
Shared Autonomous System for Robot-Assisted

Sewing

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Alexandra Emrick

Sophia Gudenrath

Dominic Cupo

Elijah Eldredge

Mary Hatfalvi

Wyatt Henke

Advised By:

Professor Craig Putnam

Professor Jie Fu

Professor Jane Li

Abstract

The athletic industries in the United States produce apparel and

equipment that contribute to the $60.4 billion sports market in North

America [1]. However, the processes to produce these goods are inef-

ficient, with over 1% of products defective. They also put factory

workers in potentially uncomfortable environments. A shared au-

tonomous robot-assisted sewing system is proposed to mitigate these

issues. The system incorporates a computer vision subsystem to iden-

tify the sewing path and location of fabric, motion planning algorithms

to optimize sewing trajectories, and intuitive input devices that allow

a user to teleoperate the robot while sewing. This system has the

potential to increase sewing efficiency and decrease the risk posed to

workers.

i

Acknowledgements

We would like to acknowledge Jeff Lapalme and New Balance for sponsor-

ing this project and bringing it to WPI. We would like to thank our advisors

and WPI graduate students Akshay Kumar and Lening Li for their assistance

on this project.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Project Statement . 1

1.2 Customer Value Proposition 2

2 Background 4

2.1 Manufacturing with Sewing 4

2.1.1 Existing Robotic Sewing Tasks 5

2.2 Computer Vision . 6

2.2.1 Camera Parameters . 6

2.2.2 Object Identification: Classic Computer Vision Tech-

niques . 9

2.3 Motion Planning . 13

2.3.1 Trajectory Planning 14

2.3.2 Problems with High-Dimensionality and Potential So-

lutions . 15

iii

2.3.3 Existing Motion Planning Algorithms 16

2.3.4 Visualization Platforms 25

2.4 Joint Actuation and Control 26

2.4.1 Forward Kinematics and DH Parameters 27

2.4.2 Inverse Kinematics . 29

2.5 Shared Autonomy . 30

2.5.1 Input Devices . 31

3 Concept of Operations 33

3.1 Stakeholders . 33

3.2 Use Cases . 34

3.3 User Stories . 37

3.4 Requirements . 38

3.4.1 Functional Requirements 38

3.4.2 Nonfunctional Requirements 39

4 Technical Documentation 40

4.1 Workspace Layout . 40

4.2 The Robot . 51

4.2.1 End of Arm Tooling 54

4.3 System Overview . 56

4.3.1 Computer Requirements 56

4.3.2 ROS Architecture . 57

4.3.3 Program Flow . 59

iv

4.4 User Interface . 61

4.4.1 UI Design . 62

4.4.2 Input Devices . 67

4.5 Computer Vision . 80

4.5.1 Camera Setup . 80

4.5.2 CV Software and Node Architecture 82

4.5.3 Tasks . 83

4.5.3.1 User Views 83

4.5.3.2 Calculate Sewing Machine and Robot Offsets 83

4.5.3.3 Vamp Detection 88

4.6 Motion Planning . 92

4.6.1 Modeling the Workspace 92

4.6.2 Transformations . 94

4.6.3 Simulating Motion: Moveit 95

4.6.4 Simulation Motion: Klamp’t 101

4.6.5 IK Solving . 105

4.6.6 Motion Planner Analysis 106

4.6.7 EEF Position Determination 107

5 Evaluation 115

5.1 Social Implications . 115

5.2 Project Execution Evaluation 117

5.2.1 Execution Summary 117

v

5.2.2 Timeline Adjustments 118

5.2.3 Risk Management . 119

5.2.4 Budget and Expenditure Justification 120

5.3 Product Evaluation . 120

5.3.1 Hardware Requirements 120

5.3.2 Motion Planning Performance 122

5.3.3 Fabric Manipulation Performance 123

5.3.4 Overall System Performance 124

6 Recommendations for Future Work 125

6.1 Computer Vision . 125

6.2 Control Interface . 126

6.3 Motion Planning . 127

6.4 Overall System Improvements 128

Appendices 131

A Robot Specification Sheet 131

B Robotiq 2-Finger Adaptive Gripper Specifications Sheet 132

C Trade Study 132

C.1 Camera Selection . 132

C.2 Gripper Selection . 134

D UI Feature Lists: Buttons 136

vi

E UI Features Lists: Messages 137

F UI Features Lists: Camera Views 137

G UI Feature Lists: Input Device Interface 138

H Pros and Cons of Potential Input Devices 138

I Test Plans 140

I.1 Offset Calculations . 140

I.2 Inverse Kinematic Solving . 142

I.3 Landmark Identification . 143

I.4 Robot Controller . 144

I.5 Gripper and Gripper Controller 145

I.6 Camera Nodes . 145

I.7 User Interface . 146

I.8 Input Devices . 146

I.9 Integration . 152

J Construction 153

K Link Masses and Inertial Matrices 154

L Motion Planning Analysis Criteria 155

M Timeline 157

vii

N Budget and Expenditure Justification 164

O Motion Planner Evaluation Results 166

P Gap Analysis 169

Q Authorship Table 172

List of Figures

1 Athletic Footwear: Global Market Share 3

2 Pinhole Camera Representation 7

3 Examples of ArUco Tags . 10

4 Canny Algorithm Steps Visualized 11

5 Example of a Singularity where Two Joints are Aligned 14

6 Exploration using RRT . 19

7 Exploration of RRT (left) and RRT* (right) 21

8 Hinge Loss (blue) vs Zero-One Loss Functions (green) 24

9 Two Robot Joints and DH Parameters 28

10 Robot workspace with objects labeled: Right View 40

11 Robot workspace with objects labeled: Left View 41

12 Robot with Sewing Machine Simulated in RViZ 42

13 Vamp (bottom) and Toe Piece (top) 43

14 Communication between all Components 44

15 Warning and Safety Zones of OMRON Safety Sensor 45

viii

16 Safety Mat (Black); turns off Robot’s Servos when Stepped on 46

17 Durkopp Adler 868 Sewing Machine 47

18 Camera Mounted on (Right) Wrist 48

19 Camera Mounted on the Sewing Machine 49

20 Lighting mounted to sewing machine 50

21 Camera Mounted on the Tripod 50

22 Yaskawa Motoman SDA10F 51

23 SDA10F Model with Joint Names 52

24 FS100 Controller (left) and Pendant (right) 53

25 85mm Robotiq 1-Finger Adaptive Robot Gripper 55

26 ROS Node Diagram . 58

27 Flowchart of System Progress 59

28 Robot Home Position . 60

29 Robot Start Position . 61

30 Initial UI Design in C++ with QT 63

31 Final UI using RQT and C++ 64

32 Final UI in Python Tkinter, Tripod Camera View 65

33 Wii Remote . 70

34 Motion Plus Attachment for Wii Remote 71

35 Geomagic Touch Haptic Device in Home Position 72

36 Sewing Pattern specified using the Haptic Device 73

37 Wii Remote Input Device UI 75

38 Haptic Device UI . 76

ix

39 B Button on Wii Remote . 77

40 Haptic device tool, buttons, and rotating axis 78

41 Example path of an input device 79

42 View and Select Plot . 79

43 Camera calibration checkerboard 81

44 Camera calibration identifying image points 82

45 ArUco Tags on Sewing Machine 84

46 Wrist Cameras Mounted on the Robot’s Grippers 85

47 Wrist Gripper Mount . 86

48 Wrist Gripper Mount featuring adjustable pitch angle 87

49 OpenCV Key Points . 89

50 OpenCV Key Point Analysis 90

51 Key Point Analysis with Vamp in Grippers 92

52 Sewing Machine Model from Kinect 94

53 Transformation Tree . 95

54 Moveit Side Panel in demo.launch File 97

55 Klamp’t Simulation World . 103

56 Placement of Motion Capture Markers on Hands 108

57 Motion Capture Workspace with Origin Shown 109

58 Scatter Plots of X,Y positions of the Left and Right Hands . . 111

59 Vamp held in Robot Grippers 112

60 Vamp held incorrectly in robot’s grippers 123

61 Curved and Straight Paths Traced During Testing 149

x

62 Exploded view of wrist camera mount in Inventor 153

63 Assembled view of wrist camera mount in Inventor 154

List of Tables

1 Stakeholders and Relevant Information 34

2 Use Case 1 . 35

3 Use Case 2 . 36

4 Use Case 3 . 37

5 Features of User Interface . 67

6 Camera Decision Matrix . 133

7 Gripper Decision Matrix . 135

8 Desired Buttons on UI . 136

9 Desired Messages on UI . 137

10 Pros and Cons of Input Devices 140

11 Consistency of Offset Calculations 141

12 Accuracy of Offset Calculations 141

13 Accuracy of TRAC IK Algorithm 142

14 Precision of Landmark Identification (in pixels) 143

15 Precision of Landmark Identification (in m) 143

16 Accuracy of Landmark Identification 144

17 Precision of Wii Remote Data when Zeta = 0.360094977 . . . 147

18 Precision of Wii Remote Data when Zeta = 0.3771788462 . . . 147

xi

19 Precision of Haptic Device: Position (mm) 148

20 Precision of Haptic Device: Orientation (rad) 148

21 Accuracy of Haptic Device Positions along a Curved Path . . 150

22 Accuracy of Haptic Device Positions along a Straight Path . . 151

23 Accuracy of Wii Remote Positions along a Curved Path 151

24 Accuracy of Wii Remote Positions along a Straight Path . . . 152

25 Link Masses and Inertial Matrices 155

26 Budget and Expenditure Justification 166

27 RRT Evaluation Results . 167

28 RRT* Evaluation Results . 168

29 PRM Evaluation Results . 168

30 LBKPIECE Evaluation Results 169

31 Gap Analysis . 172

32 Authorship . 173

xii

1 Introduction

Manufacturing is a complicated process with many steps. The process

must be fast, affordable, and safe while producing a high-quality product

and minimizing waste. Human workers are an important part of the manu-

facturing process because they can operate machinery or perform tasks that

are too complicated or expensive to be easily automated. However, this can

put humans in unsafe working conditions or leave them doing repetitive,

dull assembly tasks. Since the instantiation of the Occupational Health and

Safety Act (OSHA) in 1970, robots in factories have helped decrease occu-

pational hazards [2]. Incorporating robots into manufacturing processes can

help people avoid harmful circumstances, such as loud noises or proximity to

dangerous machinery. The opportunity for people and robots to collaborate

on manufacturing tasks can improve the quality of a manufacturing line, and

in the lives of employees.

1.1 Project Statement

Despite the advantages of factory automation, there are some tasks that

are more difficult for robots to accomplish than humans. For example, only

8% of jobs can be mostly automated (more than 90% of tasks assigned to

the job) [3]. Fine manipulation tasks are often too difficult to accomplish

automatically. They require precise motion, dexterous end effectors, and fast

planning. However, it is possible to combine the dexterous skills of a human

1

and the automation benefits of a robot by implementing a shared autonomous

process [4]. Shared autonomous processes allow robots and humans to work

synchronously to accomplish tasks in a safe and efficient way and can also

help train new workers by eliminating tremors while sewing and reducing

errors during teleoperation. Due to the required precision, uncomfortable

work environments, and time it takes to train a new seamster, shoe sewing

is a specific fine manipulation task that could benefit from shared autonomy.

Automating parts of the shoe sewing manufacturing process allows the em-

ployees to work in a safer environment while still performing intricate sewing

tasks and lets the robot handle the more dangerous, monotonous tasks [5].

1.2 Customer Value Proposition

New Balance is invested in this project, hoping to improve their shoe

sewing manufacturing process through automation. The athletic shoe market

has changed drastically over the past decade as shoe companies diversify [6].

As of 2015, New Balance held 4.4% of the global athletic footwear market,

while Nike held 22.9% and adidas held 9.7%, as shown in Figure 1 [7].

2

Figure 1: Athletic Footwear: Global Market Share

Implementing a shared autonomous system in the New Balance factory

could help ensure the company gains a greater market share. In fact, global

productivity is expected to grow 2.8% over the next 50 years due to au-

tomation [3]. Businesses such as New Balance have the opportunity to be-

come more competitive in the market due to labor cost reductions, increased

throughput, higher quality products, and decreased downtime [8].

Because of the benefits of automation, the goal of New Balance is to in-

corporate shared autonomous robotic systems into the shoe sewing manufac-

turing process to increase throughput, decrease sewing errors, move workers

3

to safer environments, and train new workers faster. Typically, it takes one

month for a new worker to learn how to properly sew the shoes, and even

longer to do it quickly enough to meet their quota. Part of the difficulty

lies in the strict, 1 millimeter tolerance for the sewing at New Balance, and

manipulating the soft fabric can be challenging. The repeatability of an au-

tomated sewing system can help New Balance decrease production errors

and save money. Integrating computer vision systems and advanced motion

planning algorithms with a robot capable of very precise movements can help

New Balance achieve its automation goals.

2 Background

2.1 Manufacturing with Sewing

In the United States, there is a decrease in manufacturing jobs and an

increase in factory automation [9]. Automation has increased factory pro-

ductivity, meaning companies must automate their processes to maintain a

competitive advantage [10]. However, sewing is one of the industries that has

been slow to adapt to the new market. The sewing industry hasn’t changed

a significant amount for about the last century. Today, it is still extremely

reliant on human labor, even with the recent rise of manufacturing automa-

tion [11]. One reason that it is difficult and uncommon to automate sewing

is the challenges that come with manipulating soft materials like fabric [12].

4

Textiles are a nonrigid material, which can buckle, slip, and rip as well as

become misaligned if stacked during the sewing process [13]. Despite these

limitations, there are successful implementations of automated sewing, which

involve typically involve computer vision systems [11].

2.1.1 Existing Robotic Sewing Tasks

Dexterous robots with many degrees of freedom (DOF) have been success-

fully implemented in several experimental sewing operations. One of these

operations used a robot, gripper, and photocells to sew a pucker-free seam

with a constant width [14]. This system incorporated operation and control

of the sewing machine while avoiding obstacles, singularities, and joint torque

limits. Developed in 1990, this operation dissected the robot’s tasks by find-

ing and prioritizing sub-objectives within the main task and controlling the

position and force of the joints throughout each task.

Another robotic sewing system involved two robots handling the fabric

similar to how a human operator would [15]. The sewing pattern is composed

of a series of points with the common coordinate system’s origin where the

needle and fabric meet. This system allows the different arms to operate

asymmetrically, yet in cooperation to create an optimal product. The robots

in this system rely on tactile feedback to ensure they are applying the correct

force to press the layers of fabric together before they begin sewing. The

system is operated by a user who selects two or three points that form the

pattern the robot sews along. Although these robotic sewing systems were

5

successful, they have not been widely implemented, and the opportunity for

advanced, vision-based sewing automation is increasing.

2.2 Computer Vision

Computer vision is the ability to view and interpret an environment using

cameras and machine learning algorithms [16]. It can be used to determine

the position and orientation of objects in a workspace. Important consid-

erations for a computer vision system are the camera mounting positions,

number of cameras, and lighting, as well as the camera resolution and frame

rate. Camera extrinsics, intrinsics, and classic computer vision techniques

will be discussed in this section.

2.2.1 Camera Parameters

There are two main groups of parameters when analyzing a camera: in-

trinsics and extrinsics. Camera intrinsics are the internal characteristics of

the camera, while extrinsics are parameters external to the camera, such as

where they are mounted [17]. The camera intrinsics matrix, K, transforms

the 3D camera coordinates into 2D image coordinates. When considering

a traditional pinhole camera, the matrix contains five parameters shown in

6

Equation 1 that define the camera’s geometry.

K =

fx s x0

0 fy y0

0 0 1

 (1)

Two parameters, fx and fy, describe the focal length, the distance from the

pinhole to the image plane. They are the x and y components of the distance

f, shown in Figure 2.

Figure 2: Pinhole Camera Representation

Ideally, fx and fy are the same but inconsistencies in camera sensors,

distortion, and errors in calibration cause discrepancies. The parameters, x0

and y0, describe the principle point. The principal point offset is the location

of the principal point, p in Figure 2, with respect to the optical centre, C in

Figure 2. The fifth parameter of the K matrix is skew, s. Skew is the offset

7

generated by factors of the lens and distance from object, caused mainly by

manufacturing error [18]. Calibration routines incorporate these parameters

in order to provide a clear and accurate image [17].

In addition to the internal properties of the camera, it is important to

understand how the camera fits into the workspace [19]. Camera extrin-

sics integrate the camera’s center and heading coordinates. This is how the

frame of the camera is related to the frame of the world. Considering the

camera frame, C, and the world frame, W, Equation 2 shows the perspective

projection equation.

p =
1

z
MP (2)

where P denotes the vector of homogeneous coordinates in the world

frame, W.

As shown by these equations, there are 6 extrinsic parameters: three

angles defining the rotation matrix R, and three coordinates of the translation

vector t.

The matrix M in Equation 2 can be rewritten as a function of the intrinsic

and extrinsic parameters shown in Equation 3.

M =

αrT1 − α cot(θrT3) + u0r

T
3 αtx − α cot(θty) + u0tz

β
sin θ

rT2 + v0r
T
3

β
sin θ

ty + v0tz

rT3 tz

 (3)

The camera calibration determines the extrinsic and intrinsic parameters of

8

the transformation between an object in the real world and an object seen

by the camera [20].

2.2.2 Object Identification: Classic Computer Vision Techniques

Classic computer vision techniques, as opposed to deep learning methods,

are discussed in this chapter in terms of how they can detect and track objects

in the workspace.

Object Detection

Object detection has three main parts: segmentation, shape identifica-

tion, and object recognition [21]. In segmentation, the important features of

the object are identified and groups of pixels, or segments, are formed based

on similar features. Next, the shape identification routine takes the groups

of pixels and attempts to determine their shapes using attributes such as

shading, texture, and motion. Finally, the shape of the object is compared

with a database of model shapes, and the object recognition routine outputs

the object from the database that most closely matches the object in the

image. After identifying the object, its location and orientation in the cam-

era’s coordinate frame must be determined. Programs using packages such as

OpenCV can use camera images to detect edges, classify objects, and output

locations and orientations [22].

Edge detection is an important aspect of shape identification. It is mainly

used to decrease the amount of data in the image to make it easier to process

9

[23]. Differentiating colors can also help in object detection. High contrast of

colors in a scene can make the edge detection, and thus shape identification,

easier and more accurate [24]. Edge detection can be done using just cameras

and computer vision algorithms, but some applications implement fiducial

markers designed to track objects, such as ArUco Tags shown in Figure 3

[25]. These tags are low-cost, square black-and-white patterns that can be

identified using OpenCV and Robot Operating System (ROS) tools. Some

disadvantages of using markers like ArUco Tags are that they require a very

high resolution camera and they must be attached to the objects, whereas

edge detection algorithms do not need any extra hardware and can be more

adaptable [26].

Figure 3: Examples of ArUco Tags

There are a variety of edge detection algorithms, and they are broken up

10

into two different types: gradient-based or Laplacian-based. Gradient-based

methods, such as Sobel, Prewitt, and Robert edge detection techniques, de-

tect edges by finding the minimum and maximum values in the first deriva-

tive. These methods are implemented by using the magnitude of the gradient

of the image [23]. Laplacian based methods, on the other hand, look for when

the second derivative of an image is equal to zero. Where the second deriva-

tive equals zero, there is an edge in the image. Once the edges are located,

all data from the image except the edges are eliminated [23]. One example of

a Laplacian edge detection method is the Canny edge detection. The images

in Figure 4 show the steps of edge detection using the Canny algorithm, with

the raw image on the left and the detected edges on the right.

Figure 4: Canny Algorithm Steps Visualized

The Canny algorithm is one of the most commonly used edge detection

methods [23]. It works by first reducing noise using a Gaussian filter [23].

Then, it finds the image gradient and removes all unwanted pixels [27]. This

process is known as suppression. Hysteresis thresholding is then used to

11

convert an image into a binary mask. This labels pixels in the background

zero and all other pixels one [28]. The binary mask helps distinguish objects

in the image from the background, which is especially helpful for object

detection and edge detection in the foreground of images.

12

2.3 Motion Planning

Using computer vision systems can help track objects in the workspace.

Whether a robotic system has a human operator or not, controlling the mo-

tion of a multi-DOF robot can be challenging. Motion planning is the task

of creating a path between start and goal poses while avoiding collisions

[29]. The start and goal poses must exist in the robot’s workspace [30]. The

workspace is determined using the range of each joint and is important be-

cause it defines the state space of the end effectors and joint locations, or

all of the possible robot configurations [31]. Obstacles in the workspace and

potential singularities of the robot must be noted. A boundary singularity is

where the robot is commanded to leave the workspace whereas an internal

singularity occurs when two or more of the robot’s axes are aligned, result-

ing in a loss of a degree of freedom [31]. Figure 5 depicts an example of an

internal singularity.

13

Figure 5: Example of a Singularity where Two Joints are Aligned

2.3.1 Trajectory Planning

Trajectory planning is generating motion control inputs to execute a

planned trajectory to a goal pose. Trajectories include timing constraints

such as velocities or accelerations, whereas a path is simply the series of

points in the workspace [32]. Some requirements of trajectory planning are:

minimizing computational demand, creating continuous functions for joint

positions and velocities, and avoiding collisions. Optimizing trajectory plans

creates smoother and more efficient paths to reach an end goal faster. Tra-

jectory optimization algorithms can shorten already generated trajectories or

initialize a trajectory with collisions and optimize it along the way. There-

14

fore, numerical optimization methods and collision checking methods are

necessary for trajectory optimization algorithms [33].

2.3.2 Problems with High-Dimensionality and Potential Solutions

Implementing motion planning on robotic systems of high-dimensionality

can be time and computationally intensive [34]. In addition, redundant ma-

nipulators have an infinite number of inverse kinematic solutions, so without

imposing some constraints, it can be impossible to reach a solution [35]. Sev-

eral solutions have been proposed to compensate for these problems caused

by high-dimensionality. One solution specifically for 7-DOF robots is to re-

duce the redundancy in planning by treating the robot as if it had six degrees

of freedom instead of seven. If the proposed path contains inefficiencies or

potential singularities, the seventh degree of freedom can be used to move

the robot arm into a more ideal position than originally planned [36].

Another potential solution only works for robots whose wrist joints are

independent of the other arm joints. If the robot has an independent wrist,

the 7-DOF planning problem can be separated into two lower dimensional

planning problems: one 4-DOF problem for the arm joints that determines

end effector position and one 3-DOF problem for the wrist joints that de-

termines end effector orientation [37]. As opposed to changing the planning

problem, other solutions use motion primitives to construct paths. Instead of

replanning paths for each iteration of the problem, small segments of frequent

paths, called motion primitives, are saved and connected to make new paths

15

[38]. Motion primitives could also be combined with other potential solutions

for high-dimensionality issues to further simplify planning problems.

2.3.3 Existing Motion Planning Algorithms

This section describes the two categories of motion planning algorithms,

sampling- and optimization-based, as well as some common existing motion

planning algorithms applicable to multi-DOF robot arms.

Sampling-Based Methods

In a sampling-based planning method, the obstruction space, defined as

all the points in the workspace that would create a collision with the robot,

is not explicitly defined. Instead, the workspace is probed using a sampling

scheme and the obstruction space is constructed [39]. The advantage of a

sampling-based method is that because the obstruction space is not defined,

the algorithm is independent of a particular geometric model and can adapt

to different workspaces. Many different sampling-based methods exist and

will be explored in this section.

Optimization-Based Methods

The goal of an optimization-based method is to define the motion plan-

ning problem as an optimization problem, which finds a minimum-cost path

using constraint functions [40]. Constraint functions describe criteria such

as the minimum distance the robot must be from obstacles and maximum

16

accelerations of the joints [41]. Optimization planning aims to combine the

smoothness of the trajectory function with potential collisions of the obstacle

function [42]. These two elements work together to determine the speed of

the motion and path of the motion, respectively. Optimization-based meth-

ods tend to produce higher quality trajectories than sampling-based methods

because they include a secondary step to improve plans [43].

