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‭Abstract‬

‭Two of the earliest forms of generative machine learning algorithms are Generative‬

‭Adversarial Networks (GAN) and Variational Autoencoders (VAE). Despite being developed at‬

‭approximately the same time, their functionality and structure are markedly different. This‬

‭project aims to compare these two networks when trained on two different datasets and analyze‬

‭the differences in their output and runtime in reference to their structure.‬

‭Introduction‬

‭Generative Artificial Intelligence (AI) is an incredibly volatile subject in the current‬

‭technological sphere, with constant debates over its potential uses and whether or not such uses‬

‭are ethically or morally correct. Due to technological innovations, multiple different types of‬

‭generative AI have been developed, with their own strengths and weaknesses. One of the first‬

‭major types of generative AI networks developed was the Generative Adversarial Network, or‬

‭GAN, which is used for image generation (Goodfellow‬‭et al.‬‭, 2014). While there have been‬

‭numerous different offshoots of GAN models, the core structure of the network remains largely‬

‭unchanged. Shortly thereafter, a different type of generative AI network, the Variational‬

‭Autoencoder, or VAE, was developed (Bernstein, 2023). It had a similar basic framework to a‬

‭GAN, but functioned completely differently from its predecessor. One of the major goals of this‬

‭project is to examine both a Generative Adversarial Network and a Variational Autoencoder to‬

‭gauge their effectiveness when compared with one another.‬

‭To do this, this project aims to focus on two domains of interest well-known in the‬

‭Machine Learning (ML) literature. The first dataset of interest is the Modified National Institute‬
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‭of Standards and Technology dataset, or MNIST dataset (LeCun‬‭et al‬‭., 1998), which is composed‬

‭of images of handwritten digits from zero (0) through nine (9), and developed in 1994 by‬

‭National Institute of Standards and Technology (NIST), from which the dataset gets its name.‬

‭However, much like the GAN, the MNIST database has seen improvement over time, and the‬

‭NIST developed and released an extended dataset in 2017, fittingly called the Extended Modified‬

‭National Institute of Standards and Technology dataset, or EMNIST (Cohen‬‭et al‬‭., 2017). In‬

‭addition to the 70,000 images contained in the original dataset, the EMNIST dataset contains‬

‭814,255 images including both handwritten letters (in both uppercase and lowercase) as well as‬

‭handwritten digits. The other major goal of this project is to train both networks mentioned‬

‭above on both datasets to both attempt to replicate the results of earlier studies and to compare‬

‭their effectiveness on different datasets.‬
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‭Figure 1‬‭- Examples of images from the MNIST dataset.‬

‭The second goal is to demonstrate how to retrain the model using additional data, which‬

‭is included in an enhanced EMNIST data set that contains uppercase handwritten letters.‬

‭Retraining the models is necessary to include the extra training data included in the EMNIST‬

‭dataset, as without it, the models will not be able to parse or generate data outside the original‬

‭MNIST dataset. Both GANs and VAEs will be retrained and we will report the results of the‬
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‭updated models on both the original validation set as well as additional ones. This means you‬

‭will validate on the original validation set that contains just digits as well as an enhanced‬

‭validation set that also includes uppercase letters. In order to reduce the time to train models, it‬

‭was decided to use the EMNIST-balanced subset of the dataset, which only contains 47 unique‬

‭letters and digits instead of the full 62, as part of this second effort.‬

‭MNIST Dataset‬ ‭EMNIST Dataset‬

‭GAN Network‬ ‭GAN on MNIST‬ ‭GAN on EMNIST‬

‭VAE Network‬ ‭VAE on MNIST‬ ‭VAE on EMNIST‬

‭Table 1‬‭: Comparisons for the project‬

‭The structure of this project is shown in‬‭Table 1‬‭.‬‭There are four quadrants in this‬

‭comparison.‬

‭We will report our success in replicating the success rate in applying GANs on the‬

‭MNIST handwritten digit set. This is depicted in the upper left quadrant of the figure.‬

‭We will report our success in applying Variational Encoders on the same data set, and‬

‭compare these results against the GAN. This is depicted in the lower left quadrant of the figure.‬

‭We will retrain the GAN by including the additional EMNIST handwritten uppercase‬

‭letters. We will report the success in replicating the results on the handwritten validation set that‬

‭still only includes handwritten digits. But then we will also report success on this newly retrained‬

