
‭Webhooks-as-a-Service‬

‭Major Qualifying Project 2023-2024‬

‭Authored by:‬
‭Jacob Adams‬

‭Griffin Atchue‬
‭Michael Emerson‬
‭Nathan Pollock‬
‭Ryan Rabbitt‬

‭Presented to:‬
‭Professor Joshua Cuneo‬

‭Sponsored by:‬
‭Jeremy Duvall, 7Factor Founder‬

‭This report represents the work of one or more WPI undergraduate students submitted to the‬
‭faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports‬

‭on the web without editorial or peer review.‬

‭1‬

‭Abstract‬

‭This project advances a Webhooks-as-a-Service (WaaS) platform, enhancing automation‬

‭across software services. Key developments include Terraform deployment templates, GitHub‬

‭Actions for continuous integration, and AWS S3 for hosting. The user interface has been‬

‭simplified, and an embedded testing workflow enables payload verification and consumer-end‬

‭receipt validation. The integration of these improvements significantly elevates the platform's‬

‭scalability and usability, providing a robust and user-friendly solution for developers seeking‬

‭efficient inter-service communication automation.‬

‭2‬

‭Table of Contents‬
‭Table‬‭of‬‭Contents‬‭...‬‭3‬
‭List‬‭of‬‭Figures‬‭...‬‭4‬
‭Introduction‬‭..‬‭5‬

‭Our‬‭Sponsor‬‭...‬‭5‬
‭Purpose‬‭..‬‭5‬

‭Background‬‭..‬‭6‬
‭Webhooks‬‭..‬‭6‬
‭Terraform‬‭...‬‭7‬
‭GitHub‬‭Actions‬‭..‬‭8‬
‭Amazon‬‭Web‬‭Services‬‭(AWS)‬‭...‬‭9‬

‭AWS‬‭Lambda‬‭..‬‭9‬
‭AWS‬‭S3‬‭...‬‭9‬
‭AWS‬‭Identity‬‭and‬‭Access‬‭Management‬‭(IAM)‬‭..‬‭9‬

‭Methodology‬‭...‬‭11‬
‭Previous‬‭Work‬‭..‬‭11‬

‭AWS‬‭Backend‬‭...‬‭11‬
‭React‬‭Frontend‬‭..‬‭12‬
‭Full‬‭Stack‬‭Result‬‭...‬‭13‬
‭Actions‬‭..‬‭13‬
‭Configurations‬‭...‬‭13‬
‭Data‬‭Transformations‬‭..‬‭14‬
‭Adopted‬‭Methodologies‬‭..‬‭14‬

‭Workflow‬‭...‬‭15‬
‭A‬‭Term‬‭...‬‭15‬
‭B‬‭Term‬‭...‬‭17‬
‭C‬‭Term‬‭...‬‭17‬

‭Results‬‭...‬‭18‬
‭Recommendations‬‭..‬‭19‬

‭Refactor‬‭Codebase‬‭..‬‭19‬
‭Customizable‬‭Transformations‬‭...‬‭19‬
‭Trigger‬‭Webhook‬‭on‬‭API‬‭Change‬‭...‬‭19‬
‭Community‬‭Hub‬‭..‬‭20‬

‭Conclusion‬‭..‬‭20‬
‭References‬‭...‬‭21‬

‭3‬

‭List of Figures‬
‭Figure 1. Example data flow‬

‭Figure 2. Data transformation from Producer to Consumer‬

‭Figure 3. WaaS login page‬

‭Figure 4. Configuration builder UI‬

‭4‬

‭Introduction‬

‭Our Sponsor‬
‭Our sponsor, 7Factor, is a software contracting company headquartered in Atlanta,‬

‭Georgia, who creates secure and scalable software solutions by adapting to their client’s needs.‬

‭7Factor makes use of small teams to handle projects more efficiently. These teams work with‬

‭clients in a way that works best for them, whether that is as part of a client’s in house‬

‭development team, or in more independent roles. Either way, 7Factor’s experienced developers‬

‭work closely with clients to develop simple and effective custom built solutions maintained by‬

‭7Factor (7Factor Software, 2023).‬

‭Purpose‬
‭As with previous iterations of this project, the goal of this project is the continued‬

‭development of an application based on a concept proposed by 7Factor. This concept involves‬

