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Abstract

Personal health record (PHR) service is an emerging model for health information

exchange. It allows patients to create, manage, control and share their health infor-

mation with other users as well as healthcare providers. In reality, a PHR service is

likely to be hosted by third-party cloud service providers in order to enhance its in-

teroperability. However, there have been serious privacy concerns about outsourcing

patients’ PHR data to cloud servers, not only because cloud providers are generally

not covered entities under HIPAA, but also due to an increasing number of cloud

data breach incidents happened in recent years.

In this thesis, we propose a privacy-preserving PHR system using attribute-based

encryption (ABE). In this system, patients can encrypt their PHRs and store them

on semi-trusted cloud servers such that servers do not have access to sensitive PHR

contexts. Meanwhile patients maintain full control over access to their PHR files,

by assigning fine-grained, attribute-based access privileges to selected data users,

while different users can have access to different parts of their PHR. Our system

also provides extra features such as populating PHR from professional electronic

health record (EHR) using ABE.

In order to evaluate our proposal, we create a Linux library that implement

primitive of key-policy attribute-based encryption (KP-ABE) algorithms. We also

build a PHR application based on Indivo PCHR system that allow doctors to encrypt

and submit their prescription and diagnostic note to PHR servers using KP-ABE.

We evaluate the performance efficiency of different ABE schemes as well as the

data query time of Indivo PCHR system when PHR data are encrypted under ABE

scheme.
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Chapter 1

Introduction

The term personal health record (PHR) has undergone substantial changes along

with the emergence of cloud computing. In a relatively broad description, put

forward by the Markle Foundation, A PHR is a set of computer-based tools that

allow people to access and coordinate their lifelong health information and make

appropriate parts of it available to those who need it [KJJ+08]. We recognize that

the Markle Foundation description has successfully predicted the evolving of PHR in

the past ten years. Most healthcare information technology vendors and healthcare

providers started their PHR services as a simple storage service, and then turn them

into a complicated social-network like service for patients to share personal health

information with others.

Currently, interest and investment in PHRs are usually motivated by goals of ef-

ficiency, increasing patient empowerment, or improving disease management. How-

ever, patients’ greatest concern about PHRs, as well as other healthcare system,

is security and privacy. The Health Insurance Portability and Accountability Act

(HIPAA) of 1996 outlined the legal protections for PHR privacy and security. But,

it does not address all the issues involved, especially because HIPAA only applies
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to covered entities including health plans, healthcare clearinghouses, and healthcare

providers. Emerging cloud-based PHR service provider like Dossia, Microsoft, and

Google are not covered entities.

Therefore, by introducing cloud computing into PHR service, several important

issues regarding PHR privacy and security need better evaluation. Potentially, PHR

could protect patient privacy and security in ways that are much more secure than

traditional paper-based patient records, since it can provide additional security fea-

ture such as password protecting and audit tracking. However, by outsourcing PHR

into a cloud server, patients lose physical control to their own healthcare data. PHRs

residing on a cloud server are subject to more malicious insider and outsider attacks

than paper-based records, which exist in only a small number of physically accessi-

ble locations. Hence, we argue extra steps must be taken to provide strong privacy

assurance other than directly placing those sensitive data under the control of cloud

servers. One straightforward solution is encrypting sensitive data before outsourc-

ing it into cloud server. However, applying traditional cryptography scheme on a

PHR system present a major barrier to access and share PHR. PHR system users

need to deal with complicated key management problem to achieve fine-grained ac-

cess control when their PHRs are encrypted using symmetric key cryptography or

asymmetric key cryptography [LYRL10].

1.1 Research Goals

In this thesis, the fundamental goal is to propose and implement a practical design

to achieve fine-grained data access control of PHR data in a semi-trusted cloud com-

puting environments. We demonstrate PHR privacy issue can be partially solved by

reducing it to the underlying cryptographic and key management problem. Relying
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on the novel one-to-many cryptography scheme, such as attribute-based encryption

(ABE), we wish to construct a PHR architecture that aims to meet the following

desiderata:

End-to-end Encryption. In a cloud computing paradigm, we tend to assume

the physical servers of cloud-based systems to be semi-trusted comparing to

centralized servers behind the firewall, in that they are subjected to more

malicious inside, or outside attacks, than the later one. As a result, our

approach is designed to secure PHR records from the point of origin (PHR

data owner) all the way to the recipient (PHR data user) in an encrypted

format.

Patient-Centric. In our system, patients should have full control of their medi-

cal records and can effectively share their health data with a wide range of

users. In a cryptography sense, that means patients shall generate their own

decryption keys and distribute them to their authorized users.

Collusion-Resistant. In our setting, PHR data can be accessed by multiple users,

such as healthcare provider, health insurer, family member etc. Hence, we

cannot neglect the possibility that these users may intentionally or uninten-

tionally collude together to gain access to part of PHR data they do not have

right to access separately. For that reason, in our design, the PHR data should

remain confidential under such a circumstance.

Revocation and Delegation. A PHR system is highly dynamic. Much like a so-

cial network, patients can terminate their relation with certain PHR data user,

such as a health insurer, indefinitely. In other word, patients should always

retain the right to revoke access privileges and its corresponding decryption

key when they fell necessary. Nevertheless, data users may have the need
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to grant temporally part of their access right to other parties. For example,

a health insurer might only allow its accounting department to access part

of customers’ PHR data. As a result, we should also provide a delegation

mechanism in our construction.

In this research, we will focus on the design and implement of a PHR system

using proper cryptographic scheme. To validate our architecture, we also evaluate

the applicability and efficiency of our construction.

1.2 Related Works

Several PHR systems have been proposed or implemented to enable access control

on PHR. We classify them into two categories according to their different access

control mechanisms.

Authentication-Based PHR system

Some PHR systems choose an attribute-based access control (ABAC) scheme or

a role-based access control (RBAC) scheme to manage users’ access right. This

type of system usually places full trust on the cloud server where the PHRs reside

in. A typical example of authentication-based PHR system is Indivo X platform

[ASZ+10]. Indivo is an open-source open standard personally controlled health

record (PCHR) system that enables patients to own and manage their health records.

Indivo provides patients the ability to share their records with different physicians,

hospitals and clinics while maintaining access control properties on the patients’

health records. Access control decisions are made by the Indivo server according to

institutional policies and patient specified policies.
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Cryptography-Based PHR system

Other PHR systems use cryptographically enforced access control scheme. This type

of system usually allows patients to encrypt their PHR data and distribute corre-

sponding decryption key to authorized user. A typical example of cryptography-

based system is iHealthEMR [ALG+]. It implements a self-protecting electronic

medical records (EMRs) using attribute-based encryption. In that system, patient

can encrypt each node in the XML-based EMR file with an automatic generated

access policy before exporting it to cloud system. PHR users’ access rights are de-

fined by the attributes within their private key. However, it does not solve practical

problems such as key revocation and key delegation. Nevertheless, the actual im-

plementation is limited since the encrypted XML file contains malformed metadata

and, therefore, cannot be accepted by the third party cloud service such as Google

Health.

In our research, we demonstrate that authentication-based system can adopt our

crypto-based PHR architecture by adding proper cryptographic operation into the

authentication process. Therefore, our techniques can be designed to augment a

authentication-based system, providing finer-grained protections and access control

without the requirement of a honest cloud server. For cryptography-based PHR

system, we demonstrate that attribute-based encryption (ABE) is more suitable to

achieve patient-centric and fine-grained access control. We also extend other people’s

work by implementing a prototype security PHR application based on ABE. To

facilitate our implementation, we have built a Linux library to support key-policy

attribute-based encryption (KP-ABE) scheme.
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1.3 Research Outline

We first give a comprehensive overview of PHR system. Next, we examine one

particular PHR system, Indivo X platform, which our implementation is based upon.

We focus on the Indivo API which is meant to help health care providers develop

modules and specialized applications that leverage the platform services.

In chapter 3, we discuss in detail of one-to-many cryptography schemes such as

ABE. We shall see that ABE is quite practical and compare well to other cryptog-

raphy scheme when addressing PHR related issue.

In chapter 4, we will present our PHR system model, our KP-ABE library and

our Indivo PHR application. In order to validate the practicality of applying ABE

PHR system, we evaluate the timing consumption of ABE operation and data query

time of our Indivo PHR application.

Finally, in chapter 5, we will discuss the open problems and future work.

This thesis is intended to be self-contained. It is hoped that this work will be a

useful guide to implementing cryptography based PHR system to researchers who

have little experience with cryptosystems. Therefore, we also take sometime to ex-

plain bilinear maps and secret sharing in chapter 2 to so reader can understand better

about attribute-based encryption (ABE) without referring to any other sources.

We are currently in the process of publishing our implementation source code.

More explanation about the algorithms and feature can be obtained by directly

emailing the author at zhengyao@wpi.edu
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Chapter 2

Personal Health Record Systems

Technologies such as PHR play an essential role during digital transformation of

healthcare [KPB06]. In stimulus bill, president Obama envisions “the utilization

of a certified electronic personal health record for each person in the United States

by 2014.” However, to realize the potential value of PHR and PHR, significant

improvements are needed in the areas of privacy, security, and interoperability.

