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ABSTRACT 

 

Hematopoietic cell populations exhibiting detectable telomerase activity and 

elongated telomere lengths display strong engraftment survivability in humans during 

transplants.  We investigated telomerase activity and telomere length in umbilical cord 

blood hematopoietic cell populations obtained from ViaCell Inc. at various intervals of a 

two-week ex vivo stem cell amplification process.  Telomerase activity is increased with 

time in ViaCell’s amplification process, perhaps in response to the removal of 

differentiated cells and expansion of primitive hematopoietic stem cell populations in 

tissue culture media containing a mixture of growth factors.  Two of ViaCell’s cell 

culture fractions were analyzed for telomere length using a TLA.  Our results showed 

relatively long telomere lengths for day-0 and day-14 cord populations, and that despite 

an upregulation of telomerase activity in Day-14 samples, a loss of about 2 kb of 

telomeric DNA occurs.  Our data are consistent with a model in which the increase in 

telomerase activity in day-14 ex vivo amplified cord blood hematopoietic cells relative to 

fresh cord is sufficient to reduce, but not prevent, telomere shortening caused by cell 

proliferation.  Lastly, we investigated various culture conditions that could potentially 

upregulate telomerase activity in the Day-14 amplified cells.  However none of the 

treatments tested altered telomerase activity.  Our detection of increased telomerase 

activity and relatively long telomere lengths in ViaCell’s Day-14 ex vivo amplified cord 

blood stem cell fraction provides support for ViaCell’s Selective Clonogenic 

AmplificationTM indicating a high engraftment potential for these cells. 
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BACKGROUND 
 
 
Stem Cells 

Stem cells have the ability to divide for indefinite periods in culture and to give 

rise to specialized cells.  They are characterized by their capacity for extensive 

proliferation and differentiation (de Wynter et al., 1998).  They are best described in the 

context of normal human development.  The fertilized egg is said to be totipotent (see fig. 

1, upper diagram) because it has the potential to generate all the cells and tissues that  

 

make up an embryo, including those that support the egg’s development in utero (like the 

extra-embryonic tissues, placenta, and umbilical cord).   

The term pluripotent (see fig. 1, middle diagram) is used to describe stem cells 

that can give rise to cells derived from all three embryonic germ layers: mesoderm, 

endoderm, and ectoderm.  These three germ layers are the embryonic source of all cells 

of the body.   The embryonic stem (ES) cell is pluripotent (see fig. 2).  The ES cell is 

defined by its origin from one of the earliest stages of the development of the embryo, the 

Figure 1.  Levels of stem cell differentiation. (NIH 2000). 
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blastocyst.  Specifically, ES cells are derived from the inner cell mass of the blastocyst at 

a stage before it would implant in the uterine wall.  The 

defining properties of an ES cell include the following: 

they are capable of long-term self-renewal (exhibit and 

maintain a stable diploid, normal karyotype); are 

clonogenic (a single cell can give rise to genetically 

identical cells); can be induced to continue proliferating 

or to differentiate (lack the G1 checkpoint in the cell         

 

 

cycle and spend most of their time in the S phase of the cell cycle, during which they 

synthesize DNA), show stable developmental potential to form derivatives of all three 

embryonic germ layers even after prolonged culture (Smith, 2001; Thomson & Marshall, 

1998). 

The pluripotent stem cells undergo further specialization into stem cells that are 

committed to give rise to cells that have a particular function.  These more specialized 

stem cells are called multipotent (see fig. 1, lower diagram).  Examples of multipotent 

cells include hematopoietic stem cells (HSC) that give rise to the various types of blood 

cells.  

Unipotent stem cells, a term that is usually applied to a stem cell in adult 

organisms, means that these cells are usually capable of differentiating along only one 

lineage.  Adult stem cells in many differentiated tissues give rise to just one cell type 

under normal conditions, in a process that allows a steady state self-renewal for the tissue 

2 

Figure 2.  A microscopic view of 
ES cells (Newsweek, July 9, 2001). 
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(NIH, 2001).  Recent data indicate that adult and multipotent stem cells may be capable 

of more versatile differentiation than previously thought. For example, HSCs may have 

the capacity to differentiate into neuronal cells (McGovern et al., 2001). 

 

Potential Uses of Human Stem Cells 

A new era in stem cell biology began in 1998 with the derivation of embryonic 

stem (ES) cells from the inner cell mass of human blastocysts by Thomson et al (1998) 

and from fetal tissue by John Gearhart (Shamblott et al., 1998).  These breakthroughs 

showed that ES cells provided a possible source of cells for cell based therapies for many 

human diseases.  The ES cells isolated from human blastocysts showed normal 

karyotypes and expressed high levels of telomerase activity.  These cells were grown 

with mouse feeder fibroblasts, and after undifferentiated proliferation in vitro for 4-5 

months, these cells still maintained the developmental potential to produce gut 

epithelium, cartilage, bone, muscle, neural epithelium, embryonic ganglia, and stratified 

squamous epithelium.  When injected into SCID mice, these cells formed teratomas, 

which are tumors containing a mix of differentiated human cell types (Thomson et al., 

1998).  In another study, human primordial germ cells cultured in vitro retained their 

karyotype while producing large, ES-like cell colonies capable of repeated passages 

(Shamblott et al., 1998).  Reports showed that specific media hold promise for a directed 

differentiation of ES cells (Pittenger et al., 1999).  In another key publication, eight 

growth factors were tested on a human ES cell line expressing receptors for each growth 

factor.  Molecular markers identified all three germ layers, eleven tissues, and specific 

gene expression in germ layers and tissues (Schuldiner et al., 2001).  These studies show 
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that directed differentiation of stem cells into germ layers or specific tissues will become 

possible in the near future.  

Many uses have been proposed for human embryonic stem cells.  The most often 

discussed is their potential use in transplant therapy, to restore tissue that has been 

damaged by disease or injury.  Diseases that might be treated by therapeutic transplants 

with ES-derived cells include Parkinson’s disease, diabetes, traumatic spinal cord injury, 

Purkinje cell degeneration, Duchenne’s muscular dystrophy, heart failure, and 

osteogenesis imperfecta.  However, treatments for any of these diseases require that 

human ES cells be directed to differentiate into specific cell types prior to transplantation  

(See fig. 3).  At this stage, any therapies based on the use of human ES cells are still 

hypothetical and highly experimental (Odorico et al., 2001, Pedersen, 1999).  One of the 

current advantages of using ES cells compared to adult stem cell is that ES cells have an 

unlimited ability to proliferate in vitro, and are more likely to be able to generate a broad 

range of cell types through directed differentiation.  The potential disadvantages of the 

use of human ES cells for transplant therapy include greater ethical considerations, and 

Figure 3.  Promise of stem cell research. (NIH, 2000) 
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the propensity of undifferentiated ES cells to induce the formation of tumors (teratomas), 

which are typically benign (NIH, 2001).  Because it is the undifferentiated ES cells rather 

than their differentiated progeny that have been shown to induce teratomas, tumor 

formation might be avoided by devising methods for removing any undifferentiated ES 

cells prior to transplant (NIH, 2001).  The potential immunological rejection of human 

ES-derived cells might be avoided by using nuclear transfer technology to generate ES 

cells that are genetically identical to the person who receives the transplant.  It has been 

suggested that this can be accomplished by using somatic cell nuclear transfer technology 

or “therapeutic cloning” (Odorico et al., 2001) (see fig. 4). 

 

 

 

   Another potential use of ES cells that does not involve transplantation, is their use 

in studying the early events in human development, for example to identify genetic, 

molecular, and cellular events that lead to congenital birth defects, placental 

abnormalities that lead to spontaneous abortions, and to identify methods for preventing 

them (Rathjen et al., 1998).  Human ES cells can also be used to test candidate 

Figure 4. Genetic manipulation of human ES cells. (NIH, 2001). 
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therapeutic drugs because the ES- derived cells may be more likely to mimic the in vivo 

response of the cells/tissues to drugs being tested, and so offer safer and potentially 

cheaper models for drug screening.  Human ES cells could also be employed to screen 

potential toxins.  However, to meet these objectives ES cells must be directed to 

differentiate into specific cell types (NIH, 2001). 

 

Hematopoiesis 

Hematopoiesis (see fig. 5) is the formation of red and white blood cells from 

hematopoietic stem cells (HSC).  In human ontogeny, hematopoiesis begins in the yolk  

 

sac and migrates to the fetal liver and then to the spleen.  As the gestation continues, the 

bone marrow becomes the major hematopoietic organ, and by the time of birth 

hematopoiesis has ceased within the liver and spleen.  Early in hematopoiesis, the 

Figure 5.  Hematopoiesis.  Shows formation of red and white blood 
cells from hematopoietic stem cell (Tissue Therapeutics, 2000). 
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multipotent HSC differentiates along one of two pathways, giving rise to either a 

lymphoid stem cell (upper pathway in the figure) or a myeloid stem cell (lower pathway 

in the figure).  The lymphoid stem cell generates T and B progenitor lymphocytes.  The 

myeloid stem cell generates progenitor cells for erythrocytes, neutrophils, eosinophils, 

basophils, monocytes, mast cells, and platelets (Kuby, 1992).  The earliest evidence 

proving that the various cell lineages in bone marrow originate from HSCs came from  

the classic experiment of Till and McCulloch (1961).   

The complex orchestration of hematopoiesis through which the elaborate array of 

blood cells is produced requires three physiologic components, each of which is essential: 

1) the stem cell pool itself, 2) hematopoietic cytokines, which regulate hematopoiesis 

through both endocrine and paracrine mechanisms, and 3) the hematopoietic inductive 

microenvironment, which is made up of the bone marrow stroma and vasculature.  The 

unique microenvironment influences the growth and differentiation of hematopoietic 

stem cells by providing a hematopoietic inducing microenvironment consisting of a 

cellular matrix and either membrane bound or diffusible growth factors (Sullivan, 2000). 

 

Hematopoietic Stem Cells 

Hematopoietic stem cells (HSCs) (figure 6) are usually found in the bone marrow, 

umbilical cord blood, and can be found in the peripheral blood if they are stimulated in 

the bone marrow by factors such as granulocyte colony-stimulating factor (G-SCF) (t. 

Breeders, 2000).  An HSC can renew itself, can differentiate to a variety of specialized 

cells, or can undergo apoptosis (NIH, 2001).  HSCs are few in number, occurring with a 

frequency of one stem cell per 104 bone marrow cells.  Studies have revealed that there 
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appear to be two kinds of HSCs: 1) long-term stem cells that are capable of self-renewal 

and can regenerate all the different types of cells, and 2) short term progenitor or 

precursor cells which are relatively immature and are precursors to a fully differentiated 

cell of the same tissue type.  It is the long-term replicating HSCs that are most important 

for developing HSC-based cell therapies (NIH, 2001).  

 

Identification (Phenotype) of Hematopoietic Stem Cells 

Both HSCs and lineage committed hematopoietic progenitor cells (HPC) express 

the CD34 antigen (see Table 1).  CD34+ cells constitute 1%-5% of cells in the adult bone 

marrow, and 5%-10% of fetal bone marrow Cells (Krause et al., 1996) and 1% of all 

nucleated cells in cord blood from full term deliveries (Civin and Gore, 1993).  About 1 

in every 100,000 cells in the marrow is a long term HSC (NIH, 2001).  CD34 plays an 

important role in the formation of progenitor cells in both fetal and adult hematopoiesis.  

The CD34 antigen is an integral membrane glycoprotein of 90-120 kD and has been 

Figure 6.  Electron micrograph of a hematopoietic stem cell 
(McLaren, 2001).
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suggested to function as a regulator of hematopoietic cell adhesion to stromal cells of the 

hematopoietic microenvironment (Healy et al, 1995).   

Stem Cells Progenitor Cells 
CD34+ CD34+ 
AC133+ AC133+ 
Lin- CD33+, CD54+, CD7+, CD19+, CD24+(3%-30%) 

 CD9+, CD18+, CD29+, CD31+, CD38+, CD44+ 
CD45-RAlo (>70%) CD45+ 
Thy-1+ Thy-1+ (5%-25%) 
HLA-DR- HLA-DR+ 
c-kit+ kit+ (70%-80%) 
Flk-2+ Flk-2+ (20%-50%) 
MDR1hi MDR1lo 

Rhodaminedull Rhodaminebright 

 

 

 

Primitive HSCs lack the differentiation antigens that are present on lineage-committed 

progenitors and are thus CD38-, CD45lo, CD71lo (Craig et al., 1993).  HLA-DR is absent 

or is expressed at low levels on adult stem cells but is present on fetal and neonatal 

hematopoietic stem cells (Lansdorp et al., 1993).  Thy-1 antigen is present on all human 

fetal and neonatal hematopoietic cells but is only expressed on a proportion of lineage-

committed progenitors in the adult (Craig et al., 1993).  The MDR1 gene is strongly 

expressed in HSCs and confers on them the ability to exclude the mitochondrial binding 

dye rhodamine 123 (Chaudhary and Roninson, 1991).  The receptors kit and flk-2, which 

have intrinsic tyrosine kinase activity, are expressed on both stem cells and progenitors, 

but some kit+ cells with stem cell function can be flk-2- (Zeigler et al., 1994).  AC133 is 

a recently described antigen whose function is unknown.  The AC133 antibody selects a 

subset of CD34+ cells which contain both short and long term repopulating cells and 

therefore offers an alternative to the CD34 antigen for cell selection (Yin et al., 1997).  

Table 1. Phenotypes of adult human hematopoietic stem and
progenitor cells (Stem cell biology and gene therapy, edited by
Quesenberry PJ, Stein GS, Forget BG, and Sherman MW, 1998 Wiley-
Liss, Inc. 
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Mayani and Lansdorp (1998) have reported that most primitive hematopoietic 

stem/progenitor cells (HSPC) present in UCB are small mononuclear cells with the 

following immunophenotype: CD34+CD38-CD45RAloCD71loThy-1+c-kit+Rhlow. 

  

Sources of HSC 

The classic source of HSCs is bone marrow.  HSCs can be obtained from the bone 

marrow, usually by puncturing the hipbone after anesthetizing the stem cell donor.  

