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 Abstract 

 Two of the earliest forms of generative machine learning algorithms are Generative 

 Adversarial Networks (GAN) and Variational Autoencoders (VAE). Despite being developed at 

 approximately the same time, their functionality and structure are markedly different. This 

 project aims to compare these two networks when trained on two different datasets and analyze 

 the differences in their output and runtime in reference to their structure. 

 Introduction 

 Generative Artificial Intelligence (AI) is an incredibly volatile subject in the current 

 technological sphere, with constant debates over its potential uses and whether or not such uses 

 are ethically or morally correct. Due to technological innovations, multiple different types of 

 generative AI have been developed, with their own strengths and weaknesses. One of the first 

 major types of generative AI networks developed was the Generative Adversarial Network, or 

 GAN, which is used for image generation (Goodfellow  et al.  , 2014). While there have been 

 numerous different offshoots of GAN models, the core structure of the network remains largely 

 unchanged. Shortly thereafter, a different type of generative AI network, the Variational 

 Autoencoder, or VAE, was developed (Bernstein, 2023). It had a similar basic framework to a 

 GAN, but functioned completely differently from its predecessor. One of the major goals of this 

 project is to examine both a Generative Adversarial Network and a Variational Autoencoder to 

 gauge their effectiveness when compared with one another. 

 To do this, this project aims to focus on two domains of interest well-known in the 

 Machine Learning (ML) literature. The first dataset of interest is the Modified National Institute 
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 of Standards and Technology dataset, or MNIST dataset (LeCun  et al  ., 1998), which is composed 

 of images of handwritten digits from zero (0) through nine (9), and developed in 1994 by 

 National Institute of Standards and Technology (NIST), from which the dataset gets its name. 

 However, much like the GAN, the MNIST database has seen improvement over time, and the 

 NIST developed and released an extended dataset in 2017, fittingly called the Extended Modified 

 National Institute of Standards and Technology dataset, or EMNIST (Cohen  et al  ., 2017). In 

 addition to the 70,000 images contained in the original dataset, the EMNIST dataset contains 

 814,255 images including both handwritten letters (in both uppercase and lowercase) as well as 

 handwritten digits. The other major goal of this project is to train both networks mentioned 

 above on both datasets to both attempt to replicate the results of earlier studies and to compare 

 their effectiveness on different datasets. 
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 Figure 1  - Examples of images from the MNIST dataset. 

 The second goal is to demonstrate how to retrain the model using additional data, which 

 is included in an enhanced EMNIST data set that contains uppercase handwritten letters. 

 Retraining the models is necessary to include the extra training data included in the EMNIST 

 dataset, as without it, the models will not be able to parse or generate data outside the original 

 MNIST dataset. Both GANs and VAEs will be retrained and we will report the results of the 
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 updated models on both the original validation set as well as additional ones. This means you 

 will validate on the original validation set that contains just digits as well as an enhanced 

 validation set that also includes uppercase letters. In order to reduce the time to train models, it 

 was decided to use the EMNIST-balanced subset of the dataset, which only contains 47 unique 

 letters and digits instead of the full 62, as part of this second effort. 

 MNIST Dataset  EMNIST Dataset 

 GAN Network  GAN on MNIST  GAN on EMNIST 

 VAE Network  VAE on MNIST  VAE on EMNIST 

 Table 1  : Comparisons for the project 

 The structure of this project is shown in  Table 1  .  There are four quadrants in this 

 comparison. 

 We will report our success in replicating the success rate in applying GANs on the 

 MNIST handwritten digit set. This is depicted in the upper left quadrant of the figure. 

 We will report our success in applying Variational Encoders on the same data set, and 

 compare these results against the GAN. This is depicted in the lower left quadrant of the figure. 

 We will retrain the GAN by including the additional EMNIST handwritten uppercase 

 letters. We will report the success in replicating the results on the handwritten validation set that 

 still only includes handwritten digits. But then we will also report success on this newly retrained 

 model on a validation set that includes a mix of digits and upper case letters. This is depicted in 

 the upper right quadrant of the figure. 

