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Abstract

This Major Qualifying Project can be divided into three main chapters. For each chapter,
we studied three different mathematical models, which are the Logistic Growth model, the
SIR model and the Chemostat model. These biological mathematical models all have time
delay in part of their processes. Based on the specific phenomenological assumptions, we
have different ways of building up the model through ordinary differential equations. In this
way, we can push the basic model into a more realistic level. The goal of this project is to
investigate three models with time delay. Specifically to perform phase plane analysis and find
the concept of Basic Reproduction Number (denoted by R0) for SIR model with time delay.
We will also perform global sensitivity analysis for each model and study how uncertainty in
the output of each model can be attributed to different sources of uncertainty in the model
input. Applications for each model with time delay will be provided in this project with
numerical results.
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Chapter 1

Introduction

Communicable diseases such as measles, tuberculosis are a fact of our life. Some diseases are
not directly transmitted from human to human but transmitted by agents such as mosquito
or tick.

Many mathematical models are developed for building the numerical relationships between
the vectors and the hosts. The compartmental models in epidemiology are popularly used
for modeling the establishment and spread of infectious diseases. By modeling the main
characteristics of the system, the compartmental model, as a basic mathematical framework,
contributes to explaining the complex phenomenon between pathogen and hosts.

Based on the specific phenomenological assumptions, we have different ways of building
up the model using ordinary differential equations. Many classical epidemic models have
been studied and published, such as SIR, SIS and SEIR. Delay differential equation is one
of the most popular areas in this particular biological science. We study many examples of
delay differential equations which can be found in [2]. By contrast with ordinary differential
equations, delay equations use the solution from the priors time into the next derivative at
every time. The simple constant delay time can be formed in the following equation

dy(t)

dt
= f(t, y(t), y(t− τ1), y(t− τ2), , y(t− τk)) (1.1)

where the time delays (lags) τj are positive constants. For more explanations of how ordinary
differential equations transform to delay differential equations, please see in [3].

1.1 Logistic Growth

The logistic equation is a model of population growth first published by Pierre Verhulst (1845,
1847) for modeling the reality of limited resources. This model is continuous in time, but a
modification of the continuous equation to a discrete quadratic recurrence equation known as
the logistic map is also widely used.

The continuous version of the logistic model is described by the differential equation

dN

dt
=
rN(K −N)

K
(1.2)
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where r is the Malthusian parameter (rate of maximum population growth) and K is the
carrying capacity. Dividing both sides by K and defining x = N/K then gives the differential
equation

dx

dt
= rx(1− x) (1.3)

The logisitc equation assumes that the organisms birth rate depends instantaneously on
changes in population size. However, in many cases, there should be a delay. For example,
many organisms store nutrients, so people wont notice immediately if the population grows
too large for the available resourses. In 1948 G. E. Hutchinson modified the logistic equation
to incorporate a delay into the growth rate. So the model becomes

dN

dt
= rN [1− N(t− τ)

K
] (1.4)

where the τ is time delay.

1.2 SIR model

SIR model, the basic epidemic model, yields a relatively theoretical number of people infected
with a contagious illness in a closed population overtime. In the basic model, we assume that
the population size is fixed and the incubation period of the infectious agent is instantaneous.

There are three compartments in the fundamental assumption of the compartmental model
and they divide the population into distinct groups. The group of individuals that susceptible
to the infection of the pathogen (denoted by S); the group of individuals that are already
infected and can spread the disease to susceptible group (denoted by I); the group of individ-
uals that are recovered and have the immunity (denoted by R). Because the characteristic of
simpleness, the SIR infectious model becomes a common approach. In basic SIR model, we
assume that an individual has to be in one of the three groups: S, I, or R. The susceptible
individual will become infected individual once they get contact by the disease. Then, the
infected individual moves to recovered individual after recovering from the disease.

Then, the differential equations describe this model from [4] are following:

dS

dt
= µN − βSI

N
− µS (1.5a)

dI

dt
=
βSI

N
− γI − µI (1.5b)

dI

dt
= γI − µR (1.5c)

The variables S, I and R are the number of individuals in each class. The total population
denoted by N, where N = S + I +R. We assume that the population stays constant because
per capita population birth and death rate are equal. The term βSI

N
describes the rate that

susceptible individuals become infected individuals. SI means the chance of meeting and β
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Figure 1.1: Schematic diagram for the SIR model

is the transmission probability. γ is the recovery rate in which γI describes the rate that
infected individuals move to recovered individuals.

For SIR model, we investigate the model with incubation period and loss of immunity.
Specifically to perform phase plane analysis and find the concept of Basic Reproduction
Number(denoted by R0) for SIR model with time delays. For both of them, we consider the
system of ordinary equation with time dependence. In other word, S becomes S(t), I becomes
I(t), and R becomes R(t). Applications for SIR model with delays will be provided in this
project with numerical results.

1.2.1 Incubation Period

The disease transmission progress plays an important role in the epidemic dynamics. For most
of the communicable diseases, there are always different ranges of the incubation period. For
example, malaria parasites have a development period within the mosquito before they are
infectious to humans. This extrinsic incubation period of the parasite usually ranges from 10
to 28 days. If a female mosquito does not survive longer than the extrinsic incubation period,
then this mosquito will not be able to transmit any malaria parasites to other individuals.
After a mosquito successfully transfers the parasite to a human body via a bite, there is
an intrinsic incubation period, which is the time between the injection of the parasite into
the human individual and the development of the first symptoms of malaria. Applying the
incubation period into the basic model can change the behaviors of the system. In many
epidemic models, SIR models with time delays are widely used in different epidemiological
backgrounds. To push the basic models into a more realism level, time delays have been
considered into the system. We create another group called exposed group, denoted by E.
E(t) is the number of infected individuals that are not infectious at time t. This is also called
SEIR model. From this assumption, the delay differential equations can be formed from the

9



SIR model with the new group E.

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t) (1.6a)

dE(t)

dt
=
βS(t)I(t)

N(t)
− βS(t− τ)I(t− τ)

N(t)
e−µτ − µE(t) (1.6b)

dI(t)

dt
=
βS(t− τ)I(t− τ)

N(t)
e−µτ − γI(t)− µI(t) (1.6c)

dR(t)

dt
= γI(t)− µR(t) (1.6d)

where τ is the incubation period that represent the length of time before the infected individ-
uals can become infectious. The term e−µτ describes the fraction of infected people and the
people survived at time t. So the term βS(t−τ)I(t−τ)

N
e−µτ conveys the rate of individuals that

got infected at τ periods ago and still survive.
Notice that when τ = 0. The exposed class has only −µE(t) term; we usually start with

E(0) = 0. Therefore, we can neglect it. Finally, we get beck to the original SIR model.

1.2.2 Loss of Immunity

The SIR model assumes people carry lifelong immunity to a disease upon recovery and this is
the case for many diseases. But for another class of diseases, for example seasonal influenza,
an individuals immunity may wane over time. Therefore, we have another configuration can
be included in SIR model. In this case, the SIRS model is used allow recovered individuals
return to a susceptible state. The ordinary differential equations for SIRS model are the
following [5]:

dS

dt
= µN − βSI

N
− µS + αR (1.7a)

dI

dt
=
βSI

N
− γI − µI (1.7b)

dR

dt
= γI − µR− αR (1.7c)

All of the terms stays the same in SIR model except αR in susceptible and recovered classes.
α represents the rate which recovered individuals return to the susceptible statue due to loss
of immunity. Therefore, αR will be the rate that recovered individuals move to susceptible
individuals.

However, for many diseases, the recovered individuals will have a time gap before they
lose their immunity [6]. So the delay differential equations is

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t) + αe−µωR(t− ω) (1.8a)

dI(t)

dt
=
βS(t)I(t)

N(t)
− γI(t)− µI(t) (1.8b)

dR(t)

dt
= γI(t)− µR(t)− αe−µωR(t− ω) (1.8c)
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N(t) is the total population at time t. But the population is assumed to be a constant, so
N(t) = S(t) + I(t) + R(t) and N(t1) = N(t2) for any t1,t2. The e−µω presents the fraction
between recover individual at time t − ω and survived individual to time t. And ω is the
gap time before the recovered individuals loss their immunity. This kind of system is usually
called SIRS with delay.

Note that when ω = 0, the last term of susceptible and recovered differential equations
will become αR(t) which is exactly the SIRS model. When ω = ∞ or no loss of immunity,
the term becomes zero because of the exponential part. Therefore, it goes back to the original
SIR model.

1.3 Chemostat model

Competition modeling is one of the most challenging and important aspects of bio-mathematical
modeling. In a more nature environment, competition is clearly significant. When we want
to model competition in a laboratory device, there is a name of this particular math model,
called chemostat model; some may also call it continuous culture. The name Chemostat is
originated with Novick and Szilard.

