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Uniform Gaussian Bounds for Subelliptic Heat Kernels
and an Application to the Total Variation Flow of
Graphs over Carnot Groups

Abstract
In this paper we study heat kernels associated with a Carnot
group G, endowed with a family of collapsing left-invariant
Riemannian metrics σε which converge in the Gromov-
Hausdorff sense to a sub-Riemannian structure on G as ε →0. The main new contribution are Gaussian-type bounds on
the heat kernel for the σε metrics which are stable as ε → 0
and extend the previous time-independent estimates in [16].
As an application we study well posedness of the total varia-
tion flow of graph surfaces over a bounded domain in a step
two Carnot group (G, σε ). We establish interior and boundary
gradient estimates, and develop a Schauder theory which are
stable as ε → 0. As a consequence we obtain long time
existence of smooth solutions of the sub-Riemannian flow
(ε = 0), which in turn yield sub-Riemannian minimal surfaces
as t →∞.
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1. IntroductionModels of image processing based on total variation flow
∂tu = div(∇u/|∇u|)

have been first introduced in by Rudin, Osher, and Fatemi in [44], in order to perform edge preserving denoising. We referthe reader to the review paper [19] where many recent applications of total variation equation in the Euclidean settingare presented. The flow t → u(·, t) represents the gradient descent associated with the total variation energy ∫ |∇u| andas such has the property that both the total variation of the solution t → u(·, t) and the perimeter measure of fixed levelsets {u(·, t) = const} are non-increasing in time. Aside from its usefulness in image processing, the flow also arises inconnection with the limit of solutions of the parabolic p−Laplacian ∂tup = div(|∇up|p−2∇up) as the parameter p→ 1+.In the case where the evolution of graphs St = {(x, u(x, t))} is considered, i.e. ∂tu = div(∇u/√1 + |∇u|2), then inboth the total variation flow and the closely related mean curvature flow ∂tu =√1 + |∇u|2div(∇u/√1 + |∇u|2), givenappropriate boundary/initial conditions, global in time solutions asymptotically converge to minimal graphs. For further
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results, references and applications of the Euclidean total variation flow we refer the reader to [1], [2], [5] and for ananisotropic version of the flow to [37].
In this paper we study long time existence of graph solutions of the total variation flow in a special class of degenerateRiemannian ambient spaces: The so-called (sub-Riemannian) Carnot groups [26], [47]. Such spaces are nilpotent Liegroups endowed with a metric structure (G, σ0) that arises as limit of collapsing left-invariant Riemannian structures(G, σε). The results in this paper are restricted to the study of the total variation flow in Carnot groups of step two. Therestriction on the step is motivated by the lack of a sufficiently large set of barriers functions in higher step groups (seebelow). Our motivations are twofold:

(a) On the one hand, minimal surfaces and mean curvature flow in the Carnot group setting (and in particular in thespecial case of the Heisenberg group) have been the subject of numerous papers in recent years, leading to partialsolutions of long-standing problems such as the Pansu conjecture1. Despite such advances little is known aboutexplicit construction of minimal surfaces. Since the asymptotic limit of graphical mean curvature flow provideminimal surfaces in the Riemannian setting it is only natural to follow the same approach in the sub-Riemanniansetting. However this avenue runs into considerable (so far unsolved) technical difficulties due to the combinedeffect of the degeneracy of the metric and the non-divergence form aspect of the relevant PDE. In the presentwork we provide the basis for the construction of sub-Riemannian minimal graphs through the asymptotic behavioras t →∞ of solutions of the sub-Riemannian total variation flow. For previous work on a similar theme see thework of Pauls [41] and Cheng, Hwang and Yang [14].
(b) A new class of image processing models based on the functionality of the visual cortex have been recentlyintroduced in Lie groups. With a generalization of the classical Bargmann transform studied by Folland (see [27])which lifts a L2 function to a new one, defined on the phase space, an image can be lifted to a Lie group witha sub-Riemannian metric. The choice of the Lie group depends on the geometric property of the image to bestudied: in [18], and [23], [24] 2D images are lifted to surfaces in the Lie group of Euclidean motions of the planeto study geometric properties of their level lines, in [25] cardiac images are lifted in the Heisenberg group tostudy their deformations, in [4] moving images are lifted in the Galilei group. The image processing is performedin these groups with algorithms expressed in terms of second order subelliptic differential equations. In particularsub-Riemannian mean curvature flows or total variation flows can be applied to perform image completion orimpainting in this setting.

Our approach to the existence of global (in time) smooth solutions is based on a Riemannian approximation scheme: Westudy graph solutions of the total variation flow in the Riemannian spaces (G, σε) where G is a Carnot group and σε isa family of tame Riemannian metrics that ’collapse’ as ε → 0 to a sub-Riemannian metric σ0 in G. The main technical
novelties in the paper are a series of different a-priori estimates, which are stable as ε → 0:

(1) Heat kernel estimates for sub-Laplacians and their elliptic regularizations (see Proposition 2.2). These estimatesare established in the setting of any Carnot group, with no restriction on the step, and provide a paraboliccounterpart to the time-independent estimates proved by two of the authors in [16].
(2) Uniform Schauder estimates for second order, non-divergence form subelliptic PDE and their elliptic regulariza-tions (see Proposition 4.4). These estimates are established in the setting of any Carnot group, with no restrictionon the step.
(3) Interior gradient estimates for solutions of the total variation flow (see Proposition 3.2). These estimates areestablished in the setting of any Carnot group, with no restriction on the step.
(4) Boundary gradient estimates for solutions of the total variation flow (see Proposition 3.4). These estimates areestablished only in the setting of Carnot group of step two.

We remark that (3) and (4) can also be proved, with similar arguments, for solutions of the sub-elliptic mean curvatureflow2. We reiterate that the limitation to Carnot groups of step two in (4) is due to the fact that for step three and
1 See for instance [9, 10, 13–15, 21, 38, 41, 42, 46] and references therein2 For more references on the sub-Riemannian mean curvature flow see [8, 12, 22, 36]
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Uniform Gaussian Bounds and Total Variation Flow

higher there no known suitable barrier functions, or in other words, the class of known explicit minimal graphs is notsufficiently large.In order to state our results we need to introduce some notation.
1.1. Carnot group structureLet G be an analytic and simply connected Lie group with topological dimension n and such that its Lie algebra Gadmits a stratification G = V 1 ⊕ V 2 ⊕ ...⊕ V r , where [V 1, V j ] = V j+1, if j = 1, . . . , r − 1, and [V k , V r ] = 0, k = 1, . . . , r.Such groups are called in [26, 28, 47] stratified nilpotent Lie groups. Set H(0) = V 1, and for any x ∈ G we let
H(x) = xH(0) = span(X1, . . . , Xm)(x). The distribution x → H(x) is called the horizontal sub-bundle H .The metric structure is given by assuming that one has a left invariant positive definite form σ0 defined in the sub-bundle
H . We fix a orthonormal horizontal frame X1, . . . , Xm which we complete to a basis (X1, . . . , Xn) of G by choosing forevery k = 2, . . . , r a basis of Vk . If Xi belongs to Vk , then we will define its homogeneous degree as

d(i) = k. (1.1)
We will denote by xX = ∑n

i=1 xiXi a generic element of G. Since the exponential map exp : G → G is a globaldiffeomorphism we use exponential coordinates in G, and denote x = (x1, . . . , xn) the point exp (xX). We also set
xH = (x1, . . . , xm). Define non-isotropic dilations as δs(x) = (sd(i)xi), for s > 0.We let ∇0 = (X1, . . . , Xm) denote the horizontal gradient operator. If φ ∈ C∞(G) we set ∇0φ = ∑m

i=1 XiφXi and
|∇0φ|2 =∑m

i=1(Xiφ)2.We denote by (X1, . . . , Xn) (resp. (X r1 , . . . , X r
n)) the left invariant (resp. right invariant) translation of the frames(X1, . . . , Xn).The vectors X1, . . . , Xm and their commutators span all the Lie algebra G, and consequently verify Hörmander’s finiterank condition ([32]). This allows to use the results from [40], and define a control distance d0,cc(x, y) associated with thedistribution X1, . . . , Xm, which is called the Carnot-Carathéodory metric (denote by dr,0 the corresponding right invariantdistance). We call the couple (G, d0,cc) a Carnot Group.We define a family of left invariant Riemannian metrics σε , ε > 0 in G by requesting that