 We will retrain the VAE by including the additional EMNIST handwritten uppercase 

 letters. We will report the success in replicating the results on the handwritten validation set that 
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 still only includes handwritten digits. But then we will also report success on this newly retrained 

 model on a validation set that includes a mix of digits and upper case letters. This is depicted in 

 the lower right quadrant of the figure. 

 This structured experiment is designed to see the impact on both GANs and VAEs when 

 retraining models to include additional data. 

 Background 

 For this project, we will be using the Neural Network structures of GANs and VAEs, and 

 the datasets of MNIST and EMNIST. In this section, we will examine each of these components 

 of the project in detail. 

 Domain Data Sets 

 For this project the domain of interest is handwritten digits and letters. One of the most 

 commonly used data sets is MNIST. This data set contains 60,000 training images of handwritten 

 numerals, each of which is a 28x28 grayscale image. There are an additional 10,000 images in 

 the data set used for testing kept separately, resulting in a total of 70,000 images. 

 In addition, there is also the Extended MNIST dataset, also commonly referred to as the 

 EMNIST dataset. Developed in 2017, this dataset expands on the original dataset by adding 

 images of handwritten letters in addition to numbers, including a total of over 800,000 images of 

 handwritten characters. While the MNIST dataset was, and largely still is used as the basis for 

 artificial intelligence algorithm training and categorization, the EMNIST dataset not only 

 expands upon the size of the original MNIST dataset, but also includes new training and testing 

 data and categories for alphabetical characters in addition to numerals. In addition, the EMNIST 
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 dataset contains multiple formats of data ranging from a copy of the original MNIST dataset to 

 datasets that include only alphabetical characters, only numerals, and other combinations of 

 categories. 

 Machine Learning 

 Machine Learning, commonly abbreviated as ML, is the general term for studying and 

 developing programs or algorithms that can improve their precision and output over time, or to 

 perform tasks without explicit instructions. While Machine Learning and Artificial Intelligence 

 are generally seen as interchangeable terms, it is more accurate that AI is a subsection of 

 Machine Learning. 

 Neural Networks  /  Supervised Learning 

 A neural network is a computational structure that appears to mimic some of the internal 

 structures found in human brains. The goal of the structure is to define an output given inputs. In 

 the neural network in  Figure 2  , all information flows  in one direction, that is forward. 
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 Figure 2  : Basic structure of a Neural Network 

 A supervised learning algorithm constructs a mathematical model of a set of training data 

 that contains the input data and there is descriptive information about the desired output. Using a 

 standardized iterative approach, a supervised learning algorithm “learns” a function,  f(data  i  )  that 

 can be used to predict the output given new input data. 

 To give a human example, given  Table 2  below, one  can infer the desired output for the 

 new data input. The training set is contained in the first two rows. Based on this information, one 

 could infer that the function  f(x) = x  2  and the answer  would be 49. However it could also be  f(x) 

 = 6x - 5  and the answer would then be 37. 
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 Input  Output 

 1  1 

 5  25 

 7  ??? 

 Table 2  : Sample Input and Output data for an unknown  function, f(x) 

 Supervised learning algorithms are effective because they consume a very large data set 

 of input information, for which all outputs are known. When more data is available, the accuracy 

 of the learned function improves. 

 Because of this, algorithms can be trained to have a variety of functions, such as 

 autocomplete functions common in word processor programs or on a cell phone, or image and 

 text generation programs that have become more widely used in the current era. And as these 

 networks and their functions improve, their accuracy and precision improve with them. For 

 instance, older generation generative AI (Cao  et al  .,  2023)  pales in comparison to programs like 

 OpenAI’s ChatGPT. 