In this Chapter, we would like to outline the value of PHR and PHR system and

give formal definitions of PHR and PHR system. We further characterize PHR and

PHR system according to their attributes.

We provide a short discussion of PHR system and cloud computing. We will

see a PHR system becomes more valuable when it connects to more healthcare

information systems. That makes a PHR system more suitable for cloud-based

deployment.

We study the privacy and security aspects of PHR system. Unique privacy issues

arise in relation to PHR systems offered by third parties, including some emerging

cloud-based service that warehouse and mine personal health data for secondary

uses.
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The Indivo project is perhaps the most famous inversion of the current approach

to PHR, in that the record resides with the patients and the patients grant permis-

sions to institutions, clinicians, researchers, and other users of medical information.

Nevertheless, the Indivo X API, built to public standards, enable us to quickly create

and integrate our cryptographic implementation into patients’ online records.

2.1 PHR and PHR System Description

The definition of PHR is heterogeneous and evolving. One of the challenges in

delineating PHR research is finding a consistent description of what PHR actually

entails. Markle Foundation defines PHR as a set of computer-based tools that

allow people to access and coordinate their lifelong health information and make

appropriate parts of it available to those who need it. In some concepts, the PHR

includes the patients’ interface to a healthcare providers’ electronic health record

(EHR). In others, PHR are any consumer/patient-managed health record.

Note that people tend to define new concepts in the context of existing technolo-

gies. we can give another definitions of PHRs and PHR system by referring to the

terms “electronic health record (EHR)” and “electronic health record systems (EHR

system)” which have been adopted by the standards development organization HL7.

The term “PHR” refers to the collection of information about and individual’s health

and health care, stored in electronic format. The term “PHR system” refers to the

addition of computerized tools that help an individual understand and manage the

information contained in a PHR.

A better description of PHR and PHR systems can be established by character-

izing them according to their attributes. A 2005 report 1 from National Committee

1National Committee on Vital and Health Statistics, Personal Health Records and Personal
Health Record Systems (Washington, DC: U.S. Department of Health and Human Services, Febru-

8



on Vital and Health Statistic (NCVHS) outlines the attributes about PHR and PHR

systems:

Scope and Nature of Content. All PHR systems have consumer health infor-

mation, personal health journals, information about benefits and/or providers.

Some PHR system have clinical information (such as lab reports).

Source of Information. PHR data may come from the patient, caregiver, health-

care provider, payer, etc. Some PHRs are populated with data from EHRs.

Features and Functions. PHR systems offer a wide variety of features, includ-

ing the ability to view personal health data, exchange secure messages with

providers, schedule appointments, renew prescriptions and enter personal health

data; decision support (such as medication interaction alerts or reminders

about needed preventive services); the ability to transfer data to or from an

electronic health record; and the ability to track and manage health plan ben-

efits and services.

Custodian of the Record. The PHR record may be operated by a number of

parties, including the consumer or patient, and independent third party, a

healthcare provider, an insurance company or an employer.

Data Storage. Data may be stored in a variety of locations, including an Internet-

accessible database, a provider’s EHR, the consumer/patient’s home com-

puter, a portable device such as a smart card or thumb drive, or a privately

maintained database.

Party Controlling Access to the Data. While consumers or patients always have

access to their own data, they do not always determine who else may access

ary 2006), p. 15; available at www.ncvhs.hhs.gov/0602nhiirpt.pdf.
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it. For example, PHRs that are “views” into a provider’s EHR follow the ac-

cess rules set up by the provider. In some cases, consumers do have exclusive

control.

From these attributes, we may compare a PHR system to a hub and spoke

model. It aggregates data from multiple source (insurance companies, hospitals,

PBMs, labs, and the patient) into centralized, patient-controlled data repositories.

It is also responsible for making the record available to authorized users.

Figure 2.1: Hub and Spoke Model of PHR system

2.2 PHR System and Cloud Computing

There are four emerging PHR system. Based on the primary source of data for

the PHR, they are defined as provider-tethered, payer-tethered, third-party/free

standing, and interoperable PHR system. All of them can be derived from the

hub and spoke model above [KJJ+08]. For example, a provider-tethered or a pay-
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tethered PHR system can be considered in the hub and spoke model with just one

thick spoke (provider-tethered PHR system are tied to a healthcare organizations

internal record system; payer-tethered systems are tied to a given payers system).

A third-party/free standing PHR system can be considered in the hub and spoke

model without any spoke (consumers act as relays in third-party/free standing PHR

system to aggregate data from different, unconnected sources). An interoperable

PHR system can be considered as a full version of hub and spoke model.

According to the hub and spoke model, interoperability represents a key compo-

nent of PHR system. If a PHR system cannot exchange data with other healthcare

systems, PHR will become isolated from other healthcare information, with limited

access and transient value [KJJ+08]. Therefore, the minimal requirements of a PHR

system are being capable of exporting data to and importing data from other sys-

tems in a standardized way. More advanced PHR system in the future will function

as seamlessly integrated, interoperable subsystem of other health systems [LSW10].

In order to build a PHR system with high interoperability, we need to assess the

limitation of the standard we intend to use in a PHR system. The healthcare indus-

try has developed several standards through which healthcare data can be trans-

ferred among different information systems. These standards include and are not

limited to health language seven (HL7), health insurance portability and account-

ability (HIPAA), electronic data interchange (EDI) X12 Version 4010, continuity

of care record (CCR) and continuity of care document (CCD), etc. Current PHR

systems usually support multiple healthcare information standards, which make it

possible for PHR systems to interoperate with other systems by providing standard-

ized interface between different healthcare systems.

A PHR system can be built upon various types of infrastructure, such as, per-

sonal computer, portable device, Internet, etc. Among them, cloud based deploy-
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ment offers significant advantages over others underlying infrastructure .Deploying

a PHR system under cloud environment maximize the possibility for PHR system to

interoperate with other systems throughout the entire health information environ-

ment. From a technical perspective, cloud-based PHR systems offer new possibility,

such as ubiquitously accessible to the nomadic user, elastic computation resource

for data mining service, easily development and deployment of new applications,

high-degree of fault tolerance, etc., all without the concern of capacity and location

of the actual infrastructure [Kau09].

GoogleHealth, Microsoft HealthVault and Dossia solutions are the first steps in

the direction of building PHR systems in a cloud environment. However, beside

the security and privacy concern we will address later, the other major issue that

prevents putting their solution into commercial use is the inability to upload patient

health record directly from healthcare provider. Right now, patients need to obtain

their electronic medical records (EMR), which is the main source of information

that feed the PHR, from their healthcare provider before manually importing them

into the PHR system. Often, it takes several weeks before patients can access their

medical records from their healthcare providers, therefore, limiting the usage of

PHR system. However, such PHR adoption related issue can be solved based on the

nature of cloud computing. In fact, GoogleHealth does offer interface with localized

EMR database, even though the adoption rate among healthcare providers is fairly

low due to the concern about extra training.

2.3 Privacy and Security of PHR System

Like nearly every type of electronic healthcare applications, patients’ greatest con-

cern about PHR system is security and privacy. A new national consumer survey
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for the California HealthCare Foundation shows that seventy-five percent of people

choose not to use PHR system because they are very concerned about the privacy

and security of their personal health information. Sadly, embracing cloud-based

PHR system architecture seems to aggravate such problem. This is not surprising,

given a number of recent highly publicized personally identifiable electronic informa-

tion thefts target cloud-based service. When designing a cloud-based PHR system,

the following issues regarding privacy and security need better evaluation.

Who Is In Control

By adopting cloud-based PHR systems, patients face a dilemma. On one hand,

they entrust their healthcare data to cloud service providers such as Google and

Microsoft. On the other hand, according to HIPPA, cloud service providers are not

“covered entities”, therefore, not obligated to ensure the confidentiality and proper

access to consumers’ PHR. As a result, there is a natural conflict between cloud

service providers’ legal responsibility and their legal obligations when they maintain

patients’ PHRs. For that reason, we define the underlying infrastructure (physical

server in particular) of cloud-based PHR system to be semi-trusted. Any protocol

it follows should be secure in an honest but curious (HBC) sense. So that, were

any malicious outside or inside attack happen, PHR systems shall not reveal any

privacy information within the HBC setting. And PHR systems shall not be held

responsible for any privacy information leakage beyond the HBC setting. In this

setting, patients claim full control over their PHR by only revealing non sensitive

information to PHR systems.

Traditional authentication-based PHR systems protect patient’s privacy by en-

crypting PHR. However, it is usually the systems themself that handling the de-

cryption keys. Not only it is not secure in an HBC setting, it is also difficult to
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achieve fine-grained access control. Password management systems, such as Last-

Pass, address this problem by not processing a user’s master decryption key. While

their solution is intriguing, PHR databases are far more complex than a password

database, therefore, require more advance cryptography technology.

How To Be In Control

Referring to the definition of PHR, it seem clear that patients should have exclusive

control over sharing and accessing the information in their PHR. However, the actual

situation might be complicated. Usually, PHR data come from various source,

including healthcare provider, payer, caregiver, etc. Even though these data become

part of patients’ personal properties the minute they are merge into patient’s PHR,

the sharing and accessing policy made by the original data provider can still be

valuable in order to maintain the interoperability of PHR system. Consider the

following case. A hospital exports patients’ emergency medical informations to

the PHR system. The original sharing policy made by the hospital is allowing

all emergency medical technician (EMT) to access it during emergency situation.