‭the creation of a webhooks management tool which would allow 7Factor to easily automate‬

‭workflows. Building on last year's work, this project has sought to further enhance the‬

‭capabilities of a WaaS platform, providing a solution that not only allows for the fundamental‬

‭one-to-many producer-consumer relationship but also simplifies the process of setting up and‬

‭managing such configurations. To this end, the platform now features the ability to transform and‬

‭tailor webhook payloads according to the individual schema requirements of each consumer.‬

‭This ensures that as events are dispatched from a single producer, they can be seamlessly‬

‭integrated into the workflows of multiple consumers without the need for manual intervention or‬

‭complex coding.‬

‭5‬

‭Background‬
‭The implementation of our WaaS platform focuses on using Terraform deployment‬

‭templates for infrastructure management, which enhances the platform's scalability by allowing‬

‭for repeatable and consistent deployments. Additionally, the integration of GitHub Actions for‬

‭continuous integration ensures that updates to the platform are automatically tested and‬

‭deployed, maintaining a high level of code quality and platform reliability. Moreover, leveraging‬

‭AWS S3 for hosting not only provides a secure and scalable cloud storage solution but also‬

‭contributes to the robustness of the platform's architecture.‬

‭Significant improvements have been made to the user interface, streamlining the users'‬

‭interaction with the platform and enabling more intuitive setup and configuration of webhook‬

‭events. Embedded testing workflows have also been introduced, allowing users to verify‬

‭payloads and validate receipt by the consumer-end, further enhancing the user experience and‬

‭ensuring the reliability of inter-service communication.‬

‭Webhooks‬
‭Webhooks are a fundamental concept in modern web development, offering a powerful‬

‭means for applications to communicate with each other in real-time. Putting it simply,‬

‭“Webhooks let you subscribe to events happening in a software system and automatically receive‬

‭a delivery of data to your server whenever those events occur” (GitHub). Conceptually, a‬

‭webhook is simply an HTTP callback: when an event occurs in a source application, called a‬

‭producer, a notification is sent as an HTTP POST request to a specified URL, which is processed‬

‭by the receiving application, called a consumer. This mechanism facilitates an event-driven‬

‭architecture, allowing producers to notify consumers of specific events without the need for‬

‭polling, thereby optimizing network usage and reducing latency.‬

‭Despite their utility, managing webhooks in a scalable and efficient manner presents a‬

‭challenge, particularly when moving beyond the traditional one producer to one consumer‬

‭paradigm. As software systems grow in complexity, there emerges a need to dispatch events‬

‭from a single producer to multiple consumers, potentially each with unique payload‬

‭requirements. This is where current webhook infrastructures often fall short, as they are typically‬

‭designed for direct, one-to-one communication.‬

‭6‬

‭To address these shortcomings, the concept of a Webhooks-as-a-Service (WaaS) platform‬

‭emerges, aiming to provide a centralized solution that enables webhook management and‬

‭automation at scale. WaaS is a combination of webhooks and the concept of‬

‭Software-as-a-Service (SaaS). SaaS is a concept most common in cloud computing services‬

‭where the provider operates, manages, and maintains the software which is accessed by paying‬

‭users remotely through an online connection such as a web browser rather than by using a local‬

‭program (IBM). This creates convenience for users as it enables access from any device at any‬

‭time with no need to wait for updates since this is all done by the remote host. By pairing‬

‭webhooks with this model, users only need to know the two endpoints of their data and can‬

‭easily access their webhooks from anywhere. The necessity for such a platform is driven by the‬

‭limitations of existing services in adapting to diverse and evolving consumer needs, especially‬

‭when considering the transformation of payloads to fit different consumer schemas. These‬

‭challenges are compounded by the more granular control over webhook workflows demanded by‬

‭developers, which existing solutions may not support.‬

‭Terraform‬
‭Terraform is an open-source infrastructure as code (IaC) tool created by HashiCorp that‬

‭enables developers to define and provision a datacenter infrastructure using a high-level‬

‭configuration language. Infrastructure as code is a configuration management concept wherein‬

‭configuration specifications are specified in documented code files so that an environment can be‬

‭easily replicated and undocumented changes do not occur (Red Hat, 2022). It provides a‬

‭declarative approach to infrastructure management, allowing users to specify what resources are‬

