicon system is zero, so any loss of tracking will result in all values being set to zero. 



The Vicon software provides us with much more information along with the Euler angles 

and position of the MAV, such as velocity and acceleration of the MAV, that are useful but 

harder to independently verify if correct.  With the plots from Vicon that we have recorded being 

correct though, it does appear that the whole of the Vicon system operates exactly as expected. 

 

4.2 MAV Experimental Results 

The MAV without a payload (microcontroller and sensors) conducted several tests with 

manual control via Mission Planner. The Vicon motion capture system was also live and used to 

track the MAV throughout the flight. Vicon Tracker was used to send data to be sent to and 

stored via MATLAB. Due to insufficient time, stable flight was not achieved. However, a flight 

test with both video and motion capture data was observed. 

Figures 40 through 41 illustrate the data captured by Vicon Tracker and plotted in 

MATLAB. Initially, the MAV was placed near the origin of the capture volume. Visible from 

these plots is the total flight length of approximately 13 seconds. Also visible is an error in the 

system near the 42 second mark where all translations displayed as zero. This is a result of not 

enough information being gathered by the cameras at that moment, resulting in the default value 

of zero being output. At this point in time, one or more cameras were likely occluded by a team 

member recovering the MAV, as the landing gear had not been installed for that test. 

 
Figure 40: x-axis Motion Capture Data of Flight 



 
Figure 41: y-axis Motion Capture Data of Flight 

 
Figure 42: z-axis Motion Capture Data of Flight 

 

A video of this flight can be found at https://youtu.be/G5ZFRYQ1MrE (Figure 43).   

https://youtu.be/G5ZFRYQ1MrE


 
Figure 43: Screenshot of Test Flight Video 

 
Figure 44:Screenshot of Motion Capture Recording of Test Flight 

 

A video of the recorded motion capture data from this flight can be found at 

https://youtu.be/CCB50qh9wYo (Figure 44).  

  

Although being manually controlled adds a certain instability, the flight was conducted in 

“stabilize mode” within the Mission Planner software. This mode permits manual flight, but self-

https://youtu.be/CCB50qh9wYo


levels the roll and pitch axes. With this mode, simply managing the throttle input should allow 

purely vertical motion of the MAV. However, this was not the case. Instead of vertical level 

flight, the MAV began to roll and pitch, and manual adjustments were needed to avoid a 

collision. The motion of the MAV was too uncontrollable to fly, and the throttle was lowered to 

land. Subsequent flight tests proved no more successful, despite tuning adjustments within 

Mission Planner. 

 At any time when propellor were spun while in a flight configuration, the 3D printed 

PLA motor arms of the frame visibly deformed and bent upwards in the direction of thrust. A 

deflection of at least 0.5 cm was observed, although no reliable measurement methods were 

available. This likely had a major effect on the ability of the Pixhawk to create stable flight. 

 

 

  



5 Conclusions 
The goal of this project was to design a low-cost, lightweight (≈ 500 grams) autonomous 

MAV capable of a variable sensor load that utilized Vicon motion capture system for indoor 

flight. The MAV was to be easily constructed by a single person with easily manufactured or 

acquired parts. A microcontroller would be required to process incoming sensor information and 

support the wide variety of sensors that could be installed to the MAV. 

Throughout the project research on previous projects and existing MAVs was considered for 

our design. In addition, a several microcontrollers were researched and tested to determine that 

the ODROID-XU4 would be the most appropriate for this project. From there, work to connect 

the ODROID to the Pixhawk flight controller was completed. In addition, two team members 

spent several months understanding and troubleshooting the Vicon system, creating a manual to 

aid future teams. Finally, a prototype MAV was designed, constructed, and flown manually in a 

basic configuration to demonstrate a degree of flight capability. 

No flight tests were able to show steady, level flight. However, a 13 second test flight 

showed the ability of the propulsion system to maneuver the MAV and respond to manual 

control inputs. This test also verified that all components of the MAV were compatible with each 

other. Additionally, the functionality of the Vicon system was tested in a realistic scenario, live 

tracking an MAV in flight and providing real time data. This data was then able to be read by a 

MATLAB script and plotted. This sets a baseline for further manipulation of data by MATLAB, 

such as implementing a Kalman filter to provide state estimations of the motion capture data and 

reduce noise. To manual created to operate and troubleshoot the Vicon system thoroughly details 

the steps needed to set up the hardware and software components of the system, with information 

on resolving the types of problems encountered. 

 One of the major lessons learned with this project was the importance of the tuning and 

configuration settings of the ground station software. Despite having an MAV that was 

physically capable of flight and recommended standard configuration/tuning settings, flight of 

more than a few seconds was impossible without further work in the software. Underestimating 

the time required to complete this was a major shortcoming of this project. In the Vicon aspect of 

the project, the value of the Vicon customer support team was evident. We strongly recommend 

any groups that use the system in the future use the resources they provide. 