‭model on a validation set that includes a mix of digits and upper case letters. This is depicted in‬

‭the upper right quadrant of the figure.‬

‭We will retrain the VAE by including the additional EMNIST handwritten uppercase‬

‭letters. We will report the success in replicating the results on the handwritten validation set that‬
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‭still only includes handwritten digits. But then we will also report success on this newly retrained‬

‭model on a validation set that includes a mix of digits and upper case letters. This is depicted in‬

‭the lower right quadrant of the figure.‬

‭This structured experiment is designed to see the impact on both GANs and VAEs when‬

‭retraining models to include additional data.‬

‭Background‬

‭For this project, we will be using the Neural Network structures of GANs and VAEs, and‬

‭the datasets of MNIST and EMNIST. In this section, we will examine each of these components‬

‭of the project in detail.‬

‭Domain Data Sets‬

‭For this project the domain of interest is handwritten digits and letters. One of the most‬

‭commonly used data sets is MNIST. This data set contains 60,000 training images of handwritten‬

‭numerals, each of which is a 28x28 grayscale image. There are an additional 10,000 images in‬

‭the data set used for testing kept separately, resulting in a total of 70,000 images.‬

‭In addition, there is also the Extended MNIST dataset, also commonly referred to as the‬

‭EMNIST dataset. Developed in 2017, this dataset expands on the original dataset by adding‬

‭images of handwritten letters in addition to numbers, including a total of over 800,000 images of‬

‭handwritten characters. While the MNIST dataset was, and largely still is used as the basis for‬

‭artificial intelligence algorithm training and categorization, the EMNIST dataset not only‬

‭expands upon the size of the original MNIST dataset, but also includes new training and testing‬

‭data and categories for alphabetical characters in addition to numerals. In addition, the EMNIST‬
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‭dataset contains multiple formats of data ranging from a copy of the original MNIST dataset to‬

‭datasets that include only alphabetical characters, only numerals, and other combinations of‬

‭categories.‬

‭Machine Learning‬

‭Machine Learning, commonly abbreviated as ML, is the general term for studying and‬

‭developing programs or algorithms that can improve their precision and output over time, or to‬

‭perform tasks without explicit instructions. While Machine Learning and Artificial Intelligence‬

‭are generally seen as interchangeable terms, it is more accurate that AI is a subsection of‬

‭Machine Learning.‬

‭Neural Networks‬‭/‬‭Supervised Learning‬

‭A neural network is a computational structure that appears to mimic some of the internal‬

‭structures found in human brains. The goal of the structure is to define an output given inputs. In‬

‭the neural network in‬‭Figure 2‬‭, all information flows‬‭in one direction, that is forward.‬
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‭Figure 2‬‭: Basic structure of a Neural Network‬

‭A supervised learning algorithm constructs a mathematical model of a set of training data‬

‭that contains the input data and there is descriptive information about the desired output. Using a‬

‭standardized iterative approach, a supervised learning algorithm “learns” a function,‬‭f(data‬‭i‬‭)‬‭that‬

‭can be used to predict the output given new input data.‬

‭To give a human example, given‬‭Table 2‬‭below, one‬‭can infer the desired output for the‬

‭new data input. The training set is contained in the first two rows. Based on this information, one‬

‭could infer that the function‬‭f(x) = x‬‭2‬ ‭and the answer‬‭would be 49. However it could also be‬‭f(x)‬

‭= 6x - 5‬‭and the answer would then be 37.‬
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‭Input‬ ‭Output‬

‭1‬ ‭1‬

‭5‬ ‭25‬

‭7‬ ‭???‬

‭Table 2‬‭: Sample Input and Output data for an unknown‬‭function, f(x)‬

‭Supervised learning algorithms are effective because they consume a very large data set‬

‭of input information, for which all outputs are known. When more data is available, the accuracy‬

‭of the learned function improves.‬

‭Because of this, algorithms can be trained to have a variety of functions, such as‬

‭autocomplete functions common in word processor programs or on a cell phone, or image and‬

‭text generation programs that have become more widely used in the current era. And as these‬

‭networks and their functions improve, their accuracy and precision improve with them. For‬

‭instance, older generation generative AI (Cao‬‭et al‬‭.,‬‭2023)‬‭pales in comparison to programs like‬