About 1 in every 100,000 cells in the marrow is a long term HSC (NIH, 2001).  A small 

number of stem and progenitor cells circulate in the peripheral blood.  HSCs can also be 

obtained from the peripheral blood by mobilizing the hematopoietic stem/progenitor cells 

from the marrow by using a wide variety of cytokines and cytotoxics, alone or in 

combination.  Administration of antibodies to the adhesion factor VLA-4 results in rapid 

mobilization (within 30 minutes) of progenitor cells (Papayannopoulou and Nakamoto, 

1993).  G-CSF treatment increases the numbers of CD34+ cells 4-62 fold in peripheral 

blood (Pettengell and Testa, 1995). 

 In the late 1980s and early 1990s, physicians recognized that blood from the 

human umbilical cord (UCB) and placenta was a rich source of HSCs.  The presence of 

relatively mature hematopoietic progenitor cells (HPC) in human UCB was demonstrated 

by Knudtzon in 1974 (Knudtson, 1974).  Later Ogawa and colleagues documented the 

presence of primitive HPC in UCB (Nakahata and Ogawa, 1982).  Studies by Broxmeyer 

et al (1989) showed that the frequency of hematopoietic stem/progenitor cells in 

umbilical cord blood equals or exceeds that of marrow, and greatly surpasses that of adult 

blood (Broxmeyer et al., 1989).  Since the first successful umbilical cord blood (UCB) 
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transplants in children with Fanconi anemia (Gluckman et al., 1989), the collection and 

therapeutic use of these cells has grown quickly (NIH, 2001).  Volume for volume, 

human UCB is as rich a source of hematopoietic progenitor cells as bone marrow 

(Broxmeyer and Carow, 1993).  The proliferative potential of long-term culture-initiating 

cells (LTC-IC) from UCB exceeds that of the adult bone marrow (Mayani and Lansdorp, 

1995).  This compensates in part for the lower number of cells that can be obtained from 

a single donor compared with a conventional bone marrow harvest.   

Sustained hematopoietic engraftment after myoablation has been obtained with as 

few as 2 x 104 LTC-IC from UCB (Wagner et al., 1996).  Reports indicate that the UCB 

provides sufficient transplantable HSCs for children with human leukocyte antigen 

(HLA)-identical or single HLA antigen-disparate sibling donors, but whether this will 

prove adequate for two or three HLA-antigen-disparate sibling donors and adults remains 

to be determined.  Recently, a successful engraftment was reported in three adult patients 

of >50 kg transplanted with UCB (Kurtzberg et al., 1996).  In reported UCB transplants, 

the incidence of graft-versus-host-disease is low.  An important source of HSCs in 

research, but not in clinical use, is the developing blood-producing tissues of fetal 

animals.   Fetal hematopoietic progenitors have a greater growth potential than those in 

UCB, adult bone marrow, or leukapheresis product (Lansdorp et al., 1993).   

 

Therapeutic Applications of HSCs 

Stem Cell Replacement Therapy 

Among the first clinical uses of HSCs were the treatment of cancers of the blood 

such as leukemia and lymphoma.  Since HSCs are the source of all differentiated blood 
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cells, their destruction during cancer therapy is a major source of cancer treatment 

morbidity and mortality.  A key element of cancer treatment therefore is the replacement 

of HSCs following radiation or chemotherapy, a procedure known as stem cell 

replacement therapy.  The HSCs used for replacement can be obtained from the patient’s 

own bone marrow or peripheral blood (autologous) prior to chemotherapy, from the 

peripheral circulation of an HLA-matched donor (allogeneic), or from UCB taken at birth 

(allogeneic) (t. Breeders, 2000).   

One of the problems with autologous HSC transplants in cancer therapy is that 

cancer cells are sometimes inadvertently collected and reinfused back into the patient 

along with the stem cells.  Studies have shown that this can be prevented by purifying the 

cells and preserving only the CD34+, Thy-1+ cells (Negrin et al., 2000).  Since most 

solid tumors do not express CD34, the selection of CD34+ cells has been used to reduce 

tumor cell contamination of hematopoietic products used for autologous transplantation 

for patients with these tumors.  CD34+ cell selection can reduce tumor cell contamination 

by a factor of 10-104 using immunomagnetic beads or biotin- avidin columns (Farley et 

al., 1997).   

One of the most exciting new uses of HSC transplantation is the graft-versus-

tumor treatment of cancer.  A study by Joshi et al. (2000) shows that human UCB HSCs 

show antitumor activity in the test tube against leukemia cells and breast cancer cells.  In 

recent years, researchers have contemplated hematopoietic stem cell therapy for 

autoimmune diseases.  Reports suggest that HSC replacement therapy may fundamentally 

alter the patient’s immune system.  Lupus patients, who underwent this therapy, remained 
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free from active lupus and improved continuously after transplantation, without the need 

for immunosuppressive medications (Traynor et al., 2000).  

 

UCB Transplantation 

The first allogeneic UCB transplant (UCBT) was performed successfully in 1989, 

to treat a child with Fanconi’s anemia; the UCB donor was his HLA-identical sister 

(Gluckman et al., 1989).  Several years post-transplant, this patient is doing well, with 

full donor hematopoietic and lymphoid reconstitution.  This first success opened the way 

to an entire new field in the domain of allogeneic HSC transplant, as it showed that a 

single UCB unit contained sufficient numbers of HSCs to reconstitute a child’s lympho-

hematopoietic compartment.  It also showed that a UCB unit could be collected at birth 

without any harm to the newborn infant, and that a UCB HSC graft could be 

cryopreserved and transplanted to a myeloablated host after thawing without losing its 

repopulating ability (Gluckman, 2000).   

Since then a number of advantages of using UCB stem cells for transplantation 

have become apparent.  Simultaneously, UCB banks have been established for related or 

unrelated UCBTs, with >30,000 units currently available, and >1,500 UCBTs having 

been performed in children (and increasing numbers in adults) with malignant and 

nonmalignant diseases (Rubinstein et al, 1998).  The methods of UCB collection and 

cryopreservation are easy and safe; as soon as the baby is delivered, the cord is clamped 

and cut; cells are collected either by catherization of umbilical veins, by aspiration of 

cord and placental vessels, by gravity or by flushing through catheters inserted into the 

umbilical artery and vein.  The mean volume obtained by these various methods is 100-
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150 ml, with a mean total number of nucleated cells of 15 x 108 (Gluckman et al, 1993).  

UCB cells have many advantages as grafts for stem cell transplantation because of the 

immaturity of newborn cells.  Hematopoietic progenitors from UCB are enriched for in 

vivo long-term repopulating stem cells.  Compared to adult stem cells, UCB HSCs 

produce larger hematopoietic colonies in vitro, are able to expand in long-term culture in 

vitro, engraft SCID-human mice in the absence of additional human growth factors, and 

have longer telomeres (Noort and Falkenburg, 2000).  These properties should 

theoretically compensate for the relatively low number of cells contained in a single UCB 

donation, and through rapid expansion reconstitute myeloablated adult patients.  The 

second advantage of UCB grafts relates to the immaturity of the immune system at birth.  

This property should decrease the alloreactive potential of the lymphocytes within a cord 

blood graft and consequently should reduce the incidence and severity of GVHD after 

HLA-matched or HLA-mismatched transplants which are limitations of allogeneic bone 

marrow transplants.  Clinical analyses have shown that most UCBTs have been 

performed with donors having one, two or three HLA antigen mismatches, compared to 

unrelated BMTs where complete HLA identity for class I and class II antigens is required 

(Gluckman, 2000).   

The other practical advantages of using UCB as an alternative source of stem cells 

are the relative ease of procurement, absence of risk to donors, reduced risk of 

transmitting infection, and prompt availability of cryopreserved samples to transplant 

centers.  The other advantages of UCBT are the large donor pool, faster allocation 

process and decreased risk of viral transmission.  The most important factor in predicting 

a positive outcome for transplant is that the number of nucleated cells infused be >3 X 
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107/kg (Gluckman et al., 1997).   For the purposes of optimizing the chances of finding a 

suitable UCB donor for the recipient, Netcord and Eurocord registries, which are a 

cooperative network of large experienced UCB banks, were founded (Gluckman, 2000).  

The major concern with UCBT has been engraftment, as all studies show delayed 

neutrophil and platelet recovery, whereas long-term engraftment was similar after UCBT 

and BMT.  However, a cord blood nucleated cell dose >0.37 X 108/kg increased the 

speed and probability of engraftment (Wagner et al., 1996). 

 

Stem Cell Based Gene Therapy 

The multipotent HSCs form an ideal candidate for gene therapy because they are 

a self-renewing population of cells and thus may reduce or eliminate the need for 

repeated administrations of the gene therapy.  Several investigators have reported on the 

successful introduction of particular genes into primitive hematopoietic cells from BM, 

and similar approaches are being used with UCB cells (Mayani and Lansdorp, 1998).  

HSCs have been a delivery cell of choice for several reasons: 1) although small in 

number, they are readily isolated from the body from the circulating blood, bone marrow, 

or UCB, 2) they give rise to many different types of blood cells, and once the engineered 

stem cells differentiate, the therapeutic transgene will reside in all the different types of 

blood cells, 3) HSCs ‘home’ in to a number of different spots in the body- bone marrow, 

liver, spleen and lymph nodes.  These may be strategic locations for localized gene 

delivery of therapeutic agents.  The only type of human stem cell used in gene therapy 

trials so far is the HSC (NIH, 2001).  Generally however, gene therapies using HSCs 

have encountered a phenomenon known as ‘gene silencing’ where over time, the 
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therapeutic transgene gets turned off due to cellular mechanisms that alter the structure of 

the chromosome where the transgene is inserted (Challita and Kohn, 1994).  Stem cell 

gene therapy could also allow the development of novel methods for immune modulation 

in autoimmune diseases.  The goal is to modify the aberrant, inflammatory immune 

response that is characteristic of autoimmune diseases.  Studies in a lupus mouse model 

have shown that genetic modification of HSCs with a ‘decoy’ receptor for the 

inflammatory cytokine interferon gamma, arrested disease progression (Lawson et al., 

2000).  Long-term in vivo gene transfer studies in mice have shown that recombinant 

murine retroviruses are able to infect murine HSCs with high efficiency.  Because of the 

success in murine studies, it was believed that gene therapy would soon be applicable to 

treat a wide variety of congenital or acquired human diseases associated with the 

hematopoietic system.  Human congenital diseases which are manifested predominantly 

in one or more of the blood lineages are, in principle, target diseases for stem cell gene 

therapy, since all blood cells are derived from a common ancestor, the HSC.  There are, 

however, some limitations.  First, the precise genetic defect causing the disease must be 

known.  Second the defect should not be dominant.  In general, those diseases that can be 

treated by allogeneic bone marrow transplantation are candidates for stem cell gene 

therapy.  The aberrant gene in the HSC can be replaced by a correct copy in a process 

known as homologous recombination, or correct copies of the gene can be inserted into 

the host genome using viral delivery (Havenga et al., 1997).  Recently genetically 

manipulated CD34+ UCB cells have been used in the treatment of patients with SCID 

(Kohn et al., 1995). 
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Ex-vivo HSC Amplification 

 The use of UCB as a source of marrow repopulating cells for the treatment of 

pediatric malignancies is well established.  However, the major potential limitation to the 

widespread use of UCB as a source of HSCs for marrow replacement and gene therapy is 

that the ability to engraft an adult might require ex vivo manipulations (Piacibello et al., 

1997).  The proliferation potential of hematopoietic stem/progenitor cells as well as their 

expansion potential appear to be biologic features that depend upon intrinsic factors.  

These are related to whether the cell is already committed to a particular lineage of 

differentiation and, if so, the specific hematopoietic lineage to which it specifically 

belongs and its stage of maturation.  However, the ability of a cell to exhibit such 

potentials depends on extrinsic factors that include different cell types and cytokines that 

form part of the microenvironment in which the cell develops (Mayani et al., 1992).  In 

vitro proliferation and expansion of hematopoietic stem/progenitor cells (HSPC) also 

depend on variables such as type of medium, medium change schedule, temperature, 

presence or absence of serum, number of cells plated per culture, etc.  Several groups 

have assessed the in vivo expansion and proliferation of UCB progenitors using either 

total CD34+ cells, or CD34+ cell subsets.  In general, it is clear that primitive 

subpopulations of CD34+ cells possess greater expansion potential than their more 

mature counterparts (Mayani and Lansdorp, 1998).   

The ability of HSPCs to express expansion and proliferation potential in vitro 

depends predominantly on the cytokines present in culture.  In terms of HSPC expansion, 

the best results have been obtained when cytokines are used in combinations that include 

early acting factors, such as SCF, flt-3 ligand (FL), and Tpo.  The greatest expansion of 
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UCB-derived CD34+ cells reported to date (146,000-fold expansion in CD34+ cell 

numbers, and 2 x 106 fold expansion in CFC numbers) was achieved using both FL and 

Tpo (Piacibello et al., 1997).  Reports have shown that in a simpler medium, with two 

cytokines, flt-3 (FL) and thrombopoietin/c-mpl ligand (TPO/ML), significant expansion 

of HSC populations was observed, including LTC-IC that could be maintained long-term 

(up to six months) (Gilmore et al., 2000).  Addition of late acting factors, such as Epo, 

usually contribute to the production of large numbers of mature cells, however they do 

not seem to have an effect on HSPC expansion (Mayani et al., 1993).  In contrast to 

cytokines, hematopoietic inhibitors, such as transforming growth factor-β, tumor necrosis 

factor-α, and macrophage inflammatory protein-1α have been shown to significantly 

reduce both expansion and proliferation of CD34+ cell populations from UCB (Mayani et 

al., 1995).  Some investigators have used an antitransforming growth factor-β 

monoclonal antibody, together with stimulatory cytokines, to achieve a significant 

expansion of primitive progenitor cells (Cardoso et al., 1993).  Investigators have shown 

that UCB-derived HSPC possess higher expansion and proliferation potentials than their 

BM counterparts (Hows et al., 1992).   