 

5.1 Recommendations for Future Work 

For anyone who may continue work on this project, the first step we recommend would be 

to tune the Pixhawk in Mission Planner such that the MAV is capable of stable flight.  This could 

be done with a manual controller like we were, or for an autonomous flight mode.  A suggestion 

for making the MAV more stable in terms of center of mass is adding small ridges or guides on 

the top of the frame, such that the battery falls into the same place every time it is strapped on, 

eliminating the human error in attempting to strap the battery in the same location every time to 

maintain a consistent center of mass. Further tests are also needed to verify the total flight time 

capability of the MAV once stable flight is achieved. It is still unknown what the true power 

consumption of the MAV with a fully functioning microcontroller onboard is. Additional sensors 

would also reduce the flight time due to both increased mass and power consumption. 

Another suggestion is to use carbon fiber motor arms for the MAV.  The 3D printed arms 

deform when the motors are spinning with propellors attached and we believe it may be a cause 

of instability in the system.  Our original plan was to have the arms be carbon fiber for this exact 

reason. However, ordering them was out of the time frame for this project. 



A key aspect in making the MAV truly autonomous would be to fully integrate data from 

the Vicon motion capture software into ground station software and communication with the 

Pixhawk. Utilizing standard GPS modules is a straightforward process but incorporating other 

sources of telemetry data could prove more difficult. 

Finally, it is our hope that the work completed to create Vicon manual in Section 7 can 

help future teams have a more seamless setup and troubleshooting process. With the help of the 

manual, we would like future teams to continue to generate meaningful data. 
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7 Vicon Motion Capture System Manual 
This section provides an overview of the setup and use of the Vicon system. 

 

7.1 Hardware and Physical Setup 

Table 9 provides a list of all hardware components used in the physical setup of the Vicon Vero 

system. 

 
Table 9: Vicon Hardware Components 

Component Quantity 

Vicon Vero Cameras 8 

PoE (power over ethernet) cables 8 

Tripods 8 

D-Link DGS-1026MP 26-Port Gigabit Max PoE Switch 1 

Ethernet Cable 1 

Active Calibration Wand 1 

Desktop Computer w/Vicon Software  1 

 

Physical Setup Process: 

1. The first step in setting up the Vicon system is placing each camera on a tripod. Each 

Vero camera can be attached to a tripod with a standard threaded camera mount. 

2. Next, each tripod with a camera is placed around the outside of the capture volume (the 

desired area in which the system will track objects). The goal of this setup is to ensure 

that an object to be tracked can be seen by multiple cameras from multiple angles 

anywhere it is placed in the volume. To achieve this the individual tripods can be 

adjusted to provide different heights and angles. Figure 45 shows a setup that has been 

used and may serve as a starting point for the purposes of physical setup. The positions of 

the cameras will likely be adjusted later during the calibration phase. 

 
Figure 45: Baseline Vicon Lab Setup 



3. Each camera must then be connected via PoE cable to the switch box, making sure that 

the end with the small box is near the camera as shown in Figure 46.

 
Figure 46: Vicon Vero Camera Connected Via PoE 

4. Next, plug each camera into the numbered ports on the network switch in the same order 

they are physically placed in, starting with a camera connected to port 1, and moving 

around the perimeter with the last camera in port 8. Connecting the cables in the same 

order as the cameras are placed may help with future troubleshooting (Figure 47). 

 
Figure 47: Switch Box with Camera Inputs and PC Outputs 

5. From here, the ethernet cable can be connected from one of the output ports to the PC 

(Figure 48). Note that the green circled ports should be used to connect the switch box 

and monitor via Mini DisplayPort. The regular DisplayPorts circled in red are connected 



to the motherboard, not the GPU and should not be used. The ethernet port circled in red 

should be used for internet connection, not connection to the Vicon system. 

 
Figure 48: PC Connections 

6. The final step is to plug in the power cable for the switch box. Because the Vero cameras 

are connected by PoE cables, both power and data are transmitted over the single cable between 

the cameras and switch box. The cameras will automatically boot when powered. 

 

7.2 Software Setup and Troubleshooting 

The program used track objects within the motion capture system is Vicon Tracker. At the time 

of writing, the current release is Tracker 3.9. This software can be downloaded directly from 

vicon.com. With the hardware in place and Tracker installed, the next step is to make sure all 

eight cameras are connected to the system and transmitting data. Figure 49 shows a screenshot of 

the Tracker program with all cameras connected and transmitting, if the boxes or triangles to the 

left of the camera name are grey instead of green, they are not transmitting data. If this is or any 

other problem arises, refer to the troubleshooting table later in this section. 