‭required rather than how to create those resources. This allows for a descriptive model of‬

‭infrastructure in code, which can be versioned and reused.‬

‭Terraform uses its own domain-specific language, Terraform HCL (HashiCorp‬

‭Configuration Language), for defining resources, and it supports a multitude of service‬

‭providers, including AWS, Google Cloud, Azure, and many more. One of Terraform's key‬

‭features is its ability to manage the state of the infrastructure, keeping track of the resources it‬

‭creates so that it can apply incremental changes with minimal disruption.‬

‭In this year's project, Terraform played a crucial role in automating the deployment of the‬

‭WaaS platform's infrastructure. We leveraged Terraform's capability to create reproducible and‬

‭7‬

‭consistent environments to streamline the setup process and reduce the potential for human error.‬

‭By creating Terraform deployment templates, the project ensured that resources such as AWS‬

‭Lambda functions, API Gateway endpoints, and DynamoDB tables could be provisioned with‬

‭the correct configurations in an automated fashion. This approach not only saved time but also‬

‭enhanced the scalability of the platform by enabling quick adjustments to infrastructure based on‬

‭changing requirements.‬

‭GitHub Actions‬
‭GitHub Actions is a continuous integration and continuous deployment (CI/CD) platform‬

‭that allows users to automate their software build, test, and deploy pipeline directly from their‬

‭GitHub repository. With GitHub Actions, users can create workflows that automatically run on‬

‭specific triggers, such as pushing code to a repository or creating a pull request. Workflows are‬

‭defined in YAML files within the repository, allowing for version control and code review of the‬

‭CI/CD process itself.‬

‭The platform provides a rich set of prebuilt actions for common tasks, and it also allows‬

‭users to create their own custom actions. GitHub Actions supports a variety of programming‬

‭languages and frameworks and integrates seamlessly with GitHub's suite of tools, offering a‬

‭cohesive and streamlined development experience.‬

‭In the enhancement of the WaaS platform, GitHub Actions was utilized to implement a‬

‭robust CI/CD pipeline that automated testing and deployment. Each push to the repository‬

‭triggered a sequence of actions that included linting code, running unit tests, and deploying to the‬

‭AWS environment if those steps were successful. This ensured that any changes made to the‬

‭platform's codebase were reliable and did not introduce regressions, promoting a higher standard‬

‭of code quality. Furthermore, by automating these steps, the development team could focus on‬

‭feature development and bug fixes without the need to manually oversee each stage of the‬

‭release process. GitHub Actions thus played a pivotal role in maintaining and improving the‬

‭WaaS platform, ensuring that new features and improvements were integrated smoothly and‬

‭efficiently.‬

‭8‬

‭Amazon Web Services (AWS)‬
‭This project relied heavily on several aspects of AWS to remotely host our software to‬

‭function as SaaS. AWS is a leading cloud computing platform and offers hundreds of varied‬

‭services. For this project, we used several of AWS’ tools in conjunction which are detailed‬

‭below.‬

‭AWS Lambda‬

‭AWS Lambda is a scalable solution to programming as part of Amazon’s AWS cloud‬

‭services. Specifically, Lambda allows users to create and run code without the need to provision‬

‭or manage computing resources directly (Vişan, 2006). Users are able to write programs referred‬

‭to as lambdas which are then hosted by Amazon. Rather than the user needing to provide their‬

‭own hosting service or dedicated servers, Amazon actively scales resources allocated to a given‬

‭lambda so that an unused one is given no resources thus incurring no costs, while heavily used‬

‭ones for major sites or applications can automatically receive as much as they need to run. This‬

‭allows for a more efficient use of computing resources as well as monetary resources. Since‬

‭resources are only allocated to lambdas as needed, a user only incurs costs for the computing‬

‭resources used meaning a user never pays for more than they need. This makes Lambda a doubly‬

‭ideal service since it both reduces costs and removes the need for us to provide the computing‬

‭resources to run our functions.‬

‭AWS S3‬

‭Amazon Simple Storage Service (Amazon S3), is a cloud object and data storage solution‬

‭made to be easily scalable (Amazon, 2002). As another product of AWS, Amazon S3 is‬

‭compatible with the rest of the AWS suite. S3 stores data in buckets; flat, non-hierarchical data‬