Currently, there are several unresolved issues about the ex vivo expansion and 

transplantation of HSPC.  The first question surrounds the problem of defining the cells 

responsible for short and/or long term hematopoietic recovery after transplantation.  The 

most controversial and important issue regarding the clinical use of ex vivo manipulated 

cells is whether on eventual exhaustion of stem cells might result from prolonged growth 

factor stimulation ex vivo (Brugger et al., 2000). 
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Two kinds of enrichment methods are currently used for the purification of 

CD34+ stem cells from UCB.  Purification of HSCs is performed either with a 

combination of monoclonal antibodies to remove unwanted differentiated cells (negative 

selections) using the Stem Sep method (discussed in the Viacell section), or with a 

positive cell selection based on their surface CD34 antigens using the Mini Macs system 

(Pafumi et al., 2001).  

 

ViaCell, Inc. 

 ViaCell, Inc. is a new cellular medicine company merged from two companies: 

Viacord, Inc. (Boston, MA) and t. Breeders, Inc. (Worcester, MA).  The goal of the new 

combined biotechnology company is to use its high quality cord blood banking service 

and patented stem cell expansion technique to develop a premier cellular pharmaceutical 

company providing the highest quality products and services for the treatment of diseases 

using stem cells (ViaCell, Inc. Annual Report 2000).  In June 2001, ViaCell filed an 

investigational New Drug (IND) application for approval from the FDA for a phase I/II 

clinical trial for its proprietary selective amplification technology, which involves 

expansion of rare hematopoietic stem cells and other rare primary cell types.  The Phase 1 

study involving one patient every 3 months is currently underway. The targeted 

population for therapy currently includes myoablative therapy patients, patients with 

genetic diseases, patients with hematological malignancies, and those with neurological 

disorders (Craig, 2000).  ViaCell will still continue to offer cord blood banking to their 

clients under the name of Viacord, and will continue research and development of 

expanded stem cell products under the name of t. Breeders (Stringer, 2000).   
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Figure 7. ‘Negative Selection Separation’ Process. 
(Zimmerman, 1998)  

 ViaCell’s patented method of expansion called Selective Clonogenic 

AmplificationTM enables simultaneous selection and amplification of stem cells from bone 

marrow, mobilized peripheral blood, or cord blood through the use of highly specific 

markers on stem cells and amplifying these cells under culture conditions that foster the 

outgrowth of stem cells.  In the strict sense, Selective Clonogenic AmplificationTM is a 

process for “breeding” cells, i.e., selecting preferred events of biological fission to 

produce target populations from among a variety of irrelevant derivative populations (t. 

Breeders, 2000).  The salient features of the Selective Clonogenic AmplificationTM  

process include: removal of differentiated cells and their by-products during cell culture 

production of highly defined target populations, active purging of co-isolated cancer cells 

(which do not carry the CD 

34+ antigen), and efficient, 

cost-effective production 

(t.Breeders, 2000). 

The Selective 

Clonogenic AmplificationTM 

utilizes the ‘negative 

selection separation’ of 

hematopoietic stem/progenitor 

cells.  This separation 

technique, as shown in fig 7, works by immunomagnetically labeling and removing the 

unwanted cells in the column.  Cells are labeled by the use of unmodified colloidal 

magnetic dextran iron (orange in the figure) and non-covalent bispecific antibody cross-
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linking reagents called tetrameric antibody complexes.  The tetrameric antibody complex 

is comprised of two murine IgG monoclonal antibodies (orange and blue in the figure), 

held in a tetrameric array by two rat anti-mouse IgG monoclonal antibody molecules 

(yellow in the figure).  One murine antibody molecule recognizes the differentiated cell 

surface antigen (orange) and the other (blue) recognizes the dextran on the magnetic 

particle.  The cell suspension is passed through a column and the unwanted differentiated 

magnetically labeled cells bind to the column, while the unlabeled cells (containing CD 

34+ cells) pass through (StemCell Technologies, 2001).  A cocktail of monoclonal 

antibodies against differentiation surface markers is used to weed out the differentiated 

cells from the UCB cell population.  The above separation process results in the 

separation of a subpopulation of hematopoietic stem/progenitor cells characterized as 

CD34+/CD38-/Lin- cells.  Cells that lack 13-14 different mature blood-lineage markers 

including: CD2, CD3, CD14, CD16, CD19, CD24, CD56, CD66b, and glycophorin A 

(collectively referred to as Lin- cells).  These markers are expressed on the surface of 

mature red blood cells, monocytes, natural killer cells, and T-cells.  ViaCell’s Selective 

Clonogenic AmplificationTM is a 14-day long amplification process and includes the 

following steps, as shown in table 2.  

Time- Point Fraction Total 
Cells 

%CD34+/CD38- 

Day-o Whole Cord Blood ~6.5x108 0.3% 
 Freeze   
 Thaw   
 Pre-Sep-1 ~5.2x107 0.2% 

Day-0.5 Post-Sep-1 ~2.7x106 3% 
Day-7 Pre-Sep-2 ~2.1x107 31% 

Day-7.5 Post-Sep-2 ~6.2x106 33% 
Day-14 Post Culture ~3.0x107 11% 

Table 2.  ViaCell’s UCB amplification time course. 
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Telomerase 

Structure and Function of Telomeres 
 

Telomeres are nucleoprotein structures located at the ends of eukaryotic 

chromosomes that contain protein-bound, simple repeat units of a nucleotide sequence 

(Rhyu, 1995).  Telomeres protect chromosomes from shortening and unraveling during 

each replication cycle.  It has been suggested that telomeres protect chromosome ends, 

because damaged chromosomes lacking telomeres undergo fusion, re-arrangement and 

translocation (Blackburn, 1991).  Telomeres play an essential role in the stable 

maintenance of the eukaryotic chromosome within a cell by specifically binding to 

structural proteins.  These proteins cap the ends of linear chromosomes, preventing 

nucleolytic degradation, end-to-end fusion, irregular recombination and other specific 

events that are normally lethal to a cell.  Additionally telomeres are involved in nuclear 

architecture, and interact with other proteins to repress the expression of adjacent genes 

(Blackburn, 1991).  

Telomeres have been studied in a variety of eukaryotic organisms.  For example, 

Tetrahymena contains up to 40,000 telomere repeats per DNA macromolecule, each 

containing the repeat sequence GGGGTT (Blackburn and Gall, 1978).  Telomeres of 

many insects and Lepidopteran species contain the pentanucleotide repeat sequence 

TTAGG (Sasaki and Fujiwara, 2000).  In the diploid human cell, there are 46 

chromosomes, each containing two telomeres, and each telomere contains the nucleotide 

repeat sequence TTAGGG, which may repeated up to 15 Kb per telomere (Moyzis et al., 

1998).  The telomere repeats in most species tends to be G-C rich, with a strand bias so 

that the G-rich strand is oriented with its 3′ end towards the end of the DNA (Kurenova 



 30

and Mason, 1997).  In humans the 3′ -terminal G-rich strand is about 200 nucleotides 

longer than the C-rich strand, leaving a 3′ overhang (Wright et al., 1997). 

The functional telomere is organized into a special chromatin structure, the 

‘telosome’ (Wright at al., 1992), which contains telomeric DNA complexed with 

sequence-specific telomere binding proteins such as TRF1, TRF2 and more loosely with 

proteins such as tankyrase (Broccoli et al., 1997).  The single stranded, G-rich 3’ 

extension is not only hidden by association with numerous telomere binding proteins, it is 

folded back and entangled in internal double stranded telomeric DNA and thus forms the 

telomeric t-loop (Griffith et al., 1999).  The 200 bp G-rich, 3’ terminal, single stranded 

extensions are required for binding of TRF2, and failure to do so results in genome 

instability by chromosomal end-to-end fusions or, depending on the cell type, in 

apoptotic cell death (van Steensel et al., 1998). 

 

End Replication Problem 

In somatic cells, telomere length is progressively shortened with each cell division 

both in vivo and in vitro (Harley et al., 1990; Lindsey et al., 1991), due to the inability of 

the DNA polymerase complex to replicate the very 5’ end of the lagging strand (Watson, 

1972; Olovnikov, 1973).  DNA replication in the S-phase of the cell cycle starts by 

extending small RNA primers by DNA polymerases, which are unable to start de novo 

synthesis.  After generation of the new DNA strand, the RNA primers are removed and 

all internal gaps are filled with DNA.  The primers can be replaced everywhere except at 

the extreme 5’ end which makes this new strand slightly shorter than the parental strand.  

This phenomenon is the molecular basis of the ‘end replication problem’, which was 
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described long before the structure of the chromosomal ends was known (Olovnikov, 

1973).  Although the chromosomal loss is potentially very small, this loss will occur 

every cell division, and must eventually compromise cell or chromosomal viability 

following the removal of essential DNA sequences, either functional genes or telomeric 

sequences required for an essential end protective function (Kipling, 2001).  Human 

telomeres are programmed to undergo gradual shortening by about 100 bp per cell 

division, and when several kilobases of the telomeric DNA are lost, cells stop dividing 

and senesce (De Lange, 1998).  

 

Mitotic Clock 

Due to the ‘end replication problem’, successive shortening of the telomeres with 

each cell division results in a ‘mitotic clock’, and it was shown in vitro that this clock 

limits the replicative capacity of cell proliferation (Klapper et al., 2001).  Telomere 

shortening provides an explanation for a phenomenon observed long ago: the ‘Hayflick 

limit’ (also called M1 or mortality stage one (see fig. 8), which postulates that the 

replicative potential of somatic cells in vitro is strictly limited by the number of 

consecutive cell divisions, but not in a time dependent manner.  Consequently, 

proliferation stops after a defined number of cell divisions, independently of the time a 

cell needs to carry out the divisions (Harley, 1991).  Once a cell reaches the Hayflick 

limit, which is defined by a short, critical telomere length, the cell irreversibly exits the 

cell cycle and enters a stage called senescence (Klapper et al., 2001).  The senescent cells 

are metabolically active but cannot proliferate and can be considered as replicative or 

telomeric aged (Harley, 1991).  Some rare events can abolish the M1 barrier of the 
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proliferation; the best-studied alterations are the expression of viral oncogenes that 

inactivate p53 and retinoblastoma (Rb) (Shay et al., 1991; 1993).  But infrequent 

accumulation of these genetic aberrations leaves only a few cells that proliferate beyond 

the Hayflick limit (Harley, 1991), resulting in further telomere shortening.  

A second checkpoint is reached at a critical telomere length called crisis 

(mortality stage two or M2).   

At this stage, almost all cells die due to extensive chromosomal aberrations, caused 

by short and dysfunctional telomeres; however, very rarely some immortal cells 

arise.  To overcome crisis (M2) and become immortal, the cell activates 

telomerase activity (Harley, 1991; Klapper et al., 2001). 

 

 

 

Figure 8. Mitotic Clock (Klapper et al., 2001) Shows that telomeres in somatic
cells shorten with each cell division and enter senescence, while in  telomerase
positive germ line and stem cells, the telomere lengths are kept constant. 
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Telomerase- Discovery and Function 

The molecular basis of telomere replication came to light in 1985 with the 

discovery by Greider and Blackburn of the enzyme ‘telomerase’ in the protozoa 

Tetrahymena thermophilia (Greider and Blackburn, 1985).  Telomerase is a specialized  

 

 

reverse transcriptase that synthesizes new telomeric repeats on the chromosome end.  It 

thus compensates the telomeric loss due to the ‘end replication problem’ and provides the 

basis for unlimited proliferative capacity (Collins, 2000)(See fig.11).  Telomerase is a 

ribonucleoprotein, that is composed of two core components, the catalytic subunit 

Figure 9. Telomerase Function.  (Donald.F.Slish at SUNY, Plattsburgh). Shows de novo 
synthesis of telomeres by telomerase. Using its RNA as a template, telomerase synthesizes 
new telomeric hexamer repeats on the chromosome end. 
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hTERT and the RNA component hTR. Using its RNA component as the template, it 

synthesizes and directs telomeric repeats onto the 3’ end of existing telomeres.  In this 

respect, telomerase is acting as a reverse transcriptase, insofar as it is synthesizing DNA 

based upon an RNA template (Greider and Blackburn, 1989; Morin, 1989).  In vitro 

synthesized hTERT and hTR can assemble to form catalytically active telomerase 

holoenzyme, thus demonstrating that these two components can form a minimal core 

enzyme (Weinrich et al., 1997).  

 

Telomerase Structure  

The telomerase complex represents a specialized terminal reverse transcriptase 

with an estimated molecular mass of ~1000 kDa (Dhaene et al., 2000).  The telomerase 

RNA component was first cloned in Tetrahymena thermophila.  Later, the homologous 

genes were identified in ciliates such as Oxytrichia and Euplotes, in yeast S. cerevisiae 

(TLC1), and in mammals such as mouse (mTR) and human (hTR, currently referred to as 

hTERC for human telomerase RNA component) (Feng et al., 1995).  hTERC is a single 

copy gene present on chromosome 3 (3q26.3).  In humans, the length of the mature 

hTERC gene transcript is 451 nucleotides and lacks polyadenylation.  In all organisms 

analyzed to date, a ‘template’ region complementary to the sequence of the telomere 

repeats is embedded in the integrated telomerase RNA sequence.  For humans, the 

hTERC template consists of 11 nucleotides: 5’CUAACCCUAAC 3’.  Mammalian 

telomerase RNAs resemble small nucleolar RNAs (snoRNAs)- an RNA family required 

for pseudouridine modification and precursor processing of rRNA – because of the 

presence of an H/ACA box in their 3’ domain (Mitchell et al., 1999).  The primary 
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structure of the RNA component has evolved rapidly between species, but there seems to 

be a secondary structure core that is highly conserved even between distant groups 

(Blackburn, 2000).  Four conserved structural elements are universally present in the 

predicted secondary structure of 

RNA: these are the pseudoknot 

domain, the CR4-CR5 domain, the 

H/ACA box, and the CR7 domain 

(see fig 10).  