 Convolutional Neural Networks 

 A Convolutional Neural Network (CNN) is a feed-forward neural network that learns 

 features by itself via filter optimization (IBM, 2017). It is currently one of the most used neural 

 network structures today, thanks in large part due to its ease of application to image classification 

 and generation tasks thanks to its structure. 
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 Figure 3  : Example of a CNN, from IBM, 2017 

 CNNs, or Convolutional Neural Networks, serve as the basis for many of the early and 

 some of the more modern AI algorithms. They serve as one of the core concepts of Generative 

 Adversarial Networks, or GANs, by using filter optimization on the generator’s output and the 

 discriminator’s judgment criteria. A CNN contains convolution layers, or layers that use the 

 process of convolution to process inputs into outputs. A convolution is defined by using a 

 convolution window of specified size to read data, which a filter is then applied to, and then 

 mapped to an output. The filters can adjust their own values based on the output of the layer, 

 hence they are critically important for machine learning algorithms as they can improve their 

 outputs over time. 

 CNNs are typically divided into three types of layers: a convolution layer, where most 

 colvolutions performed by the network are done, a pooling layer, which accumulates and 
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 compiles the results and values used in the convolution layer, and the fully-connected layer, 

 which collects and generates the final output of the network. A typical CNN is comprised of 

 several convolution and pooling layers and one fully-connected layer to produce the output. Part 

 of what makes CNNs so versatile is their ability to be custom-built and custom-trained for many 

 different tasks, and it allowed them to become one of the cornerstones of machine learning 

 networks. 

 Generative Adversarial Networks (GANs) 

 A General Adversarial Network, or GAN, is one of the cornerstones of generative AI 

 networks (Goodfellow  et al  ., 2014). First conceptualized  and developed around 2012, a GAN 

 works by using two neural networks, a generator and a discriminator, and pitting them against 

 each other, as shown in  Figure 4  . The generator, which  is shown images, text, or data from a 

 training set, learns to generate new data with the same statistics as the training set. 

 Figure 4:  A diagram displaying the structure of both  networks involved in the GAN. 

 In most machine learning applications, the goal is to optimize a function, but in GAN the 

 generator aims to “fool” the discriminator into believing that the generated output is legitimate. 
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 Once the generator can consistently create output that the discriminator can classify as 

 legitimate, the discriminator is removed from the system, and the generator provides its output to 

 the user. GANs were one of the first major generative AI networks, and while they had mixed 

 results at their inception, as they have improved and innovated over time their results have 

 become more and more promising. 

 GAN First Attempt 

 TensorFlow (TensorFlow, 2024b) provides functions that are used to train over the data 

 (and read it) and produces a minimal structure of a final potential model, which is completed by 

 Keras (Keras Team, 2024a). 

 The GAN is set up with two networks - the discriminator and the generator. The 

 discriminator’s general structure is shown above, with the input of the 28x28 MNIST image fed 

 into the discriminator, and then going through 4 layers before providing an output. 

 For the first working setup of the GAN, the discriminator and the generator were set up in 

 a similar fashion. For the discriminator, a total of four layers were used: two convolutional 

 layers, a flatten/funnel layer, and a dense NN layer. The way the convolutional layers work is by 

 using a number of filters of a certain size to scan for features in input, and then adding each 

 result from the input and the filter into a map or a matrix for the final output. For the first setup, 

 there were two convolutional layers used, with a total of 64 and 128 filters in the respective 
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 layers, and both used a filter size of a 3x3 matrix. The output from those layers was then put into 

 the flatten/funnel layer, in which reshapes the multi-dimensional output from the two 

 convolution windows into a one-dimensional array/vector, which is then fed to the final layer, the 

 dense NN layer. The dense layer processes the input vector produced by the above layers, and 

 uses it to produce the final output with its own activation function. 