‭structures with each object in the bucket able to be assigned tags for easy searching and sorting.‬

‭S3 buckets allow for Lambda to easily run functions on specified data making it an essential pair‬

‭for Lambda based software.‬

‭AWS Identity and Access Management (IAM)‬

‭Security in cloud computing is an important issue and AWS has its own security model to‬

‭address this called AWS Identity and Access Management (IAM). IAM lets customers manage‬

‭9‬

‭access to AWS services and resources securely. At its lowest level, AWS allows customers to‬

‭assign fine grained rules called policies to control access to various areas of their services.‬

‭Generally, a customer will want to employ a least privileged permissions model which aims to‬

‭provide the least amount of access required for their use case. These fine-grained policies are‬

‭great for least privileged security models but the difficulty lies in selecting precise policies from‬

‭the multitude available.‬

‭To address this, tools like 'iamlive' have been developed, offering a method to generate‬

‭tailored IAM policies. 'iamlive' is a github repository that monitors the requests you send to a‬

‭cloud provider like AWS and generates a least permissions policy list automatically as you work.‬

‭In our work, 'iamlive' allowed us to spend less time working with IAM policies and helped us‬

‭stay focused on development.‬

‭10‬

‭Methodology‬

‭Previous Work‬
‭This project has been ongoing and we are now in the third year of development. We were‬

‭left with a strong base to start with from the previous team’s work consisting of a serverless‬

‭backend utilizing AWS lambda and a React frontend. AWS lambda is a serverless computing‬

‭service that allows deployment of code without having to manage or deploy one’s own servers.‬

‭This is organized into lambda functions, which are written by the user and are executed in‬

‭response to certain events.‬

‭AWS Backend‬

‭The backend consisted of an AWS Rest API Gateway, an AWS service that allows‬

‭developers to expose backend services as APIs that can be consumed by other services, linked‬

‭via proxy integrations to AWS Lambda which would handle all of the logic. The structure of the‬

‭backend Lambda included 4 functions as follows:‬

‭●‬ ‭“DB Lambda”: This function, called the “DB Lambda,” is responsible for handling all‬

‭front-end requests by interfacing with the database to serve and update the configurations‬

‭and actions.‬

‭●‬ ‭“Authorizer Lambda”: This function is used in conjunction with Auth0 to authenticate the‬

‭user’s JWT, a token which can be translated into JSON format that is used to verify‬

‭authentication credentials, and provide access to resources.‬

‭●‬ ‭“Router Lambda”: This function is the endpoint called by producer applications when a‬

‭webhook event is triggered. It consumes the payload from the webhook, then based on‬

‭the configuration ID provided as a URL parameter, pulls the proper schema from the‬

‭database to determine the destination consumers and any data transformations that need‬

‭to occur. From there, it asynchronously invokes an instance of the “Child Lambda” for‬

‭each consumer with the original webhook payload, the schema containing the relevant‬

‭transformations, and the destination consumer URL.‬

‭●‬ ‭“Child Lambda”: The “Child Lambda” is invoked asynchronously by the router lambda‬

‭with the original webhook payload, the schema containing the relevant transformations. It‬

‭11‬

‭is responsible for performing any data transformations on the payload and then‬

‭forwarding the resulting payload to the provided destination consumer.‬

‭The previous team chose DynamoDB as their database to store the configurations and‬

‭actions used in the applications. They chose a NoSQL database due to the high variability of the‬

‭structure of the data and specifically DynamoDB due to its ease to be integrated into AWS‬

‭Lambda.‬

‭React Frontend‬

‭The previous team was able to make a strong React frontend. They chose React because of its‬

‭popularity and their team's familiarity with it. This front end uses TypeScript because their team‬

‭had strong previous exposure. TypeScript is also arguably better when it comes to working on a‬

‭project with multiple people, thanks to its strict typing and linting capabilities, which should‬

‭make debugging much quicker. They also chose ant design as a component library because it‬

‭offered specific components that were suited to the project. React flow is also used to help‬

‭display a graphical representation of the flow between producers and consumers in their‬

‭configuration editor. Auth0 is used for easy and secure authentication.‬

‭Full Stack Result‬

‭The resulting platform allowed for the creation of producer and consumer nodes and the ability‬