Chemostat model is considerably useful in ecological studies since the mathematics is
tractable and the relevant experiments are possible. After this model is getting familiar with
more people in math and other science fields, there exist more realistic biological models and
many interesting mathematical problems. Chemostat has been widely used to study biological
systems and growth of microorganism since the 60’s, [7]. It is the simplest technique used to
grow microorganisms or cells continually in a particular phase of growth.

We consider the problem of growth of micro-organisms. For a cell to growth, there is a
reservoir of limited nutrients. The reservoir is pumped into the cell culture with continuous
rate. At the same time, nutrients and cells flow out with the same rate as the pump rate.
Therefore the culture contains a constant volume [8].

Figure 1.2: A scheme of chemostat [1]
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Chemostat model can be constructed as following:

dC(t)

dt
=

K1N(t)

K2 +N(t)
C(t)− F

V
C(t) (1.9a)

dN(t)

dt
=
F

V
N0 − α

K1N(t)

K2 +N(t)
C(t)− F

V
N(t) (1.9b)

The term K1N(t)
K2+N(t)

is the growth of cell which satisfies the Michaelis-Menten kinetic, [9]. There-
fore, the growth rate of cell is represented by the growth of cell multiplies the density of cell
at time t, K1N(t)

K2+N(t)
C(t). Then, the cell get pumped out in the rate F

V
C(t).

For nutrient density over time, the rate of pumping nutrients in is F
V
N0 and the rate

of pumping out is F
V
N(t). Then the nutrient is consumed by the cells. The rate of being

consumed is defined by the amount nutrient is consumed to produce one unit of cell multiplied
by the growth rate of cell: α K1N(t)

K2+N(t)
C(t).

For the simplicity of model, we will non-dimensionalize the chemostat model to the fol-
lowing system:

dX

dt′
=
βY (t′)X(t′)

1 + Y (t′)
−X (1.10a)

dY

dt′
= γ − Y (t′)− Y (t′)X(t′)

1 + Y (t′)
(1.10b)

where β =
K1

F
V

and γ = N0

K2
. X and Y represent the cell and nutrients, respectively.

X =
C

C∗

Y =
N

N∗

t′ =
t

t∗

C∗ =
K2

F
V

αK1

N∗ = K2

t∗ =
V

F

Now consider that the cell uses ω time to grow after consume the nutrient. Thus, the
delay different equations can be introduced as following:

dX

dt
= e−ω

βY (t− ω)X(t− ω)

1 + Y (t− ω)
−X (1.11a)

dY

dt
= γ − Y (t)− Y (t)X(t)

1 + Y (t)
(1.11b)

For this delay differential equations, we have just only two parameter which are β and γ.
Therefore, it is obviously easier to work with.
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Table 1.1: Introduce the variables and parameters of chemostat model

C(t) Density of cell in the tank at time t
N(t) Density of nutrient in the tank at time t
V Volume of the tank
N0 Density of nutrient in the reservoir (constant)
F Flow rate (pump rate)
α Amount of nutrient is consumed to produce one unit of cell
K1 Maximum growth rate
K2 Nutrient concentration calculated at 1/2 the maximum growth rate

Figure 1.3: Michealis-Menten Kinetic, S in the picture is the same as N in the chemostat
model, V max represents K1, and Km represents K2

13



Chapter 2

Steady-states and Characteristic
Equations

Sometimes, we want to study the qualitative properties of solutions of differential equations,
without solving the equations explicitly. Moreover, we often want to know whether a certain
property of these solutions remains unchanged if the system is subjected to various changes
(often called perturbations). One way to determine those questions is finding the steady-states
and the corresponding characteristic equations.

Definition 1. A steady-state for differential equations is a solution where the value does not
change over time. For some differential equations

dy

dt
= F (y)

y∗ is a steady-state solution of the differential equations if F (y∗) = 0, i.e. y∗ is a root of
F (y) = 0.

Definition 2. Let y∗ be a steady-state of differential equations. y∗ is locally asymptotically
stable if there exists a small interval containing y∗ such that if y(0) lies in this interval, then
lim
t→∞

y(t) = y∗

Definition 3. Let y∗ be a steady-state of differential equations. y∗ is unstable if lim
t→∞

y(t) 6= y∗,

no matter how close of y(0) to y∗.

Definition 4. A system of equations has the jacobian matrix. The jacobian matrix of a
system is the matrix of the partial derivatives of the right-hand side with respect to state vari-
ables. The eigenvalues of the jacobian matrix are the roots of the characteristic equations.
For ordinary differential equations, the characteristic equations are in form of polynomials. It
is less difficult than delay differential equations because theorem of algebra tells us how many
roots (eigenvalues) to expect. For the delay differential equation the characteristic equation
is transcendental, the number of roots could be countably infinite.

Characteristic equation of the delayed differential equations at its steady-state will have
the form

P (λ, τ) = P1(λ) + P2(λ)e−λτ = 0 (2.1)

where P1(λ) and P2(λ) are polynomials.
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2.1 Logistic growth model with delay

The dimensionaless form of the logistic growth model with a constant delay is

dx

dt
= rx(1− x(t− τ)) (2.2)

Steady-states and characteristic equations of this model will be useful for analyzing the sta-
bility.

2.1.1 Steady-states

Define x∗ as the steady-states of the model. Then we can find the steady-states from the
solution of the following equation.

rx∗(1− x∗) = 0

Therefore, there are two steady-states

D1 : x∗ = 0 (2.3)

D2 : x∗ = 1 (2.4)

2.1.2 Characteristic equation

We have to construct A1 and A2 from equation 2.2.

A1 =
∂ dx
dt

∂x
= r(1− x(t− τ))

= r(1− x∗)

A2 =
∂ dx
dt

∂x(t− τ)

= −rx
= −rx∗

Then

J = A1 + A2e
−λτ

= r(1− x∗)− rx∗e−λτ

The characteristic equations is

P (λ, τ) = det(J − λI)

= J − λ = r(1− x∗)− rx∗e−λτ − λ

since I and J are scalar

15



Then the characteristic equations for D1 and D2 are

PD1(λ, τ) = r − λ (2.5)

PD2(λ, τ) = −re−λτ − λ (2.6)

These two characteristic can tell how the stability of the solutions is.

2.2 SEIR model with delay

In this paper, we want to study some properties of the susceptible-infected-recovered model
with constant incubation period. One thing that we want to study is to determine whether
or not varying of delay (incubation period) will affect the stability of solutions. In order to
analyze stability of differential equation, we will need the steady-states and characteristic
equations from this set of delay differential equations (1.3)

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t)

dE(t)

dt
=
βS(t)I(t)

N(t)
− βS(t− τ)I(t− τ)

N(t)
e−µτ − µE(t)

dI(t)

dt
=
βS(t− τ)I(t− τ)

N(t)
e−µτ − γI(t)− µI(t)

dR(t)

dt
= γI(t)− µR(t)

2.2.1 Steady-states

Before we can find the steady-states of these differential equations, we need to simplify the
equations as much as we can. First of all, since we have a constant population N(t) = N =
S(t) + E(t) + I(t) + R(t), we have R(t) = N − S(t) + E(t) + I(t). Therefore, we can omit
dR(t)

dt
equation. Secondly, there is no E(t) term in other equations except

dE(t)

dt
, derivative

of itself. So we can find E(t) once we know S(t) and I(t). That means the only equations

that we are going to consider are
dS(t)

dt
and

dI(t)

dt
. Now let

lim
t→∞

S(t) = lim
t→∞

S(t− τ) = S∗

lim
t→∞

I(t) = lim
t→∞

I(t− τ) = I∗

Then, the steady-states can be calculated by setting
dS(t)

dt
and

dI(t)

dt
to be zero.

µN − βS∗I∗

N
− µS∗ = 0 (2.8a)

βS∗I∗

N
e−µτ − γI∗ − µI∗ = 0 (2.8b)
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From equation 2.8b, we have

βS∗I∗

N
e−µτ − γI∗ − µI∗ = 0

⇔ I∗(
βS∗

N
e−µτ − γ − µ) = 0 (2.9)

There are two cases: one is I∗ = 0, and another one is S∗ =
N

Rdelay
0

, where Rdelay
0 =

β

µ+ γ
e−µτ .

Substitute I∗ = 0 into equation 2.8a.

µN − βS∗(0)

N
− µS∗ = 0

µN − µS∗ = 0

S∗ = N

The first steady-state (S∗, I∗) is

E1 = (N, 0) (2.10)

Substitute S∗ =
N

Rdelay
0

into equation 2.8a.

µN −
β N

Rdelay
0

I∗

N
− µ N

Rdelay
0

= 0

βI∗

Rdelay
0

= µN − µ N

Rdelay
0

I∗ =
µN

β
(Rdelay

0 − 1)

The second steady-state (S∗, I∗) is

E2 =

(
N

Rdelay
0

,
µN

β
(Rdelay

0 − 1)

)
(2.11)

Notice that, if Rdelay
0 < 1, then I∗ < 0 and S∗ > N for steady-state E2 which is impossible.

