
 Generative Adversarial Networks (GANs) and Variational Autoencoders
 (VAEs) Applied to MNIST datasets

 A Major Qualifying Project report:

 Submitted to the Faculty of

 WORCESTER POLYTECHNIC INSTITUTE

 In partial fulfillment of the requirements for the degree of

 Bachelor of Science

 By

 Jacob Wilusz

 Date: August 9 2024

 Approved:
 Professor George Heineman, Major Advisor

 This report represents work of WPI undergraduate students submitted to the faculty as evidence
 of a degree requirement. WPI routinely publishes these reports on its web site without editorial
 or peer review. For more information about the projects program at WPI, see
 http://www.wpi.edu/Academics/Projects .

http://www.wpi.edu/Academics/Projects

 Table of Contents

 Abstract
 Introduction
 Background

 Domain Data Sets
 Machine Learning

 Neural Networks/Supervised Learning
 Convolutional Neural Networks

 Generative Adversarial Networks (GANs)
 GAN First Attempt

 Variational Autoencoders (VAEs)
 First VAE structure attempt

 Methodology
 Using Tensorflow and Keras
 Setting up GAN
 Setting up VAE

 Design
 Evaluation

 GAN trained on MNIST
 GAN trained on EMNIST
 VAE trained on MNIST
 VAE trained on EMNIST

 Conclusions
 References

 2

 Abstract

 Two of the earliest forms of generative machine learning algorithms are Generative

 Adversarial Networks (GAN) and Variational Autoencoders (VAE). Despite being developed at

 approximately the same time, their functionality and structure are markedly different. This

 project aims to compare these two networks when trained on two different datasets and analyze

 the differences in their output and runtime in reference to their structure.

 Introduction

 Generative Artificial Intelligence (AI) is an incredibly volatile subject in the current

 technological sphere, with constant debates over its potential uses and whether or not such uses

 are ethically or morally correct. Due to technological innovations, multiple different types of

 generative AI have been developed, with their own strengths and weaknesses. One of the first

 major types of generative AI networks developed was the Generative Adversarial Network, or

 GAN, which is used for image generation (Goodfellow et al. , 2014). While there have been

 numerous different offshoots of GAN models, the core structure of the network remains largely

 unchanged. Shortly thereafter, a different type of generative AI network, the Variational

 Autoencoder, or VAE, was developed (Bernstein, 2023). It had a similar basic framework to a

 GAN, but functioned completely differently from its predecessor. One of the major goals of this

 project is to examine both a Generative Adversarial Network and a Variational Autoencoder to

 gauge their effectiveness when compared with one another.

 To do this, this project aims to focus on two domains of interest well-known in the

 Machine Learning (ML) literature. The first dataset of interest is the Modified National Institute

 3

 of Standards and Technology dataset, or MNIST dataset (LeCun et al ., 1998), which is composed

 of images of handwritten digits from zero (0) through nine (9), and developed in 1994 by

 National Institute of Standards and Technology (NIST), from which the dataset gets its name.

 However, much like the GAN, the MNIST database has seen improvement over time, and the

 NIST developed and released an extended dataset in 2017, fittingly called the Extended Modified

 National Institute of Standards and Technology dataset, or EMNIST (Cohen et al ., 2017). In

 addition to the 70,000 images contained in the original dataset, the EMNIST dataset contains

 814,255 images including both handwritten letters (in both uppercase and lowercase) as well as

 handwritten digits. The other major goal of this project is to train both networks mentioned

 above on both datasets to both attempt to replicate the results of earlier studies and to compare

 their effectiveness on different datasets.

 4

 Figure 1 - Examples of images from the MNIST dataset.

 The second goal is to demonstrate how to retrain the model using additional data, which

 is included in an enhanced EMNIST data set that contains uppercase handwritten letters.

 Retraining the models is necessary to include the extra training data included in the EMNIST

 dataset, as without it, the models will not be able to parse or generate data outside the original

 MNIST dataset. Both GANs and VAEs will be retrained and we will report the results of the

 5

 updated models on both the original validation set as well as additional ones. This means you

 will validate on the original validation set that contains just digits as well as an enhanced

 validation set that also includes uppercase letters. In order to reduce the time to train models, it

 was decided to use the EMNIST-balanced subset of the dataset, which only contains 47 unique

 letters and digits instead of the full 62, as part of this second effort.