However, if patients do not have the original policy as reference, they might create

a policy not allowing any EMT to access these emergency medical informations.

This new policy practically diminishes the value of emergency information. Ideally,

a PHR system should inherit the sharing policy made by the data source while

allowing patients to modify it according to their need.

Another issue that worth mentioning is the veracity of the patients’ PHR in-

formation. Data aggregated within the PHR system are the property of patients.

They are certainly allowed to annotate, hide any document in the record. However,

for those documents that are not originally created by the patient, such as doctor

prescription, actions like these might be considered as healthcare fraud. In this case,
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personal control should not extended as far as document content. In other words,

PHR system must provide healthcare providers with an accurate and trustworthy

view into the patient’s health data.

Clearly, critical tradeoffs exist between privacy, security and usability. The tighter

you grip, the more accessibility you lose. That is also the main reason why most

authentication-based PHR systems are reluctant to adopt stronger privacy and se-

curity measures.

2.4 Case study: Indivo

Among all existing PHR systems, The Indivo project, developed by Children’s Hos-

pital, in Boston, is the most successful example. Micky Tripathi, President and

CEO of the Massachusetts eHealth Collaborative, noted that “Indivo is the most

thoughtful and firmly grounded PHR project in the country, bar none.” Currently,

Indivo is actively deployed as the backbone of various commercial PHR system, in

particular Boston Children’s Hospital and the Dossia Consortium. Indivo is also the

underline platform of our implementation. For that reason, we would like to briefly

describe the key features of Indivo.

The original Indivo project, namely personal internetworked notary and guardian

(PING), was initiated in 2005 [SMK05]. It means to build an open-source, public

standard platform that enables patients to assemble, maintain and manage their

personally controlled health records [KPB06] (PCHRs, a PCHR usually refer to the

subset of personal health records which are populated from professional data such

as EMR). Right from Indivo 1.0 release, it was designed as a distributed, cloud-

based, online system which provides an open application programming interface

(API) for connecting to user specific personal health applications (PHAs). The key
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components in Indivo include the Indivo API, encrypted storage and staging server

[MSCA07]. In the latest release, Indivo X, the project team significantly enriches and

stabilizes the Indivo API. As a result, like most useful Web APIs, such as Amazon S3,

Facebook, Indivo now become a platform with feature-level substitutability which

enables developer to quickly design and integrate novel feature into the base system

[ASZ+10].

Indivo API

The Indivo X application programming interface (API), built to support feature-

level substitutability, is the contract between the PCHR platform and the end-

user applications [ASZ+10]. The need for deep customization is inherent to the

PCHR concept. Patients have different needs for their PCHR experiences. For

example, a patient with diabetes usually prefers application tailored to highlight

glucose measurement rather than generic laboratory application. Therefore, instead

of an expansive and complex interface to suit each patient’s need, Indivo X API

provides a minimal, focused feature set based on real-world requirement. These

feature are based on the experience gain from each real-world deployment, including

a patient survey engine, a genomic messaging system, and a patient-social-network

integration [ASZ+10] (this feature is crucial to our implementation since it provides

each application with its own storage via the Indivo API). With this extensive

customizability, patients can easily customize the feature to meet their need.

In Indivo X 1.1, the API converged on approximately 80 simple calls including ad-

ministration, data reports, sharing, messaging, data entry and versioning [ASZ+10].

Comparing to previous Indivo API, a lot of useful features are now included in the

API. For example, during our implementation, we used to depend on a particular

PHA, called “subscription agent” to identify patient’s EMR and convert it into CCR
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XML file. Now the functions of “subscription agent” are included in the Indivo X

API.

The Indivo API abides by the REST design pattern. Any PHAs, which wish to

communicate with Indivo platform, make HTTP calls to the Indivo API endpoint

using the REST convention. This call is then authenticated using Oauth protocol.

Data storage and Data model

Inside Indivo, the PCHRs are stored on a separate backend server in a encrypted

format. The server provides XML REST services for authorized PHAs. Unlike

Microsoft Health Vault and Google Health, all data within Indivo are stored in XML

documents, including core Indivo schemas, supported standard, etc. Further, each

PCHR in the system is fractured into loosely-related data packets to mask the size of

patients’ record [SMK05]. When there is a request, for example, “Allergy Report”,

from the PHAs, the server will pull the basic information, such as data of onset out

from related documents. This information then will be filled into a template XML

file to provide one aggregated XML report. Therefore, in this report, each individual

allergy includes only basic fields, with a reference to individual documents which

contain more detail.

Indivo uses PostgreSQL relation database for robust data storage. In order to

maximize system performance, it uses database level encryption to achieve data

security. This does not protect against someone who has access to the data (such

as the server itself). Even though it can achieve tighter security by applying col-

umn level encryption or table level encryption, it is still not the desired way to

enforce patient-centric, fine-grain access control. First of all, the decrypted data

and the decryption keys are present on the server for a brief time while they are

being decrypted and communicated between the clients and servers. This presents
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a brief moment where the data and keys can be intercepted by semi-trusted servers.

Therefore, it is not secure in HBC setting. Nevertheless, column level encryption

or table level encryption usually use symmetric keys encryption (such as AES 256)

to directly encrypt the data. Then it use certificates and/or asymmetric keys to

protect the symmetric keys. However, current SQL server can only generate asym-

metric key through traditional public cryptography schemes (such as RSA 1024). In

this setting, If authenticated by patients, A PHA will have privilege to access all of

their PHRs. Nevertheless, patients have to management multiple asymmetric key

pairs in order to achieve fine-grain access control.

Beside the Indivo API and Indivo backend storage server, the Indivo team also

developed an Indivo staging server. The staging server essentially provides the ront-

end UI and web frame [ASZ+10]. Using the Indivo X API and the staging server,

developers can quickly prototype a new research quality PHA, focused on a small

feature set. It is equally possible to create a PHA without the staging server, though

the work required is more challenging.
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Chapter 3

Attribute-Based Encryption

Our proposed PHR system is build upon the attribute-based encryption (ABE)

scheme. The concept of ABE was introduced along with another cryptography

called fuzzy identity-based encryption (FIBE) [SW05] by Sahai and Waters. Both

schemes are based on bilinear maps (pairing). Since the main goal in FIBE is

error tolerance, it only supports access structure in the shape of a threshold gate.

ABE, on the other hand, support every linear secert sharing (LSSS) realizable access

structure.

Therefore, we can best understand ABE by first introducing bilinear maps and

LSSS. Knowledge of finite fields and elliptic curves is required to better explain

the actual implementation of cyclic groups in bilinear maps. However, a extensive

investigation of these two area is beyond the scope of this thesis. Nevertheless,

thank to the contribution of Ben Lynn. [Lyn07], we can implement a attributes-

based encryption scheme without learning much about elliptic curves or number

theory.

We discuss two ABE scheme, namely key-policy attribute-based encryption (KP-

ABE) [GPSW06] and ciphertext-policy attribute-based encryption (CP-ABE) [BSW07].

19



The essential difference between this two schemes is whether the system use at-

tributes to describe the encrypted data or the user’s private key. Generally speaking,

CP-ABE is conceptually closer to RBAC, while KP-ABE is more closer to ABAC.

3.1 Bilinear Maps

There are several definitions of bilinear maps, or pairings, in a cryptography paradigm.

The differences between the expressions of these definitions are subtle. Yet, the

differences between the underline cryptography meaning of these definitions are sig-

nificant. Generally speaking, bilinear maps associates pairs of elements from two

algebra group to to yield an element of a third algebra group that is linear in each

of its arguments. According to Ben Lynn [Lyn07], the essential property of bilin-

ear maps is that they give cyclic groups additional properties. We outline three

definitions of bilinear maps in order of restrictiveness.

Symmetric Pairing

Definition 3.1.1. Let G, GT be cyclic group of prime order p. Let g be a generator

of G. A symmetric bilinear pairing or symmetric bilinear map e is an efficiently

computable function

e : G×G→ GT

such that

(i) (Nondegeneracy) e(g, g) 6= 1

(ii) (Bilinearity) e(g, g)ab = e(g, g)ab for all a, b ∈ Z

The symmetric pairing is the original and simplest definition of bilinear maps.

It shows some important properties of bilinear maps. For example, the decisional
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Diffie-Hellman problem is easy to solve in bilinear maps, since z = xy if and only if

e(g, gz) = e(gx, gy). However, beside certain suitable supersingular elliptic curves,

symmetric pairing can not be instantiated from most of ordinary elliptic curves.

Asymmetric Pairing

Definition 3.1.2. Let G1, G2, GT be cyclic group of prime order p. Assume the

CDH is hard inG1. Let φ : G2 → G1 be an efficiently computable group isomorphism

Let g2 be a generator of G2. Set g1 = φ(g2) (so g1 generates G1). A bilinear pairing

or bilinear map e is an efficiently computable function

e : G1 ×G2 → GT

such that

(i) (Nondegeneracy) e(g1, g2) 6= 1

(ii) (Bilinearity) e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Z

The asymmetric pairing looses the definition of symmetric pairing in order to use

a wider range of ordinary elliptic curves. However, there is a problem with hashing

in this definition. It is no known how to hash a string to an element of G2 such

that its discrete log to some fixed base is known. As a result, this definition can

complicate the design for some cryptography systems.

