
Collision Identification Program
(CIP)

A Collision Detection Toolkit for Point Clouds

A Major Qualifying Project Report
Submitted to the Faculty of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degrees of Bachelor of Science in

Computer Science
and

Electrical & Computer Engineering
by

Krysta R Murdy

Project Advisors:

Professor Alexander M Wyglinski, ECE

Professor Hugh C Lauer, CS

25 April 2019

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without editorial

or peer review. For more information about the projects program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

The goal of this project is to develop a functional collision detection toolkit

independent of hardware and additional software. The fundamental features of this

project include the following: accessing and parsing the desired data, checking for

significant changes in the point cloud, and determining basic information on the

points where a movement is detected. In order to enhance practicality for collision

detection, a collision flag able to be implemented in an external interrupt routine

was included. Many of these features can be found in existing collision detection

software, however, these products are often costly, require specific hardware, and are

challenging to implement with an existing product. For this reason, the collision

detection software created in this project, CIP, is a Toolkit API able to work with

any software or hardware that processes point clouds. Going forward, this project

could be continued in several ways, mainly: object identification and pathfinding for

collision avoidance. Ultimately, CIP is designed as a collision detection Toolkit API

for point clouds that is able to be offered to consumers and smaller organizations

who may not have a need for the more costly and complicated existing options.

i

Acknowledgements

This project would not have been possible without. . .

• Guidance from my advisors, Professors Wyglinski and Lauer,

• Support and a LiDAR from the lovely people at HYPACK, and

• Encouragement from my family and friends, with nothing more inspiring than

my grandfather’s excitement!

Thank you all for your passion and support!!

ii

Contents

Abstract i

Acknowledgements ii

Contents iv

List of Figures v

List of Tables vi

1 Introduction 1

2 Point Cloud & LiDAR Fundamentals 6

3 Proposed Approach 14

4 Implementation & Methodology 16

VLP-16 Driver Development . 16

Creating the CIP Toolkit API . 20

Forming the Complete Program . 20

5 Results & Discussion 22

6 Conclusions & Future Work 25

References 26

Appendix A: Main Program CPP File 28

Appendix B: VLP-16 Driver CPP File 30

Appendix C: VLP-16 Driver Header File 38

Appendix D: CIP Toolkit API CPP File 41

Appendix E: CIP Toolkit API Header File 45

Appendix F: Global Data Settings Files 47

iii

Appendix G: Winsock Tutorial Code 48

Appendix I: VLP-16 Azimuth Pseudocode 52

iv

List of Figures

1 Results Graph for Self-Navigation Technological Race [3] 1

2 Results Table for Self-Navigation Technological Race [3] 2

3 Point Cloud Data Visualization Incorporating Other Traits [5] 3

4 Possible Ways to Visualize Point Cloud Data 4

5 VLP-16 Coordinate System Representation [10] 7

6 3D Point Cloud Data Visualization With VLP-16 8

7 3D Point Cloud Data Visualization Outside 8

8 3D Point Cloud Data Visualization Side View [11] 9

9 VLP-16, Velodyne Puck LiDAR Sensor [10] 9

10 Inside the VLP-16 [10] . 10

11 Azimuth, or Angle Alpha, Put Into Perspective 11

12 VLP-16 Data Packet Structure [10] 12

13 Example of VLP-16 Raw Data, Start of Data Packet [10] 13

14 Example of VLP-16 Raw Data, End of Data Packet [10] 13

15 Project Milestone and Timeline Flowchart 15

16 Class Diagram for the Program . 17

17 Structs Created for the Raw Data Packet 19

18 Implementing CIP in the Main Class 21

19 Results of a Code Analysis on the Program 24

v

List of Tables

1 Conversions from Spherical to Cartesian Coordinates [9] 6

2 Project Goals and Where They Are Implemented 15

vi

Collision Identification Program Introduction

1 Introduction

Self-navigation is gaining momentum as technological innovation has led to its

inclusion in cars, drones, planes, robots, and numerous other applications. As

modern computing technologies are increasingly powerful at cost effective prices,

the demand for this method of easier, more computer-controlled movement has

risen. This can be seen by the influx of companies striving to develop significantly

more affordable self-driving cars [1]. This technological race is rapidly gaining

attention and momentum as companies continue to push forward for the most

self-sufficient and affordable driverless vehicle [2]. Dozens of companies are

participating in this race, uncovering new knowledge and causing greater demand

for innovation in related fields as well. The current results for this race are shown

in Figure 1 [3]. As can be seen in this figure, this area of innovation has the

attention of some very influential companies. Figure 2 shows these results in a table

form and demonstrates how the success of commercialized self-navigation could

lead to lower accidents and higher road efficiency by eliminating human error [3].

Figure 1: Results Graph for Self-Navigation Technological Race [3]

1

Collision Identification Program Introduction

Figure 2: Results Table for Self-Navigation Technological Race [3]

2

Collision Identification Program Introduction

Self-navigation requires the ability to assess situations quickly and completely

in real-time, largely for collision aversion. For this to be possible, the product must

be able to maintain a map of the surroundings, perform calculations and risk

analysis on incoming data, and much more, possibly even having the ability to

learn from past encounters. In order for all of this to take place, there must be a

way to collect information about the world around the product, and this is

accomplished through sensors. Thus, achieving self-navigation begins with

efficiently processing large quantities of data from numerous sensors in order to

infer the surrounding layout and current situation. A common form of receiving

data for surrounding objects is through a data visualization format known as a

point cloud. For the purpose of this project, a point cloud is a 3D view of a space

represented as a multitude of ”x,” ”y,” ”z” coordinates and other information

marking object boundaries as observed from the sensor’s point of view. Figure 4

shows some examples of how point clouds can be visualized, also demonstrating

variation based on how data is gathered. Often the data held in this structure also

includes other information regarding various properties of detected objects.

Examples of this are the various colors in some of the visualizations in the figures

below. The various colors could represent a material change, a specific distance or

height, or numerous other information as well. This is very easy to see in Figure 3.

Processing and interpreting this kind of information in real time would be

invaluable for detecting and avoiding hazards and collisions [4].

Figure 3: Point Cloud Data Visualization Incorporating Other Traits [5]

3

Collision Identification Program Introduction

(a) Airborne Sensor [6] (b) Grounded Sensor [7]

(c) Mobile Sensor [6]

Figure 4: Possible Ways to Visualize Point Cloud Data

With a the primary focus being on an efficient and accurate collision detection

software, some aspects most appealing to potential customers, namely price,

intuitiveness, and adaptability have been overshadowed [1]. Often these products

are designed for specific hardware, tied to a full program, connected to a unique

sensor-suite, or something along these lines. This yields a product bogged down by

the price of hardware and additional software that is designed to work by itself.

With the current solutions, if an existing product, one with fully implemented

hardware and software, gains the need for collision detection, the entire product

would most likely need to be reworked. To implement one of the current collision

detection solutions into a product such as this would require extensive rewriting of

4

Collision Identification Program Introduction

the existing program and possibly also replacing a large portion of the hardware to

accommodate for the restrictions of the collision detection program. This extra work

is unnecessary and incredibly expensive.

With so much work and progress towards an efficient and accurate collision

detection solution, the focus now must shift towards the needs of possible users:

price, intuitiveness, and adaptability. The current need is for a collision detection

product independent of specific hardware and programs; one that can be easily

incorporated with an existing product. In order to achieve this, the program needs

to be setup such that the collision detection processes are separate from any type of

data processing and user interfacing. The goal is for effective simplicity.

Once an intuitive and adaptable solution for collision detection is created, even

better solutions become a possibility, such as one capable of performing computations

like the highly accurate and efficient versions yet with the simplicity of this one.