 MNIST Dataset EMNIST Dataset

 GAN Network GAN on MNIST GAN on EMNIST

 VAE Network VAE on MNIST VAE on EMNIST

 Table 1 : Comparisons for the project

 The structure of this project is shown in Table 1 . There are four quadrants in this

 comparison.

 We will report our success in replicating the success rate in applying GANs on the

 MNIST handwritten digit set. This is depicted in the upper left quadrant of the figure.

 We will report our success in applying Variational Encoders on the same data set, and

 compare these results against the GAN. This is depicted in the lower left quadrant of the figure.

 We will retrain the GAN by including the additional EMNIST handwritten uppercase

 letters. We will report the success in replicating the results on the handwritten validation set that

 still only includes handwritten digits. But then we will also report success on this newly retrained

 model on a validation set that includes a mix of digits and upper case letters. This is depicted in

 the upper right quadrant of the figure.

 We will retrain the VAE by including the additional EMNIST handwritten uppercase

 letters. We will report the success in replicating the results on the handwritten validation set that

 6

 still only includes handwritten digits. But then we will also report success on this newly retrained

 model on a validation set that includes a mix of digits and upper case letters. This is depicted in

 the lower right quadrant of the figure.

 This structured experiment is designed to see the impact on both GANs and VAEs when

 retraining models to include additional data.

 Background

 For this project, we will be using the Neural Network structures of GANs and VAEs, and

 the datasets of MNIST and EMNIST. In this section, we will examine each of these components

 of the project in detail.

 Domain Data Sets

 For this project the domain of interest is handwritten digits and letters. One of the most

 commonly used data sets is MNIST. This data set contains 60,000 training images of handwritten

 numerals, each of which is a 28x28 grayscale image. There are an additional 10,000 images in

 the data set used for testing kept separately, resulting in a total of 70,000 images.

 In addition, there is also the Extended MNIST dataset, also commonly referred to as the

 EMNIST dataset. Developed in 2017, this dataset expands on the original dataset by adding

 images of handwritten letters in addition to numbers, including a total of over 800,000 images of

 handwritten characters. While the MNIST dataset was, and largely still is used as the basis for

 artificial intelligence algorithm training and categorization, the EMNIST dataset not only

 expands upon the size of the original MNIST dataset, but also includes new training and testing

 data and categories for alphabetical characters in addition to numerals. In addition, the EMNIST

 7

 dataset contains multiple formats of data ranging from a copy of the original MNIST dataset to

 datasets that include only alphabetical characters, only numerals, and other combinations of

 categories.

 Machine Learning

 Machine Learning, commonly abbreviated as ML, is the general term for studying and

 developing programs or algorithms that can improve their precision and output over time, or to

 perform tasks without explicit instructions. While Machine Learning and Artificial Intelligence

 are generally seen as interchangeable terms, it is more accurate that AI is a subsection of

 Machine Learning.

 Neural Networks / Supervised Learning

 A neural network is a computational structure that appears to mimic some of the internal

 structures found in human brains. The goal of the structure is to define an output given inputs. In

 the neural network in Figure 2 , all information flows in one direction, that is forward.

 8

 Figure 2 : Basic structure of a Neural Network

 A supervised learning algorithm constructs a mathematical model of a set of training data

 that contains the input data and there is descriptive information about the desired output. Using a

 standardized iterative approach, a supervised learning algorithm “learns” a function, f(data i) that

 can be used to predict the output given new input data.

 To give a human example, given Table 2 below, one can infer the desired output for the

 new data input. The training set is contained in the first two rows. Based on this information, one

 could infer that the function f(x) = x 2 and the answer would be 49. However it could also be f(x)

 = 6x - 5 and the answer would then be 37.

 9

 Input Output

 1 1

 5 25

 7 ???

 Table 2 : Sample Input and Output data for an unknown function, f(x)

 Supervised learning algorithms are effective because they consume a very large data set

 of input information, for which all outputs are known. When more data is available, the accuracy

 of the learned function improves.

 Because of this, algorithms can be trained to have a variety of functions, such as

 autocomplete functions common in word processor programs or on a cell phone, or image and

 text generation programs that have become more widely used in the current era. And as these

 networks and their functions improve, their accuracy and precision improve with them. For

 instance, older generation generative AI (Cao et al ., 2023) pales in comparison to programs like

 OpenAI’s ChatGPT.