‭to transform data between source and destination.‬

‭12‬

‭Figure 1. Example data flow‬

‭Actions‬

‭The team introduced the concept of an “action” which stores data for either a consumer or‬

‭producer node. To represent a producer, the action stores fields produced by that producer. In the‬

‭case of a consumer, the action will store the fields consumed by that consumer. Users are able to‬

‭navigate to the “actions” tab to create, view, edit and delete actions.‬

‭Configurations‬

‭The team also introduced the concept of a “configuration” which is a mapping of a single‬

‭producer action to one or more consumer actions. This configuration also stores the‬

‭corresponding payload transformation details between the producer action and each consumer‬

‭action. To make a full webhook configuration, the user must first have defined a producer action‬

‭and at least one consumer action via the actions tab. From there, users are able to navigate to the‬

‭configurations tab and create a new configuration. This opens a graphical editor where users may‬

‭add their producer and consumer actions as well as define any data transformations that should‬

‭occur.‬

‭Data Transformations‬

‭Data transformations define how attributes from a producer should be mapped to attributes in‬

‭consumers. For example, imagine a scenario where we want to send a Discord message‬

‭whenever a Github commit is made. We might want this message to include the commit message‬

‭and current time. In this case, our Github producer action would have several fields including the‬

‭commit message and current time, and our Discord consumer might have a single field indicating‬

‭the message to send. Using data transformations, we could concatenate the commit message,‬

‭current time and some nice formatting all into the message field of the Discord consumer.‬

‭13‬

‭Figure 2. Data transformation from Producer to Consumer‬

‭Adopted Methodologies‬

‭The previous team's adoption of the Agile framework set a precedent for iterative development,‬

‭which we continued to embrace. Their use of tools like JIRA for task management and GitHub‬

‭for version control informed our decision to maintain these systems for project continuity and‬

‭effective collaboration.‬

‭Workflow‬
‭Our work was split over 3 terms, and was split between our primary goals of Terraform‬

‭integration, hosting the existing front end, overhauling front end design elements, and Github‬

‭Actions testing workflow implementation. These goals were prioritized to our sponsor, 7Factor,‬

‭during our initial pitch. Some of our other ideas included adding support for more complex data‬

‭transformations between the producer and consumer, support for REST API polling, creating a‬

‭developer API for external use, and a community hub for webhooks created using the 7Factor‬

‭WaaS editor. These ideas were set aside in favor of our prioritized goals, as their workload would‬

‭outweigh the features’ usage.‬

‭A Term‬

‭After meeting with 7Factor and determining our goals for this project, the team spent a‬

‭majority of A term on Terraform integration. Members of the team had previous experience with‬

‭Terraform, and were thus somewhat familiar with the tool. The development process involved‬

‭14‬

‭iterating on different versions of the terraform template documents as the team learned how to‬

‭integrate it, and finalizing the code for one section of the backend before implementing it in‬

‭another section. A major challenge with our development process was finding the correct AWS‬

‭permissions to execute Terraform, as there are many permissions involved to automatically‬

‭deploy from Terraform.‬

‭To begin creating the terraform documents we first started by setting up the remote state‬

‭management. We needed this so that we could all collaborate on the templates at once; otherwise‬

‭all of our states would be different, and nothing would work. Part of creating the state‬

‭management was creating a DynamoDB table as well, for the state lock.‬

‭Once we had a remote state set up we deployed the API Gateway using the swagger files,‬

‭files that describe and document REST APIs, from the previous team. API Gateway allows you‬

‭to import from a swagger file, so this step was pretty trivial. Once this was set up we were able to‬

‭understand the structure of the API gateway and what connected to what. From here we began‬

‭creating all of the API Gateway infrastructure using Terraform. This was tedious, as we needed‬

‭to create API Gateway resources, methods, method responses, integrations and integration‬

‭responses. A challenge we faced was getting CORS to work. CORS, or Cross-Origin Resource‬

‭Sharing, is a security feature in most web browsers that is used to validate and restrict requests‬

‭between origins. We had a lot of trouble with our lambda functions not returning the correct‬

‭CORS headers, which prevented them from executing correctly.‬

‭Once we had all of the API Gateway created we were able to create all of the Lambda‬

‭functions. These were quite simple, as we already had the code; all we had to do was create them‬