PRM

Another method for motion planning is the Probabilistic Road Map, or

PRM. It computes collision-free paths and works particularly well when plan-

ning for robots with many degrees of freedom. It starts with a learning phase

where the probabilistic roadmap is constructed and stored as a graph. The

nodes of the graph are configurations and the edges are paths. The paths are

computed using a simple and fast local planner that is ideally deterministic.

Next begins the query phase, where the paths that connect start and goal

configurations are identified. One experiment with PRM cites the time of

the learning phase as “a few dozen seconds” and the time of the query phase

as “a fraction of a second” [44].

RRT

The RRT algorithm, or Rapidly-exploring Random Tree, is an example

of a sampling-based method. It uses a randomized data structure that is

designed for a broad class of path planning problems. The algorithm has

17

been applied to holonomic, nonholonomic, and kinodynamic problems with

up to 12-DOF robots. A system is nonholonomic, as opposed to holonomic,

when the system has constraints on the velocity that are not derivable from

the position constraints [45]. Kinodynamic problems provide constraints on

positions, velocities, and accelerations of all joints [46]. The following is an

overview of the RRT planning algorithm.

Given a space X, there is an initial state xinit, a goal state xgoal, and an

obstacle region xobs. RRT creates edges that are paths in xfree, where X -

xobs = xfree. Below are the steps of the RRT algorithm.

1. Initialize first state, xinit

2. Select a random state from X, xrand

3. Find the closest vertex, xnear, to the random state in terms of ρ, a

predefined distance metric in X

4. Select and input u that minimizes the distance from xnear to xrand,

ensuring that it avoids collisions

5. Create a vector from x towards xgoal of magnitude rho

• The vector ends at xnew, which is added as a vertex to the tree

6. Add an edge from xnear to xnew

7. Repeat until xgoal is found

There are many advantages to using the RRT search algorithm. First,

the expansion using RRT is heavily biased toward unexplored areas of the

state space. This increases the chance of finding the goal state sooner. In

18

addition, the distribution of vertices approaches the sampling distribution,

producing consistent behavior. The search is also probabilistically complete

under general conditions and the graph remains connected with minimal

edges. It is simple to implement, leading to high performance, and can

create entire paths without human interaction [47].

Figure 6 is a visual representation of the exploration performed by RRT.

The red dot is the starting point, the blue dot is the goal point, the black

boxes are obstacles, and the red line is the path from the start to goal found

[48]. All the green lines (referred to as the tree) represent edges that the

algorithm has explored, but are not on the path to the goal point.

Figure 6: Exploration using RRT

19

RRT*

The RRT* algorithm is a variation of RRT that is more efficient because

the tree is more organized. It is an efficient incremental sampling-based algo-

rithm with provable optimality properties, as opposed to RRT whose quality

is unknown but is almost surely non-optimal. The complexity of RRT* is

asymptotically within a constant factor required of RRT because it is a mod-

ified Rapidly-exploring Random Graph (RRG) as opposed to a tree. RRT*

uses a Probabilistic RoadMap (PRM), which is probabilistically complete

and constructs a graph of feasible paths offline. RRT* combines the benefits

of RRT and RRG. Like RRT, RRT* is a relatively easy extension to motion

planning problems with differential constraints and can cope with modeling

errors. Like RRG, RRT* is asymptotically optimal and computationally effi-

cient [49]. Figure 7 is an image comparing the paths explored by both RRT

and RRT* [50].

20

Figure 7: Exploration of RRT (left) and RRT* (right)

ARA*

Anytime Repairing A*, or ARA* is a variation of the A* search that has

provable bounds on suboptimality. A* search is a best-first search algorithm

that computes path costs, f(n), as the sum of the cost from the start node

to the current node, g(n), and the estimated cost of the cheapest path from

the current node to the goal node, h(n) [21]. The A* cost function is shown

in Equation 4.

f(n) = g(n) + h(n) (4)

Provided that the estimated costs are relatively accurate, A* search is

complete and optimal. Anytime algorithms are useful when time is limited

because they find an initial solution very fast and then improve the solution

21

until there is no time left. Sub-optimality bounds are used to set limits on

the quality of a plan and decide if the existing plan is good enough or if it is

necessary to continue improving the plan.

The naive approach to ARA* is to run a series of A* searches with decreas-

ingly inflated heuristics. However, it is computationally inefficient because

each iteration repeats what was done in the previous iterations. A non-naive

ARA* approach eliminates these inefficiencies by reusing previous search ef-

forts. One experiment demonstrated that finding a path on a simulated robot

arm with six degrees of freedom was six times faster using ARA* than A*

[51]. There are several examples of ARA* being used for motion planning

for pick and place robotic manipulation tasks [52] [53] [36] [38].

Other Relevant Algorithms

CHOMP

The CHOMP (Covariant Hamiltonian Optimization for Motion Planning)

algorithm works by formulating the goal and performing a numerical path op-

timization [33]. CHOMP uses a covariant gradient descent to produce locally

optimal trajectories. The algorithm starts with a naive guess of the trajec-

tory, and optimizes the trajectory as the robot moves. A time-independent

cost function is used to determine how optimal a possible trajectory is [33].

The cost function has an obstacle component, fobs, which determines how

close to an obstacle the trajectory would place the robot, and a prior compo-

nent, fprior, which determines the accelerations and smoothness of the tra-

22

jectory [54]. The CHOMP algorithm selects the trajectory with the lowest

cost using the cost function.

STOMP

The STOMP (Stochastic Trajectory Optimization for Motion Planning)

algorithm is mainly used for kinematic motion planning [33]. This method

uses a gradient-free stochastic system for optimization of the path. Since no

gradient information is required, STOMP can be used more generally than

CHOMP and can avoid the problem of only finding a local maximum. To

begin, a vector, is generated. The space around this initial trajectory is ex-

plored and the trajectory is iteratively optimized using a cost function that

accounts for obstacles, joint constraints, energy requirements, and smooth-

ness [43].

TrajOpt

The Trajectory Optimization (TrajOpt) algorithm produces a locally op-

timal trajectory that is free of collisions [55]. TrajOpt uses a sequential,

convex optimization method that penalizes collisions [33]. The hinge loss

function, Equation 5, is used for increasing penalty coefficients as needed

[56].

l(y) = max(0, 1 − t ∗ y) (5)

where t is the intended output (+1 or -1) and y is the classifier score.

23

Penalty coefficients are the weights applied to each attribute of the cost

function. The hinge loss function is used as opposed to other functions,

like the zero-one loss function, because it is more versatile and provides a

more realistic cost calculation. Figure 8 shows a graph of the hinge loss and

zero-one loss functions.

Figure 8: Hinge Loss (blue) vs Zero-One Loss Functions (green)

TrajOpt has been proven faster than alternative trajectory optimiza-

tion algorithms, such as CHOMP, and is able to solve more problems with

higher quality paths than competing solutions. The main differences between

CHOMP and TrajOpt are the collision detection and numerical optimization

24

methods [33]. While CHOMP uses Euclidean distance transforms for colli-

sion checking, TrajOpt uses convex-convex collision checking, which detects

two shapes colliding and calculates the minimum translation required to clear

the obstacle. The Euclidean distance transforms determine the amount that

each point of the robot needs to move so the robot is no longer in a colli-

sion. This method does not provide an overall estimate of the shape of the

obstacle whereas the convex-convex collision detection method does. When

using Euclidean distance transforms, the points of the robot can potentially

move to conflicting locations when avoiding obstacles [55]. While the Eu-

clidean distance method is independent of changes in the trajectory, the

convex-convex collision detection method uses a more specific definition of

the overall workspace.

2.3.4 Visualization Platforms

There are a variety of visualization platforms designed for robotic use

that are particularly helpful in testing and evaluating different motion plan-

ning methods. The first, RVIZ, is a 3D visualizer made specifically for the

Robot Operating System (ROS) framework. It is a powerful tool that has

been used in many robotic projects and supports different robot file types

[57]. Gazebo is another simulation tool and can include physics engines and

the simulation of sensor data. ROS packages are also available to integrate

Gazebo and ROS [58]. Another useful simulation tool is OpenRAVE, a sim-

ulation tool with a ROS plugin and 3D physics to provide quality simulation

25

and planning for humanoid robots. OpenRAVE makes it easy to tune plan-

ning parameters and port code from simulation to a real robot [59]. A newer

robot modeling and simulating tool is Klamp’t (Kris’ Locomotion and Ma-

nipulation Planning Toolbox) that was developed particularly for testing and

analyzing algorithms for robot manipulation and locomotion [60]. A visual-

ization platform is important because it is unsafe and much slower to test

every iteration on the physical robot. Different visualization platforms will

be explored in this project.

2.4 Joint Actuation and Control

After trajectories have been planned for the robot’s arms, the joints must

be quickly and accurately actuated. There are two main categories of con-

trolling a robot’s joints: point to point control and continuous path control.

In point to point control, the controller is provided start and stop points only.

Within point to point control there are three main methods. In one joint at

a time control, each joint is actuated individually to achieve a goal pose. In

slew motion, all joints are actuated at the same time, all with the same de-

fault speed. In joint interpolation, all the joints are actuated at the same time

but the speed of each joint is proportional to the distance to travel. That is,

the joint with the longest displacement starts at the default speed and every

other joint moves slower according to their displacements. This produces a

smooth motion that avoids singularities, making joint interpolation the most

popular point to point control method [61].

26

Continuous path control defines points along the path instead of just start

and stop points like in point to point control. To find the path, low order

interpolating polynomials with imposed velocities are used [32]. Equations 6

and 7 describe the start and end of the robot arm’s trajectory [62].

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (6)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (7)

Continuous path control is more difficult to implement and is more com-

putationally expensive, but it provides a more precise and efficient trajectory

because more than just two points are used to define it. These control meth-

ods provide different ways for a robot to execute a planned trajectory.

2.4.1 Forward Kinematics and DH Parameters

Forward kinematics involves mapping coordinates from the robot’s joint

space to Cartesian space [31]. Forward kinematics uses transformation ma-

trices to determine translational and rotational transformations. To select

the reference frames of the robot’s joints, DH parameters can be used to

represent the axis between joint pairs [63]. There are four different DH pa-

rameters: a, α, d, and θ, shown in Figure 9, where O0 and O1 represent the

origins of two of a robot’s joints.

27

Figure 9: Two Robot Joints and DH Parameters

Between two joints, a is the length of the common normal, α is the angle

about the common normal, d is the offset along the z0 axis to the common

normal, and θ is the angle about the z0 axis [64]. From these parameters, a

transformation matrix is constructed shown in Equation 8.

T =

cos(θ) −sin(θ)cos(α) sin(θ)cos(α) rcos(θ)

sin(θ) cos(θ)cos(α) −cos(θ)sin(α) rsin(θ)

0 sin(α) cos(α) d

0 0 0 1

=

R T

0 1

 (8)

where R is the rotation matrix and T is the translation matrix. Using DH

28

parameters is a convenient way to define a coordinate frame for controlling

a robot’s joints.

2.4.2 Inverse Kinematics

Inverse kinematics (IK) determine the set of joint configurations that

correspond to the desired position of an end effector of a robot [65]. These

calculations are used in robotics, as well as computer animation, ergonomics,

gaming, and others. Inverse kinematics can be applied to robots specifically

as a “method for computing the posture via estimating each individual degree

of freedom in order to satisfy a given task that meets user constraints” [65].

IK calculations can also be applied to a robot to compute the area and shape

of the reachable workspace of a robot, plus its end effector [66].

Inverse Kinematics solvers, or IK solvers, are algorithms used for finding

solutions to inverse kinematics problems with added constraints [67]. These

constraints can include joint limits, joint singularities, or instantaneous joint

velocities. While IK problems can be solved without the use of IK solvers, it

is often not practical because inverse kinematics problems can have infinite

solutions [67].

There are several different inverse kinematics solvers. One of these meth-

ods is called FABRIK, or Forward And Backward Reaching Inverse Kinemat-

ics. This method is a heuristic iterative method, which means it finds each

joint position by locating a point on a line, makes computation costs, and

then produces visually realistic poses for the robot [65]. FABRIK is efficient

29

for both simple and complex position calculation problems, and produces

good results for all problems quickly. Other IK solvers include CCD, Jaco-

bian IK solvers, target triangulation, TRAC IK, FAST IK, and KDL IK [65].

Many of these solvers have built-in ROS packages to make IK calculations in

a robotic system easy to implement.

2.5 Shared Autonomy

Inverse kinematics calculations are necessary so the robot controller can

receive a desired joint configuration to execute. Precise execution of joint

configurations is necessary to complete the sewing task. Previous examples

of robotic sewing tasks were fully autonomous, requiring no user input during

the sewing task. However, robotic systems with shared autonomy incorpo-

rate a human operator. Shared autonomy describes a control task that is

accomplished using both a robot and a human operator. Overall, the two

main goals of shared autonomy are to predict the user’s goal and provide

assistance to accomplish that goal [68]. One example is where the robot is

controlled by the human operator using teleoperation, directly mapping the

human operator’s inputs to the robot’s operation [69]. Shared autonomy

can alleviate some of the challenges of teleoperation, such as filtering noise

from input devices and utilizing all of the degrees of freedom of the robot

that the human cannot directly control. In one manufacturing application,

a human operator controlled multiple robots remotely, checking the robots’

activity using a simulated display [70]. In another application, an assistive

30

shared autonomous robot augmented the motor abilities of patients with mo-

tor impairment to perform tasks that need fine motor control for the human

[71].

Other forms of shared autonomy do not involve teleoperation, but require

a human operator for other information [72]. In one application, a tablet

is used as an intuitive user interface and abstracts the robot’s motion so

that the human only needs to input a desired task [73]. When a robot can

correctly execute the procedure to complete that task independently, it can

diminish the effects of time delays and simplify the control interface for the

human operator [74]. Regardless of the level of teleoperation involved, shared

autonomy utilizes the complementary advantages of humans and robots.

2.5.1 Input Devices

When implementing a shared autonomous system, it is important to con-

sider which robot control device the user will find most intuitive. Because

there are a wide variety of input devices available for robotic operation, it is

important to determine the criteria the device must meet. These criteria also

depend on the specific use case and can include cost, intuitivity, or accuracy.

Simple devices such as buttons, switches, keyboards and mice are easy to

use and implement but do not provide advanced functionality necessary to

directly control a robot. Several companies design industrial robotic con-

trollers that have increased functionality but require a steep learning curve

to operate [75]. Other robotic systems utilize common handheld controllers

31

used in video games that can track movements. These devices can be very

intuitive to use, but typically have low accuracy [76]. A variety of input

devices were researched and evaluated in this project.

32

3 Concept of Operations

Many different stakeholders are involved in this project of sewing using

with a shared autonomous robotic system. This chapter defines all the stake-

holders as well as use cases and user stories that apply to them. This chapter

also outlines the function and nonfunctional requirements that the project

needs to fulfill.

3.1 Stakeholders

These are the relevant stakeholders and information regarding them as

it pertains to this project. Table 1 shows the various stakeholders and their

roles in this project.

Title Description Role Representation

Students Developers Directly involved Self

Advisors Advise/grade Directly involved Self

New Balance Inno-

vation Team

Sponsor Funding/Project

Specifications

Self

WPI Sponsor Graduation Re-

quirements

Registrar personnel

RBE/CS Depart-

ments

Sponsor Funding/MQP Re-

quirements

Advisors

33

Table 1 continued from previous page

New Balance

Seamsters

Use robot Operate robot Self

Future Students Continue work

on project

Continue work on

project

Not represented

Table 1: Stakeholders and Relevant Information

3.2 Use Cases

The following use cases, described in Tables 2, 3, and 4, are used to define

the problem as it pertains to the relevant stakeholders.

Name Autonomous Mode Operation

Actor (s) New Balance Seamster

Initial Conditions Vamp is assembled

Toe guard is cut

Flow Of Events 1. Seamster places vamp and toe guard in the workspace

2. Seamster powers on robot, UI, and sewing machine

3. Seamster selects ‘auto’ on the screen

4. Robot picks up the vamp and toe guard

5. Robot aligns the pieces

6. Computer vision system determines points along sewing

pattern

34

Table 2 continued from previous page

7. Motion planning subroutine determines end effector po-

sitions based on sewing pattern points

8. Motion planner determines joint space configurations

based on end effector positions and IK calculations

9. Robot actuates the planned trajectory

Exit Conditions Vamp and toe guard have been sewn together

Robot releases assembled pieces

Table 2: Use Case 1

Name Assist Mode with Input Device as Sewing Pattern

Actor New Balance Seamster

Initial Conditions Vamp is assembled

Toe guard is cut

Flow Of Events 1. Seamster places vamp and toe guard in the workspace

2. Seamster powers on robot, UI, and sewing machine

3. Seamster selects ’assist’ on screen; opens up input device

screen

4. Seamster imitates sewing pattern using the input device

5. Seamster selects desired sewing trajectory on the input

device screen

6. Robot picks up and positions the vamp and toe guard

35

Table 3 continued from previous page

7. Motion planning subroutine determines end effector po-

sitions based on sewing pattern points

8. Motion planning subroutine determines end effector po-

sitions based on sewing pattern points

9. Computer vision system provides visualization of

workspace to the user

10. Robot actuates the planned trajectory

Exit Conditions Vamp and toe guard have been sewn together

Robot releases assembled pieces

Table 3: Use Case 2

Name Assist Mode with input device as end effector positions

Actor New Balance Seamster

Initial Conditions Vamp is assembled

Toe guard is cut

Flow Of Events 1. Seamster places vamp and toe guard in the workspace

2. Seamster powers on robot, UI, and sewing machine

3. Seamster selects assist on the screen - opens up an input

device screen

4. Seamster imitates sewing using input device

5. Seamster selects desired end effector positions on input

device screen

36

Table 4 continued from previous page

6. Robot picks up and positions the vamp and toe guard

7. Motion planner determines joint space configurations

based on end effector positions and IK calculations

8. Computer vision subsystem provides visualization of

workspace to user

9. Robot actuates the planned trajectory

Exit Conditions Vamp and toe guard have been sewn together

Robot releases assembled pieces

Table 4: Use Case 3

3.3 User Stories

The following user stories are specific to each stakeholder and demon-

strate general criteria for the system based on the needs of the stakeholders.

As a New Balance factory employee, I want a robot that is safe to work near

so I know I won’t get hurt.

As a New Balance factory employee, I do not want to work on the factory

floor because it is cramped, loud, and uncomfortable.

As a New Balance factory employee, I want very simple user interface so I

can learn how to interact with the robot quickly.

As a New Balance factory employee, I don’t want the robot to do everything

37

because I don’t want to lose my job.

As a New Balance factory employee, I want the tolerance of the fabric input

to be not too tight because I don’t want to have to focus too much on how

I hand the fabric to the robot.

As a New Balance expert employee, I want to show the robot how to sew so

that it can teach other employees.

As a New Balance expert employee, I want to easily and effectively teach the

robot so that I can show it how to accurately sew a shoe.

As a New Balance expert employee, I want to easily be able to correct a

small segment of the trajectory so I can improve the robot’s product.

As a New Balance Innovation Team Member, I want a robotic system to

decrease the number of sewing defects to reduce waste and costs.

As a New Balance Innovation Team Member, I want to increase the number

of shoes assembled to increase our sales.

As a New Balance Customer, I want a robotic system to be implemented to

decrease the cost of the product for me.

3.4 Requirements

3.4.1 Functional Requirements

The functional requirements of the system describe what it should do and

the outcomes of the product. Below is a list of the functional requirements

of the system.

38

• Use computer vision to identify the location of the vamp

• Sew the toe guard onto the vamp

• Plan trajectories in joint space

• Have a user-friendly control interface

• Safely interact with factory workers

• Use computer vision

• Robot must avoid collisions

• Trajectories are optimal

• Implement an intuitive teleoperation method

• Eliminate tremors and collisions from human input

• Manipulate the soft material appropriately

• Be adaptable for future applications (different materials, sizes, etc.)

• Fit well in a factory setting

3.4.2 Nonfunctional Requirements

The nonfunctional requirements are criteria of how the system operates

and performs. Most contain numeric specifications, shown below.

• Sew a pattern within 1mm

• Do not come within 3 inches of an obstacle

• Complete the sewing task within 60 seconds

• Sew less than 1% defects

39

4 Technical Documentation

4.1 Workspace Layout

The workspace is the area around the robot, including the objects that the

robot can potentially interact with. Figures 10 and 11 shows the workspace

in the lab and Figure 12 shows the workspace in simulation.

Figure 10: Robot workspace with objects labeled: Right View

40

Figure 11: Robot workspace with objects labeled: Left View

Note that the robot controller and safety system are not represented in

simulation since they cannot be reached by the robot and therefore are not

relevant to motion planning problems. The construction of the simulation is

discussed in Section 4.6.1.

41

Figure 12: Robot with Sewing Machine Simulated in RViZ

The fabric pieces the robot manipulates are the vamp and the toe piece,

shown in Figure 13. The vamp forms into the top of the shoe, and the toe

piece covers the seam between the vamp and the sole.

42

Figure 13: Vamp (bottom) and Toe Piece (top)

Described in Section 4.2, the robot, a Yaskawa Motoman SDA10F, has its

own controller and communicates with it over Ethernet. Each of the grippers

communicate with their own Robotiq K-Model controllers over Ethernet as

well. The gripper controllers can communicate with the computer using

USB or Ethernet, and USB was selected for this project. Figure 14 shows

the communication between all the components in the workspace.

43

Figure 14: Communication between all Components

44

A safety system was installed to protect human workers who enter the

robot’s workspace. The OMRON OS32C safety sensor was used to detect

when humans get close to the workspace (Warning Zones) and then shut the

robot’s servos off when humans are within reach of the robot (Safety Zone).

Figure 15 shows a simulation of the boundaries of the zones.

Figure 15: Warning and Safety Zones of OMRON Safety Sensor

The safety system also includes a mat shown in Figure 16 that is located

in front of and beneath the sewing machine. The sewing machine is in the

laser’s blind spot, so this ensures no human workers are standing where the

safety system cannot detect.

45

Figure 16: Safety Mat (Black); turns off Robot’s Servos when Stepped on

There are visual and auditory warnings that display the state of the safety

system. The safety warning zones are shown above in Figure 15. The light

rod on the top of the robot shown in Figure 11 has three LEDs: one red,

one yellow, and one green. When Warning Zone 1 is entered, the yellow

light flashes and there is a loud, pulsing beep. When the Safety Zone is

entered, the red light flashes and the robot is halted. When the user leaves

the workspace, the red and yellow lights both illuminate, indicating that the

system needs to be reset using the reset button at the workstation. Once

the safety system is reset and the zones are clear, the green light indicates

that the workstation is clear of human workers. The system also utilizes

three emergency-stop buttons: one next to the computer, one on the robot

controller, and one on the teach pendant. Each button allows the user to

46

halt the robot.

The sewing machine used is a Durkopp Adler 868 sewing machine shown

in Figure 17.

Figure 17: Durkopp Adler 868 Sewing Machine

This system is a twin needle post bed machine with a built in sewing

motor, which is capable of variable-rate repetitions via a continuous foot

pedal. This means the sewing machine can be operated over a range of

speeds. The sewing machine is located 71 cm in front of the robot. It is

on an adjustable table, allowing the sewing machine height to be configured.

For this project, the sewing table was set to a height of 82 cm.

Also included in the workspace are the cameras that the computer vision

subsystem uses to identify landmarks on the vamp and that the operators

use to monitor sewing. Two of the four cameras are e-Con See3CAM CU135

USB webcams, one is an ELP 5 Megapixel USB, and the fourth is a Ausdom

Full HD 1080P. The two e-Con See3CAM CU135 cameras are mounted on

the robot’s wrists using custom brackets, shown in Figure 18.