‭OpenAI’s ChatGPT.‬

‭Convolutional Neural Networks‬

‭A Convolutional Neural Network (CNN) is a feed-forward neural network that learns‬

‭features by itself via filter optimization (IBM, 2017). It is currently one of the most used neural‬

‭network structures today, thanks in large part due to its ease of application to image classification‬

‭and generation tasks thanks to its structure.‬
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‭Figure 3‬‭: Example of a CNN, from IBM, 2017‬

‭CNNs, or Convolutional Neural Networks, serve as the basis for many of the early and‬

‭some of the more modern AI algorithms. They serve as one of the core concepts of Generative‬

‭Adversarial Networks, or GANs, by using filter optimization on the generator’s output and the‬

‭discriminator’s judgment criteria. A CNN contains convolution layers, or layers that use the‬

‭process of convolution to process inputs into outputs. A convolution is defined by using a‬

‭convolution window of specified size to read data, which a filter is then applied to, and then‬

‭mapped to an output. The filters can adjust their own values based on the output of the layer,‬

‭hence they are critically important for machine learning algorithms as they can improve their‬

‭outputs over time.‬

‭CNNs are typically divided into three types of layers: a convolution layer, where most‬

‭colvolutions performed by the network are done, a pooling layer, which accumulates and‬
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‭compiles the results and values used in the convolution layer, and the fully-connected layer,‬

‭which collects and generates the final output of the network. A typical CNN is comprised of‬

‭several convolution and pooling layers and one fully-connected layer to produce the output. Part‬

‭of what makes CNNs so versatile is their ability to be custom-built and custom-trained for many‬

‭different tasks, and it allowed them to become one of the cornerstones of machine learning‬

‭networks.‬

‭Generative Adversarial Networks (GANs)‬

‭A General Adversarial Network, or GAN, is one of the cornerstones of generative AI‬

‭networks (Goodfellow‬‭et al‬‭., 2014). First conceptualized‬‭and developed around 2012, a GAN‬

‭works by using two neural networks, a generator and a discriminator, and pitting them against‬

‭each other, as shown in‬‭Figure 4‬‭. The generator, which‬‭is shown images, text, or data from a‬

‭training set, learns to generate new data with the same statistics as the training set.‬

‭Figure 4:‬‭A diagram displaying the structure of both‬‭networks involved in the GAN.‬

‭In most machine learning applications, the goal is to optimize a function, but in GAN the‬

‭generator aims to “fool” the discriminator into believing that the generated output is legitimate.‬
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‭Once the generator can consistently create output that the discriminator can classify as‬

‭legitimate, the discriminator is removed from the system, and the generator provides its output to‬

‭the user. GANs were one of the first major generative AI networks, and while they had mixed‬

‭results at their inception, as they have improved and innovated over time their results have‬

‭become more and more promising.‬

‭GAN First Attempt‬

‭TensorFlow (TensorFlow, 2024b) provides functions that are used to train over the data‬

‭(and read it) and produces a minimal structure of a final potential model, which is completed by‬

‭Keras (Keras Team, 2024a).‬

‭The GAN is set up with two networks - the discriminator and the generator. The‬

‭discriminator’s general structure is shown above, with the input of the 28x28 MNIST image fed‬

‭into the discriminator, and then going through 4 layers before providing an output.‬

‭For the first working setup of the GAN, the discriminator and the generator were set up in‬

‭a similar fashion. For the discriminator, a total of four layers were used: two convolutional‬

‭layers, a flatten/funnel layer, and a dense NN layer. The way the convolutional layers work is by‬

‭using a number of filters of a certain size to scan for features in input, and then adding each‬

‭result from the input and the filter into a map or a matrix for the final output. For the first setup,‬

‭there were two convolutional layers used, with a total of 64 and 128 filters in the respective‬
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‭layers, and both used a filter size of a 3x3 matrix. The output from those layers was then put into‬

‭the flatten/funnel layer, in which reshapes the multi-dimensional output from the two‬

‭convolution windows into a one-dimensional array/vector, which is then fed to the final layer, the‬

‭dense NN layer. The dense layer processes the input vector produced by the above layers, and‬

‭uses it to produce the final output with its own activation function.‬

‭For the generator, it is built in a similar fashion, although it could be said that it is built as‬

‭the opposite of the discriminator, starting with a dense NN layer, then followed by a reshape‬