‭and upload the code. Using Terraform, the lambda code was uploaded to an S3 bucket, an AWS‬

‭service used as a container for static web content storage, and then moved onto the lambda.‬

‭The last piece of infrastructure we needed in the back end was the database. For this we‬

‭chose DynamoDB. Again, the setup was pretty easy since we had already set it up for the state‬

‭management. We just needed to create a new table and give names to some of the columns we‬

‭would be using. We then had the API Gateway, database and lambdas set up, but weren’t able to‬

‭actually use our app without running it locally.‬

‭The previous frontend was hosted using S3. We decided to still use S3, but only to store‬

‭the files for the website, and we chose to use CloudFront for the distribution of the files. In order‬

‭to set this up, we first set up the website using the console; that way we could figure out what‬

‭15‬

‭infrastructure we would need to successfully deploy the app. Once this was done, it was reverse‬

‭engineered and implemented using Terraform.‬

‭Throughout the process of deploying the infrastructure, we kept running into IAM‬

‭(Identity and Access Management) permission issues. IAM permissions refer to the set of rules‬

‭and policies that define what actions users, groups, and roles are allowed or denied within a‬

‭system or cloud environment. Anytime we ran into a permission we didn’t have, we needed to‬

‭add those permissions to the IAM role, which took quite a while, considering there are so many‬

‭permissions.‬

‭Once the Terraform infrastructure was in a steady state, we added GitHub actions so that‬

‭any time we pushed changes to any of our repositories, it would automatically refresh the‬

‭infrastructure and upload any necessary files. For the lambdas we needed to make sure that the‬

‭code was reuploaded to the lambda everytime. This required using the AWS CLI, instead of just‬

‭Terraform, since Terraform would see the name of the file was the same, it would have no clue‬

‭that the actual code changed and needed to be re-uploaded. On the front end side of things, we‬

‭needed to make sure to delete everything from the S3 bucket before running the Terraform‬

‭workflow; this was for the same reason, because Terraform wouldn’t know otherwise that there‬

‭were changes made to the files.‬

‭Towards the end of the term, our team began the planning stage for our front end‬

‭improvements. The existing Figma mockups from previous teams were used as reference and‬

‭tweaked for the smaller changes, such as cleaning up the homepage/login page. New mockups‬

‭were also designed for larger changes.‬

‭B Term‬

‭The group looked to move into the next stage in B Term in working on the frontend‬

‭which required new code and design. To redesign the look of the frontend, our group returned to‬

‭Figma, creating new mockups for the intended UI. Using the previous designs as a base, we‬

‭started with the most important changes, which would help improve ease of use through‬

‭increased clarification and catering to user expectations. We also made some minor changes and‬

‭fixes to the front end to make the website look more professional, including adding a favicon,‬

‭cleaning up the header for each page of the web app, and rewriting the “about” page to contain‬

‭more general information about the project and sponsor.‬

‭16‬

‭We chose to redesign the UI of the configuration editor and action editor by combining‬

‭them into one page, allowing for a less cluttered design. This allows the user to add a new‬

‭configuration, then go to the same page to edit it. Inside the editor, the user can add and remove‬

‭attributes from both the producer and consumer payloads at the same time, as well as edit the‬

‭consumer’s URL by clicking the “edit” option on its header. This combines all of the‬

‭functionality of the two editors into one page, allowing for an easy to navigate workflow for‬

‭creating and editing webhooks.‬

‭C Term‬

‭With the loss of 3 members, the team focused on polishing the product. Many major bugs‬

‭were found that had to be fixed. The first one being when you create a new consumer, in order to‬

‭add any attributes, you must save beforehand, otherwise an error will be thrown. Some other‬

‭minor bug fixes were done to improve the flow of the app. Another big change was the‬

‭movement of the create consumer button. Right clicking on the configuration builder no longer‬

‭brings up a context menu, and the button has now been moved to the top right corner. Our main‬

‭goal for C Term was to polish the project to create a presentable product, with minimal bugs and‬

‭a clean, understandable UI left for future teams. This included fixing the behavior of the Mock‬

‭Producer functionality to support number and boolean fields, which would previously throw an‬

‭error when sending a non-string field.‬

‭17‬

‭Results‬
‭With the combination of Terraform and GitHub Actions, the deployed website can be‬