{X ε1 , . . . , X ε
n} := {X1, . . . , Xm, εXm+1, . . . , εXn}

is an orthonormal frame. We will denote by dε the corresponding distance functions, see definition in (2.2). Correspond-ingly we use ∇ε , (resp. ∇r
ε) to denote the left (resp. right) invariant gradients. In particular, if φ ∈ C∞(G) we set

∇εφ =∑m
i=1 X ε

i φX ε
i and |∇εφ|2 =∑n

i=1(X ε
i φ)2.We conclude by recalling the expression of the left invariant vector fields in exponential coordinates (see [43])
Xi = ∂i + r∑

k=d(i)+1
∑
d(j)=k p

j
ik (x)∂j , (1.2)

where pjik (x) is an homogeneous polynomial of degree k − d(i) and depends only on xh, with d(1) ≤ d(h) ≤ k − d(i).
1.2. The total variationThe total variation flow is characterized by the fact that each point of the evolving surface graph moves in the directionof the upward unit normal with speed equal to the mean curvature times the volume element. In the setting of theapproximating Riemannian metrics (G, σε) and in terms of the functions t → u(·, t) : Ω ⊂ G → R describing the evolvinggraphs, the relevant equation reads:

∂uε
∂t = hε = n∑

i=1 X
ε
i

(X ε
i uε
Wε

) = n∑
i,j=1aij (∇εuε)X ε

i X ε
j uε (1.3)
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for x ∈ Ω and t > 0, with uε(x, 0) = φ(x), hε is the mean curvature of the graph of uε(·, t) and
W 2

ε = 1 + |∇εuε |2 = 1 + n∑
i=1 (X ε

i uε)2 and aij (ξ) = 1√1 + |ξ|2
(
δij −

ξiξj1 + |ξ|2
)
, (1.4)

for all ξ ∈ Rn, where | · | denotes the Euclidean norm in Rn.In the sub-Riemannian limit ε = 0 the equation reads
∂u
∂t = m∑

i=1 Xi
(

Xiu√1 + |∇0u|2
)
, (1.5)

for x ∈ Ω and t > 0, with u(x, 0) = φ(x).We will be concerned with uniform (in the parameter ε as ε → 0) estimates and with the asymptotic behavior of solutionsto the initial value problem for the mean curvature motion of graphs over bounded domains of a Carnot group G,
{
∂tuε = hε in Q = Ω× (0, T )
uε = φ on ∂pQ. (1.6)

Here ∂pQ = (Ω× {t = 0}) ∪ (∂Ω× (0, T )) denotes the parabolic boundary of Q.Given appropriate hypothesis on the data, for instance convexity of Ω and φ twice continuously differentiable, theclassical parabolic theory yields local existence and uniqueness for smooth solutions uε of (1.6), see [34, Chapter 5].However classical parabolic theory will only provide estimates involving constants that degenerate as ε → 0 (in thetransition from parabolic to degenerate parabolic regime). Our main goal consists in proving stable estimates.Our first result consists in showing that if the initial/boundary data is sufficiently smooth then the solutions of (1.6) areEuclidean Lipschitz function up to the boundary uniformly in ε > 0.
Theorem 1.1.
(Global gradient bounds) Let G be a Carnot group of step two, Ω ⊂ G a bounded, open, convex3 set and φ ∈ C 2(Ω̄).
For 1 ≥ ε > 0 denote by uε ∈ C 2(Ω × (0, T )) ∩ C 1(Ω̄ × (0, T )) the non-negative unique solution of the initial value
problem (1.6). There exists C = C (G, ||φ||C2(Ω̄)) > 0 such that

supΩ̄×(0,T ) |∇εuε | ≤ supΩ̄×(0,T ) |∇1uε | ≤ C, (1.7)
where ∇1 is the full σ1−Riemannian gradient.

Remark 1.2.The hypothesis of the Theorem above can be slightly weakened by asking that G is a step two Carnot group, φ ∈ C 2(Ω̄),Ω ⊂ G bounded open set, but that ∂Ω be required to be convex in the Euclidean sense only in a neighborhood of itscharacteristic locus Σ(∂Ω) and that its mean curvature h∂Ωε ≤ −δ < 0 in ∂Ω \ Σ(∂Ω).
Having established Lipschitz bounds, it is easy to show that the right derivatives X r

i uε of the solutions of (1.6) arethemselves solutions of (3.1), a divergence form, degenerate parabolic PDE whose weak solutions satisfy a Harnackinequality (see [11] and Proposition 3.8 below). Consequently one obtains C 1,α interior estimates for the solution uε

3 We say that a set Ω ⊂ G is convex in the Euclidean sense if exp−1(Ω) ⊂ G is convex in the Euclidean space G. In a
group of step two this condition is translation invariant.
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which are uniform in ε > 0. At this point one rewrites the PDE in (1.6) in non-divergence form4 of the total variationflow equation ∂tuε = aij (∇εuε)X ε
i X ε

j uε and invokes the Schauder estimates in Proposition 4.4 to prove local higherregularity and long time existence. Since all the estimates are stable as ε → 0 one immediately obtains smoothnessand the consequent global in time existence of the solution for the sub-Riemannian case ε = 0.
Theorem 1.3.
In the hypothesis of Theorem 1.1 (or Remark 1.2) one has that there exists a unique solution uε ∈ C∞(Ω × (0,∞)) ∩
L∞((0,∞), C 1(Ω̄)) of the initial value problem

{
∂tuε = hε in Q = Ω× (0,∞)
uε = φ on ∂pQ

(1.8)
and that for each k ∈ N there exists Ck = Ck (G,φ, k,Ω) > 0 not depending on ε such that

||uε ||Ck (Q) ≤ Ck . (1.9)
Since the estimates are uniform in ε and in time, and with respect to ε, we will deduce the following corollary:
Corollary 1.4.
Under the assumptions of the Theorem 1.1, as ε → 0 the solutions uε converge uniformly (with all its derivatives) on
compact subsets of Q to the unique, smooth solution u0 ∈ C∞(Ω × (0,∞)) ∩ L∞((0,∞), C 1(Ω̄)) of the sub-Riemannian
total variation flow (1.5) in Ω× (0,∞) with initial data φ.

Corollary 1.5.
Under the assumptions of Theorem 1.1, as t → ∞ the solutions uε(·, t) converge uniformly on compact subsets of Ω to
the unique solution ũε of the minimal surface equation

hε = 0 in Ω
with boundary value φ, while ũ0 = limε→0 ũε ∈ C∞(Ω) ∩ Lip(Ω̄) is the unique solution of the sub-Riemannian minimal
surfaces equation h0 = 0 in Ω, with boundary data φ.