This report details the process of developing the basis for a point cloud collision

detection toolkit that can work with point cloud producing sensors. The fundamental

features of this project include the following: accessing and parsing the desired data,

checking for significant changes in the point cloud, and determining basic information

on the points where a movement is detected. In order to enhance practicality for

collision detection, a collision flag able to be implemented in an external interrupt

routine was included. This report walks through the initial approach to a solution,

the process of implementing a design, the discussion of results and how the program

evolved, and finally the possible future applications. Many of these features can

be found in existing collision detection software, however, these products are often

costly, require specific hardware, and are challenging to implement with an existing

product. For this reason, the collision detection software created in this project was

made into a Toolkit API able to work with any software or hardware that processes

point clouds. Going forward, this project could be continued in several ways, mainly:

functionality on a moving sensor, object identification, and determining possible

paths to avoid a collision. Ultimately, the goal of this project is to create a collision

detection toolkit for point clouds that is functional on a stationary sensor and could

be marketed to consumers and smaller organizations who may not have a need for

the more costly and complicated existing options.

5

Collision Identification Program Point Cloud & LiDAR Fundamentals

2 Point Cloud & LiDAR Fundamentals

This section provides the basics on the point cloud data type and LiDARs.

Included is a breakdown of the specific data packet produced by the LiDAR used

for this project, and each of its aspects with their uses are explained. Upon

completion of this chapter, the reader should have a comprehensive understanding

of this data packet and how each of the individual pieces of information are used.

Developing a point cloud collision detection toolkit requires enough understanding

of point cloud data to manipulate the data set for calculations. For this project,

familiarity with point clouds was imperative for developing a comprehensive program

for testing. A point cloud, in its simplest form, is a set of data points in a defined

coordinate system.

The point clouds used for this project were a set of 3D data points in the Spherical

coordinate system. The Spherical coordinate system denotes a position in 3D space

as if the point is on the edge of a sphere by indicating an alpha angle, α, on the

horizontal plane, an omega angle, ω, elevation on the vertical plane, and a radius,

r [8]. In order to attain typical (x, y, z) coordinates, calculations need to be made

to convert from Spherical to Cartesian coordinates. Spherical coordinates are a

representation of points in a sphere within the (x, y, z) coordinate system, meaning

that the alpha angle is in the xy-plane and the omega angle is a change down from

the positive z-axis [8]. A visual representation of the Spherical coordinate system in

general and relative to the sensor used is shown in Figure 5. See Table 1 below for

the equations from Spherical to Cartesian coordinates.

Table 1: Conversions from Spherical to Cartesian Coordinates [9]

Cartesian Spherical
x r*sin(ω)cos(α)
y r*sin(ω)sin(α)
z r*cos(ω)

6

Collision Identification Program Point Cloud & LiDAR Fundamentals

Figure 5: VLP-16 Coordinate System Representation [10]

Displaying all of the points in point cloud can be done using the right software.

When displayed together, the points print and image of the surroundings as seen

in Figure 6. In this image, the white dot at the top is the sensor that scanned the

environment and created the point cloud. This sensor was on a drone above a park,

and the resulting image shows the trees and ground with incredible detail, including

a color gradient for different object heights. The next image, 7, is another image

taken with the same sensor but from a couple meters above the ground. The sensor

was positioned outside with a building on one side and thick shrubbery on the other.

The windows of the building stand out as black squares because the light from the

sensor was not reflected, so there are no points in those areas. The circular lines near

the center of the image indicate the location of the sensor. In this case, the sensor

was positioned in the very center of the circle, but, because it was connected to a

GPS system, the point cloud can be seen shifting as the sensor moves. This is why

some aspects of the image are doubled. The third point cloud image, Figure shows

a top down of the sensor in a vertical orientation – so as if looking at the sensor’s

7

Collision Identification Program Point Cloud & LiDAR Fundamentals

side as shown in the Side View section of Figure 5. When compared to the image

of how the sensors are positioned in the device, Figure 10, how the data is recorded

can be easily observed by the parallel of the two figures.

Figure 6: 3D Point Cloud Data Visualization With VLP-16

Figure 7: 3D Point Cloud Data Visualization Outside

8

Collision Identification Program Point Cloud & LiDAR Fundamentals

Figure 8: 3D Point Cloud Data Visualization Side View [11]

These figures were actually taken several months ago by the same sensor used

in this project for obtaining point clouds for testing: a Velodyne Puck LiDAR,

specifically the VLP-16. A LiDAR, short for Light Detection And Ranging, is a

sensor that uses light in the style of radar. The VLP-16, has 16 infrared lasers, each

with an infrared detector, that internally spin at a default of 600 RPM to scan the

surroundings [10]. Every laser fires about 18,000 times per second, yielding nearly

300,000 data points every second when in single-return mode1 [10]. The VLP-16 is

shown below – inside and out, Figures 10 and 9 respectively.

Figure 9: VLP-16, Velodyne Puck LiDAR Sensor [10]

1The VLP-16 has multiple options for interpreting and returning laser readings. In single-return
mode each laser/detector pair returns one measurement per firing. This is the mode used in this
project and greater detail is not necessary for understanding the project or this report.

9

Collision Identification Program Point Cloud & LiDAR Fundamentals

Figure 10: Inside the VLP-16 [10]

A bounty of data points is only one part of the extensive data packet returned

by the VLP-16. The VLP-16 data packet is one instance of information from the

sensor, and each one contains a protocol header2, a timestamp, factory bytes, and

data from 24 firing sequences contained in 12 data blocks. All of this results in 1,248

bytes containing enough information to explore a magnitude of implementations.

The timestamp contained in this data packet is a 32-bit unsigned integer that

indicates the moment the first data point of the first firing sequence in the first data

block is recorded. This timestamp represents the number of elapsed microseconds

since the start of the current hour [10]. This value is particularly important for any

georeferencing applications. In this project, the timestamp is primarily used when

determining the velocity of moving objects.

The factory bytes indicate the device model with a product ID and the

previously mentioned return mode. The device model determines the order of

vertical angles used for calculating the omega angle sine and cosine offset. The

return mode determines how the azimuths and data points are organized within the

2The protocol header is necessary for sending information via a UDP packet and is not used in
any significant way for this project [10].

10

Collision Identification Program Point Cloud & LiDAR Fundamentals

data packet [10].

A data block is where the necessary location information is located. A data

packet has 24 data blocks, and each data block contains a flag3, an azimuth, and two

firing sequences.

An azimuth is the same as the alpha angle of the Spherical coordinate system.

The azimuth value stored in a data block is an unsigned integer and represents the

alpha angle in 100ths of a degree [10]. This angle is the location horizontally around

the VLP-16 of the first laser in the first sequence at the time of firing. The azimuth is

necessary for converting from Spherical to Cartesian coordinates which is necessary

for locating the position of movement later on in this project. For a visualization of

the azimuth, alpha angle, value, see Figure 11.

Figure 11: Azimuth, or Angle Alpha, Put Into Perspective

A firing sequence takes approximately 55.296 μs and is the firing and recharge of

all 16 laser channels of the VLP-16. A laser channel is one 903 nm laser emitter and

infrared detector pair. Each channel has a laser ID number and a fixed elevation

angle relative to the sensor’s horizontal plane – the omega angle in the Spherical

coordinate system [10]. The omega angle for each laser is assigned based on the

model of device and is determined by the laser’s location in the data packet. This

value is also necessary for conversions and determining locations in this project.

Each laser channel produces a three byte data point thus resulting in 32 data points

3The flag is only used to determine the beginning of a data block and to ensure that the data is
not stored improperly [10].