47

Figure 18: Camera Mounted on (Right) Wrist

The ELP camera is mounted on the front of the sewing machine facing

down, as shown in Figure 19

48

Figure 19: Camera Mounted on the Sewing Machine

White LEDs were mounted around the sewing machine camera and on the

sewing machine to maximize light in the workspace and keep the footprint

small. Figure 20 shows the lighting mounted on the sewing machine.

49

Figure 20: Lighting mounted to sewing machine

The EPL 5 Megapixel USB camera is mounted on a tripod and is depicted

in Figure 21.

Figure 21: Camera Mounted on the Tripod

The cameras are used by the operator to monitor the robot’s sewing and

by the computer vision subsystem to generate sewing waypoints. The details

50

of each workspace component and operation are discussed in-depth in this

chapter.

4.2 The Robot

The robot used in this project is a Yaskawa Motoman SDA10F, shown in

Figure 22.

Figure 22: Yaskawa Motoman SDA10F

This robot is a 15 degree of freedom, dual arm robot with a maximum

payload of 10kg per arm. Each arm has seven rotational joints, and there is

an additional joint at the base to rotate the torso. Each arm has a maximum

horizontal reach of 720mm and maximum vertical reach of 1,440mm. The

joints in the arms have a rotation between ±110 to ±180 (see Appendix A).

51

The joint angles for each motor are known through absolute encoders placed

at each joint servo. The repeatability of motors is ±0.1mm, which is ideal

precise sewing. A model of the robot with the joint names is shown below in

Figure 23.

Figure 23: SDA10F Model with Joint Names

The SDA10F comes with the option of three controllers: the DX200,

FS100, or MLX200. The controller for this particular robot is the FS100

controller. Two controllers are required for control of the SDA10F because it

has 15-DOF. The FS100 controller is ideal for handling small payloads. The

compact nature and high communication speeds and of the controller make

it suitable for this application. This controller also comes with a handheld

pendant for manipulating the robot and creating programs, pictured below

in Figure 24.

52

Figure 24: FS100 Controller (left) and Pendant (right)

The pendant gives the option to switch between teach, play, or remote

mode. Teach mode allows the operator to use the pendant to create and

save robot programs. Play mode executes a selected program on the robot.

Remote mode allows the robot to be controlled by a system other than the

pendant. The pendant has three other buttons along the top: start, hold,

and emergency stop. Start is used to run a program with the robot in play

mode, hold is used to pause a program while it is running, and the emergency

stop is pressed when the robot needs to come to a complete halt immediately.

Inside the controller are general settings for the robot. These can be

accessed and adjusted through the pendant. Some of these settings include

the maximum joint speeds for each joint during the different modes of oper-

ation. The robot controller also determines if it should perform a safety stop

depending on the signals from each safety sensor attached.

The controller also contains multiple digital input and output connec-

tions. External elements, such as end of arm tooling, safety systems, and

sensors, can be connected, controlled, and read using the robot’s controller

53

and pendant. The controller also has 10Base-T/100Base-TX Ethernet for

connecting to the robot over a network or directly with a computer. The

laser safety sensor and safety mat are connected to the robot controller via

the safety input connections.

This robot is suited to the sewing task because of the ±0.1mm repeatabil-

ity and the high dexterity of the robot. The dexterity comes from the fifteen

controllable degrees of freedom. The robot has two separate arms, mounted

so they mirror each other, resembling the structure and position of human

arms. This will make it easier for the robot to replicate human like motion.

4.2.1 End of Arm Tooling

The end of arm tooling chosen for this application is the Robotiq 2-Finger

Adaptive Robot Gripper with a maximum opening of 85mm. The gripper

is able to close with the fingers coming to a point, the Encompassing Grip,

or with the fingers parallel to each other, the Parallel Grip (Figure 25). The

gripping type is important because it affects how the fabric is held. The

parallel grip was chosen for this project because it increases contact area

with the fabric. This will help manipulate the soft fabric in a predictable

manner.

54

Figure 25: 85mm Robotiq 1-Finger Adaptive Robot Gripper

The grippers are able to exert a force from 20N to 235N. The full list

of specifications of the 85mm Robotiq 2-Finger Adaptive Robot Gripper

can be found in Appendix B. End effectors to grip the shoe fabric needed

to be chosen. The factors used to evaluate the grippers were degrees of

freedom, grip strength, compatibility with other hardware and software, cost,

manipulability, reliability, and contact area size. The decision making matrix

comparing different grippers is shown in Appendix C.

Both arms of the robot were fitted with identical grippers. Between the

right arm wrist and the right gripper, a Robotiq Force-Torque sensor was

installed. Although this was not used during this project, it remains on

the robot for the possibility of future research. Each gripper has a separate

controller, which communicates with the computer via USB. The computer

can tell each gripper when to open and close, how much to open or close,

how quickly to open or close, and the force to use. The position can also

be controlled by sending a value from 0-255 to the gripper controller. This

55

gives the gripper a resolution of 0.332mm. Each of the grippers as well as

the robot controller have their own ROS nodes, described in detail in Section

4.3.

4.3 System Overview

This section gives a general description of the system as a whole.

4.3.1 Computer Requirements

Computer

The sewing task had to be done in sixty seconds for this project iteration.

This is reasonable to achieve and quick enough to be useful in a production

setting. This speed requirement dictated that the software had to quickly

process images, generate waypoints, and execute the planned trajectories. To

help accomplish this goal, efficient hardware was chosen. A desktop computer

workstation was repurposed to serve as the processing center and upgraded

with a Solid State Drive, more RAM, and more USB 3.0 ports for the cam-

eras. The workstation computer came equipped with a dedicated graphics

card and a quad core i7 Intel processor. A second computer workstation was

also prepared and later repurposed for Windows applications.

56

Computer Operating System

The operating system on the workstation was Ubuntu Linux Mate 14.04.

It was chosen because it is relatively light on system resources when idle,

while still maintaining the usability of a normal Ubuntu install. The Ubuntu

version, 14.04, was needed as the Robotiq package needed for the grippers

only supports up to ROS Indigo, which only runs on Ubuntu 14.04.

Security

The system was designed to be secure by minimizing attack vectors. To

do this, the communication with the robot was limited to one computer, as

opposed to connecting the robot to the Local Area Network (LAN). Only a

single computer was used to run all of the ROS nodes, so only one computer

needed to be secured.

4.3.2 ROS Architecture

In order to work simultaneously on the different subsystems, one or more

ROS nodes were used for each subsystem that communicate over ROS topics.

In addition, using multiple nodes allows for easy addition of features, as each

feature is simply a node that subscribes and publishes to ROS topics. Figure

26 below is a diagram that summarizes the different nodes.

57

Figure 26: ROS Node Diagram

In summary, there are ten different nodes. Four nodes are camera nodes,

one for each camera, and they provide the same functionality. There is a

calibration node that handles the calibration during startup and publishes

the distance and orientation offsets of the sewing machine. Another node

is the computer vision node, which takes the view from the sewing machine

camera, determines the position of the vamp, and publishes the positions of

designated waypoints. The motion planning node subscribes to the waypoints

on the vamp published by the computer vision node and determines the

trajectory for the robot to follow. The trajectory is then published to a topic

to which the inverse kinematics node subscribes. The inverse kinematics

node calculates the robot’s joint angles in order to execute the calculated

trajectory. The joint angles are published, and the robot controller node

subscribes to them. The robot controller node then publishes the trajectories

58

in order to command the robot to move. The robot controller node also

communicates with the gripper controllers, and instructs them to open and

close the grippers based on commands from the user interface node. The user

interface node is the node that begins the sewing process and integrates the

motion planning, computer vision, robot controller, and input device nodes.

A benefit of independent nodes for each feature is that they can be launched

and used independently. This is useful for debugging and testing as well as

reducing complexity for the addition of future tasks.

4.3.3 Program Flow

Figure 27 below is a flowchart depicting how a user uses the system.

Figure 27: Flowchart of System Progress

The system has two modes: auto mode and assist mode. In auto mode,

the robot sews autonomously with no user input, while in assist mode, the

59

user teleoperates the robot using an input device. To start the process, two

predefined poses were saved shown in Figure 28.

Figure 28: Robot Home Position

60

Figure 29: Robot Start Position

4.4 User Interface

The user interface (UI) allows the user to control and understand the

sewing process. The UI must be intuitive and communicate with other sub-

systems. The intended users are seamsters or factory workers, who are not

expected to have knowledge in computer programming. These users need an

understandable UI that they can easily use with minimal training. The full

lists and explanations of desired UI features are available in Appendices D,

E, F, and G. Along with the UI, an input device is needed to enable the user

to accurately control the robot’s end effector position while in assist mode.

61

The input device needs to be intuitive to use and record accurate data. This

section describes the user interface design and functionality as well as the

input devices researched.

4.4.1 UI Design

In the process of creating the UI, several different programming lan-

guages and software packages were researched such as QT, RQT, Matlab,

and Python. Since RQT is the framework most frequently used for devel-

oping user interfaces with ROS, it was used with C++ to design the first

version of the UI. However, this version only worked as a standalone plugin

and could not be integrated with the rest of the system. Therefore, the UI

was redesigned using a different programming language and UI development

library. One possibility was Matlab and its ROS library, but this solution

was not implemented because Matlab is both computationally and financially

expensive. Python was chosen instead because the team members were more

familiar with it, and it can utilize the Tkinter software package for simple UI

designs. This Python UI became the final design.

RQT/QT C++ Layout Design

The software development platform QT is commonly used for designing

user interfaces and can be used in programs in different languages. RQT is an

QT based GUI design platform for integration into ROS systems. The first

UI implementation for this project was programmed in C++ using the QT

62

framework. It was easier to program and test the core functionality of the

UI in QT before integrating it into RQT to add ROS functionality. Figure

30 below shows a the first UI in C++ using QT.

Figure 30: Initial UI Design in C++ with QT

The three colored buttons represent the sewing modes of the system,

although only the assist mode and auto mode were implemented. One initial

idea for the UI was to allow the user to upload a desired pattern from a file

and convert the image into a desired sewing pattern. This was implemented

in the first UI. However, it was unnecessary for users to upload an image since

they could use the input devices to generate trajectories so this feature was

63

removed from future versions of the UI. The final UI using RQT, pictured in

Figure 31, was able to be opened and users were able to click buttons. This

allowed the developer to test the camera views separately before integrating

them into the ROS system.

Figure 31: Final UI using RQT and C++

In the end, this UI worked as a standalone ROS plugin but not work

as an executable subsystem. Limited experience in QT presented a steep

learning curve to overcome before anything could be integrated with the rest

of the system. Another problem was that the RQT tutorials and example

UI were broken during the UI development of this project. These reasons

are why another programming language was used to develop the final UI.

64

Python and the Tkinter library were chosen since ROS commands are easy

to incorporate in Python and the members of the team have knowledge of

the language. Further, it has no additional cost, unlike Matlab.

Python Tkinter UI Layout Design

After the programming language and available libraries changed, the lay-

out design of the UI changed as well. Figure 32 shows the UI designed in

Python.

Figure 32: Final UI in Python Tkinter, Tripod Camera View

Table 5 describes the messages and buttons that correspond to the labels

in Figure 32.

65

1: Needle Offset Displays current offset between robot and sewing machine

2: Start Calibra-

tion

Boolean ROS message published, Calibration node performs

offset calibration and publishes current offset

3: Home Button Boolean ROS message published, Robot controller moves

robot to home pose shown in Figure 28

4: Start Button Boolean ROS message published, Robot controller moves

robot to start pose shown in Figure 29

5: Identify Land-

marks Button

Boolean ROS message published, CV subsystem begins rou-

tine to find the x, y locations of landmarks on vamp

6: Gripper Status Displays current gripper position (Opened or Closed)

7: Open Gripper

Button

Boolean ROS message published, right and left gripper con-

trollers command gripper positions of 255

8: Close Gripper

Button

Boolean ROS message published, right and left gripper con-

trollers command gripper positions of 0

9: Status Displays messages of current task being executed

10: Auto Button Boolean ROS message published, motion planning subsys-

tem plans path and robot controller actuates the path

11: Haptic De-

vice Button

Haptic Device UI window is opened (Figure 38); user uses

haptic device to record sewing pattern and publish a pose

array of the pattern

66

Table 5 continued from previous page

12: Wii Remote

Button

Input Device UI window is opened (Figure 37); user uses

input device to record end effector positions along the sewing

trajectory and publish a pose array of the trajectory

13: L Wrist Cam-

era Button

Changes the camera view displayed to the view from the left

wrist camera

14: R Wrist Cam-

era Button

Changes the camera view displayed to the view from the

right wrist camera

15: Tripod Cam-

era Button

Changes the camera view displayed to the tripod camera

16: Sewing Cam-

era Button

Changes the camera view displayed to the camera mounted

on the sewing machine

Table 5: Features of User Interface

4.4.2 Input Devices

An input device is needed to enable the user to accurately control the

robot’s end effector position while in assist mode. The input device needs to

be intuitive to use and record accurate and precise data. Three input devices

were chosen and two were implemented. The input device investigated but

not implemented was a Virtual Reality (VR) glove. The two implemented

input devices were the Geomagic Touch Haptic Device and the Wii Remote.

The input devices have separate user interfaces than the main UI. This sec-

67

tion describes the input device interfaces, how to use the devices, and which

of the devices is most effective.

Requirements

The data from the input device is used to determine a desired end effector

position and orientation. Four input devices were compared on accuracy,

cost, ease of use, and other parameters. Appendix H lists the pros and cons

for each device researched. The evaluated devices are virtual reality gloves,

haptic devices, fiducial markers or tags, and handheld controllers. After some

research, the virtual reality glove chosen was the CaptoGlove. This glove is

much cheaper than other VR gloves and has sensors accurate enough for this

application. The CaptoGlove was also readily available in the lab, making

this a convenient solution. The haptic device researched was the Geomagic

Touch because it was already available in the lab. ArUco tags were chosen as

the fiducial markers to analyze because they are cheap and accessible. The

handheld controller chosen was the Wii Remote because of its popularity as

a position tracking device. After this initial analysis, only the VR glove, Wii

Remote, and haptic device were researched further. Fiducial markers were

not a satisfactory input device because they take too long to set up and would

not fit in a factory setting well. This section discusses the implementation

of the remaining input devices.

68

Virtual Reality - CaptoGlove

Virtual Reality (VR) is a relatively new technology that allows a user

to experience an environment that does not exist in physical form. Virtual

reality gloves give the operator control in a way that simulates reality. For

this sewing task, VR gloves give the user an intuitive way of controlling the

robot with minimal training. The seamster can put on the gloves and sew

any pattern. The position of the gloves could be recorded while the seamster

is using one sewing machine, translated into robot end effector positions, and

then mimicked by the robot on a separate sewing machine.

The CaptoGlove was chosen since it was readily available in the lab, had

a lower cost than other VR gloves, and had sensors accurate enough for the

sewing task. CaptoGlove provides SDKs in C++ and C, which implement

features such as reading data from the sensors and managing the Bluetooth

connection for the CaptoGlove. The plan was to use the CaptoGlove and

the C++ SDK to record data from the sensors and use it to calculate the

position and orientation of the user’s hand. The biggest problem with the

CaptoGlove was that it is an underdeveloped, new technology. It was tedious

to connect to the CaptoGlove and the software examples did not work.

The libraries were only developed to run in Microsoft Visual Studio 2017

on Windows 10, and not on Linux with ROS. A ROS package would need to

be developed to use the CaptoGlove as an input device for this project. This

would be complex and time-consuming. Communication protocols like SSPP

69

were researched to see if it was possible to use the CaptoGlove software on

a Windows 10 machine and communicate the data to the Linux machine.

This was done successfully for the haptic device, which is explained in Sec-

tion 4.4.2. However, the CaptoGlove SDK was difficult to use and did not

provide any filtering, resulting in noisy data. Therefore, this device was not

implemented in this project. If a VR glove is desired in the future, a well

developed ROS package and SDKs designed to work in Linux environments

are suggested.

Handheld Controller - Wii Remote

The Wii Remote, shown in Figure 33, is a handheld controller used with

the Wii gaming console.

Figure 33: Wii Remote

It uses three accelerometers for motion capturing and an IR camera for

2D position tracking. The Wii Remote has a Bluetooth transmitter, which

70

can connect to any device with a Bluetooth receiver. The Motion Plus at-

tachment, pictured in Figure 34, has a dual and single axis gyroscope used

for 3D motion.

Figure 34: Motion Plus Attachment for Wii Remote

This attachment was used to gather motion more accurately than the Wii

Remote by itself. This technology is well developed and has open source,

easy-to-use libraries and ROS packages. The Wii Remote ROS package used

is called “wiimote.” It implements functions that can communicate with the

Wii Remote through Bluetooth on the computer. Using this package, gy-

roscope and accelerometer readings were used to calculate orientations and

positions.

The Wii Remote was the least accurate input device researched. Accord-

ing to a research paper from the University of Missouri, the Wii Remote’s ac-

curacy was within 1.275 degrees for its pitch measurement and 0.701 degrees

for its roll measurement [77]. To increase the accuracy of the Wii Remote, the

imu filter madgwick package was used to filter and fuse the gyroscope and

71

accelerometer data. This greatly improved the accuracy of the orientation

calculated using the Wii Remote. The testing methodology and the drifts

measured are shown in Appendix I. The gyroscope and accelerometer only

output angular velocity and acceleration, so to calculate position, the veloc-

ity and acceleration were integrated. This produced inaccurate positions and

large drifts, as shown in Appendix I. In addition to the low accuracy, the Wii

Remote is less intuitive because using the Wii Remote does not replicate the

sewing task.

Haptic Device - Geomagic Touch

Haptic devices are used for tasks such as simulating touch interactions

between robots and humans in a real and remote environment. This is a

good input device because it is used frequently in research and industrial

fields. Figure 35 shows the Geomagic Touch, the haptic device used in this

project.

Figure 35: Geomagic Touch Haptic Device in Home Position

72

The haptic device allows a user to capture a series of poses that represent

a series of waypoints along the desired sewing pattern. The user can use the

tool point on the haptic device to specify a pattern that the robot should

sew, seen in Figure 36.

Figure 36: Sewing Pattern specified using the Haptic Device

The positions recorded using the haptic device were very precise and

accurate (see Appendix I), unlike those calculated using the Wii Remote.

Accuracy is important so that the robot’s sewing does not deviate more than

1mm from the pattern, per the sewing precision requirement. Researching

the haptic device was not a top priority initially. Additionally, while re-

searching the haptic device, there was no ROS package available. To use

the haptic device, it would have to be connected to a Windows machine and

communicate to a custom ROS package using SSPP protocol. This was too

challenging for the time allotted, but more resources for the Geomagic Touch

device were available when the CaptoGlove was abandoned. At this time, the

73

ros geomagic ROS package had been developed by Adnan Munawar and was

used for recording data from the device. The Ubuntu drivers provided by the

OpenHaptic forums were used for connection and device calibration. Using

the ROS package, the UI and Geomagic Touch nodes could communicate.

The Geomagic Touch node collected pose messages from the haptic device

and published them, which the UI then displayed. Then, the UI node pub-

lished them so that the motion planning node could use them as waypoints

along a desired sewing pattern.

Input Device UI

For the input device interface, the user can see the filtered data from

the input device updated every 0.01 seconds. Figure 37 shows a picture of

the input device interface when the Wii Remote is connected, and Figure 38

shows the input device interface with the Geomagic Touch haptic device is

connected.

74

Figure 37: Wii Remote Input Device UI

75

Figure 38: Haptic Device UI

The calibration button is not present in Figure 38 since calibration is done

in the Geomagic Touch diagnostic application outside of the ROS system.

Buttons on the input devices are used to start and stop the recording. When

using the Wii Remote, the starting point, (0, 0, 0) in space, is set by pressing

the B button shown in Figure 39.

76

Figure 39: B Button on Wii Remote

Then, the B button must be held throughout recording. When the B

button is released, the recording stops and a CSV of the raw IMU data from

the remote is saved. That data is then used to calculate positions in mm.

77

To use the haptic device, the grey button on the tool is pressed to start

recording and the white button is pressed to stop recording. The tool and

buttons are shown in Figure 40. The position of the tool tip and the orien-

tation of the tool’s rotating axis are saved to a CSV file.

Figure 40: Haptic device tool, buttons, and rotating axis

The positions recorded by an input device are graphed on an x, y plot

for the user to see what has been recorded. The plot of an example path

recorded by an input device is pictured below in Figure 41.

78

Figure 41: Example path of an input device

The paths can be seen by selecting a dataset from the list pictured in

Figure 42 and selecting the ‘View Plot’ button. If the user approves of the

path recorded by the input device, they click ‘Select Plot’, which publishes

the positions in a pose array.

Figure 42: View and Select Plot

If the user does not like the path, they can either choose from the list of

recorded datasets, or record a new path.

79

Input Device Recommendation

Out of the three input devices that were researched, the haptic device

was the best. The VR glove was underdeveloped and the Wii Remote was

not as precise or accurate. In conclusion, the haptic device is recommended

as an input device because of its high accuracy. A similar haptic device is

used at the factory for other industrial processes, so users would be familiar

with how it works, minimizing the learning curve for this input device.

4.5 Computer Vision

Computer vision (CV) was implemented to aid the robot’s sewing and

locate the vamp in the workspace. Cameras were used to identify sewing

patterns, as well as provide views of the workspace to an operator. This

section explains what tasks needed to be solved with computer vision and

how they were accomplished.

4.5.1 Camera Setup

Good quality, high resolution images were required for image processing

and recognition. Different cameras were evaluated on resolution, frame rate,

cost, size, interface ability, and codec usage as shown in Appendix C. Four

cameras were used to provide multiple views of the workspace. One camera

was placed on each wrist of the robot to provide a close-up view while sewing.

Another camera was placed on the sewing machine in order to identify the

80

sewing pattern before sewing began. The last camera was placed on a tripod

so the user can put it where ever they want. A calibration of the cameras

is performed once to correct the natural distorsions in the camera lens. The

calibration works by taking images of a checkerboard pattern of alternating

black and white squares, shown in Figure 43.

Figure 43: Camera calibration checkerboard

A preset number of images is captured while the user moves the checker-

board around the camera’s view to cover all of the sensor. Then, the corners

of each square are identified. The calibration program receives the dimen-

sions of the squares and looks for differences in the size of the squares at

different points shown in Figure 44.

81

Figure 44: Camera calibration identifying image points

4.5.2 CV Software and Node Architecture

The software package OpenCV was used because it is efficient enough to

run most calculations in real time and provides functions that can complete

all of the desired tasks. It is written natively in C++, and has hooks for

Python as well. Test nodes were written in both C++ and Python to compare

the ease of use and effectiveness of each language. The nodes written in C++

struggled to compile, but even after the compilation issues were fixed, the

C++ node produced numerous SEGFAULTS due to incompatibility with

OpenCV, ROS, and necessary libraries. The Python node, however, did not

produce errors when executed. Therefore, Python was chosen as the language

to write the computer vision nodes.

Each camera stream is processed by a dedicated ROS node. OpenCV’s

VideoCapture object is used to open the live video stream in these nodes.

Finally, the node publishes the video as a ROS Image message to be accessed

82

by other nodes.

4.5.3 Tasks

4.5.3.1 User Views

The first task for the cameras was to provide the operator with views

of the work being done because it is unsafe for people to be in the robot’s

workspace. However, the operator needs to make sure the robot is completing

its task correctly. To accomplish this, an additional camera was mounted on

a movable tripod to provide auxiliary views of anything the user needs. All

the camera views are streamed from their respective camera node to the UI,

where the operator can toggle between the different views.

4.5.3.2 Calculate Sewing Machine and Robot Offsets

In order to avoid collisions and sew accurately, computer vision was

needed to calculate the distance and orientation offsets between the robot

and the sewing machine. This is necessary for when the sewing machine

and robot are reconfigured in the factory. The offsets from the robot to the

sewing machine needed to be calculated quickly and with high repeatability.