‭automatically updated with a successful push to the GitHub repository.‬

‭The landing page was cleaned up from its previous iterations, removing the old sample‬

‭configuration builder from the authentication screen. Our team found this feature to be confusing‬

‭for first time users, and decided to remove it and simplify the screen. The new authentication‬

‭screen has a single box with the 7 Factor logo and an authentication button, which redirects to‬

‭the Auth0 login page. The top navigation bar was also redesigned, adding links to the Home and‬

‭About Us pages that can be easily accessed from any screen in the web app.‬

‭Figure 3. WaaS login page‬

‭The configuration builder was improved with multiple ease-of-use features, such as a‬

‭back and save button for easier navigation, centralized editing on one page, and cleaner UI in the‬

‭attributes display. Our team chose to combine the action and configuration builders into the main‬

‭configuration editor, creating a more efficient webhook building editor. With the ability to edit‬

‭both producers and consumers on one page, the user can avoid switching pages as much as‬

‭possible. The UI of the attribute display was also improved, adding a line to show which‬

‭attributes are nested in an object. This feature was taken from the previous group’s Figma‬

‭designs.‬

‭18‬

‭Figure 4. Configuration builder UI‬

‭Recommendations‬
‭For the purposes of furthering this project, there were some ideas we did not have the‬

‭chance to implement, but would be worthwhile to implement in time.‬

‭Refactor Codebase‬

‭Our most relevant suggestion is to complete a major overhaul of the current codebase.‬

‭Rewriting the front end code from scratch would cut down significantly on development‬

‭challenges, as many of our team’s challenges for the project involved deciphering code rather‬

‭than making progress. While the existing codebase is functioning, in its current state it poses a‬

‭barrier to further development. As it is, the codebase is difficult to understand, and is structured‬

‭such that many components are unnecessarily abstracted or dependent on each other. Were a‬

‭future group to refactor the codebase with thorough documentation, this would not only ease the‬

‭rest of their work, but would pave a clear path for future work. Due to the complexity of the‬

‭codebase, it may also be more time efficient to use the existing backend infrastructure, but to‬

‭redesign the front end, as the backend code will likely need little additional changes. Most of our‬

‭work was done through various workarounds and patchwork. A redesign of the frontend‬

‭architecture is in dire need in order to reduce complexity and improve future functionality.‬

‭19‬

‭Customizable Transformations‬

‭Adding a feature to allow users to customize data transformations between producers and‬

‭consumers, such as adding a certain value to a number attribute, would allow for a broader set of‬

‭use cases for this service. This feature would, however, require a lot of trial and error to‬

‭determine which transformations are feasible for the app to handle.‬

‭Trigger Webhook on API Change‬

‭This would involve a polling system to detect a user-defined condition in a REST API.‬

‭When that condition is met, a webhook is triggered.‬

‭Community Hub‬

‭As the WaaS platform is intended to be accessible for a broad audience, adding a hub‬

‭where users can post their webhooks made with the service would provide a community aspect‬

‭to the platform. These configurations could be downloaded and imported into the web app. This‬

‭would involve additional functionality in the front end to export and import configurations made‬

‭in the app, which may be useful even without a community hub.‬

‭Conclusion‬
‭The work done during this project has successfully advanced the production of the WaaS‬

‭platform, making several changes that will facilitate the development process for future teams.‬

‭Our team implemented multiple development tools that will allow for easier deployment through‬

‭AWS. The incorporation of Terraform deployment templates, GitHub actions, and AWS S3‬

‭hosting sets the stage for a streamlined development process that can be easily adopted by future‬

‭teams. In addition to these implementations, a number of improvements to the UI have made for‬

‭a cleaner and more aesthetically pleasing user experience, as well as conveying the appearance‬

‭of a more finished product. These improvements were made with the intention of making the‬

‭web app more accessible and understandable to users. As the WaaS platform continues to evolve,‬

‭we hope it will become an accessible tool that will help users more efficiently create complex‬

‭webhooks for easy use.‬

‭20‬

‭References‬

‭7Factor Software. (2023, July 27).‬‭7Factor software‬‭solutions: Customized Scalable Solutions:‬