Acknowledgements The authors are grateful to the two anonymous referee for their careful reading of the manuscriptand for many useful suggestions. We also wish to thank Manuel Ritoré for his encouragement in this project.
2. Structure stability in the Riemannian limitThe Carnot-Carathéodory metric d0,cc is equivalent to a more explicitly defined pseudo-distance function, that we willcall (improperly) gauge distance, defined as

|x|2r!G = r∑
k=1

mk∑
i=1 |xi|

2r!
d(i) , and d0(x, y) = |y−1x|G . (2.1)

4 This is possible since for ε > 0 the solutions uε are sufficiently smooth
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The ball-box theorem in [40] states that there exists A = A(G, σ0) such that for each x ∈ G,
A−1|x|G ≤ d0(x, 0) ≤ A|x|G .

If x ∈ G and r > 0, we will denote by
B(x, r) = {y ∈ G | d0(x, y) < r}

the balls in the gauge distance. For each ε > 0 we also define the distance function dε corresponding to the Riemannianmetric σε ,
dε(x, y) = inf{∫ 1

0 |γ ′|σε (s)ds with γ : [0, 1]→ G a Lipschitz curve s. t. γ(0) = x, γ(1) = y}, (2.2)
where |·|σε denotes the norm with respect the Riemannian metric σε , as well as the pseudo-distance dG,ε(x, y) = Nε(y−1x)with

N2
ε (x) = ∑

d(i)=1 x
2
i + min{ r∑

i=2 (∑
d(k)=i x

2
k ) 1

i , ε−2 ∑
d(i)≥2 x

2
i

}
. (2.3)

Note that in the definition of dε , if the curve for which the infimum is achieved happens to be horizontal then dε(x, y) =
d0,cc(x, y). In general we have supε>0 dε(x, y) = d0,cc(x, y) and it is well known5 that (G, dε) converges in the Gromov-Hausdorff sense as ε → 0 to the sub-Riemannian space (G, d0,cc). The ball-box theorem in [40] and elementaryconsiderations yield that there exists A = A(G, σ0) > 0 independent of ε such that for all x, y ∈ G

A−1dG,ε(x, y) ≤ dε(x, y) ≤ AdG,ε(x, y) (2.4)
(see for example [11]).
2.1. Stability of the homogenous structure as ε → 0If G is a Carnot group, dε is the distance function associated with σε , we will denote

Bε(x, r) = {y ∈ G|dε(x, y) < r}.

If we denote by dx the Lebesgue measure and by |Ω| the corresponding measure of a subset Ω, then Rea and two ofthe authors have recently proved in [11] that
Proposition 2.1.
There is a constant C independent of ε such that for every x ∈ G and r > 0,

|Bε(x, 2r)| ≤ C |Bε(x, r)|.
Having this property the spaces (G, dε , dx) are called homogenous with constant C > 0 independent of ε (see [20]).Let τ > 0 and consider the space G̃ = G × (0, τ) with its product Lebesgue measure dxdt. In G̃ define the pseudo-distance function

d̃ε((x, t), (y, s)) = max(dε(x, y),√|t − s|). (2.5)
Proposition 2.1 tells us that (G̃, d̃ε , dxdt) is a homogeneous space with constant independent of ε ≥ 0.In the paper [11] it is also shown that a Poincaré inequality holds with a choice of a constant which is stable as ε → 0.The stability of the homogenous space structure and of the constant in the Poincaré inequality are two of the key factorsin the proof of Proposition 3.8.
5 See for instance [30] and references therein
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2.2. Stability in the estimates of the Heat KernelThe results in this section are of independent interest and concern uniform Gaussian estimates for the heat kernelassociated with elliptic regularizations of the Carnot group sub-Laplacians. They will be used in this paper in connectionwith the Schauder estimates and the higher regularity of the total variation flow. We will deal with non-divergence formoperators similar to those in (1.3), but with constant coefficients. More precisely we will consider the operator
Lε,A = ∂t −

n∑
i,j=1aijX

ε
i X ε

j (2.6)
where A = (aij )ij=1,...n is a symmetric, real-valued n× n matrix, such that for some choice of constants Λ, C1, C2 > 0 andfor all ξ ∈ Rn one has

Λ−1 ∑
d(i)=1 ξ

2
i + C1 ∑

d(i)>1 ξ
2
i ≤

n∑
i,j=1aijξiξj ≤ Λ ∑

d(i)=1 ξ
2
i + C2 ∑

d(i)>1 ξ
2
i . (2.7)

The constants C1, C2,Λ (independent of ε) provide Λ−uniform coercivity of (2.6) in the horizontal directions. Formally,in the sub-Riemannian limit ε → 0 the equation becomes
LA = ∂t −

m∑
i,j=1aijXiXj . (2.8)

In order to ensure that the operator Lε,A (resp. LA) is uniformly elliptic (reps. subelliptic), we will assume that the matrix
A = (aij ) belongs to a set of the form
MΛ = {A : A is a symmetric n× n, real valued constant matrix, satisfying (2.7) for some choice of C1 and C2}

for some fixed Λ > 0.Heat kernel estimates in Nilpotent groups are well known (see for instance [33] and references therein). We also referto [6] where a self contained proof is provided. In our work we will need estimates which are uniform in the variable εas ε → 0, in the same spirit as the results in [16]. We will denote Γε,A(x, t) the fundamental solution of (2.6), with matrix(aij ) in MΛ , and ΓA(x, t) the fundamental solution of (2.8).
Proposition 2.2.
There exists constants CΛ > 0 depending on G, σ0,Λ but independent of ε such that for each ε > 0, x ∈ G and t > 0
one has

C−1Λ e−CΛ dε (x,0)2
t

|Bε(0,√t)| ≤ Γε,A(x, t) ≤ CΛ e−
dε (x,0)2
CΛ t

|Bε(0,√t)| . (2.9)
For s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , n}k there exists Cs,k > 0 depending only on k, s, G, σ0,Λ such that

|(∂stX ε
i1 · · ·X ε

ikΓε,A)(x, t)| ≤ Cs,k t−s−k/2 e−
dε (x,0)2
CΛ t

|Bε(0,√t)| (2.10)
for all x ∈ G and t > 0. For any A1, A2 ∈ MΛ , s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , m}k there exists Cs,k > 0
depending only on k, s, G, σ0,Λ such that

|(∂stXi1 · · ·XikΓε,A1 )(x, t)− (∂stXi1 · · ·XikΓε,A2 )(x, t)| ≤ ||A1 − A2||Cs,k t−s−k/2 e−
dε (x,0)2
CΛ t

|Bε(0,√t)| , (2.11)
where ||A||2 :=∑n

i,j=1 a2
ij .