To do this, ArUco tags were placed on the sewing machine facing the robot

as shown in Figure 45.

83

Figure 45: ArUco Tags on Sewing Machine

A camera was placed on each of the robot’s wrists so that two ArUco tags

can be used at once to provide a more accurate calculation versus a single

tag. While multiple ArUco tags can be used with one camera, the addition

of a second camera reduces the calculation error by providing another pose

to compare against.

Each camera was mounted with a 3D printed clamp. The clamps were

designed in Autodesk Inventor to fit the circumference of the gripper. They

were 3D printed and mounted to the wrists as shown in Figure 46.

84

Figure 46: Wrist Cameras Mounted on the Robot’s Grippers

The clamps were attached using two bolts on either side of the mount.

Electrical tape was wrapped around the gripper at the location of the mount

to provide more friction between the plastic of the mount and the metal of

the gripper so the clamp does not slip while the robot moves. The mount,

shown in Figure 47, also has an adjustable height and pitch angle (Figure

48) to quickly adjust the camera to provide the best view. The assembly and

construction instructions are available in Appendix J.

85

Figure 47: Wrist Gripper Mount

86

Figure 48: Wrist Gripper Mount featuring adjustable pitch angle

A calibration node was written to perform the sewing machine offset

calculations. This node sits idle until a start message is published on the

“startCalibration” topic. It then accesses the images from the two wrist

cameras before performing the ArUco tag pose calculations. The overall

pose is then published to the ‘/base to needle offset’ topic for the motion

planning node to use.

For the offsets to be calculated, the robot arms need to be in the home

position shown in Figure 28. This position is constant for every offset calcu-

87

lation, and known to the camera calibration node beforehand. Once the arms

are in the correct pose, a start command is sent to the camera calibration

node. The camera calibration node then retrieves the most recent images

published by the LeftWrist and RightWrist camera nodes. Each image is

then independently searched for valid ArUco tags using OpenCV’s ‘detect-

Markers’ function. This function returns a list of the corners in the markers

measured in XY pixel coordinates. The location is then passed to another

function, ‘estimatePoseSingleMarkers’, which also receives the camera’s dis-

torsions and the size of the ArUco tag, in millimeters. The pose of the ArUco

tag with respect to the camera lens is returned. Because the location of the

cameras with respect to the robot’s frame is known, the marker’s pose with

respect to the robot frame can be calculated.

At this point, the node has the poses of each ArUco tag with respect to

the robot frame. As the tags are static on the sewing machine, the offsets

between each tag’s pose and the sewing machine frame is known. Therefore,

each tag can return its calculated sewing machine to the robot frame pose.

These poses are then averaged together to provide a more accurate final pose.

4.5.3.3 Vamp Detection

To plan a successful path, the CV system needs to identify the location

of the vamp and a series of sewing waypoints. To do this, a training image

of the vamp is captured and processed manually, using GIMP to remove the

background. This is done before the system is active, and has to be repeated

88

if the shoe is changed. That image is then fed into the Image Processing

node, which uses the OpenCV Oriented FAST and Rotated BRIEF (ORB)

algorithm to calculate descriptors for key points in the training image. Those

key points are decided by OpenCV, which looks for distinctive areas in the

image. Figure 49 shows what the key points look like (key points are colored

green).

Figure 49: OpenCV Key Points

The training image processing is done when the node is launched. In the

main loop of the program, ORB is used again on the camera feed to calculate

descriptors for key points in that image. Descriptors are any identifying

characteristics of the points, including shape, color, and orientation. During

each iteration of the program, both sets of descriptors are compared to try

to find any matches between the training image and the camera stream. To

89

compare the descriptors, the OpenCV Brute Force Matcher (BFMatcher) is

used to find the closest matching descriptor as the training image (Figure

50).

Figure 50: OpenCV Key Point Analysis

These matched key points are used in the OpenCV function findHomog-

raphy to find the perspective transformation matrix between the two images.

This transformation matrix is multiplied by a matrix of the known points

from the training image to get the new positions of the desired points in the

camera image. This path is then translated to the live image and a sewing

90

pattern is determined (blue line in Figure 50).

Later in the project, a new step was added in the computer vision subsys-

tem to identify the locations of the sewing waypoints again, once the vamp

is in the robot’s grippers. Previously, it was assumed that the user placed

the vamp in exactly the same place in the robot’s grippers every time. This

was an unrealistic expectation, so the computer vision subsystem was used

to find the relative distance between the grippers and the desired sewing pat-

tern. This landmark identification step worked the same as the first vamp

detection step but with different descriptors. More descriptors were added

around the N on the vamp because the grippers limited the area on the fabric

available for detection.

In addition to changing the descriptors used in the landmark identifi-

cation step, some autocorrecting functionality was implemented to improve

the accuracy of the landmark identification step. This was done by per-

forming a sign analysis on the resulting transformation matrix that describes

the transformation of the points from the training image to the live camera

image. When the landmarks were correctly identified, certain numbers had

a certain sign, while when the landmarks were incorrectly identified, those

numbers had the opposite sign. This took some trial and error to figure out

which numbers should have which signs, but, once implemented, increased

the reliability of the CV subsystem.

Figure 51 shows the vamp detection step with the vamp in the robot’s

grippers.

91

Figure 51: Key Point Analysis with Vamp in Grippers

4.6 Motion Planning

The motion planning subsystem needs to comprehend the output from

the computer vision and user interface subsystems and create collision free

joint trajectories. This chapter details how these tasks were accomplished.

4.6.1 Modeling the Workspace

The first step of the motion planning problem was to create a realis-

tic simulation environment to test and evaluate different planning methods.

Simulations save time because it’s much faster and safer to run a simulation

than a physical test. The simulation must include the robot, its grippers,

92

the Force-Torque sensor, and the sewing machine. The model of the robot

was obtained from the Motoman ROS package as a Unified Robot Descrip-

tion Format (URDF) file. This URDF was manually edited to include the

grippers. The Robotiq gripper URDFs were obtained from the Robotiq ROS

package. The base link of the gripper was attached to the last link of the

robot arm. On the right arm, where the Force-Torque sensor was installed,

the base of the sensor was added to the last link of the robot arm. Then, the

gripper was added as a child link of the sensor. A XACRO file was used to

simultaneously reference the robot, gripper, and sensor models.

To obtain a model of the sewing machine, a Kinect for Xbox One was

used with the Kinect Fusion Explorer for Windows software. This software

is used to create a solid object model (.stl file) from a 3D point cloud. To

construct the model, one team member held the Kinect such that the entire

sewing machine was in frame while another team member monitored the

Kinect’s output to ensure that the model was being properly constructed.

The first team member moved with the Kinect around the entirety of the

sewing machine to create a 3D scan. The sewing machine model produced

is shown in Figure 52.

93

Figure 52: Sewing Machine Model from Kinect

4.6.2 Transformations

After modeling all the robot components, the transformation matrices

between coordinate frames of the workspace need to be defined. Each link

of the robot as well as the robot base and end effectors have independent

coordinate frames. In addition, there is a coordinate frame at each camera

and a coordinate frame where the sewing needle meets the fabric. The tf2

ROS package was used to publish the transformation matrix between coor-

dinate frames as messages of type TransformStamped. Figure 53 shows the

transformations and connections between the different coordinate frames in

the workspace.

94

Figure 53: Transformation Tree

4.6.3 Simulating Motion: Moveit

To simulate the robot and gripper movement, the Moveit ROS package

was used. Moveit is an open-source software package designed for testing and

implementing different motion planning and manipulation solutions. Moveit

has been used on over 65 robots, and the setup tutorial guide for the Yaskawa

robot includes how to set up the robot in Moveit. This was the main reason

Moveit was chosen as the initial motion planning software. It combines the

95

collision avoidance capabilities of the Flexible Collision Library (FCL) with

the variety of motion planners available in the Open Motion Planning Li-

brary (OMPL). Both of these work as standalone ROS packages, but Moveit

integrates them along with simple testing and motion planning tools.

Moveit comes with a setup assistant that allows the user to define plan-

ning groups, end effectors, and the self-collision matrix of the robot. A

planning group is a robotic chain that the user needs to define for inverse

kinematic calculations. After this setup has been completed, Moveit gener-

ates several files, one of which is called ‘demo.launch’, which launches the

robot model in RVIZ, a 3D visualization tool for ROS. This launch file also

launches the Moveit side panel shown in Figure 54, which allows the user

to select the desired motion planner as well as plan, execute, and visualize

paths between start and goal joint configurations.

96

Figure 54: Moveit Side Panel in demo.launch File

Moveit also comes with a Move Group Interface, which is the user in-

terface for the MoveGroup class, implemented in both C++ and Python.

The MoveGroup class allows users to set joint and pose goals, create motion

plans, add obstacles to the environment, and more. The C++ MoveGroup

implementation was used for this project because it has more features and

functions than the Python implementation. To add the sewing machine scan

from Figure 52 to the simulation, the .stl was loaded as a collision object

using the MoveGroup interface. The position of the sewing machine was set

by measuring the distance from the robot to the sewing machine in real life

and replicating the distance in the simulation. Making the sewing machine a

97

collision object as opposed to a rigid object ensured that the robot and the

sewing machine would not collide.

The next feature implemented using the MoveGroup interface was plan-

ning the path from the robot’s home position to the start position. The

start and home positions were found by manually jogging the robot into the

positions using the teach pendant. Then, the joint locations were recorded

by echoing the joint states topic where all the robot’s joint values are con-

stantly updated. Then, the joint values were copied into the example C++

MoveGroup interface file as start and goal positions in joint space. Using the

specified motion planner, MoveGroup creates a path between the start and

goal positions. This path is published to the ROS topic optimized trajectory

with the message type trajectory msgs/JointTrajectory. The robot controller

node subscribes to this topic and reads the path message. The robot con-

troller node sends the message to the robot controller to execute the pre-

planned path.

After the MoveGroup interface was successfully used to plan between joint

space goals, plans to Cartesian pose goals were attempted. The Cartesian

pose has four components: x-position, y-position, z-position, and orientation

as a quaternion. A Pose object in the geometry msgs ROS package was

constructed from these four components. The Pose for this test of planning

with Cartesian poses is the desired end effector location for the robot’s ‘start’

position. The MoveGroup command ‘setPoseTarget’ was used to set this

Pose as the target for the specified planning group. Each of the arms is a

98

separate planning group, so for this initial testing of the Cartesian pose goals,

the planning group was the seven joints of the right arm. Next, the ‘plan’

function of the MoveGroup class was used to create a path for the given

planning group to reach the set Pose using the specified motion planner.

However, the planner could not find any valid paths. According to the Moveit

Wiki, this is for one of the following reasons: pose is unreachable by the

robot, not enough time or planning iterations were given to the planner, the

allowable angle error was too small, or the defined end effector of the robot

was not actually the end effector. Each of these potential failure methods

were evaluated.

The pose is known to be reachable because the robot was manually jogged

into this joint position in simulation with no collisions or singularities. Also,

planning to the pose was possible when done in joint space instead of Carte-

sian space, eliminating this as the problem. Several other goal poses were

also tested and the planner behaved the same.

To eliminate planning time as the limitation, the planning time was in-

creased from the default of 5.0 seconds to 60.0 seconds, and a plan was still

not found. The time was not increased further because a requirement of

the system is that the sewing task is completed in 60 seconds. The number

of planning iterations were also increased from 1 to 100, and no plan was

found still. The angle tolerance was increased from the default of 1.0x10-5

radians to 0.1 radians. Even with this very large tolerance, which would not

be feasible for this project, a plan was not found.

99

The final potential error mentioned by the Moveit Wiki was a problem

with defining the end effectors of the robot. The end effectors and their

parents links were defined using the Moveit Setup Assistant. The Moveit

Wiki included a tutorial on how to use the setup assistant. This tutorial was

followed closely to ensure that the end effector was defined properly. The

MoveGroup interface was also implemented on PR2, the robot used in the

Moveit tutorials, to ensure that there was not an issue with the installa-

tion of Moveit. The interface was able to find a plan using the PR2 robot.

Based on this and the fact that none of the other potential fixes impacted

the plan produced, we determined that the hyper-redundancy of the 7-DOF

Yaskawa robot was too complex for the Inverse Kinematic (IK) solver built

into Moveit.

Moveit implements the Kinematic and Dynamics Library (KDL) for IK

solving. Moveit is also able to implement the trac ik ROS package for IK

solving, which differs from KDL in a variety of ways. First, track ik accepts

a maximum planning time as a parameter and restarts the solving process if

it fails, providing there is enough time left. KDL does not restart planning

if it fails, unless told to do so by receiving a number of planning iterations

as an optional parameter. KDL uses a joint-limited pseudoinverse Jacobian

implementation, which researchers at TRACLabs found to produce errors

frequently due to the joint limitations of robotic arms [78]. Trac ik however,

runs two different IK methods simultaneously. This first is similar to the

KDL solver but mitigates local minima. The second is a Sequential Quadratic

100

Programming IK formula using quasi-Newton methods. The combination of

these methods results in better performance for non-smooth search spaces

and hyper-redundant robotic arms.

After failing to find planning solutions using KDL, we implemented the

TRAC IK Moveit plugin. Unfortunately, this plugin did not produce a plan

either. In addition, the joint vectors generated by path planning in joint

space do not have associated velocities. This means the velocities of the

joints would be chosen by the controller, so the speed of the sewing machine

would need to adapt to match the velocity of the robots’ joints. The only

way to change the speed of the sewing machine is to manually actuate the

foot pedal beneath the sewing machine. The robot cannot reach the pedal

and it would be unsafe for a human to operate the pedal, so controlling the

robot’s joint velocities is critical in a successful sewing task. We attempted

to mitigate these problems by trying a different 3D visualization and motion

planning software, Klamp’t.

4.6.4 Simulation Motion: Klamp’t

Klamp’t is a 3D modeling and simulation software package developed for

robot manipulation and locomotion. Its fast trajectory optimization, real-

time motion planning routines and IK constraint solving promise a robust

and versatile tool for robotic manipulation tasks.

To load a file in Klamp’t, it must be a URDF file, not a XACRO file

like in Moveit. A Python script provided by ROS was used to convert the

101

XACRO file to a URDF file. Klamp’t comes with many different example

programs to test and analyze robot models and robot motions. First, the

Klamp’t tool called ‘RobotPose’ was used to open the robot URDF to ensure

that the robot appears as expected and the joints actuate as expected and

respect their joint limits. All of the arm joints actuated properly, as well as

the torso, but the Robotiq grippers referenced in the URDF did not appear

in the Klamp’t visualization because the grippers and the robot files are in

different ROS packages, and Klamp’t cannot load from multiple packages at

once. This problem was ignored for the time being because there were other

tasks of higher priority.

To put the sewing machine model into the Klamp’t simulation, the .stl

file was converted to an .obj file. The .obj file was loaded as a rigid object

in the XML file that also loaded the robot model and a floor plane as shown

in Figure 55.

102

Figure 55: Klamp’t Simulation World

A translation and rotation were applied to the sewing machine so it

matched the location in the real world. The translation was found by measur-

ing the distance from the robot to the sewing machine in the real workspace

and replicating it in simulation. The appropriate rotation, however, was

found by trial and error until the sewing machine table was parallel to the

floor.

After the workspace was properly modeled in Klamp’t, the masses and

inertial matrices of each link were added to the URDF. These values were

not included in the URDF because RVIZ loads them from a .yaml configura-

103

tion file instead of the robot file itself. The inertial matrices were found by

performing a geometric analysis of each link individually in Meshlab. The

masses were found by performing a uniform mass distribution analysis of the

robot in Solidworks. The calculated masses and inertial matrices are shown

in Appendix K. After these parameters were found, the RobotPose Klamp’t

tool was used to create a test path. The purpose of this test path was to use

it to calibrate the simulated motors. Klamp’t comes with a MotorCalibrate

tool that compares a robot’s planned trajectory and executed trajectory and

sets the dry friction, viscous friction, and PID values for each motor. Cali-

brating the motors ensures that they act as similarly to the real motors as

possible.

Creating the test path for the motor calibration involves moving each

joint throughout its full range of motion. The path was constructed by

manually jogging the simulated robot’s joints to their lower limits and saving

the robot’s pose. Then, the robot’s joints were manually jogged to their

upper limits and the robot’s pose was saved. The path optimizer built into

Klamp’t was used to create a trajectory between these two poses. This

optimizer generates and optimizes a trajectory between the first and second

poses to minimize execution time. This outputs a .xml file with a series of

joint angles and associated velocities.

After the test path was constructed, the robot and the test path were

loaded into the SimTest Klamp’t tool. SimTest takes the test path and out-

puts the executed trajectory necessary for the motor calibration. However,

104

when the robot and test path were loaded into SimTest, the executed trajec-

tory path was not produced.

For assistance with this error, the team emailed Dr. Kris Hauser and Hay-

den Bader, two developers of the Klamp’t software. Unfortunately, they did

not know why this error was occurring and suggested that the motor calibra-

tion parameters be hand tuned as opposed to using the built-in tool. Hand

tuning these values is infeasible because there are 75 values total and there is

no way to determine if the calibration is done properly. Therefore, there was

no way to create a simulation environment that is accurate to the real world.

For this reason, Klamp’t was abandoned as a simulation and modeling tool.

The team moved forward without a simulation tool temporarily and focused

on IK solving and path optimization techniques.

4.6.5 IK Solving

After not being able to successfully solve the Inverse Kinematics using

Moveit or Klamp’t, the ROS package trac ik was used to solve the inverse

kinematics. An example from the trac ik repository was modified to work

as an IK node in the motion planning subsystem of this project. This node

subscribes to the topic where the Pose Arrays of goal end effector poses are

published. The IK node uses the TRAC IK algorithm described in Section

4.6.3 to solve for the desired joint angles, and publishes the joint angles as

a JointTrajectory. As described in Appendix I, the average deviation for

each angle was 3.4698e-05 radians, or 0.001988 degrees, which is a negligible

105

distance. This confirms that the TRAC IK algorithm is very accurate. Only

six joints were used to calculate the IK to simplify the planning problem, since

the seventh degree of freedom is redundant and there are often many solutions

for a 7-DOF IK problem. This seventh degree of freedom is still available to

the IK solver in case the robot needs to avoid a collision or singularity. After

the inverse kinematics calculations are complete, the desired joint angles are

passed to the motion planner node to create paths between them.

4.6.6 Motion Planner Analysis

The motion planning ROS package used in this project is the Open Mo-

tion Planning Package (OMPL). This package can be used on its own or

within Moveit or Klamp’t. The package contains over 30 planning algorithms

for various applications. They come in two categories: geometric planners

and control-based planners. Because of the many degrees of freedom in the

robot, geometric planners were the focus of the analysis for this project. The

desired planner solves motion planning problems quickly and is able to find

a solution using six or seven degrees of freedom. LBKPIECE is the default

planner in OMPL because it has been shown to work in a wide variety of

problems. For problems where a projection of state space is not available,

the default planner is RRT.

The motion planner analysis of this project explored several different

geometric planners to determine the optimal ones for this application. They

were evaluated criteria including planning time, repeatability, and distance

106

to obstacles. The full list of criteria is available in Appendix L. The results

of this analysis showed that the default LBKPIECE algorithm performed the

best of the planners tested. This is the algorithm used to plan the sewing

motions.

4.6.7 EEF Position Determination

The motion planning subsystem needs to plan a path based on the loca-

tions of the waypoints defined by either the computer vision subsystem or an

input device. If using the input devices, the UI node publishes the recorded

path from the user as a PoseArray to the desired trajectory topic. The mo-

tion planning node subscribes to this topic and optimizes the path created by

the user. This is done by passing the poses to the motion planner algorithm

to optimize the path between all the poses. These paths are constructed into

a JointTrajectory message and published to the topic the robot controller

subscribes to.

The motion planning subsystem must determine where the desired end

effector positions are based on the given sewing pattern. Finding the desired

end effector positions was performed in two ways. In the first method, the

Vicon motion capture system was used to determine the natural placement

of hands while sewing. Markers were placed on the hands as shown in Figure

56.

107

Figure 56: Placement of Motion Capture Markers on Hands

Two of the markers were placed along the thumb, and the rest were placed

on the top part of the hand. Other markers were placed on the side of the

hand because the others were placed in the same plane, making it difficult

to determine the orientation of the hand. One extra marker was placed on

the right hand so the markers were not identical and the motion capture

system could distinguish between the hands. The origin of the workspace

was defined as a point directly above the sewing needle, so the data could be

easily translated into a reference frame that was already defined. The origin,

defined by the five red LEDs of the wand, and the motion capture workspace

are shown in Figure 57 below.

108

Figure 57: Motion Capture Workspace with Origin Shown

The motion study was conducted as follows. After the cameras, workspace,

and origin were calibrated, the markers on the subject’s right hand were de-

fined as one object and the markers on the left hand were defined as another

object. Three different subjects were used in this study and all of their hands

were defined as different objects because their hands were different sizes and

the markers were not placed in identical locations. After the subject’s hands

were being tracked by the cameras, a recording of the positions was started

and the subject sewed a path back and forth four times. Every time the sub-

ject reached an end point, they notified the recorder at the computer who

saved the hand positions and started a new data collection before the subject

sewed back the other direction. This was done to save time so the subject

did not have to reset their hands each time they began to sew. The subjects

109

tried to sew one pass in about three seconds so the data could be compared

between subjects.

All of the subjects sewed one straight path and one curved path. The

curved path, however, produced sporadic data because the hands often got

blocked by the sewing machine and the camera lost view of one or both

hands. Therefore, the data processed was only for the straight paths. The

distances of the hands from the origin in the x, y, and z directions, as well as

the roll, pitch, and yaw about the origin, were recorded for each sewing pass

for both hands. This data is recorded every 0.001 seconds and output to a

CSV file.

The data was filtered to eliminate outliers. However, data points that ap-

pear to be outliers cannot simply be eliminated. This is because, occasionally,

the motion capture system confuses which hand is which. This is because

even though the marker placement is different on each hand, sometimes a

marker on the side of the hand can get blocked by the sewing machine. To

ensure that useful data was not deleted, scatter plots were made of the right

and left hands. A combined scatter plot of the final data for both left and

right hands is shown in Figure 58.

110

Figure 58: Scatter Plots of X,Y positions of the Left and Right Hands

If it appeared that both datasets had a misplaced set of points, the mis-

placed data was switched to match the appropriate hand. Additional filter-

ing of outliers was completed after this to eliminate spurious points that can

happen from changes in the motion capture workspace, a sudden change in

relative position of the markers, or other unpredictable circumstances.

To further eliminate erroneous data, all of the data for each time step was

averaged. The standard deviation was calculated and all data points that

were greater than three times the standard deviation plus the average or less

than the average minus three times the standard deviation were removed.

The averages were updated after removing these points. The final averages

per time step were kept as the final data set to replicate on the robot.

111

This data needed to be correlated with the waypoint positions calculated

by the computer vision system. To do this, the vamp was placed in the

robot’s grippers similarly to how the human subject’s hand held it during

the sewing motion capture study, as shown in Figure 59. Note, all sewing

testing was performed on the left half of the vamp.

Figure 59: Vamp held in Robot Grippers

A video of the vamp in this position was taken over the pink background.

The CV landmark identification software identified the x, y locations of the

points on the vamp with respect to the camera coordinate frame that form

the sewing pattern as shown in Figure 50.

To know where to start sewing, the waypoints were transformed into

the sewing needle’s coordinate frame. The first waypoint should be placed

at the origin of the sewing needle’s frame, where the sewing needle meets

fabric. This means the starting joint configuration and the goal end effector

position were both known. The goal end effector position was passed to the

IK solver and the motion planner created a path between the start and goal

112

poses. This path was used to move the vamp from under the camera to under

the sewing needle.

