Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) Applied to MNIST datasets

A Major Qualifying Project report:
Submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the degree of
Bachelor of Science
By
Jacob Wilusz
Date: August 9 2024

Approved:
Professor George Heineman, Major Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence
of a degree requirement. WPI routinely publishes these reports on its web site without editorial
or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Table of Contents

Abstract
Introduction

Background
Domain Data Sets

Machine Learning

Neural Networks/Supervised Learning

Convolutional Neural Networks
Generative Adversarial Networks (GANSs)
GAN First Attempt
Variational Autoencoders (VAEs)
First VAE structure attempt
Methodology
Using Tensorflow and Keras
Setting up GAN
Setting up VAE
Design
Evaluation
GAN trained on MNIST
GAN trained on EMNIST
VAE trained on MNIST
VAE trained on EMNIST
Conclusions

References

Abstract

Two of the earliest forms of generative machine learning algorithms are Generative
Adversarial Networks (GAN) and Variational Autoencoders (VAE). Despite being developed at
approximately the same time, their functionality and structure are markedly different. This
project aims to compare these two networks when trained on two different datasets and analyze

the differences in their output and runtime in reference to their structure.

Introduction

Generative Artificial Intelligence (Al) is an incredibly volatile subject in the current
technological sphere, with constant debates over its potential uses and whether or not such uses
are ethically or morally correct. Due to technological innovations, multiple different types of
generative Al have been developed, with their own strengths and weaknesses. One of the first
major types of generative Al networks developed was the Generative Adversarial Network, or
GAN, which is used for image generation (Goodfellow et al., 2014). While there have been
numerous different offshoots of GAN models, the core structure of the network remains largely
unchanged. Shortly thereafter, a different type of generative Al network, the Variational
Autoencoder, or VAE, was developed (Bernstein, 2023). It had a similar basic framework to a
GAN, but functioned completely differently from its predecessor. One of the major goals of this
project is to examine both a Generative Adversarial Network and a Variational Autoencoder to
gauge their effectiveness when compared with one another.

To do this, this project aims to focus on two domains of interest well-known in the

Machine Learning (ML) literature. The first dataset of interest is the Modified National Institute

of Standards and Technology dataset, or MNIST dataset (LeCun et al., 1998), which is composed
of images of handwritten digits from zero (0) through nine (9), and developed in 1994 by
National Institute of Standards and Technology (NIST), from which the dataset gets its name.
However, much like the GAN, the MNIST database has seen improvement over time, and the
NIST developed and released an extended dataset in 2017, fittingly called the Extended Modified
National Institute of Standards and Technology dataset, or EMNIST (Cohen et al., 2017). In
addition to the 70,000 images contained in the original dataset, the EMNIST dataset contains
814,255 images including both handwritten letters (in both uppercase and lowercase) as well as
handwritten digits. The other major goal of this project is to train both networks mentioned
above on both datasets to both attempt to replicate the results of earlier studies and to compare

their effectiveness on different datasets.

4 (4) 1(1) 0(0)

7(7) 8 (8) 1(1)

2(2) 7(7) 1(1)

Figure 1 - Examples of images from the MNIST dataset.

The second goal is to demonstrate how to retrain the model using additional data, which
is included in an enhanced EMNIST data set that contains uppercase handwritten letters.
Retraining the models is necessary to include the extra training data included in the EMNIST
dataset, as without it, the models will not be able to parse or generate data outside the original

MNIST dataset. Both GANs and VAEs will be retrained and we will report the results of the

updated models on both the original validation set as well as additional ones. This means you
will validate on the original validation set that contains just digits as well as an enhanced
validation set that also includes uppercase letters. In order to reduce the time to train models, it
was decided to use the EMNIST-balanced subset of the dataset, which only contains 47 unique

letters and digits instead of the full 62, as part of this second effort.

MNIST Dataset EMNIST Dataset
GAN Network GAN on MNIST GAN on EMNIST
VAE Network VAE on MNIST VAE on EMNIST

Table 1: Comparisons for the project

The structure of this project is shown in Table 1. There are four quadrants in this
comparison.

We will report our success in replicating the success rate in applying GANs on the
MNIST handwritten digit set. This is depicted in the upper left quadrant of the figure.

We will report our success in applying Variational Encoders on the same data set, and
compare these results against the GAN. This is depicted in the lower left quadrant of the figure.

We will retrain the GAN by including the additional EMNIST handwritten uppercase
letters. We will report the success in replicating the results on the handwritten validation set that
still only includes handwritten digits. But then we will also report success on this newly retrained
model on a validation set that includes a mix of digits and upper case letters. This is depicted in
the upper right quadrant of the figure.

We will retrain the VAE by including the additional EMNIST handwritten uppercase

letters. We will report the success in replicating the results on the handwritten validation set that

still only includes handwritten digits. But then we will also report success on this newly retrained
model on a validation set that includes a mix of digits and upper case letters. This is depicted in
the lower right quadrant of the figure.

This structured experiment is designed to see the impact on both GANs and VAEs when

retraining models to include additional data.

Background

For this project, we will be using the Neural Network structures of GANs and VAEs, and
the datasets of MNIST and EMNIST. In this section, we will examine each of these components

of the project in detail.

Domain Data Sets

For this project the domain of interest is handwritten digits and letters. One of the most
commonly used data sets is MNIST. This data set contains 60,000 training images of handwritten
numerals, each of which is a 28x28 grayscale image. There are an additional 10,000 images in
the data set used for testing kept separately, resulting in a total of 70,000 images.