11

Collision Identification Program Point Cloud & LiDAR Fundamentals

per data block and 384 per data packet [10]. Two of the data point bytes are for

an unsigned integer representing the distance to the detected object within 2 mm

granularity. The third byte represents calibrated surface reflectivity, which is an

assigned value for the strength of the returned laser beam. The VLP-16 measures

object reflectivity using comparisons with known targets in factory testing. The

value is placed on a range from diffuse reflector to retroreflector [10]. The specificity

of this value allows for potential applications in object identification.

A visual break down of the VLP-16 data packet is shown in Figure 12 below.

Figure 12: VLP-16 Data Packet Structure [10]

The VLP-16 data packet is a series of hexadecimal values that correspond to the

different aspects of the data packet based on their order as previously discussed. Two

examples of the raw data packet can be seen in Figure 13 which shows the start of

the data packet with some calculations for the represented data and Figure 14 which

shows the end of the data packet with some other calculations.

12

Collision Identification Program Point Cloud & LiDAR Fundamentals

Figure 13: Example of VLP-16 Raw Data, Start of Data Packet [10]

Figure 14: Example of VLP-16 Raw Data, End of Data Packet [10]

13

Collision Identification Program Proposed Approach

3 Proposed Approach

This section details the approach originally proposed for this project. The main

goals of the project are overviewed and the final deliverable is detailed in order to

give a complete view of the project.

The goal is to develop a functional collision detection toolkit independent of

hardware and additional software. The Toolkit API assumes data collection and

parsing has occurred, the corrected data is accessible, and any user collision

notifications are handled elsewhere. Therefore, the Collision Identification

Program, CIP for short, is primarily a collection of calculations and ”getter”

methods able to return desired collision information.

The basis of any collision detection is the evaluation of data to determine if any

surrounding object moves towards the sensor. When a change is detected, the

object’s position and possible acceleration is determined in order to achieve

accurate threat analysis. The logical next step is to relay this information

somewhere so a possible collision does not go unnoticed. This can be achieved with

a basic interrupt routine for collision alerts. These features are important in all

collision detection, so the uniqueness of CIP lies in its design. In order to achieve

the desired independence and modularity, the toolkit could be developed as an

API. This method is ideal for simple, intuitive incorporation with existing code as

it has the ability to output all important collision information without requiring

anything beyond the users implementation.

In order to test functionality, CIP needs to be implemented into an existing

program able to access, parse, and store point cloud data as well as call the API.

For this reason, the creation of a device driver for the VLP-16 is necessary to

connect with the hardware and collect, parse, and correct the point cloud data.

This corrected data is stored globally outside of the driver in variables located in a

separate class allowing it to be accessible. The final detail for developing a test

product is establishing a main class that combines these steps in a basic program

and implements CIP.

14

Collision Identification Program Proposed Approach

Table 2: Project Goals and Where They Are Implemented

Project Goal Program Part
Access and parse point cloud data Device Driver
Set up custom Toolkit API CIP
Implement a basic interrupt routine for collisions CIP/Main
Determine if any surrounding objects have moved CIP
Find current position and velocity of moving objects CIP
Calculate probability and potential severity of collisions CIP

Table 2 above indicates the primary project goals and where they fit into the

project design. Figure 15 shows how these goals progress into the final intended

product. The testing for this project is fairly minimal, in order to prove that the

project is functional, CIP must be implemented into an existing program with ease.

If this is the case and the product is able build, compile, and function to the extent

of the above goals, then the project has been proved successful. This proves that

collision detection software can be simplified and improved not only for stronger

collision detection, but for a greater user experience.

Figure 15: Project Milestone and Timeline Flowchart

15

Collision Identification Program Implementation & Methodology

4 Implementation & Methodology

This section will go through the process of developing this project – from making

the VLP-16 driver to creating the CIP API to implementing everything in a test

program. The interaction of the classes designed for these aspects of the project

is detailed and can be seen in the class diagram below, Figure 16. The approach

taken to develop this project is explained here in order of the steps taken to best

encapsulate the thought process throughout development.

VLP-16 Driver Development

Creating a point cloud collision detection system requires the ability to acquire

and work with point clouds for testing and other aspects of development. For this

reason, the first step of this project was to make a device driver for the VLP-16.

A device driver is an instance of software that connects to a piece of hardware,

requests information from it, performs necessary corrections on this data, and then

stores the end result. Since the purpose for the driver in this project was only to

attain basic location information, the functionality of the driver need only meet these

basic requirements. The VLP-16 driver functionalities and interactions are outlined

in the class diagram below, 16. As this diagram shows, the driver class has methods

for connecting to the device, receiving information, and modifying raw data. These

three main functionalities each have many aspects necessary for achieving the main

goal.

16

Collision Identification Program Implementation & Methodology

Figure 16: Class Diagram for the Program

The very first step in developing this program was to connect to the VLP-16

and receive data. In order to achieve this, the Connect() method was created to

connect to Port 2368, which is where data from the device can be accessed [10]. This

function was developed using Winsock, a Microsoft programming interface used for

creating server and client applications [12]. The code for this function was based on

the series of Winsock tutorials from Microsoft’s online documentation, excerpts from

these can be found in Appendix F. After Winsock was setup and initialized in the

driver, a client socket was created to receive data from the VLP-16 which acts as a

server. Following the Winsock tutorial, a client socket was created by connecting to

the defined port, requesting the server’s IP address, and calling various functions to

check for errors [13]. Next, the socket was connected to the server and, the program

was ready to receive data from the VLP-16. Since data receiving occurs later in

the driver, the Connect() method returns the socket to be used in the GetData()

method.

Once the connection is established, the Connect() method initializes some of the

global variables and calls the wCorrections() method to set the omega corrections

for each laser. Omega values, the vertical angles of the Spherical coordinate system,

vary by the model of the Velodyne device and are given as a list in the user manual

[10]. This list of values is used to determine the sine and cosine of each vertical angle

17

Collision Identification Program Implementation & Methodology

for later use in the conversion from Spherical to Cartesian coordinates.

The VLP-16 continuously sends data when it is connected. For this reason, a

function, the GetData() method, was created in order to poll the device for

information when needed. Polling the device regulates the amount of information

processed by the driver, thus making the program more efficient. The GetData()

method uses the previously created socket to periodically receive data from the

VLP-16. This data is immediately placed in a character buffer of size 1248 – since a

character is the equivalent of 1 byte, this allocates the exact number of bytes as one

VLP-16 data packet which is in hexadecimal. In order to be able to access this data

in the form of a data packet, a DataPacket struct was created, shown in Figure 17.

This struct is broken down exactly as the data packets are arranged, as shown in

Figure 12. To achieve this, additional structs DataPoint, DataBlock, and Header

were also created, Figure 17. Since the received data is stored as a character array,

the information must to be copied from this area of memory into an area of

memory already allocated for a DataPacket. With the data properly formatted and

stored in memory, the ParseData() method is called to handle the raw data.

18

Collision Identification Program Implementation & Methodology

1 typedef struct

{

3 unsigned short distance;

unsigned char reflectivity;

5 } DataPoint;

7 struct DataBlock

{

9 unsigned short flag;

unsigned short alpha;

11 DataPoint dataPoints[NUM_DATA_POINTS];

};

13

struct DataPacket

15 {

DataBlock dataBlocks[NUM_DATA_BLOCKS];

17 unsigned int timestamp;

unsigned char mode; // return mode

19 unsigned char product; // product ID

};

21

struct Header

23 {

BYTE head[42];

25 };

Figure 17: Structs Created for the Raw Data Packet

The data from the VLP-16 then goes through the ParseData() method, a function

that handles the corrections for sensor placement and arranges the data in an easily

manageable way. The biggest responsibility of this function is converting the data

from Spherical to Cartesian coordinates. In order to do this, the omega value for

each laser was stored in a global constant array and used to create arrays of sine and

cosine corrections for the corresponding lasers. These values are given in VLP-16

user manual and are listed in order of the lasers.