The rest of the motion capture data was stored in the motion planning

node in order to correlate the desired end effector positions with the CV way-

points throughout the sewing process. To do this, a C++ object containing

the CV waypoint X position, CV waypoint Y position, and corresponding

end effector pose was constructed by reading the data from text files. The

data from each time step was used to create a new object. These objects

were added to a vector and sorted by CV waypoint X position. A function

was written to find the corresponding end effector pose given a CV waypoint

X position. The Y positions are currently ignored because only straight line

paths were recorded and there was very little movement in the Y direction. If

there is no available data for the desired CV waypoint X position, the end ef-

fector poses corresponding to the two closest positions are used to interpolate

a new predicted pose.

The second method of determining the end effector positions without

using motion capture data was implemented because only one sewing pattern

can be sewn using the motion capture method. Also, the motion capture

method assumes the human worker places the vamp in the robot’s grippers

exactly the same every time. This is unrealistic, so it was necessary to develop

a more dynamic way to determine the end effector positions. The first step in

the second method is to determine the location of the grippers on the vamp.

This was done by using the computer vision system to publish the coordinates

113

of the waypoints along the sewing pattern in the camera’s reference frame

while the vamp is in the grippers. These coordinates were transformed into

the robot’s base frame and converted from number of pixels to meters. Next,

the distance between the two grippers and the distance between the grippers

and the sewing pattern were determined. This step is important because

these distances must be kept constant throughout the entire sewing process,

or the fabric will bunch or warp.

After determining the relative positions of the grippers and sewing pat-

tern, the first point of the sewing pattern is placed under the sewing needle.

This is performed by determining the distance between the sewing needle

and the sewing pattern. The distance is found by transforming the origin

of the sewing needle coordinate frame into the robot base frame. Because

the sewing pattern waypoints are already transformed into the robot base

frame, the position of the first sewing pattern waypoint and the position of

the sewing needle can simply be subtracted. This distance is applied as a

translation to the right and left end effectors.

Once the first sewing point is under the sewing needle, a trajectory to

sew the rest of the path must be created. To do this, a cubic spline is fit to

the sewing waypoints. A cubic spline was chosen because it fits the majority

of sewing patterns well. Then, 1000 points along the spline are chosen to be

intermediate sewing points. A large number of points were chosen because if

the path is curved, too few points would not create a smooth sewing pattern.

The distance between the sewing point currently under the needle and the

114

next sewing point is determined and applied as a translation to the end

effectors. This is repeated until all the sewing points have been reached.

5 Evaluation

It is important to reflect on the success of the end result of the project,

including how the team functioned and planned tasks. This chapter evaluates

how the product performed as well as how the team executed the project over

the course of the year.

5.1 Social Implications

Regardless of the technical successes of this product, it is important to

evaluate how the project could impact New Balance factory workers. If the

system achieves the goal of being able to sew autonomously, the project has

the possibility of displacing a small amount of workers. Since the system

is made for a specific shoe, size, width, and color, there are few opportuni-

ties to permanently decrease factory staff. As the system expands to sew

different shoes, the potential to eliminate jobs increases. The shared au-

tonomy feature, and external factors could make immediately downsizing an

irresponsible option for New Balance.

The use of shared autonomy in the system reduces the need to decrease

the number of employees, and instead changes their job to one that is less

dangerous and dirty. Sewing with a shared autonomous system decreases

115

the risk of injuries for seamsters. By educating seamsters on how to sew

with the robotic system and improve the sewing trajectories, the quality

of the shoes produced would increase, while seamsters would not lose their

jobs or personal value at the company. It is possible that the autonomous

capabilities of the system could discourage or demotivate workers currently

employed in the factory. Seeing complex tasks, like sewing paths in 3D space,

become automated could decrease the workers’ drive to perform their tasks

and discourage potential applicants from joining New Balance.

To mitigate some of these risks, training programs could be offered to New

Balance employees at risk of being replaced by a robot. The programs could

train seamsters to perform other valuable tasks, such as robotic maintenance.

This way, as more robots are added to factories, the workers would have more

job opportunities with robotic upkeep and repairs. Jobs would also be created

in designing and programming the robot systems, although these jobs would

be in research and development instead of the factory environment.

The shoe seamsters could also be reassigned to a different department,

such as sewing other textiles in a production line that has yet to be au-

tomated. While this solution is not permanent, it takes advantage of the

seamsters’ abilities while managers decide whether they want to repurpose

the seamsters’ existing skills, develop new skills, or downsize factory staff.

While reducing the number of workers in the factory might seem like the

natural reaction to an influx in robotic equipment, it is not the only solution

or the ideal solution.

116

5.2 Project Execution Evaluation

It is important to evaluate how the project was executed. This section

analyzes the project’s overall execution, timing, and planning from the team’s

perspective.

5.2.1 Execution Summary

The overall execution of this project was much slower than expected. Sev-

eral factors contributed to this, including slow delivery times and difficulty

learning some topics in this project. The first step was to set up the robot

workspace. It is important that the setup be done properly for future re-

searchers as well as to keep workers in the lab safe. Setting up the workspace

correctly will allow future researchers to spend more time improving the

system. The setup included getting the robot and its controller delivered,

purchasing and installing leveling feet to mount the robot on, and installing

a 220V three phase power panel to power the sewing machine. A safety sys-

tem also had to be selected, installed, and calibrated. The robot controller

proved especially difficult to set up, due to slow support from Yaskawa and a

confusing installation procedure for the new firmware. The robot controller

needed firmware updates in order to be able to receive ROS messages. These

updates were difficult to obtain and time consuming to install. After a slow

delivery of the robot, the firmware updates delayed progress on the rest of

the project significantly. In addition to the robot’s delayed arrival, other set-

117

backs such as receiving the wrong cables for the cameras occurred. In total,

the time to set up everything in the workspace took close to three months as

opposed to the two weeks originally anticipated.

The number of topics that were unfamiliar to the team prior to the project

kickoff also impacted the slow execution of the project. Learning the theory

as well as practical implementations of computer vision, motion planning,

and user interface design greatly reduced the time spent on implementation,

testing, and troubleshooting.

5.2.2 Timeline Adjustments

While the robot was being delivered and the robot controller was being

configured, all motion planning work had to be done exclusively in simu-

lation. This required scanning the robot’s environment to represent all the

possible collision objects in the simulation and combining the robot and grip-

per description files into one. This also took more time than expected due to

the complex shape of the sewing machine and limitations of using an Xbox

Kinect as a 3D scanner.

Other equipment delays and lack of knowledge blocked the team from

making further progress. Lack of QT knowledge slowed development of the

UI, and the lack of an SDK for the CaptoGlove slowed research on input

devices for the project. The cameras were delivered two months late, which

slowed the development of the computer vision system significantly. This was

considered when ordering additional cameras, which were purchased from a

118

website with a more reputable shipping and delivery operation. A full outline

of the time line of this project is shown in Appendix M.

5.2.3 Risk Management

While timeline setbacks were plentiful, especially in the first half of the

project, the team continued making progress. To counteract delays, the team

developed different aspects of the project simultaneously. This allowed the

team to make improvements while other parts of the project were stalled.

The biggest difficulty was the team’s lack of knowledge at the beginning

of the project. The team members all had different backgrounds, which is

why the team was divided into three subteams: motion planning, computer

vision, and user interface. The team spent a significant amount of time

doing background research, which ultimately slowed down the development

progress. Because of the team’s lack of experience, lots of different methods

were tested, such as the different user interfaces and methods for determining

end effector positions. This trial and error slowed the team’s overall progress

but helped us gain new knowledge.

Another issue the team needed to overcome was communication. With

the large size of the team and the disconnect between the sub teams, commu-

nication was especially strained. Conflicting schedules frequently disrupted

the team’s workflow and ability to meet. To combat this, the team met for

short durations twice each week. This allowed the team to share updates on

progress made, blockers that prevented progress from being made, and what

119

each team member planned to work on next. Later in the project, longer

meetings were added with at least one member of each subteam to work on

integrating all the components.

5.2.4 Budget and Expenditure Justification

All of the items purchased for this project, excluding the robot, its con-

troller, and the sewing machine, are shown in Appendix N. Although New

Balance funded all of these items, minimizing cost was important so that

this system could be a financially viable solution to implement in factories.

Future research teams will not have to purchase a lot of equipment because

it is already purchased and installed. The travel budget was set at $5,000,

but did not limit the team due to the minimal travel required for the project.

5.3 Product Evaluation

In addition to the project’s execution, it is important to evaluate the

final product. There are several parameters that can be used to evaluate the

performance of the project’s end result. The success of the product can be

evaluated using the requirements described in Section 3.

5.3.1 Hardware Requirements

Several of the requirements from Sections 3 and 4 describe features of

the hardware of the system such as the cameras, workstation computer, and

input devices. The e-Con See3CAM CU135 USB cameras chosen satisfied

120

the requirements discussed in Appendix C, and were able to complete the

computer vision and user interface tasks. The workstation computer also

satisfied its requirements, with the additions of a second network card and

internal USB hub. The workstation launched all of the ROS nodes simulta-

neously, updated the camera views in the user interface with a frame rate of

up to 30 FPS, and supported all four cameras at once.

The Wii Remote and Geomagic Touch haptic device satisfied the input

device requirements to varying success. The fiducial markers, such as ArUco

tags, were not researched because they were not conducive to a factory set-

ting and required too many separate pieces that had to be reassembled and

calibrated frequently. The CaptoGlove was intuitive for the user, but could

not interface with the rest of the system and was therefore not a feasible op-

tion. The Wii Remote was easy for the user to understand but not intuitive

while operating, as it does not closely resemble the action of sewing and has

low accuracy. Appendix I shows the accuracy and precision of the positions

calculated using the Wii Remote.

The Geomagic Touch haptic device was extremely accurate. Using the

haptic device requires the user to specify where the sewing pattern should

be instead of replicating the hand motions during sewing. This process is

intuitive for the user because the pattern they specify on the fabric is exactly

what the robot sews. Appendix I demonstrates the accuracy of the Geomagic

Touch device.

Overall, the haptic device was the best input device based on its accuracy.

121

Another benefit is that factory workers already have experience using haptic

devices for other industrial purposes, so they could easily learn to control the

robot with it as well. The main limitation while using the Geomagic Touch

device was that it could not be used quickly with all nodes running. If moved

too quickly, the force sensor on the haptic device reaches its upper limit and

crashes the node.

5.3.2 Motion Planning Performance

Several geometric planners available in OMPL were evaluated to deter-

mine which planner would fit this application the best. The results of this

evaluation are shown in Appendix O (attached as a separate document).

Based on this analysis, the LBKPIECE algorithm was chosen. This algo-

rithm provided satisfactory trajectories for straight and curved lines; the

motion planner was able to optimize trajectories and avoid collisions and

singularities. However, the robot was not able to sew within the 1mm tol-

erance. The robot sewed between 0.5mm and 3.5mm away from the desired

pattern at different points during the sewing process. Tests were inconsistent

and rarely produced similar results. This is attributed to how the desired

end effector positions were selected. The sewing pattern is discretized into

10 small lines, which does not output a smooth path. The path would be

smoother if the number of lines the pattern is discretized into was increased,

but this would dramatically increase planning time. The accuracy of the

inverse kinematics (using the trac ik package) and the repeatability of the

122

robot’s motors did not contribute to the sewing inaccuracies. The robot’s mo-

tors have a repeatability of 0.1mm and the TRAC IK algorithm was proven

to be accurate enough for this application (see Appendix I).

5.3.3 Fabric Manipulation Performance

Another factor that impacted the low sewing accuracy was the difficulty

in holding the fabric. The distance between the grippers must be maintained

throughout the sewing task, or the fabric will lose its tension and sag between

the grippers. A person has to place the vamp into the robot’s grippers, and

the robot’s grippers do not move positions on the vamp during the sewing

task. This means the person is required to place the vamp into the robot’s

grippers with enough tension that the fabric does not flop during sewing as

shown in Figure 60.

Figure 60: Vamp held incorrectly in robot’s grippers

Despite the low accuracy of the sewing produced, the task was completed

123

in the allotted 60 seconds, and the system showed great potential for in-

creased efficiency and accuracy, discussed further in Section 6.

5.3.4 Overall System Performance

While this iteration of the project was not able to sew in 3D, many

other requirements were satisfied and significant progress was made on the

computer vision, motion planning, and user interface subsystems. First,

the workspace setup was completed, which included enabling the robot con-

troller to accept ROS messages, installing cameras and routing their cables,

and mounting and calibrating a safety system. This safety system met the

requirement of protecting human workers and also took up a small footprint,

so it could be easily integrated into a factory setting. The computer vision

system was also used to automatically calibrate the distance and orientation

offsets between the robot and the sewing machine. This increased the mobil-

ity of the system and made it more applicable to a factory setting. Since the

robot sews similarly to a human, no custom brackets or extra steps in the

process were added; the robot can be seamlessly integrated into the factory.

This also means the system can be easily adapted to sew different sizes or

styles of shoes.

124

6 Recommendations for Future Work

This project is designed to be completed over multiple years. This chap-

ter describes the next steps in the project for the computer vision, control

interface, and motion planning subsystems, as well as improvements for the

system as a whole.

6.1 Computer Vision

One of the main weaknesses of the computer vision subsystem is that it

only performs well in a consistent and ideal environment. The ArUco tags are

especially susceptible to environmental factors, such as lighting. The lighting

must be very bright and constant, and the cameras must be mounted at the

correct angle to maintain consistency. The system would improve if the

computer vision subsystem could deal with inconsistencies such as shadows,

slight changes in the angle of the cameras, or different colored backgrounds.

A potential solution to these problems would be to apply brightness and

contrast matching before the images are published.

It is also important to adjust and correct trajectories during the sewing

process. Currently, all the trajectories are preplanned, but recalculating the

trajectory while sewing would result in a more accurately sewn shoe. The

cameras could be used for real-time feedback to adjust and correct sewing

trajectories. There is already a camera on each wrist (two cameras total)

pointed at the vamp, making this improvement solely software-based.

125

A future goal of this project is to sew in 3D. Some changes will need to be

made to the computer vision system, such as redefining descriptors, so the

landmark detection will function once the extra dimension is added. This

could also require the addition of a wide FOV camera or a stereo camera, so

that the entire shoe can be seen in one frame.

6.2 Control Interface

Most of the future work to be done on the control interface focuses on

input devices. One improvement would be to implement real-time replication

of the input device’s trajectory executed by the robot. This would be more

similar to true teleoperation, instead of recording the input device’s move-

ments and then mimicking them later with the robot. This would be helpful

for teaching novice users how to sew better, as well as save the users a lot

of time because they would not have to go through the process of recording,

viewing, and choosing the best path. In addition, more input devices could

be researched such as virtual reality gloves, other than the CaptoGlove, or

other types of handheld controllers. This would give the users more options

and provide them with more intuitive teleoperation of the robot. After the

input device research is completed, future teams should test input devices in

the factory with different seamsters to see which ones they prefer.

Other control interface improvements revolve around the user interface.

Some visual enhancements like interesting colors, the ability to alter the

text size, and other small tweaks could make the UI more appealing. One

126

potential change would be hiding certain buttons while the robot is executing

a task. The future UI should also be able to plot positions recorded from the

haptic device in 3D instead of 2D. Plotting the positions recorded from the

input devices in real time instead of recording the positions, saving them to

a file, and then plotting them later, would also help provide feedback to the

user. Displaying projected versus desired sewing patterns on the UI would

also be useful to the user to see what waypoints the CV subsystem identified

and what the robot plans on sewing. In order to evaluate the usability of

the UI and identify future modifications, it is important to collect feedback

from factory workers.

A handy feature that we think should be implemented is giving the user

the ability to specify the sewing pattern. Currently, the landmark identifi-

cation is performed by the computer vision system on the backend, meaning

the user does not have the ability to specify a sewing pattern without an

input device. This means only the programmers have the ability to change

which sewing pattern is executed by the robot. This would be a disadvantage

if the robot needs to change tasks.

6.3 Motion Planning

The most significant change to the motion planning subsystem will be

implementing sewing in 3D. Currently, the system assumes a constant z-

position for the robot’s end effectors, but this would need to dynamically

change to sew 3D shoes instead of flat, 2D fabric.

127

Another improvement to the motion planning subsystem would be to

implement a true learning-by-demonstration approach to correlate the CV

waypoints with the end effector positions. This subsystem needs to expand to

include curved patterns, 3D patterns, and patterns, which require the robot

to reposition its hands on the fabric while sewing. Learning by demonstration

could help teach the robot to sew more, different patterns as well as make

its motions more natural, resulting in fewer sewing errors.

6.4 Overall System Improvements

There are a lot of small improvements that could be made to the overall

system. Currently, the entire sewing process takes approximately 45 sec-

onds. Writing code more efficiently could decrease the sewing time, as well

as computational resources. Another small improvement would be disabling

all buttons on the user interface during autonomous mode so the user does

not interfere with the predefined trajectory execution.

A significant flaw within the current system is the grippers’ inability to

grasp fabric from a flat surface. Currently, a person must pick up the vamp

and hand it to the robot’s grippers. This system is not ideal because it would

be unsafe in a factory environment where the robot is moving at high speeds

and cannot be easily disabled. A system could be devised where the vamp

is picked from a non-flat surface, such as an elevated platform. Another

alternative solution would be developing custom grippers for the robot that

allow fabric grasping from flat surfaces. Implementing these improvements

128

would make the system safer to use and increase efficiency in factories.

While this system was developed for use in a factory, no testing with

factory workers was done. The final product of the project could be used

in a factory setting, so the system needs to fit into New Balance’s existing

workflow. In the future, feedback from factory workers would help cater

the product more towards its intended users. Feedback from future users

would also illuminate problems with the practical usability of the system.

Overall, there are many improvements could be made to the system, but

the framework and equipment exist in order to make future improvements

simpler. Appendix P describes in more detail the shortcomings of the current

implementation of this system.

129

Glossary

CV Computer Vision. 80

DOF Degrees Of Freedom. 5

FCL Flexible Collision Library, ROS package for collision detection and

avoidance. 96

FOV Field Of View. 126

FPS Frames Per Second. 121

OMPL Open Motion Planning Library, ROS package providing motion

planning algorithms. 96

ORB Orientated FAST and Rotated BRIEF algorithm. 89

ROS Robot Operating System. 10

SDK Software Development Kit. 69

SSPP Simple Structure Passing Protocol, a lightweight, cross-platform mes-

saging protocol for structured data. 69

UI User Interface. 61

VR Virtual Reality. 67

130

Appendices

A Robot Specification Sheet

131

B Robotiq 2-Finger Adaptive Gripper Spec-

ifications Sheet

C Trade Study

This trade study describes how the cameras and grippers were chosen.

C.1 Camera Selection

Different cameras were chosen for different purposes. There are three

main tasks that the CV subsystem needed to complete: generate a series

132

of waypoints along the sewing pattern, calculate the distance between the

robot and the sewing machine, and provide the user high definition views

of the workspace at a frame rate of at least 24 FPS. Table 6 below shows

the Decision Making Matrix constructed to help select the cameras to mount

on the robot’s wrists. The weights of the categories signify the importance

of the category, with higher weights being more important. Each camera is

given a score in each category out of ten, which is then multiplied with the

category’s weight. The weighted scores for each category are totaled for each

camera, providing each camera’s overall score.

Weight See3CAM CU135 See3CAM CU51 See3CAM CU40

Resolution 0.3 10 6 4

Frame rate 0.3 9 9 10

Cost 0.2 9 10 10

Size 0.1 10 10 10

Interface 0.05 10 10 10

Codec Usage 0.05 10 10 10

SCORE 9.5 7.5 7.2

Table 6: Camera Decision Matrix

The cameras for the offset calculations needed to be high resolution, be-

cause ArUco tags were used. While these calculations only use one frame,

the cameras are also used to provide the user close-up views of the sewing, so

a high frame rate is needed. The camera chosen to meet these requirements

133

was the eCon CU135 camera. This camera is also 5MP, has a field of view of

60◦, and a USB3.0 connection. This camera has a fixed focus that is changed

by rotating the lens assembly on the camera module. Using a fixed focus

camera avoids the issue of the camera refocusing during a task. USB3.0 was

chosen over USB2.0 as it allows the camera to provide a 4K video stream at a

stable 30FPS with the camera module’s built-in MPEG compression format.

In order to view the entire vamp in one camera frame, the camera used

for landmark detection needed to have a wide FOV. It also needed to have a

high resolution for accurate landmark detection. This computation is done

on a single still image, so the camera does not need to have a high frame

rate. The ELP 5MP camera with a 120◦ lens and USB2.0 connection was

chosen and mounted on the sewing machine. One more camera was needed to

provide another viewing angle to the operator. A Microsoft 1080P webcam

with autofocus and USB2.0 connection was chosen because it was cheap,

available, and easy to mount on the tripod.

C.2 Gripper Selection

Table 7 below shows the Decision Making Matrix used to decide which

grippers to use as the robot’s end of arm tooling. The weights of the cate-

gories signify the importance of the category, with higher weights being more

important. Each gripper is given a score in each category out of ten, which

is then multiplied with the category’s weight. The weighted scores for each

category are totaled for each gripper, providing each gripper’s overall score.

134

Parameter Description Weight Robotiq

3 Finger

Robotiq

2 Finger

Custom

Gripper

DOF How many DOF

does gripper have?

0.1 7 6 6

Grip

Strength

How strong is grip

on target object?

0.1 5 8 3

Compatibility Is it compati-

ble with current

hardware/software?

0.3 8 8 5

Cost How expensive is it? 0.2 1 6 8

Manipulability How many ways can

it grip an object?

0.1 7 7 7

Reliability Will gripper work

for extended peri-

ods of time?

0.1 9 9 5

Contact Area

Size

What is the area

of the gripper that

contacts the object?

0.1 3 7 3

Totals 1 5.7 7.3 5.5

Table 7: Gripper Decision Matrix

The Robotiq 2-Finger grippers were chosen because they have a higher

135

grip strength and contact area than the 3-Finger grippers, and were more

cost effective than the custom-made grippers.

D UI Feature Lists: Buttons

Label Function

Start camera needle offset calibra-

tion

Calibrate distance between robot and

sewing machine

Acknowledge calibration complete User acknowledges calibration is complete

Go to Home Sends robot to home position

Go to Start Sends robot to the start sewing position

Find landmarks Use CV to locate sewing waypoints

Close Gripper Closes grippers on the robot

Open Gripper Opens grippers on the robot

Auto mode Sends command to sew CV waypoints

Assist mode Opens window for input devices to be used

Confirm sewing waypoints Sends command to robot that it found the

waypoints to sew and can start to sew

Table 8: Desired Buttons on UI

136

E UI Features Lists: Messages

Label Function

Offset Calibration in Progress
Tells the user needle-camera offset calibration is in

progress; Wait to continue until this is complete

Sewing Waypoints Identified

Tells the user the sewing waypoints on the fabric

have been identified and it is ready to sew when the

”Acknowledge Offset Calibration Complete”

button has been selected

Done Lets the user know that the sewing task is complete

Table 9: Desired Messages on UI

F UI Features Lists: Camera Views

• Live camera feed

• Live edge detection video

• Display landmarks on live camera feed

• Display sewing pattern waypoints on camera feed

• Display desired sewing path on camera feed

• Display projected sewing path on camera feed

137

G UI Feature Lists: Input Device Interface

• Display raw data

• Display the input device name that is connected

• Display output of input device position recording

• Storing input device position trajectory

• Button for calibration

• Button for recording the data

• Button for sending the desired trajectory to the robot for execution

H Pros and Cons of Potential Input Devices

Device Pros Cons

VR Glove (Cap-

toGlove)
• IMU - calculate position

AND orientation

• Comfortable for user

• Low cost (CaptoGlove)

• Intuitive to use

• Low latency

• SDK recently developed

- potential for bugs

• IMU could be noisy

• Low sampling frequency

• Need to calculate posi-

tion and orientation

138

Table 10 continued from previous page

Haptic device

(Geomagic

Touch)
• High precision

• Can track EEF position

• Well-developed SDK

• Available to use in lab

• Difficult to operate two

hands simultaneously

• Less intuitive

• Take up more space

Fiducial marker

(ArUco tag)
• Can track anything

• Low cost

• Difficult to track fingers

• Some noise

• Difficult to adapt to fac-

tory (need to recalibrate)

• Takes long time to set up

139

Table 10 continued from previous page

Wii Remote

• Low cost

• IMU - calculate position

AND orientation

• Easy to set up

• ROS package exists

• Used to track position

• Not intuitive

• Built-in IMU is noisy

• IMU has low accuracy

and precision

• Only sensor is IMU

Table 10: Pros and Cons of Input Devices

I Test Plans

This section describes how each subsystem of the project was tested and

any data produced from the testing.