 Convolutional Neural Networks

 A Convolutional Neural Network (CNN) is a feed-forward neural network that learns

 features by itself via filter optimization (IBM, 2017). It is currently one of the most used neural

 network structures today, thanks in large part due to its ease of application to image classification

 and generation tasks thanks to its structure.

 10

 Figure 3 : Example of a CNN, from IBM, 2017

 CNNs, or Convolutional Neural Networks, serve as the basis for many of the early and

 some of the more modern AI algorithms. They serve as one of the core concepts of Generative

 Adversarial Networks, or GANs, by using filter optimization on the generator’s output and the

 discriminator’s judgment criteria. A CNN contains convolution layers, or layers that use the

 process of convolution to process inputs into outputs. A convolution is defined by using a

 convolution window of specified size to read data, which a filter is then applied to, and then

 mapped to an output. The filters can adjust their own values based on the output of the layer,

 hence they are critically important for machine learning algorithms as they can improve their

 outputs over time.

 CNNs are typically divided into three types of layers: a convolution layer, where most

 colvolutions performed by the network are done, a pooling layer, which accumulates and

 11

 compiles the results and values used in the convolution layer, and the fully-connected layer,

 which collects and generates the final output of the network. A typical CNN is comprised of

 several convolution and pooling layers and one fully-connected layer to produce the output. Part

 of what makes CNNs so versatile is their ability to be custom-built and custom-trained for many

 different tasks, and it allowed them to become one of the cornerstones of machine learning

 networks.

 Generative Adversarial Networks (GANs)

 A General Adversarial Network, or GAN, is one of the cornerstones of generative AI

 networks (Goodfellow et al ., 2014). First conceptualized and developed around 2012, a GAN

 works by using two neural networks, a generator and a discriminator, and pitting them against

 each other, as shown in Figure 4 . The generator, which is shown images, text, or data from a

 training set, learns to generate new data with the same statistics as the training set.

 Figure 4: A diagram displaying the structure of both networks involved in the GAN.

 In most machine learning applications, the goal is to optimize a function, but in GAN the

 generator aims to “fool” the discriminator into believing that the generated output is legitimate.

 12

 Once the generator can consistently create output that the discriminator can classify as

 legitimate, the discriminator is removed from the system, and the generator provides its output to

 the user. GANs were one of the first major generative AI networks, and while they had mixed

 results at their inception, as they have improved and innovated over time their results have

 become more and more promising.

 GAN First Attempt

 TensorFlow (TensorFlow, 2024b) provides functions that are used to train over the data

 (and read it) and produces a minimal structure of a final potential model, which is completed by

 Keras (Keras Team, 2024a).

 The GAN is set up with two networks - the discriminator and the generator. The

 discriminator’s general structure is shown above, with the input of the 28x28 MNIST image fed

 into the discriminator, and then going through 4 layers before providing an output.

 For the first working setup of the GAN, the discriminator and the generator were set up in

 a similar fashion. For the discriminator, a total of four layers were used: two convolutional

 layers, a flatten/funnel layer, and a dense NN layer. The way the convolutional layers work is by

 using a number of filters of a certain size to scan for features in input, and then adding each

 result from the input and the filter into a map or a matrix for the final output. For the first setup,

 there were two convolutional layers used, with a total of 64 and 128 filters in the respective

 13

 layers, and both used a filter size of a 3x3 matrix. The output from those layers was then put into

 the flatten/funnel layer, in which reshapes the multi-dimensional output from the two

 convolution windows into a one-dimensional array/vector, which is then fed to the final layer, the

 dense NN layer. The dense layer processes the input vector produced by the above layers, and

 uses it to produce the final output with its own activation function.

 For the generator, it is built in a similar fashion, although it could be said that it is built as

 the opposite of the discriminator, starting with a dense NN layer, then followed by a reshape

 layer and two transposed convolution layers. For the generator, the dense layer processes the

 input layer and creates a one-dimensional array/vector, which is then processed by the reshape

 layer into a multi-dimensional output as seen in the earlier layers of the discriminator. Then,

 these outputs are processed by two transposed convolutional layers, which performs the

 functions of the discriminator’s convolutional layers in reverse, by taking the feature map,

 funneling through a filter and constructing a possible input. These two layers reshape and resize

 the provided multi-dimensional inputs before feeding them to a final standard convolution layer

 with one filter, which processes the inputs into a standard 28x28 image comparable to the

 MNIST/EMNIST dataset.