In addition, there is also the Extended MNIST dataset, also commonly referred to as the
EMNIST dataset. Developed in 2017, this dataset expands on the original dataset by adding
images of handwritten letters in addition to numbers, including a total of over 800,000 images of
handwritten characters. While the MNIST dataset was, and largely still is used as the basis for
artificial intelligence algorithm training and categorization, the EMNIST dataset not only
expands upon the size of the original MNIST dataset, but also includes new training and testing

data and categories for alphabetical characters in addition to numerals. In addition, the EMNIST

dataset contains multiple formats of data ranging from a copy of the original MNIST dataset to
datasets that include only alphabetical characters, only numerals, and other combinations of

categories.

Machine Learning

Machine Learning, commonly abbreviated as ML, is the general term for studying and
developing programs or algorithms that can improve their precision and output over time, or to
perform tasks without explicit instructions. While Machine Learning and Artificial Intelligence
are generally seen as interchangeable terms, it is more accurate that Al is a subsection of

Machine Learning.

Neural Networks/Supervised Learning

A neural network is a computational structure that appears to mimic some of the internal
structures found in human brains. The goal of the structure is to define an output given inputs. In

the neural network in Figure 2, all information flows in one direction, that is forward.

Input Layer

Hidden Layer

Output Layer

Figure 2: Basic structure of a Neural Network

A supervised learning algorithm constructs a mathematical model of a set of training data
that contains the input data and there is descriptive information about the desired output. Using a
standardized iterative approach, a supervised learning algorithm “learns” a function, f(data;) that
can be used to predict the output given new input data.

To give a human example, given Table 2 below, one can infer the desired output for the
new data input. The training set is contained in the first two rows. Based on this information, one
could infer that the function f(x) = x* and the answer would be 49. However it could also be f(x)

= 6x - 5 and the answer would then be 37.

Input Output
1 1

5 25

7 777

Table 2: Sample Input and Output data for an unknown function, f(x)

Supervised learning algorithms are effective because they consume a very large data set

of input information, for which all outputs are known. When more data is available, the accuracy

of the learned function improves.

Because of this, algorithms can be trained to have a variety of functions, such as
autocomplete functions common in word processor programs or on a cell phone, or image and
text generation programs that have become more widely used in the current era. And as these

networks and their functions improve, their accuracy and precision improve with them. For

instance, older generation generative Al (Cao et al., 2023) pales in comparison to programs like

OpenAl’s ChatGPT.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a feed-forward neural network that learns

features by itself via filter optimization (IBM, 2017). It is currently one of the most used neural

network structures today, thanks in large part due to its ease of application to image classification

and generation tasks thanks to its structure.

10

Input image

BB

Filter

8

o]z]
Output array
n (Output [0][0] = (9%0) + (4%2) + (1%4)
+ (1%1) + (1% 0) + (1¥1) + (2% 0) + (1*1)

=0+8+1+4+1+0+1+0+1
=16

el

Figure 3: Example of a CNN, from IBM, 2017

CNNs, or Convolutional Neural Networks, serve as the basis for many of the early and
some of the more modern Al algorithms. They serve as one of the core concepts of Generative
Adversarial Networks, or GANs, by using filter optimization on the generator’s output and the
discriminator’s judgment criteria. A CNN contains convolution layers, or layers that use the
process of convolution to process inputs into outputs. A convolution is defined by using a
convolution window of specified size to read data, which a filter is then applied to, and then
mapped to an output. The filters can adjust their own values based on the output of the layer,
hence they are critically important for machine learning algorithms as they can improve their
outputs over time.

CNNs are typically divided into three types of layers: a convolution layer, where most

colvolutions performed by the network are done, a pooling layer, which accumulates and

11

compiles the results and values used in the convolution layer, and the fully-connected layer,
which collects and generates the final output of the network. A typical CNN is comprised of
several convolution and pooling layers and one fully-connected layer to produce the output. Part
of what makes CNNs so versatile is their ability to be custom-built and custom-trained for many
different tasks, and it allowed them to become one of the cornerstones of machine learning

networks.

Generative Adversarial Networks (GANs)

A General Adversarial Network, or GAN, is one of the cornerstones of generative Al
networks (Goodfellow et al., 2014). First conceptualized and developed around 2012, a GAN
works by using two neural networks, a generator and a discriminator, and pitting them against
each other, as shown in Figure 4. The generator, which is shown images, text, or data from a

training set, learns to generate new data with the same statistics as the training set.

A £ |
GENERATOR DISCRIMINATOR |-

. CP(I~paaca | ¥)
e = = A P

7 : Dense code and

conditional data are

combined to yield a

prediction
Noise and conditional The dense code is I I Images are
data are combined to ‘Upsampled" via transformed via
create a dense code of deconvolution into convolution into a
the output image Image space N N dense code

Figure 4: A diagram displaying the structure of both networks involved in the GAN.

In most machine learning applications, the goal is to optimize a function, but in GAN the

generator aims to “fool” the discriminator into believing that the generated output is legitimate.

12

Once the generator can consistently create output that the discriminator can classify as
legitimate, the discriminator is removed from the system, and the generator provides its output to
the user. GANs were one of the first major generative Al networks, and while they had mixed
results at their inception, as they have improved and innovated over time their results have

become more and more promising.

GAN First Attempt

TensorFlow (TensorFlow, 2024b) provides functions that are used to train over the data
(and read it) and produces a minimal structure of a final potential model, which is completed by

Keras (Keras Team, 2024a).

28 Layer 1 14 Layer 2 7
% | FilterSize:64 | ~74 |FilterSize:128 | ~7 Layer 3 6272 Layer 4
Input (28 x 28) - . Flatten Dense NN
Con. Window Con. Window Overation Laver
3 Size: 3 D, Size: 3 12 P y

The GAN is set up with two networks - the discriminator and the generator. The
discriminator’s general structure is shown above, with the input of the 28x28 MNIST image fed

into the discriminator, and then going through 4 layers before providing an output.