I.1 Offset Calculations

The purpose of the offset calculations is to measure the distance between

the robot and the sewing machine. To test it, the true distances between the

robot base frame and the sewing machine frame in the x, y, and z directions

were measured in the workspace with a tape measure. These measurements

were recorded and then compared to the offsets calculated using the ArUco

140

tags. Table 11 below shows the offset calculations performed five times. This

is shown to determine if the offset calculations are consistent. Because the

standard deviations of each set of calculations is small (less than 5), the offset

calculations are consistent between executions.

Run 1 Run 2 Run 3 Run 4 Run 5 Std Dev

X (m) 0.6253645 0.6247383 0.6253444 0.6253444 0.6257054 0.0003492

Y (m) 0.0148355 0.0149498 0.0150294 0.0150294 0.0150895 0.000098

Z (m) 0.0391812 0.0394361 0.0393592 0.0393592 0.0397369 0.0002030

Table 11: Consistency of Offset Calculations

Table 12 below shows the measured distances and the output of the offset

calculations. The Offset Calculation Average column averages the calcula-

tions of the five executions shown in the table above. The final column shows

the difference between the measured distances and the average of the calcu-

lated distances. The difference for the distances of each axis is below one

centimeter, so the offset calculations were determined to be accurate.

Measured Distance Offset Calculation Average Difference

X (m) 0.65 0.02 -0.3

Y (m) 0.6252994483 0.01498675434 0.03941457778

Z (m) 0.02470055166 0.005013245656 -0.3394145778

Table 12: Accuracy of Offset Calculations

141

I.2 Inverse Kinematic Solving

The TRAC-IK algorithm was used to solve the inverse kinematics of the

robot. To test the accuracy of the IK solving, the forward kinematics were

solved using a set of desired joint angles. Then, the desired end effector

position from the forward kinematics was given as an input to the TRAC-

IK solver. The output from the TRAC-IK solver should closely match the

original desired joint angles. The original desired joint angles, output from

the TRAC-IK solver, and differences between the two values are shown below.

This test was performed on only one arm because the arms are symmetrical

and should produce the same IK solutions.

Joint Desired Joint Angle (rad) TRAC-IK Output (rad) Difference (rad)

1 0 1.39621e-06 -1.39621e-06

2 1 0.999888 1.12e-04

3 0 -5.81496e-07 5.81496e-07

4 1.04 1.0399 1.0e-04

5 -0.62 -0.620006 6.0e-06

6 -0.76 -0.759991 -9.0e-06

Average 3.4698e-05

Table 13: Accuracy of TRAC IK Algorithm

As shown in Table 13 above, the difference between the desired joint

angles and the TRAC-IK output was very small, meaning the accuracy of

142

the TRAC-IK output is high.

I.3 Landmark Identification

The goal of the landmark identification step in the computer vision sub-

system is to locate certain points in space. To verify that the locations

identified were correct, the landmark identification routine was performed

five times and the locations of the landmarks were recorded. Then, these lo-

cations were converted from number of pixels to mm. Then, the locations of

the landmarks were measured in the physical space. Tables 14 and 15 below

show the locations of the first landmark as identified by the computer vision

subsystem in both pixels and meters. These calculations were computed five

times, and the average standard deviations are shown as well. Note, only the

x and y locations are recorded because this project only sewed in 2D.

Run 1 Run 2 Run 3 Run 4 Run 5 Average Std Dev

X 580.3879 583.2025 577.3796 577.9849 575.81 578.953 2.89

Y 155.1264 163.1964 173.3475 215.6062 235.8049 188.6163 35.1997

Table 14: Precision of Landmark Identification (in pixels)

Run 1 Run 2 Run 3 Run 4 Run 5 Average Std Dev

X 0.153560 0.154305 0.152765 0.152925 0.152349 0.153181 0.000764

Y 0.041043 0.04317 0.045864 0.057045 0.06239 0.049904 0.009313

Table 15: Precision of Landmark Identification (in m)

143

As demonstrated by the low standard deviation, the landmark identifi-

cation routine is consistent between computations. Table 16 below shows

the locations of the landmarks found by approximating the distance of the

landmark from the image origin, using the size of the image (1280x1024 pix-

els). The difference between the measured and identified landmark locations

is also shown.

Identified Measured Location Measured - Identified

X (m) 0.1531813203 0.153749375 0.0005680547102

Y (m) 0.049904736 0.05566833333 0.005763597327

Table 16: Accuracy of Landmark Identification

Because the distance between the measured and identified landmark lo-

cations is small, the locations identified for the first landmark are accurate.

The accuracy of the y coordinate is less accurate, but still accurate enough

for this application.

I.4 Robot Controller

To test that the robot controller is properly connected to the workstation

computer, the following topics were echoed: /sda10f/sda10f r1 controller/joint states

(left arm joint angles) /sda10f/sda10f r2 controller/joint states (right arm

joint angles)

These two topics are where the robot’s joint states are published. If no

144

data is being published, the robot controller is not connected properly.

I.5 Gripper and Gripper Controller

To test that the grippers and the gripper controllers were connected cor-

rectly, the grippers were actuated using the Robotiq gripper control exam-

ples. Both grippers were opened, closed, and opened half way to ensure

they responded to commands as expected. Once we verified that the exam-

ple Robotiq program controlled the grippers correctly, the gripper control

functionality was added to the user interface.

Even though the vamp fabric is very thin at 3.35mm, the grippers are able

to securely hold the fabric when completely closed, in a parallel position. The

fabric could not be removed until the grippers were opened. This affirmed

that the grippers had enough force to grip the fabric while sewing.

I.6 Camera Nodes

The functionality of the camera nodes was tested to determine if the

images from the camera were being published properly. The camera nodes

publish the camera images to the following topic: /send feeds

This topic was echoed to determine if the feeds were being published.

After the publication was verified, the user interface was used to see if the

camera images being published had the proper focus and contrast. As de-

scribed in Section 4.4, there are four buttons on the user interface that, when

145

clicked, display the view from the requested camera. Each button was clicked

to view each camera view and the focus and bandwidth were manually ad-

justed as necessary.

I.7 User Interface

The purpose of the user interface is provide a simple way to control and

understand the sewing process. The buttons on the UI are used to signal

other processes to start or stop. To test the functionality of the buttons

before the rest of the system was done, each button was clicked and the

topics to which the buttons publish were echoed.

I.8 Input Devices

Before integrating the input devices into the main UI, the accuracy and

precision of the poses produced using the haptic device and Wii Remote.

The Wii Remote has a gyroscope and an accelerometer, so the position was

calculated by integrating the values from the sensors, and the orientation

was calculated by fusing the values from the sensors. The value zeta is the

gyroscope drift gain used in calculating the orientation of the Wii Remote.

Zeta had to be tuned so the drift was as close to zero as possible. Tables

17 and 18 show the maximum, average and standard deviation of the drift

measured by the Wii Remote with two different values of zeta. These were

measured by taking 6000 recordings over 60 seconds with the Wii Remote

146

on a flat surface.

Average Drift (rad/sec) Max Drift (rad/sec) Std Deviation (rad/sec)

X -0.100534214 -0.071807796 0.011311008

Y 0.070685799 0.109823688 0.014569631

Z -0.058525334 -0.022175937 0.013323598

Table 17: Precision of Wii Remote Data when Zeta = 0.360094977

Average Drift (rad/sec) Max Drift (rad/sec) Std Deviation (rad/sec)

X 0.018459795 0.255551274 0.059429037

Y 0.122382797 0.259775262 0.070016938

Z -0.151184914 -0.23256821 0.052722812

Table 18: Precision of Wii Remote Data when Zeta = 0.3771788462

As shown above, both the average and the maximum drift was lower for

all three axes when Zeta = 0.360094977. The drift produced with this zeta

value was low enough for this application. The standard deviation was also

very low, indicating that the orientation calculations are consistent.

The same test was performed using the haptic device. The position of the

Geomagic Touch haptic device tool tip and the orientation of the rotation

axis were recorded for 60 seconds while the tip was stationary. The average

drift of the position in each axis is shown below. Table 19 shows the data

from this test.

147

Average Drift Standard Deviation

X 0 0

Y -1.16699E-05 1.01894E-20

Z 3.22266E-06 5.0947E-21

Table 19: Precision of Haptic Device: Position (mm)

As shown above, the average drift and the standard deviation were very

small, indicating very precise and consistent measurements. Similar results

were seen for the orientations recorded by the haptic device as well, shown

in Table 20.

Average Standard Deviation

X 0.002443841 0.000455467

Y -0.021791834 0.001681716

Z -0.094716878 0.007997061

W -0.022084072 0.00222304

Table 20: Precision of Haptic Device: Orientation (rad)

Due to the low average drift and low standard deviation, the orientation

measurements were also proven to be precise and consistent.

The previous input device measurements only demonstrated precision,

as the input device was held still. The accuracy of the haptic device was

determined by tracing a sewing pattern with the haptic device tool. The

148

curved and straight paths used in this testing are shown below in Figure 61.

Figure 61: Curved and Straight Paths Traced During Testing

A high accuracy would mean the positions recorded by haptic device

match the x,y points along the paths. Tables 22 and 21 below show the ex-

pected and measured positions of five sample points from a straight path and

a curved path, as well as the difference between the expected and measured

positions along each axis.

(mm) Point 1 Point 2 Point 3 Point 4 Point 5

Expected

X 0 11 32 55 70

Y 0 21 33 24 0

Z 0 0 0 0 0

Measured

149

Table 21 continued from previous page

X -0.000793457 14.04677582 35.72566223 56.53177643 64.48575106

Y 0 23.09552574 31.45517635 23.80514336 6.117397308

Z -0.001449585 -0.774894714 -0.955627441 -0.958740234 -0.87693787

Difference

X 0.000793457 3.04677582 3.72566223 1.53177643 5.51424894

Y 0 2.09552574 1.54482365 0.19485664 6.117397308

Z 0.001449585 0.774894714 0.955627441 0.958740234 0.87693787

Table 21: Accuracy of Haptic Device Positions along a Curved Path

(mm) Point 1 Point 2 Point 3 Point 4 Point 5

Expected

X 0 20 50 80 90

Y 0 0 0 0 0

Z 0 0 0 0 0

Measured

X 0.069301605 16.77160835 45.70610142 71.60544968 88.64770126

Y 0.037990570 0.968406677 1.022716522 2.219299316 1.856254578

Z 0.002616882 -0.045356751 0.052444458 -0.026756287 1.098648071

Difference

X 0.069301605 3.22839165 4.29389858 8.39455032 1.35229874

Y 0.037990570 0.968406677 1.022716522 2.219299316 1.856254578

150

Table 22 continued from previous page

Z 0.002616882 0.045356751 0.052444458 0.026756287 1.098648071

Table 22: Accuracy of Haptic Device Positions along a Straight Path

As shown above, the differences between the expected and measured po-

sitions were very low, so the accuracy of the haptic device is very high. A

similar testing process was performed to determine the accuracy of the Wii

Remote. Below in Tables 23 and 24 are the recorded and measured positions.

(mm) Point 1 Point 2 Point 3 Point 4 Point 5

Expected

X 0 11 32 55 70

Y 0 21 33 24 0

Z 0 0 0 0 0

Measured

X -0.00456677 -406.419484 -2510.70599 -8383.18530 -181853.518

Y -0.00254000 -135.320333 -872.803610 -3506.33695 -117120.295

Z 0.002770094 339.3697409 2334.804566 7737.231903 203298.9882

Difference

X 0.004566773 395.4194843 2478.705999 8328.1853 181783.5185

Y 0.002540000 114.3203335 839.8036101 3482.336951 117120.2953

Z 0.002770094 339.3697409 2334.804566 7737.231903 203298.9882

Table 23: Accuracy of Wii Remote Positions along a Curved Path

151

(mm) Point 1 Point 2 Point 3 Point 4 Point 5

Expected

X 0 20 50 80 90

Y 0 0 0 0 0

Z 0 0 0 0 0

Measured

X 0.014423513 1189.192756 6254.908336 21230.34552 62417.38022

Y -0.00254707 -15.5346527 -71.5417416 -129.251083 -1555.94361

Z -0.00676015 -131.600906 -480.112922 -1316.88057 -3328.30970

Difference

X 0.014423513 1169.192756 6204.908336 21150.34552 62327.38022

Y 0.002547079 15.53465272 71.54174166 129.2510835 1555.943619

Z 0.006760154 131.6009067 480.1129222 1316.880574 3328.309709

Table 24: Accuracy of Wii Remote Positions along a Straight Path

The differences between the expected and measured orientations and po-

sitions show that the Wii Remote has much lower accuracy than the haptic

device. This is why the haptic device is the recommended input device.

I.9 Integration

After each component was tested individually, they needed to be inte-

grated together. First, a launch file was written that launched all of the

152

ROS nodes at once. With all the nodes running, the functionality of all

components was tested again. Functions occurred significantly slower with

all nodes running at once, but they still worked.

J Construction

There is only one component of the project that needs to be constructed:

the wrist camera mounts discussed in Section 4.5. The mount was designed

in Autodesk Inventor and consists of five pieces in total. Figure 62 shows an

exploded view of the parts in Inventor.

Figure 62: Exploded view of wrist camera mount in Inventor

153

The two wrist clamp pieces fit together around the robot’s wrist and are

attached using two 2cm 3M bolts and lock nuts. The camera slides into the

camera holder and is secured with zip ties. A 3cm 3M bolt and lock nut are

used to secure the camera holder onto the slider. Then, the slider fits into

the shaft and is secured with a 1cm 2.5M set screw. The shaft slides into the

groove on the top wrist clamp. Figure 63 shows an assembly of the pieces in

Inventor.

Figure 63: Assembled view of wrist camera mount in Inventor

K Link Masses and Inertial Matrices

Link Mass(kg) Inertial Matrix

1 s 6 xx=.000054, xy=0, xz=0, yy=.000054, yz=-.000006, zz=.000022

2 l 6 xx=.000022, xy=0, xz=0, yy=.000009, yz=.000006, zz=.000022

154

Table 25 continued from previous page

3 e 6 xx=.000013, xy=0, xz=0, yy=.000013, yz=.000001, zz=.000005

4 u 6 xx=.000015, xy=0, xz=0, yy=.000004, yz=-.000003, zz=.000015

5 r 6 xx=.000007, xy=0, xz=0, yy=.000007, yz=-.000001, zz=.000002

6 b 3 xx=.000005, xy=0, xz=0, yy=.000002, yz=.000001, zz=.000005

7 t 3 xx=.001, xy=0, xz=0, yy=.001, yz=0, zz=.001

Table 25: Link Masses and Inertial Matrices

L Motion Planning Analysis Criteria

• Planning time = Time it takes from when the Motion Planner receives

desired EEF positions to when the robot starts moving

– Less than 45 seconds

• Execution time = Time it takes from when the robot starts moving to

when it stops moving and presents UI with “Done” message

– Less than 15 seconds

• Obstacle Distance = Since the only obstacle is the sewing machine, this

is the distance between the point on the robot closest to the sewing

machine and the sewing machine

– More than 3cm

• EEF Travel distance = distance traveled by the end effectors from the

time the fabric is grasped to the time the fabric is dropped

155

– EEF R: Less than 50cm

– EEF L: Less than 50cm

• Joint Travel = total radians that each joint rotates

– R1: Less than pi/2

– R2: Less than pi

– R3: Less than pi

– R4: Less than pi

– R5: Less than pi/8

– R6: Less than pi/8

– R7: Less than pi/8

– L1: Less than pi/2

– L2: Less than pi

– L3: Less than pi

– L4: Less than pi

– L5: Less than pi/8

– L6: Less than pi/8

– L7: Less than pi/8

• Repeatability = consistency between planner outcomes in the exact

same scenario

– Measure the criteria mentioned above for several planner out-

comes. Each planning criteria from all planning outcomes must

be within 1 standard deviation of the mean. A small standard

156

deviation is also desirable for all criteria, although it is impossible

to state what it should be.

• Ability to perform on a variety of problems = consistent performance

in different scenarios (sewing different patterns with different sewing

machine offsets)

– Measure all the criteria mentioned above for each sewing scenario.

Each planning criteria from all sewing scenarios must be within

1 standard deviation of the mean. A small standard deviation

is also desirable for all criteria, although it is impossible to state

what it should be.

M Timeline

Research

The first step of the project was to research the relevant topics including

motion planning, computer vision, and ROS.

• Subtasks: background research, background chapter writing, gap anal-

ysis

• Duration: 4 months (through November 2017)

• Start Time: August 2017

Requirements Analysis

This step included developing the concepts of operations as described in

157

Section 3.

• Subtasks: stakeholder identification, use case and user story develop-

ment, creating lists of requirements

• Duration: 1 month (through October 2017)

• Start Time: October 2017

Setting up the Workspace

Many different components needed to be installed to properly setup the

workspace. This was an ongoing process throughout the first half of the

project.

• Subtasks:

– Workstation computer setup (obtain desktop, research require-

ments, install appropriate OS and other libraries)

∗ Duration: 1 week (through Mid-September 2017)

∗ Start Time: Mid-September 2017

– Installing robot (delivered from New Balance, moved to CIBR lab,

leveling feet installed)

∗ Duration: 2 weeks (through Mid-September 2017)

∗ Start Time: September 2017

– Assembling sewing machine (delivered from New Balance, assem-

bled in CIBR lab)

∗ Duration: 2 weeks (through September 2017)

158

∗ Start Time: Mid-September 2017

– Power installation for sewing machine

∗ Duration: 1 month (through mid-October 2017)

∗ Start Time: Mid-September 2017

– Enabling the robot controller to receive ROS messages (update

firmware, change language from Japanese to English)

∗ Duration: 2 months (through Mid-December 2017)

∗ Start Time: Mid-October 2017

– Installing Robotiq Grippers (receive custom mounts, connect con-

trollers to computer, install mounts and grippers on end effectors)

∗ Duration: 2 weeks (through October 2017)

∗ Start Time: Mid-October 2017

– Installing safety system (order sensor, calibrate sensor for workspace,

install sensor and LED warning lights)

∗ Duration: 1 month (through November 2017)

∗ Start Time: November 2017

User Interface Development: QT and C++

This phase is the initial user interface development described in Section 4.4.1

• Subtasks: display status messages from robot controller, allow user to

select a desired sewing pattern, display camera view

• Dependencies: workstation computer setup complete

• Steps:

159

– Design: October 2017 - Mid-October 2017

– Build: Mid-October 2017 through December 2017

– Test: Mid-October 2017 through December 2017

– Document: December 2017 through February 2018

– Review: December 2017

User Interface Development: Tkinter and Python

This phase is the final user interface development described in Section 4.4.1

• Subtasks: display status messages from robot controller; allow the user

to command the robot to: go to home position, go to start position,

open grippers, close grippers; display all four camera views

• Dependencies: camera setup complete, workstation computer setup

complete, robot controller enabled to receive ROS messages, home and

start positions defined

• Steps:

– Design: January 2018

– Build: January 2018 through February 2018

– Test: February 2018 through March 2018

– Document: March 2018 through April 2018

– Review: March 2018 through April 2018

Input Device Research and Implementation

This phase incorporated researching and attempting to implement multiple

input devices for operating the robot in ‘assist’ mode.

160

• Subtasks: obtain devices, communicate with the devices using ROS

messages, calculate and/or publish the poses recorded by the device

• Dependencies: workstation computer setup complete

• Steps:

– Design: Mid-October 2017 through November 2017

– Build: Mid-November 2017 through February 2018

– Test: February 2018 through March 2018

– Document: March 2018 through April 2018

– Review: March 2018 through April 2018

Computer Vision Camera Setup

This phase involved choosing, ordering, and mounting the cameras for the

computer vision subsystem.

• Subtasks: Select cameras, order cameras, design mounts for the cam-

eras, mount the cameras

Computer Vision Subsystem Development

After all the cameras were installed, the computer vision subsystem devel-

opment began.

• Subtasks: identify the position and orientation of the vamp in space,

find the position and orientation offsets from the robot to the sewing

machine, identify the position and orientation of the sewing pattern in

the robot’s grippers

• Dependencies: workstation computer setup, camera setup

161

• Steps:

– Design: September 2017 through January 2018

– Build: November 2017 through March 2018

– Test: December 2017 through March 2018

– Document: February 2017 through March 2018

– Review: March 2018 through April 2018

Simulating the Workspace

In order to test the motion of the robot, the workspace needed to be modeled

in simulation. Two simulation tools were tested, as described in Sections 4.6.3

and 4.6.4.

• Subtasks: load robot, grippers, Force-Torque sensor, and sewing ma-

chine in simulation environment; define collision space

• Dependencies: workstation computer setup

• Steps:

– Design: September 2017 through October 2017

– Build: October 2017 through January 2018

– Test: October 2017 through January 2018

– Document: January 2018 through Mid-March 2018

– Review: February 2018 through March 2018

Motion Planning Subsystem Development

After the robot’s motion was simulated, the development of the motion plan-

ning subsystem began.

162

• Subtasks: create collision-free trajectories, perform inverse kinemat-

ics calculations, define transformation matrices between all coordinate

systems of the workspace

• Dependencies: workstation computer setup, workspace setup

• Steps:

– Design: October 2017 through Mid-December 2017

– Build: November 2017 through February 2018

– Test: December 2017 through Mid-March 2018

– Document: February 2018 through Mid-March 2018

– Review: March 2018 through Mid-April 2018

End Effector Pose Determination

Once a motion planner was selected and the inverse kinematics of the robot

could be solved, the desired end effector poses needed to be determined.

These poses depend on the desired sewing pattern as well as how the robot

grasped the fabric.