The General Bilinear Pairing

Definition 3.1.3. Let G1, GT be cyclic group of prime order p. Let G2 be a group

where each element has order dividing r. In particular G2 is not necessarily cyclic.

A bilinear pairing or bilinear map e is an efficiently computable function

e : G1 ×G2 → GT
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such that

(i) (Nondegeneracy) e(g1, g2) 6= 1GT
for all g2 ∈ G2 if and only if g1 = 1G1 , and

e(g1, g2) 6= 1GT
for all g1 ∈ G1 if and only if g2 = 1G2 .

(ii) (Bilinearity) for all g1 ∈ G1 and g2 ∈ G2 and e(ga1 , g
b
2) = e(g1, g2)ab for all

a, b ∈ Z

The general bilinear pairing is the most flexibility. It solve the hash problem

by reduce G2 to be not necessarily cyclic. However, in this setting, the hardness

assumption must be changed. Based on different scheme, we have to assume certain

problems are hard in both groups. For example, we can assume that given g1, g
x
1 ∈

G1 and g2 ∈ G2, there is no efficient algorithm to compute gx2 .

Cryptography Implementation

A cryptography system usually choose the most general definition first, which allow

maximize choice for the pairing during implementation. Then one may have to pick

the extra assumption if a more restrictive definition is required. Note that the more

restrictive the definition is, the less pairing families one can choose. In practical

terms, G, or G1 and G2 are always groups of points on an elliptic curve, and GT is

always a subgroup of multiplicative group of a finite field.

3.2 Linear Secret-Sharing Scheme

The idea of linear secret-sharing scheme (LSSS) and monotone span programs was

discussed by Amos Beimel [Bei96]. In a LSSS, dealer holds a secret and distributes

the shares of the secret to parties. Parties can reconstruct the secret from a linear

combination of the shares of any authorized set. A famous example of LSSS is
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the Shamir t-out-of-n threshold scheme. In that scheme, the hardness of secret

reconstruction depends on the hardness of polynomial reconstruction. We briefly

reiterate some of the definitions from Beimel’s work to formally define a LSSS.

Definition 3.2.1. [Access Structure]: Let {P1, ..., Pn} be the set of parties. A

collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ C and B ⊆ C implies C ∈ A.

An access structure is a monotone collection 1 A of non-empty subsets of {P1, ..., Pn}

(that is, A ⊆ 2{P1,...,Pn}\{∅}). The set in A are called the authorized sets, and the

sets not in A are called the unauthorized sets.

Definition 3.2.2. [Secret Sharing]: Let S be a finite domain of secrets. A secret-

sharing scheme realizing an access structure A is a scheme in which the input of

the dealer is a secret s ∈ S such that the following two requirements hold:

Reconstruction requirement The secret s can be reconstructed by any authorized

set. That is, for any set 2 G ∈ A(G = {i1, ..., i|G|}), there exists a reconstruction

function hG : Si1 × ... × Si|G| → S such that for every secret s, and every random

input r,

If Π(s, r) = 〈s1, s2, ..., sn〉 then hG(si1 , ..., si|G|) = s

Security requirement Every unauthorized set of parties cannot reveal any partial

information about the secret. Which means: for any set B /∈ A, for every two

secrets a1, a2 ∈ S, and for every vector of possible pieces {si}i∈B:

Pr[
∧
Pi∈B

Πi(a1, r) = si] = Pr[
∧
Pi∈B

Πi(a2, r) = si]

Definition 3.2.3. [Linear Secret Sharing Schemes(LSSS)]: Let K be a finite

field, and Π be a secret sharing scheme with domain of secrets S ∈ K realizing an

access structure A. We say that Π is a linear secret sharing scheme over K if:

1The monotone property of access structure is easy to understand. Because if A is a access
structure, the superset of A should also be a access structure.

2if the secret sharing scheme require {G : |G| ≥ t} (n is the number of parties in the access
structure), it is called a t-out-of-n threshold secret sharing scheme.
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(i) The piece of each party is a vector over K. That is, for every i there exists a

constant di such that the piece of Pi is taken from Kdi . We denote by Πi,j(s, r)

the j-th coordinate in the piece of Pi (where s ∈ S is a secret and r ∈ R is the

dealer’s random input).

(ii) For every authorized set, the reconstruction function of the secret from the

pieces is linear. That is for every G ∈ A there exist constants {αi,j : Pi ∈

G, 1 ≤ j ≤ di}, such that for every secret s ∈ S and every choice of random

inputs r ∈ R,

s =
∑
Pi∈G

∑
1≤j≤di

αi,j · Πi,j(s, r)

where the constants and the arithmetic are over the field K. The total size of

the pieces in the scheme is defined as d
∆
=

∑n
i=1 di.

Definition 3.2.4. A secret sharing scheme is linear (linear generation of pieces) if:

(i) The piece of each party is a vector over K.

(ii) During the generation of the pieces, the dealer chooses independent random

variables, denoted r1,...rl, each one distributed uniformly over K. Each coor-

dinate of the piece of every party is a linear combination of r1,...rl, and the

secret s.

Example 3.2.1. [Shamir t-out-of-n threshold scheme ]: Let pm be the size

of the domain of secrets, where pm is a prime-power bigger than n (the number of

parties in the access structure). Let s ∈ Fpm be the secret. The dealer chooses

independently with uniform distribution t − 1 random element in Fpm , which are

denoted by r1,...rt−1. These elements and the secret s define a secret polynomial

p(x)
∆
= rt−1x

t−1 + rt−2x
t−2 + ...+ r1x+ s
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Observe that p(0) = s. The dealer gives the piece p(i) to party Pi (i ∈ Fpm).

This piece is a linear combination of the random inputs and the secret. Now each

set of cardinality at least t can reconstruct p(x) by interpolation. That is, the set

{Pi1 , ..., Pit} holding the pieces {si1 , ..., sit}, can compute the Lagrange interpolation

formula

p(x) =
t∑

j=1

sij
∏

ij∈Sid 6=ij

id − x
id − ij

Where set S = {i1, ..., it}. One can reconstruct the secret by substituting x with 0

in the formula. We define Lagrange coefficient ∆id,S for id and set S.

∆id,S(x) =
∏

ij∈Sid 6=ij

id − x
id − ij

Shamir Threshold Scheme is linear because the secret is a linear combination of

the pieces {si1 , ..., sit}.

3.3 Key-Policy Attribute-Based Encryption

The key-policy attribute-based encryption (KP-ABE) was first introduced in 2006

by Goyal et al. In this cryptography system, ciphertexts are labelled with sets of

attributes. Private keys, on the other hand, are associated with access structures A.

A private key can only decrypt a ciphertext whose attributes set is a authorized set

of the private key’s access structure, that is A(γ) = 1. KP-ABE is a cryptography

system built upon bilinear map and LSSS. Using the knowledge of previous sections,

We can formally describe the construction of this cryptography system.

Define the Access Structure A

In this case, the access structure A represent a tree. Each non-leaf node of the tree

is a kx-out-of-nx threshold gate (a Shamir Threshold Scheme with Fpm = Zp). nx is
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the number of children of node x. kx is the gate’s threshold value. The following

four functions are defined to better explain node relation during construction.

(i) parent(x) return the parent of node x.

(ii) att(x) return attribute associated with node x when it is a leaf node.

(iii) index(x) return the index number of node x among all children of x ’s parent

node.

(iv) child(x,i) 3 return the child of node x with index number equal to i .

Every non-leaf node x is related to its parent by inheriting one secret share of

parent(x).

Choose a Definition of Bilinear Map

KP-ABE uses symmetric bilinear maps (G = 〈g〉 with prime order p), while assum-

ing BDDH to be hard in G.

Construction

KP-ABE Setup Define the attributes universe as U = {1, 2, ..., n}. Associate

each attribute i ∈ U with a number ti chosen uniformly at random in Z∗p. Choose y

uniformly at random in Zp. The public key is

PK = (T1 = gt1 , ..., T1 = gt|U| , Y = e(g, g)y)

The master key is:

MK = (t1, ..., t|U|, y)

3We add this function to the original definitions. This function is only used during our imple-
mentation.
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KP-ABE Encryption (M,γ, PK) Choose a random value s in Zp. Encrypt a

secret message M in GT with a set of attributes γ. The ciphertext is:

E = (γ,E ′ = MY s, {Ei = T si }i∈γ)

KP-ABE Key Generation (A,MK) This algorithm output a private key D

embedded with a access structure A. The access structure A is realized by the

following three steps:

(i) Each non-leaf node is defined as a Shamir Threshold Scheme. Set the degree

of secret polynomial px to be dx = kx − 1.

(ii) For root node r, set pr(0) = y. And randomly choose dr element in Zp to

completely define pr. For any other non-leaf node x, set its secret to be one

secret share of its parent node, that is px(0) = pparent(x)(index(x)). And

randomly choose dx element in Zp to completely define px.