 
Figure 49: Screenshot of Vicon Tracker Camera Connections 

To additionally verify that the cameras are transmitting data, select either an individual or 

group of cameras by clicking and dragging over the camera names, and select “CAMERA” from 

the dropdown menu at the top left of the viewing window. This will display the live feed of what 

the selected cameras are detecting. Figure 50 shows the view of an unmasked camera in a room 

with no markers. The yellow symbols indicate detected infrared reflections present in the room. 

“3D PERSPECTIVE” and “3D ORTHAGONAL” offer 3D views of the positions of the cameras 

and any objects being tracked. 

 
Figure 50: Unmasked Camera View in Vicon Tracker 

 



Masking: 

At this point, it will be clear that the cameras are detecting many things in the room that 

are not reflective markers. This is a result of the system detecting reflections in the room, 

whether it be objects present in the room, a reflective floor, or even cameras detecting each 

other. Because detecting these reflections can interfere with tracking objects, it is important to 

eliminate them either physically, or by masking them in Tracker. If possible, remove the object 

creating the reflection from the field of view, or cover it with something non-reflective, such as a 

large canvas to cover the floor. However, it will be impossible to eliminate all reflections, so 

masking with software is required. To mask, navigate to the “CALIBRATE” tab. Under 

“CREATE CAMERA MASKS” click START. After several seconds, after any reflections 

detected by the cameras are masked click STOP Once masked, the camera view will look similar 

to Figure 51.  

 
Figure 51: Vicon Tracker Masked Camera View 

Notice that the areas masked match the signals detected in Figure 50. Masking will create 

“dead-zones” in the camera’s field of view where any data points are ignored, including the 

actual object being tracked. This can decrease tracking performance, especially when many 

reflections must be masked. Because of this, it is preferable to physically resolve the reflection 

over software masking. Operating the system in a dim room with any windows or extraneous 

light sources covered may help reduce reflections. 

 

Calibration: 

After masking, the next step is calibration. Several iterations of the calibration process 

may be necessary to create an appropriate placement of the cameras. Tracker has a robust, 

automatic built-in calibration that can be initiated by navigating to the “CALIBRATE” tab and 

clicking “START” under “CALIBRATE CAMERAS”. After initializing the calibration, turn on 

the LEDs on the Active Calibration Wand and move it throughout the capture volume, aiming to 

have multiple cameras detecting the wand simultaneously. It may also be beneficial to move the 

wand throughout the entirety of the capture volume and in different orientations. The goal of 

calibration is to allow the cameras to detect their locations and orientations relative to each other. 

To do this, they must be oriented in a manner that any location in the capture volume is visible to 

multiple cameras. As calibration is occurring, a list of the cameras and the number of frames they 

have detected is visible in Tracker. Also visible will be live camera perspectives showing the 

path taken by the wand. This view can be seen in Figure 31 located in Section 3.4. After the 



predetermined amount of data necessary is collected, the calibration will automatically stop and 

begin processing. After processing, the calibration will be complete, and any errors will appear 

in the program. If the cameras are not placed correctly, Tracker may be unable to mesh the 

different views into one 3D space. If this happens, take note of which cameras are not linked 

with each other and adjust their physical locations to allow for more field of view overlap 

between them. 

After calibration, the motion capture system has determined the relative position of all 8 

cameras and the object it is tracking, but it has no reference to the space that it is in. As such, the 

virtual orientation of the cameras in Tracker may not match the real-world setup. To fix this, 

place the Active Calibration Wand in the center of the capture volume and turn on the LEDs. 

Then, click START under “SET VOLUME ORIGIN”. This will set the origin and axes 

directions of the capture volume based on the orientation of the wand as the cameras view it. 

 

Creating Objects: 

To track a specific object, it must be registered in tracker to allow capturing the object as 

a whole, rather than the single point of a marker. This also allows orientation data to be 

produced. To register an object, first attach reflective tracking markers to it so that it can be 

viewed by the cameras. Technically, only three markers are necessary to track an object, but 

using 4 or more is advisable, as markers can become occluded from the cameras by the object 

itself. Too many markers in a small area, however, can create noise that interferes with tracking. 