 Variational Autoencoders (VAEs)

 A Variational Autoencoder, or VAE, works by compressing data down to a smaller value

 via one encoding algorithm, and then uses another to decompress it to a similar, if not the same,

 value as the original.

 When using these in generative models, VAEs will essentially create a sort of 2D plane

 that contains compressed data points for all the data given in its training set. Then, when the user

 14

 requests something from that data set, it will pick out one or more points that should,

 probabilistically, produce that output, and decompresses the points into the proper output data.

 While VAEs and GANs may have similar functionality with generating output, their

 methods in generating that output are fundamentally different. A GAN will start with countless

 outputs based on the training data, and will slowly filter out and refine them with the help of the

 discriminator, whereas a VAE picks a most likely output and builds from around it, expanding its

 list of possible outputs.

 A VAE works by minimizing any potential loss/miscategorization of inputs and outputs,

 or in other words, making sure that the chance it produces the correct data point/output is as

 close to 100% as possible.

 Figure 5 : General encoding process of a VAE

 15

 Figure 5 outlines the general encoding process of a VAE, of which the goal is to

 maximize the chosen probability distribution (in this case, z), with the given parameter theta. The

 goal of the encoder is to create a probability distribution such that the chance that the given data

 is encoded to specific values is maximized, and the goal of the decoder is to create a similar

 distribution such that the chance encoded values are decoded to specific data is maximized. In

 other words, the goal of a VAE is to create two parameterized probability distributions in which

 loss between the two is minimized.

 First VAE structure attempt

 For my first attempt at the VAE, I used a simple structure much like the GAN, using only

 about four layers for the encoder and decoder networks.

 For the encoder, I had a simple structure composed of four layers: two convolutional

 layers, followed by a flatten/funnel layer, and then a dense NN layer to produce the output. For

 the first two layers, they contained 32 and 64 3x3 filter matrices respectively, which provided a

 multi-dimensional output to be reshaped into a one-dimensional vector by the flatten layer.

 Finally, the one-dimensional array was processed by the dense NN layer, providing a basis for

 the normalized distribution of encoded data.

 For the decoder, I had a five-layer structure built as the opposite of the encoder, starting

 with a dense NN layer to process the encoded data, followed by a reshape layer to transform it

 16

 into a multi-dimensional output, and followed by three transposed convolutional layers to

 process and convert the data into a standardized 28x28 image.

 Methodology

 Using Tensorflow and Keras

 In order to create the networks to be used in this project, there were two major data

 packages used, Keras and Tensorflow. The purpose of the Keras data package was to provide the

 framework for the layers of the networks, allowing them to actually function as needed for this

 project, while the Tensorflow package was used to not only provide the structure for the network,

 but also to provide the datasets used in this project, namely through the tf_datasets package

 (Tensorflow, 2023).

 Using both of these data packages allowed for the creation of both a functional GAN and

 VAE network, which were built using two online tutorials from the Keras website as a basis.

 The GAN’s general structure was based off of a tutorial that involved the generation of

 images of faces from a local storage dataset (Keras Team, 2023). This tutorial had to be modified

 extensively for it to fit our purposes, mainly in restructuring the code to pull from datasets

 provided by the tfds_datasets package. However, its foundation for the GAN it created was

 largely unchanged, and thus the final product operated very similarly to the tutorial, and did not

 affect the runtime of the model.

 For the VAE, the tutorial that was used was originally using the MNIST dataset, so it was

 remarkably easy to make minor changes for the code to fit the needs of the project. However,

 17

 much like the GAN tutorial, the VAE tutorial code had to be modified in order to make use of the

 tfds_datasets package, but this did not affect the functionality or runtime of the model.

 Setting up GAN

 In order to set up the GAN, the first step was to use the original tutorial code and modify

 it for our purposes in using it on our datasets. In the tutorial provided by Keras, the GAN was run

 on a database in local storage which contained a collection of face images for training and

 testing. However, since we would be training and testing on the MNIST/EMNIST datasets from

 first Keras, then the tfds_datasets packages, it would be necessary to modify the code provided

 by the tutorial. After successfully altering and checking the code to ensure it still functioned as

 needed, the first task was running the GAN on the MNIST dataset.