Moreover, for s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , m}k as ε → 0 one has

Xi1 · · ·Xik ∂stΓε,A → Xi1 · · ·Xik ∂stΓA (2.12)
uniformly on compact sets and in a dominated way on all G.
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The proof of our result is directly inspired by the proof in [16, Theorem 1.1], where the time independent case wasstudied by two of us, and where a general procedure was introduced for handling the dependence on ε and obtainingindependent estimates in the sub-Laplacian case.Let us consider the group Ḡ = G ×G defined in terms of n new coordinates y ∈ G, so that points of Ḡ will be denoted
x̄ = (x, y). Denote by Y1, . . . , Yn a copy of the vectors X1, . . . , Xn, defined in terms of new variables y. The vector fields(Xi) and (Yi) are defined in the product algebra Ḡ = G × G.In Ḡ we will consider two different families of sub-Riemannian structures:
• A sub-Riemannian structure determined by the choice of horizontal vector fields given by

(X̄ 01 , · · · , X̄ 0
m+n) = (X1, . . . , Xm, Y1, . . . , Yn). (2.13)

The sub-Laplacian/heat operator associated with this structure is
L̄0,A = ∂t −

m+n∑
i,j=1 āij X̄

0
i X̄ 0

j = ∂t −
m∑

i,j=1aijXiXj −
n∑

i,j=1aijYiYj . (2.14)
We complete the horizontal frame to a basis of the whole Lie algebra by adding the commutators of the vectors(Xi): (Xm+1, . . . Xn). We denote the exponential coordinates of a point x̄ around a point x̄0 in terms of the fullframe through the coefficients (v0

i , w0
i ) which are defined by

x̄ = exp( m∑
i=1 v

0
i Xi + n∑

i=1 w
0
i Yi + n∑

i=m+1 v
0
i Xi

) (x̄0).
• For every ε ∈ [0, 1) consider a sub-Riemannian structure determined by the choice of horizontal vector fieldsgiven by (X̄ ε1 , · · · , X̄ ε

m+n) = (X1, . . . , Xm, Y1, . . . , Ym, X ε
m+1 + Ym+1, . . . , X ε

n + Yn). (2.15)The sub-Laplacian/heat operator associated with this structure is
L̄ε,A = ∂t −

m∑
i,j=1aijXiXj −

m∑
i,j=1aijYiYj −

∑
i>m or j>maij (X ε

i + Yi)(X ε
j + Yj ).

Analogously, the exponential coordinates associated with L̄ε,A will depend on the given horizontal frame (2.15)and the family (Xm+1, . . . Xn). The coordinates of a point x̄ are the coefficients v εi and wε
i satisfying

x̄ = exp( m∑
i=1 v

ε
i Xi + m∑

i=1 w
ε
i Yi + n∑

i=m+1w
ε
i (X ε

i + Yi) + n∑
i=m+1 v

ε
i Xi

) (x̄0). (2.16)
We denote by Γ̄0,A and Γ̄ε,A the heat kernels of the corresponding heat operators. In both structures we define associated(pseudo)distance functions d̄0(x̄, ȳ) and d̄ε(x̄, ȳ) that are equivalent to those defined in (2.1) and that assign unit weightto the corresponding horizontal vectors while (Xm+1, . . . , Xn) will be weighted according to their degree d(i).
Definition 2.3.For every ε > 0 and x̄, x̄0 ∈ Ḡ define

d̄ε(x̄, x̄0) = m∑
i=1 |v

ε
i |+ m∑

i=1 |w
ε
i |+ n∑

i=m+1 min (|wε
i |, |wε

i |1/d(i))+ n∑
i=m+1 |v

ε
i |1/d(i).

For ε = 0 and x̄, x̄0 ∈ Ḡ define
d̄0(x̄, x̄0) = n∑

i=1 (|w0
i |1/d(i) + |v0

i |1/d(i)).
We will denote by B̄ε and B̄0 the corresponding metric balls.
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Lemma 2.4.
There exists constants CΛ > 0 depending on G, σ0,Λ but independent of ε such that for each ε > 0, x̄ ∈ Ḡ and t > 0
one has

C−1Λ e−CΛ d̄ε (x̄,0)2
t

|B̄ε(0,√t)| ≤ Γ̄ε,A(x̄, t) ≤ CΛ e−
d̄ε (x̄,0)2
CΛ t

|B̄ε(0,√t)| . (2.17)
For s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , n+m}k there exists Cs,k > 0 depending only on k, s, G, σ0,Λ such that

|(∂st X̄ ε
i1 · · · X̄ ε

ik Γ̄ε,A)(x̄, t)| ≤ Cs,k t−s−k/2 e−
d̄ε (x̄,0)2
CΛ t

|B̄ε(0,√t)| (2.18)
for all x̄ ∈ Ḡ and t > 0. Moreover, for s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , m}k as ε → 0 one has

X̄ ε
i1 · · · X̄ ε

ik ∂
s
t Γ̄ε,A → X̄ 0

i1 · · · X̄ 0
ik ∂

s
t Γ̄0,A (2.19)

uniformly on compact sets, in a dominated way on all Ḡ.

Proof. In order to estimate the fundamental solution of the operators L̄ε,A in terms of L̄0,A, we define a volumepreserving change of variables on the Lie algebra and on G: Define a Lie algebra automorphism F̄ε : Ḡ → Ḡ as
F̄ε(x̄) = exp(Tε(log(x̄)) with

Tε(X̄ 0
i ) = X̄ ε

i for i = 1, . . . , m+ n.

By definition the relation between the distances d̄0 and d̄ε is expressed by the formula
d̄ε(x̄, x̄0) = d̄0(F̄ε(x̄), F̄ε(x̄0)). (2.20)

Analogously we also have Γ̄ε,A(x̄, t) = Γ̄0,A(F̄ε(x̄), t), (2.21)
XiΓ̄ε,A(x̄, t) = XiΓ̄0,A(F̄ε(x̄), t), for i = 1, · · · , m

and (X ε
i + Yi)Γ̄ε,A(x̄, t) = YiΓ̄0,A(F̄ε(x̄), t), for i = m+ 1, · · · , n,

with similar identities holding for the iterated derivatives.In view of the latter, assertions (2.17) and (2.18) immediately follow from the well known estimates of Γ̄0,A (see for instancethe references cited above or [6, Theorem 2.5]). The pointwise convergence (2.19) is also an immediate consequenceof (2.20) and (2.21). In order to prove the dominated convergence result we need to relate the distances d̄0 and d̄ε :Expressing the exponential coordinates v εi , wε
i in terms of v0

i , w0
i one easily obtains

d̄ε(x̄, x̄0) = m∑
i=1 (|v0

i |+ |w0
i |) + n∑

i=m+1
(
|v0
i − εw0

i |1/d(i) + min(|w0
i |, |w0

i |1/d(i)))

so that for all6 x̄, x̄0 ∈ Ḡ
d̄0(x̄, x̄0)− C0 ≤ d̄ε(x̄, x̄0) ≤ d̄0(x̄, x̄0) + C0 (2.22)

where C0 is independent of ε. The latter and (2.18) imply dominated convergence on Ḡ.
6 This estimate indicates the well-known fact that at large scale the Riemannian approximating distances are equivalent
to the sub-Riemannian distance
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Lemma 2.5.
For s ∈ N and k−tuple (i1, . . . , ik ) ∈ {1, . . . , m}k there exists Cs,k > 0 depending only on k, s, G, σ0,Λ but independent
of ε such that for each A1, A2 ∈ MΛ , ε > 0, x̄ ∈ Ḡ and t > 0 one has

|(∂st X̄ ε
i1 · · · X̄ ε

ik Γ̄ε,A1 )(x̄, t)− (∂st X̄ ε
i1 · · · X̄ ε

ik Γ̄ε,A2 )(x̄, t)| ≤ ||A1 − A2||Cs,k t−s−k/2 e−
d̄ε (x̄,0)2
CΛ t

|B̄ε(0,√t)| . (2.23)
Proof. In view of (2.20) and (2.21) it is sufficient to establish the result for Γ̄0,A1 and Γ̄0,A2 , thus eliminating thedependence on ε.Although the vector fields X̄ 0

i , i = 1, ..., m+ n are not free, we can invoke the Rothschild and Stein lifting theorem [43]and lift them to a new family of free vector fields in a free Carnot group. For the sake of simplicity we will continue touse the same notation X̄ 0
i , i = 1, ..., m + n to denote such family of free vector fields. To recover the desired estimate(2.23) for the original vector fields one needs to argue through projections down to the original space, exactly as donein [40] and [16]. A standard argument (see for instance [6, Theorem A]) yields that for every A ∈ MΛ , if we set Ā as in(2.14) then there exists a Lie group authomorphism FA such that