Telomerase reverse transcriptase is a 

special class of reverse transcriptases 

that functions as the rate limiting step 

in telomerase activity.  It has been 

identified in yeast (Sc-Est2p), the 

ciliate E. aediculatus (Ea-p123), 

Tetrahymena thermophila (Tt-

TERT/p133), and in mammals such as mouse (mTERT) and human 

(hTRT/hEst2/hTCS1/TP2, currently referred to as hTERT).  hTERT contains a 

telomerase specific amino acid motif (T motif) and seven conserved reverse transcriptase 

motifs (RT motifs), making it phylogenetically related to RTs (Dhaene et al., 2000; 

Nakamura et al., 1997).  Substitution of conserved amino acid residues in the RT domain 

of hTERT completely abolishes telomerase activity.  The 40-kB single copy hTERT 

gene, located on chromosome 5 (5p15.33), codes for a 127-kDa protein of 1132 amino 

Figure 10. Secondary structure of hTERC (Chen et al.,
2000). Shows the RNA template sequence (nucleotides 46-
53) and its 5’ and 3’ ends. 
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acids contained in 6 exons (Meyerson et al., 1997).  The human telomerase reverse 

transcriptase subunit (hTERT) has been cloned by Nakamura et al., (1997). 

Another telomerase-associated protein includes the mammalian p80 homologue 

identified in rat, mouse and human (TP1/TLP1, currently referred to as hTEP1 for human 

telomerase-associated protein1), but similar to hTERC, the expression of this protein 

does not correlate with telomerase activity in cells and tissues.  It has been suggested that 

hTEP1 may play a role in some aspect of ribonucleoprotein structure, function or 

assembly (Harrington et al., 1997). 

 

Telomerase vs. Cancer 

In the mid-1990s, the hypothesis emerged that the upregulation or re-expression 

of telomerase is a critical event responsible for continuous tumor cell growth.  In contrast 

to normal cells, in which a gradual mitosis-related erosion of telomeres eventually limits 

replicative life span, tumor cells have telomerase activity and show no loss of 

chromosomal ends.  It was thus suggested that telomere stabilization might be required 

for cells to escape replicative senescence and to proliferate indefinitely (Dheane et al., 

2000).  But a key debate emerged on whether telomerase upregulation by itself induce a 

malignant phenotype, i.e. does telomerase act as an oncogene.  And if so, then how does 

this relate to the debatable levels of tolerance in HSCs. 

One point is clear; telomerase activity has been demonstrated in the vast majority 

of tumor biopsies (85%) (Kim et al., 1994).  Moreover, cell lines immortalized either 

spontaneously or after transformation by oncogenic viruses (such as simian virus 40 or 

human papillomavirus types 16 or 18) are usually telomerase-positive (Belair et al., 
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1997).  Such observations lead to the current hypothesis that telomerase is activated 

during immortalization in vitro and tumorigenesis in vivo (De lange, 1994).  However, 

telomerase activity is not always detectable in immortal cell lines (Bryan et al., 1995).  

Most results have shown that normal somatic cells are telomerase negative, 

whereas germ cells and stem cells in renewable tissues are telomerase positive (Belair et 

al., 1997).  It has been suggested that normal cells contain an inhibitor of telomerase, 

possibly on chromosome 3, whose deletion or inactivation is required for immortalization 

and tumorigenic transformation (Seachrist, 1995).  Telomerase activity has also been 

demonstrated in highly proliferative non-cancerous tissues such as the basal layer of the 

epidermis, endometrial tissue during the proliferative phase of the menstrual cycle, and 

oral mucosa (Belair et al., 1997).  These latter studies are not consistent with a model in 

which activation of telomerase occurs during tumorigenic transformation.  Instead, they 

suggest that telomerase activity may more directly be associated with cell proliferation. 

Belair et al. (1997) demonstrated using both normal and tumorous human 

uroepithelial tissues that telomerase activity is a marker for cell proliferation, not 

malignant transformation.  They showed that normal cells do have the capability to 

express telomerase activity given their proliferative conditions in vitro.  Uncultured 

normal human uroepithelial cells (HUCs) were telomerase negative.  However, the same 

cells, when established as proliferating cultures in vitro, showed telomerase activity but at 

lower levels that in tumorous cells.  Here they attribute the relatively high telomerase 

activity in tumor biopsies, in part to their high proliferative ability.  These results support 

a model in which the detection of telomerase in tumor biopsies, but not in uncultured 

normal cells, reflects differences in proliferation between tumor and normal cells in vivo 
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(Belair et al., 1997).  hTERT transfection experiments have convincingly shown that 

hTERT is rate limiting for telomere elongation (Nakayama et al., 1998).  Most somatic 

human cells do not express the reverse transcriptase subunit of telomerase but contain all 

other components of the enzyme so that expression of the missing hTERT component 

leads to reconstitution of enzyme activity (Weinrich et al., 1997).  Transfection of pre-

senescent cultures of telomerase-negative retinal pigment epithelial cells, human vascular 

endothelial cells and young/midlife and old fibroblasts (Bodnar et al., 1998; Vaziri & 

Benchimol, 1998; Yang et al., 1999) as well as pre-crisis cells, with hTERT gene resulted 

in an increase in telomerase activity, elongation of telomeres and indefinite replicative 

growth, thus establishing a causal relationship between telomere shortening and in vitro 

cellular senescence.  While sufficient for immortalization, this ectopic expression of 

telomerase did not result in changes typically associated with malignant transformation, 

such as increased growth rate, loss of contact inhibition, acquisition of serum-

independent growth, disturbances in the pRB and p53-mediated cell cycle checkpoints, 

and cytogenetic abnormalities, indicating that telomerase expression per se is not 

oncogenic (Jiang et al., 1999).   

Most recently, studies conducted with mice doubly null for mTR and p53 (mTR-/-

p53-/-mice) or INK4a/ARF (mTR-/-INK4a-/-mice) showed that telomerase may play a 

paradoxical role, either promoting or inhibiting tumor formation depending on the  

genetic context of the would be cancer cell (Chin et al., 1999; Greenberg et al., 1999).  

Progressive telomere shortening occurs with the division of primary human cells and can  
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trigger at least two cellular responses depending on genetic context: senescence or crisis.   

As telomeres shorten during the earliest steps of carcinogenesis, nascent cancer cells 

encounter the proliferative barrier of replicative senescence.  Cells that escape this 

checkpoint via tumor suppressor loss enter telomere crisis.  Analysis of cancers arising in 

telomerase-deficient mouse, have led to the theory that the massive chromosomal 

instability of telomere crisis is an important step in development of cancer (Artandi and 

DePinho, 2000).  According to the “Telomere Hypothesis” (fig. 11), telomere shortening 

prevents tumorigenesis and telomere crisis promotes tumorigenesis. The  

Figure 11. Telomere Hypothesis (Artandi and DePinho, 2000) Shows telomere
shortening in primary human cells leads to replicative senescence, a checkpoint that is
dependant on p53 and Rb.  Inhibition of p53/Rb allows continued cell division and
entry into telomere crisis, a period of chromosomal instability and cell death.  In the
absence of p53, cell growth goes unchecked and telomere function continues to
deteriorate until genetic catastrophe- a point at which secondary genetic changes
occur that result either in cell death or transformation.  Genetic catastrophe is
probably an important step in the development of most human cancers. 
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telomere hypothesis was formulated to explain the important role of telomeres in 

senescence, the observation that telomerase is reactivated in 80-90% of human cancers, 

and the observation that telomeres in tumor lines are often shorter than in primary 

somatic cells.  The model states that in a developing cancer cell both senescence and 

crisis represent barriers to continued tumor growth (Artandi and DePinho, 2000).  

It has recently been shown that transcription of the hTERT gene is regulated 

directly by the immortalizing oncoprotein Myc, whose upregulation is an obligate feature 

of all cancers (Greenberg et al, 1999).  Inhibition of telomerase or experimental 

interference with telomere function arrests and often kills cells even if they are 

transformed (van Steensel et al., 1998).  Thus telomerase activity appears to make an 

important contribution to the viability of transformed cells, but its action does not fit the 

usual roles ascribed to oncogenes and tumor suppressors (de Lange & DePinho, 1999).   

 

Telomerase and Aging  (Telomerase- the immortality enzyme?) 

Is telomerase really all that is needed for cellular immortalization?  Will enforced 

somatic expression of telomerase lead to a cancer-prone condition?  Definitive answers to 

these questions have yet to emerge.  However, the first major advance was provided with 

the finding that ectopic expression of hTERT in primary human cells could confer 

endless growth in culture (De Lange & DePinho, 1999).  The cloning of the cDNA 

encoding the catalytic subunit of telomerase (hTERT) (Meyerson et al., 1997), made it 

possible to test the telomere hypothesis.  Two telomerase-negative somatic human cell 

types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with 

hTERT.  The telomerase-expressing clones had elongated telomeres, divided vigorously, 
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and showed reduced staining for Senescence-associated β-galactosidase (SA-β-Gal), a 

biomarker for senescence.  These cells also showed a normal karyotype and exceeded 

their normal life span by at least 20 doublings, thus establishing a causal relationship 

between telomere shortening and in vitro cellular senescence (Bodnar et al., 1998).  

These reports also indicate that, a very low level of telomerase activity is insufficient to 

prevent telomere shortening.  This is consistent with the observation that hematopoietic 

stem cells have low but detectable telomerase activity; yet continue to exhibit shortening 

of their telomeres throughout life.  Thus it appears that a threshold level of telomerase 

activity is required for actual life-span extension (Bodnar et al., 1998).  Similar findings 

were observed in a similar study in which Vaziri & Benchimol (1998) expressed hTERT 

in normal fibroblasts, which lack telomerase activity.  Similar results were also reported 

with endothelial cells (Yang et al., 1999).  Other cell types like keratinocytes and 

mammary epithelial cells may need, in addition to hTERT expression, additional genetic 

changes to extend their life span beyond crisis.  These cells arrest prematurely as a result 

of accumulation of p16INK4A, a critical inhibitor of the RB pathway and key mortality 

gene (Kiyono et al., 1998).  These cells are immortal but do not show any changes 

associated with the transformed phenotype.  The ability of telomerase to prevent the 

senescence of primary human cells without causing any overt change to a more cancerous 

phenotype has created great excitement in the gerontological community as a potential 

route to therapeutic intervention in human aging (Kipling, 2001).  

Telomere based barriers to unlimited cell division can be imposed in several ways 

(Holt et al., 1996).  One is via the triggering of replicative senescence, as is seen in 

normal fibroblasts (Bodnar et al., 1998).  The second is the triggering of apoptosis, as has 
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been described following telomerase repression and subsequent telomere erosion on 

several human cancer cell lines (Hahn et al., 1999).  The third is the ultimate loss of 

telomere protective function and the triggering of non-specific “genome crisis” 

(Halvorsen et al., 1999).  All three outcomes can be prevented by telomerase (Kipling, 

2001). 

  All pathological syndromes associated with accelerated aging show alterations in 

telomere biology.  Telomere defects in Werner syndrome, Bloom syndrome, Hutchinson-

Gilford progeria, Down syndrome, Dyskeratosis congenital, and Ataxia telengiectasia 

have been reported (Klapper et al., 2001).  Forced expression of hTERT in primary 

fibroblasts isolated from Werner syndrome patients confers detectable telomerase activity 

and leads to extension of cellular life span.  These studies indicate a potential route to 

therapeutic intervention in a human ageing syndrome (Kipling, 2001).  Cellular 

senescence is believed to contribute to multiple conditions in the elderly, and could in 

principle be remedied by cell life span expansion in situ (Bodnar et al., 1998).  Expansion 

of normal cells in vitro, followed by reimplantation might be a future form of cell based 

therapy for several aging related diseases that are based on loss of irreplaceable cells.  

Attempts to use telomerase-immortalized cells for in vitro tissue engineering of adrenal, 

vascular, skin, pancreatic or muscle tissue are already underway (Yang et al., 1999). 

 

 

Telomerase and Stem Cells 

In most somatic cells, telomerase activity is lacking. However, primitive 

hematopoietic cells have shown to exhibit low but detectable telomerase activity (Hiyama 
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et al., 1995; Broccoli et al; 1995; Chiu et al., 1996).  But despite having detectable 

telomerase activity, telomere shortening is observed in blood leukocytes with age, and in 

vivo hematopoietic progenitor cultures (Vaziri et al., 1994).  In their study, telomerase 

activity in human BM and PB was assigned to the hematopoietic progenitor cell fraction 

expressing the CD34 antigen.  CD34+ cells lacking co-expression of CD33 demonstrated 

higher levels of telomerase than myeloid committed CD34+/CD33+ cells.  The presence 

of growth factors inducing differentiation resulted in a decrease of telomerase activity.  In 

addition, telomerase activity increased in PB during cytokine-induced mobilization of 

hematopoietic progenitor cells.  Based on these results, it has been suggested that at least 

a portion of the hematopoietic stem/progenitor cell fraction expresses telomerase, and 

downregulates its expression during differentiation (Hohaus et al., 1997) 

  Overall, the observed levels of telomerase activity in stem cells appear to be 

related to the mitotic or cycling state of the cell population.  Reports indicate that 

telomerase is generally present in rapidly expanding cells, upregulated at cell cycle entry 

as cells progress through S-phase, and repressed in quiescent Go cells (Holt et al., 1996; 

Engelhardt et al., 1997).  Telomerase activity in CD34+/CD38+ cells (non-quiescent), 

from bone marrow (BM), Peripheral blood (PB), cord blood (CB) and fetal liver (FL), 

exceeded levels in CD34+/CD38-, CD34- (quiescent), and mononuclear cells (Engelhardt 

et al., 1997).  Telomerase activity was reduced in noncycling FL and CB CD34+ cells 

compared to more actively cycling PB CD34+ and BM CD34+ cells (Engelhardt et al., 

1997).  Recent studies have established the role of hematopoietic cytokines in ex-vivo 

expansion systems (Moore & Hoskins, 1994).  Stem cell self-renewal, as measured by 

increases in the numbers of long-term culture initiating cells, can be achieved in 
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particular with KL and Flk-L cytokine combinations.  Cytokine synergistic growth 

promoting interactions have been reported on CD34+ cells from different sources such as 

CB, PB and BM (Petzer et al., 1996).  In the absence of growth factors, CD34+ cells 

undergo apoptosis. Single cytokines preserve cells in expansion cultures and block 

apoptotic death, but do not induce noncycling progenitors into cycle, whereas cytokine 

combinations result in the progression of cells into DNA synthesis and induction of cell 

cycle proteins (Moore & Hoskins, 1994).  In vitro culture of CD34+ cells derived from 

BM, PB, CB, FL in the presence of a cytokine combination (KL, IL-3, IL-6, 

erythropoitin, granulocyte colony-stimulating factor) showed upregulation of telomerase 

activity which peaked after 1 week of culture, and decreased to baseline levels or below 

detection after 3-4 weeks.  In contrast, stimulation of CD34+ cells with single cytokines 

resulted in no (or minor) telomerase upregulation (Engelhardt et al., 1997).    