‭layer and two transposed convolution layers. For the generator, the dense layer processes the‬

‭input layer and creates a one-dimensional array/vector, which is then processed by the reshape‬

‭layer into a multi-dimensional output as seen in the earlier layers of the discriminator. Then,‬

‭these outputs are processed by two transposed convolutional layers, which performs the‬

‭functions of the discriminator’s convolutional layers in reverse, by taking the feature map,‬

‭funneling through a filter and constructing a possible input. These two layers reshape and resize‬

‭the provided multi-dimensional inputs before feeding them to a final standard convolution layer‬

‭with one filter, which processes the inputs into a standard 28x28 image comparable to the‬

‭MNIST/EMNIST dataset.‬

‭Variational Autoencoders (VAEs)‬

‭A Variational Autoencoder, or VAE, works by compressing data down to a smaller value‬

‭via one encoding algorithm, and then uses another to decompress it to a similar, if not the same,‬

‭value as the original.‬

‭When using these in generative models, VAEs will essentially create a sort of 2D plane‬

‭that contains compressed data points for all the data given in its training set. Then, when the user‬
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‭requests something from that data set, it will pick out one or more points that should,‬

‭probabilistically, produce that output, and decompresses the points into the proper output data.‬

‭While VAEs and GANs may have similar functionality with generating output, their‬

‭methods in generating that output are fundamentally different. A GAN will start with countless‬

‭outputs based on the training data, and will slowly filter out and refine them with the help of the‬

‭discriminator, whereas a VAE picks a most likely output and builds from around it, expanding its‬

‭list of possible outputs.‬

‭A VAE works by minimizing any potential loss/miscategorization of inputs and outputs,‬

‭or in other words, making sure that the chance it produces the correct data point/output is as‬

‭close to 100% as possible.‬

‭Figure 5‬‭: General encoding process of a VAE‬
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‭Figure 5‬‭outlines the general encoding process of a VAE, of which the goal is to‬

‭maximize the chosen probability distribution (in this case, z), with the given parameter theta. The‬

‭goal of the encoder is to create a probability distribution such that the chance that the given data‬

‭is encoded to specific values is maximized, and the goal of the decoder is to create a similar‬

‭distribution such that the chance encoded values are decoded to specific data is maximized. In‬

‭other words, the goal of a VAE is to create two parameterized probability distributions in which‬

‭loss between the two is minimized.‬

‭First VAE structure attempt‬

‭For my first attempt at the VAE, I used a simple structure much like the GAN, using only‬

‭about four layers for the encoder and decoder networks.‬

‭For the encoder, I had a simple structure composed of four layers: two convolutional‬

‭layers, followed by a flatten/funnel layer, and then a dense NN layer to produce the output. For‬

‭the first two layers, they contained 32 and 64 3x3 filter matrices respectively, which provided a‬

‭multi-dimensional output to be reshaped into a one-dimensional vector by the flatten layer.‬

‭Finally, the one-dimensional array was processed by the dense NN layer, providing a basis for‬

‭the normalized distribution of encoded data.‬

‭For the decoder, I had a five-layer structure built as the opposite of the encoder, starting‬

‭with a dense NN layer to process the encoded data, followed by a reshape layer to transform it‬
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‭into a multi-dimensional output, and followed by three transposed convolutional layers to‬

‭process and convert the data into a standardized 28x28 image.‬

‭Methodology‬

‭Using Tensorflow and Keras‬

‭In order to create the networks to be used in this project, there were two major data‬

‭packages used, Keras and Tensorflow. The purpose of the Keras data package was to provide the‬

‭framework for the layers of the networks, allowing them to actually function as needed for this‬

‭project, while the Tensorflow package was used to not only provide the structure for the network,‬

‭but also to provide the datasets used in this project, namely through the tf_datasets package‬

‭(Tensorflow, 2023).‬

‭Using both of these data packages allowed for the creation of both a functional GAN and‬

‭VAE network, which were built using two online tutorials from the Keras website as a basis.‬

‭The GAN’s general structure was based off of a tutorial that involved the generation of‬

‭images of faces from a local storage dataset (Keras Team, 2023). This tutorial had to be modified‬

‭extensively for it to fit our purposes, mainly in restructuring the code to pull from datasets‬

‭provided by the tfds_datasets package. However, its foundation for the GAN it created was‬

‭largely unchanged, and thus the final product operated very similarly to the tutorial, and did not‬