‭7Factor‬‭. https://7factor.io/solutions/.‬

‭Amazon. (2002).‬‭S3‬‭. https://aws.amazon.com/s3/.‬

‭Amazon. (2003).‬‭Policies and permissions in IAM‬‭. Amazon‬‭Web Services.‬

‭https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html.‬

‭GitHub. (n.d.).‬‭About Webhooks‬‭. GitHub Docs.‬

‭https://docs.github.com/en/webhooks/about-webhooks.‬

‭Google. "IAM Basic and Predefined Roles Reference."‬‭Google Cloud‬‭,‬

‭cloud.google.com/iam/docs/understanding-roles.‬

‭HashiCorp. "What Is Terraform?"‬‭HashiCorp Developer‬‭,‬

‭developer.hashicorp.com/terraform/intro.‬

‭IBM. (n.d.).‬‭What is SAAS (software-as-a-service)?‬‭https://www.ibm.com/topics/saas.‬

‭Mckay, I. (2021, February 4).‬‭IANN0036/iamlive: Generate‬‭an IAM policy from AWS, Azure, or‬

‭google cloud (GCP) calls using client-side monitoring (CSM) or embedded proxy‬‭.‬

‭GitHub. https://github.com/iann0036/iamlive.‬

‭Red Hat. (2022, May 11).‬‭What is infrastructure as‬‭code (IAC)?‬‭. Red Hat - We make open‬

‭source technologies for the enterprise.‬

‭https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac.‬

‭Terraform Registry‬‭. (n.d.). Retrieved February 24,‬‭2024, from‬

‭https://registry.terraform.io/providers/hashicorp/aws/latest/docs‬

‭Vişan, S. (2006).‬‭Lambda‬‭. Amazon.‬

‭https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.‬

‭21‬

‭Java‬

‭Appendix‬
‭Getting Started‬

‭Backend‬
‭Clone the‬‭https://github.com/WPI-7Factor-Webhook-MQP/Webhooks-Terraform‬‭repo and run‬

‭the following commands in both the Backend and Frontend folders. This will deploy the‬

‭infrastructure for the frontend and backend.‬

‭terraform‬‭init‬‭-backend-config=‬‭"access_key=${{secrets.AWS_ACCESS_KEY_ID}}"‬

‭-backend-config=‬‭"secret_key=${{secrets.AWS_SECRET_ACCESS_KEY}}"‬

‭terraform‬‭plan‬‭-out‬‭tfplan‬‭--var-file‬‭variables.tfvars‬

‭terraform‬‭apply‬‭tfplan‬

‭terraform‬‭destroy‬‭--var-file‬‭variables.tfvars‬

‭Lambdas‬
‭In order to deploy the Lambdas, just push to the respective Lambda repo, and the GitHub‬

‭Actions will automatically update the Lambda. How this works is that the GitHub Actions will‬

‭zip all of the files for the Lambda into one zip file, then it will upload this zip file to an S3‬

‭bucket. From there, it will finish by updating the Lambda function with the newly uploaded zip‬

‭file using the AWS CLI. As mentioned, all of this happens automatically when a push is made to‬

‭the main branch on any of the Lambdas repositories.‬

‭Frontend‬
‭To update the deployed front end, we use GitHub Actions on the frontend repo to update the S3‬

‭bucket that the CloudFront points to. Pushing to the frontend repo will trigger this action and will‬

‭automatically update the hosted frontend. This works similarly to how the Lambdas‬

‭automatically get updated; when something gets pushed on the main branch, the action copies‬

‭the whole repo, installs all of the dependencies, and builds the package. From here it then checks‬

‭out the front end Terraform repository, initializes Terraform, and then applies the front end‬

‭22‬

https://github.com/WPI-7Factor-Webhook-MQP/Webhooks-Terraform

‭Terraform. This apply will see that the only thing that has changed are the files, so it just uploads‬

‭the new package to AWS, allowing for a successful deployment of the newly pushed changes.‬

‭One thing to note is that in the variables.tfvars file, the bucket_name must be changed to‬

‭something unique, since s3 bucket names are globally unique. Below is the format of the .env‬

‭file in the frontend.‬
‭AUTH0_CLIENTID‬‭=XXXXX‬
‭AUTH0_DOMAIN‬‭=XXXXX‬
‭API_GATEWAY_URL‬‭=XXXXX‬

‭23‬