7 7 Layer 2 4 Layer 3 28 Layer 4
Layer1 Layer1.5) e) . - . 28 x 28
Input (7x7x 7 Dense NN 6272 Reshape 7 Filter Size: 128 14 Filter Size: 256 28 Filter Size: 1 | (28x28)
128) Laver La ; Con. Window Con. Window Con. Window
12 Y Y 121 Size: 4 12| Size: 4 25 Size:7

For the first working setup of the GAN, the discriminator and the generator were set up in

a similar fashion. For the discriminator, a total of four layers were used: two convolutional

layers, a flatten/funnel layer, and a dense NN layer. The way the convolutional layers work is by

using a number of filters of a certain size to scan for features in input, and then adding each

result from the input and the filter into a map or a matrix for the final output. For the first setup,

there were two convolutional layers used, with a total of 64 and 128 filters in the respective

13

layers, and both used a filter size of a 3x3 matrix. The output from those layers was then put into
the flatten/funnel layer, in which reshapes the multi-dimensional output from the two
convolution windows into a one-dimensional array/vector, which is then fed to the final layer, the
dense NN layer. The dense layer processes the input vector produced by the above layers, and
uses it to produce the final output with its own activation function.

For the generator, it is built in a similar fashion, although it could be said that it is built as
the opposite of the discriminator, starting with a dense NN layer, then followed by a reshape
layer and two transposed convolution layers. For the generator, the dense layer processes the
input layer and creates a one-dimensional array/vector, which is then processed by the reshape
layer into a multi-dimensional output as seen in the earlier layers of the discriminator. Then,
these outputs are processed by two transposed convolutional layers, which performs the
functions of the discriminator’s convolutional layers in reverse, by taking the feature map,
funneling through a filter and constructing a possible input. These two layers reshape and resize
the provided multi-dimensional inputs before feeding them to a final standard convolution layer
with one filter, which processes the inputs into a standard 28x28 image comparable to the

MNIST/EMNIST dataset.

Variational Autoencoders (VAEs)

A Variational Autoencoder, or VAE, works by compressing data down to a smaller value
via one encoding algorithm, and then uses another to decompress it to a similar, if not the same,
value as the original.

When using these in generative models, VAEs will essentially create a sort of 2D plane

that contains compressed data points for all the data given in its training set. Then, when the user

14

requests something from that data set, it will pick out one or more points that should,
probabilistically, produce that output, and decompresses the points into the proper output data.

While VAEs and GANs may have similar functionality with generating output, their
methods in generating that output are fundamentally different. A GAN will start with countless
outputs based on the training data, and will slowly filter out and refine them with the help of the
discriminator, whereas a VAE picks a most likely output and builds from around it, expanding its
list of possible outputs.

A VAE works by minimizing any potential loss/miscategorization of inputs and outputs,
or in other words, making sure that the chance it produces the correct data point/output is as

close to 100% as possible.

Figure 5: General encoding process of a VAE

15

Figure 5 outlines the general encoding process of a VAE, of which the goal is to

maximize the chosen probability distribution (in this case, z), with the given parameter theta. The

goal of the encoder is to create a probability distribution such that the chance that the given data

is encoded to specific values is maximized, and the goal of the decoder is to create a similar

distribution such that the chance encoded values are decoded to specific data is maximized. In

other words, the goal of a VAE is to create two parameterized probability distributions in which

loss between the two is minimized.

First VAE structure attempt

For my first attempt at the VAE, I used a simple structure much like the GAN, using only

about four layers for the encoder and decoder networks.

Input (28 x 28)

28
28

Layer 1
Filter Size: 32

Con. Window
Size: 3

32

Layer 2
Filter Size: 64

Con. Window
Size: 3

64

Layer 3
Flatten
Operation

3136

Layer 4
Dense NN
Layer

For the encoder, I had a simple structure composed of four layers: two convolutional

layers, followed by a flatten/funnel layer, and then a dense NN layer to produce the output. For

the first two layers, they contained 32 and 64 3x3 filter matrices respectively, which provided a

multi-dimensional output to be reshaped into a one-dimensional vector by the flatten layer.

Finally, the one-dimensional array was processed by the dense NN layer, providing a basis for

the normalized distribution of encoded data.

Input (7x 7 x

64)

Layer 1
Dense NN
Layer

3136

Layer 1.5
Reshape
Layer

7 Layer 2

7 Filter Size: 128
Con. Window

6 Size: 4

Layer3
Filter Size: 256
Con. Window

Size: 4

28
28

Layer4
Filter Size: 1
Con. Window
Size:7

(28 x 28)

For the decoder, I had a five-layer structure built as the opposite of the encoder, starting

with a dense NN layer to process the encoded data, followed by a reshape layer to transform it

16

into a multi-dimensional output, and followed by three transposed convolutional layers to

process and convert the data into a standardized 28x28 image.

Methodology

Using Tensorflow and Keras

In order to create the networks to be used in this project, there were two major data
packages used, Keras and Tensorflow. The purpose of the Keras data package was to provide the
framework for the layers of the networks, allowing them to actually function as needed for this
project, while the Tensorflow package was used to not only provide the structure for the network,
but also to provide the datasets used in this project, namely through the tf datasets package
(Tensorflow, 2023).

Using both of these data packages allowed for the creation of both a functional GAN and
VAE network, which were built using two online tutorials from the Keras website as a basis.

The GAN’s general structure was based off of a tutorial that involved the generation of
images of faces from a local storage dataset (Keras Team, 2023). This tutorial had to be modified
extensively for it to fit our purposes, mainly in restructuring the code to pull from datasets
provided by the tfds_datasets package. However, its foundation for the GAN it created was
largely unchanged, and thus the final product operated very similarly to the tutorial, and did not
affect the runtime of the model.