(m+n∑
j=1 (Ā1/2)ij X̄ 0

j )(u ◦ FA) = (X̄iu) ◦ FA,
and Γ̄0,A(x̄, t) = | det Ā1/2|Γ̄0,I (FA(x̄), t)
where I denotes the identity matrix. The authomorphism FA is defined by

FA(x̄) = exp(TA(log(x̄)), with TA(X̄ 0
i ) = m+n∑

j=1 (A1/2)ij X̄ 0
j for i = 1, . . . , m

and is extended to the whole Lie algebra as morphism (see the Appendix for more details). As in (2.16), we denote by(vi, wi) the canonical coordinates of FA1 (x̄) around FA2 (x̄), then the Mean Value Theorem yields
(∂st X̄ 0

i1 · · · X̄ 0
ik Γ̄I )(FA1 (x̄), t)− (∂st X̄ 0

i1 · · · X̄ 0
ik Γ̄I )(FA2 (x̄), t) = n∑

i=1 (viXi + wiYi)(∂st X̄ 0
i1 · · · X̄ 0

ik Γ̄I )(ȳ, t).
By the result in the Appendix, the operators viXi + wiYi are zero order differential operators whose coefficients can beestimated by ||A1 − A2||. The conclusion follows by virtue of Proposition 4.5.
We conclude this section with the proof of the main result Proposition 2.2.
Proof of Proposition 2.2. From the definition of fundamental solution we have that

Γ0,A(x, t) = ∫
G

Γ̄0,A((x, y), t)dy, and Γε,A(x, t) = ∫
G

Γ̄ε,A((x, y), t)dy,
for any x ∈ G and t > 0. In view of the (global) dominated convergence of the derivatives of Γ̄ε,A to the correspondingderivatives of Γ̄0,A as ε → 0, we deduce that

∫
G

Γ̄ε,A((x, y), t)dy→ ∫
G

Γ̄0,A((x, y), t)dy
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Uniform Gaussian Bounds and Total Variation Flow

as ε → 0. The Gaussian estimates of Γε,A follow from the corresponding estimates on Γ̄ε,A and the fact that in viewof (2.22),
d̄ε((x, y), (x0, y0)) ≥ d̄0((x, y), (x0, y0))− C0 ≥ d0(x, x0) + d0(y, y0)− C0 ≥ dε(x, x0) + dε(y, y0)− 3C0.

Indeed the latter shows that there exists a constant C > 0 depending only on G, σ0 such that for every x ∈ G,∫
G
e−

d2ε ((x,y),(x0 ,y0))
t dy ≤ Ce−

d2ε (x,x0)
t

∫
G
e−

d2ε (y,y0)
t dy ≤ Ce−

d2ε (x,x0)
t .

The conclusion follows at once.
3. Gradient estimatesIn this section we prove Theorem 1.1. The proof is carried out in two steps: First we use the maximum principle toestablish interior L∞ bounds for the full gradient of the solution ∇1u of (1.6) with respect to the Lipschitz norm of u onthe parabolic boundary. Next, we construct appropriate barriers and invoke the comparison principle established in [8]to prove boundary gradient estimates. The combination of the two will yield the uniform global L∞ gradient bounds.
3.1. Interior gradient estimatesIn order to prove L∞ bounds on the horizontal gradient of solutions of (1.6) one cannot differentiate equation (1.3) withrespect to the left inariant frame, because these vector fields do not commute. On the other hand the right invariantvector fields X r

j commute with the left invariant frame Xi, i = 1, . . . , n. Hence it is easy to show through a directcomputation the following result.
Lemma 3.1.
Let uε ∈ C 3(Q) be a solution to (1.3) and denote v0 = ∂tu, vi = X r

i u for i = i, . . . , n. Then for every h = 0, . . . , n one
has that vh is a solution of

∂tvh = X ε
i (aijX ε

j vh) = aij (∇εuε)X ε
i X ε

j vh + ∂ξkaij (∇εu)X ε
i X ε

j uεX ε
k vh, (3.1)

where aij is defined in (1.4).

From here we can deduce the following
Proposition 3.2.
Let uε ∈ C 3(Q) be a solution to (1.6) with Ω bounded. There exists C = C (G, ||φ||C2(Ω)) > 0 such that for every compact
subset K ⊂⊂ Ω one has sup

K×[0,T ) |∇1u| ≤ C sup
∂pQ

(|∇1u|+ |∂tu|),
where ∇1 is the full σ1−Riemannian gradient.

Proof. The proof is similar to the argument in [8, Proposition 5.1]. By lemma 3.1 any right derivative X r
i u of u issolution of equation (3.1). By the weak maximum principle applied to (3.1) we obtain

sup
K×[0.T ) |X r

i u| ≤ sup
∂pQ
|X r

i u| ≤ sup
∂pQ

(|∇1u|+ |∂tu|), (3.2)
since the right hand side contains a complete basis of the Riemannian tangent space. Again using the fact that the leftinvariant basis of vector fields can be expressed in terms of the right invarian one, we obtain:

sup
K×[0,T ) |∇1u| ≤ C sup

K×[0,T )
n∑
i=1 |X

r
i u| ≤ C sup

∂pQ
(|∇1u|+ |∂tu|).
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3.2. Linear barrier functionsIn [8, Section 4.2] it is shown that, in a step two Carnot group, coordinate hyperplanes (i.e. images under the exponentialof level sets of the form xk = 0) solve the minimal surface equation h0 = 0. In the same paper it is also shown that thismay fail for step three or higher. In the construction of the barrier function we will need the following slight refinementof this result,
Lemma 3.3.
Let G be a step two Carnot group. If f : G → R is linear (in exponential coordinates) then for every ε ≥ 0, the matrix
with entries X ε

i X ε
j f is anti-symmetric, in particular every level set of f satisfies hε = 0.