It implies that E2 exists if Rdelay
0 > 1. (If Rdelay

0 = 1, E2 = E1.) We call Rdelay
0 as the basic

reproduction number.

2.2.2 Characteristic equation

After we obtain two steady-states, we want to study about their stability. Therefore, finding
characteristic equation for each steady-state will be a method for the goal.
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To construct a characteristic equation, two matrices A1 and A2 have to be computed.

A1 =


∂ dS(t)

dt

∂S(t)

∂ dS(t)
dt

∂I(t)
∂ dI(t)

dt

∂S(t)

∂ dI(t)
dt

∂I(t)


=

[
−βI(t)

N
− µ −βS(t)

N
0 −µ− γ

]

=

[
−βI

∗

N
− µ −βS

∗

N
0 −µ− γ

]

A2 =


∂ dS(t)

dt

∂S(t− τ)

∂ dS(t)
dt

∂I(t− τ)
∂ dI(t)

dt

∂S(t− τ)

∂ dI(t)
dt

∂I(t− τ)


=

 0 0
βI(t− τ)e−µτ

N

βS(t− τ)e−µτ

N


=

 0 0
βI∗e−µτ

N

βS∗e−µτ

N


then the jacobian matrix of the differential equations is

J = A1 + A2e
−λτ

=

 −βI
∗

N
− µ −βS

∗

N
βI∗e−µτe−λτ

N
−µ− γ +

βS∗e−µτe−λτ

N


For each steady-state, we have

JE1 =

[
−µ −β
0 −µ− γ + βe−µτe−λE1

τ

]
(2.12)

JE2 =

 −µRdelay
0 − β

Rdelay
0

µRdelay
0 e−µτe−λτ −µ− γ +

βe−µτe−λτ

Rdelay
0

 (2.13)

Then, the characteristic equations can be calculated from this

P (λ, τ) = det(J − λI) = 0

where I is the identity matrix with the same size as J, and λ is the eigenvalues to J.
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Since we have two steady-states, we have two characteristic equations. The first charac-
teristic equation with respect to E1 is:

PE1(λ, τ) = det(JE1 − λI)

= λ2 + (2µ+ γ − e−λτβe−µτ )λ− (−µ− γ + e−λτ βe−µτ )µ

Therefore, we can separate it into P1(λ) and P2(λ) as following:

P1,E1(λ) = λ2 + (2µ+ γ)λ− (−µ− γ)µ

P2,E1(λ) = −β e−µτλ− β e−µτµ

Thus, the second characteristic equation with respect to E2 is:

PE2(λ, τ) = det(JE2 − λI)

= λ2 +

(
(µ+ γ)2 − (µ+ γ)2e−λτ + µβ e−µτ

)
λ

µ+ γ
+
(
(−µ− γ)e−λτ + β e−µτ

)
µ

(2.14)

Therefore, we can separate it into P1(λ) and P2(λ) as following:

P1,E2(λ) = λ2 + (µ+ γ +
µβ e−µτ

µ+ γ
)λ+ µβ e−µτ

= λ2 + (µ+ γ + µRdelay
0 )λ+ µβ e−µτ (2.15)

P2,E2(λ) = (−µ− γ)λ+ (−µ− γ)µ (2.16)

We can conclude that characteristic equations both have quadratic polynomial for P1(λ)
and linear polynomial for P2(λ).

2.3 SIRS model with delay

As the same goal as SEIR model, finding steady-states and characteristic equations from the
system of differential equations for loss of immunity from (1.8) is necessary.

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t) + αe−µωR(t− ω)

dI(t)

dt
=
βS(t)I(t)

N(t)
− γI(t)− µI(t)

dR(t)

dt
= γI(t)− µR(t)− αe−µωR(t− ω)

2.3.1 Steady-states

We know that αR(t − ω) represents the temporary immunity. We want to find out in the
stability analysis which is the critical value of the ω that cause the system of equations to
have or not a periodic solution.
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We know that we have a constant population N(t) = N = S(t) + E(t) + I(t) + R(t), we
have R(t) = N − S(t) +E(t) + I(t). Therefore, we begins with changing the first differential
equation into this form

dS(t)

dt
= µN − βS(t)I(t)

N
− µS(t) + αe−µω(N − S(t− ω)− I(t− ω)) (2.18)

Then the steady-states of these delay differential equation can be simplified by considering

only
dS(t)

dt
and

dI(t)

dt
. (We can find R(t) after we know S(t) and I(t).)

Define the steady-states as the following:

lim
t→∞

S(t) = lim
t→∞

S(t− τ) = S∗

lim
t→∞

I(t) = lim
t→∞

I(t− τ) = I∗

Then, we find the steady-states by taking
dS(t)

dt
and

dI(t)

dt
at the steady-state (S∗, I∗) to

be zero.

µN − βS∗I∗

N
− µS∗ + αe−µω(N − S∗ − I∗) = 0 (2.19)

βS∗I∗

N
− γI∗ − µI∗ = 0 (2.20)

From equation (2.20), we can conclude that the equation will become zero either I∗ = 0

or S∗ = N
(µ+ γ)

β
.

When I∗ = 0, equation (2.19) becomes

µN − µS∗ + αe−µω(N − S∗) = 0

(µ+ αe−µω)(N − S∗) = 0

Thus, our first steady-state (S∗, I∗) for SIRS model is

E3 = (N, 0) (2.21)

Then consider S∗ = N
(µ+ γ)

β
. The basic reproduction number in SIRS model is actually the

same as SIR model, the basic disease model, which is
β

(µ+ γ)
. Therefore, S∗ =

N

R0

.
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Substitute this S∗ into equation (2.19).

µN − µ N
R0

+ αe−µω(N − N

R0

)−
β N
R0
I∗

N
− αe−µωI∗ = 0

(µ+ αe−µω)(N − N

R0

) = I∗(
β

R0

+ αe−µω)

(µ+ αe−µω)(N − N
R0

)

( β
R0

+ αe−µω)
= I∗

N(µ+ αe−µω)(R0 − 1)

(β +R0αe−µω)
= I∗

Thus, our second steady-state for this SIRS model is

E4 =

(
N

R0

,
(R0 − 1)(µ+ αe−µω)

(β +R0αe−µω)

)
(2.22)

2.3.2 Characteristic equation

Again we construct two matrices.

A1 =


∂ dS(t)

dt

∂S(t)

∂ dS(t)
dt

∂I(t)
∂ dI(t)

dt

∂S(t)

∂ dI(t)
dt

∂I(t)


=

−βI(t)

N
− µ −βS(t)

N
βI(t)

N
−µ− γ +

βS(t)

N


=

−βI
∗

N
− µ −βS

∗

N
βI∗

N
−µ− γ +

βS∗

N



A2 =


∂ dS(t)

dt

∂S(t− τ)

∂ dS(t)
dt

∂I(t− τ)
∂ dI(t)

dt

∂S(t− τ)

∂ dI(t)
dt

∂I(t− τ)


=

[
−αe−µω −αe−µω

0 0

]
The jacobian matrix of the differential equations is

J = A1 + A2e
−λω (2.23)

=

−βI
∗

N
− µ− αe−µωe−λω −βS

∗

N
− αe−µωe−λω

βI∗

N
−µ− γ +

βS∗

N


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For each steady-state, we have

JE3 =

[
−µ− αe−µωe−λω −β − αe−µωe−λω

0 −µ− γ + β

]
(2.24)

JE4 =

−β
(R0 − 1)(µ+ αe−µω)

(β +R0αe−µω)
− µ− αe−µωe−λω − β

R0

− αe−µωe−λω

β
(R0 − 1)(µ+ αe−µω)

(β +R0αe−µω)
0

 (2.25)

The characteristic equation is

P (λ, ω) = det(J − λI) = 0

There are two characteristic equations. The first characteristic equation with respect to
E3 is:

PE3(λ, ω) = det(JE3 − λI)

= (−µ− αe−µωe−λω − λ)(β − µ− γ − λ) (2.26)

The second characteristic equation with respect to E4 is:

PE4(λ, ω) = det(JE4 − λI)

= (M − µ− αe−µωe−λω − λ)(−λ)−M(− β

R0

− αe−µωe−λω)

= λ2 − (M − µ)λ+
β

R0

M + αe−µωe−λωλ+Mαe−µωe−λω (2.27)

where

M = β
(R0 − 1)(µ+ αe−µω)

(β +R0αe−µω)
(2.28)

Therefore, we can separate it into P1(λ) and P2(λ) as following:

P1,E4(λ) = λ2 − (M − µ)λ+
β

R0

M (2.29)

P2,E4(λ) = αe−µωλ+Mαe−µω (2.30)

where
PE4(λ) = P1,E4(λ) + P2,E4(λ)e−λω

Consequently, we have quadratic polynomial for P1(λ) and linear polynomial for P2(λ) for
each characteristic polynomials as same as in SEIR model.