It has been shown that telomerase activity is low in CB derived CD34+CD38- and 

CD34+c-kit- cells compared to CD38+ or c-kit (high or low) cells, suggesting that 

CD34+CD38- or c-kit- cells are likely to be more quiescent. These results suggest that 

the CD34+CD38- and CD34+c-kit- cell populations are primitive stem/progenitor cells, 

and that the telomerase activity of these cells correlates with their proliferative capacity 

as well as their stage of differentiation (Sakabe et al., 1998).  Telomerase activity has 

been attributed more to actively dividing mature subsets (CD34+71+45+) than to more 

primitive progenitors with a CD34+71low45low phenotype or to CD34- cells (Chiu et al., 

1996).  Telomerase was found in actively cycling CD34+/CD38+ cells exceeding the 

levels found in CD34- cells and in quiescent CD34+/CD38- cells.  Non-expanding 

CD34+ cells showed a low or undetectable telomerase activity.  Secondary CD34+ cells, 
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however, showed a reduced ability to upregulate telomerase activity and to proliferate 

after 1 week of expansion compared with primary CD34+ cells, which suggests that 

CD34+ cells lose telomerase activity and may undergo replicative aging on cell 

proliferation.  The secondary CD34+ cells refer to primary CD34+ cells that were 

harvested from a delta culture and selected for CD34+ for a second time using 

immunomagnetic beads  (Engelhardt et al., 1997).  Elevated telomerase activity is found 

in BM progenitor stem cells and activated lymphocytes in vitro as well as in vivo, 

indicating that cells with high growth requirements can readily upregulate telomerase 

(Norrback & Roos, 1997).  The reason for elevated telomerase activity in lymphocytes 

may be that the repeated expansion of individual clones during antigen exposure 

throughout their life span requires telomerase to slow down the rate of telomere erosion 

that normally occurs in normal somatic cells without telomerase activity (Holt et al., 

1997).   

Cell expansion analyses have shown that telomerase is highly expressed in 

populations where the greatest proliferation and cell expansion takes place.  But, 

telomerase decreases with the reduction of cell renewal and expansion potential 

(Engelhardt et al., 1997).  A “cell cycle” model has been suggested, which postulates that 

telomerase is repressed in quiescent stem cells (CD34+CD38-), is activated on cell 

proliferation, expansion, cell cycle entry, and progression into progenitor compartment 

(CD34+/CD38+), and is repressed again on terminal cell differentiation (CD34-). 

From these reports it can be concluded that telomerase is upregulated in response 

to multi-cytokine-induced proliferation and cell cycle activation in primitive 
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hematopoietic cells, and that induction of a differentiation program downregulates 

telomerase activity. 
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PROJECT PURPOSE 

 

Hematopoietic cell populations showing elevated CD34+/CD38- cells (HSCs), 

detectable telomerase activity and elongated telomere lengths display increased graft 

survivability in humans during transplants.  The goal of this project was to investigate 

telomerase activity and telomere length in umbilical cord blood cell populations enriched 

for HSCs during ViaCell’s amplification process.  The first aim of this study was to assay 

telomerase activity in each of ViaCell’s amplification fractions comprising cord cell 

samples obtained at various stages of a two-week ex vivo stem cell amplification process.  

The second aim was to determine the average telomere length of these fractions.  The 

third aim was to investigate various culture conditions that could potentially upregulate 

telomerase activity and thus elongate the telomere length of the final cell fraction slated 

for perfusion into the patient to improve engraftability. 
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MATERIALS AND METHODS 

 

Cord Blood Samples 

Human umbilical cord blood samples were provided by ViaCell Inc. (Worcester, 

MA).  The cord blood samples were donated to ViaCell from UMass Memorial Hospital. 

For the TRAP assay, 105 CD45+ cells were provided at various time points during 

ViaCell’s stem cell amplification process.  Cord cell samples from three different donors 

were tested using this assay.  For the telomerase length assay (TLA), 107 CD45+ cells 

from three pooled donors were required for genomic DNA isolation.  Cells were cultured 

in Stem Span Medium (Stem Cell, Vancouver B.C., Cat#09650) supplemented with 

chemically defined lipid (0.2% final concentration) (Gibco, Cat#11905-031) and 

gentamycin (0.1% final concentration) (Mediatech, Cat#30-005-CR).  Before being 

transported to WPI, the cultured cells were left in an aliquot of original culture media or 

PBS on ice.  

 

TRAP (Telomerase Repeat Amplification Protocol) Assay 

Cell Extract/Lysate Preparation 

Cord blood whole cell extract was prepared using 1X CHAPS lysis buffer (10 

mM Tris-HCl, pH 7.5, 1 mM MgCl2, 1 mM EGTA, 0.1 mM Benzamidine, 5 mM β-

mercaptoethanol, 0.5% CHAPS, 10% Glycerol) supplied with the TRAPeze telomerase 

detection kit (Intergen, #S7700).  Cord blood cell samples containing 105 CD45+ cells 

were microfuged for 15 sec at room temperature to pellet the cells.  The supernatant was 

discarded.  This centrifugation was performed twice to thoroughly remove all the media 
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or PBS that the cells were suspended in.  Cell pellets from 105 cells were resuspended in 

20 µl 1X CHAPS lysis buffer by pipetting up and down.  For 106 cells, 200 µl of 1X 

CHAPS lysis buffer was used.  The suspension was incubated on ice for 30 min.  The 

lysate was then spun in a microcentrifuge at 10,000 xg for 20 min at 4oC to pellet cell 

debris.  The supernatant was aliquoted and stored at –80oC.  One of the aliquots of each 

of the samples was heat inactivated by incubating at 85oC for 10 min, to serve as a 

negative control in the assay.  5 µl of supernatant of each sample was transferred into a 

fresh eppendorf tube to determine the protein concentration.  

 

Determination of Protein Concentration 

Protein concentration was determined for whole cell lysates using a Coomassie 

assay (Pierce) and a BSA standard curve.  BSA standard dilutions were prepared at the 

following concentrations: 1.25 µg/ml, 2.50 µg/ml, 5 µg/ml, 10 µg/ml, 20 µg/ml, and 40 

µg/ml.  In the first tube, 500 µl distilled water was added.  In the second tube, 5 µl of cell 

extract was diluted with 495 µl of distilled water.  In the remaining tubes 500 µl of each 

of the BSA standard dilutions were added.  To equalize the temperature, all the tubes 

were incubated at 37oC for 1 min.  0.5 ml of Coomassie protein assay reagent (Pierce) 

was added to each tube.   Samples were mixed, then the OD was read at 595 nm relative 

to the tube containing only distilled water.  

 

TS Primer Kination 

End labeling of the TS primer was performed according to Intergen’s TRAPeze 

Telomerase detection protocol (#S7700).  The TS primer (5’-
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AATCCGTCGAGCAGAGTT-3’) was 5’ end labeled with [γ-32P] ATP (ICN 

Pharmaceuticals) using T4 polynucleotide kinase (Ambion).  All the reagents were 

thawed and kept on ice.  The following reagents were combined in a 0.5 ml eppendorf 

tube to make a 20 ul reaction: 10 µl of TS primer, 2.5 µl of [γ-32P] ATP (3,000 Ci/mmol), 

2 µl of 10X kinase buffer, 0.5 µl T4 polynucleotide kinase (10 units/µl) (Ambion, #2310) 

and 5 µl of PCR grade water.  These reagents were then mixed and spun briefly in a 

microcentrifuge.  The reagent mix was then incubated for 20 min at 37oC, then for 5 min 

at 85oC to inactivate the kinase.  The kinased samples were stored at –20oC.  2 µl of 

kinased TS primer was used per TRAP assay reaction. 

 

Telomerase Reaction and PCR 

‘Master Mix’ preparation for the PCR amplification was performed according to 

Intergen’s TRAPeze Telomerase detection protocol (#S7700). The master mix was 

prepared by combining all of the following reagents in a 1.5 ml eppendorf tube. All 

reagents were thawed and kept on ice.  The amount of reagents used for each assay was 

as follows: 5 µl of 10X TRAP reaction buffer (200 mM Tris-HCl, pH 8.3, 15 mM MgCl2, 

630 mM KCl, 0.5% Tween 20, 10 mM EGTA), 1 µl of 50X dNTP mix (2.5 mM each 

dATP, dTTP, dGTP, dCTP), 2 µl 32P-labeled TS primer, 1 µl TRAP primer mix (RP 

primer, K1 primer, TSK1 template), 0.4 µl of Taq polymerase (5 units/µl, Amersham 

Pharmacia Biotech, #27-0799-01), and 38.6 µl of PCR grade water.  The tubes were 

vortexed and spun briefly in a microcentrifuge.  For each assay, 48 µl of the ‘Master 

Mix’ was aliquoted into a 0.5 ml eppendorf tube.  Any one of the following sample cell 

extracts or controls were added to the master mix aliquoted in each tube: 2 µl of CHAPS 
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lysis buffer (primer-dimer/PCR contamination control), 2 µl of heat inactivated extract 

(negative control), 2 µl of cancer cell positive control, or a volume of cord cell extract 

containing 1 µg of protein (usually 0.5-2 µl).  The tubes were then mixed and spun 

briefly in a microcentrifuge. The tubes were placed in a thermocycler and incubated at 

30oC for 30 min to allow ladder extension of the TS primer.  A 2-step PCR was then 

performed at 94oC/30 sec, and 59oC/30 sec for 27 cycles.  Following PCR, the samples 

were stored at 4oC, or the PCR products were analyzed on a 10% non-denaturing 

polyacrylamide gel.  

 

TRAP Gel Electrophoresis 

The TRAP reaction products were analyzed on a 10% non-denaturing 

polyacrylamide gel containing 0.5x TBE.  First, the BRL V-16 glass plates were set up 

using 0.8 mm thick spacers and comb.  A narrow toothed comb was used to analyze more 

samples.  30 ml of acrylamide gel solution was prepared by mixing 10 ml of 30% 

polyacrimide / bisacrylamide, 1.5 ml of 10X TBE, 3 ml of 5% ammonium persulfate (to 

make 0.1%), dH2O to make 30 ml, and 30 µl TEMED to make a 0.8 mm thick, 7 inches 

long, 10% gel.  The gel was left to polymerize for 30 min, then the comb and lower 

spacer were removed.  The gel was mounted into the electrophoresis unit, and the upper 

and lower reservoirs were filled with 0.5X TBE buffer.  Before loading the samples, the 

gel was pre-electrophoresed at 287 V for 15 min.  5 µl of 10X loading dye-containing 

bromophenol blue and xylene cyanol (0.05%) and 10% glycerol was added to each PCR 

reaction tube.  The tubes were then vortexed and spun.  5 µl from each of the reaction 

tubes was loaded per lane. The remaining reaction mixes were stored at 4oC.  The gel was 
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then electrophoresed at 287 V for 1 hour and 30 min, until the xylene cyanol ran 70-75% 

of the gel length. 

 

Gel Drying and Autoradiography 

After electrophoresis, the radioactive electrode buffer was discarded in the isotope 

sink and the PAGE unit was dismounted.  The gel was separated from the glass plates, 

and the lower right corner of the gel was marked for orientation.  The gel was then 

carefully spread out on 2 layers of 3 MM filter paper and was covered with saran wrap. 

The gel covered with saran wrap was placed in the gel drier and dried for 1 hour at 80°C.  

The telomerase reaction products on the dry gel were then visualized by autoradiography 

using Kodak X-OMAT AR X-ray film. 

 

TRAP Assay Quantitation 

The telomerase products were quantitated using a Dupont Benchtop Radioisotope 

Counter.  Radioactive India ink was used to orient the gel with the X-Ray film.  Then the 

portion of the gel corresponding to the telomerase reaction products (i.e. all bands ≥ 50 – 

mer) was carefully cut out from the gel, squished into an eppendorf tube, and placed in 

the counter.  The radioactive signal was read as counts per minute (CPM).  

 

Telomere Length Assay 

Cord Blood Samples 

Human umbilical cord blood samples containing 107 CD45+ cells were obtained 

from 2-3 pooled donors at two time points (Day-0 and Day-14) during ViaCell’s stem 
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cell amplification process.  For the purposes of the Telomere Length Assay (TLA), 107 

cells were required to obtain a good yield of genomic DNA.  Before being transported to 

WPI, the cultured cells were left in an aliquot of the original culture media.  The cells 

were then transported to WPI on ice. 

  

Isolation of Genomic DNA 

Genomic DNA isolation based on magnetic bead technology, was performed at 

room temperature according to Roche’s DNA isolation protocol (Roche, #2032805).  

This method utilizes the ability of nucleic acids to adsorb to silica (glass) in the presence 

of a chaotropic salt.  The volume of reagents used for DNA extraction was taken from 

Roche’s chart for 1 X 107 cells.  All the reagents used were supplied in the DNA isolation 

kit for Blood/Bone Marrow/Tissue (Roche, #2032805).  First the media containing the 

cells was split into 4 eppendorf tubes.  Cord blood cells were pelleted in an eppendorf 

tube by centrifugation at 2000-3000 rpm for 2-3 min. The following reagents were 

pipetted into a fresh 15 ml plastic tube to prepare the lysis buffer solution: 2 ml of lysis 

buffer, 2 ml of distilled water.  The contents of the tube were then mixed.  The 4 ml of 

diluted lysis buffer solution was added to the pelleted cells split into 4 eppendorf tubes 

and the tubes were vortexed gently.  The cell solution was mixed with 200 µl of 

proteinase K (50 µl per each of the 4 eppendorf tubes) and vortexed twice for 10 sec.  