‭affect the runtime of the model.‬

‭For the VAE, the tutorial that was used was originally using the MNIST dataset, so it was‬

‭remarkably easy to make minor changes for the code to fit the needs of the project. However,‬
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‭much like the GAN tutorial, the VAE tutorial code had to be modified in order to make use of the‬

‭tfds_datasets‬‭package, but this did not affect the‬‭functionality or runtime of the model.‬

‭Setting up GAN‬

‭In order to set up the GAN, the first step was to use the original tutorial code and modify‬

‭it for our purposes in using it on our datasets. In the tutorial provided by Keras, the GAN was run‬

‭on a database in local storage which contained a collection of face images for training and‬

‭testing. However, since we would be training and testing on the MNIST/EMNIST datasets from‬

‭first Keras, then the tfds_datasets packages, it would be necessary to modify the code provided‬

‭by the tutorial. After successfully altering and checking the code to ensure it still functioned as‬

‭needed, the first task was running the GAN on the MNIST dataset.‬

‭GAN and VAE tutorials are written by the same people, but have different styles of coding.‬

‭In the first implementation, each epoch required 360 seconds to compute and the results‬

‭are not as accurate. When running the GAN, it seemed to work well enough, however, it ended‬

‭up taking 3 hours to train, requiring 6 minutes per epoch of training. After comparing it to‬

‭examples of GANs and other network types, I adjusted the number of filters for the layers,‬

‭changing the numbers from 64 and 128 to 32 and 64, which reduced the training time of the‬

‭network drastically, now only needing 6 minutes to train with roughly 30 seconds per epoch of‬

‭training.‬

‭After realizing that my current method of reading in data from the datasets would not be‬

‭effective for reading and training the EMNIST data, I reworked my currently existing code to use‬

‭the tfds_datasets package, which includes both MNIST and EMNIST. However, as a result, I also‬
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‭needed to rework the way my code functioned for the baseline MNIST to be compatible with my‬

‭new tfds_datasets methods and structure.‬

‭Setting up VAE‬

‭The tutorial code (Keras Team, 2024b) used the MNIST data set and TensorFlow and‬

‭Keras. The first step was to modify the code to work with EMNIST data set. This was not hard to‬

‭do because Keras already supported the MNIST data set. Running the modified code generates a‬

‭visual representation of the encoded data for the MNIST digits‬

‭Figure 6‬‭: Visual representation of encoded data‬
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‭In‬‭Figure 6‬‭, you can see all ten digits at various locations within the two-dimensional‬

‭plane. There is smooth variation as you move between neighboring images, and so in the left‬

‭edge of the image looking vertically down the image you can see the digit “0” smoothly‬

‭transform into the digit “9”. The grid represents the output of the VAE at unique points in a 2D‬

‭plane.‬

‭Figure 7‬‭: Sample spatial distribution of a VAE trained‬‭on MNIST.‬

‭When working to develop this code for the VAE, I initially had problems with the process‬

‭of correlating the textual digit you wanted the VAE to generate with the image output provided‬

‭by the algorithm. Since a VAE generates output based on probability rather than discrimination‬

‭and categorization like a GAN, it was hard to directly associate the generated images with‬

‭categories to pull from.‬
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‭After getting the GAN and the VAE to function correctly for the MNIST dataset, I‬

‭attempted testing the trained networks from the MNIST dataset on the EMNIST dataset for‬

‭input. However, I encountered two distinct problems: First, the EMNIST dataset contains the‬

‭MNIST dataset as a subset, meaning that the categories in MNIST are all present in EMNIST,‬

‭but not the other way around. This results in not being able to fully convert categories from‬

‭EMNIST to MNIST, and with my first implementation having no ways for the GAN to‬

‭distinguish categories, it became very difficult to manage. The second problem was that while‬

‭the setups through Keras and TensorFlow allowed trained models to predict their output, the‬

‭corresponding input to predict from, particularly the GAN, is difficult to format and properly‬

‭feed into the network. As a result, I had a lot of trouble properly formatting and differentiating‬

‭the training and testing datasets for both networks.‬

‭Another major problem for testing false positives arose from realizing that the function to‬

‭generate outputs from the GAN and VAE operated independently from the database they were‬

‭trained on, as well as their inability to categorize inputs shown to them. In other words, if a‬