2.4 Chemostat model with delay

The steady-states and characteristic equations of Chemostat model will provide our informa-
tion about how the delay in growing part affects the stability of its solutions.
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2.4.1 Steady-states

Consider the dimensionaless form of the chemostat model 1.11.

dX

dt
= e−ω

βY (t− ω)X(t− ω)

1 + Y (t− ω)
−X

dY

dt
= γ − Y (t)− Y (t)X(t)

1 + Y (t)

Assume that

lim
t→∞

X(t) = lim
t→∞

X(t− ω) = X∗

lim
t→∞

Y (t) = lim
t→∞

Y (t− ω) = Y ∗

Steady-states are X∗ and Y ∗ that satisfy the equations dX
dt

= 0 and dY
dt

= 0.
Consider equation dX

dt
= 0.

e−ω
βY ∗X∗

1 + Y ∗
−X∗ = (e−ω

βY ∗

1 + Y ∗
− 1)X∗ = 0 (2.32)

Therefore, the first steady-state has X∗ = 0. Then the corresponding Y ∗ of this X∗ can

be obtained by substituting X∗ into equation
dY

dt
= 0. As the result, Y ∗ = γ. To conclude,

the first steady-state is
F1 = (0, γ) (2.33)

The first part of the second steady-state obtained from equation 2.32 is Y ∗ =
1

βe−ω − 1
.

Then, by substituting Y ∗ into
dY

dt
= 0, X∗ in this situation is βe−ω(γ − 1

βe−ω − 1
). We

multiply this formula by
βe−ω − 1

βe−ω − 1
and have X∗ =

βe−ω

βe−ω − 1
((βe−ω − 1)γ − 1). Notice that

X∗ is positive if and only if (βe−ω − 1)γ > 1. Let R0 = (βe−ω − 1)γ. Then the second
steady-state is

F2 = (
βe−ω

βe−ω − 1
(R0 − 1),

1

βe−ω − 1
)

We can simplify this a little more. Let H = 1 +
1

βe−ω − 1
. Then F2 becomes

F2 = (H(R0 − 1), H − 1) (2.34)

2.4.2 Characteristic equation

First of all, construct two matrices A1 and A2.
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A1 =


∂ dX(t)

dt

∂X(t)

∂ dX(t)
dt

∂Y (t)
∂ dY (t)

dt

∂X(t)

∂ dY (t)
dt

∂Y (t)


=

 −1 0

− Y (t)

1 + Y (t)
−1− X(t)

(1 + Y (t))2


=

 −1 0

− Y ∗

1 + Y ∗
−1− X∗

(1 + Y ∗)2



A2 =


∂ dX(t)

dt

∂X(t− ω)

∂ dX(t)
dt

∂Y (t− ω)
∂ dY (t)

dt

∂X(t− ω)

∂ dY (t)
dt

∂Y (t− ω)


=

 βY (t− ω)

1 + Y (t− ω)
e−ω

βX(t− ω)

(1 + Y (t− ω))2
e−ω

0 0


=

 βY ∗

1 + Y ∗
e−ω

βX∗

(1 + Y ∗)2
e−ω

0 0


The jacobian matrix of the differential equations is obtained by following:

J = A1 + A2e
−λω

=

−1 +
βY ∗

1 + Y ∗
e−ωe−λω

βX∗

(1 + Y ∗)2
e−ωe−λω

− Y ∗

1 + Y ∗
−1− X∗

(1 + Y ∗)2


Considering the jacobian matrix for each steady-state, we have

JF1 =

−1 +
βγ

1 + γ
e−ωe−λω 0

− γ

1 + γ
−1

 (2.35)

JF2 =

−1 +
β(H − 1)

H
e−ωe−λω

βH(R0 − 1)

H2
e−ωe−λω

−H − 1

H
−1− H(R0 − 1)

H2

 (2.36)

Then, the characteristic equations can be calculated from

P (λ, τ) = det(J − λI) = 0
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where I is the 2x2 identity matrix, and λ is the eigenvalues.
The two characteristic equations: characteristic equation with respect to F1 is

PF1(λ, τ) = det(JF1 − λI)

= λ2 + 2λ+ 1 +

(
−γβe

−ω

1 + γ
λ− γβe−ω

1 + γ

)
e−λω (2.37)

characteristic equation with respect to F2 is

PF2(λ, τ) = det(JF2 − λI)

= λ2 +

(
2 +

R0 − 1

H

)
λ+ 1 +

R0 − 1

H
+

(
−βe−ω

(
1− 1

H

)
(λ+ 1)

)
e−λω (2.38)

Notice that both characteristic equations have the quadratic polynomial parts for the term
without e−λω, and the parts with e−λω are linear polynomial. After obtain the characteristic
equations, we will use them for stability properties of F1 and F2.
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Chapter 3

Stability Analysis

Delay differential equations are often of interest to determine whether or not the delay value
affects the stability of a steady-state. In this paper, the delay has been treated as a bifurcation
parameter.

Our objective is to determine whether or not a stable steady-state can become unstable by
changing the delay value. Therefore, we will look at the eigenvalues from roots of characteristic
equations. If all the roots have negative real part, the steady-state is stable. When we vary
the delay, if one of the root changes from having negative real part to having positive real
part because of the delay, it implies that the steady-state will become unstable. This is also
equivalent to having the root crossing the imaginary-axis (imagine the root as a graph with
real part on x-axis and imaginary part on y-axis). Therefore, if the root really turns to be
positive, there must be a root that is purely imaginary part. (i.e. the intersection between
the graph of the root and the imaginary-axis exist.) It is important to prove that the root
continues into positive side of the graph when increasing the delay value. The proof can be
found in Chapter 2 section 1.2. of [10].

We know that a characteristic equation of the delay differential equations can be written
in the form (2.1), and we are looking for a purely imaginary root, iσ, σ ∈ R. Therefore, we
have this form:

P1(iσ) + P2(iσ)e−iστ = 0 (3.1)

This is one of the tool that we will use to check the stability. It comes from Forde’s Ph.D.
thesis. From (3.1), we can split each polynomial into the real and imaginary parts. Moreover,
the exponential part can be expanded by Euler’s formula.

R1(σ) + iQ1(σ) + (R2(σ) + iQ2(σ))(cos(στ)− isin(στ)) = 0 (3.2)

where R1(σ) and Q1(σ) are the real part and imaginary part (with i) respectively from P1(iσ).
The same goes for R2(σ), Q2(σ) and P2(iσ) .

This equation equals to zero if and only if the real part and imaginary part both have to
be zero. Therefore, we obtain two equations:

−R1(σ) = R2(σ)cos(στ) +Q2(σ)sin(στ) (3.3)

Q1(σ) = R2(σ)sin(στ)−Q2(σ)cos(στ) (3.4)
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After that we square equations 3.3 and 3.4. We will have as the following:

R2
1(σ) = R2

2(σ)cos2(στ) +Q2
2(σ)sin2(στ) + 2R2(σ)Q2(σ)sin(στ)cos(στ) (3.5)

Q2
1(σ) = R2

2(σ)sin2(στ) +Q2
2(σ)cos2(στ)− 2R2(σ)Q2(σ)sin(στ)cos(στ) (3.6)

Add equations 3.5 and 3.6 together. The last part of each equation will cancel each other.
The result is

R2
1(σ) +Q2

1(σ) = R2
2(σ)(cos2(στ) + sin2(στ)) +Q2

2(σ)(cos2(στ) + sin2(στ))

= R2
2(σ) +Q2

2(σ) (3.7)

Therefore, the purely imaginary number is a root of the characteristic equation if this formula
holds.

Let a variable z = σ2. Then define equation 3.7 as a function S.

S(z) = R2
1(σ) +Q2

1(σ)− (R2
2(σ) +Q2

2(σ)) = 0 (3.8)

We know σ ∈ R. If all of the real roots z of S(z) are negative, then such a σ cannot exist.
Therefore, the roots λ of the characteristic equations will not change from having negative real
parts to having positive real part. That means the model does not have a Hopf bifurcation
regardless of τ value. However, if there exists a real root z∗ that is positive, then σ∗ = ±

√
z∗.

Thus, we can find a τ ∗ corresponding to that σ∗. Then the periodic solutions start to happen
at that τ ∗, called critical delay.

3.1 Logistic growth model with delay

The characteristic equations give us the eigenvalues. It is obviously that λ = r > 0 for steady-
state D1. Therefore, The steady-state D1 is unstable. So we will not consider steady-state
D1.

Our interesting case is steady-state D2. We want to find the value of τ that cause its
characteristic equation 2.6 to change from having positive real part to having negative real
part for eigenvalue. It implies that the root of the characteristic equation will cross from
left-half to right-half of complex plane. Therefore, if this really happens, then the purely
imaginary eigenvalue must exist.

From this fact, we assume that λ = σi. Thus, from the Euler’s formula, we obtain

iσ = −re−iτσ

= −r(cos(τσ)− isin(τσ))

Then, this equation can be true if and only if the two equations satisfy.