For the VAE, the tutorial that was used was originally using the MNIST dataset, so it was

remarkably easy to make minor changes for the code to fit the needs of the project. However,

17

much like the GAN tutorial, the VAE tutorial code had to be modified in order to make use of the

tfds_datasets package, but this did not affect the functionality or runtime of the model.

Setting up GAN

In order to set up the GAN, the first step was to use the original tutorial code and modify
it for our purposes in using it on our datasets. In the tutorial provided by Keras, the GAN was run
on a database in local storage which contained a collection of face images for training and
testing. However, since we would be training and testing on the MNIST/EMNIST datasets from
first Keras, then the tfds datasets packages, it would be necessary to modify the code provided
by the tutorial. After successfully altering and checking the code to ensure it still functioned as
needed, the first task was running the GAN on the MNIST dataset.

GAN and VAE tutorials are written by the same people, but have different styles of coding.

In the first implementation, each epoch required 360 seconds to compute and the results
are not as accurate. When running the GAN, it seemed to work well enough, however, it ended
up taking 3 hours to train, requiring 6 minutes per epoch of training. After comparing it to
examples of GANs and other network types, I adjusted the number of filters for the layers,
changing the numbers from 64 and 128 to 32 and 64, which reduced the training time of the
network drastically, now only needing 6 minutes to train with roughly 30 seconds per epoch of
training.

After realizing that my current method of reading in data from the datasets would not be
effective for reading and training the EMNIST data, I reworked my currently existing code to use

the tfds_datasets package, which includes both MNIST and EMNIST. However, as a result, I also

18

The tutorial code (Keras Team, 2024b) used the MNIST data set and TensorFlow and

needed to rework the way my code functioned for the baseline MNIST to be compatible with my
Keras. The first step was to modify the code to work with EMNIST data set. This was not hard to

do because Keras already supported the MNIST data set. Running the modified code generates a
visual representation of the encoded data for the MNIST digits

new tfds datasets methods and structure.

Setting up VAE

WAVRVRURURURURURS L e o L T N N L S
ARCRCRLRLRIRE R A R R R L L L L L L
P A R R R RRRRRE R R R N o N N
LA R RRLRRRRR Lhbhhhaaaaannnninn
VI3 IRy b b G G G 6 B B B B B BB B BB

FAYYYAANN G h Gk bnn
FUAWVYNANANNDN N Y Gl gy G G O O B O B D BB BB BB
QWYY NN NN Y Iy G O O O O O B BB BB B BB
QDY YOO O T T Y Tyttt Gy O Og O Og O Og Oy DU BU BB B BN D
QYDA of o o o 0y Byt O On On Og 0o 0o 0o Ou Ou DU BB BB DN DD

VAV A o0y i b by Gy Og 0o Oo o Oo Ou Ou B A BV DD
VAV A Al od od 09) b by by By Go 0o Bo B0 Go Be O BB B T X2
VAVl ™ ininintngtototobolole e Prrd
QUUOooOoOoOaMmMmmmnNmmnmmLteFPFT0
QOOOoOQOOoOOOImMMMNMMNINMNnMWwWweErrcErIrc>
QOOOOOOODOMmMMMMMMNMOWww@ewererr>rrcrcrrrro
QOO0 OOmMIN I N NN BN O 6O O 0O e e e e O
QOO0 OMIN W W O @@ W o o o
00000 ONWEWE W W o o o
Q000 QOO WWOWEPEWEWEwewew o o o
Q000 QDD W oo o
(eYoNoNaNaR RiaNTaRTaNTONTANTENTANTANTARTANT ANV A" oV ol ol
(Yoo NoNa N NaRoNToNTINTANTeRTANTANTANT AT oV 4l ol 3
(oYoNoNoNo R o RoRTONTANTANTNTANTANTANTANT ANY oe 3
(eYoNoNoNoXuNoRaNioRTo NI NTeRTaNTANTAN AN ol §
(oFoNoNoRoNoRo s RaNIe NN aNTAN AN AN AN 4
QOO

-1.60.90.90.80.70.70.60.50.40.40.30.20.20.10.00.00.10.20.20.30.40.40.50.60.70.70.80.90.91.0

0.1 (-'al (-'1 "1 "-,

WERELQ Q58 E
WER L 4844488885
MR qqa44449484

g O
0.9 18]
0.9 18]
0.8 48]

0.4 1] "3

19

Z[0]

Figure 6: Visual representation of encoded data

In Figure 6, you can see all ten digits at various locations within the two-dimensional
plane. There is smooth variation as you move between neighboring images, and so in the left
edge of the image looking vertically down the image you can see the digit “0” smoothly
transform into the digit “9”. The grid represents the output of the VAE at unique points in a 2D

plane.

1]

-

0]

Figure 7: Sample spatial distribution of a VAE trained on MNIST.

When working to develop this code for the VAE, I initially had problems with the process
of correlating the textual digit you wanted the VAE to generate with the image output provided
by the algorithm. Since a VAE generates output based on probability rather than discrimination
and categorization like a GAN, it was hard to directly associate the generated images with

categories to pull from.

20

After getting the GAN and the VAE to function correctly for the MNIST dataset, I
attempted testing the trained networks from the MNIST dataset on the EMNIST dataset for
input. However, I encountered two distinct problems: First, the EMNIST dataset contains the
MNIST dataset as a subset, meaning that the categories in MNIST are all present in EMNIST,
but not the other way around. This results in not being able to fully convert categories from
EMNIST to MNIST, and with my first implementation having no ways for the GAN to
distinguish categories, it became very difficult to manage. The second problem was that while
the setups through Keras and TensorFlow allowed trained models to predict their output, the
corresponding input to predict from, particularly the GAN, is difficult to format and properly
feed into the network. As a result, I had a lot of trouble properly formatting and differentiating
the training and testing datasets for both networks.