This treatment helps ensure cell lysis and inactivation of nucleases.  Then 10 Magnetic 

Glass Particles (MGP) tablets (approx. 3 tablets per eppendorf tube) were added to the 

lysate to immobilize the DNA by binding to it.  The lysate with the beads was vortexed 

for 10 sec, causing the beads to break into a powdered form to bind DNA more 
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efficiently.  The lysate was incubated for 5 min at room temperature on a rotating mixer.  

Next, the MGP beads were separated by placing the eppendorf tubes in a magnetic 

particle separator (Roche # 1641794) for 2 min, and the supernatant was discarded.  In a 

separate tube, washing buffer solution containing RNAse was prepared by mixing 10 µl 

RNAse solution with 5 ml of washing buffer.  The separated MGP pellet was suspended 

in the RNase mixture (1.25 ml for each of the 4 eppendorf tubes) and incubated for 5 min 

at 37oC.  This treatment with RNAse was done to remove minor contaminations of the 

DNA sample with RNA.  The MGP pellet was again separated in a magnetic particle 

separator and the supernatant was removed. Next, the MGP pellet was washed by 

repeated steps of separation and resuspension.  The MGP pellet was washed twice using 

washing buffer solution without RNAse, as follows: the separated MGP was suspended 

by pipetting in 5 ml (1.25 ml for each of the 4 eppendorf tubes) of washing buffer, and 

separated by placing the tube in a magnetic particle separator for 2 min. The wash 

supernatants were completely removed and discarded.  Finally the DNA was eluted from 

the MGP pellet in the following manner: the MGP containing the DNA was resuspended 

in 1 ml (0.25 ml per eppendorf tube) of elution buffer, and incubated for 5 min at 70oC on 

a heating block with intermittent vortexing.  This was followed by microcentrifugation 

for 4 min at 13000 rpm.  The supernatant containing the DNA was then aliquoted and 

stored at –20oC.  

 

Digestion of Genomic DNA 

The digestion of genomic DNA isolated from cord blood cells was performed 

according to Roche’s TeloTAGGG Telomere Length Assay protocol (#2209136).  Per 
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sample, 1 µg of extracted genomic DNA was diluted with nuclease free water (supplied 

in the TeloTAGGG Kit) to a final volume of 17µl.  Handling of all solutions and pipeting 

was done on ice.  The following reagents were mixed in a 0.5 eppendorf tube to make a 

20 µl reaction: 2 µl of 10X digestion buffer, 1 µl of Hinf 1 (40 U/µl), 1 µl of Rsa 1 (40 

U/µl).  Depending on the assay, 1 µg genomic DNA (high molecular weight control DNA 

(high molecular weight telomeres, 100 ng/µl), low molecular weight control DNA (low 

molecular weight telomeres, 100 ng/µl) or cord sample) in 16 µl volume was added.  The 

above reaction mixture was then incubated for 2 hours at 37oC.  Before loading onto the 

gel, 5 µl of 5X loading buffer was added to each 20 µl reaction mix to make a final 

volume of 25 µl. 

 

Genomic DNA Electrophoresis 

Digested genomic DNA was separated by agarose gel electrophoresis. A 0.8% 

horizontal agarose gel was prepared as follows: 0.8 g highly pure nucleic acid grade 

agarose (International Biotechnologies Inc.) was added to 100 ml 1X TAE buffer in an 

Erlenmeyer flask.  The solution was microwaved for 2-3 min until the agarose was fully 

dissolved.  The hot agarose solution was then poured into an 8 cm x 10 cm 

electrophoresis tray, and left to solidify at room temperature for 45 min.  Once the gel 

solidified, the gel comb was removed and the electrophoresis unit was filled with 1X 

TAE running buffer.  The DIG molecular weight maker reaction mix was prepared just 

before loading the samples onto the gel, the following reagents were mixed in a 0.5 ml 

eppendorf tube: 4 µl of DIG molecular weight marker, 12 µl of nuclease free water, 4 µl 

of 5X loading buffer.  This 20 µl marker sample was microfuged briefly and incubated at 
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65oC for 10 min.  25 µl of each cord sample was loaded per lane and 10 µl of the DIG 

labeled molecular weight marker was loaded on each side of the gel.  The gel was 

electrophoresed at 22 V for 5 hours until the Bromophenol blue tracking dye had traveled 

approx. ¾ the length of  the gel. 

 

Southern Blotting 

Southern transfer of the digested genomic DNA was done by high salt capillary 

transfer to nitrocellulose membrane using a 20X SSC (Sodium Saline Citrate) transfer 

buffer.  After electrophoresis, a small piece from the lower right corner of the gel was cut 

for orientation purposes.  All the gel-washing steps were performed with gentle agitation 

on a gyrotory shaker at 25°C in a tupperware dish.  The gel was first submerged in for 5-

10 min in HCl solution (0.25 M HCl) until the BPB went yellow. This step was done to 

depurinate the DNA. The gel was rinsed 2 times with distilled water, then was denatured 

by submerging 2 times for 15 min in Denaturation solution (0.5 M NaOH, 1.5 M NaCl). 

This was followed by rinsing the gel 2 times with distilled water, and neutralization by 

submerging it 2 times for 15 min in Neutralization solution (0.5 M Tris-HCl pH 7.5, 3 M 

NaCl,).   All washes were decanted to waste.  

Nitrocellulose membrane (BA-45, 0.45 µm pore size) and two 3MM filter papers 

cut to the size of the gel were pre-soaked in 2X SSC buffer for 30 min before blotting the 

gel to the membrane.  This was done to decrease the chance of bubble formation and to 

facilitate the transfer of the DNA.  The digested DNA from the gel was blotted to the 

nitrocellulose membrane by capillary transfer at 25°C using 20X SSC (3 M NaCl, 0.3 M 

Sodium Citrate, pH 7.0) as a transfer buffer.  The southern blot transfer was performed as 
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follows: a tupperware dish was used as the transfer unit, and a piece of dry 3MM filter 

paper served as a wick in the transfer unit.  The tupperware dish was then filled with 20X 

SSC buffer and the ends of the wick were submerged in the buffer.  Extra buffer was 

poured over the wick, and all the air bubbles were removed by smoothing out the wick 

using a gloved hand.  One of the pre-moistened 3MM filter paper squares was then 

placed on top of the wick.  The gel was placed on the 3MM sheet and all air bubbles were 

removed.  The pre-moistened nitrocellulose membrane was then placed over the gel, and 

its corner corresponding to the gel was also cut, and all air bubbles were removed.  

Another pre-moistened 3MM filter paper was then layered over the membrane.  Next, a 

sheet of saran wrap was placed over the whole unit and the center of the saran wrap 

corresponding to the size of the gel was cut out.  The saran wrap was then overlayered 

with a piece of dry 3MM paper, which in turn was overlayered with several layers of dry 

paper towels to make a stack about 10 cm thick.  The paper towels were placed in such 

way that they did not directly touch the SSC buffer in the tupperware dish, as this would 

short-circuit the flow of buffer through the gel.  The paper towels were covered with a 

glass plate, and a big book was placed on top of the plate.  The blot was allowed to sit 

overnight for maximum sensitivity and reproducibility of transfer.  

After blotting, the membrane was washed in 2X SSC solution.  The membrane 

was then placed between 2 sheets of dry 3MM filter paper cut to the size of the 

membrane, and baked at 120oC in a glassware drying oven for 2 hours.  If not used 

immediately for hybridization and chemiluminescence detection, the membrane was 

wrapped in a foil and stored at 4oC. 
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DNA Hybridization 

The hybridization and chemiluminescence detection steps were performed 

according to Roche’s TeloTAGGG Telomere Length Assay protocol (Roche, #2209136). 

The hybridization and wash temperatures were precisely controlled for maximum 

sensitivity and reproducibility of results.  The hybridization was performed as follows: 

the DIG hybridization solution was pre-warmed to 42oC.  For pre-hybridization, the 

membrane was submerged in 10 ml of pre-warmed DIG hybridization solution in a 

hybridization bag, and incubated for 30-60 min at 42oC on a gyrotory shaker. 

Hybridization solution was prepared by adding 1 µl of telomere probe (DIG labeled 

telomere specific hybridization probe, Roche, #2209136) to 5 ml pre-warmed hyb-

solution, and mixed.  After pre-hyb incubation of membrane, the pre-hyb solution was 

discarded and the 5 ml Hybridization solution containing the telomere probe was 

immediately added.  The membrane was incubated in a hybridization bag for 3 hours at 

42oC on a gyrotory shaker.  

After hybridization, the Hybridization solution was discarded, and the membrane 

was washed 2 times with 100 ml stringent wash buffer-I (2X SSC, 0.1 SDS) for 5 min at 

25oC with gentle agitation.  The membrane was then washed 2 times with pre-warmed 

stringent wash buffer-II (0.2X SSC, 0.1 SDS) at 50oC with gentle agitation.  

 

DIG Antibody Binding 
 

These washes were followed by rinsing the membrane in washing buffer-1X 

(supplied with the Roche kit # 2209136) for 1-5 min at 25oC on a gyrotory.  The 

membrane was then incubated in freshly prepared Blocking solution for 30 min on a 
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gyrotory at 25oC.  The antibody solution was prepared as follows: The vial containing the 

Anti-DIG –AP antibody (0.75 U/µl, Fab fragments of a polyclonal antibody from sheep, 

conjugated to alkaline phosphatase (AP), Roche, #2209136) was microfuged at 13, 000 

rpm for 5 min. This was done to remove particulates to reduce background by aggregated 

antibody.  The antibody was then diluted 1:10,000 with fresh blocking solution by adding 

5 µl antibody to 50 ml blocking solution.  The membrane was incubated in this solution 

for 30 min at 25oC on a gyrotory.  This was followed by washing the membrane 2 times 

with 100 ml washing buffer-1X at 25oC on a gyrotory.  

 

TLA Chemiluminescence Detection 

The membrane was then incubated in 100 ml detection buffer-1X for 2-5 min at 

25oC on a gyrotory.  The membrane with the DNA side up was then placed on a dry 

3MM filter paper, placed on top of a clear plastic sheet, so that the membrane did not dry 

completely.  3 ml of substrate solution (containing CDP-Star, a highly sensitive 

chemiluminescence substrate) was applied immediately.  A second plastic sheet was 

immediately used to cover the membrane so that the substrate solution spread evenly.  All 

bubbles over the membrane were removed, and the membrane was incubated for 5 min at 

25oC.  Excess substrate solution was squeezed out from the plastic sheets, and the 

membrane was exposed to X-ray film for 1 hour at 25oC.   Luminescence continued for 

24 hours allowing multiple exposures.  The signal intensity increased during the first few 

hours, so weak initial exposures were strengthened by waiting 1-2 hrs. 
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RESULTS 
 
 

The goal of this project was to investigate telomerase activity in umbilical cord 

blood cell populations during ViaCell’s hematopoietic stem cell (HSC) amplification 

process.  A TRAP assay was used for this purpose.  Detection of this activity in the day-

14 fraction could serve as a new means for validating ViaCell’s product.  Second, a TLA 

assay was used to investigate telomere length in these cell populations.  Third, because 

cell populations elevated in telomerase have previously been shown to contain elevated 

engraftment potential, different HSC culture conditions that could potentially upregulate 

telomerase activity were also investigated. 

 

TRAP Assay  
 

A TRAP (Telomerase Repeat Amplification Protocol) assay was used to measure 

telomerase activity.  The TRAPeze telomerase detection kit (Intergen, # S7700) was 

chosen because this kit features several improvements over the original method described 

by Kim et al., (1994), such as inclusion of a modified reverse primer sequence which 

eliminates the need for a wax barrier PCR hot start, reduces amplification artifacts, and 

permits better quantitation of telomerase activity.  Each reaction mixture also contains an 

additional primer (TK) and a template (TSK1) for amplification of a 36 bp internal PCR 

control.  Incorporation of this control makes it possible to identify false-negative samples 

that contain Taq polymerase inhibitors.  The TRAP assay is a highly sensitive in vitro 

assay system for detecting telomerase activity in as little as 0.5 µg of total cell lysate. The 

technique is based on the ability of telomerase to recognize and elongate in vitro an 18-

mer artificial oligonucleotide substrate TS, 5’-AATCCGTCGAGCAGAGTT-3’.  In the 



 61

first step of the reaction, telomerase adds a number of telomeric repeats (TTAGGG) onto 

the 3’ end of a substrate oligonucleotide (TS).  In the second step, the resulting hexamer-

extension products are amplified via PCR using as primers the original TS 

oligonucleotide and a reverse primer, a 14-mer oligonucleotide, RP.  For a telomerase-

extended product to be amplified by TS and RP primers, it must have at least 3 telomeric 

repeats.  Therefore, the shortest band on the “telomere ladder” is a 50-mer (18 

nucleotides of TS, 14 of RP and 18 of the 3 telomeric repeats).  A ladder spanning a 

range from 50, 56, 62, 68, 74 etc. is expected in telomerase positive samples. 

 
Telomerase Activity in Cord Cell Fractions 
 
Test of Controls 
 

First a test of positive and negative controls was performed, as shown in fig 12.  

Cancer cell (HeLa) extract lane 1, a rich source of telomerase, was used as the positive 

control.  The presence of the 36 bp internal control indicates no inhibition of the PCR 

reaction.  Heat inactivation of the cancer sample (lane 2) is a negative control: telomerase 

is a heat sensitive enzyme.  The sample was heat treated by incubating at 85oC for 10 

min.  Only the 36 bp internal PCR control is observed in this assay (lane 2).  A Primer-

Dimer/ PCR contamination control (lane 3), in which cell extract was substituted with  

CHAPS lysis buffer indicated no telomerase activity, only the 36 bp internal PCR control 

was observed as expected. 
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Optimizing the Protein Concentration in Cord Cell Samples 

 In order to determine the optimum cord cell lysate protein concentration to use for 

the assay, it was performed with decreasing amounts of protein (fig 13).  The optimum 

protein concentration was found to be 0.5 to 1 µg, because at this concentration, the 

telomerase ladder of products for cord samples extends higher and darker than the other 

protein concentrations tested with no inhibition of the internal PCR standard.  Note that 

the telomerase activity exhibited by the optimized 1 µg cord cell samples appears to be 

equal to 1 µg of cancer cell extract positive control.  Also note that when the protein mass 

Figure 12.  Test of positive and negative controls of the
TRAP Assay. Lanes show cancer cell extract positive
control (lane 1), heat inactivation negative control (lane 2),
cell extract substituted with CHAPS lysis buffer-(negative
control) (lane 3) 
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is too high, amplification of the 36 bp internal PCR control is diminished, and when the 

protein mass is too low, the amplification of the telomerase ladder is diminished. 