Proof. We need to show that for f (x) =∑n
i=1 aixi,

n∑
i,j=1

(
δij −

X ε
i fX ε

j f1 + |∇εf |2
)
X ε
i X ε

j f = 0. (3.3)
We recall the expression (1.2) for the vector fields Xi, d(i) = 1 in terms of exponential coordinates Xi = ∂xi +∑

d(j)=1,d(h)=2 chijxj∂xh . The Campbell-Hausdorff formula implies the anti-symmetry relation chij = −chji. It is immediate toobserve that, if d(k) = 2 one has
Xi(xk ) = ∑

d(j)=1 c
k
ijxj , and XiXj (xk ) = ckji, for d(i) = d(j) = 1, (3.4)

if either d(i) = 2 or d(j) = 2 it is easy to check X ε
i X ε

j (xk ) = 0 for all k = 1, . . . , n. Since (δij − X εi fX
ε
j f1+|∇ε f |2
) is symmetric

in i, j it follows that
hε = n∑

k=1 ak
n∑

i,j=1
(
δij −

X ε
i fX ε

j f1 + |∇εf |2
)
X ε
i X ε

j (xk ) = 0. (3.5)

3.3. Boundary gradient estimatesWe say that a set Ω ⊂ G is convex in the Euclidean sense if exp−1(Ω) ⊂ G is convex in the Euclidean space G. In agroup of step two this condition is translation invariant.
Proposition 3.4.
Let G be a Carnot group of step two, Ω ⊂ G a bounded, open, convex (in the Euclidean sense) set and φ ∈ C 2(Ω̄). For
ε > 0 denote by uε ∈ C 2(Ω× (0, T ))∩C 1(Ω̄× (0, T )) the non-negative unique solution of the initial value problem (1.6).
There exists C = C (G, ||φ||C2(Ω̄)) > 0 such that

sup
∂Ω×(0,T ) |∇εuε | ≤ sup

∂Ω×(0,T ) |∇1uε | ≤ C. (3.6)
We start by recalling an immediate consequence of the proof of [8, Theorem 3.3].
Lemma 3.5.
For each ε ≥ 0, if Uε is a bounded subsolution and Vε is a bounded supersolution of (1.6) then Uε(x, t) ≤ Vε(x, t) for
all (x, t) ∈ Q.
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Let uε ∈ C 2(Q) be a solution of (1.6), and express the evolution PDE in non-divergence form
∂tuε = hε = n∑

i,j=1aij (∇εu)X ε
i X ε

j uε . (3.7)
Set vε = uε − φ so that vε solves the homogenous ’boundary’ value problem{

∂tvε = aij (∇εvε +∇εφ)X ε
i X ε

j vε + bε in Q = Ω× (0, T )
vε = 0 on ∂pQ, (3.8)

with bε(x) = aije(∇εvε(x) +∇εφ(x))X ε
i X ε

j φ(x). We define our (weakly) parabolic operator for which the function vε is asolution
Q(v ) = aij (∇εvε +∇εφ)X ε

i X ε
j vε + bε − ∂tv. (3.9)

In the following we construct for each point p0 = (x0, t0) ∈ ∂Ω× (0, T ) a barrier function for Q, vε : i.e.,
Lemma 3.6.
Let G be a Carnot group of step two and Ω ⊂ G convex in the Euclidean sense. For each point p0 = (x0, t0) ∈ ∂Ω×(0, T )
one can construct a positive function w ∈ C 2(Q) such that

Q(w) ≤ 0 in V ∩Q with V a parabolic neighborhood of p0, (3.10)
w(p0) = 0 and w ≥ vε in ∂pV ∩Q.

Proof. In the hypothesis that Ω is convex in the Euclidean sense we have that every x0 ∈ ∂Ω supports a tangenthyperplane P defined by an equation of the form Π(x) = ∑n
i=1 aixi = 0 with Π > 0 in Ω, Π(x0) = 0, and normalizedas ∑d(i)=1,2 a2

i = 1. Following the standard argument (see for instance [35, Chapter 10]) we select the barrier at(x0, t0) ∈ ∂Ω× (0, T ) independent of time with
w = Φ(Π) (3.11)

with Φ solution of Φ′′ + ν(Φ′)2 = 0, (3.12)
in particular Φ(s) = 1

ν log(1 + ks), (3.13)
with k and ν chosen appropriately so that conditions (3.10) will hold. We choose a neighborhood V = O × (0, T ) suchthat P ∩ O ∩ ∂Ω = {x0}. By an appropriate choice of k sufficiently large we can easily obtain wε(p0) = 0 and wε ≥
vε in ∂pV ∩Q.To verify Q(wε) ≤ 0 we begin by observing that w satisfies

Q(w) = Φ′aij (∇εw +∇εφ)X ε
i X ε

j Π + Φ′′(Φ′)2F + bε , (3.14)
with F = aij (∇εw +∇εφ)X ε

i wX ε
j w.We will show:

aij (∇εw +∇εφ)X ε
i X ε

j Π ≤ 0 (Claim 1)
Φ′′(Φ′)2F + bε ≤ 0 (Claim 2)
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in a parabolic neighborhood of p0.The first claim holds with an equality as aij is symmetric and X ε
i X ε

j Π is anti-symmetric in view of Lemma 3.3. Toestablish (Claim 2) we first note that Lemma 3.3 implies
ε22 ≤ max(∑

d(i)=1a
2
i , ε2 ∑

d(k)=1a
2
k ) ≤ |∇εΠ| =

= ∑
d(i)=1

(
ai + ∑

d(k)=2,d(j)=1 c
k
ijakxj

)2 + ε2 ∑
d(k)=2a

2
k ≤ C (G)(1 + ε2),

for some constant C (G) > 0. Consequently, for Φ′ >> 1 sufficiently large one finds
F ≥ |∇εw|2(1 + |∇εw +∇εφ|2)3/2 ≥ C (G) |∇εw|2(1 + |Φ′|2 + |∇εφ|2)3/2 ≥ C (G)ε2 > 0, (3.15)

with C (G) > 0 a constant depending only on G (not always the same along the chain of inequalities). In view of thedefinition of bε and (3.12) with an appropriate choice of ν = ν(G, ε, φ) > 0 and k = k(G,φ) >> 1 in (3.13), we conclude
Φ′′(Φ′)2F + bε ≤

( Φ′′(Φ′)2 + ν
)
F = 0. (3.16)

In view of Lemma 3.5, a comparison with the barrier constructed above yields that
0 ≤ vε(x, t)

distσ1 (x, x0) ≤ w(x, t)
distσ1 (x, x0) ≤ C (k, ν), (3.17)

in V ∩ Q, with distσ1 (x, x0) being the distance between x and x0 in the Riemannian metric σ1, concluding the proof ofthe boundary gradient estimates.
The proof of Theorem 1.1 now follows immediately from Proposition 3.2 and Proposition 3.4.
Having established uniform global Lipschitz bounds one now notes that equation (3.1) satisfies horizontal coercivityconditions uniformly in ε > 0. Such conditions are among the main hypothesis of the Harnack inequality in [11]. Inthis paper, G. Rea and two of the authors have proved that given a homogenous structure and a Poincaré inequality,then a sub-elliptic analogue of Aronson and Serrin’s Harnack inequality [3] for quasilinear parabolic equations holds.As a consequence one obtains for some α ∈ (0, 1) that the solutions uε to (1.6) satisfy C 1,α Hölder estimates, uniformin ε ∈ (0, 1).
Definition 3.7.Let 0 < α < 1, Q ⊂ Rn+1 and u be defined on Q. We say that u ∈ C α

ε,X (Q) if there exists a positive constant M suchthat for every (x, t), (x0, t0) ∈ Q
|u(x, t)− u(x0, t0)| ≤ Md̃αε ((x, t), (x0, t0)). (3.18)

We put
||u||Cαε,X (Q) = sup(x,t)6=(x0,t0)

|u(x, t)− u(x0, t0)|
d̃αε ((x, t), (x0, t0)) + sup

Q
|u|.