 GAN and VAE tutorials are written by the same people, but have different styles of coding.

 In the first implementation, each epoch required 360 seconds to compute and the results

 are not as accurate. When running the GAN, it seemed to work well enough, however, it ended

 up taking 3 hours to train, requiring 6 minutes per epoch of training. After comparing it to

 examples of GANs and other network types, I adjusted the number of filters for the layers,

 changing the numbers from 64 and 128 to 32 and 64, which reduced the training time of the

 network drastically, now only needing 6 minutes to train with roughly 30 seconds per epoch of

 training.

 After realizing that my current method of reading in data from the datasets would not be

 effective for reading and training the EMNIST data, I reworked my currently existing code to use

 the tfds_datasets package, which includes both MNIST and EMNIST. However, as a result, I also

 18

 needed to rework the way my code functioned for the baseline MNIST to be compatible with my

 new tfds_datasets methods and structure.

 Setting up VAE

 The tutorial code (Keras Team, 2024b) used the MNIST data set and TensorFlow and

 Keras. The first step was to modify the code to work with EMNIST data set. This was not hard to

 do because Keras already supported the MNIST data set. Running the modified code generates a

 visual representation of the encoded data for the MNIST digits

 Figure 6 : Visual representation of encoded data

 19

 In Figure 6 , you can see all ten digits at various locations within the two-dimensional

 plane. There is smooth variation as you move between neighboring images, and so in the left

 edge of the image looking vertically down the image you can see the digit “0” smoothly

 transform into the digit “9”. The grid represents the output of the VAE at unique points in a 2D

 plane.

 Figure 7 : Sample spatial distribution of a VAE trained on MNIST.

 When working to develop this code for the VAE, I initially had problems with the process

 of correlating the textual digit you wanted the VAE to generate with the image output provided

 by the algorithm. Since a VAE generates output based on probability rather than discrimination

 and categorization like a GAN, it was hard to directly associate the generated images with

 categories to pull from.

 20

 After getting the GAN and the VAE to function correctly for the MNIST dataset, I

 attempted testing the trained networks from the MNIST dataset on the EMNIST dataset for

 input. However, I encountered two distinct problems: First, the EMNIST dataset contains the

 MNIST dataset as a subset, meaning that the categories in MNIST are all present in EMNIST,

 but not the other way around. This results in not being able to fully convert categories from

 EMNIST to MNIST, and with my first implementation having no ways for the GAN to

 distinguish categories, it became very difficult to manage. The second problem was that while

 the setups through Keras and TensorFlow allowed trained models to predict their output, the

 corresponding input to predict from, particularly the GAN, is difficult to format and properly

 feed into the network. As a result, I had a lot of trouble properly formatting and differentiating

 the training and testing datasets for both networks.

 Another major problem for testing false positives arose from realizing that the function to

 generate outputs from the GAN and VAE operated independently from the database they were

 trained on, as well as their inability to categorize inputs shown to them. In other words, if a

 network was trained on MNIST, then inputting a test image from EMNIST would not affect the

 output of the network than if I used a test image from MNIST. And since this is true for the

 GANs and the VAE trained on MNIST, as well as the fact the MNIST dataset is a subset of the

 EMNIST dataset, the only possibility for a false positive would be from a VAE trained on

 EMNIST. As a result, I started working on training the VAE and GAN on the EMNIST data set.

 When initially loading the EMNIST data set, I couldn’t find a dedicated dataset loaded

 into Keras to pull from. As a result, I attempted to use the database downloaded from the internet

 onto my local storage to use the EMNIST database. However, after running into too many

 complications with importing EMNIST from my local storage, I instead turned to using the

 21

 tensorflow_datasets package, which includes both MNIST and EMNIST. After reformatting my

 current code, I was able to successfully run EMNIST, but since EMNIST is markedly larger than

 the MNIST dataset, containing over 800,000 images as opposed to MNIST’s 70,000, I

 specifically ended up using the “balanced” subset of EMNIST, which contains approximately

 131,600 images.

 Figure 8 : Sample spatial distribution of only the letters in the EMNIST dataset when run through

 a VAE.