The next important bit of information for the conversion is the alpha angle, or

the azimuth, of each firing sequence. Since only one azimuth is given per data block,

the azimuth for the second firing sequence needed to be interpolated in order to have

a more accurate data conversion. The code for interpolating the second azimuth of

each data block was based on the azimuth pseuedocode listed in both user manuals

[10][14], seen in Appendix H. To attain this value, the difference between the azimuth

19

Collision Identification Program Implementation & Methodology

values of the current data block and the next data block was divided in half and

added to the value of the current azimuth. These azimuth values are used to make

the remaining sine and cosine functions needed for the conversion to Cartesian. The

final value needed to complete this conversion is the distance from the sensor to the

measured data point. With all of this information calculated and assigned to the

correct lasers, the data points can be converted to Cartesian coordinates by using

the formulas given in Table 1 and shown in Figure 5.

Creating the CIP Toolkit API

Since the API’s functionality was essentially math and ”getter” methods, a logical

place to start was with what attributes the class will need to be able to provide. For

this reason, CIP was essentially programmed in reverse. First, the function calls

were implemented in the main function as seen in Figure 18. Next, the attributes

and their respective getter methods where added to the header file and implemented

in the most basic form in the cpp file. Once the attributes are established, they need

to be initialized somewhere, so constructor and decontructor methods were added

to the CIP class. With all of the set up complete, all that remained was adding the

math. The math implemented was fairly basic – just typical Pythagorean Theorem

math and change in distance and speed calculations.

Forming the Complete Program

Once both the driver and toolkit were complete, all that remained was

implementing them into one program. This was accomplished by creating a main

class with a main() function that handled function calls. With the code arranged

in the main class, testing began. At first, testing ran into several challenges with

correctly establishing the VLP-16 as a server, but once the connection was

successful, the program was able to build, compile, and function properly.

20

Collision Identification Program Implementation & Methodology

Figure 18: Implementing CIP in the Main Class

21

Collision Identification Program Results & Discussion

5 Results & Discussion

This section goes through the numerous learning experiences presented

throughout project development and testing. The significant challenges

encountered are described with their respective solutions and outcomes. Also,

discussed in this section are some aspects of the project that have the potential to

be more precise and efficient, and why this potential was not acted on given the

project’s specific needs.

Some of the main challenges encountered included: getting received data into a

data packet, getting data into CIP, and making the API as simple to implement as

possible. This last point required frequent refactoring and process rethinking to get

the current solution. Due to the goals of this project, implementing an interrupt

routine seemed rather impractical for achieving the desired adaptable and intuitive

solution. For this reason, the Collide() function was created. This method can easily

be used as a flag for an external interrupt routine without making the program too

cumbersome or limiting possible applications. Thus, this design change broadened

CIPs usage and simplified its implementation into existing products.

Testing the VLP-16 yielded an error due to setting it up properly with the

computer. In order for the VLP-16 to behave as the expected server, the device

running the program must be disconnected from the internet, and the IP address

must be adjusted accordingly to establish the VLP-16 as the server. Without this

step, the program will build and compile but will not get past the recv() method in

the GetData() method.

As mentioned, the device driver created is a basic version of an incredibly complex

and diverse system. If this were to be used for anything more intensive than testing,

it would be advisable to implement threads and a more precise system for polling.

Threads would help ensure that data will not be lost during processing. The program

takes time to correct and alter data, and while this is happening, the sensor is still

producing vast amounts of data. By implementing threads, much less of this data

would be lost during other processes. This is especially important when working

with high speed applications, since the missing data effectively reduces the system’s

capability to respond to rapid changes. Since the program is very small, there is not

much concern that a significant amount of data will be lost due to a busy processor.

In this program, the data is collected back to back in the main function and the

calculations are performed afterwards, so the two readings being compared will not

22

Collision Identification Program Results & Discussion

be affected much by a lack of threads. This method of implementation does not fully

use the polling function of the driver completely either. But, again, since the data

is being compared in the way it is, this is not important for my program. Overall,

for a true collision detection program, it would be imperative to have accurate data

at precise times to ensure the data is correct and processed as quickly as possible.

Determining a full sweep of points, a full rotation, around the VLP-16 proved a

bit challenging as well. Since the readings do not necessarily start at 0 degrees every

time, the initial value must be stored, but the azimuth value can change by small

or large increments and is in hundredths of a degree. For this reason, it is highly

improbable that a full rotation around would end at the same starting value. Because

of this, some of the data may not yield a full point cloud around the device. Given

more time, it would be preferable to look into better solutions for this problem.

For the Toolkit API, much of the collision detection is very simple and would

not actually be specific enough for a system or user to know how to act or the true

status/threat of surrounding movement. Since the primary focus of this project was

implementing CIP into an existing program, the toolkit itself is a proof of concept

for developing a program complete enough for testing implementation took a

significant amount of work to develop properly. Creating more extensive

calculations in the toolkit would yield much more accurate tests and results for

testing collision detection.

Overall, the testing of CIP in a complete program went very well. The program

builds, compiles, and runs effectively without any warnings or errors. Implementing

CIP into the program took less than 10 lines of code in the main function and has

very few requirements to be successful. In implementing CIP, the same challenge as

receiving data from the VLP-16 presented itself: CIP uses its own data struct for the

vectors of information, meaning the inputted point clouds must be set to this data

type. In order to accomplish this, the same solution was used as before, and the data

was copied from the original memory space to a space in memory previously cast as

the CIP data type. If the program CIP is being implemented in is fairly new, then

this could be avoided by using this data type throughout the code, but for ease of

implementation, it is absolutely not necessary. The other requirements of CIP are

that the currently the point clouds must be vectors of the same size and the data

type requires certain information and must be 3D. Further development would be

able to ease these requirements to further simplify CIP implementation.

In testing the program as a whole, a full code analysis was run through the

23

Collision Identification Program Results & Discussion

compiler. This analysis resulted in two warnings about data loss when converting

from one type of data to another in the device driver, shown in Figure 19. The

data in question is the timestamp of the data packet. Given the circumstances, the

possible data loss is not of significance. The time is already calculated down to the

microsecond, so the couple of lost digits are so small that they do not change the

value significantly enough to affect the basic collision detection software using it.

Figure 19: Results of a Code Analysis on the Program

24

Collision Identification Program Conclusions & Future Work

6 Conclusions & Future Work

This project met all of its goals and succeed in creating a functional, modular, and

adaptable collision detection toolkit. Due to the unique design of CIP, there are many

options for pursuing the project further. Ideally, the CIP constructor will eventually

take in a value to indicate the type of sensor it is receiving data from and will be able

to adjust the functionality of the toolkit accordinly. For example, with the sensor

used in this project, CIP could use the reflectivity value incorporated in the data

point to venture into object identification. This topic alone has a countless options

for further development. An ideal continuation of this project would delve deeper

into the collision detection aspect in order to not only have a modular solution, but

one that is also very accurate and efficient. Due to the fast pace of data collection,

this would be very possible. It would even be possible to implement some sort of

pathfinding for collision avoidance rather than just detection.

Developing CIP has certainly provided some unexpected twists and turns, but, all

in all, the project came together nicely and succeeded in meeting every goal set. CIP

has definitely become a program with the potential to continuously expand, grow,

and exceed expectations. It will be exciting to see what future developer’s dream up

for CIP’s next challenge!

25

Collision Identification Program References

References

[1] P. Lienert, “Cost of driverless vehicles to drop dramatically: Delphi ceo,”

Journal Insurance, Dec. 2017. [Online]. Available: https :

//www.insurancejournal.com/news/national/2017/12/05/473134.htm.