 For the generator, it is built in a similar fashion, although it could be said that it is built as 

 the opposite of the discriminator, starting with a dense NN layer, then followed by a reshape 

 layer and two transposed convolution layers. For the generator, the dense layer processes the 

 input layer and creates a one-dimensional array/vector, which is then processed by the reshape 

 layer into a multi-dimensional output as seen in the earlier layers of the discriminator. Then, 

 these outputs are processed by two transposed convolutional layers, which performs the 

 functions of the discriminator’s convolutional layers in reverse, by taking the feature map, 

 funneling through a filter and constructing a possible input. These two layers reshape and resize 

 the provided multi-dimensional inputs before feeding them to a final standard convolution layer 

 with one filter, which processes the inputs into a standard 28x28 image comparable to the 

 MNIST/EMNIST dataset. 

 Variational Autoencoders (VAEs) 

 A Variational Autoencoder, or VAE, works by compressing data down to a smaller value 

 via one encoding algorithm, and then uses another to decompress it to a similar, if not the same, 

 value as the original. 

 When using these in generative models, VAEs will essentially create a sort of 2D plane 

 that contains compressed data points for all the data given in its training set. Then, when the user 
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 requests something from that data set, it will pick out one or more points that should, 

 probabilistically, produce that output, and decompresses the points into the proper output data. 

 While VAEs and GANs may have similar functionality with generating output, their 

 methods in generating that output are fundamentally different. A GAN will start with countless 

 outputs based on the training data, and will slowly filter out and refine them with the help of the 

 discriminator, whereas a VAE picks a most likely output and builds from around it, expanding its 

 list of possible outputs. 

 A VAE works by minimizing any potential loss/miscategorization of inputs and outputs, 

 or in other words, making sure that the chance it produces the correct data point/output is as 

 close to 100% as possible. 

 Figure 5  : General encoding process of a VAE 
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 Figure 5  outlines the general encoding process of a VAE, of which the goal is to 

 maximize the chosen probability distribution (in this case, z), with the given parameter theta. The 

 goal of the encoder is to create a probability distribution such that the chance that the given data 

 is encoded to specific values is maximized, and the goal of the decoder is to create a similar 

 distribution such that the chance encoded values are decoded to specific data is maximized. In 

 other words, the goal of a VAE is to create two parameterized probability distributions in which 

 loss between the two is minimized. 

 First VAE structure attempt 

 For my first attempt at the VAE, I used a simple structure much like the GAN, using only 

 about four layers for the encoder and decoder networks. 

 For the encoder, I had a simple structure composed of four layers: two convolutional 

 layers, followed by a flatten/funnel layer, and then a dense NN layer to produce the output. For 

 the first two layers, they contained 32 and 64 3x3 filter matrices respectively, which provided a 

 multi-dimensional output to be reshaped into a one-dimensional vector by the flatten layer. 

 Finally, the one-dimensional array was processed by the dense NN layer, providing a basis for 

 the normalized distribution of encoded data. 

 For the decoder, I had a five-layer structure built as the opposite of the encoder, starting 

 with a dense NN layer to process the encoded data, followed by a reshape layer to transform it 
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 into a multi-dimensional output, and followed by three transposed convolutional layers to 

 process and convert the data into a standardized 28x28 image. 

 Methodology 

 Using Tensorflow and Keras 

 In order to create the networks to be used in this project, there were two major data 

 packages used, Keras and Tensorflow. The purpose of the Keras data package was to provide the 

 framework for the layers of the networks, allowing them to actually function as needed for this 

 project, while the Tensorflow package was used to not only provide the structure for the network, 

 but also to provide the datasets used in this project, namely through the tf_datasets package 

 (Tensorflow, 2023). 

 Using both of these data packages allowed for the creation of both a functional GAN and 

 VAE network, which were built using two online tutorials from the Keras website as a basis. 

 The GAN’s general structure was based off of a tutorial that involved the generation of 

 images of faces from a local storage dataset (Keras Team, 2023). This tutorial had to be modified 

 extensively for it to fit our purposes, mainly in restructuring the code to pull from datasets 

 provided by the tfds_datasets package. However, its foundation for the GAN it created was 

 largely unchanged, and thus the final product operated very similarly to the tutorial, and did not 

 affect the runtime of the model. 