 

 
 
Time Course Experiments 
 

The first phase of this project was to investigate telomerase activity in Viacell’s 

cord blood populations.  These populations are variously enriched in CD34+ 

Hematopoietic Stem Cells, and some fractions are amplified by growth in a rich medium 

containing a mixture of cytokines known to stimulate HSC growth.  Table 3, shows the 

percentage of CD34+/CD38- at various time points during the amplification process.  For 

this project, I conducted time course experiments on three different sets of cord blood 

samples obtained from three different donors.  For the time course experiments, 105 

CD45+ cells were provided at various time-points in ViaCell’s amplification process.  

Figure 13.  TRAP Assay with descending protein mass. Shows the effect of 
different amounts of protein on telomerase activity.   
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Because the assay is so sensitive, 105 cells provided enough material for multiple 

determinations, and cords did not need to be pooled.   

 
Cord- 
Sample 

Pre- 
Freeze 
(Day-0) 

Pre- 
Sep-1 

Post- 
Sep-1 
(Day-
0.5) 

Pre- 
Sep-2 
(Day-7) 

Post- 
Sep-2 
(Day-
7.5) 

Cell 
Product 
(Day-
14) 

Thawed 
Cell 
Product 
(Thawed 
Day-14) 

Cord-1 0.13 0.08 2.04 22.82 23.09 5.62 5.29 

Cord-2 0.06 0.19 3.54 16.79 19.91 7.25 7.75 

Cord-3 0.26 0.17 3.2 31.25 33.2 10.53 11.54 

Table 3.  Percent of CD34+/CD38-cells at each time point during ViaCell’s amplification of three 
cord samples. 

 
 The time course corresponds to ViaCell’s 14-day long amplification process.  

During this process, fresh whole cord blood mononuclear cells, which are un-amplified 

and termed ‘Pre-Freeze’ or Day-0, are first frozen and thawed. After thawing (‘Post-

Thaw’ and ‘Pre-Sep-1’), these cells undergo two rounds of ‘Negative Selection’ 

separation to remove differentiated cells.  The cell population is termed ‘Pre-Sep-1’ 

before passage over the column, and ‘Post-Sep-1 after the first separation.  After the first 

separation, the cells are grown in culture for a week.  These cells then undergo a second 

round of separation.  The cell populations are called ‘Pre-Sep-2’ and ‘Post-Sep-2, before 

and after the second separation step, respectively.  These two stages correspond to ‘Day-

7’ and ‘Day-7.5’ respectively.  After the second separation, the cells are grown in culture 

for an additional week and are called ‘Cell Product’ or ‘day 14’. These cells are then 

frozen for storage and thawed, which correspond to ‘thawed day 14’ on the time course. 

Note that the Post-Sep-2 sample contains the highest percentage of CD34+/CD38- cells 

in each cord tested, representing 127-331 fold enrichment of these cells over fresh cord. 
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Telomerase Activity in Cord-1 Time Course  

An ascending telomerase activity profile was observed during the time course 

experiment on cord-1 (sample# EXPO91001A) as shown in figure 14.  As expected, the 

cancer cell extract positive control (lane 1) showed high telomerase activity. 1 µg cord 

cell lysate protein load was used for the time course experiments in accordance with the 

optimization experiments.  The same ‘Master Mix’ for the PCR amplification was used to 

assay all the samples, which proved to be critical for obtaining an even amplification of 

the PCR control.   

 

 

Figure 14.  TRAP Assay on Cord-1, N=1 
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Telomerase activity was undetected early in ViaCell’s process, in ‘pre-freeze’ 

(Day-0), ‘Post thaw’ and ‘Pre-Sep 1’ time points (lanes 1-3). Telomerase activity was 

low but detectable in ‘Post-Sep 1’ (lane 4), was high in  ‘Pre- Sep 2’ (lane 5), and peaked 

at ‘Post-Sep 2’ (lane 6).  Telomerase activity at ‘Post-Sep 2’ (Day-7) was comparable to 

the cancer cell extract positive control (lane 1).  At ‘Day 14’, however, a dip in 

telomerase activity was observed.  Surprisingly, there was resurgence in telomerase 

activity in ‘thawed-day 14’ cells which only differ from the ‘day 14’ cells by a single 

round of freeze/thaw.  The 36 bp internal PCR control was observed in all the lanes, 

which indicates no sample contained an unusual amount of Taq Polymerase inhibitor. 

To determine the reproducibility of the results obtained in cord 1 and to assay the 

intra-sample variability, a trial 2 of the time course experiment on cord 1 was conducted 

(figure 15).  This second trial showed the same trends as trial 1.  Because the 32P for trial-

2 was fresh, it proved sufficient to quantitate the telomerase bands cut out of the gel (fig 

16).  The histoplot determined by counting 32P corresponds with the telomerase activity 

estimated by eye from the x-ray films. The Post-Sep-2 sample contained the highest 

activity at 5.7x the fresh cord level. 
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Telomerase Activity in Cord-2 Time Course 

 Telomerase activity in cord-2 (Sample # EXPO91001B) reflected the same 

pattern as in cord-1 under conditions in which the internal control was equally amplified 

Figure 16.  Quantitation of Telomerase Activity in Cord-1.  The Y-axis shows values as percent 
relative to the cancer positive control. The counts per minute are shown on the histobars. 

Figure 15.  TRAP Assay on Cord-1, N=2 
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(figure 17).  This particular analysis provided the most extended ladders of this entire 

thesis.  

 

 

Similar results were obtained in Trial 2 for Cord-2 (figure 18), except for the appearance 

of an unusual band in the Pre-Sep-1 sample (lane 2).   Because trial-2 for cord-2 used 

fresh 32P, quantitation was performed (fig 19), except on the unusual Pre-Sep-1 sample.  

The trends reflect what was seen earlier in cord-1.  The Post-Sep-2 sample showed a 12x 

or an 80% increase over fresh cord. 

Figure 17.  TRAP Assay on Cord-2, N=1 
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Figure 18.  TRAP Assay on Cord-2, N=2 

Figure 19.  Quantitation of Telomerase activity in Cord-2.  The Y-axis 
shows values as percent relative to cancer positive control.  
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Telomerase Activity in Cord-3 Time Course  

 Telomerase activity in cord-3 (figure 20) (sample # EXPO91001C) exhibited an 

identical trend as observed in cord-1 and cord-2 samples.  The assay continued to show 

low intra-sample variability (fig 21), and the quantitation for cord-3 (fig 22) indicated an 

8.0x or a 120% increase in telomerase activity for Post-Sep-2 relative to fresh sample. 

The above TRAP results show that there is little intra-sample variability in the 

assay.  Although differences were observed between cords regarding the fold-increase in 

activity, the main trend of telomerase activity observed in the three time courses was 

identical.  Table 4, shows percent CD34+ content and telomerase quantitation of each of 

the cords tested.  Although for each cord tested the highest telomerase activity occurred 

for fraction containing the highest percent CD34+ cells, a direct correlation was not 

always observed. 

 

 

Figure 20.  TRAP Assay on cord-3, N=1  
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Figure 21.  TRAP Assay on cord-3, N=2 

Figure 22.  Quantitation of Telomerase activity in Cord-3.  The Y-axis shows values 
as percent relative to cancer positive control. 
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Fraction CORD-1 CORD-2 CORD-3 

 

%CD34+ Percent 
Telomerase 
Quantitation 
 
 

Ratio 
(%CD34/ 
%Quant) 

%CD34+ Percent 
Telomerase 
Quantitation 

Ratio %CD34+ Percent 
Telomerase 
Quantitation 

Ratio 

Pre-Freeze 0.13 23 0.005 0.06 4 0.015 0.26 17 0.015 
Pre-Sep-1 0.08 30 0.002 0.19   0.17 30 0.005 
Post-Sep-1 2.04 33 0.061 3.54 16 0.221 3.2 37 0.086 
Pre-Sep-2 22.82 59 0.386 16.79 51 0.329 31.25 85 0.367 
Post-Sep-2 23.09 123 0.187 19.91 84 0.237 33.2 133 0.249 

Day-14 5.62 73 0.076 7.25 29 0.250 10.53 63 0.167 
ThawedDay-

14 5.29 100 0.052 7.75 43 0.180 11.54 97 0.118 

 

 

 

Telomere Length Assay 

 In the second phase of this project, the telomere lengths of two of Viacell’s cord 

populations were investigated via a telomere length assay (TLA).  Various methods have 

been described to detect telomeres and to measure telomere length (Harley, 1995; 

Lansdorp et al., 1996).  The TeloTAGGG Telomere Length Assay (Roche, # 2209136) 

was chosen as the as the commercial source.  This method utilizes Southern blot analysis 

of terminal restriction fragments (TRF) obtained by digestion of genomic DNA using 

frequently cutting restriction enzymes such as Rsa 1 and Hinf 1.  The specificity of the 

enzymes is such that the telomeric DNA (TTAGGG)n is not cut.  After digestion, the 

DNA fragments are separated by gel electrophoresis, blotted and the TRFs are visualized 

by hybridization with DIG-labeled telomere-specific probe.  Finally, after exposure of the 

blot to an X-ray film, an estimate of the mean TRF length was obtained by visually 

comparing the mean size of the smear to the DIG-labeled molecular weight marker.  

Telomere length of human cell samples may range over one order of magnitude.  Even 

within a population of cell lines and on a single cell level, considerable heterogeneity of  

Table 4.   Shows %CD34+ content and Telomerase Quantitation for each cord. 
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telomere length is observed.  Therefore, analyzing a population of cells provides the 

average telomere length of the telomeres in the sample, indicated by a smear whose 

average size is compared to the molecular weight marker.  TRFs comprise not only the 

variable terminal telomeres but also a short sub-telomeric region.  In addition to a 

molecular weight marker, two positive control DNAs (Control-DNA-low and Control-

DNA-high) obtained from immortal cell lines and supplied with the TeloTAGGG kit 

were used to compare the mean TRF length of each sample.  The mean TRF length of 

these positive control cell lines has been estimated at 3.9 kb and 10.2 kb respectively.  

After several false starts with this tricky assay, the controls (fig. 23) produced their 

expected profiles. 

 

Figure 23.  Test of Controls for Telomere length Assay.  Shows the DIG-labeled molecular
weight marker and two positive control DNAs.  The mean TRF length of control-DNA-High and
control-DNA-Low has been estimated at 10.2 kbp and 3.9 kbp respectively. 
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Telomere Length in Hematopoietic Cord Cell Populations 

 Day-0 and Day-14 samples, representing 2 time-points before and after 

amplification, were chosen for analysis by the TLA assay.  Because 107 CD45+ cells 

were required to provide sufficient DNA for analysis, pooled cords (3) were used, and 

only two time points were analyzed.  Day-0 (‘Pre-Freeze’) samples represent fresh 

umbilical cord blood CD45+ cells that contain about 0.26% CD34+/CD38- cells.  Day-14 

cells have undergone two weeks of amplification and two rounds of separation (day 0.5 

and day 7.5).  These Day-14 samples contained about 10.53% CD34+/CD38- cells (40.5 

fold enrichment) as analyzed by FACS (table 4). 

Time Point % CD34+/CD38- Cells 

‘Pre-Freeze’ (Day-0) 0.26 

‘Cell Product’ (Day-14) 10.53 

Table 5.  FACS Analysis of Day-0 and Day-14 Cells used for the TLA 

 

The TLA analysis of the two samples is shown in fig 24.  Each of the two cord 

samples showed TRF smears corresponding more to the high control (lane 3) than the 

low (lane 2), in agreement with previous studies showing long telomeres in 

hematopoietic populations.  Based on the mean TRF length of the control DNAs (3.9 kb 

and 10.2 kb) the mean TRF length of the Day-0 sample was approximately 11 kb, and the 

mean TRF length of Day-14 cells was 9 kb.  Thus the telomere length of the Day-0 cells 

was longer than those of the Day-14 cells by about 2 kb, which is consistent with a 

population of cells strongly induced towards proliferation for a period of two weeks.  
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Trial 2 of the TLA analysis of the two samples showed that the results obtained were 

reproducible (fig. 25). 

Thus, despite our detection of telomerase activity at Day-14 compared to none 

detected at Day-0, an average telomere loss of about 2 kb occurs after the two-week 

amplification.   So, the activity increase is not sufficient for fully maintaining telomere 

length in the cells pushed towards proliferation.  Therefore, the above results show that 

the presence of telomerase activity does not necessarily correspond to longer telomeres. 

 

Figure 24. TLA on Cord Samples, N=1.  Lane 1 shows DIG labeled molecular
weight marker, lane 2 shows control DNA-low, lane 3 shows control DNA-high,
lane 4 shows Day 0 telomeric DNA, and lane 5 shows Day 14 telomeric DNA. 
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Initial Investigation of Culture Conditions that Could Potentially Alter Telomerase 
Activity     

 
 Based on previous studies showing that cell populations with elevated telomere 

lengths and detectable telomerase activity show higher engraftment survival, ViaCell 

may eventually be interested in exploring various culture conditions that can increase 

telomerase activity further in their product and therefore compensate for the 2 kb 

telomere loss observed during the amplification.  Two preliminary experiments were 

performed here.  In the first set of treatments (fig. 26), Day-14 cord blood cells were 

treated as follows A) ½ cord treated with Annexin (to rid apoptotic cells), B) whole cord 

treated with Annexin, C) ¼ cord treated with 30% BSA (Bovine Serum Albumin) and D) 

Figure 25.   TLA on Cord Samples, N=2.  Lane 1 shows the DIG labeled
molecular weight marker, lane 2 shows control DNA-low, lane 3 shows control
DNA-high, lane 4 shows Day 0 telomeric DNA, and lane 5 shows Day 14
telomeric DNA. 
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¼ cord treated with 20% HSA gradients (to remove non-viable cells), then were analyzed 

for telomerase activity.  All four culture treatments (lanes A-D) showed equal telomerase 

activity, which was comparable to the cancer cell extract positive control.  