(iii) For each leaf node x, assign the following value

Dx = g
px(0)
tatt(x)

Let X be the set of leaf nodes in A. The private key is

D = (A, ∀x ∈ X : Dx = g
px(0)
tatt(x) )

KP-ABE Decryption (E,D) The decryption algorithm is realized by the fol-

lowing three steps:

(i) For each non-leaf node x, all nodes z are children of x. Let Sx be an arbitrary

kx-sized set of child nodes z such that DecryptNode(E,D, z) = Fz 6=⊥, if Sx
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does not exists, DecryptNode(E,D, x) = Fx =⊥

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z , where i=index(z)

S′x={index(z):z∈Sx}

=
∏
z∈Sx

(e(g, g)s·pz(0))
∆i,S′x

(0)

=
∏
z∈Sx

(e(g, g)s·pparent(z)(index(z)))
∆i,S′x

(0)

=
∏
z∈Sx

e(g, g)
s·px(i)·∆i,S′x

(0)

= e(g, g)s·px(0)

(ii) For each leaf node x

DecryptNode(E,D, x) =

 e(Dx, Ei) = e(g
q)x(0)

ti , gs·ti) = e(g, g)s·px(0) if i = att(x) ∈ γ

⊥ otherwise

(iii) Apply this recursive algorithm to root node r, DecryptNode(E,D, r) = e(g, g)ys =

Y s. Since E ′ = MY s, the secret message is

M =
E ′

Y s

In previous construction, the size of PK is linear to the size of U . In the original

paper, the authors present another construction which they call large attributes

universe. In that construction, size of PK is only linear to the pre-defined maximum

size of U . The large universe construction is more practical since it does not require

public key and master key update whenever a new attribute is added. We choose

this construction because it is more straightforward to implement. Adopting large

universe construction will be one of the future works in order to make the overall
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system more dynamic.

In KP-ABE scheme, delegation of private keys means converting the original

access structure A into a more strict access structure A′. In the original paper,

the authors present a three-step delegation based on large universe construction.

However, as we will see in the next section, delegating KP-ABE private keys is , by

nature, more difficult compare to CP-ABE private key delegation.

3.4 Ciphertext-Policy Attribute-Based Encryption

The ciphertext-policy attribute-Based encryption (CP-ABE) was proposed approx-

imately one year latter after KP-ABE. Not like KP-ABE, in CP-ABE, access struc-

tures A are built within ciphertexts, while private keys are associated with sets of

attributes γ. We briefly describe CP-ABE construction as follow.

Define the Access Structure A

The access structure A, in CP-ABE, represents a tree. Each non-leaf node of the

tree is a kx-out-of-nx threshold gate. nx is the number of children of node x. kx is

the gate’s threshold value.

Choose a Definition of Bilinear Map

CP-ABE uses symmetric bilinear maps (G = 〈g〉 with prime order p), while assum-

ing BDDH to be hard in G.

Construction

CP-ABE Setup Choose two variable α, β uniformly at random in Zp. The public

key is

29



PK = (g, h = gβ, f = g1/β, e(g, g)α)

The master key is:

MK = (β, gα)

CP-ABE Encryption (M,A, PK) This algorithm output a ciphertext C em-

bedded with a access structure A. A is realized by the following three steps:

(i) Each non-leaf node is defined as a Shamir Threshold Scheme. Set the degree

of secret polynomial px to be dx = kx − 1.

(ii) For root node r, choose a random value s in Zp. Set pr(0) = s. And randomly

choose dr element in Zp to completely define pr. For any other non-leaf node

x, set its secret to be one secret share of its parent node, that is px(0) =

pparent(x)(index(x)). And randomly choose dx element in Zp to completely

define px.

(iii) define a hash function H : {0, 1}∗ → G which is modeled as a random oracle.

For each leaf node x, assign the following value

Ex = gpx(0), E ′x = H(att(x))px(0)

Let X be the set of leaf nodes in A. Encrypt a secret message M in GT with the a

access structure A. The ciphertext is

E = (A, Ẽ = Me(g, g)αs, Ė = hs,∀x ∈ X : Ex = gpx(0), E ′x = H(att(x))px(0))

CP-ABE Key Generation (γ,MK) This algorithm will associate a set of at-

tribute γ with a private key. Choose a random value r in Zp. Associate each

attribute i ∈ γ with a random number ri ∈ Zp The private key is:

D = (Ḋ = g(α+r)/β,∀i ∈ γ : Di = gr ·H(i)ri , D′i = gri)
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CP-ABE Decryption (E,D) The decryption algorithm is realized by the fol-

lowing three steps:

(i) For each non-leaf node x. All nodes z are children of x. Let Sx be an arbitrary

kx-sized set of child nodes z such that DecryptNode(E,D, z) = Fz 6=⊥, if Sx

does not exists, DecryptNode(E,D, x) = Fx =⊥

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z , where i=index(z)

S′x={index(z):z∈Sx}

=
∏
z∈Sx

(e(g, g)s·pz(0))
∆i,S′x

(0)

=
∏
z∈Sx

(e(g, g)s·pparent(z)(index(z)))
∆i,S′x

(0)

=
∏
z∈Sx

e(g, g)
s·px(i)·∆i,S′x

(0)

= e(g, g)s·px(0)

(ii) For each leaf node x

DecryptNode(E,D, x) =


e(Di,Ex)
e(D′i,E

′
x)

= e(gr·H(i)ri ,gpx(0))

e(gri ,H(i)px(0))
= e(g, g)rpx(0) if i = att(x) ∈ γ

⊥ otherwise

(iii) Apply this recursive algorithm to root node r, DecryptNode(E,D, r) = e(g, g)rpr(0) =

e(g, g)rs. Therefore

M =
Ẽ

(e(Ė, Ḋ)/e(g, g)rs)
=

Ẽ

(e(hs, g(α+r)/β)/e(g, g)rs)

In CP-ABE scheme, delegation of private keys means subtracting attribute from

original attributes set γ to create a new more strict attributes set γ′. In the original

paper, the delegation algorithm is accomplished by taking on unnecessary attributes
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from the original key and re-randomizing remaining attributes with new random

numbers. This is much simpler than KP-ABE delegation. However, CP-ABE is

more computational expensive than KP-ABE. That is because CP-ABE performs

one more bilinear mapping for each leaf node than KP-ABE.
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Chapter 4

ABE-based PHR System

We use ABE as a building block of our proposed privacy-preserving PHR system.

That is because ABE not only offers fine-grained access control similar to RBAC

or ABAC, but also enforces data protection against semi-trusted server. However,

several important issues arise when we try to create a PHR system based on ABE.

Firstly, a PHR file may be operated by multiple users who the data owner may not

know. It is hard to find a proper attributes universe U which can distinctly define

each user. Improper attributes universe also complicates the access structure A.

Secondly, A trusted authority (TA) must be employed to protect the master key

and generate private keys for the system users. Therefore, in this new scenario,

there might be potential communication overhead related to key management (such

as update and revocation). Thirdly, the only HBC secure encryption protocol for

database, like PostgreSQL or MySQL, is client-side encryption (CSE). However,

completely encrypting PHR file before submitting to the server will cripple certain

features of PHR system, such as generating XML report in Indivo system. We

propose a privacy-preserving PHR system model based on ABE. In order to justify

our proposal, we create a Linux library (libcelia) and a toolkit (kpabe) implementing
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primitive KP-ABE. We also build an Indivo PHA which integrates the ABE-based

security scheme into Indivo system. The performance of proposed model is being

evaluated in two steps: First, we measure the time consumption of ABE using our

toolkit and the CP-ABE toolkit created by John Bethencourt. Then, we measure

the actual data query time when data is encrypted with ABE using our Indivo PHA.

4.1 Proposed PHR System Model

Attributes Set and Access Structure

Choosing a proper attributes set is the first step to build a efficient ABE-based

PHR system. In our scheme, we divide the attributes universe U into two different

attributes sets for KP-ABE and CP-ABE. For KP-ABE, we define a date-based

attributes set using medical-specific attributes, such as surgical profile, medication

profile, cardiac profile, etc. For CP-ABE we define a role-based attribute set using

the role information such as john.doe.family, john.doe.friend and john.doe.physician.

by doing so, we separate the attributes into two domains, namely the public domain

which refers to the intrinsic properties of PHR data, and the personal domain which

refers to the personal identifiable information of the entities in the PHR system.

Nevertheless, we divide patients’ PHR data in to two groups. One is data populated

purely from professional EHR data. The other is data which patients aggregate

themself. The later one can be originated from EHR data while allowing patients to

add personal notations. Or, it can be data that patients create on their own, such

as the daily blood sugar chart.

By separating the attributes into two non overlapping sets, we simplify the access

structure A for both KP-ABE and CP-ABE schemes. For KP-ABE, each access

structure A defines the privilege of individual medical personnel. For example,
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Figure 4.1: Access structures for different medical personnel

nurses may only be granted to access PHR data that labelled as medication profile.

General surgical doctors may be granted to access PHR data that labelled as surgical

profile or medication profile. Cardiac surgeons may be granted to access PHR data

that labelled as surgical profile or medication profile or cardiac profile. Additionally,

each medical personnel is usually “restricted by location”. For example, nurses

can only view the medical records of the patients assigned to the units they are

on. Doctors can only view the medical records of the patients of the hospital they

works. Therefore, the overall access structures for each medical personnel are shown

in Figure 4.1. .