0 = −rcos(τσ) (3.9)

σ = rsin(τσ) (3.10)

From equation 3.9, we have

τσ =
π

2
(2k − 1) (3.11)
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where k ∈ Z+

The critical delay τ ∗ is
π

2σ
. Then we can substitute this critical delay back to equation

3.10. As the result, we have σ = r.

For example, take r = 2, then the critical delay is τ ∗ =
π

4
. There is a Hopf bifurcation at

τ =
π

4
. If τ is greater than τ ∗, then the periodic solution occurs. Otherwise, the solution is

still stable at steady-state D2. These are shown in figures 3.1 and 3.2.

Figure 3.1: τ =
π

4
+ 0.1

Figure 3.2: τ =
π

4
− 0.1
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3.2 SEIR model with delay

We want to determine whether or not each steady-state of SEIR model will change from stable
to unstable by increasing the delay value (τ).

3.2.1 Steady-state E1

First we look at the steady-state E1. If there is no delay (i.e. τ = 0), we know that E1 will be
stable when Rdelay

0 less than 1. Therefore, we will test whether or not this steady-state will
change from being stable to begin unstable. Consider the jacobian matrix JE1 from (2.12).
The characteristic equation can also be in this form.

PE1(λ, τ) = (−µ− λ)(−µ− γ + βe−µτe−λτ − λ) = 0 (3.12)

We can conclude that one of the eigenvalues is −µ. If the other eigenvalues also have negative
real part, then we can confirm that there is no Hopf bifurcation for E1.

−µ− γ + βe−µτe−λτ − λ = 0

⇔ λ = −µ− γ + βe−µτe−λτ

= −(µ+ γ)(1− βe−µτ

µ+ γ
e−λτ )

= −(µ+ γ)(1−Rdelay
0 e−λτ ) (3.13)

⇔ λ

µ+ γ
= Rdelay

0 e−λτ − 1 (3.14)

Let
x = Rdelay

0 e−λτ

Suppose that this λ has positive real part. λ = a + ib where a is zero or positive real
number and b is a real number. Then the magnitude of x is following:

|x| = Rdelay
0 e−aτ |e−biτ |

Since e−biτ = cos(bτ)− isin(bτ), |e−biτ | = 1. Then

|x| = Rdelay
0 e−aτ ≤ Rdelay

0 < 1

Therefore, the right hand side of equation (3.14), x−1, is a complex number in the left-half
of complex plane. Then consider the left hand side of the equation.

λ

µ+ γ
=

a

µ+ γ
+

b

µ+ γ
i

We suppose that
a

µ+ γ
> 0, then

λ

µ+ γ
will be a complex number on the right-half of complex

plane. This contradicts with the right hand side of the equation.
We conclude, by contradiction, that a cannot be a positive real number. The eigenvalues

of this characteristic equation will never cross from left-half to right-half of complex plane.
Then, there is not a Hopf bifurcation; E1 will be stable regardless of the delay value, τ .
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3.2.2 Steady-state E2

Again we know that when τ = 0 and Rdelay
0 greater than 1, E2 will be stable. The jacobian

matrix JE2 (2.13) can provide the characteristic equation (2.14), and then equation 2.15 and
2.16. In this case, we will use the tool (3.1) to check the stability. The equation (2.14)
becomes

P1,E2(iσ) = −σ2 + i(µ+ γ + µRdelay
0 )σ + µβe−µτ

P2,E2(iσ) = i(−µ− γ)σ + (−µ− γ)µ

Then, we can break them as in (3.2). Therefore, we have

R1(σ) = −σ2 + µβe−µτ

Q1(σ) = (µ+ γ + µRdelay
0 )σ

R2(σ) = (−µ− γ)µ

Q2(σ) = (−µ− γ)σ

We square each of these equations.

R2
1(σ) = σ4 − 2µβe−µτσ2 + µ2(βe−µτ )2

Q2
1(σ) = ((µ+ γ)2 + 2(µ+ γ)µRdelay

0 + µ2(Rdelay
0 )2)σ2

R2
2(σ) = (µ+ γ)2µ2

Q2
2(σ) = (µ+ γ)2σ2

Then

S(z) = z2 −
(

2µβe−µτ − (µ+ γ)2 − 2(µ+ γ)µRdelay
0 − µ2(Rdelay

0 )2 + (µ+ γ)2
)
z

+ µ2(βe−µτ )2 − (µ+ γ)2µ2 = 0 (3.15)

Algebraically, S(z) is the quadratic equation. Note that σ ∈ R. Suppose that z1 and z2 are
the real roots of this equation. Then

(z − z1)(z − z2) = 0

z2 − (z1 + z2)z + z1z2 = 0

Case 1: if z1z2 is positive. Then z1 and z2 have to have the same sign. Therefore, if
z1 + z2 is positive, then we can conclude that z1 and z2 are both positive. Otherwise, z1 and
z2 are both negative.

Case 2: if z1z2 is negative. Then z1 and z2 have to have the different sign.
Case 3: if z1z2 is zero. Then one of the root has to be zero. Another one will have the

sign as same as z1 + z2.
Back to our S(z) equation. We have

z1z2 = µ2(βe−µτ )2 − (µ+ γ)2µ2

z1 + z2 = 2µβe−µτ − (µ+ γ)2 − 2(µ+ γ)µRdelay
0 − µ2(Rdelay

0 )2 + (µ+ γ)2
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Consider z1z2,

µ2(βe−µτ )2 − (µ+ γ)2µ2 = µ2(µ+ γ)2
(

(βe−µτ )2

(µ+ γ)2
− 1

)
= µ2(µ+ γ)2

(
(Rdelay

0 )2 − 1

)
> 0

(Since Rdelay
0 is greater than 1)

Therefore, we are in case 1. So the roots have the same sign. We have to consider z1 + z2.

z1 + z2 = 2µβe−µτ − (µ+ γ)2 − 2(µ+ γ)µRdelay
0 − µ2(Rdelay

0 )2 + (µ+ γ)2

= 2µβe−µτ − 2(µ+ γ)µRdelay
0 − µ2(Rdelay

0 )2

= 2µβe−µτ − 2(µ+ γ)µ
βe−µτ

µ+ γ
− µ2(Rdelay

0 )2

= −µ2(Rdelay
0 )2

< 0

Since z1 + z2 is negative, both z1 and z2 are negative.
But we know that z is σ2 where σ ∈ R. As a result, there is no such a σ2 that satisfies

negative number. This contradiction makes the claim that λ = iσ being false. It implies that
no λ changes from having negative real part to having positive real part. Consequently, E2

does not have the Hopf bifurcation as well.
From this stability analysis, we can conclude that SEIR model will stay stable for each

steady-state. Therefore, changing the value of delay will not cause periodic solutions.

3.3 SIRS model with delay

Usually, in SIRS model without delay, a factor of population over time will become susceptible
again. However, the delay has been introduced so that it uses a period of time for those people
to become susceptible again. Therefore, we want to study and find the conditions of the delay
value for steady-states of this model become periodic solutions.

3.3.1 Steady-state E3

First of all, we will consider the stability of the first steady-state E3. This happens only when
the reproductive number less than 1. We want to find the roots of its characteristic equation.
If all of the roots consist of negative real part, the Hopf bifurcation will not exist regardless
of the delay value. On the other hand, if it is possible to have a positive real part in a root,
it has a critical delay such that steady-state E3 changes from being stable to being unstable.

From equation 2.26,

(−µ− αe−µωe−λω − λ)(β − µ− γ − λ) = 0
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There are many roots for this equation because it is transcendental. One of the roots must
be β−µ−γ or can be seen as (µ+γ)(R0−1). We know that R0 has to be less than 1 in order
for this steady-state to be stable at τ = 0. It implies that a root is a negative real number.

The others roots can be obtained by solving the following equation:

λ = −µ− αe−µωe−λω

To start with, we consider λ in a complex form, a + ib. Substitute this complex solution
into the equation above.

a+ ib = −µ− αe−µωe−aωe−ibω

= −µ− αe−µωe−aω(cos(bω)− isin(bω)) (3.16)

Therefore, we have a system of equations.

a = −µ− αe−µωe−aωcos(bω) (3.17)

b = αe−µωe−aωsin(bω) (3.18)

We want to find the critical delay in which the roots start to change from having negative
real part to having positive real part. Therefore, we consider the solutions at imaginary axis
by setting a = 0.

µ = −αe−µωcos(bω)

b = αe−µωsin(bω)

we sum the square of both equations.

b2 + µ2 = (αe−µω)2(cos2(bω) + sin2(bω))

b2 = (αe−µω)2 − µ2

b =
√

(αe−µω − µ)(αe−µω + µ) (3.19)

The purely imaginary root exists if and only if b is a real number. Therefore, αe−µω − µ
has to be positive.

αe−µω > µ

eµω <
α

µ

ω <
ln(α

µ
)

µ
(3.20)

Therefore, our critical delay ω∗ is
ln(α

µ
)

µ
. To conclude, if the delay value less than ω∗, the

steady-state E3 can change from being stable to being unstable. If the delay value is large
enough, the steady-state stays stable.
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Note: This is different from other steady-states. As the delay decreases past the critical
delay, the root will continues going into positive half-plane.