[2] J. Fingas, “Cost of driverless vehicles to drop dramatically: Delphi ceo,”

Journal Insurance, Feb. 2019. [Online]. Available:

https://www.engadget.com/2019/02/03/waymo-self-driving-cars-

disengagement-rate/.

[3] J. Clover, “Apple reports self-driving car disengagements to dmv, earns worst

rank,” MacRumors, Feb. 2019. [Online]. Available: https://www.macrumors.

com/2019/02/12/apple-self-driving-car-disengagements-report/.

[4] J. Lee, “Adopt real-time data analytics or get left behind,” IDG

Communications, Inc., Nov. 2017. [Online]. Available:

https : / / www . cio . com / article / 3238475 / adopt - real - time - data -

analytics-or-get-left-behind.html.

[5] “Module visualization documentation,” Point Cloud Library (PCL), [Online].

Available: http://docs.pointclouds.org/trunk/group__visualization.

html.

[6] “Point cloud data,” Mar. 2019. [Online]. Available: https://www.usna.edu/

Users/oceano/pguth/md_help/html/pt_clouds.htm.

[7] R. Dalheim, “Terrestrial laser scanners collect forest data in awesome

animation,” Woodworking Network, Apr. 2018. [Online]. Available:

https : / / www . woodworkingnetwork . com / video / terrestrial - laser -

scanners-collect-forest-data-awesome-animation.

[8] E. W. Weisstein, “Spherical coordinates,” MathWorld–A Wolfram Web

Resource, Apr. 2019. [Online]. Available:

http://mathworld.wolfram.com/SphericalCoordinates.html.

[9] D. Q. Nykamp, “Spherical coordinates,” Math Insight, [Online]. Available:

http://mathinsight.org/spherical_coordinates.

[10] Vlp-16 user manual, Velodyne LiDAR, Velodyne LiDAR, Inc., 2018.

26

https://www.insurancejournal.com/news/national/2017/12/05/473134.htm
https://www.insurancejournal.com/news/national/2017/12/05/473134.htm
https://www.engadget.com/2019/02/03/waymo-self-driving-cars-disengagement-rate/
https://www.engadget.com/2019/02/03/waymo-self-driving-cars-disengagement-rate/
https://www.macrumors.com/2019/02/12/apple-self-driving-car-disengagements-report/
https://www.macrumors.com/2019/02/12/apple-self-driving-car-disengagements-report/
https://www.cio.com/article/3238475/adopt-real-time-data-analytics-or-get-left-behind.html
https://www.cio.com/article/3238475/adopt-real-time-data-analytics-or-get-left-behind.html
http://docs.pointclouds.org/trunk/group__visualization.html
http://docs.pointclouds.org/trunk/group__visualization.html
https://www.usna.edu/Users/oceano/pguth/md_help/html/pt_clouds.htm
https://www.usna.edu/Users/oceano/pguth/md_help/html/pt_clouds.htm
https://www.woodworkingnetwork.com/video/terrestrial-laser-scanners-collect-forest-data-awesome-animation
https://www.woodworkingnetwork.com/video/terrestrial-laser-scanners-collect-forest-data-awesome-animation
http://mathworld.wolfram.com/SphericalCoordinates.html
http://mathinsight.org/spherical_coordinates

Collision Identification Program References

[11] K. Murdy, “Hysweep: Filtering topographic laser data,” Sounding Better

Newsletter, Sep. 2018. [Online]. Available: http://www.hypack.com/about-

hypack/sounding-better-newsletter/2018-archive/september-2018.

[12] J. Kennedy and M. Satran, “Getting started with winsock,” May 2018.

[Online]. Available: https : / / docs . microsoft . com / en -

us/windows/desktop/winsock/getting-started-with-winsock.

[13] ——, “Creating a socket for the client,” May 2018. [Online]. Available: https:

//docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-

socket-for-the-client.

[14] User’s manual and programming guide: Vlp-16, Velodyne LiDAR, Velodyne

LiDAR, Inc., 2016.

[15] ——, “Creating a basic winsock application,” May 2018. [Online]. Available:

https : / / docs . microsoft . com / en -

us/windows/desktop/winsock/creating-a-basic-winsock-application.

[16] ——, “Initializing winsock,” May 2018. [Online]. Available: https://docs.

microsoft.com/en-us/windows/desktop/winsock/initializing-winsock.

[17] ——, “Connecting to a socket,” May 2018. [Online]. Available: https://docs.

microsoft.com/en- us/windows/desktop/winsock/connecting- to- a-

socket.

[18] ——, “Sending and receiving data on the client,” May 2018. [Online].

Available: https : / / docs . microsoft . com / en -

us/windows/desktop/winsock/sending-and-receiving-data-on-the-

client.

27

http://www.hypack.com/about-hypack/sounding-better-newsletter/2018-archive/september-2018
http://www.hypack.com/about-hypack/sounding-better-newsletter/2018-archive/september-2018
https://docs.microsoft.com/en-us/windows/desktop/winsock/getting-started-with-winsock
https://docs.microsoft.com/en-us/windows/desktop/winsock/getting-started-with-winsock
https://docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-socket-for-the-client
https://docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-socket-for-the-client
https://docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-socket-for-the-client
https://docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-basic-winsock-application
https://docs.microsoft.com/en-us/windows/desktop/winsock/creating-a-basic-winsock-application
https://docs.microsoft.com/en-us/windows/desktop/winsock/initializing-winsock
https://docs.microsoft.com/en-us/windows/desktop/winsock/initializing-winsock
https://docs.microsoft.com/en-us/windows/desktop/winsock/connecting-to-a-socket
https://docs.microsoft.com/en-us/windows/desktop/winsock/connecting-to-a-socket
https://docs.microsoft.com/en-us/windows/desktop/winsock/connecting-to-a-socket
https://docs.microsoft.com/en-us/windows/desktop/winsock/sending-and-receiving-data-on-the-client
https://docs.microsoft.com/en-us/windows/desktop/winsock/sending-and-receiving-data-on-the-client
https://docs.microsoft.com/en-us/windows/desktop/winsock/sending-and-receiving-data-on-the-client

Collision Identification Program Appendix A

Appendix A: Main Program CPP File

1 #include "LiDAR.h"

#include "dataFile.h"

3

int main()

5 {

CLiDAR puck;

7 CIP cip;

SOCKET sock;

9 sock = puck.Connect();

11 while (1)

{

13 puck.GetData(sock);

savedData->pts1 = &puck.PushPoints();

15 //Do I want this? Sleep(3); // will miss about 2 data packets

puck.GetData(sock);

17 savedData->pts2 = &puck.PushPoints();

19 // Copy data from savedData to CIP vectors

vector<lidarPt> *src1 = (vector<lidarPt>*)(savedData->pts1);

21 vector<lidarPt> *src2 = (vector<lidarPt>*)(savedData->pts2);

vector<lidarPt> *ptr1, *ptr2;

23 ptr1 = &(cip.pts1); ptr2 = &(cip.pts2);

25 memcpy(ptr1, src1, savedData->numPts1);

memcpy(ptr2, src2, savedData->numPts2);

27

int size1 = cip.pts1.size; int size2 = cip.pts2.size;

29 int diff = size1-size2;

31 // Ensure that the vectors are the same size

for (int i = 0; i < diff; i++)

33 {

if (diff > 0)

35 cip.pts2[size2 + i] = cip.pts1[size1 - (diff + i)];

28

Collision Identification Program Appendix A

else if(diff < 0)

37 cip.pts1[size1 + i] = cip.pts2[size2 - (diff + i)];

}

39

// Implement Toolkit API

41 if (cip.Collide())

{

43 cout << "Possible collision detected" << endl;

45 double *pos = cip.LocateMovement();

cout << "Current position of movement in meters from (0, 0, 0) of

the sensor: ("