Iterating this definition, if k ≥ 1 we say that u ∈ C k,α
ε,X (Q) if for all i = 1, . . . , m Xiu ∈ C k−1,α

ε,X (Q), where we have set
C 0,α
ε,X (Q) = C α

ε,X (Q).
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Corollary 3.8.
(Interior C 1,α

X estimates) In the hypothesis of the previous results, letting K be a compact set K ⊂⊂ Q, there exist
constants α ∈ (0, 1) and C = C (K, α) > 0 such that for all i = 1, . . . , n one has that v = X ε

i u satisfies

||v ||Cαε,X (K ) + ||∇εv ||L2(K ) ≤ C,
uniformly in ε ∈ (0, 1).
4. Regularity properties in the C k,α spacesIn this section we will prove uniform estimates for solution of (1.3) in the C k,α

ε,X Hölder spaces. This is accomplished byusing the uniform Gaussian bounds established in Section 2.2 to develop new uniform Schauder estimates for solutionsof second order sub-elliptic differential equations in non divergence form
Lεu ≡ ∂tu−

n∑
i,j=1a

ε
ij (x, t)X ε

i X ε
j u = 0

in a cylinder Q = Ω × (0, T ) that are stable as ε → 0 As usual we will make use of the associated linear, constantcoefficient frozen operator:
Lε,(x0,t0)u ≡ ∂tu−

n∑
i,j=1a

ε
ij (x0, t0)X ε

i X ε
j u,

where (x0, t0) ∈ Q.As a direct consequence of the definition of fundamental solution one has the following representation formula
Lemma 4.1.
Let w be a smooth solution to Lεw = f in Q ⊂. For every φ ∈ C∞0 (Q),

(wφ)(x, t) = ∫
Q

Γε(x0,t0)((x, t), (y, τ))(Lε,(x0,t0) − Lε)(w φ)(y, τ)dydτ+ (4.1)
+ ∫

Q
Γε(x0,t0)((x, t), (y, τ))(fφ + wLεφ + 2 n∑

i,j=1a
ε
ij (y, τ)X ε

i wX ε
j φ
)(y, τ)dydτ,

where we have denoted by Γε(x0 ,t0) the heat kernel for of Lε,(x0,t0).
We explicitly note that for ε > 0 fixed the operator Lε,(x0,t0) is uniformly parabolic. Its heat kernel can be studied throughstandard singular integrals theory in the corresponding Riemannian balls. Hence, as noted in [29, Chapter 4], one isallowed to differentiate twice the kernels defined in (4.1) with respect to any right or left invariant vector field.
Proposition 4.2.
Let 0 < α < 1 and w be a smooth solution of Lεw = f ∈ C α

ε.X (Q) in the cylinder Q. Let K be a compact sets such
that K ⊂⊂ Q, set 2δ = d0(K, ∂pQ) and denote by Kδ the δ−tubular neighborhood of K . Assume that there exists a
constant C > 0 such that for every ε ∈ (0, 1)

||aεij ||Cαε,X (Kδ ) ≤ C.
There exists a constant C1 > 0 depending on δ , α , C and the constants in Proposition 2.2 such that

||w||C2,α
ε,X (K ) ≤ C1 (||f ||Cαε,X (Kδ ) + ||w||C1,α

ε,X (Kδ )
)
.

269
Brought to you by | Worcester Polytechnic Institute

Authenticated
Download Date | 2/28/18 8:51 PM



L. Capogna, G. Citti, M. Manfredini

Proof. The proof follows the outline of the standard case, as in [29, Theorem 4, Chapter 3], and rests cru-cially on the Gaussian estimates proved in Proposition 2.2, and the fact that the functions (Lε,(x0,t0) − Lε) (w φ), and(
fφ + wLεφ + 2aεijX ε

i wX ε
j φ
) are Hölder continuous.Choose a parabolic sphere7 Bε,δ ⊂⊂ K where δ > 0 will be fixed later and a cut-off function φ ∈ C∞0 (Rn+1) identically 1on Bε,δ/2 and compactly supported in Bε,δ . This clearly implies that for some constant C > 0 depending only on G and σ0,

|∇εφ| ≤ Cδ−1, |Lεφ| ≤ Cδ−2, in Q. Next, invoking (4.1) one has that for every multi-index I = (i1, i2) ∈ {1, . . . , m}2and for every (x0, t0) ∈ Bε,δ
X ε
i1X ε

i2 (wφ)(x0, t0) =∫
Q
X ε
i1X ε

i2Γε(x0 ,t0)(·, (y, τ))|(x0 ,t0) (Lε,(x0,t0) − Lε) (w φ)(y, τ)dydτ+ (4.2)
+ ∫

Q
X ε
i1X ε

i2Γε(x0,t0)(·, (y, τ))
fφ + wLεφ + 2 n∑

i,j=1a
ε
ijX ε

i wX ε
j φ

 (y, τ)dydτ.
The uniform Hölder continuity of aεij , with Proposition 2.2 and Lemma 2.5 yield

|X ε
i1X ε

i2Γε(x,t)((x, t), (y, τ))− X ε
i1X ε

i2Γε(x0,t0)((x0, t0), (y, τ))| ≤ C d̃αε ((x, t), (x0, t0)) (τ − t0)−1e− dε (x0 ,y)2
CΛ(τ−t0)

|Bε(0,√τ − t0)| ,
with C > 0 independent of ε. In view of the latter, using basic singular integral properties (see [26, Theorem 6.1]) andproceeding as in [29, Theorem 2, Chapter 4], we obtain
∣∣∣∣∣∣ ∫ X ε

i1X ε
i2Γε(x0 ,t0)(·, (y, τ))(Lε − Lε,(x0 ,t0))(w φ)(y, τ)dydτ∣∣∣∣∣∣

Cαε,X (Bε,δ ) ≤ C1∣∣∣∣∣∣(Lε − Lε,(x0,t0))(w φ)∣∣∣∣∣∣
Cαε,X (Bε,δ ) (4.3)

= C1∑
i,j

∣∣∣∣(aεij (x0, t0)− aεij (·))X ε
j X ε

j (w φ)∣∣∣∣Cαε,X (Bε,δ )
≤ C̃1δα ||aεij ||Cαε,X (Bε,δ )||wφ||C2,α

ε,X (Bε,δ ),

where C1, and C̃1 are stable as ε → 0. Similarly, if φ is fixed, the Hölder norm of the second term in the representationformula (4.2) is bounded by
∣∣∣∣∣∣ ∫ X ε

i1X ε
i2Γε(x0,t0)((x0, t0), (y, τ))(fφ(y, τ) + wLφ(y, τ) + 2aεijX ε

i wX ε
j φ
)
dydτ

∣∣∣∣∣∣
Cαε,X (Bε,δ )

≤ C2
(
||f ||Cαε,X (Kδ ) + C

δ2 ||w||C1,α
ε,X (Kδ )

)
. (4.4)

From (4.2), (4.3) and (4.4) we deduce that
||wφ||C2,α

ε,X (Bδ ) ≤ C̃2 δα ||wφ||C2,α
ε,X (Bδ ) + C2

(
||f ||Cαε,X (Kδ ) + C

δ2 ||w||C1,α
ε,X (Kδ )

)
.