‭network was trained on MNIST, then inputting a test image from EMNIST would not affect the‬

‭output of the network than if I used a test image from MNIST. And since this is true for the‬

‭GANs and the VAE trained on MNIST, as well as the fact the MNIST dataset is a subset of the‬

‭EMNIST dataset, the only possibility for a false positive would be from a VAE trained on‬

‭EMNIST. As a result, I started working on training the VAE and GAN on the EMNIST data set.‬

‭When initially loading the EMNIST data set, I couldn’t find a dedicated dataset loaded‬

‭into Keras to pull from. As a result, I attempted to use the database downloaded from the internet‬

‭onto my local storage to use the EMNIST database. However, after running into too many‬

‭complications with importing EMNIST from my local storage, I instead turned to using the‬
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‭tensorflow_datasets package, which includes both MNIST and EMNIST. After reformatting my‬

‭current code, I was able to successfully run EMNIST, but since EMNIST is markedly larger than‬

‭the MNIST dataset, containing over 800,000 images as opposed to MNIST’s 70,000, I‬

‭specifically ended up using the “balanced” subset of EMNIST, which contains approximately‬

‭131,600 images.‬

‭Figure 8‬‭: Sample spatial distribution of only the‬‭letters in the EMNIST dataset when run through‬

‭a VAE.‬
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‭In addition, in order to test the quality of my code and debug it, I included a function to‬

‭display only certain digits and characters when plotting a sample distribution, as seen in the‬

‭figure below.‬

‭Figure 9‬‭:‬‭Values that align with “5” as can be seen‬‭on the Y axis.‬

‭Design‬

‭For the final setup of the networks, I used Keras, Tensorflow, and the tfds_datasets‬

‭packages to provide the structure of the networks and datasets. As an open-source machine‬

‭learning platform, Tensorflow provided the foundation and framework of the two networks that‬
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‭were created, and provided built-in methods for image training and image generation. Once the‬

‭foundation and framework were in place, Keras was used to create the individual layers of the‬

‭networks and facilitate interaction between the user and network. With the functions and code‬

‭provided by the Keras package, each layer of the network could be fully built and trained. Lastly,‬

‭the tfds_datasets package was used to provide the datasets trained and tested on. While the Keras‬

‭package does contain an MNIST dataset that was initially used, for the sake of convenience, the‬

‭tfds_datasets package was used instead, as it contained both MNIST and EMNIST datasets.‬

‭Both the GAN and the VAE were developed with similar structure, having 4-5 layers for‬

‭each component of the network with the same window size, filter size, and number of filters.‬

‭While the general structure of the network and its layers remained very similar to the original‬

‭tutorials, only containing ~5 layers and stacking convolution layers before funneling them into a‬

‭dense NN layer, the final structure changed the setup of the filters in both their size and number‬

‭per layer.‬

‭For the datasets used, both MNIST and EMNIST datasets were accessed using the‬

‭tfds_datasets package, and the subset of EMNIST used was the EMNIST_Balanced subset. For‬

‭the MNIST dataset, both networks were trained on 60,000 training images and tested on 10,000‬

‭testing images consisting of digits from 0-9, while for the EMNIST dataset, both networks were‬

‭trained on 112,800 images and tested on 18,800, including all digits from 0-9 and all letters,‬

‭although due to problems in recognition due to similarities between uppercase and lowercase,‬

‭both versions of the letters C, I, J, K, L, M, O, P, S, U, V, W, X, Y, and Z have been merged into‬

‭one class. Therefore, the EMNIST_Balanced dataset contains 47 classes, with 10 digits, 26‬

‭uppercase (and merged lowercase) letters, and 11 lowercase letters as separate classes,‬

‭specifically a, b, d, e, f, g, h, n, q, r and t (Cohen‬‭et al‬‭., 2017).‬
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‭Evaluation‬

‭To evaluate the effectiveness of these algorithms and the datasets, we will compare them and‬

‭their results against each other and previously found results from earlier research.‬

‭GAN trained on MNIST‬

‭Figure 10‬‭:‬‭Randomly Generated output from the GAN‬‭for MNIST.‬
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‭Figure 10‬‭shows some randomly generated outputs from the GAN. It is worth noting that‬