For CP-ABE, each access structure A determines who can access a particular

PHR file. For example, a patient, John Doe, may allow either his family or his

friends to access his weight chart. He may only allow his family to access his blood
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Figure 4.2: CP-ABE Access structure

sugar chart. Nevertheless, sometimes, he may even want to reserve some PHR files

only for his doctor. In CP-ABE, we describe these access policies with role-based

access structures. Patients may also include other attributes into personal domain

to create more complicate access structures. For example, Parents or legal guardians

of children may have privilege to access children’s PHR when they are below certain

age. However, once children reached certain age, for example at the age of eighteen,

they should determine whether or not grant their parents further access to their PHR

[ALG+]. In this case, we can include the data attribute into the attributes universe.

Any private key should have a date attribute that describes the key generation

time. As in Figure 4.5, any PHR file generated before the child’s eighteenth birthday

should require the key generation time to be less than the child’s eighteenth birthday.

While any PHR file generated after the child’s eighteenth birthday should require the

key generation time to be greater than the child’s eighteenth birthday. Therefore,

the new policy essentially revokes the old keys, which make it possible for children

to control their parents’ access rights.
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System Architecture and System Operations

We would like to construct a PHR system that enhances the functionality and

semantic interoperability of PHR data. Therefore, we consider the fact that not

only patients but also healthcare providers will participate in aggregating PHR

data. The overall system architecture is similar to an advanced E-Health Cloud

model [LSW10]. Figure 4.1 illustrates our system architecture and the involved

parties. There are four essential parties in our architecture: patient, health care

provider, trust authority, data user. A patient is the person who own PHR data.

He or she should be able to collect, manage and share his or her PHR data with

other data users. A health care provider is a health professional or hospital which

manages patients’ electronic health records (EHR). Transitionally, patients’ EHR are

managed locally by health care providers. In our system, health care providers can

export patients’ EHR into patients’ PHR repositories to ease the document transfer

process when patients switch health care providers. A trust authority (TA) is usually

an organization expected to be responsible for supervising healthcare information

exchange among healthcare system. The regional health information organization

(RHIO) is a typical TA. Since our system is build upon cryptography scheme, a TA

here should also be responsible for distributing decryption keys to corresponding

medical personnel. A data user is the person who is allowed to view a patient’s

PHR file. It can be a patient’s family member, a patient’s friend, a health insurance

company, etc.

In the proposed PHR system, PHR server stores multiple copies of individual

PHR file. Those copies can be encrypted under different cryptography schemes. The

purpose of this setting is to preserve the veracity of the patients’ PHR information.

Consider the following scenario, Healthcare providers export patients medication

profiles into the PHR server. Later, patients wants to make some annotations to
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Figure 4.3: Proposed PHR System Model. PHR server stores multiple copies of one
PHR file encrypted with different cryptography schemes

those profiles to explain “their side of the story”. If there is only one copy of those

profiles, any annotation made by patients will diminish the value of the original

copies. Instead, we allow the patients to acquire other copies of those profiles from

the healthcare provider. This time, patients are allowed to annotate, encrypt and

share these extra copies. When patients switch to another healthcare provider,

they can certainly share the annotated version with their new healthcare provider.

Meanwhile, the new healthcare provider can refer to the original version to see what

have been added by the patients themself.

The operations of proposed PHR system combine ABE and traditional cryptog-

raphy, allowing patients to share their PHR data. These operations can be classified

into following groups:

(i) System Setup. The TA, for example, a RHIO, invokes the KPABESetup(U)
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Table 4.1: Notation used in Proposed PHR System Model
Term Definition
KPABESetup(U) Generate KP-ABE public key and master key us-

ing attribute universe U
KPABEKeyGen(A,MK) Generate KP-ABE secret key under access struc-

ture A
KPABEEncrypt(γ, PK,m) KP-ABE encrypt m with KP-ABE public key and

attribute set γ
KPABEDecrypt(SK,PK,CT ) KP-ABE decrypt ciphertext CT with KP-ABE se-

cret key ST
CPABESetup() Generate CP-ABE public key and master key
CPABEKeyGen(γ,MK) Generate CP-ABE secret key with attribute set γ
CPABEEncrypt(A, PK,m) CP-ABE encrypt m with CP-ABE public key and

access structure A
CPABEDecrypt(SK,PK,CT ) CP-ABE decrypt ciphertext CT with CP-ABE se-

cret key ST
ASKeyGen(Bio) Generate asymmetric public key and secret key us-

ing biometric informations Bio
ASKeyEncrypt(PK,m) Encrypt m with asymmetric public key PK
ASKeyDecrypt(SK,m) Decrypt m with asymmetric secret key SK

function to generate a KP-ABE public key and master key. Each patient

invokes the CPABESetup() function to generate his or her own CP-ABE public

key and master key.

(ii) ABE Key Distribution. The TA generates KP-ABE private keys using

KPABEKeyGen(A,MK) with different access structures. Medical personnel

obtain their KP-ABE private keys from TA (This should be a mandatory

process similar to personnel registration). Patients generate CP-ABE private

keys using CPABEKeyGen(γ,MK) with different role attributes. Patients then

distribute these CP-ABE private keys to data users they intend to share PHR

data with (This process should be done using a secure method such as emailing

the private keys to data users using SSL).

(iii) PHR Subscription. Patients establish a “subscription” relationship with
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their healthcare providers. In this case, patients are required to physically go

to their healthcare providers and provide proper identifications. The health-

care providers authenticate patients and generate asymmetric key pairs with

ASKeyGen(Bio) using patients’ biometric information. Additionally, patients

may declare which part of EHR they wish to export into PHR server.

(iv) Export EHR into PHR. Healthcare providers identify new data or new

change in EHR that need to be propagated to PHR. Then, healthcare providers

encrypt a copy of these EHR data with KPABEEncrypt(γ, PK,m) and another

copy with ASKeyEncrypt(PK,m). Both copies are exported into patients’ PHR

repositories.

(v) PHR Management patients can populate new PHR data by themself. Or,

they can downloads the biometric asymmetric key encrypted version and de-

crypts it using ASKeyDecrypt(SK,m). In either case, patients are allowed to

alter or annotate the decrypted PHR file. Patients encrypt these PHR data

using CPABEEncrypt(A, PK,m) with access structures as they thinks fit and

submit them to the PHR server.

(vi) Data User Access. Data users are allowed to download those PHR data.

Then, they may try to decrypt it using CPABEDecrypt(SK,PK,CT ). If the

attributes of data users’ CP-ABE private keys satisfy the access structure of

the ciphertext, they can successfully decrypt the PHR file, vise versa.

(vii) Changing Healthcare Provider. When patients change healthcare provider,

the old healthcare provider updates certain attributes of those KP-ABE en-

crypted PHR data to allow new healthcare provider to access patients’ PHR

data using KPABEDecrypt(SK,PK,CT ). Patients may also grant the new

healthcare provider a CP-ABE secret key. The new healthcare provider can
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use this key to view the patients’ altered version to gain a more comprehensive

view of patients’ health situations.

(viii) Revocation In both KP-ABE and CP-ABE scheme, If the master key hold-

ers wish to revoke a user’s secret key, they need first identify the minimal

attributes set that distinguish this user with others while minimizing affected

group. Then, the following steps need to be carried out: (1) Update the corre-

sponding attributes in the public key. (2) Update the corresponding attributes

in the secret keys of all non revoked users. (3) Update the corresponding at-

tributes in the ciphertext. For example, If a TA wishes to revoke a nurse’s

secret key. The TA identifies the unit attribute as the minimal set. That is

because update unit attribute will only affect other nurses in the same unit.

Therefore, the TA updates this attribute using the three steps above to revoke

the nurse’s secret key. Nevertheless, If patients wish to revoke friends’ secret

key. They identifies the friend attribute as the minimal set and update this

component using the three steps above.

(ix) Delegation When data users wish to delegate part of their access rights to

other data users, they eliminates certain attributes within their own secret

keys to generate new secret keys will less attributes. The new secret keys are

then passed on to other users. For example, data users have a secret key with

both physician and friend attribute. They can pass on a new key with only

friend attribute to other data users for access right delegation.

4.2 System Implementation

We prototype our system based on Indivo PCHR system by creating an Indivo

PHA. The basic function of this PHA is helping doctors exporting their diagnostic
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notes to PHR server and viewing diagnostic reports generated by the PHR server.

The security mechanism is enforced by applying a client side ABE to sensitive field

within diagnostic notes before exporting them to the PHR server. Additionally, in

order to support ABE operations, we create a Linux library (libcelia) and a toolkit

(kpabe) implementing primitive KP-ABE.

4.2.1 Overview of the libcelia and kpabe

Library Structure

The Key-Policy Attribute-Based Encryption Library (libcelia) is a subroutine library

implementing KP-ABE scheme. The source code of this library is divided into two

part, core.c (Construction routines) and misc.c (Utility routines).

For this version, the library implements Setup, Encryption, Key Generation, and

Decryption, Policy Generation algorithms. They are the most important parts during

KP-ABE construction. For future release, Key Update and Key Delegation algorithms

will be included since they are needed during PHR end-user application.

By default, the library uses Type A Curves during all pairing operations, since

Type A Curves has the fastest pairing time compare to all other pairing types.