Choosing δ sufficiently small we prove the assertion on the fixed sphere Bε,δ . The conclusion follows from a standardcovering argument.
7 That is a sphere in the group G̃ = G × R in the pseudo-metric d̃ε defined in (2.5).
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The Hölder estimate of the second order derivative of a solution u obtained in the previous lemma, are a direct general-ization of the analogous procedure in the Euclidean setting. In that classical case any derivative v = ∂iu is a solution ofa second order equation, so that the Hölder estimates of the second order derivatives of v provide an estimate of the thirdorder derivatives of the solution u, and so on. As we noted at the beginning of Section 3.1, in our setting the vector fieldsdo not commute, and the gradient of the solution is not a solution of a new second order differential equation, expressedsolely in terms of left invariant vector fields. Even the method of differentiating along right invariant derivatives, as wedid in Section 3.1, does not work here. In fact in this instance we are not evaluating the full Riemannian gradient, butonly the left derivatives belonging in the first layer, which can not be represented in terms of right derivatives lyingin the first layer. These difficulties call for a different technique to establish higher order estimates for solutions. Weobserve that a new representation formula for derivatives of any order can be derived directly from (4.1). Specifically,differentiating the representation formula (4.1) yields
Lemma 4.3.
Let w be a smooth solution to Lεw = f in Q ⊂. For every φ ∈ C∞0 (Q), for any k−tuple (i1, . . . , ik ) ∈ {1, . . . , m}k ,

X ε
i1 · · ·X ε

ik (wφ)(x, t) = ∫
Q

Γε(x0 ,t0)((x, t), (y, τ))(aεij − aεij (x0, t0))X ε
i1 · · ·X ε

ikX
ε
i X ε

j (w φ)(y, τ)dydτ
+ ∫

Q
Γε(x0,t0)((x, t), (y, τ))B(w φ)(y, τ)dydτ

+ ∫
Q

Γε(x0,t0)((x, t), (y, τ))X ε
i1 · · ·X ε

ik

(
fφ(y, τ) + wLεφ(y, τ) + 2 n∑

i,j=1a
ε
ijX ε

i wX ε
j φ
)
dydτ,

where B is a differential operator of order k + 1, depending on horizontal derivatives of aεij of order at most k , such that

X ε
i1 · · ·X ε

ik

(
Lε,(x0 ,t0) − Lε) = n∑

i,j=1
(
aεij − aεij (x0, t0))X ε

i1 · · ·X ε
ikX

ε
i X ε

j + B.

Consequently, applying to this representation formula the same procedure as in Lemma 4.2 we obtain
Proposition 4.4.
Let w be a smooth solution of Lεw = f on Q. Let K be a compact sets such that K ⊂⊂ Q, set 2δ = d0(K, ∂pQ) and
denote by Kδ the δ−tubular neighborhood of K .Assume that there exists a constant C > 0 such that

||aεij ||Ck,αε,X (Kδ ) ≤ C,
for any ε ∈ (0, 1). There exists a constant C1 > 0 depending on α , C , δ , and the constants in Proposition 2.2, but
independent of ε, such that

||w||Ck+2,α
ε,X (K ) ≤ C1 (||f ||Ck,αε,X (Kδ ) + ||w||Ck+1,α

ε,X (Kδ )
)
.

Proof of Theorem 1.3. We will prove by induction that for every k ∈ N and for every compact set K ⊂⊂ Q thereexists a positive constant C such that
||uε ||Ck,αε,X (K ) ≤ C, (4.5)

for every ε > 0. The assertion is true if k = 2, by Corollary 3.8 and Proposition 4.2. If (4.5) is true for k + 1, thenthe coefficients in (1.3) satisfy aεij ∈ C k,α
ε,X uniformly as ε ∈ (0, 1) and (4.5) thus holds at the level k + 2 by virtue ofProposition 4.4.
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AppendixLet us assume that G is a free nilpotent Lie group, and let G = V 1 ⊕ ...⊕ V r be its associated Lie algebra. Denote by
X1, . . . , Xm a basis of the first layer of the Lie algebra. and by Xm+1, . . . , Xn a list of vectors which complete a basisof the tangent space. If u(x) is an homogeneous polynomial of order p and X is a differential operator of degree q wewill call u(x)X differential operator of degree q− p. If aij = (A)ij is a real valued, constant coefficient, m×m positivedefinite matrix , one can define a Lie algebra automorphism

TA : V 1 → V 1, with TA(Xi) = m∑
j=1 aijXj

for every i = 1, . . . , m and extend it to the whole Lie algebra as a morphism
TA[Xi, Xj ] = [TA(Xi), TA(Xj )] = m∑

h,k=1aihajk [Xh, Xk ].
Note that TA can be represented as a block matrix Ā = A1 ⊕ A2 · · · ⊕ Ar , with A1 = A and where the block Aj act onvectors of degree j , and its coefficients are polynomial of order j of the coefficients of A1. In particular TA(X ) and Xhave the same degree. Via the exponential map TA induces a group automorphism on the whole group

FA : G → G, defined by FA(x) = exp(TA(log(x)).
In terms of exponential coordinates (around the origin)

x = exp( n∑
i=1 viXi)(0) (A1)

one has
FA(x) = exp( n∑

i=1 viTA(Xi))(0) = exp( r∑
s=1

∑
d(i)=d(j)=s vi(As)ijXj )(0),

where d(i) denotes the homogenous degree defined as in (1.1). Since viXi is a zero order homogeneous operator thenalso viTA(Xi) is a differential operator of order zero.
Proposition 4.5.
Let (wi)i=1,...,n denote the canonical coordinates of FA(x) around FB(x), and (vj )j=1,...,n the coordinates of x around 0,
as in (A1). There exists M ∈ N depending only on the group structure; constants c1, . . . , cM depending only on the
group structure; zero-order differential operators Y1, . . . , YM depending only on the group structure, on the coefficients(vj )j=1,...,n and their derivatives along vector fields up to order r − 1 (but independent on A and B), and a constant
C = C (||A||, ||B||, G) > 0 such that

n∑
i=1 wiXi = M∑

l=1 clYl and |cl| ≤ C ||A− B|| for l = 1, . . . ,M. (A2)
Proof. By definition

n∑
j=1 wjXj = n∑

i=1 viTA(Xi) ∗ (− n∑
i=1 viTB(Xi))
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where ∗ is the Baker-Campbell-Hausdorff operation (see for instance [43] and references therein). This formula allowsto represent the left-hand side as a finite8 sum of terms involving commutators (up to order r) of the two terms on theright-hand side. Let us consider separately the terms in this representation starting with those involving no commutators,i.e.
n∑
i=1 viTA(Xi)−

n∑
i=1 viTB(Xi) = r∑

s=1
∑

d(i)=d(j)=s vi
((As)ij − (Bs)ij)Xj .

Clearly this expression is in the same form as (A2). Next we consider the second term in the Baker-Campbell-Hausdorffsum, i.e. that involving commutators of the form
[ n∑
i=1 viTA(Xi),

n∑
h=1 vhTB(Xh)] = r∑

p,s=1
∑

d(i)=d(j)=d(h)=d(k)=s(As)ij (Bp)hk
[
viXj , vhXk

] =
r∑

p,s=1
∑

d(i)=d(j)=d(h)=d(k)=s
12((As)ij (Bp)hk − (Ap)hk (Bs)ij)[viXj , vhXk].

It is evident that the coefficients of the commutators above are Lipschitz functions of A and B, vanishing for A = B, andconsequently the whole sum satisfies (A2). To conclude the proof we note that all further terms of the Baker-Campbell-Hausdorff sum involve operators as in (A2) and zero order operators of the form ∑n
i=1 viTA(Xi) or −∑n

i=1 viTB(Xi). Suchcommutators give rise to differential operators of zero order whose coefficients are polynomials in A and B and vanishwhen A = B.
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