Another major problem for testing false positives arose from realizing that the function to
generate outputs from the GAN and VAE operated independently from the database they were
trained on, as well as their inability to categorize inputs shown to them. In other words, if a
network was trained on MNIST, then inputting a test image from EMNIST would not affect the
output of the network than if I used a test image from MNIST. And since this is true for the
GANSs and the VAE trained on MNIST, as well as the fact the MNIST dataset is a subset of the
EMNIST dataset, the only possibility for a false positive would be from a VAE trained on
EMNIST. As a result, I started working on training the VAE and GAN on the EMNIST data set.

When initially loading the EMNIST data set, I couldn’t find a dedicated dataset loaded
into Keras to pull from. As a result, I attempted to use the database downloaded from the internet
onto my local storage to use the EMNIST database. However, after running into too many

complications with importing EMNIST from my local storage, I instead turned to using the

21

tensorflow_datasets package, which includes both MNIST and EMNIST. After reformatting my
current code, I was able to successfully run EMNIST, but since EMNIST is markedly larger than
the MNIST dataset, containing over 800,000 images as opposed to MNIST’s 70,000, I
specifically ended up using the “balanced” subset of EMNIST, which contains approximately

131,600 images.

1]

Figure 8: Sample spatial distribution of only the letters in the EMNIST dataset when run through

a VAE.

22

In addition, in order to test the quality of my code and debug it, I included a function to
display only certain digits and characters when plotting a sample distribution, as seen in the

figure below.

5.4

5.2

% ™ 5.0
i L]
0 s ° °
L]
[]
L] .. ®
iy "
° ° 4.8
®
[]
—2 1
4.6
L]
—34 :
-0.5 0.0 0.5 1.0 15 2.0

Z[0]

Figure 9: Values that align with “5” as can be seen on the Y axis.

Design

For the final setup of the networks, I used Keras, Tensorflow, and the tfds datasets
packages to provide the structure of the networks and datasets. As an open-source machine

learning platform, Tensorflow provided the foundation and framework of the two networks that

23

were created, and provided built-in methods for image training and image generation. Once the
foundation and framework were in place, Keras was used to create the individual layers of the
networks and facilitate interaction between the user and network. With the functions and code
provided by the Keras package, each layer of the network could be fully built and trained. Lastly,
the tfds datasets package was used to provide the datasets trained and tested on. While the Keras
package does contain an MNIST dataset that was initially used, for the sake of convenience, the
tfds datasets package was used instead, as it contained both MNIST and EMNIST datasets.

Both the GAN and the VAE were developed with similar structure, having 4-5 layers for
each component of the network with the same window size, filter size, and number of filters.
While the general structure of the network and its layers remained very similar to the original
tutorials, only containing ~5 layers and stacking convolution layers before funneling them into a
dense NN layer, the final structure changed the setup of the filters in both their size and number
per layer.

For the datasets used, both MNIST and EMNIST datasets were accessed using the
tfds datasets package, and the subset of EMNIST used was the EMNIST Balanced subset. For
the MNIST dataset, both networks were trained on 60,000 training images and tested on 10,000
testing images consisting of digits from 0-9, while for the EMNIST dataset, both networks were
trained on 112,800 images and tested on 18,800, including all digits from 0-9 and all letters,
although due to problems in recognition due to similarities between uppercase and lowercase,
both versions of the letters C, [, J, K, L, M, O, P, S, U, V, W, X, Y, and Z have been merged into
one class. Therefore, the EMNIST Balanced dataset contains 47 classes, with 10 digits, 26
uppercase (and merged lowercase) letters, and 11 lowercase letters as separate classes,

specifically a, b, d, e, f, g, h, n, q, r and t (Cohen et al., 2017).

24

Evaluation

To evaluate the effectiveness of these algorithms and the datasets, we will compare them and

their results against each other and previously found results from earlier research.

GAN trained on MNIST

AT Frrar Yo e T80y 10P0e -4 c4D om0
ANV~ LN Y m rA PR -ND VN] N Do
AACAMNMCEDPECNSPRPIrACOMmMANE w2 TAD
A0 PONMDIPAONVANEE =T e =D O NT D
ANV A AN ANTIDNATHAALRICYALPOROC NI
A0 AN Lo oS- MMeAd OO —HhAner 29D
QI T OMESCATreama~~DIarT? AL BNAS o WG
ABEVININAOUNNTCOCAAG ~—AWN Qo yrDATNh~DNR0
ANbrrmYormbh oy m QO vV —2wtw g
Y N Y R N N ol N Rl ¢ A R o T (e [A e - A R N e Nt R
ARFAA DG {00 r=dnioenrryr ot e v
QO0G-AYnhe Tt tuf Mo~ OdTA~A O —D
AVWNSNIOAN VWD L o~ rem A~~~y tXdITwnp
APOD AT YSTreNGCAN T eI mAIVievnead Vo
QA9 T INMAIASOOQAITAd WN~D~<T YD D
AP Or~Ey e ML MO~ =2 QYwd A O
ASNTAOANN PV O IO~ VO YA N eh
Qv -0 -mT A0 rhnbwdmed Qa9 H >
QAP B CVeN eI AIT LN AN Y O CrereT-Apay
Qe ATFrY A AN AT AT O COIWNYS>]Y T
QO+ e-a9 A Y- "MV OIMET OO G O ¥y
AV PEFONTI ORI ryNneswrvrb\rGaanama
QO NNN+A RO R oA Yy Lo~ AL RD O
QAT oo re-ROAT NV~ n T~ DN 0T Ime- L
AA Nl eAaraRd A eraAFrnVdAnrcrAonrnaeadNney
QW erpar~dO0r-Av30 0 ~AnlVA VAT T S0y
AVGC v A 0N+ rtabhd O rPrAAT N ~TW N w0
AR VWC v N roeealr IO FA RV AN DS
ARV VWACAYE Y r N0l Q0meaNd 90T =Yg
333333333232323233323233233323232332332332333232

100
200
300
400
500
600
700
800

800

700

600

500

400

300

200

100

Figure 10: Randomly Generated output from the GAN for MNIST.