However, using Type A Curves usually results in large group element size. By

changing to Type D Curves in the source code, one can constrains the size of group

element during pairing operation.

Essential Algorithms

The essential algorithms during KP-ABE construction are Policy Generation algo-

rithm (used during Key Generation), and Decryption algorithm.

The Policy Generation algorithm is implemented as a recursive algorithm. First,
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the function parse policy postfix parses the input policy string and fill out the k

(threshold) and attribute element in the kpabe policy t structure. Then, function

fill policy implements the recursive algorithm by first setting the constant value

of root polynomial qr(0) equal to the y element (PBC data type element t) within

kpabe master t structure. Then, it chooses k-1 points on the finite field to completely

define the polynomial. It also computes the constant values of its children node.

Then it recursively invokes itself until current node becomes leaf node. If current

node is leaf node, it computes the secret values Dx instead. Figure 4.4(a) shows the

flow chart of this function.

The Decryption algorithm is implemented as three recursive algorithms. The first

function check sat is used to check whether the attributes of the ciphertext satisfy

the access structure of the private key. It performs a bottom-up search. If there is

a match between the leaf node attribute and a attribute within the ciphertext, the

algorithm marks the satisfiable element in the kpabe policy t structure of that leaf

node. If the number of satisfiable children nodes is larger than the threshold k of

their parent node, the algorithm marks the satisfiable element in the kpabe policy t

structure of the parent node. Therefore, upon finishing this algorithm, all the pos-

sible paths to the root node are marked. The second function pick sat min leaves

is mean to optimize the efficiency and find the path with minimal leaf nodes. It

perform a top-down search by recursively rearranges satisfiable children nodes ac-

cording to how many minimal leaf nodes they have. Finally, the third function dec

computes DecryptNode(E,D, x) from the root node. If a node is leaf node, it de-

crypts the secret values with e(Dx, Ei). Figure 4.4(b) shows the flow chart of these

three functions.
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Figure 4.4: Essential Algorithms of KP-ABE

High level Functions and AES Encryption

The Toolbox (kpabe) is a set of programs implementing the high level functions of

KP-ABE scheme. There are four programs in the toolbox, which are kpabe-setup,

kpabe-keygen, kpabe-enc and kpabe-dec. Each program can be used as a standard

shell command. Since pairing (bilinear mapping) is quite computationally expensive,

we use AES symmetric key encryption to encrypt the actual plaintext and use KP-

ABE to encrypt the symmetric key.

4.2.2 Using libcelia and kpabe

In this section we provide a brief tutorial on libcelia and kpabe. We first describe

the process of building and installing the library, and then give some examples of
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how the library and toolbox are used in practice.

Building the Library and Toolbox

In order to build the library and toolbox, users need to have GNU multi-precision

(GMP) library, pairing-based crypto (PBC) library, the development version of

GNOME library (GLib), cryptogrphy and SSL/TLS toolkit (Openssl) installed

first. The last two libraries usually can be installed directly from Linux distro

repositories. The GNU multi-precision (GMP) library can be downloaded from

http://gmplib.org/ (both 4.3.2 version and 5.0.1 version works). The pairing-

based crypto (PBC) library can be downloaded from http://crypto.stanford.

edu/pbc/download.html. The installation processes are well documented on their

respective websites.

If all required library are installed correctly. Users can start building the Key-

Policy Attribute-Based Encryption Library. Both library and toolbox can be built

with the standard GNU build system commands. Since the toolbox kpabe depends

on the library libcelia. First, users should download, untar, compile, and install the

most recent tarball of libcelia. The simplest way is run the standard GNU build

system commands:

$ ./configure

$ make

$ make install

The “$” denotes your shell prompt.

The build process generates the static library libcelia.a which is be installed

in /usr/local/lib directory.
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After building and installing libcelia, users can build and install kpabe with the

same commands.This time the it should generate four executable files: kpabe-setup,

kpabe-keygen, kpabe-enc and kpabe-dec and corresponding manual files. The exe-

cutable files are installed in /usr/local/bin directory.

Tutorial: Using Toolbox kpabe

Developer can directly include the head file celia.h into their source file to use KP-

ABE subroutine functions. However, for a general user, it is easier to use the toolbox

kpabe for KP-ABE operations. The synopses of these four shell commands are shown

as follow:

(i) kpabe-setup Generate system parameters, a public key, and a master secret

key under a set of attributes (ATTR) for using with kpabe-keygen, kpabe-

enc, and kpabe-dec.

Syntax

kpabe-setup [-h] [-v] [-p FILE] [-m FILE] [-d] ATTR [ATTR ...]

Options

-h, –help print the help message

-v, –version print version information

-p, –output-public-key FILE write public key to FILE

-m, –output-master-key FILE write master secret key to FILE

-d, –deterministic use deterministic “random” numbers (only

for debugging)

(ii) kpabe-enc Encrypt FILE under a set of attributes (ATTR) using public key

PUBLIC KEY. The encrypted file will be written to FILE.kpabe unless the -o

option is used. The original file will be removed.
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Syntax

kpabe-enc [-h] [-v] [-k] [-o FILE] [-d] PUBLIC KEY FILE ATTR [ATTR ...]

Options

-h, –help print the help message

-v, –version print version information

-k, –keep-input-file don’t delete original file

-o, –output FILE write resulting ciphertext to FILE

-d, –deterministic use deterministic “random” numbers (only

for debugging)

(iii) kpabe-keygen Generate a key under the policy POLICY using public key

PUBLIC KEY and master secret key MASTER KEY. Output will be written to

the file priv key unless the -o option is specified. If POLICY is not specified,

the policy will be read from stdin.

Syntax

kpabe-keygen [-h] [-v] [-o FILE] [-d] PUBLIC KEY MASTER KEY [POLICY]

Options

-h, –help print the help message

-v, –version print version information

-o, –output FILE write resulting ciphertext to FILE

-d, –deterministic use deterministic “random” numbers (only

for debugging)

(iv) kpabe-keygen Decrypt FILE using private key PRIVATE KEY and assuming

public key PUBLIC KEY. If the name of FILE is X.kpabe, the decrypted file

will be written as X and FILE will be removed. Otherwise the file FILE will be

decrypted in place. Use of the -o option overrides this behavior.
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Syntax

kpabe-dec [-h] [-v] [-k] [-o FILE] [-d] PUBLIC KEY PRIVATE KEY FILE

Options

-h, –help print the help message

-v, –version print version information

-k, –keep-input-file don’t delete original file

-o, –output FILE write resulting ciphertext to FILE

-d, –deterministic use deterministic “random” numbers (only

for debugging)

The attribute parameter ATTR can be in two forms: non-numerical form and

numerical form. Non-numerical attributes are simply any string of letters, digits,

and underscores beginning with a letter. Numerical attributes are specified as “attr

= N”, where N is a non-negative integer less than 264 and “attr” is another string.

The whitespace around the “=” is optional. One may specify an explicit length of k

bits for the integer by giving “attr = N#k”. Note that any comparisons in a policy

must then specify with the same number of bits. Since kpabe-setup need every

possible attributes to be include in the attributes universe. Numerical attributes

for kpabe-setup are specified as “attr = ” or “attr = #k” with no specific number

“N”.

The policy parameter POLICY is string that concatenates ATTR with key words,

such as “and”, “or”, “of”. Nevertheless, in POLICY, Non-numerical attributes can

be specified as “attr < N”, “attr ≤ N”, “attr > N”, “attr ≥ N” and “attr = N”.

We can better demonstrate these features with the example in Figure 4.2.2. In

this example, the shell backslash “\” represents line continuation. The private key

generated in this example can only decrypt ciphertext whose severe level is less than

4 and being labelled with at least two attributes from medication profile, surgical
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$ kpabe-setup medication profile surgical profile cardiac profile \
>’severe level = ’
$ kpabe-enc pub key PHR.pdf medication profile surgical profile \
>scardiac profile, ’severe level = 3’
$ kpabe-keygen -o doctor priv key pub key master key \
>’severe level < 4 and 2 of (medication profile, surgical profile, cardiac profile)’
$ kpabe-dec pub key doctor priv key PHR.pdf.kpabe

Figure 4.5: Sample usage session of kpabe

profile, and cardiac profile. In this case, this private key is sufficient to decrypt the

encrypted file PHR.pdf.kpabe.

4.2.3 Indivo PHA Implementation

For the purposes of testing our PHR system architecture, we implemented an Indivo

PHA based on the indivo X PCHR system. This python-based PHA allows doctors

to create diagnosis notes and submit them to the patients’ PHR repositories.

If patients wish to authorize their doctor to export diagnostic result to their’

PHR repositories, They can define the sharing groups when authenticate this PHA.

The PHA completes an OAuth authorization process with users’ indivo record id and

other necessary informational content. All members within the sharing groups will

be able to access the patients’ PHR record through this PHA.

The PHA is integrated with ABE functionality to achieve fine-grained access

control. When doctors export their diagnostic results, they can select several at-

tributes to define the diagnostic results, as shown in Figure 4.2.3. The PHA will

encrypt the input text with these attributes using ABE. Then, it fills the encrypted

text to a XML template and submits it to the PHR backend server.