We use MATLAB to simulate the effect of the Hopf bifurcation. First of all, when the
delay value is less than the critical delay, the solutions are stable as in figure 3.3. From figures
3.4, 3.5 and 3.6, the periodic solutions happen. Even though, it does not make sense for
population to be negative or more than 10000 people (notice that that we have constant total
population at 10000). In conclusion, the bifurcation happens when the delay value, ω, less
than the critical delay, ω∗. The smaller delay is, the more swing occurs.

Figure 3.3: ω1 > ω∗
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Figure 3.4: ω1 = 80% of ω∗

Figure 3.5: ω1 = 70% of ω∗
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Figure 3.6: ω1 = 60% of ω∗

3.3.2 Steady-state E4

For the steady-state E4, we also want to know at which ω∗ that the eigenvalues change from
having negative real part to having positive real part. So it is when the periodic solutions are
going to emerge. We consider the characteristic for this steady-state.

P1,E4(λ) = λ2 − (M − µ)λ+
β

R0

M

P2,E4(λ) = αe−µωλ+Mαe−µω

whereM = β
(R0 − 1)(µ+ αe−µω)

(β +R0αe−µω)
. Then by using the tool 3.1, we can construct the following

R1 = −σ2 +
β

R0

M

Q1 = −(M − µ)σ

R2 = µαe−µω

Q2 = αe−µωσ
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Therefore, from equation 3.8, we have

S(z) = z2 − 2
β

R0

Mz + (
β

R0

M)2 + (M − µ)2z − (µαe−µω)2 − (αe−µω)2z

= z2 +Bz + C

= 0

where

B = −2
β

R0

M + (M − µ)2 − (αe−µω)2

C = (
β

R0

M)2 − (µαe−µω)2

Since S(z) is a quadratic equation, the roots of this equation are

z =
−B ±

√
B2 − 4C

2

Remember that z is σ2. In other word, z will exist if and only if it is a positive real number.
If there is no such z, then there is no eigenvalue that has purely imaginary part and the Hopf
bifurcation does not happen.

Let z∗ ∈ z. Suppose that z∗ is a positive real roots. Then σ∗ = ±
√
z∗, and we can

substitute this σ∗ into equations 3.3 and 3.4.

−R1(σ
∗) = R2(σ

∗)cos(σ∗ω) +Q2(σ
∗)sin(σ∗ω)

Q1(σ
∗) = R2(σ

∗)sin(σ∗ω)−Q2(σ
∗)cos(σ∗ω)

Consequently the two equations contain only ω variable. Therefore, we can find ω∗ that
satisfy the two equations. Remember that if we have more than one ω∗’s, we will choose the
smallest positive one; any ω that is greater than the smallest critical delay is going to cause
the Hopf bifurcation in the solutions.

However, finding the critical delay for this steady-state algebraically is difficult. Thus, we
will use MATLAB to approximate the solution numerically. First, we find the positive real
number z∗, and then use fsolve in MATLAB to approximate the critical delay. After we have
that ω∗, we vary ω around ω∗ to show the Hopf bifurcation. Moreover, we are going to study
the effect of the reproductive number on this bifurcation. The results are the following:
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Considering different values of delay ω based on the critical delay, ω∗

Figure 3.7: ω = ω∗ Figure 3.8: ω = ω∗ − 0.1

Figure 3.9: ω = ω∗ + 0.1

Figure 3.10: ω = ω∗ + 0.2 Figure 3.11: ω = ω∗ + 0.3
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Considering different reproductive numbers when ω = 2ω∗

Figure 3.12: R0 = 1.6346 Figure 3.13: R0 = 2.8302

Figure 3.14: R0 = 2.8846 Figure 3.15: R0 = 3.7037

In conclusion, steady-state E4 always has the critical value so that the eigenvalues change
from having negative real part to having positive real part; when the delay ω is less than
the critical delay ω∗, there will be no oscillation at the steady-state E4, figure 3.8; when we
increase the ω to be equal to ω∗, figure 3.7, the Hopf bifurcation starts to happen. Once we
choose ω to be 0.1 larger than ω∗ in figure 3.9, we clearly see more of periodic solutions. We
can keep increasing the delay and the oscillation will keep becoming bigger, shown in figures
3.10 and 3.11. Notice that the periodic solutions will oscillate on a line which, in fact, is
where the steady-state E4 lines on. In figure 3.10 and 3.11, ω is large enough to make the
oscillation keeps larger when time increases. So the severe outbreaks will happen in this case.
Additionally, when R0 increases and the size of ω is fixed to be two times of ω∗, the oscillation
apparently increases its amplitude over time.

In summary, for both steady-states of this SIRS model, the Hopf bifurcation happens.
Steady-state E3 changes from being stable to being unstable when the delay less than its
critical delay. However, the results calculated from MATLAB show that the critical delay
is going to be bigger than the life-cycle µ. Therefore, we can conclude that the oscillation
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always happen in if the steady-state E3 exists. For steady-state E4, the periodic solutions
definitely occurs when ω is greater than ω∗. In addition to the value of delay, R0 affects the
oscillation as well. The larger R0 is, the stronger oscillations swings.

3.4 Chemostat model with delay

There are two steady-states for this chemostat model. We will consider their stability while
changing the delay ω.

3.4.1 Steady-state F1

Steady-state F1 is the case when the rate of growth is less than the flow rate of the tank.
Thus, the number of cells will go to zero. In our study, we want to know if we change the
value of delay, how it affects the behavior of the solutions.

To understand this phenomenon, we consider the characteristic equation 2.37.

λ2 + 2λ+ 1 +

(
−γβe

−ω

1 + γ
λ− γβe−ω

1 + γ

)
e−λω = 0

Without delay, or ω = 0, this characteristic equation becomes

λ2 + 2λ+ 1 +

(
−γβe

−ω

1 + γ
λ− γβe−ω

1 + γ

)
.

Remember that R0 < 1 for this steady-state F1:

γ(βe−ω − 1) < 1

⇔ γβe−ω < 1 + γ

⇔ γβe−ω

1 + γ
< 1

Therefore, all of the eigenvalues when ω = 0 have negative real part. Therefore, it is
stable.

Using strategy 3.1, we have

R1(σ) = −σ2 + 1

Q1(σ) = 2σ

R2(σ) = −M
Q2(σ) = −Mσ

where M =
γβe−ω

1 + γ
< 1.

Then, we construct S(z) as in 3.8.

S(z) = z2 − 2z + 1 + 4z −M2 −M2z

= z2 − (−2 +M2)z + 1−M2 = 0
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Suppose that roots of this equation are z1 and z2.

z1z2 = 1−M2 (3.21)

z1 + z2 = −2 +M2 (3.22)

Since M < 1, M2 is definitely less than 1 and 2. We know that z1 and z2 have to be
negative numbers in order for 3.21 and 3.22 being satisfied. Hence, there is not a Hopf
bifurcation for steady-state F1. F1 stays stable.

In conclusion, sometimes we want to drive the population of a cell to zero. Then we do
not need to worry about the time delay of growing of this cell; The delay will not change the
stability of this situation (in the condition that R0 < 1).

3.4.2 Steady-state F2

This is the situation when the cell will stay at the same population size when the time goes
to infinity as well as the concentration of the nutrient. We will analyze its stability by using
the tool 3.1. Remember that R0 greater than 1 in this case.

Consider the characteristic equation 2.38

PF2(λ, τ) = λ2 +

(
2 +

R0 − 1

H

)
λ+ 1 +

R0 − 1

H
+

(
−βe−ω

(
1− 1

H

)
(λ+ 1)

)
e−λω

R1 = −σ2 +N

Q1 = (1 +N)σ

R2 = −L
Q2 = −Lσ

where N = 1 +
R0 − 1

H
and L = βe−ω

(
1− 1

H

)
.

Rewrite L by back-substituting H = 1 +
1

βe−ω − 1
=

βe−ω

βe−ω − 1
.

L = βe−ω
(
H − 1

H

)
= βe−ω

(
1

βe−ω−1
βe−ω

βe−ω−1

)
= 1

Following the step in the introduction part of this chapter, we have

R2
1 = σ4 − 2Nσ2 +N2

Q2
1 =

(
1 + 2N +N2

)
σ2

R2
2 = 1

Q2
2 = σ2
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Then

S(z) = z2 − (2N − 1− 2N −N2 + 1)z +N2 − 1

= z2 − (−N2)z +N2 − 1

= 0

We know that N > 1. So it is obviously that the solutions of this equation are both
negative real number. In the other word, the stability of this steady-state F2 with the ω = 0
will not change from being stable to being unstable while increasing ω.

After consuming the nutrient, some cells might develop to have faster or slower delay time
to grow. Fortunately, if the cells satisfy this model, when R0 is greater than 1, the delay value
will no affect the stability of the solutions. Without the solution of this steady-state, we will
still be concerned about it when we want to keep the population dynamic of the cells beyond
zero.