 

 

  

 

 

In the second set of treatments (fig. 27), day-14 cord cells were first put through a density 

centrifugation with 20% HSA (to remove non-viable cells).  Samples A and C were ½ 

cord cells treated with HSA coated plastics, and samples B and D were ½ cord cells 

treated with uncoated plastics.  These samples were then analyzed for telomerase activity.  

As shown in fig 27, both the uncoated and coated plastic pre-treatments showed equal 

telomerase activity. 

 

Figure 26. Treatment of Day-14 Cord Cells with Annexin, BSA and HSA. Lane 1 shows cancer
cell extract positive control. A=1/2 cord treated with Annexin, B= whole cord treated with
Annexin, C= ¼ cord treated with 30% BSA, D= ¼ cord treated with 20% HSA. 



 78

Thus no cord treatment was identified in this preliminary analysis that altered the 

telomerase activity of the day-14 cell population.   

 

 

 

 

 

 

 

 

 

 

Figure 27. Day-14 cord cells have undergone density centrifugation with 20%
HSA. Coating refers to a brief pre-treatment of the plastics with 5% HSA.  

A= with HSA coat of plastics, B= without coat, C= with HSA coat of plastics,
D= without coat.  These samples were also heat inactivated to serve as negative
controls.  However, samples B and C were not completely heat inactivated and
therefore show faint telomerase activity. 
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DISCUSSION 
 
 

Hematopoietic cell populations showing elevated telomerase activity (Morrison et 

al., 1996) and elongated telomere lengths (Kobari et al., 2000; Lansdorp et al., 1997; 

Vaziri et al., 1994; Notaro et al., 1997; Wynn et al., 1998;) display strong engraftment 

survivability and higher replicative potential in humans during bone marrow transplants.  

Thus the telomerase activity and telomere length are important parameters to analyze in 

hematopoietic cell fractions slated for transplant into patients.  In this study, we assessed 

telomerase activity and telomere length in selectively amplified umbilical cord blood 

(UCB) cell populations prepared using ViaCell’s patented stem cell amplification 

process.  The first aim of this project was to assay telomerase activity throughout 

ViaCell’s entire ex vivo cell amplification process.  The second aim was to analyze 

telomere length in two of their samples.  The third aim was to investigate various culture 

conditions that could potentially upregulate telomerase activity in ViaCell’s final day-14 

cell fraction slated for perfusion into a patient. 

 

Telomerase Activity Assay 

We have demonstrated using a PCR-based TRAP assay that telomerase activity is 

undetectable early on in Day-0 (‘Pre-Freeze’), ‘Post-Thaw’ and ‘Pre-Sep-1’ (Day-0.5) 

samples), increases following removal of differentiated cells in Post-Sep-1 samples, and 

increase by as much as 120-fold after 1 week of ex-vivo expansion (as observed in ‘Post-

Sep-2’ (Day-7) samples).  Because telomerase activity was relatively high in all fractions 

induced for proliferation (Pre-Sep-2, Post-Sep-2, Day-14, Thawed Day-14) compared to 

fresh cord, Post-Thaw or Pre-sep-1, our results agree with others (Engelhardt et al., 1997; 
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Holt et al., 1996; Zhu et al., 1996) indicating that telomerase is present in rapidly 

expanding cells.  It has also been previously shown that the expression of human 

telomerase reverse transcriptase (hTERT) was low in freshly isolated cord blood cells, 

and was significantly increased when these cells were cultured in vitro along with 

optimal cytokines (Ma and Zou, 2001).  Reports have previously shown that telomerase 

is upregulated at cell cycle entry as cells progress through S-phase, and repressed in 

quiescent Go cells Sakabe et al., (1998).  Our low activity in the unamplified, unselected, 

cell population may simply reflect the low abundance of HSCs in this population, or the 

quiescent primitive nature of these stem/progenitor cells.  Telomerase activity increased 

(in all 3 cords tested) in Post-Sep-1 samples compared to Pre-Sep-1.  This increase may 

simply reflect the removal of Lin+ cells known to be low in telomerase activity. 

After 2 weeks of ex vivo expansion, telomerase activity showed a slight decline in 

all ‘Day-14’ samples relative to Day-7 (although it was still above fresh cord, Post-Thaw, 

and Pre-sep-1).  This decline may be due to the differentiation of a subset of 

hematopoietic stem/progenitor cells in the Post-Sep-2 samples into more mature 

telomerase-low blood cells during the weeklong growth (indicated by the decrease from 

33.2% to 10.53% of CD34+/CD38- cells in the Day-14 sample).   These results agree 

with previous studies showing that the induction of a differentiation program decreases 

telomerase activity in the hematopoietic sample (Engelhardt et al., 1997).   

Surprisingly the telomerase activity was again upregulated after the ‘Day-14’ 

samples were frozen for storage and thawed.  The reason for this is unknown. However, 

this observation could be explained in part by an increase in the survival of telomerase- 

rich cells following freezing, stimulation of an unknown telomerase activator, or 
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denaturation of a telomerase inhibitor. The increase is not likely due to an increase in 

percent CD34+ cells in this fraction because the CD34 count goes up by only 1% by 

FACS analysis.   

 

Telomere Length Assay 

In concordance with previous studies (Vaziri et al., 1994; Chiu et al., 1996), we 

report telomere shortening of hematopoietic cells on proliferation despite the presence of 

detectable levels of telomerase activity.  Southern blot analysis of telomere length in the 

total nucleated cell population obtained at 2 different time points (Day-0 and Day-14), 

demonstrated relatively long telomeres in the these hematopoietic fractions compared to 

the DNA from the differentiated cell controls, and a 2 kb loss of telomeric DNA in these 

cells after 14 days of amplification.  These results are consistent with a model in which 

the upregulation of telomerase activity in the Day-14 sample (compared to fresh cord) is 

insufficient to maintain telomere lengths following cell amplification.  These results 

agree with previous studies by Engelhardt et al., 1997; Chiu et al., 1996, showing 

telomere shortening in amplified hematopoietic populations. Direct analysis of telomeres 

in HSCs by in situ hybridization during serial transplantation of murine HSCs also 

revealed a reduction in telomere size (Allsopp et al., 2001). Telomerase activity is 

upregulated in primitive hematopoietic cells following their entry into cell cycle, which is 

sufficient to reduce (not to completely prevent) telomere loss when bulk cell turnover, 

cell expansion, and massive cell proliferation takes place (Engelhardt et al., 1997).  

It has been suggested that most primitive hematopoietic cells lose telomeric DNA 

at a rate that is roughly comparable to other somatic cells (50-100 bp per doubling) 
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(Allsopp et al., 1992; Vaziri et al., 1993).  From our data it can be inferred that the 

hematopoietic cell population has undergone around 20 doublings, assuming a constant 

rate of loss of 100 bp telomeric DNA per cycle.  A large body of evidence on telomere 

length in somatic cells in vitro and in vivo indicates that telomere length serves as a 

biomarker of the replicative history of cells (Harley et al 1990; Vaziri et al., 1994).  It has 

been suggested that the replicative senescence within a hematopoietic lineage may be 

causally linked to functional differences such as a decrease in the production of CD34+ 

cells, and a decreased proliferation rate of CD34+ cells and those cells responding to a 

mixture of hematopoietic cytokines (Lansdorp et al., 1993). 

The proliferative lifespan of stem cells to sustain hematopoiesis throughout life is 

not known.  Lansdorp et al (1997) propose that HSCs like other somatic cells may have 

only a limited replicative potential (<100 divisions).  This hypothesis is supported by the 

consideration that, in theory, 55 divisions can yield 4 x 1016 cells, which is about the 

same as the estimated number of blood cells produced over a lifetime.  Lansdorp et al., 

(1996) have shown that the proliferative potential of most, if not all, HSCs is limited,  

decreases with age, and correlates directly with telomere length.  

Telomerase studies have widespread implications for hematopoietic 

transplantations, as well as gene therapy.  Reports have shown that the proliferative 

potential of HSCs is decreased after hematopoietic reconstitution of myelo-ablated 

patients.  The mean TRF length was shown to be consistently shorter in the bone marrow 

transpant (BMT) recipient than in the respective donor.  One interpretation of this finding 

is that the fewer the HSCs transferred to a recipient, the more cell divisions are needed 

for reconstitution of hematopoiesis.  Consequently, a greater consumption of telomeres 
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takes place.  The donor stem cells must presumably undergo a larger number of telomere 

shortening rounds in the engrafting recipient than have naturally occurred in the donor 

(Notaro et al., 1997).  Similar conclusions were obtained for autologous peripheral blood 

stem cell transplantation (Lee et al., 1999).  Direct analysis of telomeres in HSCs by in 

situ hybridization during serial transplantation of murine HSCs also revealed a reduction 

in telomere size (Allsopp et al., 2001).  

The fate of telomeres may also be crucial for the outcome of gene therapy 

protocols in which one or few stem cells are expected to repopulate the bone marrow 

(Notaro et al., 1997).  Another factor affecting gene therapy is that hematopoietic 

engraftment imposes replicative stress on stem cells, resulting in aging effect, which 

would carry the risk of an increased frequency of clonal hematopoietic disorders during 

later life.  This is particularly important in young recipients with a lifetime of 

hematopoietic demand before them (Wynn et al., 1998).  In this regard, cord blood cells 

would be a better source for allogeneic transplantation.  Studies have shown significant 

functional differences between UCB and adult bone marrow (BM) and peripheral blood 

(PB) cells.  The UCB cells have longer telomeres compared with PB and BM cells.  This 

suggests that CB has higher replicative potential than adult PB or BM cells, which 

combined with their greater expansion potential, would support the use of such cells for 

allogeneic transplantation (Mayani and Lansdorp, 1998).  

In conclusion, our TLA and TRAP data support the prevailing hypothesis that 

telomerase activity in hematopoietic cells reduces rather than completely eliminates 

telomere loss on proliferation, and may thus help extend the proliferative life span of 

hematopoietic cells.  Reports have shown that the developmental characteristic most 
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consistently associated with telomerase expression is self-renewal potential (Morrison et 

al., 1996).  Therefore, the relatively high telomerase activity and telomere lengths in the 

Day-14 samples is encouraging because it provides a new way to validate ViaCell’s 

clonogenic amplification protocol for the cell populations that will be perfused into an 

immunosuppressed patient and indicates a high self-renewal potential for these cells.  

 

Treatments to Elevate Telomerase Activity 

Different culture conditions and treatments that could potentially elevate 

telomerase activity were investigated.  Day-14 cord blood fractions were treated with 

annexin, 30% BSA (Bovine Serum Albumin), 20% HSA, or first put through a density 

centrifugation with 20% HSA and treated with HSA coated plastics.  These treatments 

were performed to remove apoptotic cells or non-viable cells from the population, which 

are known to be low in telomerase activity.  Unfortunately, none of the treatments altered 

telomerase activity, so perhaps these unwanted cells only constituted a small percent of 

the population.  Viability studies should be performed to ascertain the abundance of these 

unwanted cells in the population.  Therefore in our analysis, no cord blood was identified 

that could potentially elevate telomerase activity.  

 

Future Investigations 

 In future, telomere length should be assessed in all the different time points of 

ViaCell’s amplification process, especially Post-Sep-1 (unamplified, but selected) and 

Post-Sep-2 (amplified and selected). Alternative methods of telomere length 

measurement that are less labor intensive than a TLA could be tested, such as a “telomere 
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amount and length assay” (TALA) (Gan et al., 2001).  TALA is based on solution 

hybridization and does not require blotting, pre-hybridization and washing.  Compared to 

the TLA, one lab claims TALA shows a 4-fold greater sensitivity, >2 fold-higher 

reproducibility and 4-fold less time requirement (Gan et al., 2001).  However at this 

moment this assay is not commercially available.  Other methods such as flow cytometry-

based fluorescent in situ hybridization (FISH) can also be used for measuring telomere 

length in situ, in single cells.  A TelBam8 probe that is unique for the subtelomeric region 

of the long arm of chromosome 7 can also be used to measure the telomere length of one 

end of a single chromosome pair.  This method reduces the variation size of the telomeric 

length that is seen in blots hybridized to a (TTAGGG)n telomeric repeat probe (Notaro et 

al., 1997).  

The telomerase experiments could be expanded by conducting Northern blots or 

RT-PCR for telomerase RNA, or alternatively by performing western blots using 

antibodies against the reverse transcriptase subunit.  Such antibodies have recently 

become commercially available following the cloning of the hTERT gene by Nakamura 

et al. (1997).  In vitro studies with telomerase inhibitors can be conducted to further 

understand the specific role of telomerase in telomere maintenance in hematopoietic stem 

cells.  Recent studies indicate the existence of an alternative “lengthening of telomeres” 

(ALT) system in which telomere maintenance occurs in the absence of telomerase 

activity (Bryan et al., 1997).  Previous studies have shown the presence of ALT in yeast, 

and in a subset of tumors and tumor-derived cell lines (Bryan et al., 1997).  This could be 

investigated by treatment of CB derived cell populations with telomerase inhibitors such 

as TRF1 and TRF2, differentiation inducing agent “all-trans retinoic acid” (ATRA), and 
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other putative telomerase inhibitors such as alterperylenol (a fungus metabolite) (Togashi 

et al., 1998) or a  bis-dimethylaminoethyl derivative of quindoline (an alkaloid from the 

west African shrub Cryptolepis sanguinolenta), which stabilizes the folded G-quadruplex 

structures and thus inhibit telomerase activity (Caprio et al., 2000). Such studies could 

shed new light on the means whereby ALT is repressed in normal hematopoietic cells and 

HSCs.   

Finally, since the level of telomerase activity is insufficient to fully maintain 

telomere lengths in hematopoietic stem cells, perhaps its activity could be increased by 

transfecting these cells with plasmids encoding the hTERT gene.  The expression of the 

hTERT gene parallels telomerase activity, while the RNA component is ubiquitously 

expressed in all cells, therefore, such gene therapy could be successful with only the 

hTERT gene transfection.  Perhaps such treated cells would show further elevated 

telomerase activity which would fully maintain telomere length in spite of the 

proliferation, and would show increased survivability of the graft in the host.  
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