When data users wish to access these diagnostic notes, the PHA will request

a diagnostic summary from the backend server. The backend server generates a
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Figure 4.6: Select attribute to encrypt the diagnostic result

XML report listing all diagnostic reports within patients’ PHR repositories. Data

users can further request to access a specific diagnostic report. The PHA will ask

data users to submit their ABE private key and download the requested diagnostic

report. If the ABE private key can decrypt the corresponding file, the PHA will

show data users the actual content of the report. Otherwise, it will alert the data

users they do not have proper access right.

4.3 System Performance Evaluation

We evaluate the performance of purposed PHR system in two steps: First, we

measure the computation time of ABE using kpabe toolkit, and the cpabe toolkit

created by John Bethencourt. Next, we measure the data query time of our Indivo

PHA in different settings. All measurements are taken on a workstation with 3.4
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Table 4.2: PBC Library Benchmark
Curve
Type

Average Pairing times
(ms)

Base field size (bits) Average Pairing times
(preprocessed) (ms)

A 512 5.58 2.465
D159 159 13.9 10.647
D201 201 19.877 14.808
D224 224 24.198 17.651
E 1024 21.662 21.888
F 160 67.140 67.877
G149 149 40.279 36.792
A1 1024 146.176 37.471

Ghz Pentium duo core 32-bit processor.

4.4 ABE Performance Measurements

Both kpabe and cpabe toolkit use a 160-bit A type elliptic curve group based on the

supersingular curve y2 = x3 + x over a 512-bit finite field without preprocessing.

Since the most time consuming computation in ABE operations is computing bilin-

ear map. We first give a benchmark of PBC library on the test machine (Table 4.2).

Roughly speaking, the overall decryption time is in direct proportion with PBC li-

brary benchmark. Therefore, we can estimate the decryption time when using other

type of elliptic curve groups.

The other two significant operations are exponentiation and randomly selecting

element. In our setting, a exponentiation consume 6.0ms in an elliptic curve group

and 0.56ms in a finite field. Randomly selecting element is accomplished by calling

the random function in general purpose standard library. The random function

generate a random number by reading from the random number generator in the

Linux kernel /dev/urandom. The overall time consumption is 15ms in an elliptic

curve group and 1.5ms in a finite field.
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Figure 4.7: ABE Key Generation Time

In our test, we define the access structure as a simple AND gate. Therefore, there

is no internal node within the access structure. As expected, the Key generation time

of ABE, shown in Figure 4.4, is precisely linear in the number of attributes (in CP-

ABE) or leaf nodes (in KP-ABE). For CP-ABE, the key generation process needs to

select one random element in Zp (a finite field) and perform three exponentiations

in G (an elliptic curve group) for each attribute. For KP-ABE, the process only

needs to select one random element in Zp (during the construction of polynomial

p) and perform one exponentiation in G for each leaf node. Therefore, the key

generation time of KP-ABE is roughly three times faster than the key generation

time of CP-ABE.

For encryption, shown in Figure 4.4, CP-ABE encryption algorithm needs to

to select one random element in Zp (during the construction of polynomial p) and
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Figure 4.8: ABE Encryption Time

perform two exponentiations in G (an elliptic curve group) for each attribute. While,

KP-ABE encryption algorithm only needs to perform two exponentiations in G (an

elliptic curve group) for each attribute and select only one random element in Zp

for all attributes. Therefore, the encryption time of KP-ABE is still roughly three

times faster than the encryption time of CP-ABE.

As for Decryption, the most expensive computation is bilinear mapping which

CP-ABE does twice and KP-ABE only does once for each leaf node. Therefore,

the decryption time of KP-ABE is roughly twice faster than the decryption time of

CP-ABE, as shown in Figure 4.4.

Though, KP-ABE is more computationally efficient than CP-ABE in all three

aspects, There are two noticeable disadvantages when using KP-ABE, First of all,

the sizes of public key and master key grow linearly with the number of attributes in
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Figure 4.9: ABE Decryption Time

the universe. This could cause communication overhead for the system, especially

when system frequently requires users to update their public key. Figure 4.4 show

relation between the sizes of public key and mater key and attributes in the universe.

Noticing that a Numerical attribute is represent by up to 64 distinct attributes in

our algorithm. The actual KP-ABE attributes universe of a PHR system can be

fairly large. However, we can better constrain key size by using large universe

construction of KP-ABE.

Second of all, as in Figure 4.4, during setup phase, KP-ABE requires significantly

longer time to generate public key and master key than CP-ABE when attributes

universe increases. That is because KP-ABE setup process needs to select one

random element in Zp (a finite field) and perform one exponentiations in G (an

elliptic curve group) for each attribute. The CP-ABE setup time, on the other

54



0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

number of attributes

k
e
y
 s

iz
e
 (

b
y
te

)

 

 

KP−ABE Public Key

KP−ABE Master Key

Figure 4.10: KP-ABE Key Size

hand, remains constant (approximately 60 ms), since it does not perform additional

operations when attributes universe increases.

4.5 Indivo PHA Data Query Measurements

In order to better evaluate the performance of a crypto-based PHR system. We

measure the data query time of Indivo system using our PHA. The testing sce-

nario is loosely based on TPC-B, involving five SELECT, UPDATE, and INSERT

commands per transaction. The data involved is encrypted and decrypted using

the symmetric key encryption and decryption functions provided by the pgcrypto

module in PostgreSQL. The symmetric key is randomly generate by our PHA and

encrypted using ABE. For example, the SELECT and UPDATE commands is exe-
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Figure 4.11: KP-ABE Key Size

cuted as follow:

UPDATE pgbench accounts SET abalance = pgp sym encrypt(’secret’, :psw,

’compress-algo=1, cipher-algo=aes256’) WHERE aid = :aid;

SELECT pgp sym decrypt(abalance, :psw, ’compress-algo=1, cipher-algo=aes256’)

FROM pgbench accounts WHERE aid = :aid;

Where the “psw” is the decrypted password from a ABE ciphertext. We test

the transaction script under different circumstances. First, we test it under different

database size. As shown in Figure 4.5, the actual database size (number of rows) is

equal to 100000 ∗ scale factor. In Figure 4.5, the data query time is almost linear

to the number of attributes. The size of the database has negligible effect to the
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Figure 4.12: Data Query Time with Different Database Sizes

final data query time. That is because the time consumption of ABE operation

dominates the overall data query time. Compare to ABE operation, a normal TPC-

B transaction usually takes less than 1.6 ms on our test machine.

The data query time under multiple data users is somewhat more interesting. In

Figure 4.5. data query time in multiple clients setting is also linear to the number of

attributes. However, not like in single client setting. if we enlarge the figure, shown

in Figure 4.13(b), we can see the number of clients does affect the overall data query

time. Imaging a PHR system deployed nationally, the number of clients who access

this system simultaneously could raise to hundred of thousands. Such circumstance

can noticeable query time delay for the system.

These measurements give some insight into the effect of ABE operation within

a PHR system. In both cases, the main portion of data query time is consumed by
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Figure 4.13: Data Query Time with Different Number of Clients

cryptography operations. Consider the fact that an average of 1000 tps (transaction

per second) is usually the benchmark of commercial database, we believe further

optimization must be employed to integrate ABE into PHR system.
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Chapter 5

Conclusions and Future Work

In this thesis, we address the security and privacy concerns of cloud-based PHR

system by integrating advanced cryptographic techniques, such as ABE, into PHR

system. We demonstrate that, by using appropriate cryptographic techniques, pa-

tients can protect their valuable healthcare information against partially trustworthy

cloud server. Meanwhile patients gain full control over access to their PHR files, by

assigning fine-grained, attribute-based access privileges to selected data users. We

study the possibility of extending PHR interoperability by importing professional

electronic health record (EHR) into PHR system using ABE.

We briefly reiterate our main original contributions:

(i) We proposed a secure PHR system framework using ABE to realize fine-

grained, patient-centric access control. We manage to simplify the access

structure by dividing users into two domains. We use different ABE scheme

to share PHR data with users from different domains.

(ii) To our best knowledge, we created the first Linux library that implement

primitive of key policy attribute-based encryption (KP-ABE) algorithms.

59



(iii) We implemented an Indivo PHA application that allow doctors to encrypt and

submit their prescription and diagnostic notes using KP-ABE.

(iv) We evaluate the performance efficiency of different ABE schemes as well as

the data query time of Indivo PCHR system when PHR data are encrypted

under ABE scheme

Upon finishing our system design, we realized cryptographic techniques represent

only one pillar in an overall approach to effective and efficient PHR security. Future

work of this project might include:

(i) Enrich ABE library. There are several limitations and shortages in our ABE

library. The time cost of the ABE library significantly reduces the security

benefit. Therefore, we will try to include new ABE construction into our ABE

library to optimize its performance.

(ii) Explore more dynamic and efficient way to illustrate access structures. Cur-

rently, we describe access structures in a static way, which is not suitable for

a dynamic system like PHR. A better description method can further reduce

key management complexity and policy complexity.

(iii) Combine other privacy-enhancing techniques with cryptographic techniques.

Cryptographic techniques is an essential, but not the only one, method to

protect private data against partially trustworthy cloud server. Therefore, we

are trying to find more efficient way to address the security and privacy issue

of PHR systems.
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