47 << pos[0] << ", " << pos[1] << ", " << pos[2] << ")" << endl;

49 Velocity vel = cip.VelocityCalc();

cout << "Current observed velocity of movement in m/s: " << vel.

speed << endl;

51

double prob = cip.CollisionOdds();

53 cout << "Probability of collision: " << prob << endl;

55 double sever = cip.WillItHurt();

cout << "Potential severity of collision (will it hurt?): " <<

sever << endl;

57 }

}

59 }

29

Collision Identification Program Appendix B

Appendix B: VLP-16 Driver CPP File

#ifndef WIN32_LEAN_AND_MEAN

2 #define WIN32_LEAN_AND_MEAN

#endif

4

#include "LiDAR.h"

6

#define LIDAR_PORT 2368

8

// Vertical angles (w) in spherical coordinates

10 const double VertAng[] =

{ // Specific to VLP-16

12 -15.0,

1.0,

14 -13.0,

3.0,

16 -11.0,

5.0,

18 -9.0,

7.0,

20 -7.0,

9.0,

22 -5.0,

11.0,

24 -3.0,

13.0,

26 -1.0,

15.0

28 };

30 struct addrinfo *result = NULL,

*ptr = NULL,

32 hints;

34 #pragma comment(lib, "Ws2_32.lib")

30

Collision Identification Program Appendix B

36 CLiDAR::CLiDAR()

{

38 sinCorr[0] = { 0. };

cosCorr[0] = { 0. };

40 first_angle = 0;

runTime = 0;

42 fullCircle = false;

}

44

CLiDAR::~CLiDAR()

46 {

;

48 }

50 //--

// Connect to LiDAR

52 SOCKET CLiDAR::Connect()

{

54 WSADATA wsaData;

int iResult;

56

// Initialize Winsock

58 iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);

if (iResult != 0)

60 {

printf("WSAStartup failed: %d\n", iResult);

62 return false;

}

64

sockaddr_in puckAddr;

66 puckAddr.sin_family = AF_INET; // PF_INET;

puckAddr.sin_port = htons(LIDAR_PORT);

68 puckAddr.sin_addr.s_addr = htonl(INADDR_ANY);

70 SOCKET sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (sock == INVALID_SOCKET)

72 {

31

Collision Identification Program Appendix B

printf("Invalid Data Socket");

74 return false;

}

76

if (bind(sock, (sockaddr *)&puckAddr, sizeof(puckAddr)) == SOCKET_ERROR)

78 {

printf("Socket bind error");

80 return false;

}

82

fullCircle = false;

84 first_angle = 0;

vlpPts.clear();

86 wCorrections();

88 return sock;

}

90

//--

92 // Set omega corrections, corresponding to the respective laser number

void CLiDAR::wCorrections()

94 {

// Set aside memory

96 memset(sinCorr, 0, sizeof(double)*NUM_DATA_POINTS);

memset(cosCorr, 0, sizeof(double)*NUM_DATA_POINTS);

98

// 16 beams -- a "firing" block contains 2 firings of 16

100 // sine and cosine of omega to be used in spherical to cartesian

conversion

for (int i = 0; i < NUM_DATA_POINTS / 2; i++)

102 {

sinCorr[i] = sin(VertAng[i] * M_PI / 180.);

104 cosCorr[i] = cos(VertAng[i] * M_PI / 180.);

}

106 }

108 //--

32

Collision Identification Program Appendix B

// Poll - poll device about 20 times / second for new data

110 // return true if data is available and false is not

bool CLiDAR::GetData(SOCKET sock)

112 {

int count = 0;

114 char buf[1248];

while (count < 10)

116 {

// Receives one instance of data from the LiDAR

118 // buf stores complete raw data packet

int q = recv(sock, buf, sizeof(buf), 0);

120 DataPacket *src = (DataPacket*)(((BYTE*)buf) + sizeof(Header));

122 DataPacket pac, *ptr;

ptr = &pac;

124

// parse new topo message

126 memcpy(ptr, src, sizeof(DataPacket));

ParseData(ptr);

128

if (fullCircle)

130 break;

132 count++;

}

134 return (count == 0) ? false : true;

}

136

//--

138 // Handle LiDAR data

void CLiDAR::ParseData(DataPacket *pkt)

140 {

DWORD time_milli = pkt->timestamp / 1000.; // Time in milliseconds past

the hour

142

// Iterate through the data blocks 0-11

144 for (int i = 0; i < NUM_DATA_BLOCKS; i++)

33

Collision Identification Program Appendix B

{

146 DataBlock *fire = (DataBlock*)&pkt->dataBlocks[i];

if (i == 0) first_angle = fire->alpha;

148

// Check block flag to ensure not bad data

150 if (fire->flag != 0xeeff)

continue;

152

DataBlock *fire2 = (DataBlock*)&pkt->dataBlocks[i + 1];

154 double *aziTrig = aziCalc(fire, fire2);

156 if(fullCircle)

return;

158

// Iterate through data points 0-31

160 for (int j = 0; j < NUM_DATA_POINTS; j++)

{

162 double dist_r = fire->dataPoints[j].distance;

164 // Check distance to point & skip bad shots

if (dist_r == 0)

166 continue;

168 if (runTime == 0)

runTime = time_milli;

170 int laser = (j < 16) ? j : j - 16;

172 // Timing correction, relative to start of pkt

double time_micro = (i * 110.592) + (laser * 2.304);

174 if (j >= 16)

time_micro += 55.296;

176 DWORD packetTime = round(time_micro / 1000.);

packetTime += time_milli;

178

double *pt = sphereToCart(dist_r, aziTrig);

180 double reflect = fire->dataPoints[j].reflectivity;

34

Collision Identification Program Appendix B

182 storeData(pt, reflect, packetTime);

}

184 }

}

186

//--

188 // Interpolates the azimuth for the second firing sequence of a data block

double* CLiDAR::aziCalc(DataBlock *fire, DataBlock *fire2)

190 {

// convert azimuth value from 100ths to degrees

192 double aziAngle = fire->alpha / 100.0;

double aziAngle3 = fire2->alpha / 100.0;

194

// Azimuth interpolation to determine missing azimuth value

196 // follows ’pseudo-code’ velodyne manual pg 25 or 65 dep. on version

double aziAngle2;

198

if (aziAngle3 < aziAngle)

200 aziAngle3 += 360.;

aziAngle2 = aziAngle + ((aziAngle3 - aziAngle) / 2);

202 if (aziAngle2 > 360.)

aziAngle2 -= 360.;

204

// Detect full rotation around device

206 if (aziAngle <= first_angle)

fullCircle = true;

208

// Filter by rotational angle

210 // convert azimuth/alpha to radians

double azi = (aziAngle * M_PI / 180.);

212 double azi2 = (aziAngle2 * M_PI / 180.);

double cos_azi = cos(azi); double sin_azi = sin(azi);

214 double cos_azi2 = cos(azi2); double sin_azi2 = sin(azi2);

216 static double trig[] = { cos_azi, sin_azi, cos_azi2, sin_azi2 };

return trig;

218 }

35

Collision Identification Program Appendix B

220 //--

// Converts from spherical to cartesian coordinates

222 double* CLiDAR::sphereToCart(double dist_r, double *aziTrig)

{

224 // Counter tells which data point: 0 through 31

static int count = 0;

226

double cos_azi, sin_azi;

228 int laser = (count < 16) ? count : count-16;

230 // Distance to point in meters--account for 2mm granularity

dist_r *= 0.002;

232 double dist_xy = dist_r * cosCorr[laser]; // r * cos(w)

234 // First or second firing sequence in the data block?

if (count < 16)

236 { // use azimuth for 1st firing

cos_azi = aziTrig[0];