 For the VAE, the tutorial that was used was originally using the MNIST dataset, so it was 

 remarkably easy to make minor changes for the code to fit the needs of the project. However, 
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 much like the GAN tutorial, the VAE tutorial code had to be modified in order to make use of the 

 tfds_datasets  package, but this did not affect the  functionality or runtime of the model. 

 Setting up GAN 

 In order to set up the GAN, the first step was to use the original tutorial code and modify 

 it for our purposes in using it on our datasets. In the tutorial provided by Keras, the GAN was run 

 on a database in local storage which contained a collection of face images for training and 

 testing. However, since we would be training and testing on the MNIST/EMNIST datasets from 

 first Keras, then the tfds_datasets packages, it would be necessary to modify the code provided 

 by the tutorial. After successfully altering and checking the code to ensure it still functioned as 

 needed, the first task was running the GAN on the MNIST dataset. 

 GAN and VAE tutorials are written by the same people, but have different styles of coding. 

 In the first implementation, each epoch required 360 seconds to compute and the results 

 are not as accurate. When running the GAN, it seemed to work well enough, however, it ended 

 up taking 3 hours to train, requiring 6 minutes per epoch of training. After comparing it to 

 examples of GANs and other network types, I adjusted the number of filters for the layers, 

 changing the numbers from 64 and 128 to 32 and 64, which reduced the training time of the 

 network drastically, now only needing 6 minutes to train with roughly 30 seconds per epoch of 

 training. 

 After realizing that my current method of reading in data from the datasets would not be 

 effective for reading and training the EMNIST data, I reworked my currently existing code to use 

 the tfds_datasets package, which includes both MNIST and EMNIST. However, as a result, I also 

 18 



 needed to rework the way my code functioned for the baseline MNIST to be compatible with my 

 new tfds_datasets methods and structure. 

 Setting up VAE 

 The tutorial code (Keras Team, 2024b) used the MNIST data set and TensorFlow and 

 Keras. The first step was to modify the code to work with EMNIST data set. This was not hard to 

 do because Keras already supported the MNIST data set. Running the modified code generates a 

 visual representation of the encoded data for the MNIST digits 

 Figure 6  : Visual representation of encoded data 
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 In  Figure 6  , you can see all ten digits at various locations within the two-dimensional 

 plane. There is smooth variation as you move between neighboring images, and so in the left 

 edge of the image looking vertically down the image you can see the digit “0” smoothly 

 transform into the digit “9”. The grid represents the output of the VAE at unique points in a 2D 

 plane. 

 Figure 7  : Sample spatial distribution of a VAE trained  on MNIST. 

 When working to develop this code for the VAE, I initially had problems with the process 

 of correlating the textual digit you wanted the VAE to generate with the image output provided 

 by the algorithm. Since a VAE generates output based on probability rather than discrimination 

 and categorization like a GAN, it was hard to directly associate the generated images with 

 categories to pull from. 

 20 



 After getting the GAN and the VAE to function correctly for the MNIST dataset, I 

 attempted testing the trained networks from the MNIST dataset on the EMNIST dataset for 

 input. However, I encountered two distinct problems: First, the EMNIST dataset contains the 

 MNIST dataset as a subset, meaning that the categories in MNIST are all present in EMNIST, 

 but not the other way around. This results in not being able to fully convert categories from 

 EMNIST to MNIST, and with my first implementation having no ways for the GAN to 

 distinguish categories, it became very difficult to manage. The second problem was that while 

 the setups through Keras and TensorFlow allowed trained models to predict their output, the 

 corresponding input to predict from, particularly the GAN, is difficult to format and properly 

 feed into the network. As a result, I had a lot of trouble properly formatting and differentiating 

 the training and testing datasets for both networks. 