Some experimentation with number and placement of markers may be necessary. For the case of 

this project, four markers, with three placed on various parts of the motor arms and one placed 

on top functioned well. It is also important to make sure that the markers are placed 

asymmetrically, so that the object’s orientation does not unintentionally become inverted while 

tracking. Next, place the object in the center of the capture volume such that all cameras can 

view the markers. Navigate to the OBJECTS tab. Each marker of the object should be visible in 

the 3D PERSPECTIVE view. While holding the ctrl key, click each marker so that each is 

selected. On the left side of the screen next to “Create Object”, type in the name of the object and 

click CREATE. Now, Tracker should recognize the object and the visual appearance in the 3D 

perspective view will be similar to Figure 52 where the markers are treated as a singular 

connected entity with an orientation denoted by the axes shown. Once objects have been created, 

displaying/tracking them can be toggled at any time with the checkboxes in the OBJECTS tab. 

While tracking an object instead of individual markers, Tracker can provide real time position 

and orientation data of the object via a software development kit. 

 



 
Figure 52: Object in Vicon Tracker 

 

7.3 MATLAB SDK Integration 

Vicon provides a software development kit (SDK), Vicon Datastream SDK, for the integration of 

Vicon Tracker software with a variety of third-party programs. For this project, the SDK was 

used to stream live data from Vicon tracker to MATLAB. For up-to-date information refer to the 

Vicon Datastream SDK developer’s manual found on vicon.com. This manual contains extensive 

information on the installation of the SDK and functions that are included. Much more 

information than that used for the basic tests in this report is available.  

 

7.4 Troubleshooting 

Many troubleshooting issues involved in the setup of the motion capture system originate in PC 

setup, often because of incorrect settings or privileges. Below is a list of some obstacles 

encountered by our team, and how they can be resolved. Many of these solutions require 

administrator privileges to the PC to enact, it may be necessary to contact whoever is responsible 

for managing such privileges. Another thing to note is that these troubleshooting steps have all 

been written with Windows 10 in mind, if the system is updated to Windows 11 in the future, the 

steps may be different. If the recommended solutions are unable to solve the problem, try 

contacting Vicon Support directly, they are quite responsive via email and are incredibly helpful 

with troubleshooting issues. At the time of writing, they can be reached at support@vicon.com. 

Obstacle Solution 

Cameras are visible in Vicon Tracker 

Software but do not transmit any data 

First try disabling the Windows Defender 

Firewall as seen in the solution below this 

one. 

If that does not work, this may be caused by 

incorrect network card settings. Navigate to 

edit the following settings: 

Control Panel → 

Network and Internet→ 

mailto:support@vicon.com


Network and Sharing Center→ 

locate the unidentified network that is from 

the switch box → 

Properties → 

select Internet Protocol Version 4 → 

Use the following IP address: 

 

Set the IP address to 192.168.10.1 and the 

subnet mask to 255.255.255.0. 

 

Navigate to the advanced configuration 

settings and verify the following settings: 

From the Unidentified Ethernet port page: 

Properties → 

Configure→ 

Advanced: 

 

Jumbo Frames/Packets: enabled and set to 

9014 

 Receive Buffers at its max 

 Transmit Buffers at its max 

 Receive Side Scaling is on 

 Max RSS Queues at its max 

 Interrupt Moderation is off/disabled 

 Interrupt Moderation Rate is off/disabled 

Cameras are not detected by PC, even when 

plugged in and powered on 

You may need to disable the Windows 

Defender Firewall for Vicon Tracker to allow 

the system to transmit the data through the 

network. Open Control Panel and navigate to 

Windows Defender Firewall. Click on “Allow 

an app or feature through Windows Defender 

Firewall” and select Vicon Tracker. Enable 

the correct network and click OK. 

Vicon Tracker program crashes upon clicking 

“Calibrate” 

This is likely caused by a system setting 

involving the Vicon Tracker’s access to the 

dedicated GPU (graphics processing unit) in 

the PC.  

1. Ensure that the monitor being used is 

plugged into the dedicated GPU 

instead of the motherboard. 

2. In the Windows settings app go to 

System > Display > Advanced 

Graphics Settings. Choose Vicon 

Tracker from the pulldown menu. 

Click “options” and choose the option 



for high performance which will set 

the dedicated GPU as preferred. 

3. Go to program files folder 

Find the folder labeled Vicon→ 

right click on the Vicon folder→ 

Properties→ 

Security → 

Edit→ 

Click on users or any group that you want to 

give access to→ 

Check the full control box in the allow 

column→ 

Apply→  

Ok→ 

4. Install the latest graphics card driver 

from the NVIDIA website  

Single camera becomes disconnected while in 

use (displays red LED) 

Manually unplug and reinsert the PoE cable 

connected to the camera 

Unlisted Issues 1. Make sure the latest version of tracker 

is being used, if not, install it from 

vicon.com. 

2. Ensure that the most recent drivers for 

the graphics card are installed, even if 

Windows states that the most recent 

NVIDIA drivers are installed, check 

the NVIDIA website directly and 

manually install them if needed. 

 

 