In conclusion, for chemostat model, the steady-states F1 and F2 stay stable regardless of
the value of the delay ω.
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Chapter 4

Global Sensitivity Analysis

Human susceptibility, virus nature, climate and transmission rates can change for both the
SIR and the Chemostat model. In order to understand how this variation could affect our
outputs, we quantify the impact of changes in parameters. Sensitivity analysis is a study of
how uncertainty in the output of a model can be attributed to different sources of uncertainty
in the model input. For the software we use in this research, MatLab, sensitivity analysis refers
to understanding how the parameters and steady states of a model influence the characteristic
function. There are several different sensitivity analysis methods, such as local sensitivity
analysis, Extended Sensitivity Analysis and global sensitivity analysis.

Local Sensitivity Analysis: Local sensitivity analysis works for at particular parameter
values assuming that all other parameters are fixed.

Extended Sensitivity Analysis: Extended sensitivity analysis calculates the response of
the model to variations in each parameter of interest over its range of possible values, while
fixing all of the other parameters at their baseline values.

Global Sensitivity Analysis: The global sensitivity analysis varies one parameter at a time,
but still only samples a very small region in the space of possible parameter values.

Local sensitivity analysis and extended sensitivity focus on the effect of one parameter on
the function at a time, keeping the other parameters fixed. They can only explore a small

Figure 4.1: The Process of Global Sensitivity Analysis
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fraction of the design space, especially when there are many parameters. They do not provide
insight about how the interactions between parameters influence the function. In this case,
we mainly use global sensitivity analysis in our research. The global sensitivity analysis uses a
global set of samples to explore the design space. Fig. 4 shows the process of global sensitivity
analysis.

Before we do the global sensitivity analysis, we separate all the parameters into two
groups: parameters of interest (POI) and quantities of interest (QOI). We have three types
parameters of interest (POI) in each model. They are the parameters we can control, the ones
we only know approximately, and the parameters that cannot be defined to be a specific value
because of random stochastic effects. The usefulness of a model depends on understanding
the uncertainties in our parameters affect predictions of quantities of interest (QOI). Usually,
we can get the response of the QOI to POI that we could control.

We are going to first introduce the main method which we used for analyzing all the
models, then explain the details for the difference between different quantities of interest
(QOI) in each sub-sections.

There are different possibilities in parameter values depending on environment, climate,
peoples behavior, so we computed distributions for each of the QOI while varying all param-
eters across their ranges simultaneously. The method we used can be found in Appendix B in
this paper [11]. We start by describing POI p = (p1, p2, ..., pn) ∈ Rn satisfies, pi ∈ [p−i , p

+
i ] for

i=1,2,...n. For each POI and QOI, we also give them a baseline value. (We use the notation
.̂ to indicate that a variable is evaluated at the model baseline values.) We sample in this
feasibility space N times using Sobol sampling, yielding pj = (pj1, p

j
2, ..., p

j
n), j = 1, ...,M . We

solve the model for each pj to generate the corresponding QOI, qj. To form a distribution of
the QOI from these samples we use a kernel density estimate (KDE) where the estimate of
the probability density function for qi is given by

f̂h(qi) =
1

Mh

M∑
j=1

K(
qi − qji
h

)

Here N is the iteration time which the number of calculating time we want for each QOI. In
our paper, we use M = 5000 for each QOI. K(u) is a compactly supported function on R and
h > 0 is the bandwidth of the KDE. For our research, we take K(u) to be the Epanechnikov
kernel

K(u) =
3

4
(1− u2)I|u|≤1

The bandwidth h > 0 is chosen so that f̂h(q) is sufficiently regularized to show the shape
of the distribution. In our paper, we change h depend on different parameter. We will note
h in each sub-sections. Distributions and sensitivity for all quantities of interest (QOI) are
shown in the following subsections.

Since our models are generated form the original model depends on the time delay, we
use a dde23 in MatLab for solving the delay equations by choosing tspan (the interval of
integration) between 0 and 30 for all models we analyze.
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4.1 The SEIR model with Incubation Period

From Chapter 2, we have the delay equations for the SEIR model.

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t)

dE(t)

dt
=
βS(t)I(t)

N(t)
− βS(t− τ)I(t− τ)

N(t)
e−µτ − µE(t)

dI(t)

dt
=
βS(t− τ)I(t− τ)

N(t)
e−µτ − γI(t)− µI(t)

dR(t)

dt
= γI(t)− µR(t)

In our analysis, we assumed that each of the POIs are changing independently of each
other. If the POIs are related, then this must be taken into account in the sampling algorithm.
We assumed uniform distributions for the parameter ranges. If more information is known
about these distributions, then the sampling can reflect the known distribution. For the SEIR
model with incubation period, we consider all the variables listed in table4.1 as POIs. The
solution of the mathematical models for the base line parameters, shown in table4.2. The
birth and death rate never change in out model, and we assumed the total number of people
in the SIR model is 10000. These two fixed parameters shown in table4.3. Since POI is
only known approximately, it can be difficult to quantify the full range of possible model
predictions.

Table 4.1: Parameters of interest(POI) for the SEIR Model

β Transmission probability: uniformly chosen in (0.4, 2)
γ Recovery rate: uniformly chosen in (1/2, 1/7)
τ Time delays: uniformly chosen in (0, 10)

Table 4.2: Quantities of interest(QOI) for the SEIR Model

I(t) The maximum number of infected people during the whole infection process.
t(I) The time to reach the maximum number of infected people during the whole

infection process.∫ T
0
I(t)dt The number of all people got infected during the whole infection process.

By tabulating all of the sample responses for a single QOI, we can create the one-
dimensional distribution for the QOI. This simple approach provides a quick analyze of the
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Table 4.3: Fixed parameters for the SEIR Model

µ The birth rate and death rate: chosen as 1/100
N The total number of the whole balance for SIR model as S + I + R = N : chosen as

N = 10000

possible range of QOI within the parameter ranges and indicates the frequency with which
QOI values will occur. For each QOI, we analyze the global sensitivity of our three different
POI, by fixing other two of them at the baseline values and random the one we focus on.
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4.1.1 Global Sensitivity Analysis with Peak of I(t)

In order to analyze the global sensitivity of peak of I(t), we analyzed three times each for β,γ
and τ . We choose M = 5000.

For β, fix γ = 1/6, τ =5, h = 50 and uniformly β in (0.4,2). The distribution shows in
figure4.2.

For γ, fix β = 1, τ =5, h = 400 and uniformly γ in (1/2,1/7). The distribution shows in
figure4.3.

For τ , we fix γ = 1/6, β =1, h = 50 and uniformly τ in (0,10). The distribution shows in
figure4.4.

By looking at how fat of the curves are, we can tell that for QOI: peak of I(t), β and τ
are the most sensitive parameters.

Figure 4.2: Peak − I(t)− β ∈ (0.4, 2), γ = 1/6, τ = 5, h = 50

Figure 4.3: Peak − I(t) − γ ∈ (1/2, 1/7),
β = 1, τ = 5, h = 400

Figure 4.4: Peak− I(t)− τ ∈ (0, 10), γ =
1/6, β = 1, h = 50
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4.1.2 Global Sensitivity Analysis with t(I)

In order to analyze the global sensitivity of t(I), we analyzed three times each for β,γ and τ .
We choose M = 5000 and h = 50 for each parameter.

For β, fix γ = 1/4, τ =5, and uniformly β in (0.4,2). The distribution shows in 4.5.
For γ, fix β = 1, τ =5,and uniformly γ in (1/2,1/7). The distribution shows in 4.6.
For τ , fix β = 1, γ =1/4, and uniformly τ in (0,10). The distribution shows in 4.7.
By looking at how fat of the curves are, we can tell that for QOI: t(I), all the three POI

are equally sensitive.

Figure 4.5: t(I)− β ∈ (0.4, 2), γ = 1/4, τ = 5

Figure 4.6: t(I) − γ ∈ (1/2, 1/7), β = 1,
τ = 5

Figure 4.7: t(I) − τ ∈ (0, 10), β = 1, γ =
1/4
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4.1.3 Global Sensitivity Analysis with
∫ T

0 I(t)dt

In order to analyze the global sensitivity of integral of I(t), we analyzed three times each for
β,γ and τ . We choose M = 5000.

For β, fix γ = 1/4, τ =5, h = 1000 and uniformly β in (0.4,2). The distribution shows in
4.8.

For γ, fix β = 1, tau =5, h = 1000 and uniformly γ in (1/2,1/7). The distribution shows
in 4.9.

For τ , fix γ = 1/4, β =1, h = 1000 and uniformly τ in (0,10). The distribution shows in
4.10.

By looking at how fat of the curves are, we can tell that for QOI:
∫ T
0
I(t)dt , β and τ are

the most sensitive parameters.