• Dependencies: workstation computer setup, workspace setup, com-

puter vision system setup

• Steps:

– Design: December 2017 through Mid-January 2018

– Build: February 2018 through April 2018

– Test: Mid-March 2018 through April 2018

– Document: March 2018 through April 2018

163

– Review: Mid-March 2018 through April 2018

N Budget and Expenditure Justification

Item and Link Vendor Price Justification

See3CAM CU135 E-Con 3 x $109 High FOV, Adjustable

Frame Rate and Resolution

5 MP HD USB

Camera Module

EPL $45.90 Wide FOV, high resolution

HDCQ12 12ft

2.1mm x 5.5mm

Hanvex 4 x $7.99 Power cable extensions to

power the barrel lights on

the sewing machine

12V DC Out-

put Lithium Ion

Battery

Talentcell 2 x $22.99 High capacity power

sources for LEDs mounted

on sewing machine

AC to DC 5V 2A

Regulated Power

Supply

Ziumier 1 x $10.59 AC to DC adapters to

charge batteries and tem-

porarily power LEDs

SuperSpeed

USB 3.0, Active

Extension Cable

Cable

Matters

4 x $34.99 USB 3.0 cables, capable of

handling the bandwidth of

4K cameras at 10 meters

164

https://www.e-consystems.com/4k-usb-camera.asp
https://www.amazon.com/Hanvex-HDCQ12-Adapter-Extension-Wireless/dp/B00FTFYH0U/ref=sr_1_2_sspa?ie=UTF8&qid=1511976899&sr=8-2-spons&keywords=barrel+jack+extension+cable&psc=1
https://www.amazon.com/Hanvex-HDCQ12-Adapter-Extension-Wireless/dp/B00FTFYH0U/ref=sr_1_2_sspa?ie=UTF8&qid=1511976899&sr=8-2-spons&keywords=barrel+jack+extension+cable&psc=1
https://www.amazon.com/Hanvex-HDCQ12-Adapter-Extension-Wireless/dp/B00FTFYH0U/ref=sr_1_2_sspa?ie=UTF8&qid=1511976899&sr=8-2-spons&keywords=barrel+jack+extension+cable&psc=1
https://www.amazon.com/Hanvex-HDCQ12-Adapter-Extension-Wireless/dp/B00FTFYH0U/ref=sr_1_2_sspa?ie=UTF8&qid=1511976899&sr=8-2-spons&keywords=barrel+jack+extension+cable&psc=1
https://www.amazon.com/Talentcell-Lithium-Amplifier-Multi-led-indicator/dp/B00MHNQIR2/ref=sr_1_3?ie=UTF8&qid=1511976080&sr=8-3&keywords=12V+power+pack
https://www.amazon.com/Talentcell-Lithium-Amplifier-Multi-led-indicator/dp/B00MHNQIR2/ref=sr_1_3?ie=UTF8&qid=1511976080&sr=8-3&keywords=12V+power+pack
https://www.amazon.com/Talentcell-Lithium-Amplifier-Multi-led-indicator/dp/B00MHNQIR2/ref=sr_1_3?ie=UTF8&qid=1511976080&sr=8-3&keywords=12V+power+pack
https://www.amazon.com/ZIUMIER-Regulated-Connector-Switching-Transformer/dp/B01MA5BAC2/ref=sr_1_2_sspa?s=electronics&ie=UTF8&qid=1512602743&sr=1-2-spons&keywords=barrel+plug+power+supply+5v+2a&psc=1&pldnSite=1
https://www.amazon.com/ZIUMIER-Regulated-Connector-Switching-Transformer/dp/B01MA5BAC2/ref=sr_1_2_sspa?s=electronics&ie=UTF8&qid=1512602743&sr=1-2-spons&keywords=barrel+plug+power+supply+5v+2a&psc=1&pldnSite=1
https://www.amazon.com/ZIUMIER-Regulated-Connector-Switching-Transformer/dp/B01MA5BAC2/ref=sr_1_2_sspa?s=electronics&ie=UTF8&qid=1512602743&sr=1-2-spons&keywords=barrel+plug+power+supply+5v+2a&psc=1&pldnSite=1
https://www.amazon.com/Cable-Matters-SuperSpeed-Female-Extension/dp/B00DMFFL2W/ref=pd_sbs_60_1?_encoding=UTF8&pd_rd_i=B00DMFFL2W&pd_rd_r=1C7T4P6358QD4REHJG6P&pd_rd_w=uemZd&pd_rd_wg=JTFri&psc=1&refRID=1C7T4P6358QD4REHJG6P&pldnSite=1
https://www.amazon.com/Cable-Matters-SuperSpeed-Female-Extension/dp/B00DMFFL2W/ref=pd_sbs_60_1?_encoding=UTF8&pd_rd_i=B00DMFFL2W&pd_rd_r=1C7T4P6358QD4REHJG6P&pd_rd_w=uemZd&pd_rd_wg=JTFri&psc=1&refRID=1C7T4P6358QD4REHJG6P&pldnSite=1
https://www.amazon.com/Cable-Matters-SuperSpeed-Female-Extension/dp/B00DMFFL2W/ref=pd_sbs_60_1?_encoding=UTF8&pd_rd_i=B00DMFFL2W&pd_rd_r=1C7T4P6358QD4REHJG6P&pd_rd_w=uemZd&pd_rd_wg=JTFri&psc=1&refRID=1C7T4P6358QD4REHJG6P&pldnSite=1

Table 26 continued from previous page

2.1mm x 5.5mm

to 3.5 x 1.35mm

DC 12V Adapter

DEYF 2 x $7.46 Extensions to reach lighting

on the sewing machine

SATA Power Ex-

tension Cable

CRJ Elect $9.49 Mount close to the cameras

and sewing workspace

Cable tie mounts

25x25(mm)

Monoprice $6.38 Ensure cables do not get

caught in motion of robot

85mm adaptive

2-Finger gripper

and controllers

Robotiq 2 x $4,800 Grip the fabric securely,

Easy installation onto robot

MS7701B Tri-

pod Boom

OnStage $24.95 Mount camera in a config-

urable location

Swivel Smart-

phone Holder

Acc. Ba-

sics

$12.95 Securely mount camera on

tripod

Leveling Feet McMaster 4 x $6.99 Make sure robot is level,

strong enough to support

robot (220kg)

16.4 feet of LED

cabling

Flykul $16.99 Illuminate workspace to im-

prove computer vision

2x RGB 80mm

Multi-color COB

Yinatech $21.99 Illuminate workspace to im-

prove computer vision

165

https://www.amazon.com/DEYF-Adapter-Extension-Monitors-3-51-35/dp/B074P331K6/ref=sr_1_1?s=electronics&ie=UTF8&qid=1512602945&sr=1-1&keywords=barrel+plug+extension+3.5x1.35&pldnSite=1
https://www.amazon.com/DEYF-Adapter-Extension-Monitors-3-51-35/dp/B074P331K6/ref=sr_1_1?s=electronics&ie=UTF8&qid=1512602945&sr=1-1&keywords=barrel+plug+extension+3.5x1.35&pldnSite=1
https://www.amazon.com/DEYF-Adapter-Extension-Monitors-3-51-35/dp/B074P331K6/ref=sr_1_1?s=electronics&ie=UTF8&qid=1512602945&sr=1-1&keywords=barrel+plug+extension+3.5x1.35&pldnSite=1
https://www.amazon.com/CRJ-Power-Extension-Density-Sleeving/dp/B0725KBHDH/ref=sr_1_1_sspa?ie=UTF8&qid=1512603526&sr=8-1-spons&keywords=sata+power+extension&psc=1&pldnSite=1
https://www.amazon.com/CRJ-Power-Extension-Density-Sleeving/dp/B0725KBHDH/ref=sr_1_1_sspa?ie=UTF8&qid=1512603526&sr=8-1-spons&keywords=sata+power+extension&psc=1&pldnSite=1
https://www.amazon.com/dp/B003L16ZYU/ref=cm_sw_r_other_apa_AkIxAbF6B37EC
https://www.amazon.com/dp/B003L16ZYU/ref=cm_sw_r_other_apa_AkIxAbF6B37EC
https://robotiq.com/products/2-finger-adaptive-robot-gripper
https://robotiq.com/products/2-finger-adaptive-robot-gripper
https://robotiq.com/products/2-finger-adaptive-robot-gripper
https://www.amazon.com/Stage-Stands-MS7701B-Tripod-Microphone/dp/B000978D58
https://www.amazon.com/Stage-Stands-MS7701B-Tripod-Microphone/dp/B000978D58
https://www.amazon.com/swivel-Smartphone-Microphone-Adapter-Samsung/dp/B01D1ZFXC0/ref=pd_sim_267_12?_encoding=UTF8&psc=1&refRID=ZJ67AC94W0R24YKSYXHC
https://www.amazon.com/swivel-Smartphone-Microphone-Adapter-Samsung/dp/B01D1ZFXC0/ref=pd_sim_267_12?_encoding=UTF8&psc=1&refRID=ZJ67AC94W0R24YKSYXHC
https://www.mcmaster.com/#leveling-feet/=1bst0xh
https://www.amazon.com/dp/B06XSY4P7P/ref=asc_df_B06XSY4P7P5389450/?tag=hyprod-20&creative=395033&creativeASIN=B06XSY4P7P&linkCode=df0&hvadid=216526532365&hvpos=1o1&hvnetw=g&hvrand=5436965131945762085&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9001847&hvtargid=pla-349341462699
https://www.amazon.com/dp/B06XSY4P7P/ref=asc_df_B06XSY4P7P5389450/?tag=hyprod-20&creative=395033&creativeASIN=B06XSY4P7P&linkCode=df0&hvadid=216526532365&hvpos=1o1&hvnetw=g&hvrand=5436965131945762085&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9001847&hvtargid=pla-349341462699
https://www.amazon.com/Multi-color-Angel-Headlight-Housing-12V-24V/dp/B01MZ0D25A/ref=sr_1_fkmr0_1?s=automotive&ie=UTF8&qid=1523213477&sr=1-1-fkmr0&keywords=yinatech+rgb+multi-color+cob
https://www.amazon.com/Multi-color-Angel-Headlight-Housing-12V-24V/dp/B01MZ0D25A/ref=sr_1_fkmr0_1?s=automotive&ie=UTF8&qid=1523213477&sr=1-1-fkmr0&keywords=yinatech+rgb+multi-color+cob

Table 26 continued from previous page

850 Evo, 250GB

SSD

Samsung $91.98 Improve speed and effi-

ciency of computer

PCI-E to USB

3.0 4 Port

Mailiya $50.99 Support all USB cameras at

once with one machine

OS32C safety

sensor

Omron $141.39 Ensure a safe work environ-

ment for human workers

Wii Remote Nintendo $48.00 Input device for teleopera-

tion of the robot

Motion Plus At-

tachment

DTOL $13.33 Add extra sensor for calcu-

lating positions

Bluetooth Re-

ceiver

Insignia $18.69 Communicate Wii Remote

with workstation computer

TOTAL $10,701.40

Table 26: Budget and Expenditure Justification

O Motion Planner Evaluation Results

The following appendix contains the results of the motion planner evalua-

tion. Planners evaluated are RRT, RRT*, PRM, and LBKPIECE. Planning

and execution times are measured in seconds. Obstacle distances and EEF

Travel distances are measured in millimeters, and joint travel is measured in

radians. A run is failed if the value is outside one sigma.

166

https://www.amazon.com/Samsung-2-5-Inch-Internal-MZ-75E250B-AM/dp/B01MCXQFBK/ref=pd_sim_147_3?_encoding=UTF8&pd_rd_i=B00OAJ412U&pd_rd_r=BPHSGY6NHW9A3NQ9MNCK&pd_rd_w=YsIl6&pd_rd_wg=WDRPA&refRID=BPHSGY6NHW9A3NQ9MNCK&dpID=319X5owiyFL&preST=_SX300_QL70_&dpSrc=detail&th=1
https://www.amazon.com/Samsung-2-5-Inch-Internal-MZ-75E250B-AM/dp/B01MCXQFBK/ref=pd_sim_147_3?_encoding=UTF8&pd_rd_i=B00OAJ412U&pd_rd_r=BPHSGY6NHW9A3NQ9MNCK&pd_rd_w=YsIl6&pd_rd_wg=WDRPA&refRID=BPHSGY6NHW9A3NQ9MNCK&dpID=319X5owiyFL&preST=_SX300_QL70_&dpSrc=detail&th=1
https://www.amazon.com/Mailiya-Expansion-Superspeed-Connector-Desktops/dp/B01G86538S/ref=sr_1_2?s=electronics&ie=UTF8&qid=1512602983&sr=1-2&keywords=pcie+usb+3.0&pldnSite=1
https://www.amazon.com/Mailiya-Expansion-Superspeed-Connector-Desktops/dp/B01G86538S/ref=sr_1_2?s=electronics&ie=UTF8&qid=1512602983&sr=1-2&keywords=pcie+usb+3.0&pldnSite=1
http://www.ia.omron.com/products/family/2717/
http://www.ia.omron.com/products/family/2717/
https://www.amazon.com/Wii-Remote-Controller-Nintendo/dp/B000IMWK2G
https://www.amazon.com/DTOL-Motion-Plus-Adapter-White-nintendo/dp/B004V13D0I
https://www.amazon.com/DTOL-Motion-Plus-Adapter-White-nintendo/dp/B004V13D0I
https://www.amazon.com/Insignia-Bluetooth-4-0-Adapter-NS-PCY5BMA/dp/B00M9GFIJG
https://www.amazon.com/Insignia-Bluetooth-4-0-Adapter-NS-PCY5BMA/dp/B00M9GFIJG

Run# 1 2 3 4 5 Avg SD Avg+SD Avg-SD

Planning

Time

5.14 5.02 5.17 5.29 5.16 5.156 0.0960 5.252072 5.05992

Execution

Time

11.92 12.98 12.09 11.76 11.84 12.118 0.4971 12.6151 11.6208

Obstacle

Distance

1.9 2.2 2 2.9 2.8 2.36 0.4615 2.8215 1.8984

EEF Travel

Distance

80.9 82.8 78.2 78.9 83.1 80.78 2.2174 82.9974 78.562

Joint Travel 0.21 0.36 0.17 0.23 0.41 0.276 0.1033 0.37934 0.17265

Conclusion Pass Fail Pass Fail Pass

Table 27: RRT Evaluation Results

Run# 1 2 3 4 5 Avg SD Avg+SD Avg-SD

Planning

Time

5.26 5.18 5.39 5.17 5.14 5.228 0.1008 5.3288 5.1271

Execution

Time

11.16 11.52 11.97 11.04 11.84 11.506 0.4074 11.91 11.0985

Obstacle

Distance

3.2 4.8 5.1 3.8 4.2 4.22 0.7628 4.9828 3.45711

EEF Travel

Distance

81.1 87 79.2 82.3 83.1 82.54 2.8936 85.433 79.6463

167

Table 28 continued from previous page

Joint Travel 0.12 0.34 0.21 0.27 0.32 0.252 0.0892 0.3412 0.16272

Conclusion Pass Pass Fail Pass Pass

Table 28: RRT* Evaluation Results

Run# 1 2 3 4 5 Avg SD Avg+SD Avg-SD

Planning

Time

5.01 5.24 5.17 5.35 5.02 5.158 0.1454 5.30349 5.01250

Execution

Time

11.09 11.26 11.06 11.05 11.31 11.154 0.1217 11.2757 11.0322

Obstacle

Distance

1.2 1.9 1.6 2.1 1.8 1.72 0.3420 2.0620 1.37794

EEF Travel

Distance

86 81.2 81.7 82.2 84.9 83.2 2.1201 85.320 81.0798

Joint Travel 0.33 0.23 0.21 0.28 0.31 0.272 0.0511 0.32318 0.22081

Conclusion Fail Pass Pass Fail Pass

Table 29: PRM Evaluation Results

Run# 1 2 3 4 5 Avg SD Avg+SD Avg-SD

168

Table 30 continued from previous page

Planning

Time

5.01 5.15 5.11 5.04 5.14 5.09 0.0620 5.15204 5.02795

Execution

Time

10.95 11.08 11.11 10.98 11.05 11.034 0.0673 11.1013 10.9666

Obstacle

Distance

3.5 4.1 3.7 3.8 3.9 3.8 0.2236 4.02360 3.57639

EEF Travel

Distance

79.8 81.2 83.3 80.1 83.1 81.5 1.6385 83.1385 79.8614

Joint Travel 0.12 0.29 0.31 0.19 0.31 0.244 0.0853 0.32932 0.15867

Conclusion Fail Pass Pass Pass Pass

Table 30: LBKPIECE Evaluation Results

P Gap Analysis

The gap analysis investigates the current state of the technology used

in this project and compares it to the features desired for this project. For

gaps in the system, we will analyze the desired feature and compare that to

the current solution, or lack thereof. Desired features come from Sections

3 and 6. The state of the art technology defined in this case is the best

option available, regardless of the price or difficulty of implementation. The

169

implemented feature is the version of the desired feature that is currently

used in the project, if there is a solution. The risks column identifies and

discusses potential drawbacks with the implementation of the best technology

available.

Desired Fea-

ture

Current State of the

Art

Implemented Fea-

ture

Risks of State of the

Art

Sewing lines

and curves in

2D

Automatic 2D sewing

with planar machine

Calculate many

waypoints on path

for small motions

Expensive

Intuitive UI UI with usability and

product features

UI with few but-

tons and features

Takes time to develop

3D sewing None exists Not implemented Low ability to execute

paths

Fabric grip-

ping

Human-like finger

grippers to pick up

fabric from flat surface

2-Finger Robotiq

grippers

Custom gripper might

not be as reliable or

durable

Learning by

demonstra-

tion

Use motion capture

system to record seam-

ster sewing; robot uses

machine learning to

sew from seamster

data

Seamster can

specify path with

Geomagic Touch

haptic device

Robot would sew iden-

tically to human - no

machine advantage

170

Table 31 continued from previous page

Interface

with sewing

machine

Use signal processing

to control sewing ma-

chine speed through

ROS

Not implemented Not thoroughly tested

Robust CV

system

3D cameras with high

frame rates and res-

olution; environmental

factors (lighting, etc.)

do not affect system

CV system with

four cameras and

max bandwidth

Expensive - $250+

Robot repli-

cates input

device path

in realtime

Robot executes path at

same time as user de-

fines path with input

device

When user clicks

button on UI,

robot sews path

specified with

haptic device

after optimization

System cannot plan

paths instantaneously

Robot sews

pattern from

input device

None exists Robot sews path

from Geomagic

Touch device

Not thoroughly tested

Robot sews

pattern

using CV

None exists Robot sews pre-

defined path using

CV

Not thoroughly tested

171

Table 31 continued from previous page

Quickly plan

optimal path

with speed

control

Group joints into

groups of 6-DOF or

less and use geometric

planner

LBKPiece al-

gorithm imple-

mented; no joint

speed control

Not able to plan trajec-

tories for many DOF

robots

Plot 3D

sewing

patterns

Augmented reality Plot 2D sewing

paths with a can-

vas in UI

Expensive: $7,000 -

$14,000 to develop AR

app using markers

Table 31: Gap Analysis

Q Authorship Table

Section Primary Author(s)

Abstract Alex Emrick

Project Statement Sophia Gudenrath

Customer Value Proposition Alex Emrick

Manufacturing with Sewing Sophia Gudenrath

Computer Vision Alex Emrick

Motion Planning Alex Emrick and Sophia Gudenrath

Joint Actuation and Control Sophia Gudenrath

Shared Autonomy Alex Emrick

172

Table 32 continued from previous page

Stakeholders Alex Emrick

Use Cases Alex Emrick

Requirements Alex Emrick

Workspace Layout Elijah Eldredge

The Robot Sophia Gudenrath

System Overview Wyatt Henke

User Interface Mary Hatfalvi

Computer Vision Dominic Cupo

Motion Planning Alex Emrick

Product Evaluation Alex Emrick and Sophia Gudenrath

Project Execution Evaluation Sophia Gudenrath and Alex Emrick

Recommendations: Control Interface Mary Hatfalvi and Alex Emrick

Recommendations: Computer Vision Dominic Cupo and Alex Emrick

Recommendations: Motion Planning Sophia Gudenrath and Alex Emrick

Overall System Improvements Alex Emrick

Appendices Alex Emrick and Sophia Gudenrath

Table 32: Authorship

References

[1] D. Heitner, “North american sports market at 75.7 billion
by 2020, led by media rights,” Oct 10, 2016. [Online].
Available: https://www.forbes.com/sites/darrenheitner/2016/

173

https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b

10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/
#6fe22d38217b

[2] M. Groover, “automation - advantages and disadvantages of automa-
tion,” June 27, 2017. [Online]. Available: https://www.britannica.com/
technology/automation/Advantages-and-disadvantages-of-automation

[3] F. Berruti, G. Nixon, G. Taglioni, and R. Whiteman, “Intelligent
process automation: The engine at the core of the next-generation
operating model.” [Online]. Available: https://www.mckinsey.com/
business-functions/digital-mckinsey/our-insights/

[4] S. Hayati and S. T. Venkataraman, “Design and implementation of a
robot control system with traded and shared control capability,” 1989,
p. 1315 vol.3. [Online]. Available: http://ieeexplore.ieee.org/document/
100161

[5] A. Mody and D. Wheeler, Automation and world competition, 1st ed.
Basingstoke u.a: Macmillan, 1990.

[6] W. Duggan, “How the athletic footwear market has
changed in recent years,” -01-31 2017. [Online]. Avail-
able: https://www.benzinga.com/news/earnings/17/01/8972585/
how-the-athletic-footwear-market-has-changed-in-recent-years

[7] BASIC, “Global athletic footwear market share
(nike, adidas, etc.),” 2017. [Online]. Available:
https://www.statista.com.ezproxy.wpi.edu/statistics/246501/
athletic-apparel-companies-ranked-by-global-market-share-in-footwear-sales/

[8] J. Rock, “How robots will reshape the u.s. economy,” Mar 21,
2016. [Online]. Available: http://social.techcrunch.com/2016/03/21/
how-robots-will-reshape-the-us-economy/

[9] D. M. West, “What happens if robots take the jobs? the impact of
emerging technologies on employment and public policy,” October 2015.
[Online]. Available: https://www.brookings.edu/wp-content/uploads/
2016/06/robotwork.pdf

174

https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.forbes.com/sites/darrenheitner/2016/10/10/north-american-sports-market-to-reach-75-7-billion-by-2020/#6fe22d38217b
https://www.britannica.com/technology/automation/Advantages-and-disadvantages-of-automation
https://www.britannica.com/technology/automation/Advantages-and-disadvantages-of-automation
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
http://ieeexplore.ieee.org/document/100161
http://ieeexplore.ieee.org/document/100161
https://www.benzinga.com/news/earnings/17/01/8972585/how-the-athletic-footwear-market-has-changed-in-recent-years
https://www.benzinga.com/news/earnings/17/01/8972585/how-the-athletic-footwear-market-has-changed-in-recent-years
https://www.statista.com.ezproxy.wpi.edu/statistics/246501/athletic-apparel-companies-ranked-by-global-market-share-in-footwear-sales/
https://www.statista.com.ezproxy.wpi.edu/statistics/246501/athletic-apparel-companies-ranked-by-global-market-share-in-footwear-sales/
http://social.techcrunch.com/2016/03/21/how-robots-will-reshape-the-us-economy/
http://social.techcrunch.com/2016/03/21/how-robots-will-reshape-the-us-economy/
https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf
https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf

[10] D. Rotman, “How technology is destroying jobs,” June 12, 2013.
[Online]. Available: https://www.technologyreview.com/s/515926/
how-technology-is-destroying-jobs/

[11] A. Peters, “This t-shirt sewing robot could rad-
ically shift the apparel industry,” -08-25 2017.
[Online]. Available: https://www.fastcompany.com/40454692/
this-t-shirt-sewing-robot-could-radically-shift-the-apparel-industry

[12] T. Gottschalk and G. Seliger, “Automated sewing of textiles with
different contours,” CIRP Annals, vol. 45, no. 1, pp. 23–26, July
2, 2007. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0007850607630091

[13] K. P. Reddy, “The rise of robotic automation in the sewing
industry,” p. 26, May 1, 2016. [Online]. Available: https:
//search.proquest.com/docview/1796771370

[14] D. Gershon, “Parallel process decomposition of a dynamic manipulation
task: robotic sewing,” IEEE Transactions on Robotics and Automation,
vol. 6, no. 3, pp. 357–367, 1990. [Online]. Available: http:
//ieeexplore.ieee.org/document/56654

[15] M. Kudoa, Y. Nasua, K. Mitobe, and B. Borovac, “Multi-arm
robot control system for manipulation of flexible materials in
sewing operation,” July 12, 1999. [Online]. Available: http://ac.
els-cdn.com/S0957415899000471/1-s2.0-S0957415899000471-main.
pdf? tid=1061c73e-9c85-11e7-a73c-00000aacb362&acdnat=
1505748278 571cd0d124a18a134f1ba3d574d22cf2

[16] R. Szeliski, Computer vision. London [u.a.]: Springer, 2010.