 Another major problem for testing false positives arose from realizing that the function to 

 generate outputs from the GAN and VAE operated independently from the database they were 

 trained on, as well as their inability to categorize inputs shown to them. In other words, if a 

 network was trained on MNIST, then inputting a test image from EMNIST would not affect the 

 output of the network than if I used a test image from MNIST. And since this is true for the 

 GANs and the VAE trained on MNIST, as well as the fact the MNIST dataset is a subset of the 

 EMNIST dataset, the only possibility for a false positive would be from a VAE trained on 

 EMNIST. As a result, I started working on training the VAE and GAN on the EMNIST data set. 

 When initially loading the EMNIST data set, I couldn’t find a dedicated dataset loaded 

 into Keras to pull from. As a result, I attempted to use the database downloaded from the internet 

 onto my local storage to use the EMNIST database. However, after running into too many 

 complications with importing EMNIST from my local storage, I instead turned to using the 
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 tensorflow_datasets package, which includes both MNIST and EMNIST. After reformatting my 

 current code, I was able to successfully run EMNIST, but since EMNIST is markedly larger than 

 the MNIST dataset, containing over 800,000 images as opposed to MNIST’s 70,000, I 

 specifically ended up using the “balanced” subset of EMNIST, which contains approximately 

 131,600 images. 

 Figure 8  : Sample spatial distribution of only the  letters in the EMNIST dataset when run through 

 a VAE. 
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 In addition, in order to test the quality of my code and debug it, I included a function to 

 display only certain digits and characters when plotting a sample distribution, as seen in the 

 figure below. 

 Figure 9  :  Values that align with “5” as can be seen  on the Y axis. 

 Design 

 For the final setup of the networks, I used Keras, Tensorflow, and the tfds_datasets 

 packages to provide the structure of the networks and datasets. As an open-source machine 

 learning platform, Tensorflow provided the foundation and framework of the two networks that 
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 were created, and provided built-in methods for image training and image generation. Once the 

 foundation and framework were in place, Keras was used to create the individual layers of the 

 networks and facilitate interaction between the user and network. With the functions and code 

 provided by the Keras package, each layer of the network could be fully built and trained. Lastly, 

 the tfds_datasets package was used to provide the datasets trained and tested on. While the Keras 

 package does contain an MNIST dataset that was initially used, for the sake of convenience, the 

 tfds_datasets package was used instead, as it contained both MNIST and EMNIST datasets. 

 Both the GAN and the VAE were developed with similar structure, having 4-5 layers for 

 each component of the network with the same window size, filter size, and number of filters. 

 While the general structure of the network and its layers remained very similar to the original 

 tutorials, only containing ~5 layers and stacking convolution layers before funneling them into a 

 dense NN layer, the final structure changed the setup of the filters in both their size and number 

 per layer. 

 For the datasets used, both MNIST and EMNIST datasets were accessed using the 

 tfds_datasets package, and the subset of EMNIST used was the EMNIST_Balanced subset. For 

 the MNIST dataset, both networks were trained on 60,000 training images and tested on 10,000 

 testing images consisting of digits from 0-9, while for the EMNIST dataset, both networks were 

 trained on 112,800 images and tested on 18,800, including all digits from 0-9 and all letters, 

 although due to problems in recognition due to similarities between uppercase and lowercase, 

 both versions of the letters C, I, J, K, L, M, O, P, S, U, V, W, X, Y, and Z have been merged into 

 one class. Therefore, the EMNIST_Balanced dataset contains 47 classes, with 10 digits, 26 

 uppercase (and merged lowercase) letters, and 11 lowercase letters as separate classes, 

 specifically a, b, d, e, f, g, h, n, q, r and t (Cohen  et al  ., 2017). 
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 Evaluation 

 To evaluate the effectiveness of these algorithms and the datasets, we will compare them and 

 their results against each other and previously found results from earlier research. 

 GAN trained on MNIST 

 Figure 10  :  Randomly Generated output from the GAN  for MNIST. 
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 Figure 10  shows some randomly generated outputs from the GAN. It is worth noting that 

 at least 2 of every digit between 0 and 9 are visible on this plot. 