Figure 4.8:
∫ T
0
I(t)dt− β ∈ (0.4, 2), γ = 1/4, τ = 5, h = 1000

Figure 4.9:
∫ T
0
I(t)dt−γ ∈ (1/2, 1/7), β =

1, τ = 5, h = 1000
Figure 4.10:

∫ T
0
I(t)dt − τ ∈ (0, 10), γ =

1/4, β = 1, h = 1000
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4.2 The Chemostat

From Chapter 2, we have the delay equations for the chemostat model.

dX

dt
= e−ω

K1
F
V

Y (t− ω)X(t− ω)

1 + Y (t− ω)
−X

dY

dt
=
N0

K2

− Y (t)− Y (t)X(t)

1 + Y (t)

For the chemostat model with time delay, we consider all the variables listed in table4.4
as POIs. The solution of the mathematical models for the base line parameters, shown in
table4.5. Since POI is only known approximately, it can be difficult to quantify the full range
of possible model predictions.

Table 4.4: Parameters of interest(POI) for the Chemostat Model

K1 Maximum growth rate: uniformly chosen in (0.1, 1)
K2 Nutrient concentration calculated at 1/2 the maximum growth rate: uniformly

chosen in (0.01, 0.1)
ω The cell uses ω time to grow after consume the nutrient: uniformly chosen in

(0.1, 1.2)

Table 4.5: Quantities of interest(QOI) for the Chemostat Model

∫ T
0
X(t)dt The number of cell in this experiment.

By tabulating all of the sample responses for a single QOI, we can create the one-
dimensional distribution for the QOI. This simple approach provides a quick analyze of the
possible range of QOI within the parameter ranges and indicates the frequency with which
QOI values will occur. For each QOI, we analyze the global sensitivity of our three different
POI, by fixing other two of them at the baseline values and random the one we focus on.
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4.2.1 Global Sensitivity Analysis with
∫ T

0 X(t)dt

In order to analyze the global sensitivity of integral of X(t), we analyzed three times each for
K1,K2 and ω. We choose M = 5000 and h =50.

For K1, fix K2 = 0.0727, ω =1.1, and uniformly K1 in (0.1,1). The distribution shows in
4.11.

For K2, fix K1 = 0.7726 , ω =1.1 , and uniformly K2 in (0.01,0.1). The distribution shows
in 4.12.

For ω, fix K1 = 0.7726 , K2 = 0.0727, and uniformly ω in (0.1,1.2). The distribution
shows in 4.13.

The three graphs imply that the three POIs have the same affect on this QOI.

Figure 4.11:
∫ T
0
X(t)dt−K1 ∈ (0.1, 1), K2 = 0.0727, ω = 1.1

Figure 4.12:
∫ T
0
X(t)dt−K2 ∈ (0.01, 0.1),

K1 = 0.7726, ω = 1.1
Figure 4.13:

∫ T
0
X(t)dt − ω ∈ (0.1, 1.2),

K1 = 0.7726, K2 = 0.0727
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Chapter 5

Conclusion

This Major Qualifying Project can be divided into three main chapters. For each chapter, we
studied three different biological mathematical models with time delay, which are the Logistic
Growth model, the SIR model and the Chemostat model.

In chapter two and chapter three, we find out that for each model, there are two steady-
states and based on the steady-state, we generated characteristic equation. We also analyze
the stability of steady-states of all the model. The Hopf bifurcation occurs in the logistic
growth model and the SIRS model with delay, but not in the SEIR model with delay and the
chemostat model. During our study of the logistic growth model and the SIRS model with
delay, we have the following results:

For the logistic growth model, the steady-state D1 is always unstable since we only get
positive real root by solving the characteristic equation. However, at steady-state D2, the

Hopf bifurcation occurs when the delay is greater than critical value
π

2r
.

For the SIRS model with delay, Hopf bifurcation behaves differently for each steady-state.

At steady-state E3, periodic solutions occur when the delay is less than critical value
ln(α

µ
)

µ
.

This critical value is usually greater than the value of lifespan 1
µ
. We know that the delay

should be less than 1
µ
, so it implies that Hopf bifurcation always happens in this case. On the

other hand, the oscillation of steady-state E4 occurs when the delay is greater than the critical
delay. It is difficult to find the explicit form of this critical delay algebraically. Instead, we
use MATLAB numerical approximation to calculate this value.

In chapter four, we study global sensitivity analysis for the SEIR model with delay and
the chemostat model. We first analyze the POI and QOI for each model. Then we use ’dde23’
in MATLAB for solving the delay equations. By tabulating all of the sample responses for
a single QOI, we can create the one-dimensional distribution for the QOI by using the KDE
function. For each QOI, we analyze the global sensitivity of three different POIs, by fixing
two of them at the baseline values and randomize the one we focus on. This simple approach
provides a quick analyze of QOI within the value range and indicates relations with all the
POI.
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Appendix A

MATLAB Code

This is one example MatLab code of solving the peak of I(t) with parameter β. For other
QOI, we use the same method with changing parameters and their baseline value.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%%I ( t )−B%%%%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 f unc t i on [ x , sum , tau , I ] = MQP I t B ( max i t e r i )
5 g l o b a l tau
6 g l o b a l gamma
7 g l o b a l miu
8 g l o b a l maxiter
9 g l o b a l B

10 g l o b a l N
11 %miu = 1/(78∗365) ;
12 miu = 1/100;
13

14 %B = randnum ( 0 . 4 , 2 ) ;
15 %gamma = randnum (2 ,7 ) ;
16 tau = 5 ;
17 x = 0 . 5 : 0 . 1 : 7 0 0 ;
18 %B = 1 . 0 ;
19 gamma = 1/6 ;
20 maxiter = max i t e r i ;
21 N=10000;
22 %h = 500 ;
23 h = 50 ;
24 tspan = 0 : 3 0 ;
25

26 f o r i =1: maxiter
27 %tau = randnum (2 ,7 ) ; % a vec to r o f tau
28 B = randnum ( . 4 , 2 ) ;
29 s o l = dde23 ( @delay func , tau , @history , tspan ) ;
30 I ( i ) = max( s o l . y ( 3 , : ) ) ; % t h i s i s my QOI
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31 %r = R0(B) ;
32 end
33 %[ min ( r ) ,max( r ) ]
34 sum = ze ro s (1 , l ength ( x ) ) ;
35

36 f o r e l l =1: l ength ( x )
37 % f o r each x ( e l l ) , sum over a l l QOI
38 %sum = ze ro s (1 , l ength ( x ) ) ;
39 f o r k=1: maxiter
40 tmp( k ) = ( x ( e l l )−I ( k ) ) /h ;
41 sum( e l l ) = sum( e l l ) + KDE(tmp( k ) ) ;
42 KDE(tmp( k ) ) ;
43 end
44 sum( e l l ) = sum( e l l ) /( maxiter∗h) ;
45 % now you have (x , sum)
46 end % end e l l loop
47

48 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%delay func t i on%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 f unc t i on dydt = de lay func ( t , y , Z)
5 ylag = Z ( : , 1 ) ;
6

7 g l o b a l N
8 g l o b a l tau
9 g l o b a l gamma

10 g l o b a l miu
11 g l o b a l B
12

13 dydt = ze ro s (4 , 1 ) ;
14 dydt (1 ) = miu∗N − B∗y (1 ) ∗y (3 ) /N − miu∗y (1 ) ;
15 dydt (2 ) = B∗y (1 ) ∗y (3 ) /N − B∗ ylag (1 ) ∗ ylag (3 ) /N∗exp(−miu∗ tau ) − miu∗y

(2 ) ;
16 dydt (3 ) = B∗ ylag (1 ) ∗ ylag (3 ) /N∗exp(−miu∗ tau ) −gamma∗y (3 )− miu∗y (3 ) ;
17 dydt (4 ) = gamma∗y (3 )−miu∗y (4 ) ;
18

19 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%h i s t o r y func t i on%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 f unc t i on y0 =h i s t o r y ( t )
5 g l o b a l N
6 % y0 = [ S , E, I , R]
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7 y0 = ze ro s (4 , 1 ) ;
8 y0 (1 , 1 ) = N−5;
9 y0 (2 , 1 ) = 0 ;

10 y0 (3 , 1 ) = 5 ;
11 y0 (4 , 1 ) = 0 ;
12

13 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%KDE func t i on%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 f unc t i on f = KDE( z )
5 % z i s a a vec to r
6 % retu rn s the func t i on (3/4) ∗(1−miuˆ2)∗ I { |miu\ˆ2<1}
7 f = (3/4) ∗max(1−z ˆ2 ,0) ;
8 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%randnum func t i on%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 f unc t i on x = randnum(a , b)
5 g l o b a l maxiter
6 % x w i l l r e turn a vec to r o f s i z e maxiter
7 % each component o f t h i s vec to r i s a random
8 % number between a and b .
9 %x = a + rand (1 , maxiter ) ∗(b−a ) ;

10 x = a + rand ( ) ∗(b−a ) ;
11 end
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