[17] K. Simek, “Dissecting the camera matrix, part 3: The intrinsic matrix,”
August 13, 2013. [Online]. Available: https://ksimek.github.io/2013/
08/13/intrinsic/

[18] R. Hartley and A. Zisserman, “Multiple view geometry in computer
vision,” Robotica, vol. 23, no. 2, p. 271, 2005. [Online]. Available:
https://www.cambridge.org/core/article/multiple-view-geometry

175

https://www.technologyreview.com/s/515926/how-technology-is-destroying-jobs/
https://www.technologyreview.com/s/515926/how-technology-is-destroying-jobs/
https://www.fastcompany.com/40454692/this-t-shirt-sewing-robot-could-radically-shift-the-apparel-industry
https://www.fastcompany.com/40454692/this-t-shirt-sewing-robot-could-radically-shift-the-apparel-industry
http://www.sciencedirect.com/science/article/pii/S0007850607630091
http://www.sciencedirect.com/science/article/pii/S0007850607630091
https://search.proquest.com/docview/1796771370
https://search.proquest.com/docview/1796771370
http://ieeexplore.ieee.org/document/56654
http://ieeexplore.ieee.org/document/56654
http://ac.els-cdn.com/S0957415899000471/1-s2.0-S0957415899000471-main.pdf?_tid=1061c73e-9c85-11e7-a73c-00000aacb362&acdnat=1505748278_571cd0d124a18a134f1ba3d574d22cf2
http://ac.els-cdn.com/S0957415899000471/1-s2.0-S0957415899000471-main.pdf?_tid=1061c73e-9c85-11e7-a73c-00000aacb362&acdnat=1505748278_571cd0d124a18a134f1ba3d574d22cf2
http://ac.els-cdn.com/S0957415899000471/1-s2.0-S0957415899000471-main.pdf?_tid=1061c73e-9c85-11e7-a73c-00000aacb362&acdnat=1505748278_571cd0d124a18a134f1ba3d574d22cf2
http://ac.els-cdn.com/S0957415899000471/1-s2.0-S0957415899000471-main.pdf?_tid=1061c73e-9c85-11e7-a73c-00000aacb362&acdnat=1505748278_571cd0d124a18a134f1ba3d574d22cf2
https://ksimek.github.io/2013/08/13/intrinsic/
https://ksimek.github.io/2013/08/13/intrinsic/
https://www.cambridge.org/core/article/multiple-view-geometry

[19] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach,
2nd ed. Pearson Education M.U.A, 2012. [Online]. Available:
http://lib.myilibrary.com?ID=645682

[20] G. Medioni, Emerging topics in computer vision, 1st ed. Upper Saddle
River, NJ: Prentice Hall, 2005.

[21] S. Russell and P. Norvig, Artificial intelligence: a mod-
ern approach. Pearson Education, Jul 4, 2016. [Online].
Available: http://www.vlebooks.com/vleweb/product/openreader?id=
none&isbn=9781292153971&uid=none

[22] P. G. Ranky, “Advanced machine vision systems and application
examples,” Sensor Review, vol. 23, no. 3, pp. 242–245, Sep 1, 2003.
[Online]. Available: http://www.emeraldinsight.com/doi/abs/10.1108/
02602280310481869

[23] S. Kaur and I. Singh, “Comparison between edge detection techniques,”
International Journal of Computer Applications, vol. 145, no. 15, pp.
15–18, Jul 15, 2016. [Online]. Available: http://au4sb9ax7m.search.
serialssolutions.com/?ctx ver=Z39.88-2004&ctx enc=info%3Aofi%
2Fenc%3AUTF-8&rfr id=info%3Asid%2Fsummon.serialssolutions.
com&rft val fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.
genre=article&rft.atitle=Comparison+between+Edge+Detection+
Techniques&rft.jtitle=International+Journal+of+Computer+
Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&
rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.
volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft id=info:
doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.
externalDocID=10 5120 ijca2016910867¶mdict=en-US

[24] R. Chatterjee, “Advanced color machine vision and
applications,” Mar 26, 2014. [Online]. Available:
https://www.visiononline.org/userAssets/aiaUploads/file/CVP
Advance-Color-Machine-Vision-and-Applications Romik-Chatterjee.
pdf

[25] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Maŕın-
Jiménez, Automatic generation and detection of highly reliable fiducial
markers under occlusion, 2014, vol. 47.

176

http://lib.myilibrary.com?ID=645682
http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781292153971&uid=none
http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781292153971&uid=none
http://www.emeraldinsight.com/doi/abs/10.1108/02602280310481869
http://www.emeraldinsight.com/doi/abs/10.1108/02602280310481869
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
http://au4sb9ax7m.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+Edge+Detection+Techniques&rft.jtitle=International+Journal+of+Computer+Applications&rft.au=Kaur%2C+Satbir&rft.au=Singh%2C+Ishpreet&rft.date=2016-07-15&rft.issn=0975-8887&rft.eissn=0975-8887&rft.volume=145&rft.issue=15&rft.spage=15&rft.epage=18&rft_id=info:doi/10.5120%2Fijca2016910867&rft.externalDBID=n%2Fa&rft.externalDocID=10_5120_ijca2016910867¶mdict=en-US
https://www.visiononline.org/userAssets/aiaUploads/file/CVP_Advance-Color-Machine-Vision-and-Applications_Romik-Chatterjee.pdf
https://www.visiononline.org/userAssets/aiaUploads/file/CVP_Advance-Color-Machine-Vision-and-Applications_Romik-Chatterjee.pdf
https://www.visiononline.org/userAssets/aiaUploads/file/CVP_Advance-Color-Machine-Vision-and-Applications_Romik-Chatterjee.pdf

[26] “Aruco: a minimal library for augmented reality applications based
on opencv.” [Online]. Available: https://www.uco.es/investiga/grupos/
ava/node/26

[27] “Opencv: Canny edge detection,” Dec 18. 2015. [Online]. Available:
https://docs.opencv.org/3.1.0/da/d22/tutorial py canny.html

[28] M. A. Najjar, M. Ghantous, and M. Bayoumi, Video Surveillance
for Sensor Platforms : Algorithms and Architectures, 1st ed.
New York, NY: Springer, 2014, vol. 114. [Online]. Available:
http://lib.myilibrary.com?ID=547507

[29] W. Burgard, C. Stachniss, M. Bennewitza, and K. Arras, “Introduction
to mobile robotics: Robot motion planning,” July 2011. [On-
line]. Available: http://ais.informatik.uni-freiburg.de/teaching/ss11/
robotics/slides/18-robot-motion-planning.pdf

[30] K. C. Gupta, “On the nature of robot workspace,” The International
Journal of Robotics Research, vol. 5, no. 2, pp. 112–121, Jun
1986. [Online]. Available: http://journals.sagepub.com/doi/full/10.
1177/027836498600500212

[31] M. R. de Gier, “Control of a robotics arm: Ap-
plication to on-surface 3d-printing,” April 6, 2015. [On-
line]. Available: https://repository.tudelft.nl/islandora/object/uuid:
a674a3fa-2534-44c4-b251-1e49a5194079/datastream/OBJ

[32] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics. London:
Springer London, 2009.

[33] P. Abbeel, J. Ho, A. Lee, I. Awwal, H. Bradlow, and J. Schulman,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization,” Tech. Rep., 2012. [Online]. Available: http:
//joschu.net/docs/trajopt-paper.pdf

[34] J. Fan and R. Li, “Statistical challenges with high dimensionality:
Feature selection in knowledge discovery,” Feb 7, 2006. [Online].
Available: http://arxiv.org/abs/math/0602133

[35] A. S. Deo and I. D. Walker, “Minimum effort inverse kinematics
for redundant manipulators,” IEEE Transactions on Robotics and

177

https://www.uco.es/investiga/grupos/ava/node/26
https://www.uco.es/investiga/grupos/ava/node/26
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
http://lib.myilibrary.com?ID=547507
http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-planning.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-planning.pdf
http://journals.sagepub.com/doi/full/10.1177/027836498600500212
http://journals.sagepub.com/doi/full/10.1177/027836498600500212
https://repository.tudelft.nl/islandora/object/uuid:a674a3fa-2534-44c4-b251-1e49a5194079/datastream/OBJ
https://repository.tudelft.nl/islandora/object/uuid:a674a3fa-2534-44c4-b251-1e49a5194079/datastream/OBJ
http://joschu.net/docs/trajopt-paper.pdf
http://joschu.net/docs/trajopt-paper.pdf
http://arxiv.org/abs/math/0602133

Automation, vol. 13, no. 5, pp. 767–775, 1997. [Online]. Available:
http://ieeexplore.ieee.org/document/631238

[36] K. Gochev, V. Narayanan, B. Cohen, A. Safonova, and M. Likhachev,
“Motion planning for robotic manipulators with independent wrist
joints,” May 2014, pp. 461–468.

[37] M. F. Ghajari and R. V. Mayorga, “Specialized prm trajectory
planning for hyper-redundant robot manipulators,” 2017. [Online].
Available: http://www.wseas.org/multimedia/journals/systems/2017/
a605902-779.pdf

[38] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” 2010, pp. 2902–2908. [Online].
Available: http://ieeexplore.ieee.org/document/5509685

[39] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 2006. [Online]. Available: http://msl.cs.uiuc.edu/∼lavalle/
papers/Lav98c.pdf

[40] P. Zips, M. Böck, and A. Kugi, “Fast optimization based motion
planning and path-tracking control for car parking,” IFAC Proceedings
Volumes, vol. 46, no. 23, pp. 86–91, January 1, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016316408

[41] R. Geraerts and M. H. Overmars, “Clearance based path optimization
for motion planning,” vol. 3. IEEE, 2004, p. 2392 Vol.3. [Online].
Available: http://ieeexplore.ieee.org/document/1307418

[42] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, J. A. Bagnell, and S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning¡br¿,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, Sept
13, 2013. [Online]. Available: http://journals.sagepub.com/doi/abs/10.
1177/0278364913488805

[43] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” May
2011, pp. 4569–4574.

178

http://ieeexplore.ieee.org/document/631238
http://www.wseas.org/multimedia/journals/systems/2017/a605902-779.pdf
http://www.wseas.org/multimedia/journals/systems/2017/a605902-779.pdf
http://ieeexplore.ieee.org/document/5509685
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://www.sciencedirect.com/science/article/pii/S1474667016316408
http://ieeexplore.ieee.org/document/1307418
http://journals.sagepub.com/doi/abs/10.1177/0278364913488805
http://journals.sagepub.com/doi/abs/10.1177/0278364913488805

[44] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996. [Online]. Available: http:
//ieeexplore.ieee.org/document/508439

[45] A. M. Bloch, Nonholonomic Mechanics and Control, 2nd ed. New York,
NY: Springer New York, 2015, vol. 24.

[46] A. Masoud, “Kinodynamic motion planning,” IEEE Robotics and
Automation Magazine, vol. 17, no. 1, pp. 85–99, 2010. [Online].
Available: http://ieeexplore.ieee.org/document/5430384

[47] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” May 3, 2010. [Online]. Available:
http://arxiv.org/abs/1005.0416

[48] ——, “Sampling-based algorithms for optimal motion planning,” The
International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,
Jun 2011. [Online]. Available: http://journals.sagepub.com/doi/full/
10.1177/0278364911406761

[49] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” vol. 2, 2000, p. 1001 vol.2.

[50] S. Jain and A. Chhabra, “Tracking path control of robotic manipulators
using radial basis function neural network,” i-Manager’s Journal on
Instrumentation and Control Engineering, vol. 2, no. 3, p. 11, May
1, 2014. [Online]. Available: https://search.proquest.com/docview/
1693778622

[51] M. Likhachev, G. J. Gordon, and Thrun, “Ara*: formal analysis.”
[Online]. Available: http://repository.cmu.edu/compsci/2174

[52] A. Cowley, B. Cohen, W. Marshall, C. J. Taylor, and M. Likhachev,
“Perception and motion planning for pick-and-place of dynamic
objects.” IEEE, 2013, pp. 816–823. [Online]. Available: http:
//ieeexplore.ieee.org/document/6696445

179

http://ieeexplore.ieee.org/document/508439
http://ieeexplore.ieee.org/document/508439
http://ieeexplore.ieee.org/document/5430384
http://arxiv.org/abs/1005.0416
http://journals.sagepub.com/doi/full/10.1177/0278364911406761
http://journals.sagepub.com/doi/full/10.1177/0278364911406761
https://search.proquest.com/docview/1693778622
https://search.proquest.com/docview/1693778622
http://repository.cmu.edu/compsci/2174
http://ieeexplore.ieee.org/document/6696445
http://ieeexplore.ieee.org/document/6696445

[53] S. Klanke, D. Lebedev, R. Haschke, J. Steil, and H. Ritter, “Dynamic
path planning for a 7-dof robot arm.” IEEE, 2006, pp. 3879–3884.
[Online]. Available: http://ieeexplore.ieee.org/document/4059012

[54] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” May 2009, pp.
489–494.

[55] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning
with sequential convex optimization and convex collision checking,”
The International Journal of Robotics Research, vol. 33, no. 9, pp.
1251–1270, Aug 2014. [Online]. Available: http://journals.sagepub.
com/doi/full/10.1177/0278364914528132

[56] C. Gentile and M. Warmuth, “Linear hinge loss and av-
erage margin.” [Online]. Available: http://papers.nips.cc/paper/
1610-linear-hinge-loss-and-average-margin.pdf

[57] D. Coleman, “rviz - ros wiki,” June 15, 2016. [Online]. Available:
http://wiki.ros.org/rviz

[58] “Gazebo,” 2014. [Online]. Available: http://gazebosim.org/

[59] R. Diankov and J. Kuffner, “Openrave: A planning archi-
tecture for autonomous robotics,” July 2008. [Online]. Avail-
able: https://www.ri.cmu.edu/pub files/pub4/diankov rosen 2008 2/
diankov rosen 2008 2.pdf

[60] K. Hauser, “Klamp’t manual v0.7,” March 30, 2017. [Online]. Available:
http://motion.pratt.duke.edu/klampt/KlamptManualv0.7.pdf

[61] C. Zhou, “Isye 4256 supplemental material,” Fall, 1999. [Online].
Available: http://www2.isye.gatech.edu/∼czhou/MotionTypes.pdf

[62] “What’s the difference between rrt and rrt* and which one should
we use.” [Online]. Available: https://www.youtube.com/watch?v=
JeEk CWcRFI

[63] S. V. Shah, S. K. Saha, and J. K. Dutt, “Denavit-hartenberg param-
eterization of euler angles,” Journal of Computational and Nonlinear
Dynamics, vol. 7, no. 2, p. 21006, 2012.

180

http://ieeexplore.ieee.org/document/4059012
http://journals.sagepub.com/doi/full/10.1177/0278364914528132
http://journals.sagepub.com/doi/full/10.1177/0278364914528132
http://papers.nips.cc/paper/1610-linear-hinge-loss-and-average-margin.pdf
http://papers.nips.cc/paper/1610-linear-hinge-loss-and-average-margin.pdf
http://wiki.ros.org/rviz
http://gazebosim.org/
https://www.ri.cmu.edu/pub_files/pub4/diankov_rosen_2008_2/diankov_rosen_2008_2.pdf
https://www.ri.cmu.edu/pub_files/pub4/diankov_rosen_2008_2/diankov_rosen_2008_2.pdf
http://motion.pratt.duke.edu/klampt/KlamptManualv0.7.pdf
http://www2.isye.gatech.edu/~czhou/MotionTypes.pdf
https://www.youtube.com/watch?v=JeEk_CWcRFI
https://www.youtube.com/watch?v=JeEk_CWcRFI

[64] S. A. Nugroho, A. S. Prihatmanto, and A. S. Rohman, “Design and
implementation of kinematics model and trajectory planning for nao
humanoid robot in a tic-tac-toe board game,” vol. 4. IEEE, 2014, pp.
1–7. [Online]. Available: http://ieeexplore.ieee.org/document/7111783

[65] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for
the inverse kinematics problem,” Graphical Models, vol. 73, no. 5,
pp. 243–260, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1524070311000178

[66] J. Zhao and N. Badler, “Inverse kinematics positioning using nonlinear
programming for highly articulated figures,” ACM Transactions on
Graphics (TOG), vol. 13, no. 4, pp. 313–336, Oct 1, 1994. [Online].
Available: http://dl.acm.org/citation.cfm?id=195827

[67] J. Karpinska, K. Tchon, and M. Janiak, “Approximation of
jacobian inverse kinematics algorithms: Differential geometric vs.
variational approach,” Journal of Intelligent and Robotic Systems,
vol. 68, no. 3-4, pp. 211–224, Dec 1, 2012. [Online]. Available:
https://search.proquest.com/docview/1113738401

[68] S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” Mar 26, 2015. [Online]. Available:
http://arxiv.org/abs/1503.07619

[69] R. Gordon, “Teleoperating robots with virtual reality,” Oc-
tober 11, 2017. [Online]. Available: http://news.mit.edu/2017/
mit-csail-new-system-teleoperating-robots-virtual-reality-1009

[70] K. Kinugawa and H. Noborio, “A shared autonomy of multiple mobile
robots in teleoperation.” IEEE, 2001, pp. 319–325. [Online]. Available:
http://ieeexplore.ieee.org/document/981922

[71] S. Jain, A. Farshchiansadegh, A. Broad, F. Abdollahi, F. Mussa-
Ivaldi, and B. Argall, “Assistive robotic manipulation through shared
autonomy and a body-machine interface,” vol. 2015. IEEE, 2015,
pp. 526–531. [Online]. Available: http://ieeexplore.ieee.org/document/
7281253

[72] W. S. Kim, B. Hannaford, and A. K. Fejczy, “Force-reflection and shared
compliant control in operating telemanipulators with time delay,” IEEE

181

http://ieeexplore.ieee.org/document/7111783
http://www.sciencedirect.com/science/article/pii/S1524070311000178
http://www.sciencedirect.com/science/article/pii/S1524070311000178
http://dl.acm.org/citation.cfm?id=195827
https://search.proquest.com/docview/1113738401
http://arxiv.org/abs/1503.07619
http://news.mit.edu/2017/mit-csail-new-system-teleoperating-robots-virtual-reality-1009
http://news.mit.edu/2017/mit-csail-new-system-teleoperating-robots-virtual-reality-1009
http://ieeexplore.ieee.org/document/981922
http://ieeexplore.ieee.org/document/7281253
http://ieeexplore.ieee.org/document/7281253

Transactions on Robotics and Automation, vol. 8, no. 2, pp. 176–185,
1992. [Online]. Available: http://ieeexplore.ieee.org/document/134272

[73] P. Birkenkampf, D. Leidner, and C. Borst, “A knowledge-driven shared
autonomy human-robot interface for tablet computers.” IEEE, 2014,
pp. 152–159. [Online]. Available: http://ieeexplore.ieee.org/document/
7041352

[74] K. Hauser, “Recognition, prediction, and planning for assisted
teleoperation of freeform tasks,” Autonomous Robots, vol. 35, no. 4, pp.
241–254, Nov 2013. [Online]. Available: https://search.proquest.com/
docview/1437177065

[75] “Robot control devices.” [Online]. Available: http://www.
trossenrobotics.com/c/robot-control-devices.aspx

[76] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for
position and orientation estimation,” Apr 20, 2017. [Online]. Available:
http://arxiv.org/abs/1704.06053

[77] I. Muttschall, “Wii remote accuracy,” Tech. Rep., 12/17/ 2009. [Online].
Available: http://vigir.ee.missouri.edu/∼gdesouza/ece4220/Projects/
F2009/Isaac%20Muttschall/Embedded%20Final%20Report.pdf

[78] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved
solving of generic inverse kinematics.” IEEE, 2015, pp. 928–935.
[Online]. Available: http://ieeexplore.ieee.org/document/7363472

182

http://ieeexplore.ieee.org/document/134272
http://ieeexplore.ieee.org/document/7041352
http://ieeexplore.ieee.org/document/7041352
https://search.proquest.com/docview/1437177065
https://search.proquest.com/docview/1437177065
http://www.trossenrobotics.com/c/robot-control-devices.aspx
http://www.trossenrobotics.com/c/robot-control-devices.aspx
http://arxiv.org/abs/1704.06053
http://vigir.ee.missouri.edu/~gdesouza/ece4220/Projects/F2009/Isaac%20Muttschall/Embedded%20Final%20Report.pdf
http://vigir.ee.missouri.edu/~gdesouza/ece4220/Projects/F2009/Isaac%20Muttschall/Embedded%20Final%20Report.pdf
http://ieeexplore.ieee.org/document/7363472

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Statement
	1.2 Customer Value Proposition

	2 Background
	2.1 Manufacturing with Sewing
	2.1.1 Existing Robotic Sewing Tasks

	2.2 Computer Vision
	2.2.1 Camera Parameters
	2.2.2 Object Identification: Classic Computer Vision Techniques

	2.3 Motion Planning
	2.3.1 Trajectory Planning
	2.3.2 Problems with High-Dimensionality and Potential Solutions
	2.3.3 Existing Motion Planning Algorithms
	2.3.4 Visualization Platforms

	2.4 Joint Actuation and Control
	2.4.1 Forward Kinematics and DH Parameters
	2.4.2 Inverse Kinematics

	2.5 Shared Autonomy
	2.5.1 Input Devices

	3 Concept of Operations
	3.1 Stakeholders
	3.2 Use Cases
	3.3 User Stories
	3.4 Requirements
	3.4.1 Functional Requirements
	3.4.2 Nonfunctional Requirements

	4 Technical Documentation
	4.1 Workspace Layout
	4.2 The Robot
	4.2.1 End of Arm Tooling

	4.3 System Overview
	4.3.1 Computer Requirements
	4.3.2 ROS Architecture
	4.3.3 Program Flow

	4.4 User Interface
	4.4.1 UI Design
	4.4.2 Input Devices

	4.5 Computer Vision
	4.5.1 Camera Setup
	4.5.2 CV Software and Node Architecture
	4.5.3 Tasks
	4.5.3.1 User Views
	4.5.3.2 Calculate Sewing Machine and Robot Offsets
	4.5.3.3 Vamp Detection

	4.6 Motion Planning
	4.6.1 Modeling the Workspace
	4.6.2 Transformations
	4.6.3 Simulating Motion: Moveit
	4.6.4 Simulation Motion: Klamp't
	4.6.5 IK Solving
	4.6.6 Motion Planner Analysis
	4.6.7 EEF Position Determination

	5 Evaluation
	5.1 Social Implications
	5.2 Project Execution Evaluation
	5.2.1 Execution Summary
	5.2.2 Timeline Adjustments
	5.2.3 Risk Management
	5.2.4 Budget and Expenditure Justification

	5.3 Product Evaluation
	5.3.1 Hardware Requirements
	5.3.2 Motion Planning Performance
	5.3.3 Fabric Manipulation Performance
	5.3.4 Overall System Performance

	6 Recommendations for Future Work
	6.1 Computer Vision
	6.2 Control Interface
	6.3 Motion Planning
	6.4 Overall System Improvements

	Appendices
	A Robot Specification Sheet
	B Robotiq 2-Finger Adaptive Gripper Specifications Sheet
	C Trade Study
	C.1 Camera Selection
	C.2 Gripper Selection

	D UI Feature Lists: Buttons
	E UI Features Lists: Messages
	F UI Features Lists: Camera Views
	G UI Feature Lists: Input Device Interface
	H Pros and Cons of Potential Input Devices
	I Test Plans
	I.1 Offset Calculations
	I.2 Inverse Kinematic Solving
	I.3 Landmark Identification
	I.4 Robot Controller
	I.5 Gripper and Gripper Controller
	I.6 Camera Nodes
	I.7 User Interface
	I.8 Input Devices
	I.9 Integration

	J Construction
	K Link Masses and Inertial Matrices
	L Motion Planning Analysis Criteria
	M Timeline
	N Budget and Expenditure Justification
	O Motion Planner Evaluation Results
	P Gap Analysis
	Q Authorship Table