 GAN trained on EMNIST 

 Figure 11  :  Randomly Generated output from the GAN  for EMNIST 
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 Note: the EMNIST dataset is set up such that training images are flipped horizontally and rotated 

 90 degrees counterclockwise. As such, the results output by the GAN presented as they would be 

 normally seen, would look like this: 

 Figure 12  :  Rotated and Inverted images from  Figure  11  . 

 GAN output trained on EMNIST, reformatted. This plot shows several random images generated 

 from the GAN trained on the EMNIST_Balanced dataset. 
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 VAE trained on MNIST 

 Figure 13  :  VAE’s normalized distribution on the 2D  plane. 

 Figure 13  shows the outputs of the VAE’s normalized  distribution on the 2D plane. As 

 shown above, all digits in the MNIST database are shown. 
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 Figure 14  :  VAE’s distribution of digits from VAE on  MNIST 

 This plot shows the distribution of digits generated from the VAE trained on MNIST. The plot of 

 the digits above is a visual representation of a section of this plot. 
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 VAE trained on EMNIST 

 Figure 15  VAE’s distribution of digits from VAE on  EMNIST 

 This plot shows the distribution of digits and letters generated from the VAE trained on 

 EMNIST. When compared to the MNIST plot, the data is much more centrally concentrated, 

 meaning that the network considers most characters in the dataset to be similar to each other. 
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 Figure 16  Visualization of central cluster from  Figure  15  . 

 This plot is a more visual representation of the central cluster shown in the above plot. 

 However, since the EMNIST dataset is formatted to be rotated 90 degrees and horizontally 

 inverted, the letters and digits should be more humanly recognizable in the below image: 
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 Figure 17  . Rotation and Inversion of Figure 16 for  readability. 

 Conclusions 

 In regards to the goals of this project, we were able to successfully replicate the 

 generation of images from a neural network trained on the MNIST dataset, as well as the 
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 EMNIST dataset. In comparison to other networks that were examined in the research process 

 for this project (Goodfellow  et al  ., 2014, Cao  et  al  ., 2023), the networks that were built were 

 comparatively smaller, only comprised of about five layers, whereas the ones used in previous 

 studies used more filters and layers in their construction. However, it can be argued that the 

 outputs provided by the networks constructed in this project were comparable to the sample 

 outputs provided by previous research, specifically the initial results of the GAN developed by 

 Goodfellow. In addition, it is worth noting that while the VAE’s results when trained on the 

 MNIST dataset were exceptionally clear, most of the outputs of the VAE trained on EMNIST are 

 more indiscernible, likely due to the difference in the amount of classifications present in the 

 EMNIST dataset when compared to the MNIST dataset. 

 When comparing runtime for both algorithms, it is worth noting that the VAE was 

 consistently faster in its training than the GAN on both datasets, with the GAN taking 30 to 35 

 seconds per epoch of training, while the VAE took 25 to 30 seconds per epoch of training. This is 

 likely because the process of normalization for the encoder and decoder in the VAE is a much 

 faster mathematical process than the training of the generator and discriminator in the GAN. 

 Therefore, when compared to the generated results of both models, the GAN appears to perform 

 better with a larger amount of categories to classify, like the EMNIST dataset despite taking 

 longer to train, and the VAE appears to perform better on smaller amounts of categories to 

 classify, namely the MNIST dataset. In addition, it is worth noting that running these models on 

 my machine locally may have caused an increase in runtime. Since my machine’s storage and 

 processing power is limited, a more specialized machine may have been able to produce more 

 efficient run times. 
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 For possible future work, it is worth exploring how the number of layers and filters in a 

 convolutional neural network can affect the quality of their output and their runtime when 

 training. When first testing the models, a mismatch in the number of filters caused a massive 

 increase in runtime. Although the training and adjustment of the larger number of filters 

 increased the runtime of the model, it is worth exploring whether they have a noticeable effect on 

 the output of the models. 
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