 22

 In addition, in order to test the quality of my code and debug it, I included a function to

 display only certain digits and characters when plotting a sample distribution, as seen in the

 figure below.

 Figure 9 : Values that align with “5” as can be seen on the Y axis.

 Design

 For the final setup of the networks, I used Keras, Tensorflow, and the tfds_datasets

 packages to provide the structure of the networks and datasets. As an open-source machine

 learning platform, Tensorflow provided the foundation and framework of the two networks that

 23

 were created, and provided built-in methods for image training and image generation. Once the

 foundation and framework were in place, Keras was used to create the individual layers of the

 networks and facilitate interaction between the user and network. With the functions and code

 provided by the Keras package, each layer of the network could be fully built and trained. Lastly,

 the tfds_datasets package was used to provide the datasets trained and tested on. While the Keras

 package does contain an MNIST dataset that was initially used, for the sake of convenience, the

 tfds_datasets package was used instead, as it contained both MNIST and EMNIST datasets.

 Both the GAN and the VAE were developed with similar structure, having 4-5 layers for

 each component of the network with the same window size, filter size, and number of filters.

 While the general structure of the network and its layers remained very similar to the original

 tutorials, only containing ~5 layers and stacking convolution layers before funneling them into a

 dense NN layer, the final structure changed the setup of the filters in both their size and number

 per layer.

 For the datasets used, both MNIST and EMNIST datasets were accessed using the

 tfds_datasets package, and the subset of EMNIST used was the EMNIST_Balanced subset. For

 the MNIST dataset, both networks were trained on 60,000 training images and tested on 10,000

 testing images consisting of digits from 0-9, while for the EMNIST dataset, both networks were

 trained on 112,800 images and tested on 18,800, including all digits from 0-9 and all letters,

 although due to problems in recognition due to similarities between uppercase and lowercase,

 both versions of the letters C, I, J, K, L, M, O, P, S, U, V, W, X, Y, and Z have been merged into

 one class. Therefore, the EMNIST_Balanced dataset contains 47 classes, with 10 digits, 26

 uppercase (and merged lowercase) letters, and 11 lowercase letters as separate classes,

 specifically a, b, d, e, f, g, h, n, q, r and t (Cohen et al ., 2017).

 24

 Evaluation

 To evaluate the effectiveness of these algorithms and the datasets, we will compare them and

 their results against each other and previously found results from earlier research.

 GAN trained on MNIST

 Figure 10 : Randomly Generated output from the GAN for MNIST.

 25

 Figure 10 shows some randomly generated outputs from the GAN. It is worth noting that

 at least 2 of every digit between 0 and 9 are visible on this plot.

 GAN trained on EMNIST

 Figure 11 : Randomly Generated output from the GAN for EMNIST

 26

 Note: the EMNIST dataset is set up such that training images are flipped horizontally and rotated

 90 degrees counterclockwise. As such, the results output by the GAN presented as they would be

 normally seen, would look like this:

 Figure 12 : Rotated and Inverted images from Figure 11 .

 GAN output trained on EMNIST, reformatted. This plot shows several random images generated

 from the GAN trained on the EMNIST_Balanced dataset.

 27

 VAE trained on MNIST

 Figure 13 : VAE’s normalized distribution on the 2D plane.

 Figure 13 shows the outputs of the VAE’s normalized distribution on the 2D plane. As

 shown above, all digits in the MNIST database are shown.

 28

 Figure 14 : VAE’s distribution of digits from VAE on MNIST

 This plot shows the distribution of digits generated from the VAE trained on MNIST. The plot of

 the digits above is a visual representation of a section of this plot.

 29

 VAE trained on EMNIST

 Figure 15 VAE’s distribution of digits from VAE on EMNIST

 This plot shows the distribution of digits and letters generated from the VAE trained on

 EMNIST. When compared to the MNIST plot, the data is much more centrally concentrated,

 meaning that the network considers most characters in the dataset to be similar to each other.

 30

 Figure 16 Visualization of central cluster from Figure 15 .

 This plot is a more visual representation of the central cluster shown in the above plot.

 However, since the EMNIST dataset is formatted to be rotated 90 degrees and horizontally

 inverted, the letters and digits should be more humanly recognizable in the below image:

 31

 Figure 17 . Rotation and Inversion of Figure 16 for readability.