25

Figure 10 shows some randomly generated outputs from the GAN. It is worth noting that

at least 2 of every digit between 0 and 9 are visible on this plot.

GAN trained on EMNIST

100

200

300

400

500

600

700

800

OO~ O O~O-O-O-O-O~O-O- OO~ OO OO~ O- OO~~~ O~ O~ O~~~ O~ O
AU ACEAODADADC gl LAZBQr U A O- 620N
AAGOMID ARy AOCONAA~G LT D ARANP D
AODAL LB AFPARAIGIAETRIARL PN~ raABY o~ N
P Ay AONAGEDAR DO OB ANdAd Vv o LT 0D
PPP Ly o ANMA DO A EY AR Twrg K-/ DRI
AOADIAGeRA - NUrBoMYTyvoTlraedDOevK— A0
AL N e D FAMNECLDORDA Y CoM-AD0 N
ANAOALAD+BAGY EQC LA DPVIL A MA SO0/ Tov
~ARFG R~ B~PYrCODTVIALIDIYVIvELEO/
P AELCNEAGg - PRI ~ADIXODIRAW »D~-DA
A AT VR A - A0AC A D -LRYOCACLCONAL LD
AALDGARAOBNY TO OV DIRYVIVRO AN AV—AJ L
bR OCEEODPA~RARD/ ~EWDANS g -y
N ODOEFNMEDD AP DA D IO o Ce-Lr <.
AIABOY YL T KDDL A NS DO ri—
POARA A DLV A ADS/TRD AL~ F~7 D
PRl D~gRPVRIR~~A— ARP VA NAIXCETY
BRI BYTCTRAVAIYVE NI ADDR LADAY 1l
=B L IOAL DL - VO Y AOZIT— A XN
P AN @ 7 - DORPIODALCr Oyt rrD A AX T
AL TrEDBFADDOOA0ATAORANPI e D A0
AV Ar-DCACRALCALNT AAONWPNS S BIAe DA
LA VEEC LA A S AN L AL
COABY ¢ VIOVIPLCN-GNAKIDIC-AB L~ L LV
P NYT ROV 2O ALy CONNMAT Ny D/ Lro-dOD
AR OCLER~LSEDA~ - C S~ ADRK A -50B0
PP CTADYV. B L AN LD LN Lo PRy
AN ONDI(P O/ - TAXL ACA VIR s
I DA QAR ROLYC - Cyvbr Al PO -0

0 100 200 300 400 500 600 700 800

Figure 11: Randomly Generated output from the GAN for EMNIST

26

Note: the EMNIST dataset is set up such that training images are flipped horizontally and rotated

90 degrees counterclockwise. As such, the results output by the GAN presented as they would be

normally seen, would look like this:

800

00

eono

200

00

300

500

ToO

0 T0O 300 300 <00 200 eoo 00 800

FCAADT AV ORT IR TARNANCTCII™ROY-T
FUINDIYADN T DAUAr-QAUW S AR T 0OV DAY
R ASQ YOI ANV DIV r i o gk
ATV ASNEDVRCT N CA-~NDY¥Y L rv3wl
F~AAXADPYECOANSAQAYAQTOMHIYELE YR INTITNTrnd
FOYBENAOCHNAOIRRCONFAVRQGDDCATI - T Ign™S
OV ANCLTUMNO ghNAAAN MY DMNCN T v T
FNORACITUE B Y oVA VAU ORI IO Q
P O~NTIRADICON LI UNCN DI 4N DL ¥
NAYYWRAUASDORODY CMQ AR UIND YN TN
FO—~RRA~RYINT XA FALOT DL - KL
YRATNRREINYIER IR DVOHLDUYMD YA~ 4N

v TN VAR TA AL~ DOIA R Y LN QO -~
FNULDERN DI YA ITAQ D OINLAQAN- U R
FATrRILYUARTTOVY ARSIV~ XD UVN A~
FNOUAYVYBENASZOC DN AADODNARYICTIVNY I~V T
FENIYIYDRYANREIOUTSN YT EXA YO TAVYLAD
EFMNNXYAYRYRACC W~ OB D™-DYQ
FNORE I~ R ARNEOPUNOYNDDFTURA T BN
rOYOVYYIRREYIANTOAUX DAL SA W TOON Lo
YN QA CAS DI~ R UNR e T O I Y I RTCLACSDO VY
FONDOUHAAYSYIERANREANQAZ AL POICNYLYAQ
YN INSNAX JAYYN R A YR A =N EA DU
FrONYNQUYVAXIYWNIVYrDRA ¥YNAQANATEOD
QNN TEOC OXELAQVL Y TR Y~DIXRAQANA
Y FOWONNNYONNVIT YN Y -G — X0V AN
YUY O N ONDIENAN TYJIDOND NSO~ TRy
e rrrrrrrrrrrrrrrrrrrrrr ey

Figure 12: Rotated and Inverted images from Figure 11.

GAN output trained on EMNIST, reformatted. This plot shows several random images generated

from the GAN trained on the EMNIST Balanced dataset.