238 sin_azi = aziTrig[1];

}

240 else

{ // use interpolated azimuth for 2nd firing

242 cos_azi = aziTrig[2];

sin_azi = aziTrig[3];

244 }

246 // conversion results

double x = (dist_xy * sin_azi);

248 double y = (dist_xy * cos_azi);

double z = (dist_r * sinCorr[laser]);

250

count++;

252

static double pt[] = {x, y, z};

254 return pt;

}

36

Collision Identification Program Appendix B

256

//--

258 // Stores data externally

void CLiDAR::storeData(double *point, double reflect, DWORD packetTime)

260 {

//if (packet_time == 0) packet_time = timetag;

262

CorrectedDataPoint pt;

264 double x = point[0], y = point[1], z = point[2];

266 pt.x = x;

pt.y = y;

268 pt.z = -z;

270 pt.reflectivity = reflect;

pt.timeDelay = packetTime - runTime;

272 vlpPts.push_back(pt);

274 // Approx. num pts per rotation -- assuming 600 rpm

if (vlpPts.size() >= 30000)

276 fullCircle = true;

}

278

//--

280 // Fills a global array with the current data points

vector<CorrectedDataPoint> CLiDAR::PushPoints()

282 {

vector<CorrectedDataPoint> points = vlpPts;

284

fullCircle = false;

286 runTime = 0;

vlpPts.clear();

288

return points;

290 }

37

Collision Identification Program Appendix C

Appendix C: VLP-16 Driver Header File

1 #pragma once

3 #include <stdio.h>

#define _USE_MATH_DEFINES

5 #include <math.h>

#include <winsock2.h>

7 #include <ws2tcpip.h>

#include <iphlpapi.h>

9 #include <iostream>

11 #include "dataFile.h"

13 const int NUM_DATA_POINTS = 32;

const int NUM_DATA_BLOCKS = 12;

15

#pragma pack(push, 1)

17 typedef struct

{

19 unsigned short distance;

unsigned char reflectivity;

21 } DataPoint;

23 struct DataBlock

{

25 unsigned short flag;

unsigned short alpha;

27 DataPoint dataPoints[NUM_DATA_POINTS];

};

29

struct DataPacket

31 {

DataBlock dataBlocks[NUM_DATA_BLOCKS];

33 unsigned int timestamp;

unsigned char mode; // return mode

35 unsigned char product; // product ID

38

Collision Identification Program Appendix C

};

37

struct Header

39 {

BYTE head[42];

41 };

43 struct LaserCorrection

{

45 double azimuth; // angle alpha in hundredths of a degree

double verticalCorr;

47 double distanceCorr;

double verticalOffsetCorr;

49 double horizontalOffsetCorr;

double sinVertCorr;

51 double cosVertCorr;

double sinVertOffsetCorr;

53 double cosVertOffsetCorr;

};

55

#pragma pack(pop)

57

59 class CLiDAR;

class CLiDAR

61 {

public:

63 CLiDAR();

~CLiDAR();

65 SOCKET Connect();

bool GetData(SOCKET sock);

67 vector<CorrectedDataPoint> PushPoints();

69 private:

void ParseData(DataPacket *pkt);

71 void wCorrections();

double* aziCalc(DataBlock *fire, DataBlock *fire2);

39

Collision Identification Program Appendix C

73 double* sphereToCart(double dist_r, double *aziTrig);

void storeData(double *point, double reflect, DWORD packetTime);

75

double sinCorr[NUM_DATA_POINTS];

77 double cosCorr[NUM_DATA_POINTS];

vector<CorrectedDataPoint> vlpPts;

79 double first_angle;

DWORD runTime;

81 bool fullCircle;

};

40

Collision Identification Program Appendix D

Appendix D: CIP Toolkit API CPP File

1 #include "CIP.h"

3 //--

// Constructor

5 CIP::CIP()

{

7 position[0] = 0.0; position[1] = 0.0; position[2] = 0.0;

velocity.speed = 0.0;

9 velocity.direction = 0;

probability = 0.0;

11 severity = 0.0;

distance = 0.0;

13 change[0] = 0; change[1] = 0; change[2] = 0;

xf = false; yf = false; zf = false;

15 }

17 //--

// Deconstructor

19 CIP::~CIP()

{

21 ;

}

23

//--

25 // Given 2 point clouds determines if anything may collide with self

bool CIP::Collide(vector<CorrectedDataPoint> pts1, vector<

CorrectedDataPoint> pts2)

27 {

double pos1[3], pos2[3];

29 DWORD time1, time2;

for (int pt = 0; pt < (int)pts1.size(); pt++)

31 {

CorrectedDataPoint p1 = pts1[pt];

33 pos1[0] = p1.x;

pos1[1] = p1.y;

41

Collision Identification Program Appendix D

35 pos1[2] = p1.z;

time1 = p1.timeDelay;

37 CorrectedDataPoint p2 = pts2[pt];

pos2[0] = p2.x;

39 pos2[1] = p2.y;

pos2[2] = p2.z;

41 time2 = p2.timeDelay;

position = pos2;

43 velHelper(pos1, time1, pos2, time2);

if (!colHelper())

45 return false;

probability = (velocity.speed / distance) * velocity.direction;

47 severity = probability * velocity.speed;

return true;

49 }

return false;

51 }

53 //--

// Determines the position, direction, and speed of possible movement

55 void CIP::velHelper(double *pos1, DWORD time1, double *pos2, DWORD time2)

{

57 // Distance calculations

change[0] = pos2[0] - pos1[0];

59 change[1] = pos2[1] - pos1[1];

change[2] = pos2[2] - pos1[2];

61

distance = sqrt(pow(change[0], 2) + pow(change[1], 2) + pow(change[2],

2));

63 directionCalc(pos2);

velocity.speed = (distance / (time2 - time1));

65 }

67 //--

// Direction Calculations

69 void CIP::directionCalc(double *pos2)

{

42

Collision Identification Program Appendix D

71 int count = 0, flag;

double axis[] = { pos2[0], pos2[1], pos2[2] };

73

while (count < 3)

75 {

double ax = axis[count]; double delta = change[count];

77

if (ax >= 0) // + value point

79 {

// positive change means heading away

81 if (delta > 0)

flag = false;

83 else

flag = true;

85 }

else // - point value

87 {

// positive change means heading towards

89 if (delta > 0)

flag = true;

91 else flag = false;

}

93 if (flag) // if heading towards add value to direction

velocity.direction++;

95

// Set proper flag

97 if (count == 0) xf = flag;

if (count == 1) yf = flag;

99 if (count == 2) zf = flag;

count++;

101 }

}

103

//--

105 // Helper to Collide() -- determines if changes are significant

bool CIP::colHelper()

107 {

43

Collision Identification Program Appendix D

// 2 flags and 2 meters difference in each of them

109 if (velocity.direction > 1)

{

111 if (change[0] > 0.01 || change[1] > 0.01 || change[2] > 0.01)

return true;

113 }

return false;

115 }

117 //--

// Returns the location where possible collision movement was detected

119 double* CIP::LocateMovement()

{

121 return position;

}

123

//--

125 // Returns the determined velocity of the moving points

Velocity CIP::VelocityCalc()

127 {

return velocity;

129 }

131 //--

// Returns the probability the detected movement will result in a

collision

133 double CIP::CollisionOdds()

{

135 return probability;

}

137

//--

139 // Returns potential severity of collision

double CIP::WillItHurt()

141 {

return severity;

143 }

44

Collision Identification Program Appendix E

Appendix E: CIP Toolkit API Header File

#pragma once

2

using namespace std;

4

#include <vector>

6 #include <windows.h>

#include <math.h>

8 #include "dataFile.h"

10 struct lidarPt

{

12 double x;

double y;