 Conclusions

 In regards to the goals of this project, we were able to successfully replicate the

 generation of images from a neural network trained on the MNIST dataset, as well as the

 32

 EMNIST dataset. In comparison to other networks that were examined in the research process

 for this project (Goodfellow et al ., 2014, Cao et al ., 2023), the networks that were built were

 comparatively smaller, only comprised of about five layers, whereas the ones used in previous

 studies used more filters and layers in their construction. However, it can be argued that the

 outputs provided by the networks constructed in this project were comparable to the sample

 outputs provided by previous research, specifically the initial results of the GAN developed by

 Goodfellow. In addition, it is worth noting that while the VAE’s results when trained on the

 MNIST dataset were exceptionally clear, most of the outputs of the VAE trained on EMNIST are

 more indiscernible, likely due to the difference in the amount of classifications present in the

 EMNIST dataset when compared to the MNIST dataset.

 When comparing runtime for both algorithms, it is worth noting that the VAE was

 consistently faster in its training than the GAN on both datasets, with the GAN taking 30 to 35

 seconds per epoch of training, while the VAE took 25 to 30 seconds per epoch of training. This is

 likely because the process of normalization for the encoder and decoder in the VAE is a much

 faster mathematical process than the training of the generator and discriminator in the GAN.

 Therefore, when compared to the generated results of both models, the GAN appears to perform

 better with a larger amount of categories to classify, like the EMNIST dataset despite taking

 longer to train, and the VAE appears to perform better on smaller amounts of categories to

 classify, namely the MNIST dataset. In addition, it is worth noting that running these models on

 my machine locally may have caused an increase in runtime. Since my machine’s storage and

 processing power is limited, a more specialized machine may have been able to produce more

 efficient run times.

 33

 For possible future work, it is worth exploring how the number of layers and filters in a

 convolutional neural network can affect the quality of their output and their runtime when

 training. When first testing the models, a mismatch in the number of filters caused a massive

 increase in runtime. Although the training and adjustment of the larger number of filters

 increased the runtime of the model, it is worth exploring whether they have a noticeable effect on

 the output of the models.

 References

 Bernstein, M. N. (2023, March 14). Variational autoencoders . Variational Autoencoders -

 Matthew N. Bernstein.

 https://mbernste.github.io/posts/vae/#:~:text=Introduction,down%20to%20their%20intrin

 sic%20dimensionality

 Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2022). Deep generative modeling: A

 comparative review of vaes, Gans, normalizing flows, energy-based and autoregressive

 models. IEEE Transactions on Pattern Analysis and Machine Intelligence , 44 (11),

 7327–7347. https://doi.org/10.1109/tpami.2021.3116668

 Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023, March 7). A comprehensive

 survey of AI-generated content (AIGC): A history of generative AI from gan to chatgpt .

 arXiv.org. https://doi.org/10.48550/arXiv.2303.04226

 Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017, March 1). EMNIST: An extension of

 MNIST to handwritten letters . arXiv.org. https://arxiv.org/abs/1702.05373

 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,

 & Bengio, Y. (2014). Generative adversarial nets - neurips. NeurIPS Proceedings.

 34

 https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1

 afccf3-Paper.pdf

 LeCun, Y., Cortes, C., & Burges, C. (1998). The mnist database . MNIST handwritten digit

 database, Yann LeCun, Corinna Cortes and Chris Burges.

 https://yann.lecun.com/exdb/mnist/

 MNIST : tensorflow datasets . TensorFlow. (2024a).

 https://www.tensorflow.org/datasets/catalog/mnist

 Module: TF : tensorflow V2.16.1 . TensorFlow. (2024b).

 https://www.tensorflow.org/api_docs/python/tf

 Team, K. (2023). Keras documentation: DCGAN to generate face images .

 https://keras.io/examples/generative/dcgan_overriding_train_step/

 Team, K. (2024a). Keras Documentation: Keras 3 API documentation . https://keras.io/api/

 Team, K. (2024b). Keras documentation: Variational Autoencoder .

 https://keras.io/examples/generative/vae/

 Tensorflow datasets . TensorFlow. (2023). https://www.tensorflow.org/datasets/overview

 What are convolutional neural networks? . IBM - What are convolutional neural networks?

 (2021, October 6). https://www.ibm.com/topics/convolutional-neural-networks

 35