‭at least 2 of every digit between 0 and 9 are visible on this plot.‬

‭GAN trained on EMNIST‬

‭Figure 11‬‭:‬‭Randomly Generated output from the GAN‬‭for EMNIST‬
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‭Note: the EMNIST dataset is set up such that training images are flipped horizontally and rotated‬

‭90 degrees counterclockwise. As such, the results output by the GAN presented as they would be‬

‭normally seen, would look like this:‬

‭Figure 12‬‭:‬‭Rotated and Inverted images from‬‭Figure‬‭11‬‭.‬

‭GAN output trained on EMNIST, reformatted. This plot shows several random images generated‬

‭from the GAN trained on the EMNIST_Balanced dataset.‬
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‭VAE trained on MNIST‬

‭Figure 13‬‭:‬‭VAE’s normalized distribution on the 2D‬‭plane.‬

‭Figure 13‬‭shows the outputs of the VAE’s normalized‬‭distribution on the 2D plane. As‬

‭shown above, all digits in the MNIST database are shown.‬
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‭Figure 14‬‭:‬‭VAE’s distribution of digits from VAE on‬‭MNIST‬

‭This plot shows the distribution of digits generated from the VAE trained on MNIST. The plot of‬

‭the digits above is a visual representation of a section of this plot.‬
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‭VAE trained on EMNIST‬

‭Figure 15‬‭VAE’s distribution of digits from VAE on‬‭EMNIST‬

‭This plot shows the distribution of digits and letters generated from the VAE trained on‬

‭EMNIST. When compared to the MNIST plot, the data is much more centrally concentrated,‬

‭meaning that the network considers most characters in the dataset to be similar to each other.‬
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‭Figure 16‬‭Visualization of central cluster from‬‭Figure‬‭15‬‭.‬

‭This plot is a more visual representation of the central cluster shown in the above plot.‬

‭However, since the EMNIST dataset is formatted to be rotated 90 degrees and horizontally‬

‭inverted, the letters and digits should be more humanly recognizable in the below image:‬
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‭Figure 17‬‭. Rotation and Inversion of Figure 16 for‬‭readability.‬

‭Conclusions‬

‭In regards to the goals of this project, we were able to successfully replicate the‬

‭generation of images from a neural network trained on the MNIST dataset, as well as the‬
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‭EMNIST dataset. In comparison to other networks that were examined in the research process‬

‭for this project (Goodfellow‬‭et al‬‭., 2014, Cao‬‭et‬‭al‬‭., 2023), the networks that were built were‬

‭comparatively smaller, only comprised of about five layers, whereas the ones used in previous‬

‭studies used more filters and layers in their construction. However, it can be argued that the‬

‭outputs provided by the networks constructed in this project were comparable to the sample‬

‭outputs provided by previous research, specifically the initial results of the GAN developed by‬

‭Goodfellow. In addition, it is worth noting that while the VAE’s results when trained on the‬

‭MNIST dataset were exceptionally clear, most of the outputs of the VAE trained on EMNIST are‬

‭more indiscernible, likely due to the difference in the amount of classifications present in the‬

‭EMNIST dataset when compared to the MNIST dataset.‬

‭When comparing runtime for both algorithms, it is worth noting that the VAE was‬

‭consistently faster in its training than the GAN on both datasets, with the GAN taking 30 to 35‬

‭seconds per epoch of training, while the VAE took 25 to 30 seconds per epoch of training. This is‬

‭likely because the process of normalization for the encoder and decoder in the VAE is a much‬

‭faster mathematical process than the training of the generator and discriminator in the GAN.‬

‭Therefore, when compared to the generated results of both models, the GAN appears to perform‬

‭better with a larger amount of categories to classify, like the EMNIST dataset despite taking‬

‭longer to train, and the VAE appears to perform better on smaller amounts of categories to‬

‭classify, namely the MNIST dataset. In addition, it is worth noting that running these models on‬

‭my machine locally may have caused an increase in runtime. Since my machine’s storage and‬

‭processing power is limited, a more specialized machine may have been able to produce more‬

‭efficient run times.‬
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‭For possible future work, it is worth exploring how the number of layers and filters in a‬

‭convolutional neural network can affect the quality of their output and their runtime when‬

‭training. When first testing the models, a mismatch in the number of filters caused a massive‬

‭increase in runtime. Although the training and adjustment of the larger number of filters‬

‭increased the runtime of the model, it is worth exploring whether they have a noticeable effect on‬

‭the output of the models.‬
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