27

VAE trained on MNIST

SNNNNNNNALNLY YOO QO0
SNNNNNNNN Y YR oo0O0
NNNNNNNNNGLY LYWWV OO00
SN NNNNNN N Y 999900
e R N R R B R RC R
~mmmamannny iy iy Yy aeasd
~—m ettty ya S
——— e ey &
—— e B B B B D B oty oy
——em AN RN M N
—m e NN RAN KRB e @ &
—meANANRNA RO O D
—rrebhhANRREmwonNO D D
NN RRITEEeoND D
NN D
Cal i S S S A S N T T N
C il il S o o L S S S Nl T el
Col ol N o o N . S . T
ol ol ol ol ol ol o ol o . O . S A g
ol -l ol o ol o ol s s s ol ol ol

ol o i Bl Rl Ol ol ol sl s

00000000

slulululululelelels

s 0 0 0 0 0 0 0 2 0 0 O

bl
BBLLLLLOODOOOOOOOOO

@

s UL tcoc:otaoaotaoane
Lttt ooataoaenoooaoaon

-2.01.91.71.61.41.31.21.0:0.90.80.60.50.30.2-0.10.10.20.30.50.60.80.91.01.21.31.41.61.71.92.0

[
7[;{;(;(}[;(;[:(:(:(5

e

3 3

Ll ad 2l Rl 2l 2l il il ol ol s gl |]

Ul ol ol ol o Rl - ol il s gl 3 s

it ol il Sl Sl el el i 33 2 4

oo EdTmMNo @O NMNdAdANMnDE@EOaONMYE @@ g

28

Figure 13: VAE’s normalized distribution on the 2D plane.
Figure 13 shows the outputs of the VAE’s normalized distribution on the 2D plane. As

shown above, all digits in the MNIST database are shown.

1]

Figure 14: VAE’s distribution of digits from VAE on MNIST

This plot shows the distribution of digits generated from the VAE trained on MNIST. The plot of

the digits above is a visual representation of a section of this plot.

29

VAE trained on EMNIST

1.5

1.0+

0.5 1

0.0

= —0.51

—-1.01

1.5

10

Figure 15 VAE’s distribution of digits from VAE on EMNIST

This plot shows the distribution of digits and letters generated from the VAE trained on
EMNIST. When compared to the MNIST plot, the data is much more centrally concentrated,

meaning that the network considers most characters in the dataset to be similar to each other.

m
™
1

& & WD LW W W
S DD WWuWL
A AD0WwLw
SAJAouwuun
B A AsSasnmmmm
PP EEET Galaalan
BRAMASSmMmMmMmmMmmMmm

Pl Lo L L)
noooaaaaeaaaa
PREOOOMOOOOMOMOa0000
:-‘Pﬂﬁﬁﬁmmaﬂ)OOOOOOﬂﬂﬂﬂﬁﬁﬁﬁﬁ??///
NNNOONDUDODDOODOPErEEOPOPREEPEEEEFEFEPPeyery
NNDDDDDDDDOLDODLDDERMER R L |E S [(= F w5
DO DDooooooDppEPEPPEPFFFFEFFEFITIrTITrrT
TN Eaoooooo D prrrrerrererrerrocrorr
oD NooooooNSPDpprrrrrrTToToorrr
e EaENNDoeEeEEEEprrIrrIrFTITTTr
Y Y DD EEEEGDDIGIFIFITFTFTT T T
MmUY uUYeeeoEEEEEESrrrrrrrrer e
TUNOOOQYYYeeEamEmEEEEprrrrrrrer ey
k'R L L L EE LT T I T I I 0 dddd 4444848858
TU VTV VOVOVOV VAR B w7777
T U UV UV UV OV OO A BB oo r P i &
V00D "D D D D D AT AL o o s P S
U0 U U U U T ST S D - = T
-l -l e - T R e e i il il il il < aalW aali g

#

MMM M
LI L L L e laalal
L LI Lt aataalaalasias

BRARMNMMmmmmMmMmMmmMmm

IR L Lttt
SR B NI NI N S R T T T T,

BV WA U UL T TP R T

NN NI N NN U TR TR T
N NN N A A U LR T T T,
R NN N N N N T T T T T

NN N U T T T
NN N N N U T T T

WA A WU L e T D e e e ey
WO W U U U T T T PR e e
WA AN i T TR e e
NN N N N T T T T

-2.01.91.71.61.41.31.21.00.90.80.6-0.50.30.20.10.10.20.30.50.6 0.80.91.01.21.31.4 1.6 1L.71.92.0
Z[0]

Figure 16 Visualization of central cluster from Figure 15.

This plot is a more visual representation of the central cluster shown in the above plot.
However, since the EMNIST dataset is formatted to be rotated 90 degrees and horizontally

inverted, the letters and digits should be more humanly recognizable in the below image:

mmmmmmmm NN BB
mmmmmmmm) NN E S

-

mmmmmmmm o) NN RS

-

mmmmmmmm NN TS

-—

mmmmmmm NN 5
mmmm i i W W N W ,,r 3

A -

VS VR S S SR SR S
2 -h-h L L L

-.]'-

MMM NN VYT
VNN A NN ,j’ }"
MM NV YT
AN A AN NNV T

AN A A A AN AN NNV T

" NN
NN
~

. L

| o 0 [GGGGCCGCERERRRALLEEEEEEbL L
(A GGGCCCEERELLLLLEEEBDREEREDL
(A GGCGCCCECESLLLLLEEEEDEBDEDL L
[A G IGGCEEEBERRR LLLbbbbL
(A CEECEBBEBEERER LLELb6bbLL L
(WU WUGGCCECEEEEEERER LELb66b6bLKLL
f VWU LEECEEEEEREER BLELLLEL LM
MUl L CEEEEEERER BLELLLEBLAKM
mrammiuccllECEEEEERBAR BOELELALAL LN
mmmmuueacllRlEEEEE5BAAAR BELELEEALN
rmsrmvrnrmming rLa_B.R.R.QGGG.._JJl]ﬂﬁ 555666 l‘
mmmmmmeaeRRRRE805000D8 8 BEA A AL
mmmmmmmEeERRRRA000DDDOA EEEEEEN
mmmmmmmmE R o0oo0o0pDA A . EEEEEEN
mmmmmmmmE PN ooo000AaA EEEEEREN
mmmmmmmm o055 0 AR F99990111
mmmmmmmmm R85 5 AR ‘AR REEEN
mmmmmmmmm N NN 85T | ¥ yYyvviriri|
§5 yYyvviritr i/
5 yyvrr /717 1/
5 yyvrrz7/717/
5 yvvvrsz/77/
'] vrvrvrzz777/
'} rvrvzsz777/7
Prrvz7777/7
PPrr7777/7
Frr ;L
Frr s
Frr s ’

rrr, /

e R R R R R R R R R R L L T T T T T L YL T T
e AR R R R R R R R R L LI LI LTI T TN 0.
0EeIVIOIRIEISIOIROB8000COEOSOI.OLI.OL.0€.0C.00.08.02.00. I [€.[$.[0. [N [L. 0.5

MMM
MMM Ene
-
'll\..-'|\.. - -
R SN

L W W,
LY

Figure 17. Rotation and Inversion of Figure 16 for readability.

Conclusions

In regards to the goals of this project, we were able to successfully replicate the

generation of images from a neural network trained on the MNIST dataset, as well as the

[0

32

EMNIST dataset. In comparison to other networks that were examined in the research process
for this project (Goodfellow et al., 2014, Cao et al., 2023), the networks that were built were
comparatively smaller, only comprised of about five layers, whereas the ones used in previous
studies used more filters and layers in their construction. However, it can be argued that the
outputs provided by the networks constructed in this project were comparable to the sample
outputs provided by previous research, specifically the initial results of the GAN developed by
Goodfellow. In addition, it is worth noting that while the VAE’s results when trained on the
MNIST dataset were exceptionally clear, most of the outputs of the VAE trained on EMNIST are
more indiscernible, likely due to the difference in the amount of classifications present in the
EMNIST dataset when compared to the MNIST dataset.

When comparing runtime for both algorithms, it is worth noting that the VAE was
consistently faster in its training than the GAN on both datasets, with the GAN taking 30 to 35
seconds per epoch of training, while the VAE took 25 to 30 seconds per epoch of training. This is
likely because the process of normalization for the encoder and decoder in the VAE is a much
faster mathematical process than the training of the generator and discriminator in the GAN.
Therefore, when compared to the generated results of both models, the GAN appears to perform
better with a larger amount of categories to classify, like the EMNIST dataset despite taking
longer to train, and the VAE appears to perform better on smaller amounts of categories to
classify, namely the MNIST dataset. In addition, it is worth noting that running these models on
my machine locally may have caused an increase in runtime. Since my machine’s storage and
processing power is limited, a more specialized machine may have been able to produce more

efficient run times.

33

For possible future work, it is worth exploring how the number of layers and filters in a
convolutional neural network can affect the quality of their output and their runtime when
training. When first testing the models, a mismatch in the number of filters caused a massive
increase in runtime. Although the training and adjustment of the larger number of filters
increased the runtime of the model, it is worth exploring whether they have a noticeable effect on

the output of the models.

References

Bernstein, M. N. (2023, March 14). Variational autoencoders. Variational Autoencoders -
Matthew N. Bernstein.
https://mbernste.github.io/posts/vae/#:~:text=Introduction,down%20t0%20their%20intrin
sic%?20dimensionality

Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2022). Deep generative modeling: A
comparative review of vaes, Gans, normalizing flows, energy-based and autoregressive
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11),
7327-7347. https://doi.org/10.1109/tpami.2021.3116668

Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023, March 7). A comprehensive
survey of Al-generated content (AIGC): A history of generative Al from gan to chatgpt.
arXiv.org. https://doi.org/10.48550/arXiv.2303.04226

Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017, March 1). EMNIST: An extension of
MNIST to handwritten letters. arXiv.org. https://arxiv.org/abs/1702.05373

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,

& Bengio, Y. (2014). Generative adversarial nets - neurips. NeurIPS Proceedings.

34

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122{61{8f06494c97b1
afccf3-Paper.pdf

LeCun, Y., Cortes, C., & Burges, C. (1998). The mnist database. MNIST handwritten digit
database, Yann LeCun, Corinna Cortes and Chris Burges.
https://yann.lecun.com/exdb/mnist/

MNIST : tensorflow datasets. TensorFlow. (2024a).
https://www.tensorflow.org/datasets/catalog/mnist

Module: TF : tensorflow V2.16.1. TensorFlow. (2024Db).
https://www.tensorflow.org/api_docs/python/tf

Team, K. (2023). Keras documentation: DCGAN to generate face images.
https://keras.io/examples/generative/dcgan_overriding train_step/

Team, K. (2024a). Keras Documentation: Keras 3 API documentation. https://keras.io/api/

Team, K. (2024b). Keras documentation: Variational Autoencoder.
https://keras.io/examples/generative/vae/

Tensorflow datasets. TensorFlow. (2023). https://www.tensorflow.org/datasets/overview

What are convolutional neural networks?. IBM - What are convolutional neural networks?

(2021, October 6). https://www.ibm.com/topics/convolutional-neural-networks

35