14 double z;

double reflectivity;

16 DWORD timeDelay;

};

18

struct Velocity

20 {

double speed;

22 int direction;

};

24

class CIP;

26 class CIP

{

28 public:

CIP();

30 ~CIP();

32 bool Collide(vector<CorrectedDataPoint> pts1, vector<CorrectedDataPoint>

pts2);

double *LocateMovement();

34 Velocity VelocityCalc();

45

Collision Identification Program Appendix E

double CollisionOdds();

36 double WillItHurt();

38 private:

void velHelper(double *pos1, DWORD time1, double *pos2, DWORD time2);

40 void directionCalc(double *pos2);

bool colHelper();

42

double *position;

44 Velocity velocity;

double probability;

46 double severity;

double distance;

48 double *change;

bool xf, yf, zf;

50 };

46

Collision Identification Program Appendix F

Appendix F: Global Data Settings Files

Header File

1 #pragma once

3 using namespace std;

5 #include <windows.h>

#include <vector>

7

struct CorrectedDataPoint

9 {

double x;

11 double y;

double z;

13 double reflectivity;

DWORD timeDelay;

15 };

17 class CDataFile

{

19 public:

vector<CorrectedDataPoint> pts1;

21 vector<CorrectedDataPoint> pts2;

};

23

// global saved data

25 extern CDataFile *savedData;

CPP File

1 #include "dataFile.h"

3 // global settings

CDataFile *savedData;

47

Collision Identification Program Appendix G

Appendix G: Winsock Tutorial Code

Winsock Application Setup [15]

#ifndef WIN32_LEAN_AND_MEAN

2 #define WIN32_LEAN_AND_MEAN

#endif

4

#include <windows.h>

6 #include <winsock2.h>

#include <ws2tcpip.h>

8 #include <iphlpapi.h>

#include <stdio.h>

10

#pragma comment(lib, "Ws2_32.lib")

12

int main() {

14 return 0;

}

Winsock Initialization [16]

1 int iResult;

3 // Initialize Winsock

iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

5 if (iResult != 0) {

printf("WSAStartup failed: %d\n", iResult);

7 return 1;

}

Using Winsock to Create a Client Socket [13]

struct addrinfo *result = NULL,

2 *ptr = NULL,

hints;

4

ZeroMemory(&hints, sizeof(hints));

6 hints.ai_family = AF_UNSPEC;

48

Collision Identification Program Appendix G

hints.ai_socktype = SOCK_STREAM;

8 hints.ai_protocol = IPPROTO_TCP;

#define DEFAULT_PORT "27015"

2

// Resolve the server address and port

4 iResult = getaddrinfo(argv[1], DEFAULT_PORT, &hints, &result);

if (iResult != 0) {

6 printf("getaddrinfo failed: %d\n", iResult);

WSACleanup();

8 return 1;

}

1 // Attempt to connect to the first address returned by

// the call to getaddrinfo

3 ptr=result;

5 // Create a SOCKET for connecting to server

ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,

7 ptr->ai_protocol);

1 if (ConnectSocket == INVALID_SOCKET) {

printf("Error at socket(): %ld\n", WSAGetLastError());

3 freeaddrinfo(result);

WSACleanup();

5 return 1;

}

Connecting to a Socket [17]

// Connect to server.

2 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);

if (iResult == SOCKET_ERROR) {

4 closesocket(ConnectSocket);

ConnectSocket = INVALID_SOCKET;

6 }

49

Collision Identification Program Appendix G

8 // Should really try the next address returned by getaddrinfo

// if the connect call failed

10 // But for this simple example we just free the resources

// returned by getaddrinfo and print an error message

12

freeaddrinfo(result);

14

if (ConnectSocket == INVALID_SOCKET) {

16 printf("Unable to connect to server!\n");

WSACleanup();

18 return 1;

}

Sending and Receiving Data on the Client [18]

1 #define DEFAULT_BUFLEN 512

3 int recvbuflen = DEFAULT_BUFLEN;

5 char *sendbuf = "this is a test";

char recvbuf[DEFAULT_BUFLEN];

7

int iResult;

9

// Send an initial buffer

11 iResult = send(ConnectSocket, sendbuf, (int) strlen(sendbuf), 0);

if (iResult == SOCKET_ERROR) {

13 printf("send failed: %d\n", WSAGetLastError());

closesocket(ConnectSocket);

15 WSACleanup();

return 1;

17 }

19 printf("Bytes Sent: %ld\n", iResult);

21 // shutdown the connection for sending since no more data will be sent

// the client can still use the ConnectSocket for receiving data

23 iResult = shutdown(ConnectSocket, SD_SEND);

50

Collision Identification Program Appendix G

if (iResult == SOCKET_ERROR) {

25 printf("shutdown failed: %d\n", WSAGetLastError());

closesocket(ConnectSocket);

27 WSACleanup();

return 1;

29 }

31 // Receive data until the server closes the connection

do {

33 iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);

if (iResult > 0)

35 printf("Bytes received: %d\n", iResult);

else if (iResult == 0)

37 printf("Connection closed\n");

else

39 printf("recv failed: %d\n", WSAGetLastError());

} while (iResult > 0);

51

Collision Identification Program Appendix I

Appendix I: VLP-16 Azimuth Pseudocode

2016 User Manual [14]

// First, adjust for a rollover from 359.99 to 0

2 If (Azimuth[3] < Azimuth[1])

Then Azimuth[3]:= Azimuth[3]+360;

4 Endif;

// Perform the interpolation

6 Azimuth[2]:=Azimuth[1]+((Azimuth[3]-Azimuth[1])/2);

// Correct for any rollover over from 359.99 to 0

8 If (Azimuth[2]>360)

Then Azimuth[2]:= Azimuth[2]-360;

10 Endif

2018 User Manual [10]

The pseudo code below illustrates the concept. K represents an index to a data point

in the Nth data block, where its valid range is 0 to 31. Do this for each data block.

// First, adjust for an Azimuth rollover from 359.99 to 0

2 If (Azimuth[datablock_n+1] < Azimuth[datablock_n])

Then

4 Azimuth[datablock_n+1] := Azimuth[datablock_n+1] + 360;

Endif;

6

// Determine the Azimuth Gap between data blocks

8 AzimuthGap = Azimuth[datablock_n+1] - Azimuth[datablock_n];

10 // Perform the interpolation using the timing firing

K = 0;

12 While (K < 31)

// Determine if youre in the first or second firing sequence of the

data block

14 if (K < 16)

Then

16 // Interpolate

Precision_Azimuth[K] := Azimuth[datablock_n] + (AzimuthGap * 2.304

52

Collision Identification Program Appendix I

s * K) / 55.296 s);

18 Else

// Interpolate

20 Precision_Azimuth[K] := Azimuth[datablock_n] + (AzimuthGap * 2.304

s * ((K-16) + 55.296 s)) / (2 * 55.296 s);

Endif

22

// Adjust for any rollover

24 If Precision_Azimuth[K] >= 360

Then

26 Precision_Azimuth[K] := Precision_Azimuth[K] 360;

Endif

28 K++;

End While

53

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Point Cloud & LiDAR Fundamentals
	Proposed Approach
	Implementation & Methodology
	VLP-16 Driver Development
	Creating the CIP Toolkit API
	Forming the Complete Program

	Results & Discussion
	Conclusions & Future Work
	References
	Appendix A: Main Program CPP File
	Appendix B: VLP-16 Driver CPP File
	Appendix C: VLP-16 Driver Header File
	Appendix D: CIP Toolkit API CPP File
	Appendix E: CIP Toolkit API Header File
	Appendix F: Global Data Settings Files
	Appendix G: Winsock Tutorial Code
	Appendix I: VLP-16 Azimuth Pseudocode

